

Disa Alexandra Queiroz Palma

ENHANCING INDOOR HUMAN DETECTION:

A COMPREHENSIVE STUDY OF YOLOV5

ALGORITHM WITH THERMAL IMAGERY

Thesis submitted to the University of Coimbra in fulfillment of

the requirements for the Master’s Degree in Biomedical
Engineering specialization in Biomedical Instrumentation, under
the scientific supervision of Professor Cristiano Premebida and

presented to the Department of Physics.

September of 2023

Enhancing Indoor Human Detection: A

Comprehensive Study of YOLOv5

Algorithm with Thermal Imagery

Disa Alexandra Queiroz Palma

September, 2023

Enhancing Indoor Human Detection: A

Comprehensive Study of YOLOv5 Algorithm

with Thermal Imagery

Supervisor:

Professor Cristiano Premebida

Co-Supervisor:

Pedro Conde, PhD Student

Jury:

Professor Paulo José Monteiro Peixoto

Professor Cristiano Premebida

Professor Pedro Mariano Simões Neto

João Luís Ruivo Carvalho Paulo, PhD

Dissertation submitted in partial fulfillment for the degree of Master of Science in Biomedical

Engineering.

September, 2023

Acknowledgements

Começo por agradecer ao Professor Cristiano Premebida pelas oportunidades, orientação e

grande conhecimento. Ao Pedro Conde que foi essencial para o decorrer deste trabalho. Agradeço

as horas de reunião, paciência e todos os conselhos. A todos no laboratório de Mecatrónica do ISR

pela companhia e apoio nesta fase final.

À minha mãe, Ana Paula, que lutou para garantir que as filhas teriam um futuro melhor. À

minha irmã, Celina, que foi a primeira da família a ir para a universidade. O meu percurso foi mais

facilitado porque alguém desbravou terreno primeiro. Ao nosso gato, Edu. É a vocês e unicamente

a vocês a quem dedico esta tese.

A Biologia. À Ana Albuquerque, à Rebecca Pilzecker, à Inês Santana e ao José Ferreira. Coim-

bra tornou-se uma Casa, porque vocês fizeram dela uma Casa. Estes cinco anos de Engenharia

Biomédica nunca teriam sido um sucesso sem ter amigos. À Beatriz Dias, que desde o início que

digo que viria parar aos meus agradecimentos de tese. Aqui está. Obrigada pela tua grande amizade

e incondicional apoio em todos os momentos. Um bolinho não chega. À Matilde Palmeira, à Lídia

Faria, à Laura Ferreira, à Francisca Afonso, à Raquel Gonçalves, à Joana Antunes e ao Nuno Ro-

drigues pelas explicações, resumos, sushi e, sobretudo, pela grande amizade. Obrigada por tornarem

tudo isto bem mais fácil. Ao Miguel Gomes e à Joana Leiria (e, novamente, à Beatriz Dias), por

todas as conversas aleatórias, filosóficas, políticas, por todos os conselhos de vida e académicos.

Não podia ter tido mais sorte. Agradeço a todos - professores, colegas e amigos - que se cruzaram

comigo nas salas e nos corredores do Departamento de Física ao longo destes últimos anos. Em

especial à Beatriz Negromonte, Afonso Ávila, Ema Macedo, Mariana Letra e Clarisse Henriques.

À ANEEB. Obrigada por me arrancarem de Coimbra.

À Academia de Coimbra. À Associação Académica de Coimbra. A minha verdadeira Casa e

Universidade. O meu grande amor e também o meu grande desgosto. O curso podia ser feito em

qualquer lado, mas a vida que vivi cá nunca poderia tê-la noutro sítio. Foi graças ao CIAAC, ao

NEDF, à Secção de Jornalismo e a tantas outras coisas nas quais me enfiei, que tive a oportunidade

de desenvolver projetos, colocar em prática as minhas ideias e conhecer grandes amigos. Um especial

agradecimento ao Paulo Nogueira Ramos e à Emília Oliveira.

A todos vós, o meu maior F-R-A!

This work was partially funded within the scope of the project ULTRABOT – CENTRO-01-

0247-FEDER-072644 with funds from SII&DT - I&D Empresarial - Projetos de I&D em Copromoção

para Territórios do Interior, by Autoridade de Gestão do CENTRO2020.

iii

Resumo

A deteção de objectos tem uma variedade de aplicações: pode ser usada para auxiliar na agricultura,

na deteção de cancro, condução autónoma, robótica ou a identificar intrusos numa propriedade

privada. A deteção de objetos tem tido um sucesso significativo com imagens RGB. Contudo, a

deteção nestes dados é prejudicada em condições de fraca luminosidade e exige um uso substancial

de memória. Uma solução consiste no uso de imagens térmicas, uma vez que requerem menos

espaço e são mais adaptáveis a ambientes de luminosidade variável. Deste modo, esta tese explora a

aplicação de YOLOv5 num dataset térmico de ambiente interior - o dataset-alvo - com transferência

de conhecimento e fine-tuning que correspondem a duas estratégias de aprendizagem profunda que

se debruçam sobre a falta de dados e redução do tempo de treino, usando conhecimento aprendido

anteriormente em datasets similares e que serão posteriormente aplicados num dataset-alvo. Neste

estudo, um dataset-alvo é sujeito a fine-tune com quatro modalidades pré-treinadas: dois datasets

RGB (COCO e a versão RGB do dataset-alvo), um dataset térmico (FLIR) e, por fim, a versão

cinzenta do dataset-alvo. Os resultados foram comparados a um treino Controlo que se refere

aos resultados de treino do dataset-alvo. Os fine-tunes do dataset-alvo são submetidos a várias

condições: diferentes taxas de aprendizagem, técnicas de augmentação de dados, congelamento de

camadas e uso de diferentes optimizadores (ADAM e SGD). Esta investigação concluiu que pré-

treino do COCO atingiu o maior valor de mAP@0.5 independentemente das condições de treino,

ultrapassando o formato RGB do dataset-alvo e o FLIR. Este estudo sugere que isto pode acontecer

porque a sua dimensão e informação diversificada levam a uma maior generalização. Apesar de

outros parâmetros terem impacto e ajudarem a melhorar os resultados, o tamanho do dataset e a

diversidade que contém foram as variáveis com a maior influência.

Palavras-chave: detecção de objectos, transferência de conhecimento, aprendizagem pro-

funda, YOLO, imagens térmicas.

Abstract

Object detection has a wide range of applications: it can be used to assist in agriculture, to help

detect a mass for cancer diagnosis, enable autonomous driving, robotic perception, or help against

home intruders. Object detection has shown significant success with RGB data. However, this

type of data does not operate well in poor lighting conditions and demands a substantial amount

of storage. One solution could be the use of thermal images, which require less space and are

more adaptable to varying luminosity conditions. Therefore, this thesis explores the application of

YOLOv5 with transfer learning and fine-tuning in a thermal indoor dataset (the target dataset),

which correspond to deep learning strategies that help tackle the lack of data information and reduce

training costs by using knowledge learned previously from similar datasets and applying it to a target

dataset. In this study, the target dataset is fine-tuned with four pre-training modalities: two RGB

datasets (COCO and the RGB format of the target dataset), one thermal dataset (FLIR), as well

as the Grayscale format of the target dataset. The results are compared to the training results of

Control, which refers to training the target dataset from scratch. The target dataset is fine-tuned

in a variety of conditions, including varying learning rates, data augmentation techniques, freezing

layers, and SGD and ADAM optimizers. This investigation concluded that using COCO for the

pre-training of the model achieves the highest mAP@0.5 independently of its training conditions,

surpassing the RGB format of the target dataset and FLIR. This study suggests that it may be

because its dimension and diverse information lead to a greater generalization. Although the other

parameters have an impact and can help enhance results, the dataset size and the amount of diversity

it contains were the variables with the most influence.

Keywords: Object detection, transfer learning, deep learning, YOLO, thermal images.

“You Only Live Once.”

— Everyone in 2015, except for Joseph Redmon.

Contents

Acknowledgements ii

Resumo iv

Abstract v

List of Acronyms xii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Thesis outline . 2

2 State of The Art 4

2.1 General view of object detection . 4

2.1.1 Object detectors . 6

2.2 Thermal imaging . 9

2.3 Transfer-learning . 11

2.4 Related work . 13

3 Methodology 15

3.1 Datasets . 15

3.2 Research Design and experimental setup . 19

3.3 Model Architecture . 21

3.3.1 Overview of YOLOv5 . 22

3.3.2 Detailed architecture . 25

3.3.3 Loss, learning rate, activation and optimization functions 28

3.4 Evaluation Metrics . 29

ix of 60

CONTENTS

4 Experimental results 31

4.1 Results on human detection using YOLOv5 . 31

4.2 A deeper look into layer freezing . 35

4.3 The effects of data augmentation . 40

4.4 Optimizers . 46

5 Conclusion 49

5.1 Future Work . 50

.1 Detection examples from the thermal indoor dataset 59

x of 60

List of Acronyms

ADAM Adaptive Moment Estimation.

AP Average Precision.

BCE Binary Cross-Entropy.

CNN Convolutional Neural Network.

CSP Cross Stage Partial.

DBN Deep Belief Network.

DL Deep Learning.

DNN Deep Neural Network.

DTL Deep Transfer Learning.

FPN Feature Pyramid Network.

FPS Frames Per Second.

GCD Greatest Common Divisor.

HOG Histogram of Oriented Gradientes.

IoU Intersection over Union.

ISR Institute of Systems and Robotics.

LWIR Long-Wavelength Infrared.

mAP Mean Average Precision.

NMS Non-Maximum Suppression.

xi of 60

List of Acronyms

PAN Path Aggregation Network.

SGD Stochastic Gradient Descent.

SOTA State of the Art.

SPP Spatial Pyramid Pooling.

SPPF Spatial Pyramid Pooling Fast.

SSD Single Shot Multibox Detector.

SVM Support Vector Machine.

TIR Thermal Infrared.

UAV Unmanned Aerial Vehicle.

YOLO You Only Look Once.

xii of 60

List of Figures

2.1 CNN’s basic architecture. Based on [19]. 6

2.2 Types of object detection detectors referred to in this chapter. Adapted from [1]. . . 6

2.3 SPPNet’s architecture. Taken from [22]. 7

2.4 RCNN and Fast-RCNN’s architectures. 8

2.5 Architecture of two of the SOTA detectors described. 8

2.6 Example of saliency maps extracted from thermal images for human detection. Taken

from [14]. 11

2.7 Adapted EfficientDets’s architecture. Taken from [32]. 11

2.8 Illustrations of the various DTL methods. Based on [66]. 12

3.1 Datasets created at DEEC and studied. 16

3.2 Mobile robot created and used to capture and collect the images inside the depart-

ment DEEC-UC. 16

3.3 Close look at the cameras attached to the robot that captured the images. 17

3.4 Example of two images from the RGB and thermal datasets during the annotation

process. 17

3.5 Examples of images after undergoing detection using the model during both the

training and testing phases with FLIR and FLIR*. 18

3.6 Example images from two out of the six scenarios tested. 19

3.7 Example of the application of mosaic augmentation during the training process with

FLIR* dataset at a learning rate of 0.01 without freeze. 22

3.8 Illustrative example of three anchors being generated by a grid cell where the center

of the cat was detected. Photo credits: Manja Vitolic. 24

3.9 YOLOv5’s architecture based on [28] and [30]. 27

3.10 YOLOv5’s architecture details based on [28] and [30]. 28

3.11 IoU visualization [67]. 30

4.1 The precision-recall graphics of the two best scenarios, with a learning rate of 0.01. . 35

xiii of 60

LIST OF FIGURES

4.2 Evolution of the performance of the model with the variable freeze at a learning rate

of 0.01, pre-trained with COCO. 37

4.3 Evolution of the performance of the model with the variable freeze at a learning rate

of 0.01, pre-trained with COCO. 37

4.4 Impact of the varying numbers of frozen layers on mAP@0.5, with at a learning rate

of 0.01, pre-trained with RGB. 38

4.5 Impact of the varying numbers of frozen layers on mAP@0.5:0.95, with at a learning

rate of 0.01, pre-trained with RGB.. 39

4.6 Study of the evolution of the performance when the model is fine-tuned with FLIR*.

Learning rate of 0.01. 40

4.7 Study of the evolution of the performance when the model is fine-tuned with FLIR*.

Learning rate of 0.01. 40

4.8 Evolution of mAP@0.5 at a learning rate of 0.01, when exists augmentation and

comparison without augmentation. 42

4.9 Evolution of mAP@0.5:0.95 at a learning rate of 0.01, when exists augmentation and

comparison without augmentation. 43

4.10 Evolution of mAP@0.5 for the learning rate of 0.001, comparing the results with and

without augmentation. 44

4.11 Evolution of mAP@0.5:0.95 for the learning rate of 0.001, comparing the results with

and without augmentation. 44

4.12 Results for mAP@0.5 at a learning rate of 0.1, with and without augmentation. . . . 45

4.13 Results for mAP@0.5:0.95 at a learning rate of 0.1, with and without augmentation. 46

1 Examples of unsuccessful and successful detection.. 59

2 Occlusion. 59

3 Examples of reflection detection. 60

xiv of 60

List of Tables

2.1 YOLO versions and their performance. Adapted from [67]. 9

3.1 Classes considered in FLIR. 18

3.2 Details about the device used to run the model. 19

3.3 Training parameters considered through all the training scenarios. 20

3.4 Hyperparameters used for augmentation. 21

3.5 Augmentation parameters table. 21

3.6 YOLOv5m’s version 7.0 parameters. 22

4.1 Results across the various situations for the learning rate 0.01. Freeze=0, no aug-

mentation. 33

4.2 Performance measures, on the test set, across the various situations for the learning

rate 0.01. Freeze = 10, no augmentation. 33

4.3 Reported results for the learning rate 0.001. Freeze=0, no augmentation. 34

4.4 Results using learning rate 0.001, freeze = 10, and no augmentation. 34

4.5 Experimental results using learning rate 0.1, freeze=0, no augmentation. 34

4.6 Results for learning rate = 0.1, freeze=10, and again without augmentation. 35

4.7 Results for various numbers of frozen layers, with COCO pre-training. Learning rate

of 0.01. 36

4.8 Freeze evaluation for RGB. Learning rate of 0.01. 38

4.9 Impact of frozen layers with FLIR* pre-training. Learning rate of 0.01. 39

4.10 Compares the results across the various scenarios for the learning rate 0.01 with

augmentation. Freeze=0. 42

4.11 Comparison of the performance across the various modalities for the learning rate

0.001 with augmentation. No freeze. 43

4.12 Compares the augmentation results across the various modalities for the learning rate

0.1, freeze=0. 45

4.13 Compares the results with ADAM optimizer across the various scenarios for the

learning rate 0.01. Freeze=0, no augmentation. 47

xv of 60

LIST OF TABLES

4.14 Compares the results across the various situations with ADAM optimizer for the

learning rate of 0.001 (recommended initial learning rate). Freeze=0, no augmentation. 47

4.15 0.01 ADAM vs 0.01 SGD . 47

4.16 0.001 ADAM vs 0.001 SGD . 48

4.17 0.001 ADAM vs 0.01 SGD . 48

xvi of 60

1 Introduction

In recent years, the rapid advancement of artificial intelligence, computer vision, pattern recogni-

tion, and deep learning (DL) technologies have led to a new era for artificial perception systems,

revolutionizing the way such systems have an impact on real-world applications. Object detection

- the field responsible for the localization and classification of objects from images or videos -, the

theme explored in this thesis, is one of the most notorious areas belonging to computer/machine

vision and has gained significant attention from the AI/ML community as well as from the robotics

and intelligent vehicles community. 2D and 3D sensory-based object detection has a wide range

of applications, including security surveillance [48], robotic vision applied to agriculture [46], but

also in medicine allowing for more rapid diagnosis [56], enabling autonomous driving [1], or even

the task of license plate recognition [5]. Object detection has through the years, undergone massive

development.

