

Miguel dos Santos Lopes

MULTIPLAYER SERVICE FRAMEWORK FOR

MARINE POLLUTION CONTROL SIMULATOR

(MPCS)

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Prof. Licínio Roque and

Prof. Jorge Cardoso and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

September 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Miguel dos Santos Lopes

Multiplayer Service Framework for
Marine Pollution Control

Simulator (MPCS)

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Licínio Roque and Prof.

Jorge Cardoso and presented to the Department of Informatics Engineering of
the Faculty of Sciences and Technology of the University of Coimbra.

September 2023

Acknowledgements

First, I would like to thank my family for all their efforts during this academic
stage and all the support during this period. I also thank my girlfriend for all her
support and motivation.

I also want to thank my advisors, Dr. Licínio Roque and Dr. Jorge Cardoso, for
their continuous help during this stage. I really appreciate all the attention and
help they gave me at all times, solving my doubts and giving me suggestions
during the development of this work.

Finally, I want to thank my friends for the good friendship we made through
these two years and the help they gave me during my master’s degree.

This work was partially funded by MPCS project 101048546 under UCPM-2021-
PP-MARIPOL, programme UCPM2027 and by the FCT - Foundation for Science
and Technology, I.P./MCTES through national funds (PIDDAC), within the scope
of CISUC RD Unit - UIDB/00326/2020 or project code UIDP/00326/2020

v

Abstract

When a oil spill occurs, there is significant financial and environmental harm.
These spills may occur for various factors, as the most usual are: lack of vigilance
or a boat/ship accident. So, the removal should happen as quick as possible. For
this to happen, all people involved must be in coordination in all times which
requires rigorous training.

Marine Pollution Control Simulator (MPCS) is a simulator whose main objec-
tive is to improve coordination training for all people involved in removing a
pollutant in the sea, without the need for all persons be in the same place or nei-
ther to use real equipments. MPCS contains several components, such as a VR-
component (VR-interfaces, in experimental version), and an User Interface (UI)
Generation (generation of interfaces) component, an Game Editor (configuration
of the exercises and entities involved), and the Multiplayer Service Framework.
The objective of this thesis was the implementation of the Multiplayer Service
framework on MPCS.

This module consists of developing a service where players can join a specific
session/exercise. Then, they can perform various actions, from sending messages
to other players to interact with objects in the game and perform an action that
will influence the pollutant and its behavior. Also, this module is responsible for
the emission and storage of the logs done in each game session.

To achieve this, a plan of the tasks to be made was done. The first phase contains
the study on the state-of-the-art, the identification of a methodology to use, and
the identification of risks. After that, the development of the architecture (and its
documentation) and Data Model. The final phase consists in the development of
the proper framework, and tests on the performance of the solution found.

Keywords

Pollution Simulator, Game-Based Learning, Networked game, Multiplayer Ser-
vice Framework, HC Pollution, MPCS.

vii

Resumo

Quando ocorre um derrame de petróleo, ocorrem danos significativos tanto fi-
nanceiros como ambientais. Estes derrames podem acontecer por diversos mo-
tivos, sendo os mais comuns a falta de vigilância ou um acidente de algum barco.
Portanto, a remoção deve acontecer o mais rápido possível. Para que isso acon-
teça, todas as pessoas envolvidas devem estar em coordenação o tempo todo, o
que requer muito treino.O MPCS é um simulador cujo principal objetivo é mel-
horar o treino de coordenação para todas as pessoas envolvidas na remoção de
poluentes no mar, sem a necessidade de todas as pessoas estarem no mesmo local
ou de usarem equipamentos reais.

O Marine Pollution Control Simulator (MPCS) possui vários componentes, tais
como, um componente de Realidade Virtual (interfaces RV, em versão experimen-
tal) e um componente de Geração de Interfaces de User Interfaces, um Editor de
Jogo (configuração dos exercícios e entidades envolvidas) e uma Multiplayer Ser-
vice Framework. O objetivo desta tese consiste na implementação desta frame-
work no MPCS.

Este módulo consiste no desenvolvimento de um serviço onde os jogadores po-
dem participar numa sessão/exercício específica/o. Depois, estes podem realizar
várias ações, desde o envio de mensagens para outros jogadores, à interação
com objetos no jogo e até à realização de ações que influenciarão o poluente e
o seu comportamento. Além disso, este módulo é responsável pela emissão e
armazenamento dos registos feitos em cada sessão de jogo (action log).

Para atingir este objetivo final, foi elaborado um plano das tarefas a serem real-
izadas. A primeira fase inclui o estudo do estado da arte, a identificação de uma
metodologia a ser utilizada e a identificação de riscos. Após isso, o desenvolvi-
mento da arquitetura (e sua documentação) e do Modelo de Dados. A fase final
consiste no desenvolvimento da Multiplayer Service Framework e na realização
de testes de desempenho da solução encontrada.

Palavras-Chave

Simulador de poluição, Game-Based Learning, MPCS, Multiplayer Service Frame-
work, Poluição de HC.

ix

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Scope . 3
1.3 Objectives . 4

2 State of the art 5
2.1 Background on problem domain . 5
2.2 Overview of network topologies in multiplayer games 9
2.3 Relevant factors impacting multiplayer game experience 13
2.4 Simulation-based training . 16

2.4.1 Sidh . 16
2.4.2 NIMSPro . 17

2.5 Multiplayer games and their architecture 18
2.5.1 Mammoth . 18
2.5.2 Immersive Deck . 21
2.5.3 Adventure 2 . 23
2.5.4 Fortnite . 25

2.6 Frameworks used in online context 27
2.6.1 RTF . 27
2.6.2 NAVER . 29
2.6.3 2Simulate . 31

2.7 Technologies in a multiplayer game 33
2.7.1 Multiplayer frameworks (libraries) 34
2.7.2 Cloud (or Hosting services) 36
2.7.3 Databases . 37

3 Methodology and Work Plan 39
3.1 Objectives . 39
3.2 Approach . 40
3.3 Work Plan . 41
3.4 Risks . 43

3.4.1 Module Interdependencies 44

4 Requirements 47
4.1 Architecture Requirements . 47
4.2 Action Requirements . 48
4.3 Non-functional Requirements . 49

5 Architecture Design 51

xi

Chapter 0

5.1 Global Architecture Design . 51
5.1.1 Game Editor . 52
5.1.2 UI Generation . 53
5.1.3 Digital Twin . 54
5.1.4 Database . 55

5.2 Multiplayer Service Framework . 56
5.2.1 Client-Server interaction . 57

6 Infrastucture and Development 59
6.1 Development Technologies . 59

6.1.1 Player on-action event . 60
6.2 Development Activities . 60

6.2.1 Initial Stage (Mid-February to Initial-May) 61
6.2.2 Sprint 1 (Initial of May to Mid-May) 62
6.2.3 Sprint 2 (Mid-May to End of May) 64
6.2.4 Sprint 3 (End of May to Mid-June) 65
6.2.5 Sprint 4 (Mid-June to End of June) 66
6.2.6 Sprint 5 (End of June to Mid-July) 67
6.2.7 Sprint 6 (Mid-July to End of July) 68
6.2.8 Sprint 7 (End of July to Mid-August) 69

6.3 MPCS current state and Future Work 70

7 Evaluation 73
7.1 Objectives . 73
7.2 Process and Data Collection . 74
7.3 Results . 75

7.3.1 Implications of the Results and Opportunities for Improve-
ment . 76

7.4 Stress Tests . 76

8 Conclusion 79
8.1 Deliverable list . 80

Appendix A Epic’s architecture at a glance [Amazon2018] 87

Appendix B Methodology 89
B.1 Panned Task List/Backlog . 89
B.2 Effective Gantt . 90

Appendix C Requirements 91
C.1 Action Requirements . 91

Appendix D Architecture 93
D.1 Global Architecture . 93
D.2 Data Model . 93

xii

Acronyms

API Application programming interface.

AWS Amazon Web Services.

CSN CleanSeaNet.

DCPM Directorate for Combating Pollution of the Sea.

DGAM Central Services of the Directorate General of Maritime Authority.

EMSA European Maritime Safety Agency.

EVM Ecosistemas Virtuales y Modulares S.L.

HC Hydrocarbon.

IPTL Instituto Profissional de Transportes e Logística.

JAR Java Archive.

JPA Java Persistence API.

MMOG Massive Multiplayer Online Game.

MP Marine Police.

MPCS Marine Pollution Control Simulator.

NAVER Networked and Augmented Virtual Environment aRchitecture.

P2P Peer-to-Peer.

PC Port Captains.

POLREP Pollution Reporting System.

RTF Real-Time-Framework.

TCP Transmission Control Protocol.

UI User Interface.

xiii

List of Figures

2.1 Containment and removal on sea . 7
2.2 Containment and removal on land 8
2.3 Client-Server (Dedicated Game Server) Architecture [Unity2022] . . 10
2.4 P2P Architecture [Unity2022] . 10
2.5 Hybrid Architecture [Javatpoint] . 11
2.6 The trade-off between consistency and responsiveness using client

prediction . 14
2.7 Server processing client 1 and client 2 at the same time due to time

delay . 15
2.8 Sidh environment . 17
2.9 NIMSPro screenshots [C3] . 18
2.10 Mammoth 3D Client Interface . 19
2.11 Mammoth with different Network topologies by migrating Master

Objects . 19
2.12 Components of the Mammoth Framework 20
2.13 Immersive Deck real-life and in-game scenarios 21
2.14 Data exchange between client and server 22
2.15 Adventure 2 mobile interface (Camera View) 23
2.16 Adventure 2 architecture . 24
2.17 Fortnite interface in-game . 25
2.18 RTF, servers with combined concepts of replication, zoning and in-

stancing . 27
2.19 Data flow combining RTF and a server with areal-time-loop 28
2.20 NAVER framework . 30
2.21 System integration of the Gyeongju VR Theater 31
2.22 Components of the 2Simulate Framework 32
2.23 2Simulate Component Architecture 33

3.1 Methodology and parts involved in the development of the MPCS
([Sampaio et al., 2022]) . 40

3.2 Gantt Chart of the tasks regarding the first (in light blue) and sec-
ond (in blue) semester . 42

3.3 Effective Gantt of the 2º semester . 42

5.1 MPCS Architecture Components . 51
5.2 Game Editor component design . 52
5.3 UI Generation component design . 54
5.4 Digital Twin component design . 55
5.5 Database component design . 56

xv

Chapter 0

5.6 Multiplayer Service Framework component design 57
5.7 Client-Server interaction design . 57

6.1 Chat System (in lobby) . 63
6.2 Chat System (Received messages in Email) 63
6.3 Carrying equipment . 65
6.4 Possible actions interacting with equipment 66
6.5 Map view of the simulator . 70

7.1 Stress test using ab tool . 77

A.1 Epic’s architecture at a very high-level 87

B.1 Effective Gantt of the 2º semester . 90

D.1 MPCS Global Architecture . 93
D.2 MPCS Data Model . 94

xvi

List of Tables

2.1 Comparison of topologies in games 12
2.2 Frameworks in multiplayer games 35
2.3 Cloud (or Hosting) options for multiplayer games 36
2.4 Popular databases used in multiplayer games 37

3.1 Risks and Mitigation plan . 44

B.1 Thesis backlog (plan) . 90

C.1 Actions required (defined) for MPCS 92

xvii

Chapter 1

Introduction

When a oil spill occurs, there is significant financial and environmental harm.
These spills may occur for various factors, as the most usual are: lack of vigi-
lance (the owners clean their boat in the ocean for faster results, in remote places
so as not to be caught) or an accident occurs (the boat sinks, the spill falls from
the boat). Monitoring is a critical task, controlling all the ships that might com-
mit fraud and monitoring when spills occur (the faster, the better). Sometimes it
can be complicated and tricky (by weather-related problems and the difficulty in
accessing/controlling some areas).

The identification and removal of a spill need to be done in the shortest time.
There are several steps after identifying a spill (explained in detail in the 2.1 sec-
tion) to combat/remove it from its local (sea or coast). Hence, communication
must be as quick and effective as possible (for less damage).

This removal must include many individuals, from firefighters, air commanders,
marine police, to even a person responsible for public relations (to handle the
communications to the media). In other words, these processes require rigorous
operational coordination training for all parties involved to be as efficient and
successful as possible due to their complexity.

After training, each person should be able to know better what to do in each
specific situation and perform tasks (mainly coordination/communication tasks
with other people involved) with better quality and promptness. In general, these
persons should have a better and greater perception of how the whole process in
the removal of a pollutant occurs and what actions the person (depending on the
role) is responsible for.

Nowadays, it is challenging to teach all participants because it is complex and
difficult to get everyone involved in the process together at one location and time.
Beyond that is also tough to recreate real-world or comparable events. Also, some
other errors that can occur in these removals of the pollutant (not counting with
communication errors between entities) are individuals forgetting their personal
equipment, forgetting water/food or to rest properly (and doing something bad
because of lack of energy) and equipment that is not well preserved (because they
have not been used for a while).

1

Chapter 1

With this in mind, the organizations (Ecosistemas Virtuales y Modulares S.L (EVM),
Qualiseg, Instituto Profissional de Transportes e Logística (IPTL), Central Ser-
vices of the Directorate General of Maritime Authority (DGAM) and University
of Coimbra) involved intend to develop a simulator called Marine Pollution Con-
trol Simulator (MPCS). This simulator needs to act as a form of learning/training
for everyone involved, thus avoiding all the constraints (reality, cost, and organi-
zation constraints) necessary to train everyone involved in real life.

In this simulator, players need to interact with each other (and with objects) for
faster oil spill removal, so a multiplayer component is required. Adding a multi-
player layer makes it possible for different players to share the same game session
on a different network. However, some essential services for this type of game are
needed for this to happen. Some examples are servers for the game to be online
(and players join the game), databases (to store the data of all entities and ses-
sions), communication channels (for the player to communicate with the server
and even with the game itself), among other services.

1.1 Motivation

This section first presents the motivation behind the existence of this project. Af-
ter that, the motivation regarding the multiplayer module is also presented.

As mentioned before, removing the spill as soon as possible is essential, and there
is a need for experienced and trained participants. However, it is difficult to train
all people involved in the removal of a spill, mainly because of three aspects:

• Time and location constraints, it is tough to gather all individuals involved
in this process in a single location and time (many people involved, all with
their calendars and occupations);

• Money constraints, it is costly to get everyone together in a specific place
and even to reunite all the vehicles/objects required for training;

• Reality constraints, it is challenging to simulate (in real-life) a spill (this one
is impossible without causing damage to the environment) or even to pre-
view the behavior of the sea. So, because of all these aspects, there is a real
need to improve this situation.

So, MPCS tries to combat these constraints. MPCS is a simulator that combines
real-life scenarios for the combat team (the team responsible for the removal of
the spill) to train and improve their coordination and overall performance of the
removal without the need to all be in the same place.

With the use of Marine Pollution Control Simulator (MPCS), time constraints
(every person can be anywhere), money constraints (i.e., no costs regarding the
movement of persons or equipment), and also reality constraints (using MOHID
and this simulator, a virtual spill can be placed with all of its properties based
on his type and behaviour), are all avoided. With that, after the utilization of

2

Introduction

MPCS, an individual who has played it should be more capable of making deci-
sions and be more aware of what steps he should do in a real situation of an oil
spill, without the need for several real training sessions.

MPCS has four major components (more detail in 1.2): VR-Component (not inte-
grated with the others, since it is an experimental version), an Interface compo-
nent (UI Generation), a Game Editor, a Digital Twin (simulation of spill based on
weather/water conditions) and a Multiplayer Service Framework.

Regarding this specific component (multiplayer), it is essential that players in-
teract/cooperate with each other and with objects (vehicles, bombs) to remove
the spill (as in real life) entirely, so there is a need for a multiplayer service in
the game. Coordinating the multiple participants in the set of activities defined
for each game (the exercise of operational coordination) requires interactions for
the game to be as realistic/accurate/timely as possible, so the multiplayer com-
ponent needs to be efficient and also it is needed that the simulator as a good
variety of actions.

1.2 Scope

This internship focuses mainly on the Multiplayer Service architecture, including
some elements such as configuring the server and the database(s) in the server,
determining how the players will interact and affect the right game state, and
also, the definition and implementation of actions that can occur in the game.