With the development of DL models, these complex and large architectures have been applied

to object detection. Right now, the most developed state-of-the-art (SOTA) object detectors have

DL models as their backbone to extract, localize, and classify objects.

Object detection can be applied to various types of data. It has a wide application in RGB

images and video frames, but more recently it has been studied the application of object detection

in thermal images that are used in a wide range of scenarios such as the detection of animals for

population control purposes [52] and the detection of fire [47], as well as human detection for space

managing [12] or detection of intruders in private properties [68].

1.1 Motivation

Object detection is very important since we are going towards a society that seeks automation for

repetitive and dangerous tasks, and with the continuous exponential evolution of our algorithms

and capacity, we have been able to open new opportunities for robots and other robotic systems

to engage in more complex and demanding action. Object detection allows that. The growing use

cases related to object detection can be explained because not only the algorithms (and respective

tools) are more accessible but, on the other hand, the technology that permits the capture of images

and videos (sensors or cameras) is becoming more affordable [51]. Computers power i.e., hardware

1 of 60

CHAPTER 1. INTRODUCTION

capability, has also become more powerful [53].

Whilst object detectors have been improving their performance in RGB, achieving high accu-

racies [77][79], some problems have yet to be explored when these algorithms are applied solely to

thermal images. So, why consider working with thermal images when RGB images have already

delivered promising results? In situations with low visibility and inconsistent conditions, thermal

cameras are shown to be the best option. Besides, in day-to-day use, the utilization of RGB imagery

consumes substantial storage as opposed to thermal images. There have been works on image fusion

that combine color and thermal [36], which have great performances in tackling the problem of poor

visibility; however, they do not solve the substantial need for storage. Also, pairs of RGB and ther-

mal images might not always be available since they require equipment for two different modalities,

and there might exist a temporal misalignment between them that compromises the performance.

Having said that, it is important to continue research that focuses on thermal imagery, paired with

transfer learning techniques to improve the generalization of these approaches.

Object detection has diverse domains such as edge detection [57], face detection [74], or pedes-

trian detection [54] [78]. This work will tackle object detection applied to human detection in an

indoor environment through thermal imagery. With that, in this thesis we intend to explore a field

that has yet a lot to unfold.

1.2 Objectives

This work aims to investigate the performance of YOLOv5 in human detection applied to thermal

images in indoor scenarios. In a nutshell, the main objectives can be outlined as:

• Contribute with a new annotated thermal dataset;

• Study the performance of YOLOv5 with thermal imagery;

• Study the performance of YOLOv5 in fine-tuning a thermal dataset with different pre-trained

datasets, such as RGB, FLIR, Grayscale, and COCO, and compare with its baseline (i.e. no

transfer learning);

• Study the impact of frozen layers, data augmentation, and the difference between the appli-

cation of SGD and ADAM optimizers;

• Determine the optimal training conditions for implementing YOLOv5 on thermal images.

1.3 Thesis outline

This thesis is organized to start with a broad view of object detection before narrowing towards

the main objectives of this work. It starts in Chapter 2 with the state-of-the-art (SOTA) exploring

2 of 60

CHAPTER 1. INTRODUCTION

the object detection applications and problems, the various algorithms, and their performances.

It continues with a summary of the problem of object detection applied to thermal images and

the various techniques, as well as the application of transfer learning in DL. Finally, it finishes by

discussing relevant related work that explores the various works in the domain of human detection

and thermal imaging. In Chapter 3, this study deepens into the methodology by explaining the

datasets used and studied, evaluation metrics, as well as YOLOv5’s architecture, hyperparameters,

and experiment design. Chapter 4 corresponds to the presentation of the results through tables and

figures depicting the values of precision, recall, mAP@0.5, mAP@0.5:0.95, and F1-score through the

various scenarios studied and respective discussion. Finally, Chapter 5.1 summarizes the work and

conclusions taken from it, while also discussing some possible future research directions.

3 of 60

2 State of The Art

This Chapter offers a comprehensive overview of the current SOTA in the field of object detection.

It goes into various architectural approaches, presenting a chronological progression of developments

that have culminated in the current state of the field, mainly in thermal imaging. It is intended to

start with a broad perspective, develop into a more detailed exploration and provide insights into

the evolution of object detection techniques and some of the related works.

2.1 General view of object detection

Object detection is a field from computer vision and robotic perception with many applications,

from autonomous driving [1] to healthcare diagnosis [56], where it facilitates autonomous early

cancer detection. Moreover, with the emergence of Deep Neural Networks (DNNs) and their high

accuracy in multiple tasks paired with the development of GPU power, the interest in this field has

grown in the past few years since its capabilities have been demonstrated [27].

Object detection encompasses two core tasks: localization and classification. First, the algorithm

has to find an object and then classify it. Both of these tasks are difficult because they highly depend

on the quality of the camera or sensor, the light conditions, blur, pose, the number of objects, and

how overlaid they are. These are some of the challenges addressed by recent research in the field of

object detection with DL, where the pipeline traditionally is organized in three stages: informative

region selection, feature extraction, and classification [78].

SOTA object detectors use predominantly DNNs, and their backbone is mainly Convolution

Neural Networks (CNNs) whose main task is related to the extraction of features. Their complex

architectures are able to learn a higher quantity of features with high complexity [27]. There are two

types of object detectors: one-stage and two-stage. Two-stage detectors have two steps: propose

candidate object bounding boxes and then extract the features from the candidates; while the one-

stage detectors do it directly from the input images [27]. Object detection faces some challenges,

such as rotated images, scale, and occlusion of objects, among others, that diminish the models’

performance.

The history of object detection starts with hand-crafted techniques like Viola Jones Detectors

[71] and HOG (Histogram of Oriented Gradients) Detector [9]. The first one used the sliding window

4 of 60

CHAPTER 2. STATE OF THE ART

method and differing scales of an image to find a human face. The second was extremely important

to work on feature invariance and non-linearity, mainly in pedestrian detection. However, in 2010,

the object detection field introduced CNNs that rapidly demonstrated the capability to learn more

complex features. As a result, in 2014, the researchers in [17] proposed Regions with CNN (RCNN).

CNNs (represented in Figure 2.1) are a type of DL algorithm specifically used for the tasks of

classification [8] and regression [78] that leverage the extraction of features of different levels from

an input image [53]. CNNs were created to solve some of the challenges presented in classification

problems with images related to the amount of weight each neuron in hidden layers would receive.

According to [19], CNNs are based on three main ideas:

1. Sparse interactions: reduction of parameters’ storage and computation power required by

only connecting the neurons to a small and meaningful window of the input image through

the use of kernels and filters. This boosts efficiency.

2. Parameter sharing: closely related to sparse interaction, parameter sharing allows for the

detection of patterns in different parts of the input. By using the same weights and biases for

the calculations across the input, it is possible to detect invariance, and, thus, features. The

network does not need to learn from scratch in every position, which saves memory space.

3. Equivariant representations: is related to the idea that a variation of the input will

necessarily create the same variation in the output. This permits the detection of the same

features in different parts of the output.

There are also three stages in a typical CNN:

1. Convolution Stage: stage where multiple convolutions are applied to the input data. It

consists of a set of operations called convolution that will slide over the input to capture

different features and patterns. The output is a set of linear activations.

2. Detector Stage: the linear activations from the previous stage will go through an activation

function. This stage allows the network to detect more complex features and find relationships

between data.

3. Pooling Stage: in this stage, only the essential information is kept by downsampling. It

performs a series of calculations that allows the retention of the maximum value in each small

window considered, lowering the necessity of high memory requirements and computation

costs.

5 of 60

CHAPTER 2. STATE OF THE ART

Figure 2.1: CNN’s basic architecture. Based on [19].

In the next sections, in this thesis it will be explored SOTA on object detectors.

2.1.1 Object detectors

Generic object detectors can be categorized into two groups [78]: region proposal-based frameworks

and regression/classification approaches. On the first one, it is possible to find two-stage detector-

type algorithms, like RCNN or Faster RCNN [78]. Two-staged detectors consider the classical

object detection pipeline: first, they generate region proposals, followed by the classification of each

proposal into classes. On the second one, there are algorithms like YOLO [58] and SSD [42], which

are considered one-stage detectors. The types of detectors are illustrated in Figure 2.2.

Figure 2.2: Types of object detection detectors referred to in this chapter. Adapted from [1].

In 2014, the Region-based Convolutional Neural Network (RCNN) [17], which is pictured in

Figure 2.4a, was proposed as an algorithm that uses selective search (region proposal algorithm

that generates proposals of regions based on pixel intensities), chooses and extracts 2000 region

proposals from an image, and uses them as inputs. All these regions can have different sizes and

6 of 60

CHAPTER 2. STATE OF THE ART

ratios that will be later normalized to the same dimensions.

Shortly after the publication of RCNN, Spatial Pyramid Pooling Networks (SPPNet) [22], rep-

resented in Figure 2.3, was presented and allowed for the first time to submit any image to the

CNN that did not require a fixed size. Because of this, the algorithm was able to generate a feature

map from an entire image, which made the algorithm faster. However, it has some drawbacks; for

example, it only fine-tunes the last layers, and the training is multi-staged. All of these were solved

by Fast-RCNN [16]. Fast-RCNN, depicted in Figure 2.4b, is an RCNN and SPPNet improvement as

it does not use the regions as inputs but uses the image they derive from instead. The feature map

that results will create the region proposal [1]. Fast-RCNN increased the VOC07 average precision

(of around 20 classes) from 58.5% to 70%, even though the detection speed remained low [79].

Figure 2.3: SPPNet’s architecture. Taken from [22].

Feature Pyramid Networks (FPN) were introduced in 2017 in [38] and have been the basis for a

lot of algorithms even today, such as YOLO, Mask-RCNN [21] and RetinaNet [39]. FPN allowed for

building high-level semantics at all scales by introducing communication not only vertically but also

horizontally with a top-down architecture that uses lateral connections that are illustrated in Figure

2.5b. This communication increased generalization as the new feature maps generated considered

information from both low-level and high-level features.

However, due to the continuous slow speed and complexity, a new group of object detectors

was created: one-stage detectors or Regression/Classification-based detectors. They are a group of

architectures created to diminish the high computational costs associated with scanning an entire

region. The main difference is that the algorithms locate and classify directly from the pixels

7 of 60

CHAPTER 2. STATE OF THE ART

without the need to create region proposals. They scan the entire image only once. Some of the

most famous object detectors in this category are YOLO (You Only Look Once) and SSD (Single

Shot Multibox Detector).

YOLO is an object detection algorithm presented in 2016 with the concept of "You Only Look

Once" that looks at object detection as a single regression problem from the cells to create a bound-

ing box and predict class probabilities. Since then, there have appeared around eight more refined

versions of YOLO that compete with the best detectors. After the third version, YOLO stopped

being developed by its original creator, Joseph Redmon, for ethical reasons [29]. Consequently,

YOLOv4 [6] was already developed by Alexey Bochkovsky and later versions were developed by

Ultralytics [28]. In this thesis the focus will be on YOLOv5; this architectural design incorporates

numerous elements from preceding algorithms, which will be further discussed in section 3.3.

(a) RCNN’s architecture taken from [17]. (b) Fast-RCNN’s architecture taken from [16].

Figure 2.4: RCNN and Fast-RCNN’s architectures.

SSD (illustrated in Figure 2.5a), emerges as an alternative to YOLO [78] and uses the VGG16

architecture as its backbone. To be able to predict the offsets for the bounding boxes at different

scales and ratios, SDD adds feature layers at the end of the network (similar to YOLO). This

algorithm receives already extracted feature maps, then calculates the confidence for every image

and picks the top 200 predictions per input. It seeks to enhance detection speed, by refraining from

re-sampling pixels or features for bounding box hypotheses. [43].

(a) SSD’s architecture taken from [42]. (b) FPN’s architecture taken from [38].

Figure 2.5: Architecture of two of the SOTA detectors described.

In [67] all versions of YOLO until 2023 are reviewed since 2018. Observing the table, YOLOv5

8 of 60

CHAPTER 2. STATE OF THE ART

has one of the best performances with 55.8%, only outdone by Scaled-YOLOv4 by 0.2 percentage

points and YOLOv7 by two percentage points. The results can be seen in Table 2.1.