As a result, all other specifications and goals, such as VR-Operations or the User
Interface, are outside the scope of this thesis or internship. Instead, they are the
responsibility of my colleagues working on this project. Doing a quick overview
of the simulator, it contains the other following components/features:

• A VR-Component: Virtual reality-based interfaces for placing the oil spill
and the other elements involved in this process (such as boats or equip-
ment). This will also interact with the Digital Twin to retrieve information
about the behaviour of the HC spill and weather conditions. This compo-
nent is only for research purposes, so there is no interaction with the other
components (for now);

• Digital Twin: The simulator should be capable of retrieving weather and
meteorological conditions (predict how the spill will evolve). A Digital
Twin is used to model the conditions on the ground. A MOHID simula-
tor will be substituting for the real scenario as if users were interacting with
the physical scenario;

• Game Editor and Simulation Modelling: The overall simulation model (defin-
ing the game for each operational coordination exercise). Also, the develop-
ment of an MPCS manager role. This role should be able to define exercises
(and their actions). This component is responsible for the overall simulation
model (defining the game for each operational coordination exercise). Also,

3

Chapter 1

the MPCS managers should also be capable of assigning players to different
sessions;

• User Generation Interface: Development of User Interface (UI) using auto-
matic UI generation. This component generates role-specific user interfaces
for players according to what they have at their disposal. Also, this module
is responsible for the player movement;

• Multiplayer Service Framework: Responsible for managing the multiple
players’ UI connection to the game world and developing all core actions in
the game (i.e., messages and interaction with objects). Detailed in 1.3.

1.3 Objectives

The Multiplayer Service framework covers features such as how to transport and
share data with all players, manage communications with players in the same
game session, handle instances of the game, and set the game online. Another
important objective of this internship is developing and implementing the actions
possible during a game. With that in mind, the main objectives of this module are:

• To define and document the overall system architecture, mainly covering
these aspects:

– Services responsible for managing the multiple players’ UI connection
to the game state;

– Database to store different types of data like photos, reports of the per-
formance, live-tracking data, ...;

– communication channels to players be able to connect to the server or
even with each other;

• The Implementation of actions in the game, taking into account conditions
required for a specific action and its impact in the session state (except for
the movement action, which is done by the person responsible for the inter-
face component);

• The storage of the log of actions done by the players. With this, the MPCS
Manager should be capable of seeing (in an interface of the simulator) what
actions were done during a certain exercise and who did it;

• To implement demonstration interfaces (Application programming inter-
face (API)) that validate the system’s multiplayer core architecture and per-
formance;

• To develop a reference implementation and documentation so that the sys-
tem can be further developed in the future;

• To assess the proposed architecture performance.

4

Chapter 2

State of the art

To be able to implement the required Multiplayer Service framework, a study of
the different concepts, approaches, and technologies is required to understand
what is needed in these types of games and even to understand the difficulties
(and how to combat them) that game developers find when developing these
services.

First, a study regarding the MPCS is done. It shows the current state of the do-
main, the problems faced, and other components related to this project.

Second, some critical concepts are done, including the different network topolo-
gies and the factors that can influence multiplayer experiences (section 2.2 and
2.3). After that, several multiplayer games are presented, their general architec-
ture and how they handle the game world and game state (section 2.5).

There is also a study on different frameworks/approaches in multi-user contexts
(section 2.6). Lastly, it shows some key components of a multiplayer architecture
(libraries, databases, and hosting/cloud services) and their main players in the
market (section 2.7).

These concepts were studied to learn more about multiplayer architecture and
components and how to adopt actions in a game to be more capable and respon-
sive to the user (e.g., messaging the actions to other users).

2.1 Background on problem domain

There are many entities involved in the combat of this type of pollution. The Cen-
tral Services of the Directorate General of Maritime Authority (DGAM) and the
Directorate for Combating Pollution of the Sea (DCPM) are the main ones respon-
sible for controlling and monitoring the ocean/coast. They have many sources to
be aware of sea pollution, including the Naval Command, the Air Force Opera-
tional Command, Port Captains (PC), Civil Aviation, the Merchant Navy and the
Recreational Navy, and CleanSeaNet (CSN), all under contract from European
Maritime Safety Agency (EMSA).

5

Chapter 2

These entities must be coordinated to remove the spill quickly and efficiently.
Hence, there is a guide on how to act after the identification of an accident.
There are mainly four steps (process) after the identification of a spill and to com-
bat/remove it from its local (sea or coast) [Sampaio and Roque]:

1. Initial actions (notify the accident, confirm, and evacuate all civilians): In
this step, when the accident is identified, it is needed that the people re-
sponsible give an alert of the accident (notify). After this, the Marine Police
(MP) or PC should confirm the alert. If there are persons needing rescue,
the rescue starts immediately;

2. Information gathering (description of the spill): The second step is to gather
the maximum information possible about the accident (causes, pollutant,
font,. . .). Some examples are the type of pollutant (heavy, light, dangerous
substances, quantity of the spill), the conditions of the environment and
affected areas (geography, accessibility, support infrastructures), weather
conditions (wind, temperature,. . .), and sensible areas (points of interest,
i.e., natural reserves, protected areas). In this step, a notification is sent to
the Pollution Reporting System (POLREP) (via email with a PDF or MMHS
message). Tools to support decision-making are used, i.e., a simulator to
predict the HC’s behaviour (with the help of the DGAM-DCPM);

3. Complementary actions: Some complementary actions are done, such as
interdiction of the areas (access-only to authorized persons and vehicles),
collection of a sample of the pollutant (and sent to a proper lab), activation
of the response (level 3), contact and inform the entities, communication to
the media, and emission of a warning to the population (local, restricted
areas and precautions to be taken).

4. Operations of combat: This is where the actual combat of the HC is done.
First, there is an intervention by each entity’s captains. It is defined as a
plan of action to remove the HC (based on conditions and available means).
After this, the removal and storage of the oil spill is done. Also, an acknowl-
edgment of the situation (evolution of the incident and possible actions) is
done, and there is a registration of the actions and all events (who and how).

As we can see, some complexity is involved in performing all these steps suc-
cessfully. This complexity is further increased because, for each accident, there
are several scenarios and approaches (more than one scenario can be identified
in the same accident), all with their particularities. It is only mentioned two sce-
narios because the other ones are similar (the main objective is to remove and
store the pollutant (if possible) and protect sensitive areas and/or biodiversity)
[Marinha, 2022]:

• Containment and removal in the sea: The collection is still done at sea level,
containing the pollutant in the sea first and then removing it. Two boats are
used, which hold a barrier (through connecting cables) to contain the pol-
lutant. After this, proper removal equipment is placed between the barriers

6

State of the art

Figure 2.1: Containment and removal on sea

and removes the pollutant. An example of contamination in the sea and
how the accident is approached is presented in Figure 2.1;

• Containment in the coast: When the spill occurs/reaches the coast. In this
scenario, a lot more processes are needed. For example, a definition of dif-
ferent areas is done (clean area, decontamination area, and dirty area), and
depending on the area (decontamination and dirty), only a particular type
of persons or equipment are allowed. For cleaning, several processes are
made by different teams, such as a team for the cleaning of the rocks, one
for the cleaning of the beach/coast, a team in the decontamination area, a
team by the sea working as a support (responsible, i.e., for placing a barrier
in the sea so that contamination does not spread and does not escalate) and
a team responsible for the logistic of the scene (ambulances, tents, transport
vehicles, catering, sanitation for the teams, among others). There is also a
need for equipment to store all the pollutants. Figure 2.2 represents a con-
tainment and its removal on the coast.

Other scenarios are containment in a river, near a shipyard/docks, and protection
of agricultural terrain. As we see (in Figure 2.1, i.e.), many teams and equipment
are involved in this situation, so there is crucial to have all teams in coordination
with each other to achieve the best performance possible. With this in mind,
the persons involved must be capable of doing their required functions, so much
coordination training is required.

The MPCS [Sampaio et al., 2022] is a multilingual environment (currently only
Portuguese and English) based on a Platform as a Service for teaching, training,
and performance evaluation, individually and in teams, of actions to combat mar-
itime pollution. The training (simulation) will occur in a multi-user environment

7

Chapter 2

Figure 2.2: Containment and removal on land

on the web. This simulator can be used via a smartphone, tablet, or computer.
Each user assumes the role of a real professional on his or her specific device.
Also, the simulation runs on a given real geography (with a map and Digital
Twin component).

Currently, three are types of three fundamental actions in the simulator: the con-
figuration of an exercise, where the MPCS Manager can configure an exercise, the
running of an exercise (where the game is played), and a review of the exercise
(via action log).

In the future, it is supposed to the MPCS to be a learning environment where
users, through explanatory videos and PowerPoints, learn the different concepts
and ways of acting and an evaluation environment, where the simulator provides
an automatic evaluation (in some cases) and visualization of the performance and
results (positive/negative, emitting a report) of the individual and the team.

This simulator is designed as a Game-based learning game. These types of games
purposefully teach the person while playing the game, redesigning it as a moti-
vating and engaging activity, i.e., combining a game environment with the rules
and characteristics of real life. This simulator combines cases of real life, i.e., the
spill in the ocean, and by players interacting inside the game with each other (like
in real life), they can control the spill or not. This will be beneficial because it re-
duces the high cost of reuniting all people in one place and is more efficient in
simulating coordination exercises.

The MPCS should be able to simulate a realistic spill of a pollutant. The spill
behaviour will be done through the Digital Twin components (MOHID) with the
help of a mathematical model (already acquired by the Marine) that will calcu-
late the expected behaviour of a spill based on the weather conditions and the ad-
vance of time. After this spill, the simulator should be able to simulate the combat
(as realistically as possible). That is, the participant’s character should have their
own physics (with life/energy, which will change according to the user’s actions)
and should interact with other participants as well as equipment (which also has
its own physics and specific characteristics). During each exercise, action logs are
issued detailing the events and actions of each player (action log).

8

State of the art

The definition and modeling (in the simulator) of entities and their characteris-
tics are not the main focus of this internship, but the definition of the database
that will store this information and the use of the database in running a game
are. Hence, the study of these entities is also important to choose a database that
can meet the requirements of the simulator. With this, some examples of entities
required in the simulator [Barata and Roque, 2022] are:

• Participants: Players with characteristics such as name, height, weight, gen-
der, and function);

• Spill: Location, type of pollutant, size, weight, volatility,...;

• Equipment: Barriers (booms), Skimmers, Vehicles, basic equipment (phone)..;

• Vehicles: A specific type of equipment. It includes cars, trucks, drones,
boats, and so on. These also have characteristics such as required driver’s
license, capacity, weight, type of vehicle (land, air, sea),...

Since this involves many components with all having their own problems and
difficulties, a difficulty of this project is that it requires cooperation, interaction,
and integration of all required components to have a successful and playable sim-
ulator. Also, another difficulty is that MPCS is an innovative simulator, so there is
no other simulator or game similar that aims to what MPCS wants to accomplish
with his development (NIMSIMPro is the simulator that is closest to what MPCS
wants - which is referred in 2.4.2).

2.2 Overview of network topologies in multiplayer
games

When defining the type of topology of a network, it is essential for every net-
work to work correctly to grant stability, quality in a connection, performance,
and security. Multiplayer games are no exception, so I reunited the three main
types and looked for examples of each approach to determine the best from dif-
ferent points of view (e.g., if more security is required or if performance is more
important than security).

The Client-server architecture (Dedicated Game Server) is this topic’s most well-
known architecture. In this architecture [Yahyavi and Kemme, 2013]), the server
holds the master copies of all mutable objects and avatars and maintains global
knowledge of the game world. The players must connect to the server to re-
ceive the required data about the game world and state. The player’s interactions
in the game world are done by sending information to the server, and then the
server replicates to other players. This architecture’s biggest drawback is scala-
bility because it cannot hold as many players as Peer-to-Peer (P2P). To fight this
drawback, we can implement multiple servers, but it will have major costs (one
example is Quake II, an FPS Massive Multiplayer Online Game (MMOG), which

9

Chapter 2

can only support a few hundred players when using a traditional client-server ar-
chitecture with only one server). Figure 2.3 retracts an example of a Client-server
architecture.

Figure 2.3: Client-Server (Dedicated Game Server) Architecture [Unity2022]

In games, Peer-to-Peer (P2P) (described in[Bauwens et al., 2019]) works the same
way as in normal P2P networks. This means that each node (client) could become
responsible for maintaining copies of some of the game objects and/or updating
information for other clients, so, for example, whenever a player joins a session,
he adds resources to the game. There are two different types of using P2P, with
a host-player (the player acts as the server of that particular game) or with P2P
directly (all players communicate with each other). Figure 2.4 shows an example
of a P2P architecture.

Figure 2.4: P2P Architecture [Unity2022]

As mentioned in [Jardine and Zappala, 2008], a Hybrid approach combines the
best aspects of P2P with a Client-server approach. Sometimes it combines more
core things related to P2P compared to Client-Server or the opposite.

10

State of the art

Seeing some practical approaches, we can see the proposed Hybrid Architecture
that Jardine and Zappala used, where the server only takes care of the critical
events of the game. With this, they can lower the bandwidth (causing some relief
to the server) and can prevent cheating.

Another example of this is various servers worldwide where they communicate
with each other, but in each session, the players communicate with each other (in
the same session). More different types of Hybrid architectures, more complex
and more detailed, are presented in [Yahyavi and Kemme, 2013]. An example of
a Hybrid Architecture is shown in Figure 2.5.

Figure 2.5: Hybrid Architecture [Javatpoint]

Combining the articles that were mentioned before and even with the article done
by Barri et al., some advantages and disadvantages of each topology are shown
in table 3.1

11

Chapter 2

Topology Advantages Disadvantages

Peer-to-Peer • Resources are added without any
cost for the game provider;

• If not implemented properly, a net-
work failure in a client can compro-
mise the game;

• Less cost in maintainability, due to
no existing dedicated servers;

• Cheating is easier, because there’s
no server;

• Provides scalability;

• Harder to manage because it’s
harder (or impossible) to the game
provider have total control of the
game;

• Low latency, because there’s no
need to send data to a server, it sends
directly to (interested) players.

• Less consistency.

Client-Server • More control over the game world
and game state (total);

• More latency (all the data needs to
be send to the server);

• More manageability (updates and
patches are much easier to imple-
ment);

• Less Scalability;

• Easier to prevent cheating, com-
pared to a pure P2P approach;

• To combat scalability it is needed
a greater amount of resources than in
P2P.

• Design is much simpler.

Hybrid • More Reliable, fault detection is
easier; • Complexity in design;

• More Scalable, comparing to
Client-Server;

• Cost of the Hubs, that connect the
different networks;

• Easier to prevent cheating, com-
paring to a pure P2P approach;

• Costly Infrastructure, because of be-
ing Hybrid, it will probably be bigger
in terms of scale.

• More flexible;
• More effective, in the way that we
can "choose" the components that
fits the best to our needs.

Table 2.1: Comparison of topologies in games

12

State of the art

2.3 Relevant factors impacting multiplayer game ex-
perience

This section presents an overview of factors affecting the experience in multi-
player games. Compared to sections 2.2, and 2.5, this section is more from a
practical point of view. Since this thesis is a practical thesis where there is a need
to implement a multiplayer system and not so much research is needed from ar-
ticles, I think it is particularly interesting and important to mention these factors
from a more practical perspective (from websites and books that really know the
industry) and not so much from research articles (although, a study on research
articles is made further in the document).

Regarding multiplayer games, these can be networked, LAN (despite being net-
worked, there is a need to have all people in the same physical location) or couch
co-op. Being MPCS, a networked multiplayer game, the focus will be on this
multiplayer. By its own definition [Armitage et al., 2006], a networked game
must involve a network, i.e., a digital connection between two or more comput-
ers. Multiplayer games are often networked games in that the players are phys-
ically separated, and the machines, whether PCs or consoles are connected via a
network.

As Armitage et al. said, the realism of online gameplay depends on how well the
underlying network allows game participants to communicate in a timely and
predictable manner. These synchronization issues between the clients and servers
are also commonly called netcode. Regarding netcode, a definition of some key
concepts regarding the experience of a networked multiplayer game (focusing
on the netcode) is presented:

• Latency: The time it takes for a packet of data to be transported from its
source to its destination. There are two types of Latency [Armstrong, a]:

– Non-network latency: input lag due to GPU, VSync, Render pipeline
delay,..;

– Network latency: Latency due to network constraints. Some exam-
ples are, processing delay (the time that the router needs to read the
packet header and to know who is the next machine that should re-
ceive the packet), transmission delay (the time to push the packet bits
onto the physical link), queuing delay (a router can only process a lim-
ited number of packets at a time), and propagation delay (time signal
spends traveling through the physical medium). Although all can be
optimized by implementing more capable servers, propagation delay is
easily improved by placing servers near the player’s region. Regard-
ing networking, it is important to consider the combination of network
latency (commonly called ping or RTT) factors;

• RTT (Round Trip Time): The time it takes for a packet to travel from one
host to another and then for a response packet to travel back. The deviation
of RTT in the communication of two hosts is called jitter;

13

Chapter 2

• Jitter: Variation in terms of latency (ping) regarding one packet to another
(the next one). It can affect RTT mitigation and also make packets arrive out
of order if the server needs to send the packets to different routes.

• Packet loss: When a packet is entirely loss. If a determined packet loss
affects the data transported during the game it can cause major damages to
the playability of a game (high delay).

With these concepts in mind, some strategies can be used to mitigate network
latency, for example, [Armstrong, b] [Valve] [Armitage et al., 2006]:

• Client prediction: The client can forecast the server’s answer, allowing the
game client to respond to user input and render player actions before re-
ceiving the server’s official response. However, using prediction will result
in a difference between the game state on the client and the server (as well
as the status on other client computers);

Figure 2.6: The trade-off between consistency and responsiveness using client
prediction

• Entity Interpolation: The server sends updates with the locations of all en-
tities (other players). The client interpolates between each update while
waiting for a few before transferring the object;

• Lag Compensation: The concept of the server using a player’s latency to
rewind time while processing a user command in order to view what the
player saw when the command was sent. However, this can provide new
opportunities for cheating;

• Time Delay: Instead of immediately processing client commands, the server
pauses them for a short period of time, enabling a client located further
away (in terms of network latency) to respond to the game situation. As
seen in Figure 2.7, the server waits for the second client to process both
commands at the same time

There are more types of strategies, such as selecting a non-authoritative server,
where the client can do his own updates. Still, it can provoke data inconsistencies
and less reliability (for example, using client prediction in Figure 2.6). Selecting a
network topology (detailed in section 2.2) and taking into account what matters
most in the game (scalability vs security) is also an important detail to consider.

14

State of the art

Figure 2.7: Server processing client 1 and client 2 at the same time due to time
delay

The game developer should consider a large number of factors regarding these
aspects and the possible trade-offs of choosing a specific strategy or component.
Some factors have a significant impact on the game performance (netcode). Some
features found with the aforementioned references and also [Unity2023] are:

• Latency tolerance: Network latency can be different depending on the dis-
tance between any of the performance from the networks along the trans-
mission of data. In this factor, game developers should consider how quickly
the information and data must be synchronized with all players (level of la-
tency tolerance). In some cases, game developers can "hide" latency (and
choose a higher level of latency tolerance) using prediction and reconcilia-
tion;

• Players per session: The players that the game will need per session. How
many players will the game handle at the same time. With the increase of
players, more power for synchronizing data is needed;

• Scale of the synchronized data: The parts that must be synchronized with
all players. Game developers should define what parts are essential to be
synchronized with all players or not. This can improve the network’s per-
formance since the resources for processing and synchronizing data are lim-
ited. For example, using a server authoritative strategy can be slower, but it
will prevent discrepancies in data.

• Precision: The precision needed relating to the calculation of the world state
and its entities. Some games need to be extremely precise but for others, us-
ing an approximation (prediction) of the results is enough. Higher precision
requires more resources.

• Cost: The cost of the game. If, for example, server capacity and capability
are needed, the game will be more expensive. This can be influenced based
on concurrent users, players (and their distribution around the globe) per
session, among other factors;

• Developer complexity: The complexity of the solution found. The devel-
oper should consider the solution’s complexity before the actual implemen-

15

Chapter 2

tation. Using solutions with good documentation, widely used and easy
tutorials reduces the complexity of the project;

• Security: If the game needs to be secure with data protection or cheat pre-
vention. The second one is not particularly important regarding MPCS,
since it is not a game-competitive simulator.

• Lock-in: How easily the solution found can be reproduced or changed. If
something happens to a certain component, how easily it is to replace him.

2.4 Simulation-based training

In this subsection, we will review two cases of simulators for training, even if the
information available is scarce for the purpose of our project. These examples
are interesting since their main objective is the same as MPCS, to train and im-
prove individuals to real-life scenarios. In the case of Sidh it is a game to train
firefighters, and NIMSpro is a simulator to train emergency responders from all
disciplines in response (e.g., hostage criminal situations or natural catastrophes).
This study made it possible to be more aware of what training-based simulators
aim for and some of their particularities. Another familiar genre of simulation-
based training not presented in this document is driving simulators.

2.4.1 Sidh

Sidh[Backlund et al., 2007][Williams-Bell et al., 2015] is a firefighter training simu-
lator developed in collaboration between the University of Skövde and the Swedish
Rescue Services Agency. Sidh stands apart by integrating computer game hard-
ware and software into an innovative interaction model tailored for firefighter
training. The game’s objective is to have the player scan each required zone/area
and, if needed, rescue the victims. After scanning one area, the player moves to
another one. A player is successful if it scans all the available areas within an
optimal time.

The simulator environment is in a specialized Cave environment (Cave Automatic
Virtual Environment or Digital Cave), where players engage using gesture-based
steering and physical movement facilitated by a specific model of a lantern (called
FogFigher nozzle in the article) and accelerometer-equipped boots. This simula-
tor simulates both physical and psychological stressors encountered in real-life
firefighting situations. With participants wearing firefighting gear, including a
breathing mask and boots, and dealing with elevated temperatures from equip-
ment, the simulator tries to replicate authentic conditions.

Sidh uses the Half-Life 2 game engine with the required modifications to support
a Cave environment. In each session, five game instances are running on separate
computers. One is the primary instance (server), and the others are spectators
to the server with the camera at the same point but with different angles. The
sensor values are provided to the game through a joystick API, and specialized

16

State of the art

algorithms have been developed to map sensor readings to game actions. With
a game engine based on a commercial game, the simulator has a wider range of
tool support. Also, it is easier to develop more missions because it is based on a
proper Editor already configured.

Figure 2.8: Sidh environment

Although the training type differs from MPCS and is a single-player game, the
study of this game was valuable since it is also a training simulator for emergency
disasters (fire). This study provided some information on how different technolo-
gies can be used in a simulator game (e.g., the innovation of using a FozzyFighter
to control the movement of players).

2.4.2 NIMSPro

NIMSPro [C3] is a 3D game engine designed to simulate a first-person point-
of-view experience within a virtual real-world environment (real scenarios are
designed in the game) developed by C3 Pathways. It allows users to navigate
in true-scale 3D models of real locations and even enter buildings. It is a mul-
tiplayer simulation system, enabling multiple players to interact within the 3D
environment, engaging with each other, the surroundings, and various elements
such as victims, vehicles, and even adversaries like criminals.

It is used to train professional emergency responders across various disciplines
for response, mitigation, and recovery from significant emergency incidents. This
simulator encompasses various scenarios, from natural disasters to terrorism sim-
ulations, active assailant scenarios, fire incidents, and transportation accidents.

C3 Pathways’ approach combines the NIMSPro 3D simulator with expert instruc-
tors to ensure effective training experiences that improve performance. This ap-
proach involves creating dynamic emergency scenarios for responders to manage
in real time, facilitating practical learning through repetitive exercises. With this,
this simulator is not only done by developers, but it has the expertise of real pro-
fessionals in the area, which leads to more effective training simulations.

Also, NIMSPro is extensible, which means if a client wants different scenarios
for his needs, there is no obligation to do a whole new simulator. Instead, the

17

Chapter 2

development team can add the required functionalities and scenarios to the game
more easily and faster.

Figure 2.9: NIMSPro screenshots [C3]

Unfortunately, no information was available publicly about the architecture and
how they approach some key questions regarding multiplayer or simulators,
such as the handling of the game world and state. Although this does not have
the type of simulation that MPCS aims for (coordination training for an oil spill
situation), it was interesting studying it since this a sophisticated example of what
MPCS wants to achieve with his simulator (the same purpose which is to train for
real-life scenarios).

2.5 Multiplayer games and their architecture

The multiplayer industry has evolved, and more and more money is involved.
With this, getting real and concrete information about architectures, approaches,
and components of famous multiplayer games (with rare exceptions) becomes
difficult. Therefore, the games mentioned in this section are more for a literature
review (none of these games are known except for Fortnite) point of view, where
the objective of this study is mainly to understand better the different components
that can exist in a multiplayer game and its architectures and how they handled
data affecting game world and state. This section describes the following games:
Mammoth, Immersive Deck, Adventure 2, and Fortnite.

2.5.1 Mammoth

Mammoth [Kienzle et al., 2009] is a massively multiplayer game research frame-
work designed for experimentation in an academic environment. Mammoth pro-
vides a modular architecture where different components, such as the network
engine, the replication engine, or interest management, can easily be replaced.
Mammoth also offers a modular and flexible infrastructure for defining non-
player characters with behavior controlled by complex artificial intelligence al-
gorithms.

The main objective of Mammoth is to provide an implementation platform for
academic research related to multiplayer and massively multiplayer games in the

18

State of the art

fields of distributed systems, fault tolerance, databases, networking, and concur-
rency. Mammoth was built due to the lack of existing software documentation
for implementing a multiplayer game or the knowledge and hardware needed
for testing different types of components in an architecture.

Figure 2.10: Mammoth 3D Client Interface

Figure 2.10 shows an example of an interface presented in the Mammoth game.
As we can see, there are no spectacular graphics, but, of course, this wasn’t the
goal of Mammoth. They were only concerned with showing a pleasant one.

Now, relating to the technical aspects of the game, there are various complex
characteristics. For example, we can use different types of network topologies in
this game depending on what we want (defined in the config file of our game).
In Figure 2.11, we can see an example of that.

Figure 2.11: Mammoth with different Network topologies by migrating Master
Objects

In this approach, the game objects are duplicated, encapsulating the state of the
game objects that need to be distributed to players. Every machine that needs ac-
cess to the game state creates a new local instance of the object, called “a duplica”.
To assure consistency during the game, one of the copies of the duplicated objects
created by these instances is assumed as the "duplication master".

19

Chapter 2

In Figure 2.11, we can see an example of how that can be used to manipulate
the different network topologies. In the Client-Server architecture, all the master
objects are assigned to the server, and with P2P, the master objects are uniformly
distributed over all clients.

Figure 2.12: Components of the Mammoth Framework

In 2.12, we can see the different components of the framework used in the Mam-
moth game. In this game, the components communicate with each other via in-
terfaces, so it is easy to remove and add/replace components in the game. For
example, the Object factories and their respective configuration files define the in-
stantiation (instance) of a given implementation, so a researcher/user can specify
what component he wants to use (in the configuration file) and test it by launch-
ing the game. The game will initiate, and the appropriate engine will instruct
the managers on how to act. By doing this, Mammoth takes off the developer’s
responsibility for knowing all the details of a component.

Giving more emphasis to the Network component (it is the most relevant one con-
sidering the scope of this thesis), this component makes communication possible
in the framework. It allows communication of duplicated objects via direct asyn-
chronous messaging (via remote calls) and publishes/subscribes broadcast sup-
port. Currently, the Mammoth framework has three network engines: Stern (com-
munication is routed through a central hub), Toile (fully connected network), and
Postina (a self-organizing peer-to-peer network engine using tree-based broad-
cast). In addition, a Fake network engine is provided, which uses shared memory
and emulated serialization to route messages across components. Fake is mainly
used when executing units on components that depend on a network engine.

Considering the game itself, in each session, the number of players is created a-
priori (fixed number), so if a player joins a session, we will take over an inactive
instance of a player of a determined session. If the player leaves, the (instance of
a) player will become inactive again ("frozen").

Although this game is not similar to what MPCS pretends since it is not the genre
type and it can not be implemented and used, it was interesting studying it be-
cause of some aspects of the game and framework:

• The capacity to be a manageable architecture where we can easily replace

20

State of the art

components;

• The important components (in particular network engine) and how they
interact with each other;

• The possibility of having two different network topologies based on our
configurations;

• The game itself (it is multiplayer), seems fun the way we can interact with
each other and even we can create sub-games inside of the real game;

• In the article on this game, the authors give a good overview of the exist-
ing problems in creating/implementing architectures and how they tried to
combat them.

2.5.2 Immersive Deck

Immersive Deck [Podkosova et al., 2016] is a system where several users can be si-
multaneously immersed in a virtual environment (VE), explore VEs by real walk-
ing, and interact with each other naturally and intuitively. This system is built
from hardware (not available to the common public) or available prototypes and
is easy to set up. The multi-user system architecture includes global position
tracking, full-body motion tracking, user communication, interaction, and object
tracking. Figure 2.13 shows how the players are in real-life and how they can see
each other in the VR environment.

Figure 2.13: Immersive Deck real-life and in-game scenarios

One negative point of this article is that the authors are not explicit about what
technologies/architecture they use. Regarding the technical aspects of the game,
the article’s authors are only explicit on data transportation and how data is han-
dled when a player possesses an object of the environment (and how other play-
ers see and (cannot) interact with the same object).

21

Chapter 2

Figure 2.14: Data exchange between client and server

In Figure 2.14 we can see the data exchange between the server and a client. In
a) it is when the mobile tracking of small objects is active on the client (when the
client is holding a small object). In this case, the client application sets up poses of
corresponding GameObjects. The poses of the server copies of these GameObjects
are synchronized. In b) it is when the client application is not tracking small
GameObjects. All synchronization is done via UDP.

This system uses the network built-in in Unity3D as the main component of its
network implementation. In this architecture, each client only communicates
with the server and not with other users (directly). In this case, for example,
when a player does something that changes a common object, first, the change is
made on the client side and only then goes to the server (non-authoritative).

The biggest drawback of this game compared to what MPCS needs to be is that
this game was only used and built to be used in a pre-defined context (in a closed
environment of about 200m2). In contrast, in the MPCS project, the environment
cannot have a range limit because the users can be anywhere on the globe while
playing the simulator.

The most relevant aspects of this game are:

• The genre itself is precisely what we want on the project, to players interact
with each other and even with the objects in the field of action;

• The data flow and how the game authors approach the different state of an
object (where is in use by another player, i.e.);

22

State of the art

2.5.3 Adventure 2

Adventure 2 [Agostinho, 2013] is a platform for the creation of multiplayer perva-
sive games for mobile devices. It makes use of augmented reality, location and di-
rection (GPS and compass) and of QR markers. It allows for the easy construction
and orchestration of this type of games. It also allows for elements of narrative
backgrounds with a logical sequencing of events, cooperation and competition,
and a ranking/achievements system. This game uses Petri Nets as the construc-
tor of this games by using generalization functions (e.g. "Point and Click, "Listen
and Click", "QRCollect"). In Figure 2.15 we can see a screenshot of the mobile in-
terface of the game. Adventure 2 [Agostinho, 2013] is a version 2.0 of Adventure
with some adjustments and upgrades.

Figure 2.15: Adventure 2 mobile interface (Camera View)

Agostinho tried to improve the overall system, and his main objectives were solv-
ing escalating issues, portability, designing a new player interface, and designing
a new editor for the game. As shown in Figure 2.16, this architecture has reused
(and remade) some components from the previous version of Adventure with
the addition of new components, like GCM (Google Cloud Messaging) for push
notifications from the cloud for less latency and more scalability.

The architecture of Adventure 2, as shown in Figure 2.16, has several components.
I will only elaborate on the main ones and on the server side. First, the Android
client (presented in Green) has a GameViewPager that creates five distinct classes,
which are the five screens of the game, including the list of all the actions, the
map (simple map with self-location), a camera view where the action actually
occurs (executable actions with augmented reality), an inventory of the items and
achievements, and a ranking for the player to see his points.

The Google Cloud Messaging System (GCM) (in purple) receives a push message
(through HTTP request) from the game instance with the new possible actions in
XML whenever a player modifies the game’s state. The client’s GCM Receiver
class is activated when a message is received. After receiving the content, the

23

Chapter 2

Figure 2.16: Adventure 2 architecture

AppInfo then parses the XML (using SAX Parsing) and changes the ActionList and
Map to include the new actions (Action Specific Classes). Polling to the server
is done when, i.e., the player does a specific menu switch or when an action is
finished.

Regarding the Server side, the Erlang server receives requests on its WebServer
process. A message is then sent to the Playing Dispatcher (if it is private – con-
cerning just the player’s state) or the Game Dispatcher (if it is of a shared nature
– affecting the game state itself). Adventure Web was ported into Erlang to be
launched along with the Gaming Server. The Back-Office runs on the Nitrogen
platform (which uses Erlang and the same web server from previous version
- Mochiweb). Therefore, it encompasses the views for each game state element
(Game, Team, Action, Resource, Goal, and Bridges), the view for managing game
creators (people that create the games), and the menu with the visual Petri Net
interface.

24

State of the art

When a particular game element is created, edited, or deleted, it creates a call into
the controllers. Then, the controllers make a call to Storage (via RPC call), which
acts as the data model of the website. Games have two states: running (playable)
or stopped (can only be edited). If a creator makes some actions in the mobile
editor, they will also be visible on the website for further editions.

The most relevant aspects of this game are:

• The genre itself is similar to what we want on the project, to players interact
with each other and even with the objects in the same space/zone;

• The use of Petri Nets for architecting different games using generalized ac-
tions;

• The architecture is similar to what we intended to use in our project. It
seems simple, explicit, and well-documented;

2.5.4 Fortnite

Fortnite [Epic] is a very famous free battle-royal game developed by Epic Games,
whose main objective of this game is to be the last man (or team) alive. Doing
a simple description of the game, in Fortnite, players drop into a map, either
on their own (solo) or in team (duos or squad), alongside ninety-nine (more or
less) other players. After landing, the players need to collect as many items and
weapons as possible (players can pick up a limited number of items/weapons).
There is also the possibility of do some constructions by using the materials pre-
sented in game. By killing the other players and also avoiding the storm in order
to stay alive, the last player (or team) alive wins the game. Figure 2.17 shows an
interface of Fortnite.