Table 2.1: YOLO versions and their performance. Adapted from [67].

Version Date mAP@0.5

YOLOv3 2018 36.2

YOLOv4 2020 43.5

YOLOv5 2020 55.8

Scaled-YOLOv4 2021 56.0

YOLO-R 2021 55.4

YOLO-X 2021 51.2

YOLOv6 2022 52.5

YOLOv7 2022 56.8

YOLOv8 2023 53.9

YOLO-NAS 2023 52.2

In [15] the authors also compare YOLOv5 with more recent versions such as YOLO-X, YOLO-

R, and YOLOv7 during a live tracking of players during a football match. YOLOv7 has major

changes, such as the introduction of multiple heads in its architecture: a lead head that releases the

result and an auxiliary head that helps with middle-layer training. Observing the results among

the various versions, YOLOv5 has close SOTA results, only outstanding in terms of FPS (frame per

second) rate, and is close in accuracy to YOLOv7, even though this one outperforms the versions

already mentioned.

2.2 Thermal imaging

Thermal imaging has a wide range of uses, from military [31] to medicine [56], from disease detection

in animals [52] to safety by detecting people’s positions in underground mines [37]. Several literature

reviews have been done to explore thermal imaging applications [11] [65] [10].

In [10] it is possible to find an extensive list of infrared datasets available publicly. Among them

are two famous large thermal datasets: Teledyne FLIR ADAS Thermal Dataset (FLIR dataset)

and the KAIST Multispectral Pedestrian dataset [7]. However, they are only outdoor datasets [61].

Exclusive indoor datasets, like TIMo [59] are scarce; the majority are mixed with outdoor images,

such as the ASL-TIR dataset [55].

Thermal cameras are known as long-wavelength infrared (LWIR) cameras and are capable of

detecting electromagnetic radiation between 8 to 12 µm. This radiation comes from the body

9 of 60

CHAPTER 2. STATE OF THE ART

temperature of an object, forming an image in a temperature spectrum. In the case of humans, since

the body temperature is constant independently from the environment, they are easily distinguished

from the background. Thermal images present some advantages, e.g., they are not dependent on

illumination variations or weather conditions [65] and can operate well in the dark. Since thermal

cameras are the few that can manage to operate in variations of lighting, they are widely used to

detect the presence of people usually in poor background conditions [3]. Another advantage is the

computational cost associated with it and the amount of memory needed to store it: thermal images

do not have as much information and detail as RGB images, which can be more adequate in certain

contexts.

However, this type of image presents some challenges; for instance, when a body with a high

temperature is around a reflective surface, its image is also reflected, which might confuse object

detector algorithms as they are with the same level of brightness and shape [3]. Hot air due to the

sun is also a cause of blur in the middle of the day or when the camera is being used for long lengths

of time and its temperature increases as well, affecting the capacity to detect thermal images. These

also offer less detail relative to visible-light cameras and have lower resolutions; they can perform

poorly in environments where there’s low thermal contrast between people and their surroundings

[34].

Multiple techniques have been applied in human detection with thermal images, such as back-

ground subtraction [64], saliency maps [14], as well as HOG [33]. Later, with the development of

DNN models and their success with RGB images, these architectures started to be used for object

recognition in thermal images; however, they have not attained the same SOTA levels relative to

their RGB counterparts [65].

Specifically for object detection in [2], several object detectors were developed and tested, such

as Faster RCNN [49], EfficientDet [32] (illustrated in Figure 2.7) and Domain Adaption Framework

[50]. The method that achieved the highest mAP@0.5 was Faster RCNN with 77.1%, applied to

the FLIR dataset. Domain Adaptation Framework achieved 67.36%.

Domain Adaptation Framework [69] is a technique based on transfer learning between RGB

images and thermal images. It transfers low-level features through a method called generative

adversarial network (GAN) and, in [50], it is applied to the KAIST Multi-Spectral and FLIR

datasets. Still, in the domain adaptation, it was introduced a multi-stage block-wise architecture in

EfficientDet, which increased the accuracy and efficiency of object detection in thermal images and

also stands on the approach of transferring information learned with RGB imagery to be applied in

the thermal domain.

Additionally, some works incorporate both DL techniques as well as the previously mentioned

classical methods, such as utilizing saliency maps to enhance human detection by accentuating

distinct regions within thermal images that may be different in color, orientation, or depth. Training

10 of 60

CHAPTER 2. STATE OF THE ART

with Fast RCNN in [14] the detection in the KAIST Multispectral Pedestrian dataset has achieved

a mAP@0.5 of 0.655, but with the saliency map technique, it went up to 0.676. An example of

saliency maps applied to thermal images can be seen in Figure 2.6.

Figure 2.6: Example of saliency maps extracted from thermal images for human detection. Taken

from [14].

Figure 2.7: Adapted EfficientDets’s architecture. Taken from [32].

2.3 Transfer-learning

Usually, DNNs require a large quantity of data, and there may be specific cases when that quantity

of information is not available, the dataset is very small, or there simply is not enough data for

training. Additionally, it is also time-consuming. Transfer learning is introduced as an approach

to address the concept that the knowledge acquired by a model during training of a dataset can

be applied to a similar target dataset [18]. In a lato sensu perspective, it is quite similar to the

logic of how a human thinks: once a person learns about what a car is, they are able to recognize

different models, trucks, buses, and pedestrians. In transfer learning, the model learns the features

that represent a certain object or class and is later able to use them in similar situations that has

never seen before. This process has enabled training time to be saved since the model does not have

to start from scratch.

11 of 60

CHAPTER 2. STATE OF THE ART

This technique is studied [76] to work well for detecting generic features since moving deeper

into the architecture means that the features also become highly specific [62] i.e., that there’s a

certain degree of generality in the initial layers that can be utilized for various datasets.

According to [66] there are four types of DTL (deep transfer learning): instances-based DTL

[73], mapping-based DTL [45], network-based DTL [70] and adversarial-based DTL [44]. These

methods are illustrated in Figure 2.8. Instances-based DTL is related to the use of a specific

weight adjustment strategy. This means that it selects a few instances from the base dataset as

enhancements for the training set in the target one by attributing appropriate weight values to the

selected instances. Mapping-based DTL corresponds to the mapping of instances from the base

dataset in addition to the target domain into a new data space. It stands on the idea that these

instances together, even though they originate from two different datasets, may exhibit greater

similarity in the new data space. Adversarial-based DTL refers to the introduction of GAN to

find transferable representations for both base and target datasets. Finally, Network-based DTL

involves the reuse of part of the pre-trained network in the base dataset, including its structure and

parameters, and incorporating it into the DNN to be used in the target dataset.

(a) Instances-based DTL. (b) Mapping-based DTL.

(c) Network-based DTL. (d) Adversarial-based DTL.

Figure 2.8: Illustrations of the various DTL methods. Based on [66].

This last one, also known as model-based DTL, is one of the methods studied and applied in

this thesis and embraces strategies like fine-tuning, frozen CNN layers, and progressive learning.

Network-based DTL, particularly fine-tuning that consists of training in a similar dataset to the

12 of 60

CHAPTER 2. STATE OF THE ART

target dataset and fine-tuning on the target dataset, is one of the most commonly used methods due

to how easy it is to apply, reduces training costs and does not require the researchers to have a large

target dataset [25]. The most popular models to transfer learning with are VGG-Net, Alex-Net,

and ResNet since they have already been trained in the dataset ImageNet [63]. In fine-tuning, it

is possible to find works like [72] where it is pre-trained a model with images of detected pulses

from multiple areas detected by UAV swarms and use YOLO-MobileNet, Fast RCNN, and Cascade

RCNN to fine-tune it, achieving improvements in the results.

The freezing of CNN layers is also a very popular method and consists of the process of fixing

layers in a pre-trained model and subsequently fine-tuning solely lateral fully connected layers. The

CNN layers extract the feature, while the fully connected layers have the task of classification. Then

the model will proceed to be fine-tuned on the target data. It is used in [75], where the model is

first pre-trained with ImageNet, and then they proceed to transfer the learned information to the

target model, freezing all the layers except for the last three that will be trained. This method is

also studied in Chapter 4.

2.4 Related work

This section explores related works in the areas of object detection in thermal images, focusing on

transfer learning and fine-tuning. For the detection of objects in thermal images, multiple works

explored how knowledge learned from previous datasets, particularly RGB datasets, could be used.

In [35] the researchers study the transfer learning of all layers and the impact of retraining

a variable number of layers on datasets of different sizes. They used the Caffe framework, 1000

ImageNet, Keras and CIFAR-10. They concluded that it is preferable to freeze only the first few

layers for large datasets; on the other hand, models had better performance when more layers

were transferred and frozen in small target datasets. In this sense, authors in [48] use YOLOv5 to

monitor activities caught in UAV (Unmanned Aerial Vehicle) images through drones. The problem

considered is related to the detection of the small size of the objects in a dataset that includes RGB

images with the respective pairs of TIR (thermal infrared). The main goal is to infer which model

(if RGB, TIR, or a mix of both, with or without transfer learning) is the best to solve the question

considered. Analyzing the results of the seven scenarios applied to the TIR test set, it was observed

that both YOLO-TIR and YOLO-RGBT (the complete dataset with RGB plus TIR images) with

transfer learning performed the best.

Since thermal images are better suited for poor light conditions, the authors in [26], consider the

detection of people in thermal videos and images recorded at night in different weather conditions

(rain, fog, and clear) in a forest scene. They use the original version of YOLO trained with COCO;

however, the authors note that due to the disparities between thermal and RGB images, YOLO

13 of 60

CHAPTER 2. STATE OF THE ART

was not able to achieve a reasonable mAP@0.5 with a result of only 23%. On RGB images, this

value achieves 90%. On the other hand, when YOLO is pre-trained with an RGB dataset with the

addition of thermal images, the AP value achieves 97% even at various distances.

The same authors of the previously cited paper studied in [34] various detection algorithms used

for RGB images in a thermal dataset created to simulate different illegal movements in different

weather conditions (fog and rain). They proceeded to compare the performance of Faster RCNN,

SSD, Cascade RCNN, and YOLOv3. The results showed that YOLOv3 pre-trained with the COCO

dataset could still recognize and perform well in the thermal dataset of around 3000 images due to

the resemblance of RGB images compared to thermal images. YOLOv3 has also performed well on

tests with external image sets, and the best results were related to the combination of all sets used

in the mentioned paper. It also showed good generalization.

Also, in [20] the authors focus on a work similar to this thesis: real-time detection of humans

in infrared images. They fine-tuned YOLOv3 with a model pre-trained with COCO, achieving a

mAP@0.5 of 89.28% on the validation set. They conclude that fine-tuning increases the accuracy in

the same validation set relative to YOLOv3 without fine-tuning and that it is important to detect

small objects.

In [61] the researchers, to tackle the lack of indoor thermal datasets, created one composed of

only indoor thermal images called THS-DATA and adapted YOLOv5. The images were submitted

to a variety of pre-training methods to fine-tune them with the THS-DATA, to diminish the reliance

on the amount of training data available they preformed the following setps: i) Pretraining on each

RGB channel; 2) Pretraining RGB images converted to Grayscale; 3) Pretraining on RGB images

converted to Grayscale, but increased the contrast between people and the background. The results

showed that training with each channel separately (i) and converting to Grayscale (ii) had the best

performance in comparison to simulated images where the contrast was increased (iii).

In summary, these related works demonstrate the importance of transfer learning and fine-tuning

object detection models for thermal imaging, not only to address the problem of a lack of data but

also to improve performance results. Additionally, various studies use RGB datasets, mainly COCO,

to pre-train the models that will be used to train thermal datasets.

14 of 60

3 Methodology

In this Chapter, the goal is to explain the research design, the datasets used for experiments, and the

conditions and parameters associated with them, as well as explore in detail YOLOv5’s architecture

and the metrics that are going to be used to evaluate the results.

3.1 Datasets

The dataset used to support the experimental part and the respective results of this thesis was

created at the Department of Electrical and Computer Engineering of the University of Coimbra

by a team of researchers from the Institute of Systems and Robotics (ISR) with a mobile robot

that also operates in indoor environments (Figure 3.2). It is composed of 757 RGB and thermal

pair images for training and 525 pair images for testing, making a total of 2564 images. The pairs

are calibrated; however, they present a slight temporal mismatch due to hardware limitations. The

separation between testing and training is essential to make sure the model does not overfit during

training.

The thermal images that compose the target dataset were taken using an LWIR camera, Flir

Boson 640-512 pixels, professional grade with shutter, Lens 50º 8.7mm, 60fps. The RGB images

were taken with an Ximea MQ013CG-E2. All of the images have a shape of 640×512x3 pixels and

have no augmentations applied to them. The cameras can be seen in Figure 3.3.

15 of 60

CHAPTER 3. METHODOLOGY

(a) Test set image from the RGB dataset. (b) Test set image from the thermal dataset.

Figure 3.1: Datasets created at DEEC and studied.

The environment includes both images with high and low luminosity (where thermal images

are more useful), which creates a contrast between them. It can also be observed that there is a

considerable amount of movement in some of the corridors, as represented in Figure 3.1.

Figure 3.2: Mobile robot created and used to capture and collect the images inside the department

DEEC-UC.

16 of 60

CHAPTER 3. METHODOLOGY

Figure 3.3: Close look at the cameras attached to the robot that captured the images.

After the collection, it was necessary to annotate and label the images from both the RGB and

the thermal datasets. The annotation process was carried out using a computer vision annotation

tool called CVAT which can be seen in Figure 3.4.

(a) RGB. (b) Thermal.

Figure 3.4: Example of two images from the RGB and thermal datasets during the annotation

process.

For transfer-learning purposes, the model studied, and which will be described in section 3.3,

was pre-trained with the RGB version created by the ISR’s members, a Grayscale format (Figure

3.6a) converted from the RGB dataset, and also with two external datasets: Teledyne FLIR ADAS

Thermal Dataset (that will be addressed as FLIR in this thesis for facilitation purposes) [60] and

MS COCO [40], both very well known and very common. The MS COCO 2017 dataset (Figure

3.6b) has 80 classes and more than 200k images in different and complex situations, with varying

sizes. The pre-trained weights derived from the MS COCO dataset were provided by Ultralytics

17 of 60

CHAPTER 3. METHODOLOGY

[28].