Figure 2.17: Fortnite interface in-game

The case study of this game showing his features and the characteristics of its
multiplayer service was shown in a conference done by Amazon (AWS re:Invent
2018) [Amazon2018]. There are not much information about and that is the reason
it is the last game mentioned in this chapter, because, although it is not a much

25

Chapter 2

deeper study, it is particular interesting to describe an architecture (even at a high-
level perspective) of a very popular game.

As demonstrated by Chris Dyl (Director of Platform at Epic Games), Fortnite pro-
cesses 92 million events per minute, which represents nearly 62 billions of events
per day, also, at the peak of a day they process 40GB of data, so availability and
scalability it is essential in this game. For this to be achieved, Fortnite, runs nearly
entirely on AWS (Amazon Web Services), including its servers, Back End services,
databases, websites, and analytics pipeline and processing systems.

For example, they use Amazon S3 for storage. With S3 it is possible to achieve
great levels of data availability, security, scalability, and performance. They also
use Amazon Kinesis to process and digest all the information and data in real-
time. In Fortnite they have two types of pipelines, a near Real-Time Pipeline, used
to process and store temporary data (this data is stored in Amazon DynamoDB).
This temporary data can be related to Grafana, Scoreboards API or Limited Raw
Data. The other type of pipeline is a Batch Pipeline, where almost every data is
stored by using Amazon S3 (data related to API’s, several services embedded in
Fortnite, among others).

Epic Games uses many other services offered by AWS, including Amazon EKS (for
micro-services management), Amazon Guardduty (for threat detection), Amazon
Neptune (for social network and anti-fraud).

Since it does not contain much detail, the architecture presented in AWS re:Invent
2018 [Amazon2018] is shown in Appendix A, containing some details about it
(services used, different main components and analytics).

Despite, the aspects mentioned in this topic, it is hard to obtain more detailed
aspects of the architecture (as it is for other famous games) for obvious reasons
(especially financial).

The most relevant aspects of this game are:

• It is a famous game;

• How AWS provides scalability;

• It contains a various number of player in a single session;

• Players can interact with items and with each other.

26

State of the art

2.6 Frameworks used in online context

This section describes three frameworks (RTF, NAVER and 2Simulate) that are
used in an online context. Since the frameworks mentioned in this section are
more for a literature review (and not for real implementation), the objective of
this study is mainly to understand better the different approaches (and concepts)
that can be used regarding a multiplayer context (how data synchronization is
assured, e.g.).

2.6.1 RTF

Real-Time-Framework (RTF) [Glinka et al., 2007] is a middleware system that
aims to support the development of modern real-time online games. The RTF au-
tomatically distributes the game state among participating servers, supports par-
allel state update computations, and ensures efficient communication and syn-
chronization between game servers and clients. The users of this framework can
access the RTF via an interface with a high level of abstraction that improves is-
sues related to time-consuming and error-prone programming.

The RTF supports three distribution concepts for real-time multiplayer games
within a multi-server architecture: zoning, instancing, and replication. One feature
of the RTF is that it allows for combining these three concepts within one game
design. In Figure 2.18, explained in the following, shows how the distribution
concepts can be combined to adapt to the needs of a particular game.

Figure 2.18: RTF, servers with combined concepts of replication, zoning and in-
stancing

Zoning separates the world into different zones (in this case, four zones shown in
Figure 2.18). Clients can move between zones, but no events occur in inter-zones.
Also, the calculations in each zone are independent of the others.

Instancing is used to distribute the computational load by creating multiple copies
of the more frequented subareas of the world. Each copy is processed entirely in-

27

Chapter 2

dependently of the others. With this, the developer can specify different instance
areas in the game world that will create new instances in the servers and change
the clients and entities to these zones.

Replication distributes the entities among all servers. Each server has a list of the
active entities presented in his session and a list of the entities that are part of the
other servers (in these entities, the server only has read-only access).

It is common to use portals to move players and entities between zones. With
RTF, the developer can use three portals: SpaceToPointPortal, SpaceToSpacePortal,
and BidirectionalPortal. I will not go deeper on this because it is not especially
important regarding this study since I cannot use this framework because there
is no valid and proper documentation (beyond the paper that I studied).

The responsible server for determined clients must ensure that all the information
the clients need is sent (accessing the proper game state of the game). This area
is usually called the “client’s area of interest”. Determining this area is done by
the developer, known as Interest Management. In RTF, this technique is a publish-
subscribe method. So, the developer needs to define the proper topics the client
must subscribe to or publish to an entity of the game. RTF also has an Euclidean
distance algorithm to help the developer in the implementation. When a client is
subscribed to an entity, the server transfers the required data, and a callback from
RTF is done to inform the client about the new entity and its properties (displayed
on the screen, i.e.). The opposite occurs when an unsubscribe method is done.

Figure 2.19: Data flow combining RTF and a server with areal-time-loop

In Figure 2.19, it is possible to see how this framework processes the game state
(data across all entities involved) and check how client data is managed in RTF.
The processing of the game occurs at the server level (real-time-loop), and it is

28

State of the art

asy to integrate RTF on this loop. The developer needs to take the actions done
by the users (execute the game logic) and define the events done by the RTF (new
connections, when the client changes his zone, . . .). The ObjectManager provides
access to the list of Entities and the game world, and it is also where the new
entities are recorded. The EventManager gives access to all incoming events from
clients or servers, which are enqueued by the RTF in each loop iteration. The
main objectives of the ZoneManager, ClientManager, and MessageManager are to
retrieve information about the current distribution of the game among the differ-
ent servers.

In this approach (combining real-time-loop with RTF), the clients asynchronously
send their server their actions in the form of events. It is necessary to have access
to the ObjectManager’s entity list in order to process these events because some
actions can affect the other entities presented in the game. Following this process,
the game’s world is and state are update as well as the appropriate game logic is
done. When using the function "onFinishedTick()", the loop is finished, and the
information from the updated entities is sent asynchronously to any interested
clients or servers.

With the study of this article and framework and on this specific part, I tried
to understand better the concepts of Instancing and Replication (very commonly
used in Multiplayer Games) and Zoning and how these concepts can be imple-
mented in a game. I also found this approach interesting because of how they
integrate RTF with a real-time loop and how the data is processed (using publish
and subscribe methods). The biggest drawback of this approach is the need for
endless loops (the real-time loops) because it spends memory without any need
(if nothing happens in the game, the real-time loop is made with no purpose).

2.6.2 NAVER

Networked and Augmented Virtual Environment aRchitecture (NAVER) [Park
et al., 2003] is designed based on a distributed system consisting of multiple
hosts on the network to integrate 3D virtual space with various interfaces and
applications. This framework makes the system extensible, reconfigurable and
scalable. NAVER was designed to support Gyeongju virtual reality (VR) Theater.
The objective of designing and building the VR Theater was to construct a flexible
public demonstration place for VR technology as a new medium for interactive
storytelling of diverse artistic expression and virtual interactions with the public.

With this approach, providing a script will specify the virtual space and system
integration (explained in more detail further in the document). The XML-based
script enables a description of the exchange of events between virtual space and
specific applications or interfaces in the same context.

Therefore, the VR Theater can extend new functions or interfaces by adding EMs
(external modules). The system can be specified for determined contents by re-
organizing the EMs, and more performance can be achieved by increasing the
number of server applications. Figure 2.20 represents NAVER framework.

29

Chapter 2

Figure 2.20: NAVER framework

The function of Scenario Manager is to validate and interpret the script files send
by the user, which describes virtual environments, EMs, and how they are con-
nected. Scenario Manager is compatible with script files in the extensible markup
language (XML). The NAVER scripting language makes it easier to initialize vir-
tual environment variables intuitively, build scene graphs hierarchically, and de-
fine connections between virtual world objects and EMs, which stand in for ap-
plications or human-computer interfaces.

The Event Manager handles the asynchronous message passing-based event trans-
mission to and from the Control Server. In order to control the EMs controlled by
the Control Server, the Event Manager enables the Render Server to transmit an
event that includes an action.

Additionally, the Control Server can send a command and an event to the Render
Server via the Event Manager. For example, the Render Server can activate the con-
trol server-connected beam projector. Users on the Control Server may also con-
trol the spotlight in a virtual space via a GUI. In the Render Server, the Command
Manager processes receiving events in the queue every frame. The relationship
between the number of events and real-time performance is vital. The size of
the communication and the available network capacity must be considered. The
Command Manager receives the command lists produced by the Scenario Man-
ager and the Event Manager. The Command Manager then analyzes transmitted
command lists and performs an appropriate action.

The Interaction Manager connects the user input from the Device Server to the scene
graph, an abstract data structure representing a virtual space in the Render Server.
The Interaction Manager allows real-time interaction, such as navigation or manip-
ulation in the virtual space. For example, a user on the Device Server can navigate
a virtual space using a force-feedback joystick, which vibrates when a collision
occurs.

The Sync Manager provides multiple synchronous channels through a cluster of

30

State of the art

PCs, making this channels as if a single computer manages them. For example,
multiple channels are needed when a graphic display uses more than one image.

Figure 2.21: System integration of the Gyeongju VR Theater

In Figure 2.21, we see the different components interacting with the framework.
In example, the Audience sees different components (presented in Control Server)
in the theater, such as Projector and Light. These components on the Control Server
are previously rendered in a virtual environment by the Render Server (this is
accomplished based on the configuration files done previously by the Producer).

2.6.3 2Simulate

2Simulate [Gotschlich et al., 2014] is a simulation framework to make the integra-
tion of a wide range of models and simulation components like data recorders
or image generators easier. Simulating large-scale complex real-time systems re-
quires specific attention on the infrastructure that enables the real-time co-simulation
of various sub-systems, so, it is important to have tools and infrastructures that
make a system reliable and extensible. In this section, it will be presented how
2Simulate can do this.

The framework 2Simulate is written in C++. It mainly consists of the 2Simulate
Real-Time Framework (2SimRT), the 2Simulate Control Center (2SimCC), and the
2Simulate Model Control (2SimMC) (2SimMC). The corresponding Component
Diagram of this framework is shown in Figure 2.22.

The main module of 2Simulate is 2SimRT. It offers deterministic task scheduling
and control in real time. It is delivered as API header files and Windows or QNX
images (Libraries). When the 2SimRT does an application simulation, it is named
Target. The 2SimRT API implements numerous real-time activities executed by

31

Chapter 2

Figure 2.22: Components of the 2Simulate Framework

each Target. These real-time tasks comprise a variety of data connections to exter-
nal devices or components and model control tasks. To control the data flowing
through the internal and external interfaces, 2SimRT additionally uses a Common
Database.

2SimMC is the component that abstracts model interfaces for 2SimRT. It supports
models created in native C++, Advantage Framework, and MATLAB/Simulink.
Targets may co-simulate across 2SimMC with multiple models. QNX (a real-time
operating system), and Windows are both supported. Users may utilize 2SimMC
by creating their models utilizing its API to generate native C++ models. 2SimMC
is automatically incorporated into MATLAB/Simulink and Advantage Frame-
work models during the code creation process.

The component 2SimCC configures the Control Center to meet specific require-
ments. It is a Windows executable that may be modified using 2SimCC project
files, which are configuration files. Various Targets can be run, paused, or stopped
by Control Center. It also uses the Target Data Dictionaries, a data access method
that permits runtime change or presentation of Target data.

The simulation architecture of 2Simulate has a Control Center that can control
several Targets that may co-simulate various Models and interact with various
external systems.

The component architecture of 2Simulate is presented in Figure 2.23. 2SimRT
provides many schedulable task templates and a shared database. The most com-
mon tasks are described in the figure. Doing an overview, SimpleTask is the most
straightforward task type with no extra functionality. The user can modify it for
his needs. With a UDPTask, one can schedule a UDP communication, and with
TCPTask, a TCP communication. Using IPCTask, it is possible to do inter-process
communication with other applications on the same machine. IOTask, enables
users to connect to I/O interfaces such as switches or onboard computers, while
Model-Task enables the execution of models created to be incorporated into 2Sim-
ulate. There are more task types whose properties and functions are mostly in-
herited from the significant tasks represented in the figure (check the article for
more information and detail about this).

32

State of the art

Figure 2.23: 2Simulate Component Architecture

2.7 Technologies in a multiplayer game

This chapter has the purpose of showing some tools existing in the market re-
spectively for each component needed (main ones) in a multiplayer game (frame-
work, hosting/cloud services, and databases). This study intends to demonstrate
the various tools and services currently used, not considering the ones that best
suit the project. In some tools, there was some difficulty in finding comparative
terms between the others (since the company that developed them highlights the
features they consider most important and there is no information about other
issues afterwards).

33

Chapter 2

2.7.1 Multiplayer frameworks (libraries)

This section discusses the different libraries that can be implemented to make a
multiplayer networked game. This study aims to report on the main frameworks
with their significant characteristics and some relevant characteristics, despite the
fact that MPCS will not incorporate a game engine. Consequently, it will not
use a specific multiplayer framework. However, it is essential to study them
to learn how some aspects and issues related to multiplayer are handled (e.g.,
message system). Also, the comparative terms (e.g., Client-Server Architecture)
were related to similarities to MPCS or its possibility to be used (e.g., if it has
good documentation). Table 2.2 shows the different frameworks studied. Dark
Rift2 [DarkRift2] was taken into account but not added to the table since it is more
difficult to use since it has poor documentation/tutorials because it is not that
popular (although it has an active community, it is free and contains powerful
modifiable logging options).

34

State of the art

Netcode
for GameObjects
[Netcode]

PUN [PUN]
Photon Fu-
sion
[Fusion]

Fish
Networking
[Fish-Net]

Developer Unity Photon Photon Fish-Net

State Early
Development Deprecated Stable Stable

Features

• Messaging Sys-
tem;
• Game-Object
oriented;
• Data/Objects
can be sent all at
once;
• High-Level net-
working

• Flexibility;
• Integration
with Unity;
• Cross-platform;
• Integration
with Photon
Cloud

• Tick-
based
Simulation;
• Lag Com-
pensation;
• Client-
side predic-
tion;
• Repli-
cation
algorithms

• Lag Compen-
sation (pro ver-
sion);
• Client-side
prediction;
• Local Remote
Calls;
• Server Author-
itative

Embed-
ded
Solution

Yes, using Unity Third-party Third-party Third-party

Client-
Server

No (mainly Host-
Server) Yes Yes (both) Yes (both)

Scalability Difficult Easy Easy Medium
Docu-
mentation Solid Solid Solid Questionable

Feedback Insufficient Good Good Insufficient
Learning
curve Low Low Medium Not found

Examples Boss Room,
Galactic Kittens

Real
Table Tennis,
Cars Battle

Fusion Kart,
Dragon
HuntersVR

Plethora

Table 2.2: Frameworks in multiplayer games

For example, in Netcode for GameObjects, one key aspect was the possibility to
send Game objects and world data across a multiplayer session at once, so one
message can be easily sent to every player by once. The main problems found for
this framework regarding MPCS were that it mainly uses a P2P connection and is
in early development. PUN is a library widely used because of his simplicity and
the existent information and tutorials, but unfortunately it will be deprecated.
Photon Fusion is a more capable and complete version of PUN (intention to replace
PUN) but also a more complex and expensive approach. Lastly, Fish Networking
is a server-authoritative framework that allows the use of dedicated servers but
can also have a P2P architecture. One big drawback of this framework is the poor
feedback and lack of guides on how to use it (with proper examples).

35

Chapter 2

2.7.2 Cloud (or Hosting services)

Hosting is a vital part of a multiplayer game. Through it, it is possible for different
players to access the game from any network (makes the game online) and even,
if necessary, to have the database communicating with the game. With this, some
tools are shown in table 2.3 as well as their characteristics. In this topic, it was not
possible to make comparative terms (with pros and cons) due to the difficulty
mentioned at the beginning of this chapter.

Name Features Price

Game-
Server
Hosting
[Unity-
Hosting]

• Integrated matchmaking;
• Locates the optimum region for connectivity;
• Automated orchestration;
• SDK support;
• Easy integration with Unity Engine;
Examples: Among Us

Free for testing
and an 800$

bill, pay-as-
you-go after
that

Amazon
GameLift
[Amazon]

• Deploy, operate, and scale dedicated servers,
• Low-cost servers in the cloud;
• Ideal for session-based multiplayer games;
• Custom multiplayer game servers;
• Auto-scaling;
• Integrated matchmaking (FlexMatch);
• Examples: Fortnite, Ubisoft

Pay-as-you-go

Google
Cloud Game
Servers
[Google]

• Simplified management;
• Flexible and extensible;
• Global reach;
• Open Source First (Agones);
• Single Control Plane;
• Customized Auto-scaling;
Examples: Apex Legends

Depends on
what is needed

Photon
Cloud
[Photon]

• Easy integration with Photon Fusion and PUN;
• Scalable;
• Global;
Examples: Golf Clash, The Forest

Free up to 20
CCU,

pay-as-you-go
after that

HostHavoc
[HostHavoc]

• Servers for popular games or our games;
• 99,9% uptime guarantee;
• 24/7/365 support;
• Examples: Minecraft, Arma III
Examples: Apex Legends

Depending on
type of server

Table 2.3: Cloud (or Hosting) options for multiplayer games

Analyzing and comparing these hosting/cloud services, the advantages of us-
ing Game-Server Hosting are a region feature, which enables players to connect to
the server nearer the region of the connections and the automated orchestration.
Amazon GameLift provides easy scaling of a game (pay-as-you-go or auto-scaling
options) and has the region configuration possibility. Google Cloud Game Servers
is an easy, simple, and flexible way to manage servers and also it is Open Source
First (using Agones). Photon Cloud is a good possibility if already using Photon
technology (e.g. PUN) as well as favorable scalable options (can be tested freely).
For last, regarding HostHavoc is a good hosting server for already existing games

36

State of the art

(not used for created games, but for game worlds, i.e., an ARK server) and it
provides 24/7/365 support and a very high uptime rate.

2.7.3 Databases

By using Database services, it is possible to store and send the various data that a
game uses, therefore, the data is not lost once it is transmitted. Since this project
it is very important to save the data (either the logs to evaluate performance, or
the various entities) it is vital to check some examples and their characteristics.
In this study, some tools have been gathered that can be useful for this project,
shown below in figure 2.4. Note that in this topic it was not possible to make
comparative terms (with pros and cons) due to the difficulty mentioned at the
beginning of this chapter.

Name Features Price

Oracle RDBMS
[Oracle]

• Detect, and prevent security threats;
• Single database for all data types;
• Scalable;
Examples: World of Warcraft

Pay-as-you-go

Firebase
[GoogleFirebase]

• Cloud-hosted database;
• Data is stored as JSON;
• Synchronized in realtime;
• Scaling.

Free up to 1GB,
pay-as-you-go
after

Amazon Au-
rora
[AmazonAurora]

• Scalability;
• Manageability;
• Disponilibilty;
• Uses MySQL or PostgreSQL;
Examples: Fortnite, CAMPCOM

25 GB free,
pay-as-you-go
after

Microsoft
Azure
[Microsoft]

• Azure for MySQL or PostgreSQL;
• Database integrated with Azure server;
• Auto-scaling;
• Cloud embedded;
• Flexibility of data.

Pay-as-you-go

Table 2.4: Popular databases used in multiplayer games

The aforementioned database services have their own advantages and draw-
backs, and it is a matter of the developer requirements. For example, Oracle
RDBMS is a good selection to store all data types in only one database and it
is the owner of MySQL (currently being used in MPCS), so there is easier imple-
mentation if needed. The Firebase service is a competent option if the developer
wants to store data in JSON. Related to Amazon Aurora, it is a positive choice if us-
ing MySQL and also is scalable and manageable. Lastly, Azure has compatibility
with MySQL or PostgreSQL. It is cloud-embedded and can have different types of
data.

37

Chapter 3

Methodology and Work Plan

3.1 Objectives

This work aims to develop a simulator to train all parties involved in remov-
ing these pollutants. This simulator can do the actual training (exercises) for the
members involved.

For this to be accomplished, several objectives should be achieved through the
design and development of the multiplayer component of the MPCS project:

• Design the architecture of the Multiplayer Service framework, which con-
tains the different technologies, services, databases, and communications
channels and defines how the various components that are part of the MPCS
system interact with each other (what information is sent/received, and in
what way);

• Define the game state information model and develop the services respon-
sible for managing the multiple players’ UI connection to the game state;

• Develop the communication messaging channels for players to be able to
connect to the server, which will enable the player to log into a session, play
the game, and perform the various player actions;

• Designing and implementing all the actions that a player can perform in
the game. Define and verify their prerequisites and process their impact on
the game state, (except for the player movement and actions that directly
depended on the digital twin (+MOHID) component);

• Design and development of an action log sub-system. This system should
be responsible for keeping track of the player’s actions. The MPCS manager
should be capable of inspecting what actions a player has done in a session.
The log report’s evaluation and analysis for assessing the learning purposes
are not in this thesis’s work scope.

39

Chapter 3

3.2 Approach

For this project to be successful, not only is cooperation between the mentioned
organizations necessary but mainly collaboration within the development team,
since for the project to be successful, all parties involved must meet the proposed
expectations and goals, ensuring the interoperability of each component. As seen
in Figure 3.1, different entities are involved in this process, so, as said, efficient
communication is crucial.

Figure 3.1: Methodology and parts involved in the development of the MPCS
([Sampaio et al., 2022])

A Scrum methodology was used with the UC development team, with weekly
meetings between all participants. In Scrum [da Costa Ferraz, 2016], the devel-
opment team collaborates with each other to evolve the software in small steps,
also called sprints. Each sprint lasted between 2 weeks, thus involving all team
members in the development area and decreasing the risk of failure to meet re-
quirements and goals.

In Scrum [da Costa Ferraz, 2016], there are three significant roles: Scrum mas-
ter (the person responsible for ensuring that the project is carried out according
to practices and that it evolves as planned), Product Owner (stakeholders), and
development team (the team who is responsible for developing the product). All
the tasks and features that need to be implemented are called backlog. In the
case of this project, the backlog (in a high-level perspective) is all the components
presented in the simulator (Multiplayer Service, Digital Twin, UI Interface Gen-
eration, and the Game Editor). The backlog for the component related to this
internship is shown in B.1.

Through the sprints, it was possible to assess and clearly understand what soft-
ware elements needed to be implemented and in what time frame. Also, the
participants better perceived what was being developed by team members re-
sponsible for the different components.

At the beginning of the development, I (and we) did not use sprints, only the
weekly meetings. This is because each developer was doing independent work

40

Methodology and Work Plan

(regarding its component). However, date deadlines were used for each task (and
week deadline).

3.3 Work Plan

In this first semester, the main priorities were:

• To understand what MPCS is all about;

• To study different approaches related to multiplayer contexts, such as games,
frameworks, and technologies;

• To propose an initial architecture of the MPCS system;

• Write the intermediate report.

Regarding the second phase of this internship (second semester), the planned
main goals to be reached were (defined at the time of February):

• Before sprints:

– Define the final architecture and the Data Model;

– Define the frameworks and technologies to be used.

• Sprint 1:

– Learn the technologies chosen and validation tests of the technologies;

– Migration to the server.

• Sprint 1-6:

– Develop the multiplayer system. This contains the handling of the
game world and state across the session and also the implementation
of the action system. These actions should have a defined impact in the
game state, and also, some actions should have their pre-conditions
(simulating real life);

– Integration with the modules.

• Sprint 5:

– The action log system.

• Sprint 7:

– Access performance of the implemented solution.

• During all semester:

– Write the final report;

41

Chapter 3

– Write the architecture report (deliverable to the consortium).

More detailed tasks and objectives of each sprint are presented in B.1.

In Figure 3.2, it is possible to see the different tasks and dates that were done
in the first semester (in light blue) and also the planned dates to do the various
tasks needed (second semester, in blue). This plan was developed before the 2º
semester.

Figure 3.2: Gantt Chart of the tasks regarding the first (in light blue) and second
(in blue) semester

Figure 3.3 shows all the effective processes during this semester. It was done at
the beginning of the 2º semester.

Figure 3.3: Effective Gantt of the 2º semester

Compared to the planned process (B.1), it is possible to check that some actions
were delayed during the semester (e.g., server migration). Regarding the plan

42

Methodology and Work Plan

done in the 1º semester, the obvious difference is the delivery delay of the thesis
(September instead of July).

The use of the Sprint technique started later than expected because a document
related to the architecture needed to be delivered to the consortium (partner). The
sprints should be started during the initial of April and were started in the initial
of May. Although the delivery was in mid-March, some tasks that should have
happened before were delayed until after the delivery of the document.

In the initial of the 2º semester, we decided to postpone the final delivery date of
the thesis to September. This has given us more time to develop a better product
and thesis report. So, the tasks were assigned to each sprint after that decision.

However, except for these drawbacks, the work was (in general) well-planned,
and no big differences were made during the semester related to tasks assigned
to each sprint. The migration to the server task was the biggest difference, and
it was because it was supposed to be done earlier to ensure that the technologies
worked in the production server in an early stage, but due to time, that was not
possible.

3.4 Risks

Risks are inherent in any software project. And this one is no different. Therefore,
a collection and definition of the possible risks that can happen is vital. After
defining these risks, a mitigation plan for each risk is also essential. Hence, some
risks found (and the corresponding mitigation plan) are presented in table 3.1.

ID Risk Impact Mitigation Plan

R#1
Initial Requirements need revi-
sion High

• Collect all possible data and
information regarding the sim-
ulator and its characteristics;
• Periodic meetings with the
owners.

R#2
Deadlines that are too short for
the complexity of the project High

• Calculate realistic deadlines
for each task;
• Define clear tasks (and how
they can be done);

R#3

Inter-dependency between all
components. One component
can provoke delay to another

High

• Weekly meetings between all
developers;
• Verify if all developers are
completing their tasks.
• Each component should have
a level of independence.

43

Chapter 3

R#4 A member quits High

• Meetings and Team Building
sessions to ensure that no one
loses focus or confidence;
• Another member will have to
take over.

R#5

Lack of communication (the re-
sponsible for one component
does not understand what oth-
ers are doing)

Medium

• Weekly meetings between all
developers;
• In meetings, each developer
explains to the others what they
have done and what they are
doing.

Table 3.1: Risks and Mitigation plan

The interdependence between components (R#3) is may be what most affects and
impacts the development of this internship. There must be a good level of in-
dependence between the multiplayer component and the others. Hence, cases
where dependencies with each component are necessary, and strategies to miti-
gate this dependency were defined.

3.4.1 Module Interdependencies

• Multiplayer Service - Game Editor:

– Use of Entities (e.g., equipment, players, or sessions): Create sample
classes that allow simulating the classes in the game interaction with-
out connecting to the Database (they only exist in memory in the ap-
plication). These classes are only created with the attributes that are
strictly necessary to optimize the time spent;

– Calls to the Database: Create simple examples/tables in the Database
if more severe cases require the Database connection.

• Multiplayer Service - Interface UÎ Generation:

– Implementation and testing of actions: Use simple interfaces that allow
the test of the various actions and features that need to be implemented
(an example is shown later, as this is precisely what I did in the initial
sprints);

– Player connections to a session: Use simple interfaces that simulate a
player joining a session.

• Multiplayer Service - Digital Twin:

– Obtaining the spill: Add sample data related to the spill to the Database
to be able to simulate it in the simulator (although this is more related
to the interface component);

44

Methodology and Work Plan

– Updating the spill, based on actions taken by players: No strategy is
used since these actions would only make more sense if the request
were sent to Digital Twin. One strategy considered was the change
of coordinates of the spill with sample data, but this would only take
up more time, and it was an alternative that has nothing to do with
interacting with Digital Twin as well.

These strategies take up more time in product development, but they are crucial
for obtaining results (and testing a specific feature) when integration with other
components is impossible.

45

Chapter 4

Requirements

This chapter presents the requirements considered during the project’s devel-
opment. First, the requirements related to the architecture. The second section
concerns the actions that should be implemented in the game. Last, the proper
non-functional requirements (quality attributes) are presented (although some ar-
chitecture requirements could also be qualified). The functional requirements are
not presented since these requirements (regarding this internship) are the actions
possible during a game (presented in the section 4.2), the action log system, and
the connections to a game (i.e., the authentication system are part of the Game
Editor).

4.1 Architecture Requirements

MPCS should be well-performed since it will involve multiple players in each
session. Another example is that the database should be scalable because of the
possibility to store all the reports and logs regarding each game (actions of each
player and consequences of each action). Due to the requirements list by Sampaio
et al., some points must be taken into account (when designing the architecture
and when defining the technologies and tools):

• REQ1: MPCS should be a multilingual environment (Portuguese, Spanish,
and English), based on a Platform as a Service, for teaching, training, and
performance evaluation, and in teams, of actions to combat maritime pollu-
tion;

• REQ2: The training (simulation) will take place in a multi-user environment
in the Cloud, where each user will assume the role of a real professional
belonging to the real professional (...);

• REQ3: The simulation will run on a given real geography, based on a Maps
platform, on real weather conditions recorded from the relatively recent
past (MOHID);

47

Chapter 4

• REQ4: Users will be able, and should, interact with each other, interact with
the equipment, and interact with the oil spill to achieve the objective of the
exercise;

• REQ5: Players can participate in the exercise via smartphone, tablet or per-
sonal computer;

• REQ6: The MPCS Manager (Admin) should be capable of creating a com-
plete exercise (with parametized data);

• REQ7: MPCS should use databases (SQL and/or NoSQL depending on the
typology of data to be stored and performance decisions);

• REQ8: Exercises respective history of actions performed should be recorded;

• REQ9: Hydrodynamics and meteorology should be represented (with the
help of MOHID);

• RE10: There is no provision for a maximum number of stored exercises, so
the cloud infrastructure must provide the necessary space for this purpose;

• REQ11: Storage of unstructured data (reports, photos) may be more vari-
able. Consider the possibility of configuring the location of unstructured
files (e.g., independent cloud), which may differ from the database storage
location;

• REQ12: Encryption of unstructured files containing accurate information on
participants or operations should be foreseen. The same applies to personal
data, etc. (. . .);

• REQ13: Unless otherwise specified, no personal data should be stored in
this system, preferring consultation, using an API to external Systems, for
example;

• REQ14: Selection of a scalable server to the needs of the simulation;

• REQ15: The development of the MPCS solution will take place on a spe-
cific server to be created in the data center of the Computer Engineering
Department of the University of Coimbra;

4.2 Action Requirements

After carefully reading the document provided by Sampaio et al., a list of actions
was elaborated and presented in Appendix C.1. The Appendix also presents the
current state of the action (Done, Partially, or Not Done).

These actions were separated into different types to understand better the types
of actions needed. The different types are:

• Basic Actions (Rest, Speak, Move). Actions that do not require equipment;

48

Requirements

• Actions with basic equipment. Actions related to equipment that are not
combat equipment (send/receive messages);

• Actions with Consumable. What a player can do with a Consumable;

• Actions with Combat Equipment. Actions interacting with combat equip-
ment;

• Actions with Vehicles. Actions performed with a Vehicle;

• Actions with Facilities. Actions interacting with a Facility;

• Events. Events occurring during a game (health update or equipment degra-
dation).

Regarding these different requirements (architecture and actions), a planned list
of all the global requirements for this internship (2º semester) can be seen in the
B.1. This list contains the requirements, the planned sprint for each requirement,
its prioritization, and its state (implemented or not). All the “Development of
Actions” in detail are in Appendix C.1.

The storage of the spill action was not taken into account when developing. This
action was only to be considered if there was time at the end (what did not hap-
pen) since it needed other functions (skimmer functions, e.g.) and some effort to
make (because of its particularities), so it was too ambitious to make in time for
this thesis.

4.3 Non-functional Requirements

A non-functional requirement delineates a system’s operational attributes and
constraints. Unlike functional requirements that specify what the system should
do, non-functional requirements pertain to how the system should perform, en-
compassing aspects such as performance, security, reliability, and user experi-
ence. They establish the parameters that ensure the system’s effectiveness, effi-
ciency, and quality.

So, the non-functional requirements of the project are [Roque et al., 2023]:

• NFREQ1: Security:

– Encryption of unstructured files that may contain real information on
participants or operations should be foreseen and as encryption of per-
sonal data stored in any platform;

– No personal data should be stored in the system, using, if necessary,
an API to external systems that keep the data updated and its history.

• NFREQ2: Performance:

– Run multiplayer simulation exercises with 25 simultaneous users;

49

Chapter 4

– The game should give an answer to every action of the user within 5
seconds (it can be an awaiting message).

• NFREQ3: Usability:

– Enable adequate time to learn (1 hour from first contact) and efficient
use of role-specific interfaces for users familiar with browser-enabled
devices (mobile and desktop).

• NFREQ4: Maintainability:

– Maintenance to the MPCS server will depend on well-documented op-
erations. Although the impact may be low, no guarantees can be given
regarding maintenance involving changes such as updates to the op-
erating system, database engine, and web server, software configura-
tions (e.g., web server), and data removal operations without updated
backups.

50

Chapter 5

Architecture Design

MPCS is a web-based application. It runs on a browser, and it uses a M(Model)-
V(iew)-C(ontroller) approach. With that, it is possible to interact with all the com-
ponents presented in the MPCS System, separating the View (UI interface) from
the system’s data (Model), with the use of Controllers (intermediary between
Model and View).