On the other hand, it was created two versions of pre-train with the FLIR dataset: a multi-class

FLIR that will be referred to as FLIR, and a one-class FLIR, that will be referred to as FLIR*. This

means that FLIR was trained with all the original classes (Table 3.1) considered by the authors,

while FLIR* was trained considering only the "person" class. Examples of these two versions can

be observed in Figure 3.5.

FLIR comprises a total of 26,442 video frames, but it also includes RGB images. Since only

the thermal images are required, a selection of 13,000 images was used. FLIR considers 15 label

categories (the labels can be seen in Table 3.1). The thermal images were taken with a Teledyne

FLIR Tau 2 640x512, 13mm f/1.0 (HFOV 45°, VFOV 37°) camera. There is an RGB version of this

dataset, but we chose to take only the thermal images so we could compare the performance.

Table 3.1: Classes considered in FLIR.

FLIR’s original classes

Person Traffic light Bus Scooter

Bike Fire Hydrant Train Stroller

Car Street Sign Truck Dog

Motorcycle Skateboard Other Vehicle -

(a) Image from the test set from FLIR*. (b) Image from the test set from FLIR.

Figure 3.5: Examples of images after undergoing detection using the model during both the

training and testing phases with FLIR and FLIR*.

18 of 60

CHAPTER 3. METHODOLOGY

(a) Grayscale image. (b) MS COCO image.

Figure 3.6: Example images from two out of the six scenarios tested.

3.2 Research Design and experimental setup

The studies considered in this thesis were conducted using the device’s specifications detailed in

Table 3.2, as well as Jupyter Notebook, using the PyTorch framework.

Table 3.2: Details about the device used to run the model.

Processor AMD Ryzen 9 5900X 12-Core Processor

GPU NVIDIA GeForce RTX 3090, 24576MiB

Installed RAM 32.0 GB

System type 64-bit operating system, x64-based processor

To be able to assess how YOLOv5 performs in the detection of people in thermal images of

indoor environments, it was evaluated different scenarios: one Control scenario corresponding to

the training from scratch with the in-house thermal dataset (the target dataset) and five pre-trained

scenarios where the models are then used to fine-tune the model of our target dataset. The datasets

used for pre-training are described in the previous section and correspond to RGB, COCO, FLIR,

FLIR*, and Grayscale.

Preparations steps:

1. Organization of the thermal dataset in training, validation, and testing. Train and test were

already defined; validation corresponds to about 10% of the training set.

2. Download and organization of the FLIR dataset and corresponding labels, since it was nec-

essary to convert the .json format to YOLO Darknet label format to be compatible with the

YOLOv5 algorithm.

19 of 60

CHAPTER 3. METHODOLOGY

3. Train from scratch FLIR, FLIR*, RGB, and Grayscale datasets to take the weights to use as

pre-training with training parameters defined in Table 3.3, with the difference that they were

only trained with alearning rate of 0.01.

After these steps of preparation were finished, the model was fine-tuned with the pre-training

weights of the datasets mentioned above, considering the training parameters in Table 3.3. The

research steps are described further.

Table 3.3: Training parameters considered through all the training scenarios.

Batch 32 Weight decays 0.0005

Epoch 200 Box Loss Gain 0.05

Initial learning rate 0.1; 0.01; 0.001 Class BCE positive weight 1.0

Final learning rate 0.1 Object BCE positive weight 1.0

Class Loss Gain 0.3 Object Loss Gain 0.7

IoU training threshold 0.20 - -

Implementation and model-learning steps:

1. Training the target dataset by fine-tuning the model in the same pre-training conditions

described in Table 3.3, including the three learning rates described (0.1, 0.01, and 0.1) without

freeze;

2. Repetition of the previous step, with the conditions considered in Table 3.3 but additionally

the backbone of the model is frozen (the first ten layers);

3. Assess the two best results between steps 1 and 2 and test them, as well as, on the RGB

scenario, the constant decrease of frozen layers with a step of 2. The conditions in Table 3.3

remain, except that the learning rate considered is only 0.01 since it was the one associated

with the best results;

4. Repetition of step 1 with data augmentation. The values considered for the augmentation

parameters are described in Tables 3.4 and 3.5. The conditions considered are the same as

described in Table 3.3;

5. Test of optimizers SGD and ADAM with the same conditions considered in Table 3.3, consid-

ering only the learning rates 0.01 and 0.001, in scenarios Control, RGB, COCO and FLIR*.

It was chosen to introduce high probability values on the augmentation parameters to evaluate

how the algorithm performs under considerable changes in the dataset conditions. However, it is

important to note that, during augmentation, the dataset does not increase in size (number of

examples/instances).

20 of 60

CHAPTER 3. METHODOLOGY

Table 3.4: Hyperparameters used for augmentation.

Hyperparameter Values Hyperparameter Values

Hue 0.015 Fliplr 0.5

Saturation 0.7 Mosaic Augmentation 1.0

Brightness 0.4 Mixup 0.1

Translation 0.1 Scale 0.9

Table 3.5: Augmentation parameters table.

Hue Parameter that controls the

value of hue.

Scale This parameter controls the scal-

ing of the image. Values below 1

decrease its size and above 1 in-

crease it.

Saturation Parameter that controls the

saturation of the image.

Mixup This parameter controls the prob-

ability of applying mixup aug-

mentation using two images to

create a new image.

Brightness Parameter that controls the

brightness or value of the im-

age. It affects how light or dark

the image appears.

Fliplr This parameter controls the prob-

ability of flipping the image

horizontally.

Mosaic

Augmen-

tation

Corresponds to the prob-

ability of applying mosaic

augmentation.

Translation This parameter controls image

translation.

3.3 Model Architecture

YOLOv5 arrived a month after YOLOv4, hence the two versions have many similarities. However,

YOLOv5 came to prove that it has higher accuracy and efficiency [24].

After the first version of YOLO, several versions appeared: YOLOv4, YOLOv5, YOLOv6,

YOLOv7, and so on. YOLOv5 is one of the most used due to its accuracy and user-friendliness; it

is also faster and requires less computational power. It is an extension of the famous YOLOv3 and

is designed to be used with PyTorch.

YOLOv5 has five versions: nano, small, medium, large, and extra-large, whose use depends on

the type of dataset, device, and task to which is going to be applied. What distinguishes them is

21 of 60

CHAPTER 3. METHODOLOGY

the width and depth of the layers, as well as their use. For instance, although YOLOv5x has the

best performance, it comes with a cost in speed [67]. This thesis it will be used the medium version,

YOLOv5m. The parameters corresponding to YOLOv5m can be seen in Table 3.6.

Table 3.6: YOLOv5m’s version 7.0 parameters.

Number of layers Number of parameters GFLOPS

YOLOv5m 212 20856975 47.9

3.3.1 Overview of YOLOv5

YOLOv5 has also introduced new features such as adaptive anchor boxes and mosaic augmenta-

tion. In previous versions of YOLO, there was a pre-defined set of anchor boxes that were usually

empirically defined from larger datasets, but adaptive anchor boxes enable these anchors to be de-

fined according to the target dataset, allowing the model to have a more accurate starting point

[13]. Mosaic augmentation consists of randomly combining four images of the dataset to create one

single image. This way it increases the variety and challenges the model, as seen in Figure 3.7.

Figure 3.7: Example of the application of mosaic augmentation during the training process with

FLIR* dataset at a learning rate of 0.01 without freeze.

YOLO components are all integrated into one single neural network, where the input is a certain

number of images given by matrix (3.1). [
n,w, h, x

]
(3.1)

22 of 60

CHAPTER 3. METHODOLOGY

That corresponds to the number of images, width, height, and depth of the image (e.g., RGB is

composed of three channels, i.e., the depth of the image is three), respectively.

Each image is divided into an SxS grid. If an object is detected in one of the grid cells, that cell

is the one to, first, detect such an object and, second, to predict it. The output of each grid cell is

a vector described in matrix 3.2.



Pc

Bx

By

Bw

Bh

C1

C2


(3.2)

Where,

• Pc − either 0 if no object is detected or 1 if otherwise;

• Bx, By − center position x and y of the grid cell where the object was detected;

• Bw, Bh − the width and height of the bounding box surrounding the object;

• C1, C2 − classification classes. If one object or more are detected in the grid cell these values

are between 0 and 1, whether they are classified as C1 and/or C2. Consists of a conditional

probability where P(Classi|Object).

The prediction of the bounding box position, as well as the center, are given by equations (3.3),

(3.4), (3.5), (3.6).

Bx = σ(tx) + cx (3.3)

By = σ(ty) + cy (3.4)

Bw = pwe
tw (3.5)

Bh = phe
th (3.6)

Where cx and cy correspond to the coordinates of the grid cell on the image; tx and ty represent

the predicted offset for the center x-coordinate and y-coordinate; and pw and ph represent the factors

used to adjust the predicted width and height of the anchor box.

Each vector value consists of a confidence value, reflecting the probability of detection and re-

spective localization of an object. Each grid cell predicts confidence scores regarding their respective

23 of 60

CHAPTER 3. METHODOLOGY

bounding boxes. These confidences are given by equation (3.7). The confidence scores for predicting

the classes in the bounding boxes are given by equation (3.8). This equation considers the prob-

ability of a certain class existing and the suitability between the bounding box and the object it

surrounds. The intersection over union is described in equation (3.9) and it is detailed in section

3.4 therefore:

Pr(Object) ∗ IoU (3.7)

Pr(Object) ∗ IoU truth
pred ∗ Pr(Classi|Object) = Pr(Classi) ∗ IoU truth

pred (3.8)

Intersection =
Intersected Area

Union Area
(3.9)

On every cell of the grid mentioned above where the center of the object is detected, in each

scale computed by the network, three bounding boxes will be generated associated with a middle

point responsible for classifying the object. These bounding boxes are adjusted from the anchors

and will be later used to choose the actual bounding box.

Figure 3.8: Illustrative example of three anchors being generated by a grid cell where the center

of the cat was detected. Photo credits: Manja Vitolic.

The bounding box that will detect the object, will be selected through the use of Non-Maximum

Surpression (NMS), a post-processing technique that will sort the bounding boxes by their confidence

values and use Intersection over Union (IoU) - explained in detail in section 3.4 -, to compare the

amount of overlaying between them. If it is above a certain defined threshold, NMS will discard the

bounding box with less confidence.

24 of 60

CHAPTER 3. METHODOLOGY

3.3.2 Detailed architecture

Exploring in detail the YOLOv5 network, whose architecture can be seen in detail in Figures 3.9

and 3.10, it consists of three blocks:

• Backbone: New CSP-Darknet53 structure, that derives from the Darknet architecture of

other YOLO versions.

• Neck: the structures used are SPPF (Spatial Pyramid Pooling Fast) and New CSP-PAN.

• Head: YOLOv5 used YOLOv3 Head.

Usually, the backbone of an object detector is a CNN that extracts features and creates feature maps

of images in different qualities and scales (low-level features in earlier stages and high-level features

in deeper layers). It is the main body of the network and is extremely important for accuracy. In

YOLOv5, the backbone corresponds to New CSP-Darknet53 (derived from Cross Stage Partial),

the same backbone as YOLOv4, with a slight variation in the first layers, which start with a Stem

- first layers that process the raw input so it can be more suitable for feature extraction, helping to

save memory and processing time [67].

The New CSP-Darknet53 will receive an input that will be divided into two different paths:

one that will go directly through a transition and another that will go through a dense block. The

outputs of these paths will be concatenated and go through another transition layer. This backbone

addresses the repeating gradient information in large models and integrates gradient change into

feature maps to improve inference speed, accuracy, and model size by decreasing the parameters.

This is represented by the C3 block in Figures 3.9 and 3.10.

From the backbone, the output will be feature maps that will go through the neck that connects

the backbone and head. It is used to combine image features and improve semantic and spatial

information across different scales. The neck comprises SPPF (Figure 3.10) and New CSP-PAN.

The first one is an optimized version done by the authors of YOLOv5 that doubles the time. SPP

[22], the base of SPPF, aims to permit an image of any size as input by generating a fixed-length

representation through pooling to be fed into fully connected layers (that are the ones to require

fixed-size inputs). Another advantage of SPP is the fact it only needs to run once to scan the

image, which increases the speed of the process [67]. This algorithm allows for the extraction of

important spatial features for context and helps detect objects at different scales. The modification

introduced by the authors of [28] consists of calculating three max-poolings with different kernels

and paddings. SPPF applies a single max-pooling operation to the input that will be implemented

three times, and the output of the first max-pooling operation becomes the input to the second,

and so on. The final output is produced by concatenating the original input with the outputs of all

three max-pooling operations.

25 of 60

CHAPTER 3. METHODOLOGY

In the neck, it is also possible to find the New CSP-PAN which is an adaptation of PAN (Path

Aggregation Network) [41] whose goal is to facilitate the gradient and information flow through a

bottom-up pathway since low-level features are essential for large instance identification.

The head of YOLOv5 is the same as its precedent models, such as YOLOv3 and YOLOv4.

This means that it will generate three output feature maps corresponding to three different ratios,

allowing it to detect small and large objects. The expression used to calculate the feature map is

given by equation (3.10),

c = (5 + ncls)× 3 (3.10)

where c corresponds to the feature map generated, ncls corresponds to the number of classes, and

the number three is related to the number of bounding boxes predicted. The architecture of the

algorithm can be seen in figures 3.9 and 3.10.

26 of 60

CHAPTER 3. METHODOLOGY

Figure 3.9: YOLOv5’s architecture based on [28] and [30].

27 of 60

CHAPTER 3. METHODOLOGY

Figure 3.10: YOLOv5’s architecture details based on [28] and [30].

3.3.3 Loss, learning rate, activation and optimization functions

The default that corresponds to the Sigmoid Linear activation function (SiLU), was chosen for the

activation function, which is mathematically defined in equation (3.11),

silu(x) = x× σ(x) (3.11)

where σ(x) is the logistic sigmoid. For the optimization function, in this thesis it was opted for

SGD (Stochastic Gradient Descent) as it is commonly used for SOTA articles and chosen by the

algorithm’s authors as the default. SGD adjusts the model’s parameters using a random subset of

the training data during iterations, increasing the randomness.

It was also tested the ADAM (Adaptive Moment Estimation) optimizer as well, represented by

equation (3.12) since it is also very used and usually chosen as the default optimizer because it

converges faster.

wt+1 = wt − αmt (3.12)

Where,

mt = βmt−1 + (1− β)[
δL

δwt
] (3.13)

β corresponds to momentum that is set to β = 0.937 and α corresponds to the One-Cycle learning

rate. In this thesis, when the learning rate is mentioned it is always the initial learning rate (lr0).

The maximum learning rate (lrf) is set to 0.1, corresponding to the default value. It is used a

28 of 60

CHAPTER 3. METHODOLOGY

learning rate scheduling method called One Cycle where the initial learning rate is low and will

increase step-by-step to the maximum learning rate. Then, the learning rate will decrease again, in

the second part of training.

For the loss it was used Binary Cross-Entropy (BCE) with Logits Loss predefined in Pytorch

and it is defined as found in equation (3.14). This loss function combines a sigmoid layer and the

normal BCE Loss function and is considered to be more numerically stable [4].

l(x, y) = L = {l1, ..., lN}T , ln = −wn[yn · logσ(xn + (1− yn) · log(1− σ(xn))] (3.14)

where,

• c corresponds to the number of classes;

• n corresponds to the number of the sample in the batch;

• pc corresponds to the weight of the positive answer for the class considered.

3.4 Evaluation Metrics

In this thesis the evaluation and comparison of the results were based on precision, recall, mAP@0.5:@0.95

and F1 score. Precision, equation (3.15), consists of the ratio of actual positives relative to all the

samples classified as positive,

Precision =
TP

TP + FP
(3.15)

where TP corresponds to True Positives and FP corresponds to False Positives. Recall (equation

(3.16)) is a sensitivity metric that tells the ratio of the number of correct positives out of all of

them,

Recall =
TP

TP + FN
. (3.16)

The mean average precision (mAP), expressed as in equation (3.17), is the ratio between pre-

cision and recall and is one of the most famous parameters for object detection to evaluate perfor-

mance.

mAP =
1

N

q∑
q=1

Average Precision(q) (3.17)

where N is the number of objects and q is a given object. This concept is related to IoU which

is calculated as the ratio of the areas of intersection and union of the predicted and ground truth

bounding boxes, as exemplified in Figure 3.11. IoU determines if a bounding box is a true positive,

false positive, or false negative. There are different IoU thresholds to calculate mAP: 0.5:0.05:0.95,

29 of 60

CHAPTER 3. METHODOLOGY

0.5 and 0.95. The first one enables incremental changes in the threshold during evaluation and

is used to assess the localization accuracy [79], the others only calculate the percentage described

above. In this thesis it is used mAP@0.5 and mAP@0.5:0.95.

Figure 3.11: IoU visualization [67].

The threshold established by IoU will determine if something is detected:

• IoU > 0.5: True Positive;

• IoU < 0.5: False Positive (wrong detection).

If there is no intersection, no object is detected. The F1-score (equation (3.18)) corresponds to the

harmonic mean between precision and recall and ranges between 0 and 1, where 1 represents high

precision and recall values. F1 penalizes extreme values of these two metrics [23]. In YOLOv5, the

average F1-score for the class is calculated for each threshold.

F1 = 2× Precision×Recall

Precision+Recall
=

2× TP

2× TP + FP + FN
(3.18)

It was taken the arithmetic average of the values while analyzing the results. It is defined as in

equation (3.19),

x̄ =
x1 + x2 + ...+ xn

n
=

1

n

n∑
1

xi (3.19)

where n corresponds to the number of elements considered.

30 of 60

4 Experimental results

This Chapter reports the experimental results and the evaluation metrics; they are precision, recall,

mAP@0.5, mAP@0.5:0.95, and F1-score (described in section 3.4), calculated on the test set.

In section 4.1 it is presented the fine-tuning results for all learning rates considered with and

without freeze, with no augmentation, for all the scenarios used for pre-training: Control, RGB,

FLIR*, FLIR, and Grayscale (Gray). The conditions used to pre-train and subsequently fine-tune

can be seen in Table 3.3 in Chapter 3. This section corresponds to research steps 1 and 2.

In section 4.2 it is analyzed three of the scenarios’ performances regarding variation of the

number of frozen layers, so it will be evaluated how the model responds in different frozen layer

conditions.

In section 4.3, it is demonstrated the evolution with augmentation (the parameters considered

can be seen in Table 3.5) in comparison with no augmentation, as well as their respective graphics

to help visualization. Finally, this Chapter finishes with section 4.4 where it evaluates how the

different optimizers - SGD and ADAM - impact some of the scenarios.

In Appendix .1 it is possible to see some qualitative results of the detections obtained.

4.1 Results on human detection using YOLOv5

Tables 4.1, 4.3 and 4.5 correspond to the results with learning rates of 0.01, 0.001 and 0.1, re-

spectively. Whereas Tables 4.2, 4.4 and 4.6 correspond to the results of their respective learning

rates, but with ten layers frozen, corresponding to the backbone. Every table has a Control, that

corresponds to the baseline for each learning rate. Control has no frozen layers because it is not

pre-trained (i.e., it is trained from scratch with the target dataset).

To be able to compare tables between each other, the average values for each metric were

computed; however, to guarantee the outliers did not weigh on the decision, the average of the three

best test results on each table were also taken (that corresponds to average-3).

Based on Table 4.1, that shows the results without freeze and with a learning rate of 0.01, it has

been found that such configuration outperforms all the other ones in all metrics, including average

and average-3. The two best scenarios in this table are COCO (Figure 4.1a) and FLIR* (Figure

4.1b).

31 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Comparing the performance measures in tables 4.1 and 4.3 to 4.2 and 4.4, which give the results

with and without freeze, it is possible to see that freezing the layers reduces the performance and

decreases all the metric parameter values: mAP@0.5, mAP@0.5:0.95, F1-score, precision, and recall.

On the other hand, comparing Tables 4.5 and 4.6, which correspond to the results without and with

freeze with a learning rate of 0.1, it was obtained mixed results: COCO and FLIR improved the

performance when layers were frozen (relative to the results of the same learning rate but without

freeze), while the remaining scenarios follow the tendency of the decrease in performance (observed

in the previous comparisons). For this reason, section 4.2 evaluates the impact of frozen layers on

three scenarios: COCO, FLIR*, and RGB.

In four out of the six reported results, the model pre-trained with Grayscale data outperforms

its RGB counterpart, even though the results exhibit a high degree of similarity. In comparison to

the Control scenario, both RGB and Grayscale demonstrate similar performance levels. However,

it is noteworthy that in Table 4.4 and Table 4.6, both RGB and Grayscale models fall short on

performance achieved in contrast to the Control scenario. Among these tables, RGB performs the

worst in Table 4.1 and Table 4.2, while the Control scenario performs the worst in Table 4.3. The

sole exception to this trend occurs in Table 4.5, where the FLIR model generates the least favorable

results, nonetheless it is very closely aligned with those of the Control scenario.

It is evident that utilizing a large RGB dataset leads to better results compared to using a

thermal dataset. COCO’s substantial size - which greatly the next-largest dataset used in this study

- results in significant improvements in model generalization. A broader generalization means more

diverse samples, which helps the model learn a broader range of features and patterns. However,

even though FLIR* had good results, its lower performance can also be due to the fact that numerous

images did not contain people (even though this is also true for COCO, but the dataset much larger,

as stated before), and a portion of them were very similar to each other, having less diversity.

This last observation can give some hints as to why the RGB scenario frequently has one of

the weakest performances, althouth typically still retains valuable feature information and is usu-

ally an option for pre-training. Linking that to the fact that the Control scenario also frequently

underperforms, this suggests that the dataset might be insufficient in terms of size or information,

compromising the model’s ability to learn. It is possible to see that, even though the FLIR dataset

has limitations and is an outdoor thermal dataset, - which takes into account very different context

situations - it improved the results significantly compared to RGB and Control therefore, it is most

likely large enough to contain sufficient information relative to the scenarios mentioned.

In this section, it is also possible to compare the results between FLIR and FLIR*. It is apparent

that the results are similar; however, FLIR* performs better without freezing, on the other hand,

FLIR has higher results when the backbone is frozen relative to FLIR*. This might be due to the

fact that FLIR has more generalization since it contains information about multiple classes and, by

32 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

freezing layers, enables the transfer of low-level feature knowledge.

Looking at the values of average and average-3 across the results, even though there are differ-

ences, the learning rate does not have as much impact compared to the size of the dataset for the

pre-training stage and the amount of generalization they introduce. However, it does have an impact

on the discrepancy between the data and that will be discussed in section 4.3 where augmentation

is analyzed.

Table 4.1: Results across the various situations for the learning rate 0.01. Freeze=0, no augmen-

tation.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.824 0.609 0.721 0.372 0.70 (@0.635)

RGB 0.817 0.607 0.704 0.37 0.70 (@0.507)

COCO 0.903 0.781 0.866 0.544 0.84 (@0.810)

FLIR* 0.833 0.675 0.773 0.477 0.75 (@0.049)

FLIR 0.801 0.679 0.767 0.459 0.73 (@0.065)

Gray 0.815 0.625 0.723 0.384 0.71 (@0.446)

Average 0.832 0.663 0.759 0.434 0.74

Average-3 0.846 0.712 0.802 0.493 0.77

Table 4.2: Performance measures, on the test set, across the various situations for the learning

rate 0.01. Freeze = 10, no augmentation.

Precision Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.824 0.609 0.721 0.372 0.70 (@0.635)

RGB 0.777 0.547 0.636 0.299 0.64 (@0.488)

COCO 0.888 0.731 0.828 0.491 0.80 (@0.711)

FLIR* 0.751 0.654 0.726 0.406 0.70 (@0.112)

FLIR 0.797 0.658 0.748 0.410 0.72 (@0.173)

Gray 0.756 0.568 0.643 0.303 0.65 (@0.470)

Average 0.799 0.628 0.717 0.380 0.70

Average-3 0.812 0.681 0.767 0.436 0.74

33 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.3: Reported results for the learning rate 0.001. Freeze=0, no augmentation.

Precision Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.690 0.501 0.582 0.225 0.58 (@0.520)

RGB 0.697 0.611 0.646 0.311 0.65 (@0.407)

COCO 0.886 0.803 0.853 0.49 0.84 (@0.757)

FLIR* 0.795 0.677 0.741 0.436 0.73 (@0.104)

FLIR 0.784 0.676 0.715 0.357 0.73 (@0.342)

Gray 0.737 0.604 0.666 0.313 0.66 (@0.565)

Average 0.765 0.645 0.701 0.355 0.70

Average-3 0.822 0.719 0.770 0.428 0.77

Table 4.4: Results using learning rate 0.001, freeze = 10, and no augmentation.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.671 0.511 0.563 0.222 0.58 (@0.524)

RGB 0.696 0.504 0.562 0.238 0.58 (@0.591)

COCO 0.825 0.721 0.799 0.451 0.77 (@0.569)

FLIR* 0.760 0.627 0.692 0.367 0.69 (@0.423)

FLIR 0.802 0.626 0.702 0.334 0.70 (@0.604)

Gray 0.683 0.512 0.559 0.236 0.59 (@0.538)

Average 0.740 0.584 0.646 0.308 0.65

Average-3 0.796 0.658 0.731 0.384 0.72

Table 4.5: Experimental results using learning rate 0.1, freeze=0, no augmentation.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.782 0.606 0.698 0.369 0.68 (@0.454)

RGB 0.802 0.623 0.716 0.388 0.70 (@0.453)

COCO 0.773 0.668 0.733 0.407 0.72 (@0.357)

FLIR* 0.765 0.663 0.716 0.394 0.71 (@0.239)

FLIR 0.718 0.634 0.692 0.373 0.67 (@0.123)

Gray 0.782 0.642 0.727 0.396 0.71 (@0.275)

Average 0.770 0.639 0.714 0.388 0.70

Average-3 0.773 0.658 0.725 0.399 0.71

34 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.6: Results for learning rate = 0.1, freeze=10, and again without augmentation.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.782 0.606 0.698 0.369 0.68 (@0.454)

RGB 0.792 0.524 0.628 0.305 0.63 (@0.488)

COCO 0.826 0.699 0.785 0.436 0.76 (@0.522)

FLIR* 0.774 0.634 0.705 0.38 0.70 (@0.208)

FLIR 0.816 0.631 0.729 0.393 0.71 (@0.306)

Gray 0.757 0.568 0.643 0.301 0.65 (@0.465)

Average 0.791 0.610 0.698 0.364 0.69

Average-3 0.805 0.655 0.740 0.403 0.72

(a) COCO. (b) FLIR*.

Figure 4.1: The precision-recall graphics of the two best scenarios, with a learning rate of 0.01.

4.2 A deeper look into layer freezing

In this section, it is taken a deeper look into the effect of freezing on the fine-tuning of our model.

Specifically, the pre-training scenarios COCO, FLIR*, and RGB, were chosen to fine-tune our target

dataset and evaluate a varying number of frozen layers (ranging from 0 to 12 with a step of 2). The

results are presented for a fixed learning rate of 0.01, both in the form of tables (4.7, 4.9 and 4.8)

and plots (4.2 and 4.7, for COCO; 4.4 and 4.5, for RGB; and 4.6 and 4.7, for FLIR*), for a more

intuitive interpretation. The training parameters can be found in Tables 3.4, in Chapter 3. This

section corresponds to the third research step.