5.1 Global Architecture Design

I was mainly responsible for developing the global architecture of the MPCS
project [Roque et al., 2023], represented in figure 5.1. It should be noted that each
component’s specific classes and particularities were the responsibility of the per-
son in charge of that respective component. The complete detailed architecture is
shown in Appendix D.1.

Figure 5.1: MPCS Architecture Components

A multi-tier client-server architecture is used to enable the separation of concerns
between definitions of one core game simulation infrastructure accessible to en-
able access from multiple Internet and web-browser endpoints (desktop and mo-
bile). Several interfaces must be served according to specific equipment, partici-
pant roles, and player state.

These components shown in the Figure are the components where specific de-
velopment is required. For example, the Database component, common to all

51

Chapter 5

components (besides Digital Twin, which has its own Database), is not shown in
this general design (it is a simplified view).

The connections and interactions between components in the simulator that oc-
cur outside a session/exercise and are managed using only controllers, services,
and GET/POST requests (with the help of Spring Boot). During a game, the con-
trollers will also be used with the addition of WebSockets. These technologies are
detailed in 6.1).

In the next sections, each architecture component is explained, focusing on its
part in the context of global architecture (D.1).

5.1.1 Game Editor

The Game Editor component (or Game Definition Editor) [Roque et al., 2023] is
responsible for the configuration of all the exercises, including all the entities (i.e.,
assign participants/players to a determined user) and steps involved in the cre-
ation of a game as well as the creation of the interfaces before the start of a game
(everything that occurs in the simulator before a player joins a game/exercise).
These configuration interfaces are only available to the MPCS manager (described
in [Sampaio et al., 2022]). Also, the Login and Authentication section is in the
scope of the Editor, as well as the population of the Database Module with the
required data. Figure 5.2 shows the Game Editor component in the context of the
global architecture.

Figure 5.2: Game Editor component design

52

Architecture Design

The Class Exercise is an important entity of a larger system as it has instances of
several other classes (relations in Database), including User, Participant, Consum-
able, Help, Hydrocarbon, Equipment, Incident, and Organization. Each of these
classes can represent agents participating in the game (Participant), resources
(Equipment, Consumable, or Help), and elements in the game (Incident, Orga-
nization, Hydrocarbon). They all play a crucial role in allowing the class Exercise
to work properly. These classes are interconnected. For example, a Participant
needs to have a facility that he belongs to, and a Facility needs an Organization
to which she belongs). An instance (in an exercise) of a Participant needs a User
(who plays that role in the game). The class Exercise can only proceed when
properly configured and integrated.

One important attribute of the exercise, is his state. If the exercise has the state
starting, users can join an exercise (commonly called a game session). Otherwise,
it is impossible (i.e., state finished).

This component communicates with the Multiplayer component, giving him in-
formation about the participants (adding it to the session attributes) and the re-
maining objects of an exercise.

5.1.2 UI Generation

The Interface/UI Generation component is in charge of the generation of all the
interfaces that a player will see during a game. For instance, if a player is in a dif-
ferent location (vehicle, facility, or outside), interacting with different equipment,
or performing some action (interacting with the Multiplayer component). In col-
laboration with the other components, it presents the possible actions according
to the player’s and equipment’s states. In coordination with the Digital Twin, the
interface should present the scenario of the incident (the spill). Figure 5.3 shows
the key sub-components of the UI Generation component.

53

Chapter 5

Figure 5.3: UI Generation component design

Also, it interacts with a WebSocket service during a game to send real-time mes-
sages to the server and receive the impact of those messages (with bidirectional
communication). With that, the player can receive messages from other users
without refreshing the page.

5.1.3 Digital Twin

The Digital Twin component is related to the simulation of the spill and its be-
haviour during the simulation and exercise time based on weather conditions
and the type of spill. Also, actions related directly to MOHID (if a player wants
to see how the spill evolves for the next three days or a drone view of the incident
with the weather conditions). This component interacts with the others (espe-
cially Database, Multiplayer Service Framework, and UI Generation) to send or
receive (if a player performs an action that affects the spill) information about the
spill behaviour.

The Digital Twin interacts with an external server (API MOHID, which calculates
the behaviour of a spill and simulates weather conditions) to send and retrieve
information about the spill. This component serves as a bridge to other compo-
nents since it processes and analyses the information by MOHID and sends it

54

Architecture Design

Figure 5.4: Digital Twin component design

(when necessary) to other components.

5.1.4 Database

The Database is where all the information of the simulator is stored. This com-
ponent contains the configuration of the simulator, the state of the elements in a
game, the storage of communication during a game (messages), and the log of all
actions.

55

Chapter 5

Figure 5.5: Database component design

5.2 Multiplayer Service Framework

The component related to this thesis. The objectives for this component of the
architecture are mainly:

• To support the connection between players and the game world;

• To support the communication between players; To implement all player
actions and their validation;

• To log all player activities in the exercise.

Figure 5.6 represents a detailed view of the Multiplayer Service Framework. This
component handles the players’ connections to a Game Session. This abstract
class simulates a player’s connection to an exercise and shows different functions
the simulator can perform. For example, connect() occurs when the player joins
a game/exercise, and receive/update_game_state() happens when some action im-
pacts the game world (detailed further in the document).

No specific game session class (abstract class in the architecture) exists in the
game. What happens is that a participant joins an exercise whose state is starting.

In each Game Session(Exercise), Participants will do actions (provided by the input
in the Interface Module) that have consequences, thus impacting the game world
and state (i.e., the spill or equipment and players). These actions have conditions
that need to be validated. Also, for each session, a log report is issued. This
report can have periodic logs provided by the system, or actions log (when a
certain player does an action, this action and its possible impact are recorded).

56

Architecture Design

Figure 5.6: Multiplayer Service Framework component design

The ActionController class is an abstract class (to make the architecture design
more user-friendly) that represents what an action does (the code of an action).
The Database retrieves actions related to interactions with equipment when a
player interacts with the equipment (checking the player’s and equipment’s state).

5.2.1 Client-Server interaction

This section shows how the connection with the WebSocket is made and how the
client receives messages based on the subscription of topics.

Figure 5.7: Client-Server interaction design

Figure 5.7 shows the possible outcomes of the WebSocket interaction. The con-

57

Chapter 5

figuration of the WebSocket is made on the server side. It is where the topics
(subscribed by the players) are defined. Also, it is where transport capacity is
configured, i.e., to send more data than the pre-defined one (sending PDFs).

Another function of The Server class is controlling what should be done when
the player connects or disconnects from the socket.

For this connection to be possible, first, the player sends an HTTP request to the
server to attempt a WebSocket connection. After the handshake, a TCP connection
is established, and then, the client subscribes to the topics he needs.

For example, “/topic/exercise/participant" corresponds to the topic named “topic”.
These urls of the topic are created dynamically for each game (global actions) and
player (actions only related to the participant).

58

Chapter 6

Infrastucture and Development

This chapter aims to show the different technologies used in the simulator and
the project development process (and thesis). The process was separated into
different sprints to show what was done in each phase, mentioning the objectives,
tasks done, and problems found in each sprint.

6.1 Development Technologies

MPCS User Interfaces are accessible through a web browser, using web technolo-
gies such as HTML (structure and context), CSS (style and aesthetic appeal), and
JavaScript (interactions). With a browser-based approach for developing the User
Interfaces, the MPCS will be more accessible, allowing its exploration in different
contexts and scenarios.

MPCS web application will run on a Tomcat server. It is a Java-based web server
and servlet container that offers an adaptable approach for delivering Java-based
web applications. Another reason for using Tomcat is because it is the Spring
Boot framework’s embedded server technology. As mentioned earlier, this server
will take place on a specific server created in the data center of the Informatics
Engineering Department of the University of Coimbra.

The MPCS backend is developed with the Spring Boot framework. It optimizes
the building and deployment of web applications, providing a flexible (and auto-
matic) way of building applications by using annotations (i.e., @Controllers and
@Services). Spring Boot also provides a range of built-in features and libraries,
including Spring Data for database access, Spring Security for authentication and
authorization, and Spring MVC for building RESTful web services, which helps
integrate the different components.

Spring Boot uses Controllers to map the different urls of the simulator and Ser-
vices to perform certain actions (mainly related to accessing the Repositories). En-
tities are created using specific annotations and a JPA connection to a Database.
Also, it has a simple interaction and integration with WebSockets technology.
Also, it uses Hibernate for mapping Java objects to database tables and manag-

59

Chapter 6

ing database interactions in Java applications. It provides a way to work with
relational databases in an object-oriented manner.

MPCS is using MySQL technology. MySQL is a popular open-source relational
database management system that provides a flexible way to store, manage, and
retrieve data, supporting a wide range of data types, including text, numeric,
date/time, and binary data to guarantee data integrity.

MPCS uses a WebSocket approach. WebSockets make bidirectional communi-
cation between the server and the client possible, so the client does not need to
refresh the page to see changes in the interface. The client-side uses sock.js library,
a javascript library that provides a way to implement Websockets.

The project uses a Maven architecture to manage the several dependencies in a
project. It uses a single file (pom.xml), which contains all the dependencies. With
Maven, it is also possible to build a JAR (Java Archive) file in a simplified way.

6.1.1 Player on-action event

When a player establishes a connection to the WebSocket, some actions can pro-
duce an event. The socket will send these events via TCP to the Server, process-
ing and treating the received message accordingly. For example, a connect event
represents a player’s connection. In this connect, the server will request informa-
tion from the Database. After getting this request, the server will send a message
with all information needed to the topic, which will be received by that particular
player (participant).

Events with equipment are similar with a particular difference. When the player
does the interaction, a message is sent to the server, which then checks the player’s
and equipment’s state (from the Database) and shows it in an equipment pop-
up (interface generation) with the possible actions that the player can do. After
that, if the player does an important action, it is sent to the rest of the game’s
players. With this approach, if an equipment needs two players to carry, when
the player interacts with the equipment, it will know immediately when another
player “joins” the equipment.

When an action is done and sent by the client to the server, it sends a message to
an endpoint (an url in the backend, using Spring Boot). When the server sends
the message, it is sent to a topic, also an url. After this, subscribed players to the
topic will receive the processed message.

6.2 Development Activities

This section presents the project and thesis development process. As mentioned,
a Scrum methodology was used with weekly meetings and two-week sprints.
As a result, the following topics present the sprint’s objective, what was done,
and the problems found. This methodology was utilized in the project’s devel-

60

Infrastucture and Development

opment phase because it is crucial to have everyone in coordination. Before that,
we (project members) were having weekly meetings as well but without sprints
since we were doing more independent tasks where synchronization was not es-
sential (only the final deadline where we chose the date to start the development
(although the concepts of meetings and a backlog of a Scrum methodology were
used).

The next sub-sections will show the development process separated by chrono-
logical marks and sprints. Also, I divided all the tasks into different topics (sub-
components) to give a clear view of what has been developed in the respective
sprint. The sub-components are:

• Simulator/Project Definition. Definition of several aspects such as data
model or architecture;

• Technologies configuration. Also, it contains the configuration of the play-
ers’ connections;

• Integration with other modules;

• Development of the game. Development of the actions and events possible
in the simulator. It also contains the action log system;

• Migration to server. Migration of the simulator application to the produc-
tion server;

• Tests. Tests regarding the simulator.

6.2.1 Initial Stage (Mid-February to Initial-May)

Regarding the 2º semester, the initial project (and thesis) development stage was
mainly focused on Simulator/Project Definition. So, the tasks done concerning
this sub-component were:

• Clarification and definition of the objectives of the project and thesis (meet-
ings with professors and weekly iterations based on meetings);

• Detailed list of backlogs with prioritization and what to do in each sprint
(Appendix B.1). The detailed actions to be implemented can be seen in Ap-
pendix C.1;

• Development of the global architecture and respective components. This
process was continuous since sometimes the actual simulator development
required it;

• Technologies to be used;

• Data Model. Architecture with all the entities to be created in the simulator.
This was updated during development. Presented in D.2. It was done in
collaboration between all internships related to this project (but mainly me
and the Game Editor responsible);

61

Chapter 6

• Deliverable to the consortium (partners). This deliverable contained a data
model, the simulator’s architecture, and the simulator’s quality require-
ments. The simulator structure design;

• Creation of a list of actions that the game should have based on a checklist
sent by the partners (guidelines on the process of a spill removal). How to
translate the checklist into actions in the game (and the conditions implied
for each).

Also, in this stage, the focus on the development started, and with this, the "Tech-
nologies configuration". The tasks were:

• Obtain knowledge about technologies and perform viability tests with cho-
sen technologies;

• Start the development of the simulator itself. This part contains the use of
the Controllers and Services features provided by Spring Boot;

• Configuration of the WebSockets channels (name of topics, processing dis-
connections/connections);

This stage was longer than expected for three main reasons. The first one was
the deliverable to the consortium. We did not expect to present it at this early
stage (although some changes were made during the actual development of the
simulator. The other reason was that sometimes the responses from the partners
were late.

Lastly, another reason was that the initial plan was to use RabbitMQ (a message
queue technology) to communicate and interact with the different components
(mainly because of the Digital Twin). However, due to time and complexity con-
straints, that was not implemented.

In the next phase, the main goals were to implement a proper WebSocket connec-
tion (Technologies configuration), development of the game (basic actions such
as chat messages), and integration with the Editor component (Login system).
Also, as we started the simulator development, we used sprints for more con-
crete deadlines and synchrony between members.

6.2.2 Sprint 1 (Initial of May to Mid-May)

In sprint 1, the main focus was the “Integration with other modules” between the
Game Editor module. This integration was done earlier to enable an authenti-
cated user to enter an exercise that he is linked to (as a participant/player). This
means the connection to an Exercise (using a socket) by an authenticated user
(participant). Another task of this sub-component was the creation of a synchro-
nized Git Hub for all developers.

This sprint was the start of the "Development of the game" by implementing the
first actions (basic actions, such as the chat system). This system allows the player

62

Infrastucture and Development

to have the possibility to send messages to a desired receiver everyone or specific
participants by email or phone number). This was not integrated with the Inter-
face component, so the receiver input was the same for email or phone numbers.

All photos of the first interfaces were lost, so, unfortunately, it is impossible to
show the first “interfaces” with the actions and player’s information retrieved by
the Database, and, consequently, all the figures are the current state of MPCS.
Figure 6.1 shows the chat lobby closest to the first chat interface (only missing the
input to the receiver and PDF file). Figure 6.2 shows the chat interface (email)
after integration with the UI component.

Figure 6.1: Chat System (in lobby)

Figure 6.2: Chat System (Received messages in Email)

Regarding “Technologies configuration”, it was in this sprint that a proper Web-
Socket connection (with a subscription to desired topics) from a player/participant
was made.

Tests (debug) were done during all the sprints to validate if an implemented action
or feature was properly working. This debug process consisted of unitary and

63

Chapter 6

integration tests (integration with other components). This was done periodically
to avoid unwanted surprises.

Besides an error encoding the PDF and showing it afterward in the browser (De-
velopment of the game), no relevant issues were found, as all the planned objec-
tives were accomplished and on time. For the next sprint, it was important to
start developing actions with interaction between players and equipment. Also,
integrating the UI component and Editor (for the equipment’s configuration) was
a major goal.

6.2.3 Sprint 2 (Mid-May to End of May)

This phase was marked by the “Integration with other modules”. The first inte-
gration with the UI component was made. This integration consists of using the
proper screens (interfaces) but also the definition of how to send the messages
from the server to the client and vice-versa.

For this to happen, it needed to be decided the correspondent endpoints (client/interface
sending the message to server) on the server (e.g., Send messages is the endpoint
SendMessage and the location to send the message to the interface (e.g., Chat mes-
sage has the type “CHAT” in message properties). During development, more
type messages were added. By sending the type of message, the interface can
perform the appropriate behaviour when receiving a message.

Regarding the “Development of the game”, another goal of this sprint was to
start implementing actions on equipment. These actions were the “Carry” (to
carry equipment) and “Release” (to release equipment). In these actions, the other
players (if interacting with the equipment) can see when a player performs one of
these actions. First, the equipment was only a pre-defined class since the Editor
had not finished the configuration for this entity (identified risk). However, at the
end of this sprint, it was partially integrated.

Figure 6.3 shows the interface for a player carrying equipment that needs one
more person to be moved (pre-condition).

In this sprint, due to integration tests, some problems were encountered:

• The first was WebSockets’ process method to receive/send messages. The
same messages (when involving objects) were read differently by the server
and client. To fix this, these messages were sent using JSON in the server
(client-side already sent JSON messages);

• It was in this sprint that we encountered some issues related to the player
and equipment state (missing in the Equipment entity and an error in the
Participant Entity), so the player could do everything, and his state was not
taken into account (Integration with modules);

• The definition of state was still not used. The actions of carry and release are
purely hard-coded, and when a player clicks on one button, it disappears,
and the other shows up.

64

Infrastucture and Development

Figure 6.3: Carrying equipment

Due to these errors, one goal that was delayed to the next sprint was a more
complete integration with the Game Editor and Database (some attributes were
only pre-defined).