It can be observed that the COCO and FLIR* scenarios exhibit similar behavior, in terms of

the effect of frozen layers. The values of mAP@0.5 are minimal for more frozen layers, increasing

as the number of frozen layers decreases, as shown by Figures 4.2 and 4.6, with Figures 4.3 and

4.7 following the tendency. The initial layers of a backbone network are responsible for detecting

35 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

fundamental features like edges and corners. This indicates that the model primarily learns basic,

low-level features. As the network progresses deeper, it becomes apparent that the particular

features it identifies diverge significantly from those found in COCO and FLIR*. In the case of

COCO, the model achieves its highest performance, as shown in graphic 4.2, when two layers are

frozen. However, with FLIR*, it is preferable to not freeze any layers. This follows the idea stated

in the previous section that suggests that COCO provides more valuable information for learning

low-level features compared to FLIR*, likely because of its greater generalization capability and

also it might be because the FLIR dataset has images that do not contain any people and repeated

scenarios.

In contrast, RGB behaves quite differently, as observed in graphics 4.4 and 4.5, as it shows a

peak in performance when the entire backbone is frozen (corresponding to layers 0-9 in the model,

i.e., there are ten frozen layers). This suggests that up to the backbone, the model is acquiring

crucial information for training, and comparatively to COCO and FLIR*, these features are more

specific; therefore, there’s still some resemblance between the RGB dataset and the target dataset.

That said, fine-tuning with the backbone frozen with RGB achieves better results.

Table 4.7: Results for various numbers of frozen layers, with COCO pre-training. Learning rate

of 0.01.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

F12 0.888 0.731 0.828 0.491 0.800 (@0.711)

F10 0.888 0.731 0.828 0.491 0.800 (@0.711)

F08 0.89 0.749 0.84 0.506 0.820 (@0.644)

F06 0.898 0.768 0.855 0.523 0.830 (@0.720)

F04 0.891 0.782 0.86 0.536 0.830 (@0.705)

F02 0.901 0.795 0.872 0.539 0.84 (@0.770)

F00 0.903 0.781 0.866 0.544 0.84 (@0.810)

Average 0.894 0.762 0.850 0.519 0.82

36 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.2: Evolution of the performance of the model with the variable freeze at a learning rate

of 0.01, pre-trained with COCO.

Figure 4.3: Evolution of the performance of the model with the variable freeze at a learning rate

of 0.01, pre-trained with COCO.

37 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.8: Freeze evaluation for RGB. Learning rate of 0.01.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

F12 0.768 0.554 0.635 0.299 0.64 (@0.457)

F10 0.888 0.731 0.828 0.491 0.80 (@0.711)

F08 0.722 0.566 0.639 0.304 0.64 (@0.388)

F06 0.763 0.581 0.658 0.317 0.66 (@0.312)

F04 0.775 0.598 0.668 0.359 0.68 (@0.390)

F02 0.775 0.626 0.695 0.362 0.68 (@0.390)

F00 0.817 0.607 0.704 0.370 0.70 (@0.507)

Average 0.787 0.609 0.690 0.357 0.67

Figure 4.4: Impact of the varying numbers of frozen layers on mAP@0.5, with at a learning rate

of 0.01, pre-trained with RGB.

38 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.5: Impact of the varying numbers of frozen layers on mAP@0.5:0.95, with at a learning

rate of 0.01, pre-trained with RGB..

Table 4.9: Impact of frozen layers with FLIR* pre-training. Learning rate of 0.01.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

F12 0.755 0.649 0.729 0.411 0.70 (@0.180)

F10 0.751 0.654 0.726 0.406 0.70 (@0.112)

F08 0.792 0.646 0.745 0.423 0.71 (@0.160)

F06 0.790 0.659 0.734 0.431 0.72 (@0.080)

F04 0.807 0.677 0.756 0.458 0.74 (@0.054)

F02 0.818 0.691 0.768 0.468 0.75 (@0.071)

F00 0.833 0.675 0.773 0.477 0.75 (@0.049)

Average 0.786 0.663 0.743 0.433 0.72

39 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.6: Study of the evolution of the performance when the model is fine-tuned with FLIR*.

Learning rate of 0.01.

Figure 4.7: Study of the evolution of the performance when the model is fine-tuned with FLIR*.

Learning rate of 0.01.

4.3 The effects of data augmentation

In this section, the results of the application of augmentation are analyzed. The parameters and

probability values applied can be seen in Table 3.4, in Chapter 3. The training parameters can be

seen in the same Chapter in Table 3.3. This section corresponds to the fourth research step.

40 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

It was expected to see significant improvements in all scenarios and metrics since augmenta-

tion introduces variability into the training datasets as discussed in Chapter 3, and indeed, these

improvements were observed. In the previous section, Table 4.3 had the lowest results, but with

augmentation, this modality (without freeze with a learning rate of 0.001) was able to surpass not

only all the results (for different learning rates) from the previous sections but was also able to

reach similar results with augmentation relative to Tables 4.10 (illustrated in Figures 4.8 and 4.9)

and 4.12 (represented by the Figures 4.12 and 4.13). In general, this modality still underperforms,

but the difference compared to Table 4.10 is not significant.

Another insight that can be taken into account is that Table 4.12 has very steady results consid-

ering the mAP@0.5:0.95 compared to other tables. Nonetheless, the learning rate of 0.01 remains

the best option. On the other hand, when considering only the best three cases, the learning rate

does not have much impact on the performance of these scenarios, since Table 4.11 (represented in

Figures 4.10 and 4.11), with a learning rate of 0.001, has a very similar performance to Table 4.10

with a learning rate of 0.01. Table 4.12 is a bit behind, but the difference is not significant.

These results are related to the fact that augmentation improves the amount of variation the

model is trained with, which means it increases generalization as well, even though the dataset did

not increase. Consequently, it might be easier for the model to detect which features and patterns

are more significant since there are features invariant across the various transformations. In the

case of the results for a learning rate of 0.1, this might be especially true.

Nevertheless, it is still observed that the learning rate does not have as much impact as other

variables, as mentioned in section 4.2. It is possible to see that it affects the discrepancy between

scenarios’ results. Using a learning rate of 0.1 shows more stabilized results around the same values

i.e., values of mAP@0.5 and mAP@0.5:0.95 are similar between modalities. Augmentation does

not change this behavior, which suggests that the use of a larger learning rate allows for the model

to have more variation in relation to the local minima, and with the update of the learning rate

that occurs during training, it is easier for very different datasets that start at different points to

converge around the same local minima. Whereas very small learning rates do not allow as much

variation, as reflected in the figures, so each category might be concentrated around different values.

For SGD, a learning rate of 0.01 shows to be the best to balance variation without forgetting

pre-training information.

41 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.10: Compares the results across the various scenarios for the learning rate 0.01 with

augmentation. Freeze=0.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.898 0.773 0.878 0.530 0.85 (@0.559)

RGB 0.895 0.799 0.881 0.534 0.85 (@0.547)

COCO 0.937 0.835 0.918 0.601 0.88 (@0.626)

FLIR* 0.922 0.830 0.906 0.567 0.87 (@0.547)

FLIR 0.918 0.811 0.893 0.557 0.86 (@0.511)

Gray 0.918 0.788 0.883 0.543 0.85 (@0.559)

Average 0.915 0.806 0.893 0.555 0.86

Average-3 0.926 0.825 0.906 0.575 0.87

Figure 4.8: Evolution of mAP@0.5 at a learning rate of 0.01, when exists augmentation and

comparison without augmentation.

42 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.9: Evolution of mAP@0.5:0.95 at a learning rate of 0.01, when exists augmentation and

comparison without augmentation.

Table 4.11: Comparison of the performance across the various modalities for the learning rate

0.001 with augmentation. No freeze.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.814 0.714 0.800 0.429 0.76 (@0.476)

RGB 0.848 0.742 0.84 0.488 0.79 (@0.549)

COCO 0.931 0.842 0.921 0.599 0.88 (@0.550)

FLIR* 0.904 0.817 0.900 0.562 0.86 (@0.551)

FLIR 0.892 0.800 0.885 0.540 0.84 (@0.507)

Gray 0.890 0.738 0.841 0.478 0.81 (@0.536)

Average 0.886 0.784 0.869 0.523 0.82

Average-3 0.909 0.820 0.902 0.567 0.86

43 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.10: Evolution of mAP@0.5 for the learning rate of 0.001, comparing the results with and

without augmentation.

Figure 4.11: Evolution of mAP@0.5:0.95 for the learning rate of 0.001, comparing the results with

and without augmentation.

44 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.12: Compares the augmentation results across the various modalities for the learning rate

0.1, freeze=0.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.902 0.796 0.885 0.54 0.85 (@0.508)

RGB 0.903 0.800 0.884 0.544 0.85 (@0.550)

COCO 0.927 0.808 0.901 0.562 0.86 (@0.563)

FLIR* 0.914 0.793 0.887 0.549 0.85 (@0.529)

FLIR 0.919 0.802 0.897 0.555 0.86 (@0.518)

Gray 0.892 0.792 0.885 0.544 0.84 (@0.546)

Average 0.910 0.799 0.890 0.549 0.85

Average-3 0.920 0.801 0.895 0.555 0.86

Figure 4.12: Results for mAP@0.5 at a learning rate of 0.1, with and without augmentation.

45 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Figure 4.13: Results for mAP@0.5:0.95 at a learning rate of 0.1, with and without augmentation.

4.4 Optimizers

In this section, the ADAM optimizer was tested for two learning rates: 0.01 (results in Table 4.13),

which is the best learning rate for SGD, as concluded in section 4.1; and 0.001 (results in Table

4.14), the default learning rate. These results, performed using fine-tuning with the pre-trained

scenarios of COCO, RGB, and FLIR*, as well as the Control modality, were compared to the SGD

results from section 4.1. The training conditions are stipulated in Table 3.3 of Chapter 3. This

section corresponds to the last research step.

It is possible to notice that the model pre-trained with COCO remains the best transfer learning

option either for SGD or ADAM. For a learning rate of 0.01, Table 4.16 shows that using the SGD

optimizer allows for better results than using ADAM. However, when using an initial learning rate

of 0.001, ADAM is the best option for the majority of the scenarios, as evidenced in Table 4.16. In

this last case, COCO’s value of mAP@0.5 differs and is better for the SGD optimizer.

It was also tested if using a learning rate of 0.001 with ADAM performed better than the best

scenario with SGD with the learning rate of 0.01. Table 4.17 illustrates the case for RGB and

Control scenarios. COCO and FLIR* still achieve better performance with SGD; however, the

difference is not significant.

It was observed that using ADAM increases the time it takes to run the model. In the previous

sections, none of the scenarios surpassed the 30-minute mark; however, using the ADAM optimizer,

it would take as much as 50 minutes to run. This can be explained by the nature of the two opti-

46 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

mizers. Even though ADAM is known to converge faster due to the implementation of momentum

and RMSprop concepts that allow rapid convergence, the amount of data that it has to consider

might be slowing down the optimizer since it also considers previous iterations’ gradients. On the

other hand, SGD considers the current point and weight to update the loss function; consequently,

it does not require as much computational memory.

Table 4.13: Compares the results with ADAM optimizer across the various scenarios for the

learning rate 0.01. Freeze=0, no augmentation.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.763 0.576 0.675 0.353 0.66 (@0.306)

RGB 0.729 0.628 0.692 0.368 0.67 (@0.160)

COCO 0.822 0.626 0.739 0.391 0.70 (@0.208)

FLIR* 0.753 0.612 0.69 0.365 0.71 (@0.409)

Table 4.14: Compares the results across the various situations with ADAM optimizer for the

learning rate of 0.001 (recommended initial learning rate). Freeze=0, no augmentation.

Precisions Recall mAP@0.5 mAP@0.5:0.95 F1 Score

Control 0.817 0.615 0.729 0.393 0.70 (@0.572)

RGB 0.800 0.617 0.712 0.388 0.70 (@0.391)

COCO 0.836 0.76 0.835 0.504 0.80 (@0.362)

FLIR* 0.82 0.692 0.787 0.465 0.75 (@0.255)

Table 4.15: 0.01 ADAM vs 0.01 SGD

0.01 ADAM 0.01 SGD

mAP@0.5 mAP@0.95 mAP@0.5 mAP@0.95

Control 0.675 0.353 0.721 0.372

RGB 0.692 0.368 0.704 0.37

COCO 0.739 0.391 0.866 0.544

FLIR* 0.69 0.365 0.773 0.477

47 of 60

CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.16: 0.001 ADAM vs 0.001 SGD

0.001 ADAM 0.001 SGD

mAP@0.5 mAP@0.95 mAP@0.5 mAP@0.95

Control 0.729 0.393 0.582 0.225

RGB 0.712 0.388 0.646 0.311

COCO 0.835 0.504 0.853 0.49

FLIR* 0.787 0.465 0.741 0.436

Table 4.17: 0.001 ADAM vs 0.01 SGD

0.01 SGD 0.001 ADAM

mAP@0.5 mAP@0.95 mAP@0.5 mAP@0.95

Control 0.721 0.372 0.729 0.393

RGB 0.704 0.37 0.712 0.388

COCO 0.866 0.544 0.835 0.504

FLIR* 0.773 0.477 0.787 0.465

48 of 60

5 Conclusion

The main goal of this thesis was to investigate the effectiveness of YOLOv5 in the context of human

detection, using thermal imagery, and its performance when pre-trained with several datasets (RGB,

FLIR, Grayscale, and COCO) - and fine-tuned in a thermal indoor dataset. We then proceeded to

compare this performance with a baseline scenario where the model was trained from scratch with

the thermal dataset created in ISR.

The thermal dataset was trained in numerous different conditions: different number of frozen

layers, with or without data augmentation, and with different optimizers. Significant conclusions

can be drawn from the reported results. First, even though in multiple scenarios the learning

rate had a certain impact on the performances, the behavior observed through the different tables

remained stable i.e., RGB and Control were often performing worse than the others. Although the

Grayscale scenario seemed to frequently outperform RGB, the results were very similar. COCO’s

performances were the ones to suffer less variation, leading to COCO remaining as the best scenario,

followed by FLIR*, which achieved its peak with a learning rate of 0.01. This suggests that it is

preferable to use a large RGB dataset since it allows for a bigger generalization than using a smaller

but thermal one to pre-train.