With that, in the next sprint, the goals were to continue the "Development of the
game" by implementing the state and the possibility to change the state of the
objects, and consequently, integration with the Editor and Database, as well as
the development of more actions.

6.2.4 Sprint 3 (End of May to Mid-June)

Here, we tried to integrate modules (from now on, it was a common objective in
every sprint) on a weekly basis for the integration to be easier (simulator com-
plexity was increasing). This approach also made finding the root of some er-
rors/integration problems faster.

In this sprint, the tasks successfully done regarding the sub-components were:

• Simulator Definition: list of states a player or equipment can have in a game.
Some actions can change the state of the objects;

• Integration with other modules:

– Equipment entity fully retrieved by the Database;

– Integration of the message system in the Interface (now, players can
only see messages via email, in a computed, or phone equipment);

• Development of the game:

– Adding equipment (basic equipment) and consumables to a player in-
ventory was made possible. Also, it was possible to move inside a
vehicle (in integration with the Interface, since it was responsible for
the move action);

65

Chapter 6

– Development of a proximity radius in collaboration with the UI (be-
cause of the map coordinates and interface). With this, players can
only perform actions to equipment (or other players) if the object is in
a defined-meter radius (currently is 100 meters, but it is easily change-
able);

– Storage of actions in Database. The actions that were not with equip-
ment were not stored. Also, this was only to store the generalization of
the action. When the actions are shown in the interface, when clicked,
they are sent to the proper controller (endpoint), where the endpoint’s
name is the same as the name of the action.

The last objective was not planned, but it provided a simple, dynamic way of
retrieving the player’s possible actions based on the state of the objects and the
type of equipment. This approach was also utilized so the Interface component
does not need to develop interfaces for all the actions (although some still require
special interfaces). Figure 6.4 shows an example of possible actions.

Figure 6.4: Possible actions interacting with equipment

In this sprint were found two main issues:

• The interface did not look user-friendly when placing all the equipment (too
many objects). In the next sprint, this issue was corrected by only showing
the combat equipment (not the basic ones such as phones or protection kits)
and vehicles;

• Another issue was the storage of the actions. Since the basic equipment
does not have a type, actions over this equipment were not retrieved by the
Database. The same happens for the Consumables entity since it is not an
equipment. This issue was only found later, and, due to time and simplicity
constraints (only three actions), were manually retrieved by the client side.

6.2.5 Sprint 4 (Mid-June to End of June)

The goals planned for these two weeks were to continue the development of the
game and perform integration with other modules.

66

Infrastucture and Development

With that, the tasks done during this sprint related to the “Development of the
game” were:

• Now, players could carry equipment to a vehicle (if pre-conditions are met)
or to the map (with UI integration);

• Actions on a vehicle. A time duration attribute was added to the actions
presented in the Database to achieve this. Action such as “Fuel” a vehi-
cle requires, e.g., twenty seconds (time compression). With this, the move
action was fully integrated with the Multiplayer Service framework;

• Health update on participants. Now, players lose some health with the pas-
sage of time;

• Initial development of the actions related to combat equipment (Skimmer
or a boom/barrier).

Regarding the “Integration” sub-component, full integration with the move ac-
tion was made (UI Generation module). Also, the first tests of integration with
Digital Twin were done. Due to this component’s late development, only a sim-
ple test integration was made. For example, the spill shown in the interface was
pre-defined in the exercise configuration and not updated accordingly to its be-
haviour.

No major issues were found during this sprint. The only drawback was the still
weak integration with the Digital Twin. As this integration was not done, more
time was available for other tasks, such as the health update and the start of
implementation of some actions. The plan for the next phase was to develop the
remaining actions, create the action log system, and try one more iteration of the
integration with the Digital Twin. Another concern at this time was the migration
of the simulator to the server.

6.2.6 Sprint 5 (End of June to Mid-July)

Although the objectives were mentioned above, one meeting with a partner to
show the state of the game was scheduled for the last week of July. With that, the
migration to the server happened in this phase. So, the steps done in this phase
regarding “Development of the game”:

• Implementation of the equipment combat actions. For example, it was pos-
sible to put a boom in a desired place. Although the actions related to a
skimmer were developed, it was not implemented in time with the inter-
face (due to the interface was not ready to receive the performed action);

• Action log system.

Integration with the Digital Twin module and the first try of migration to the
server was also done in this sprint.

67

Chapter 6

Although the integration with Digital Twin occurred (when putting a bomb, it
sends a new state to the Digital Twin to re-run the simulation), the spill was still
not updated in the interface. Initially, it was because the function that retrieved
the spill was not in the same format as the coordinates sent to the Database by the
Digital Twin. After implementing this, several major errors were identified in in-
teraction with Digital Twin (MOHID). Sometimes, the MOHID does not calculate
the spill’s impact in time, so the database population is empty when asking for
an update. This was corrected using the initial point of the incident as a default
answer when the Database had no data for the request.

Another mistake was that in the Game Editor, the spill was sent to the exercise in
a specific entity. Still, Digital Twin used the Incident entity to send the updated
coordinates of the spill.

When migrating the project to the server, dealing with some errors consumed
some of this sprint and the next. These errors were related to the project’s build,
where the Java Archive (JAR) does not recognize the dependencies and entities
(because of Java Persistence API (JPA)). This happened because the JAR file was
initially built using the Spring Boot embedded build process. However, it should
be built using a Maven build configuration (mainly because of the dependencies),
using the command: install package spring-boot:run.

Another error was related to the version of some dependencies being incompat-
ible with other dependencies (which consumed some time to figure out). Also,
small errors, such as case-sensitive HTML pages, were not working (that were
working in localhost).

For the next two weeks, the main focus was to complete the project migration
and add the notion of time in the game (with time compression). No more was
planned because some abrupt change could compromise the simulator running
on the server.

6.2.7 Sprint 6 (Mid-July to End of July)

The finish of this sprint was marked by the meeting with the partner from the
Marine who was responsible for checking on the project. To make this meeting
possible, the tasks were:

• Fix the aforementioned errors when migrating to the server;

• Notion of time added to the game. With a Scheduler annotation of Spring
Boot in a function, occasionally, the server sends the current time to the
player. This time is 10x faster than the real-time (Development of the game);

• Application added and tested in the server;

• Tests. Elaboration of a guideline to perform to the partner. Demonstration
to the partner.

68

Infrastucture and Development

After these tasks, the meeting occurred, and, in general, the partner was satisfied
with what he saw (some bugs were encountered in some actions). This demon-
stration with the partner was controlled since the developers performed all the
actions to show to the partner. Also, notes were taken based on the feedback
received in the meeting.

Unfortunately, one feature was impossible to add (it was already considered to
be implemented). It consisted of a visibility radius, where the player could only
see equipment and people in a certain radius. Although the proximity radius
worked, the visibility was more complex to implement. It was causing some
errors during the game (so it was commented in the code for the simulator to
work properly).

So, the next sprint (and the last one) was related to correcting the errors found, im-
plementing degradation on equipment, migrating a newer version to the server,
and doing a round of tests with users without prior experience in the simulator.

6.2.8 Sprint 7 (End of July to Mid-August)

This sprint was the last one before closing the dissertation work since it was the
end of the development of the product in integration with other members. The
final steps were:

• Development of the game. Correction of errors found on the test previously
done and implementation of degradation in equipment;

• Integration with Digital Twin;

• Migration of a newer version of the simulator to the server;

• Tests:

– Creation of guidelines and a questionnaire for the users to perform in
test session;

– Test session (shown in chapter Testing and Evaluation);

– Performance Tests (shown in chapter Testing and Evaluation);

– Notes on issues caused on test session.

Two main issues were found in these steps. First, when implementing the degra-
dation of equipment, a bug related to the persistence of objects was found. The
degradation event uses a loop that checks all the equipment in all the exercises
running. Still, when really degrading that equipment, it can be using an old ver-
sion of that equipment (if a user performs an action on the equipment chang-
ing his state, i.e.). So, although some actions related to equipment improving its
health were done (repair), this degradation update is not currently being used
(there was no time to fix this error).

The same problem occurs when trying to update the spill. When requesting to the
Digital Twin, it sends the exercise, but at that time, some changes could occur in

69

Chapter 6

the exercise (due to this component being late and consequently the integration
being made in a later stage, this was not fixed).

Another reason for these errors (when updating) is related to the Database config-
uration (Game Editor component) and how the Database retrieves data (related
to Hibernate, force collection loading error). This error is not fully related to this
internship, so I did not look much into this. Despite that, some errors related
to Database configuration consumed some of my time (fixed for the sake of the
global project). However, I had no time to fix this specific error.

The notes and process used in the test session are detailed in the next section 7.

The remaining time was focused only on the writing of this thesis.

6.3 MPCS current state and Future Work

Currently, MPCS is allocated in a Department of Informatics Engineering pro-
duction server and can be run and played there. For this, the build of the JAR file
inside the server needs to be done. To access the simulator, the user needs to be
connected to the DEI VPN, and search for the 193.137.203.28:8080 address.

A screenshot of a running exercise can be seen in Figure 6.5. It shows the map of
the game when a boom equipment is already placed near the spill.

Figure 6.5: Map view of the simulator

All the actions and features implemented during a game are in C.1.

With that, some features that could be done in future work and errors to be fixed
(related to this internship) are:

• Better approach on the degradation of the equipment;

• Better integration with the Digital Twin;

• Full implementation of action with Skimmer equipment (from the interface
side);

70

Infrastucture and Development

• Implementation of the storage actions (equipment that stores the spill);

• Implementation of consumption in combat equipment. This was not done
due to lack of time (involved complexity when knowing the time that the
equipment was powered on) and a misconfiguration in the Database (not
specifying the consumption rate of the equipment);

• Fix performance errors. Sometimes, many requests to DB are made simul-
taneously, provoking, sometimes, delay in the game. This delay causes the
user not to know immediately if the action was executed. A cache/memory
technique could be implemented in the future. This is also related to the
Game Editor and the way the component saves and performs relations be-
tween entities in the Database.

71

Chapter 7

Evaluation

This chapter is related to the tests performed and the evaluation and analysis of
results. The first three sections (7.1, 7.2, and 7.3) are related to a test session with
participants testing the proper gaming part of the simulator. Section 7.4 is related
to stress tests performed on the global simulator.

7.1 Objectives

The objectives of these tests were mainly to assure the simulator’s performance
(interface responsiveness in a short time), to evaluate if the actions are well sim-
ulated (close to real-life), and if the users can see an impact in the game world
because of their actions. To do this, I wanted to evaluate if the Multiplayer Ser-
vice has the required performance in the context of the following evaluations:

• Evaluate if the participants can understand where they are and what they
can do. Since the multiplayer components send the information about the
exercise (game session) to the UI Generation component;

• Evaluate the consistency and interpretability of the data presented in the
interface;

• Assess whether the response times of actions are acceptable;

• Evaluate the quality of information and the timeliness of feedback;

• Ensure that participants understand the exercise scenario;

• Assess whether participants can keep track of the current state of the ongo-
ing exercise;

• Ensure that participants comprehend how to act in the simulation;

• Evaluate whether participants can interpret the impact of their actions;

• Assess whether participants can initiate and receive necessary coordination
and communication actions.

73

Chapter 7

7.2 Process and Data Collection

We conducted a simulated training exercise based on a predefined script involv-
ing four participants scheduled for the tests. Each participant was assigned a
distinct role and a set of objectives to achieve. This preparatory exercise laid the
groundwork for a usability and performance inspection, which enlisted three ex-
perts (the advisors of the project, although they did not know how to play) and
one developer from a different component who was not entirely familiar with the
potential scenarios during an exercise or game. During the session, I followed all
members and answered the questions that could come up.

The rehearsal spanned 45 minutes, and the exercise utilized contained the follow-
ing elements:

• The participants;

• Several pieces of equipment, including vehicles, a boom, and a skimmer;

• A designated facility where participants were allocated;

• An incident scenario involving an oil spill;

• Provision of consumables, such as water and food.

The procedure started with the participant registration and a briefing, ultimately
culminating in the response and actions on the oil spill. Pertinent observations
were recorded throughout the exercise. After the exercise, a concise debriefing
interview was conducted, followed by the administration of a post-experience
questionnaire.

The responses to the questionnaire were analyzed and grouped by themes (UI
interface, Game Editor, and Multiplayer Service) to unearth issues necessitating
resolution and identify improvement opportunities.

The questions regarding the Multiplayer Service framework were:

• "Was I able to connect and join the desired game?";

• "Did the server consistently provide prompt responses (within approximately
2/3 seconds)?";

• "When I disconnected, was it easy to reconnect?";

• "Were the action times acceptable considering the time compression (10x)?";

• "Did I understand most of the action constraints (e.g., distance, movement
towards water, participant’s life already at maximum)?";

• "Could I move easily (by vehicle or on foot)?";

74

Evaluation

• "Whenever I needed to, could I interact with other users through messages
(email or mobile), knowing exactly where and how to perform these ac-
tions?";

• "Could I interact with other users when loading equipment that required
more than one player?";

• "Do I believe this game has the potential to be an effective training tool for
pollution control coordination?".

7.3 Results

Based on the recorded observations during the test session, the comments from
the testers, and the responses to the survey, the following relevant positive points
are presented as the outcomes of this exercise:

• The game has a good range of actions, and the actions simulate well what
happens in real-life (with their specific constraints), with an acceptable ac-
tion time;

• It is easy to interact with nearby elements (equipment or other players);

• The simulator effectively manages connections and disconnections;

• The simulator has the potential to be an efficient training tool;

• The interaction with other users was easy.

In terms of addressing the issues identified while running the simulated train-
ing exercise, they were categorized to facilitate a better understanding of which
category experienced failures and to identify how to correct these errors more
easily.

Regarding issues at the level of the interface (issues that can be related to Multi-
player Service), were:

• At times, players/participants were uncertain about their current state and
available actions;

• The interface occasionally experienced delays in responding to participants,
causing uncertainty regarding the completion of actions (no interface feed-
back when waiting for a server answer;

• Movement actions, particularly when using vehicles, were not well syn-
chronized with the server. For example, the interface displayed the move-
ment as completed, but in the server, it had not finished executing;

• The spill was not updating during time.

75

Chapter 7

Issues relevant for the learning support towards operational coordination:

• No feedback or help to perform an action;

• Certain actions lacked clarity on where to perform them. The most obvious
examples were to get a vehicle, the participants should go to the facility’s
warehouse, and to send an email, the participant should go to the facility’s
office;

• No feedback on what the participants should do in the exercise (if the co-
ordinator fails to give the participants instructions). A participant without
prior training in spill removal might not clearly understand their role or
what they should do.

7.3.1 Implications of the Results and Opportunities for Improve-
ment

The analysis of the results from the test session indicates that certain corrective
measures need to be implemented. Regarding the multiplayer component, the
most significant implications (and opportunities to improve) include:

• Enhancing server response times for movement actions;

• Improving the delivery of action impact (map updates, which at times ex-
perience delays);

• Optimizing the mechanism for executing actions, as some actions impose
significant demands on the database, resulting in exponential increases in
requests with more participants;

• Addressing issues related to the Digital Twin dependency, specifically fix-
ing update failures for the spill;

• Addressing dependencies with UI Generation, implementing a feedback
mechanism regarding how and where to perform certain actions. Addi-
tionally, rectifying the lack of information related to player status and the
visual representation of the surrounding environment;

• Ensuring greater consistency/data integrity in the game state and world.
For instance, when two participants attempt to add an item to their inven-
tory simultaneously, the player who did not acquire the equipment should
receive appropriate feedback.

7.4 Stress Tests

This chapter is related to the stress tests made to the simulator, and not only the
gaming part. These tests were aimed at the main page of the MPCS.

76

Evaluation

The tests were done using Apache Bench, a single-threaded command line com-
puter program for testing HTTP web servers.

Figure 7.1 shows the results of the stressing test. The type of test shown in the
figure was repeated 10 times to ensure that the result was not an outlier. It was
verified that the tests (during different times of the day) were always close to each
other.

Figure 7.1: Stress test using ab tool

The tests consisted of 2000 requests to the server, using 50 concurrency requests
(multiple requests at a time) and with a keep-alive option (the connection of the
request persists during the test). The command for the test was:

ab.exe -n 2000 -c 50 -k 193.137.203.28:8080

MPCS System showed acceptable results, taking 58.369 seconds to complete the
test. So, an average response of 58.369 milliseconds per request and 29.184 re-
quests per second. The request’s processing took more time (1403 average sec-
onds) than the others (connect or waiting).

So, in conclusion, the simulator can support at least 50 users simultaneously mak-
ing requests (a requirement was to support 25 users) when testing for 2000 re-
quests. As mentioned, this was tested for the global simulator and not for the
gaming part.

77

Chapter 8

Conclusion

The thesis’s overall objective consists of developing and implementing a multi-
player system architecture in the MPCS project. To achieve this, in this first part
of the project, I studied (presented on Background and State of the art chapters)
the different topics needed, such as the requirements and constraints of the MPCS
project, the different tools, and technologies needed to develop a multiplayer sys-
tem, games that already exist on the market and their architecture, and so on. The
second one is the development of the

Overall, all objectives of the thesis were achieved. The development of reference
documentation (the delivery to the consortium) with the architecture design and
its services, the implementation of the multiplayer system and its communication
channels, and an evaluation of the game’s performance were done.

Despite the objectives being accomplished, some features could have a better im-
plementation or approach. Related to integration with other modules, the inte-
gration with the Digital Twin is not 100% functional due to errors already men-
tioned.

Regarding the implementation of the multiplayer system and its actions, Improv-
ing the game (and player) state/world retrieval process for players is a task worth
addressing in the future, especially considering that certain actions involve mak-
ing database requests. This process can become resource-intensive for the game,
particularly when dealing with a high volume of requests, impacting data in-
tegrity and system performance. For example, the degradation of the equipment
is not implemented in this final version of the MPCS (although it is developed)
for this reason and a bug in the Database configuration (mentioned earlier).

In the end, I am pleased with the final product of this thesis, as I feel that not only
is MPCS a functional game where I was able to achieve the overall objectives, but
I also gained valuable knowledge. This knowledge extends to how a multiplayer
system should operate and its particularities. Additionally, I now feel more ca-
pable of being a part of a software team (as it was a collaborative project) and of
implementing and utilizing more efficient software processes.

79

Chapter 8

8.1 Deliverable list

During this internship, some deliverables were produced, such as:

• A JAR file of the simulator (and all the source code);

• A version of the JAR in the production server;

• A separate document that reports the system architecture structure;

• A guideline to perform tests, evaluation of the performance tests, and a
questionnaire;

• The final report.

80

References

Tiago Agostinho. Augmented reality game and gamification, 2013.

Amazon. Dedicated game server hosting - amazon gamelift - aws. URL https:
//aws.amazon.com/gamelift/.

Amazon2018. Aws re:invent 2018: Epic games usa a aws para disponibilizar
o fortnite a 200 milhões de jogadores. URL https://aws.amazon.com/pt/
solutions/case-studies/EPICGames/.

AmazonAurora. Fully mysql and postgresql compatible managed database ser-
vice | amazon aurora | aws. URL https://aws.amazon.com/rds/aurora/.

Grenville. Armitage, Mark. Claypool, and Philip. Branch. Networking and online
games : understanding and engineering multiplayer Internet games. John Wiley
Sons, 2006. ISBN 0470018577.

Larah Armstrong. Latency and packet loss | unity multiplayer network-
ing, a. URL https://docs-multiplayer.unity3d.com/netcode/1.0.0/learn/
lagandpacketloss/index.html.

Larah Armstrong. Tricks and patterns to deal with latency | unity multiplayer
networking, b. URL https://docs-multiplayer.unity3d.com/netcode/
current/learn/dealing-with-latency/index.html.

Per Backlund, Henrik Engström, Cecilia Hammar, Mikael Johannesson, and
Mikael Lebram. Sidh - a Game Based Firefighter Training Simulation. 8 2007. ISBN
0-7695-2900-3. doi: 10.1109/IV.2007.100.

João Barata and Licínio Roque. Mpcs simulator operational requirements specifi-
cation, 9 2022.

Ignasi Barri, Concepció Roig, Francesc Giné, I Barri, · C Roig, · F Giné, C Roig,
and F Giné. Distributing game instances in a hybrid client-server/p2p system
to support mmorpg playability. Multimed Tools Appl, 75:2005–2029, 2016. doi:
10.1007/s11042-014-2389-0.

Michel Bauwens, Vasilis Kostakis, and Alex Pazaitis. Peer to peer. University of
Westminster Press, 3 2019. doi: 10.16997/BOOK33. URL https://doi.org/10.
16997/book14.

81

https://aws.amazon.com/gamelift/
https://aws.amazon.com/gamelift/
https://aws.amazon.com/pt/solutions/case-studies/EPICGames/
https://aws.amazon.com/pt/solutions/case-studies/EPICGames/
https://aws.amazon.com/rds/aurora/
https://docs-multiplayer.unity3d.com/netcode/1.0.0/learn/lagandpacketloss/index.html
https://docs-multiplayer.unity3d.com/netcode/1.0.0/learn/lagandpacketloss/index.html
https://docs-multiplayer.unity3d.com/netcode/current/learn/dealing-with-latency/index.html
https://docs-multiplayer.unity3d.com/netcode/current/learn/dealing-with-latency/index.html
https://doi.org/10.16997/book14
https://doi.org/10.16997/book14

Chapter 8

Sandro Ricardo da Costa Ferraz. Recomendações para a adoção de práticas ágeis
no desenvolvimento de software: estudo de casos, 2016. URL https://hdl.
handle.net/1822/46409.

DarkRift2. Darkrift2 - open source powerful networking solution - darkrift2. URL
https://www.darkriftnetworking.com/.

Epic. Fortnite | free-to-play cross-platform game - fortnite. URL https://www.
epicgames.com/fortnite/en-US/home.

Fish-Net. Introduction - fish-net: Networking evolved. URL https://
fish-networking.gitbook.io/docs/.

Fusion. Setting the benchmark for multiplayer games. | photon engine. URL
https://www.photonengine.com/en-us/fusion.

Frank Glinka, Alexander Ploss, Jens Müller-Iden, and Sergei Gorlatch. Rtf: A
real-time framework for developing scalable multiplayer online games. pages
81–86, 01 2007. doi: 10.1145/1326257.1326272.

Google. Gaming | google cloud. URL https://cloud.google.com/solutions/
gaming.

GoogleFirebase. Firebase for games | supercharge your games with firebase.
URL https://firebase.google.com/games.

Jürgen Gotschlich, Torsten Gerlach, and Umut Durak. 2simulate: A distributed
real-time simulation framework. 1 2014. doi: 10.13140/2.1.4976.2081.

HostHavoc. Host havoc - game server, voice and web hosting provider. URL
https://hosthavoc.com/.

Jared Jardine and Daniel Zappala. A hybrid architecture for massively multi-
player online games. 2008.

Javatpoint. What is hybrid topology - javatpoint. URL https://www.javatpoint.
com/what-is-hybrid-topology.

Jörg Kienzle, Clark Verbrugge, Bettina Kemme, Alexandre Denault, and Michael
Hawker. Mammoth: A massively multiplayer game research framework. In
Proceedings of the 4th International Conference on Foundations of Digital Games,
FDG ’09, page 308–315, New York, NY, USA, 2009. Association for Comput-
ing Machinery. ISBN 9781605584379. doi: 10.1145/1536513.1536566. URL
https://doi.org/10.1145/1536513.1536566.

Autoridade Nacional Marinha. Exercise to combat sea pollution (atlantic polex.pt
2022), 5 2022.

Microsoft. Serviços de informática em nuvem | microsoft azure. URL https:
//azure.microsoft.com/pt-pt/.

Netcode. Unity multiplayer what’s new | unity multiplayer networking. URL
https://docs-multiplayer.unity3d.com/releases/introduction.

82

https://hdl.handle.net/1822/46409
https://hdl.handle.net/1822/46409
https://www.darkriftnetworking.com/
https://www.epicgames.com/fortnite/en-US/home
https://www.epicgames.com/fortnite/en-US/home
https://fish-networking.gitbook.io/docs/
https://fish-networking.gitbook.io/docs/
https://www.photonengine.com/en-us/fusion
https://cloud.google.com/solutions/gaming
https://cloud.google.com/solutions/gaming
https://firebase.google.com/games
https://hosthavoc.com/
https://www.javatpoint.com/what-is-hybrid-topology
https://www.javatpoint.com/what-is-hybrid-topology
https://doi.org/10.1145/1536513.1536566
https://azure.microsoft.com/pt-pt/
https://azure.microsoft.com/pt-pt/
https://docs-multiplayer.unity3d.com/releases/introduction

References

Oracle. Database | oracle. URL https://www.oracle.com/database/.

ChangHoon Park, Heedong Ko, and Taiyun Kim. Naver: Networked
and augmented virtual environment architecture; design and implemen-
tation of vr framework for gyeongju vr theater. Computers Graph-
ics, 27(2):223–230, 2003. ISSN 0097-8493. doi: https://doi.org/10.1016/
S0097-8493(02)00279-0. URL https://www.sciencedirect.com/science/
article/pii/S0097849302002790.

Photon. Multiplayer game development made easy | photon engine. URL https:
//www.photonengine.com/.

Iana Podkosova, Khrystyna Vasylevska, Christian Schoenauer, Emanuel Vonach,
Peter Fikar, Elisabeth Bronederk, and Hannes Kaufmann. Immersivedeck: a
large-scale wireless vr system for multiple users. In 2016 IEEE 9th Workshop on
Software Engineering and Architectures for Realtime Interactive Systems (SEARIS),
pages 1–7, 2016. doi: 10.1109/SEARIS.2016.7551581.

PUN. Photon unity 3d networking framework sdks and game backend | photon
engine. URL https://www.photonengine.com/pun.

Licinio Roque, Luís Pereira, Jorge Cardoso, Miguel Lopes, Ana Sobral, Fernando
Barros, João Barata, and José Sobrinho. Simulator structure design report, 2023.

Rui Sampaio and Licinio Roque. Checklist com resposta a incidente de poluição.

Rui Sampaio, Manuel Carrasqueira, and José Daniel. Marine pollution control
simulator functional requirements deliverable 2.2 version 1.0, 9 2022.

Unity-Hosting. Cloud game server hosting service (aka multiplay) | unity. URL
https://unity.com/products/game-server-hosting.

Unity2022. Network topologies | unity multiplayer networking. URL
https://docs-multiplayer.unity3d.com/netcode/0.1.0/reference/
glossary/network-topologies/index.html.

Unity2023. 8 factors of multiplayer game development | unity. URL
https://unity.com/how-to/multiplayer-game-development-factors#
cheat-mitigation.

Valve. Source multiplayer networking - valve developer community. URL https:
//developer.valvesoftware.com/wiki/Source_Multiplayer_Networking.

F. M. Williams-Bell, B. Kapralos, A. Hogue, B. M. Murphy, and E. J. Weck-
man. Using serious games and virtual simulation for training in the fire ser-
vice: A review. Fire Technology, 51:553–584, 5 2015. ISSN 00152684. doi:
10.1007/S10694-014-0398-1/FIGURES/10. URL https://link.springer.com/
article/10.1007/s10694-014-0398-1.

Amir Yahyavi and Bettina Kemme. Peer-to-peer architectures for massively
multiplayer online games: A survey. ACM Comput. Surv., 46, 7 2013. ISSN
0360-0300. doi: 10.1145/2522968.2522977. URL https://doi.org/10.1145/
2522968.2522977.

83

https://www.oracle.com/database/
https://www.sciencedirect.com/science/article/pii/S0097849302002790
https://www.sciencedirect.com/science/article/pii/S0097849302002790
https://www.photonengine.com/
https://www.photonengine.com/
https://www.photonengine.com/pun
https://unity.com/products/game-server-hosting
https://docs-multiplayer.unity3d.com/netcode/0.1.0/reference/glossary/network-topologies/index.html
https://docs-multiplayer.unity3d.com/netcode/0.1.0/reference/glossary/network-topologies/index.html
https://unity.com/how-to/multiplayer-game-development-factors#cheat-mitigation
https://unity.com/how-to/multiplayer-game-development-factors#cheat-mitigation
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
https://link.springer.com/article/10.1007/s10694-014-0398-1
https://link.springer.com/article/10.1007/s10694-014-0398-1
https://doi.org/10.1145/2522968.2522977
https://doi.org/10.1145/2522968.2522977

Appendices

85

Appendix A

Epic’s architecture at a glance
[Amazon2018]

Figure A.1: Epic’s architecture at a very high-level

87

Appendix B

Methodology

B.1 Panned Task List/Backlog

Planned List Planned
time

Effetive
time

Prioriti-
zation State

Development of the Architecture Before
Sprints

Before
Sprints Must Done

Data Model Before
Sprints

Before
Sprints Must Done

Deliverable to the consortium During
semester

Before
sprints Must Done

Use of Sprints Methodology Initial of
April

Initial of
May Must Done

Use of backend technology
(Spring) 1 1 Must Done

Use of real-time messaging (Web-
Sockets) 1 1 Must Done

Use of a Message Queue (Rab-
bitMQ) 1 - Could Not

Done
Creation of a common GitHub
repository 1 1 Must Done

Migrate project to VM (server) 1 6 Must Done
Player connection (socket) to a
game 2 2 Must Done

Implementation of Chat System 2 2 Must Done
Integration with the Edi-
tor/Database 1 to 6 1 to 6 Must Done

Integration with UI 1 to 6 1 to 6 Must Done

Development of Actions 1 to 5 1 to 7 Must Par-
tially

Integration with MOHID 2 to 6 2 to 7 Must Par-
tially

89

Appendix B

Notion of time with time com-
pression 5 6 Should Done

Action Log System 5 5 Must Done
Test Sessions (with questionnaire
and evaluation) 7 7 Must Done

Performance Tests 7 7 Must Done

Write of thesis report During
semester

During
semester Must Done

Table B.1: Thesis backlog (plan)

B.2 Effective Gantt

Figure B.1: Effective Gantt of the 2º semester

90

Appendix C

Requirements

C.1 Action Requirements

Actions Developed in Sprint State
Basic Actions

Send Message (Speak) 1, 3 Done
Move 2, 3 Done
Rest 4 Done

Actions with Basic Equipment
Send Message (phone) 1, 3 Done
Add to Inventory 3 Done

Actions with Consumable
Consume (Eat/Drink) 3 Done
Add to Inventory 3 Done

Actions with Combat Equipment
Carry/Pick Up 2, 3 Done
Release/Drop 2, 3 Done
Move 4 Done
Unload from Vehicle 4 Done
Use Boom 5, 6 Done
Place Boom 5, 6 Done
Remove Boom 5, 6 Done
Use Skimmer 5, 6 Done
Place Skimmer 6 Partially
Remove Skimmer 5, 6 Partially
Power on/off Skimmer 4, 6 Partially
Take out from Facility 6 Done
Consumption – Not Done
Storage of Spill – Not Done

Actions with Vehicles
Enter/Leave 3 Done
Move 3, 4 Done

91

Appendix C

Repair 4 Done
Fuel/Charge 4 Done
Consumption 4 Done
Take out from Facility 6 Done

Actions with Facilities
Enter/Leave Office 5 Done
Send Message in Office (Email) 1, 5 Done
Enter/Leave Storage 5 Done
Enter/Leave Facility 5 Done

Events
Get/Show objects in proximity 2, 3 Done
Heath Update 4 Done
Time Compression 6 Done
Equipment degradation 7 Partially
Spill Update 7 Partially

Table C.1: Actions required (defined) for MPCS

92

Appendix D

Architecture

D.1 Global Architecture

Figure D.1: MPCS Global Architecture

D.2 Data Model

93

Chapter 8

Figure D.2: MPCS Data Model

94

	Introduction
	Motivation
	Scope
	Objectives

	State of the art
	Background on problem domain
	Overview of network topologies in multiplayer games
	Relevant factors impacting multiplayer game experience
	Simulation-based training
	Sidh
	NIMSPro

	Multiplayer games and their architecture
	Mammoth
	Immersive Deck
	Adventure 2
	Fortnite

	Frameworks used in online context
	rtf
	NAVER
	2Simulate

	Technologies in a multiplayer game
	Multiplayer frameworks (libraries)
	Cloud (or Hosting services)
	Databases

	Methodology and Work Plan
	Objectives
	Approach
	Work Plan
	Risks
	Module Interdependencies

	Requirements
	Architecture Requirements
	Action Requirements
	Non-functional Requirements

	Architecture Design
	Global Architecture Design
	Game Editor
	UI Generation
	Digital Twin
	Database

	Multiplayer Service Framework
	Client-Server interaction

	Infrastucture and Development
	Development Technologies
	Player on-action event

	Development Activities
	Initial Stage (Mid-February to Initial-May)
	Sprint 1 (Initial of May to Mid-May)
	 Sprint 2 (Mid-May to End of May)
	Sprint 3 (End of May to Mid-June)
	Sprint 4 (Mid-June to End of June)
	 Sprint 5 (End of June to Mid-July)
	Sprint 6 (Mid-July to End of July)
	Sprint 7 (End of July to Mid-August)

	mpcs current state and Future Work

	Evaluation
	Objectives
	Process and Data Collection
	Results
	 Implications of the Results and Opportunities for Improvement

	Stress Tests

	Conclusion
	Deliverable list

	Appendix Epic's architecture at a glance reinvent
	Appendix Methodology
	Panned Task List/Backlog
	Effective Gantt

	Appendix Requirements
	Action Requirements

	Appendix Architecture
	Global Architecture
	Data Model