It was not expected for RGB to perform so badly since it is the RGB version of the target

dataset, it has a high degree of similarity. It is interesting to notice that RGB reaches a peak in

accuracy when the backbone is frozen, which contrasts with pre-training with datasets like COCO

and FLIR*, where the model achieves better results when almost none to no layers are frozen. This

suggests that, even though the outcomes of fine-tuning with RGB may not be very high, the dataset

is capable of contributing with more specific and high-level information to the model, while COCO

and FLIR* contribute with low-level features. The same can be inferred for the other scenarios that

achieved lower performances with a frozen backbone.

The results also help to conclude that the use of data augmentation, even when it does not

increase the training set, is still extremely useful for fine-tuning since it introduces variation that

helps enhance dataset generalization and performance. This permitted different training scenarios

to achieve similar results to those observed in the main results section.

Concerning the learning rates, for the optimizer SGD, 0.01 shows to be the best option since

it is capable of balancing pre-train information with variation. It is not high enough to overshoot,

49 of 60

CHAPTER 5. CONCLUSION

but it is also not small enough to either need more epochs to converge or prevent finding the global

local minima.

The fact that across all situations, COCO was capable of remaining the most efficient dataset

for pre-training shows that the dataset size and the information it contains are the two variables

that had the most impact out of all the variables studied. Although the other modalities were

capable of improving their performances, they never achieved the same results as COCO. Larger

datasets like COCO contribute to increased performance since they allow the model to learn from

a broader range of features and patterns. In the same sense, this is confirmed by the fact that pre-

training with the RGB dataset frequently underperformed, although this dataset corresponds to the

target dataset in its RGB format. Adding to that, it is also an RGB format dataset like COCO,

therefore it is lacking sufficient size and, consequently, informational content might be related to

its poor results. Despite FLIR and FLIR* being large datasets composed of thermal imagery as

well, the fact that they underperformed relative to the COCO dataset can be because the dataset

has repeated scenarios, since the interval between the times the images were taken is small, and in

numerous of them there are no people. This might have undermined the results.

The choice of the optimizer also significantly impacts the model. For a learning rate of 0.01,

SGD generally outperforms ADAM. However, when using a learning rate of 0.001, ADAM performs

better for most scenarios. Nevertheless, it has also to be taken into account that ADAM increases

computational time compared to SGD due to the amount of information computed during iterations.

In summary, the choice of a pre-training dataset, freezing layers, augmentation, learning rate,

and optimizer are all crucial for the success of object detection. However, some variables showed a

greater impact, such as the size of data and the amount of diversity it contains. This diversity can

also be reached with augmentation.

5.1 Future Work

As future work, it would be interesting to dive into the impact of different optimizers and evaluate

the results, as well as include the change of more hyperparameters (beyond those shown in Table

3.3).

It would also be relevant to study the impact of augmentation by increasing the dataset instead

of only including variation to see if the performance increases or even surpasses the performance

of fine-tuning a model with pre-trained COCO dataset. Alongside this study, exploring transfer

learning with freeze in a larger, thermal indoor dataset might result in better performance or, at

least, with both indoor and outdoor environments. Not only because they might introduce more

generalization and decrease the number of repeated scenarios, but also because they might include

more similar scenarios as well. Furthermore, another future direction to pursue could include the

50 of 60

CHAPTER 5. CONCLUSION

impact of different transfer learning methods, particularly the ones described in Chapter 2, especially

with the Domain Adaptation Framework, which transfers low-level features through GAN.

51 of 60

Bibliography

[1] Abhishek Balasubramaniam and Sudeep Pasricha. “Object Detection in Autonomous Vehicles:

Status and Open Challenges”. In: (2022), pp. 1–6. url: http://arxiv.org/abs/2201.07706.

[2] Ganbayar Batchuluun et al. “A Study on the Elimination of Thermal Reflections”. In: (2019).

[3] Ganbayar Batchuluun et al. “Deep Learning-Based Thermal Image Reconstruction and Object

Detection”. In: IEEE Access 9 (2021), pp. 5951–5971. issn: 2169-3536. doi: 10.1109/ACCESS.

2020.3048437. url: https://ieeexplore.ieee.org/document/9311732/.

[4] BCE with Logists Loss. https : / / pytorch . org / docs / master / generated / torch . nn .

BCEWithLogitsLoss.html. Accessed: 27-08-2023.

[5] Bharat Bhushan, Simran Singh, and Ruchika Singla. “License Plate Recognition System using

Neural Networks and Multithresholding Technique”. In: International Journal of Computer

Applications 84 (2013), pp. 45–50. url: https://api.semanticscholar.org/CorpusID:

1191747.

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. “YOLOv4: Optimal Speed

and Accuracy of Object Detection”. In: CoRR abs/2004.10934 (2020). arXiv: 2004.10934.

url: https://arxiv.org/abs/2004.10934.

[7] Yukyung Choi et al. “KAIST Multi-Spectral Day/Night Data Set for Autonomous and As-

sisted Driving”. In: IEEE Transactions on Intelligent Transportation Systems 19.3 (2018),

pp. 934–948. doi: 10.1109/TITS.2018.2791533.

[8] Siu Chung et al. “Current State of the Art in Object Detection for Autonomous Systems”. In:

(September 2021).

[9] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection”. In: 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05).

Vol. 1. 2005, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

[10] Kevser Irem Danaci and Erdem Akagunduz. A Survey on Infrared Image and Video Sets.

2023. arXiv: 2203.08581 [cs.CV].

52 of 60

http://arxiv.org/abs/2201.07706
https://doi.org/10.1109/ACCESS.2020.3048437
https://doi.org/10.1109/ACCESS.2020.3048437
https://ieeexplore.ieee.org/document/9311732/
https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html
https://api.semanticscholar.org/CorpusID:1191747
https://api.semanticscholar.org/CorpusID:1191747
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/TITS.2018.2791533
https://doi.org/10.1109/CVPR.2005.177
https://arxiv.org/abs/2203.08581

BIBLIOGRAPHY

[11] Rikke Gade and Thomas Baltzer Moeslund. “Thermal cameras and applications: a survey”. In:

Machine Vision and Applications 25 (2013), pp. 245–262. url: https://api.semanticscholar.

org/CorpusID:8446711.

[12] Rikke Gade et al. “Automatic Occupancy Analysis of Sports Arenas”. In: 2012. url: https:

//api.semanticscholar.org/CorpusID:62324133.

[13] Mingyu Gao et al. “Adaptive anchor box mechanism to improve the accuracy in the object

detection system”. In: Multimedia Tools and Applications 78 (19 Oct. 2019), pp. 27383–27402.

issn: 1380-7501. doi: 10.1007/s11042-019-07858-w. url: http://link.springer.com/

10.1007/s11042-019-07858-w.

[14] Debasmita Ghose et al. Pedestrian Detection in Thermal Images using Saliency Maps. 2019.

arXiv: 1904.06859 [cs.CV].

[15] Ismat Saira Gillani et al. “Yolov5, Yolo-x, Yolo-r, Yolov7 Performance Comparison: A Survey”.

In: Academy and Industry Research Collaboration Center (AIRCC), Sept. 2022, pp. 17–28.

isbn: 9781925953763. doi: 10.5121/csit.2022.121602. url: https://aircconline.com/

csit/papers/vol12/csit121602.pdf.

[16] Ross Girshick. Fast R-CNN. 2015. arXiv: 1504.08083 [cs.CV].

[17] Ross Girshick et al. Rich feature hierarchies for accurate object detection and semantic seg-

mentation. 2014. arXiv: 1311.2524 [cs.CV].

[18] Yanfeng Gong et al. “A transfer learning object detection model for defects detection in X-ray

images of spacecraft composite structures”. In: Composite Structures 284 (2022), p. 115136.

issn: 0263-8223. doi: https://doi.org/10.1016/j.compstruct.2021.115136. url:

https://www.sciencedirect.com/science/article/pii/S0263822321015531.

[19] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http : / / www .

deeplearningbook.org. Cambridge, MA, USA: MIT Press, 2016.

[20] Anishi Gupta and Uma Gupta. “Real Time Target Detection for Infrared Images”. In: IEEE,

Jan. 2020, pp. 570–574. isbn: 978-1-7281-2813-9. doi: 10.1109/ICISC47916.2020.9171208.

url: https://ieeexplore.ieee.org/document/9171208/.

[21] Kaiming He et al. “Mask R-CNN”. In: (Mar. 2017). url: http://arxiv.org/abs/1703.06870.

[22] Kaiming He et al. “Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recog-

nition”. In: Computer Vision – ECCV 2014. Springer International Publishing, 2014, pp. 346–

361. doi: 10.1007/978-3-319-10578-9_23. url: https://doi.org/10.1007%2F978-3-

319-10578-9_23.

53 of 60

https://api.semanticscholar.org/CorpusID:8446711
https://api.semanticscholar.org/CorpusID:8446711
https://api.semanticscholar.org/CorpusID:62324133
https://api.semanticscholar.org/CorpusID:62324133
https://doi.org/10.1007/s11042-019-07858-w
http://link.springer.com/10.1007/s11042-019-07858-w
http://link.springer.com/10.1007/s11042-019-07858-w
https://arxiv.org/abs/1904.06859
https://doi.org/10.5121/csit.2022.121602
https://aircconline.com/csit/papers/vol12/csit121602.pdf
https://aircconline.com/csit/papers/vol12/csit121602.pdf
https://arxiv.org/abs/1504.08083
https://arxiv.org/abs/1311.2524
https://doi.org/https://doi.org/10.1016/j.compstruct.2021.115136
https://www.sciencedirect.com/science/article/pii/S0263822321015531
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/ICISC47916.2020.9171208
https://ieeexplore.ieee.org/document/9171208/
http://arxiv.org/abs/1703.06870
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007%2F978-3-319-10578-9_23
https://doi.org/10.1007%2F978-3-319-10578-9_23

BIBLIOGRAPHY

[23] Steven A Hicks et al. “On evaluation metrics for medical applications of artificial intelligence”.

In: (). doi: 10.1101/2021.04.07.21254975. url: https://doi.org/10.1101/2021.04.07.

21254975.

[24] Marko Horvat, Ljudevit Jelečević, and Gordan Gledec. A comparative study of YOLOv5 mod-

els performance for image localization and classification Hascheck-Croatian Academic Spelling

Checker View project. 2022. url: https://www.researchgate.net/publication/363824867.

[25] Mohammadreza Iman, Hamid Reza Arabnia, and Khaled Rasheed. “A Review of Deep Trans-

fer Learning and Recent Advancements”. In: Technologies 11.2 (Mar. 2023), p. 40. doi: 10.

3390/technologies11020040. url: https://doi.org/10.3390%2Ftechnologies11020040.

[26] Marina Ivašić-Kos, Mate Krišto, and Miran Pobar. “Human Detection in Thermal Imaging

Using YOLO”. In: vol. Part F1482. ACM, Apr. 2019, pp. 20–24. isbn: 9781450371810. doi:

10.1145/3323933.3324076. url: https://dl.acm.org/doi/10.1145/3323933.3324076.

[27] Licheng Jiao et al. “A Survey of Deep Learning-Based Object Detection”. In: IEEE Access 7

(July 2019), pp. 128837–128868. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2939201. url:

https://ieeexplore.ieee.org/document/8825470/.

[28] Glenn Jocher. Ultralytics YOLOv5. Version 7.0. 2020. doi: 10.5281/zenodo.3908559. url:

https://github.com/ultralytics/yolov5.

[29] Joseph Redmon on why he abandoned investigation. https://shorturl.at/cpzFV. Accessed:

01-08-2023.

[30] Hyun-Ki Jung and Gi-Sang Choi. “Improved YOLOv5: Efficient Object Detection Using Drone

Images under Various Conditions”. In: Applied Sciences 12 (July 2022), p. 7255. doi: 10.3390/

app12147255.

[31] M. Kastek et al. “Concept of infrared sensor module for sniper detection system”. In: 35th

International Conference on Infrared, Millimeter, and Terahertz Waves. 2010, pp. 1–2. doi:

10.1109/ICIMW.2010.5612447.

[32] Shreyas Bhat Kera, Anand Tadepalli, and J. Jennifer Ranjani. “A paced multi-stage block-

wise approach for object detection in thermal images”. In: Visual Computer 39 (6 June 2023),

pp. 2347–2363. issn: 01782789. doi: 10.1007/s00371-022-02445-x.

[33] Yash Khandhediya, Karishma Sav, and Vandit Gajjar. Human Detection for Night Surveil-

lance using Adaptive Background Subtracted Image. 2017. arXiv: 1709.09389 [cs.CV].

[34] Mate Kristo, Marina Ivasic-Kos, and Miran Pobar. “Thermal Object Detection in Difficult

Weather Conditions Using YOLO”. In: IEEE Access 8 (2020), pp. 125459–125476. issn:

2169-3536. doi: 10.1109/ACCESS.2020.3007481. url: https://ieeexplore.ieee.org/

document/9133581/.

54 of 60

https://doi.org/10.1101/2021.04.07.21254975
https://doi.org/10.1101/2021.04.07.21254975
https://doi.org/10.1101/2021.04.07.21254975
https://www.researchgate.net/publication/363824867
https://doi.org/10.3390/technologies11020040
https://doi.org/10.3390/technologies11020040
https://doi.org/10.3390%2Ftechnologies11020040
https://doi.org/10.1145/3323933.3324076
https://dl.acm.org/doi/10.1145/3323933.3324076
https://doi.org/10.1109/ACCESS.2019.2939201
https://ieeexplore.ieee.org/document/8825470/
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5
https://shorturl.at/cpzFV
https://doi.org/10.3390/app12147255
https://doi.org/10.3390/app12147255
https://doi.org/10.1109/ICIMW.2010.5612447
https://doi.org/10.1007/s00371-022-02445-x
https://arxiv.org/abs/1709.09389
https://doi.org/10.1109/ACCESS.2020.3007481
https://ieeexplore.ieee.org/document/9133581/
https://ieeexplore.ieee.org/document/9133581/

BIBLIOGRAPHY

[35] Maarten C. Kruithof et al. “Object recognition using deep convolutional neural networks with

complete transfer and partial frozen layers”. In: Optics and Photonics for Counterterrorism,

Crime Fighting, and Defence XII. Ed. by Douglas Burgess et al. Vol. 9995. Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series. Oct. 2016, 99950K, 99950K.

doi: 10.1117/12.2241177.

[36] Chengyang Li et al. Illumination-aware Faster R-CNN for Robust Multispectral Pedestrian

Detection. 2018. arXiv: 1803.05347 [cs.CV].

[37] Xiaoyu Li et al. “Improved YOLOv4 network using infrared images for personnel detection

in coal mines”. In: Journal of Electronic Imaging 31, 013017 (Jan. 2022), p. 013017. doi:

10.1117/1.JEI.31.1.013017.

[38] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. 2017. arXiv: 1612.03144

[cs.CV].

[39] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection. 2018. arXiv: 1708.02002 [cs.CV].

[40] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in Context. 2015. arXiv: 1405.0312

[cs.CV].

[41] Shu Liu et al. “Path Aggregation Network for Instance Segmentation”. In: CoRR abs/1803.01534

(2018). arXiv: 1803.01534. url: http://arxiv.org/abs/1803.01534.

[42] Wei Liu et al. SSD: Single Shot MultiBox Detector. Dec. 2016. doi: 10.1007/978-3-319-

46448-0_2. url: http://link.springer.com/10.1007/978-3-319-46448-0_2.

[43] Wei Liu et al. “SSD: Single Shot MultiBox Detector”. In: (Dec. 2016), pp. 21–37. doi: 10.1007/

978-3-319-46448-0_2. url: http://link.springer.com/10.1007/978-3-319-46448-0_2.

[44] Mingsheng Long et al. Conditional Adversarial Domain Adaptation. 2018. arXiv: 1705.10667

[cs.LG].

[45] Mingsheng Long et al. Deep Transfer Learning with Joint Adaptation Networks. 2017. arXiv:

1605.06636 [cs.LG].

[46] Chris Lytridis et al. “An Overview of Cooperative Robotics in Agriculture”. In: Agronomy

11.9 (2021). issn: 2073-4395. doi: 10.3390/agronomy11091818. url: https://www.mdpi.

com/2073-4395/11/9/1818.

[47] Yibing Ma et al. “Smart Fire Alarm System with Person Detection and Thermal Camera”.

In: Computational Science – ICCS 2020 12143 (2020), pp. 353–366. url: https://api.

semanticscholar.org/CorpusID:219967638.

55 of 60

https://doi.org/10.1117/12.2241177
https://arxiv.org/abs/1803.05347
https://doi.org/10.1117/1.JEI.31.1.013017
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1612.03144
https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1803.01534
http://arxiv.org/abs/1803.01534
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://link.springer.com/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
http://link.springer.com/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1705.10667
https://arxiv.org/abs/1705.10667
https://arxiv.org/abs/1605.06636
https://doi.org/10.3390/agronomy11091818
https://www.mdpi.com/2073-4395/11/9/1818
https://www.mdpi.com/2073-4395/11/9/1818
https://api.semanticscholar.org/CorpusID:219967638
https://api.semanticscholar.org/CorpusID:219967638

BIBLIOGRAPHY

[48] Aprinaldi Jasa Mantau et al. “A Human-Detection Method Based on YOLOv5 and Transfer

Learning Using Thermal Image Data from UAV Perspective for Surveillance System”. In:

Drones 6 (10 Oct. 2022), p. 290. issn: 2504-446X. doi: 10.3390/drones6100290. url: https:

//www.mdpi.com/2504-446X/6/10/290.

[49] Usha Mittal, Sonal Srivastava, and Priyanka Chawla. “Object detection and classification from

thermal images using region based convolutional neural network”. In: Journal of Computer

Science 15 (7 2019), pp. 961–971. issn: 15526607. doi: 10.3844/jcssp.2019.961.971.

[50] Farzeen Munir et al. Exploring Thermal Images for Object Detection in Underexposure Regions

for Autonomous Driving. 2021. arXiv: 2006.00821 [cs.CV].

[51] Nermin K. Negied, Elsayed E. Hemayed, and Magda B. Fayek. “Pedestrians’ detection in

thermal bands – Critical survey”. In: Journal of Electrical Systems and Information Technology

2.2 (2015), pp. 141–148. issn: 2314-7172. doi: https://doi.org/10.1016/j.jesit.2015.06.

002. url: https://www.sciencedirect.com/science/article/pii/S2314717215000343.

[52] Yu Oishi et al. “Animal Detection Using Thermal Images and Its Required Observation Con-

ditions”. In: Remote Sensing 10.7 (2018). issn: 2072-4292. doi: 10.3390/rs10071050. url:

https://www.mdpi.com/2072-4292/10/7/1050.

[53] Sankar K. Pal et al. “Deep learning in multi-object detection and tracking: state of the art”. In:

Applied Intelligence 51 (9 Sept. 2021), pp. 6400–6429. issn: 0924-669X. doi: 10.1007/s10489-

021-02293-7. url: https://link.springer.com/10.1007/s10489-021-02293-7.

[54] Yanwei Pang et al. “Mask-Guided Attention Network for Occluded Pedestrian Detection”. In:

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Oct.

2019.

[55] Jan Portmann et al. “People detection and tracking from aerial thermal views”. In: 2014

IEEE International Conference on Robotics and Automation (ICRA). 2014, pp. 1794–1800.

doi: 10.1109/ICRA.2014.6907094.

[56] Rizwan Qureshi et al. “A Comprehensive Systematic Review of YOLO for Medical Object

Detection (2018 to 2023)”. In: (July 2023). doi: 10.36227/techrxiv.23681679.v1. url:

https://www.techrxiv.org/articles/preprint/A_Comprehensive_Systematic_Review_

of_YOLO_for_Medical_Object_Detection_2018_to_2023_/23681679.

[57] Jakaria Rabbi et al. “Small-Object Detection in Remote Sensing Images with End-to-End

Edge-Enhanced GAN and Object Detector Network”. In: Remote Sensing 12.9 (2020). issn:

2072-4292. doi: 10.3390/rs12091432. url: https://www.mdpi.com/2072-4292/12/9/1432.

56 of 60

https://doi.org/10.3390/drones6100290
https://www.mdpi.com/2504-446X/6/10/290
https://www.mdpi.com/2504-446X/6/10/290
https://doi.org/10.3844/jcssp.2019.961.971
https://arxiv.org/abs/2006.00821
https://doi.org/https://doi.org/10.1016/j.jesit.2015.06.002
https://doi.org/https://doi.org/10.1016/j.jesit.2015.06.002
https://www.sciencedirect.com/science/article/pii/S2314717215000343
https://doi.org/10.3390/rs10071050
https://www.mdpi.com/2072-4292/10/7/1050
https://doi.org/10.1007/s10489-021-02293-7
https://doi.org/10.1007/s10489-021-02293-7
https://link.springer.com/10.1007/s10489-021-02293-7
https://doi.org/10.1109/ICRA.2014.6907094
https://doi.org/10.36227/techrxiv.23681679.v1
https://www.techrxiv.org/articles/preprint/A_Comprehensive_Systematic_Review_of_YOLO_for_Medical_Object_Detection_2018_to_2023_/23681679
https://www.techrxiv.org/articles/preprint/A_Comprehensive_Systematic_Review_of_YOLO_for_Medical_Object_Detection_2018_to_2023_/23681679
https://doi.org/10.3390/rs12091432
https://www.mdpi.com/2072-4292/12/9/1432

BIBLIOGRAPHY

[58] Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In: Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-

nition 2016-Decem (June 2015), pp. 779–788. issn: 10636919. doi: 10.1109/CVPR.2016.91.

url: http://arxiv.org/abs/1506.02640.

[59] Pascal Schneider et al. “TIMomdash;A Dataset for Indoor Building Monitoring with a Time-

of-Flight Camera”. In: Sensors 22.11 (2022). issn: 1424-8220. doi: 10.3390/s22113992. url:

https://www.mdpi.com/1424-8220/22/11/3992.

[60] The World’s Sixth Sense. FREE Teledyne FLIR Thermal Dataset for Algorithm Training.

data retrieved from Teledyne FLIR. url: https://www.flir.com/oem/adas/adas-dataset-

form/.

[61] Zhengqiang Shao et al. “A Dataset and A Lightweight Object Detection Network for Thermal

Image-Based Home Surveillance”. In: IEEE, Nov. 2022, pp. 1332–1336. isbn: 978-616-590-477-

3. doi: 10.23919/APSIPAASC55919.2022.9980050. url: https://ieeexplore.ieee.org/

document/9980050/.

[62] Tasfia Shermin et al. Transfer Learning Using Classification Layer Features of CNN. 2019.

arXiv: 1811.07459 [cs.CV].

[63] Marcel Simon, Erik Rodner, and Joachim Denzler. ImageNet pre-trained models with batch

normalization. 2016. arXiv: 1612.01452 [cs.CV].

[64] Rajkumar Soundrapandiyan and P.V.S.S.R. Chandra Mouli. “Adaptive Pedestrian Detec-

tion in Infrared Images Using Background Subtraction and Local Thresholding”. In: Procedia

Computer Science 58 (2015). Second International Symposium on Computer Vision and the

Internet (VisionNet’15), pp. 706–713. issn: 1877-0509. doi: https://doi.org/10.1016/

j.procs.2015.08.091. url: https://www.sciencedirect.com/science/article/pii/

S1877050915022024.

[65] P. Srihari, Jonnadula Harikiran, and Bolem Sai Chandana. “A Comparative Analysis of Ob-

ject Detection and Human Activity Recognition in Thermal Imaging”. In: IEEE, Sept. 2022,

pp. 1590–1596. isbn: 978-1-6654-9707-7. doi: 10.1109/ICIRCA54612.2022.9985697. url:

https://ieeexplore.ieee.org/document/9985697/.

[66] Chuanqi Tan et al. A Survey on Deep Transfer Learning. 2018. arXiv: 1808.01974 [cs.LG].

[67] Juan Terven and Diana Cordova-Esparza. A Comprehensive Review of YOLO: From YOLOv1

and Beyond. 2023. arXiv: 2304.00501 [cs.CV].

[68] Nguyen Duc Thuan, Le Hai Anh, and Hoang Si Hong. “PDIWS: Thermal Imaging Dataset for

Person Detection in Intrusion Warning Systems”. In: 2023 IEEE Statistical Signal Processing

Workshop (SSP). 2023, pp. 71–75. doi: 10.1109/SSP53291.2023.10208055.

57 of 60

https://doi.org/10.1109/CVPR.2016.91
http://arxiv.org/abs/1506.02640
https://doi.org/10.3390/s22113992
https://www.mdpi.com/1424-8220/22/11/3992
https://www.flir.com/oem/adas/adas-dataset-form/
https://www.flir.com/oem/adas/adas-dataset-form/
https://doi.org/10.23919/APSIPAASC55919.2022.9980050
https://ieeexplore.ieee.org/document/9980050/
https://ieeexplore.ieee.org/document/9980050/
https://arxiv.org/abs/1811.07459
https://arxiv.org/abs/1612.01452
https://doi.org/https://doi.org/10.1016/j.procs.2015.08.091
https://doi.org/https://doi.org/10.1016/j.procs.2015.08.091
https://www.sciencedirect.com/science/article/pii/S1877050915022024
https://www.sciencedirect.com/science/article/pii/S1877050915022024
https://doi.org/10.1109/ICIRCA54612.2022.9985697
https://ieeexplore.ieee.org/document/9985697/
https://arxiv.org/abs/1808.01974
https://arxiv.org/abs/2304.00501
https://doi.org/10.1109/SSP53291.2023.10208055

BIBLIOGRAPHY

[69] Eric Tzeng et al. Deep Domain Confusion: Maximizing for Domain Invariance. 2014. arXiv:

1412.3474 [cs.CV].

[70] “Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for Biomedical

Applications”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (5 May

2018), pp. 1182–1194. issn: 01628828. doi: 10.1109/TPAMI.2017.2656884.

[71] Paul Viola and Michael Jones. “Robust Real-Time Face Detection”. In: International Journal

of Computer Vision 57 (May 2004), pp. 137–154. doi: 10.1023/B:VISI.0000013087.49260.

fb.

[72] Liangtian Wan et al. “UAV swarm based radar signal sorting via multi-source data fusion:

A deep transfer learning framework”. In: Information Fusion 78 (2022), pp. 90–101. issn:

1566-2535. doi: https://doi.org/10.1016/j.inffus.2021.09.007. url: https://www.

sciencedirect.com/science/article/pii/S1566253521001834.

[73] Yonghui Xu et al. “A Unified Framework for Metric Transfer Learning”. In: IEEE Transac-

tions on Knowledge and Data Engineering 29 (2017), pp. 1158–1171. url: https://api.

semanticscholar.org/CorpusID:2745878.

[74] Shuo Yang et al. Face Detection through Scale-Friendly Deep Convolutional Networks. 2017.

arXiv: 1706.02863 [cs.CV].

[75] Zhi Yang et al. “Deep transfer learning for military object recognition under small training set

condition”. In: Neural Computing and Applications 31 (10 Oct. 2019), pp. 6469–6478. issn:

14333058. doi: 10.1007/s00521-018-3468-3.

[76] Jason Yosinski et al. How transferable are features in deep neural networks? 2014. arXiv:

1411.1792 [cs.LG].

[77] Syed Sahil Abbas Zaidi et al. A Survey of Modern Deep Learning based Object Detection

Models. 2021. arXiv: 2104.11892 [cs.CV].

[78] Zhong-Qiu Zhao et al. “Object Detection With Deep Learning: A Review”. In: IEEE Trans-

actions on Neural Networks and Learning Systems 30 (11 Nov. 2019), pp. 3212–3232. issn:

2162-237X. doi: 10.1109/TNNLS.2018.2876865. url: https://ieeexplore.ieee.org/

document/8627998/.

[79] Zhengxia Zou et al. “Object Detection in 20 Years: A Survey”. In: (May 2019). url: http:

//arxiv.org/abs/1905.05055.

58 of 60

https://arxiv.org/abs/1412.3474
https://doi.org/10.1109/TPAMI.2017.2656884
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/10.1023/B:VISI.0000013087.49260.fb
https://doi.org/https://doi.org/10.1016/j.inffus.2021.09.007
https://www.sciencedirect.com/science/article/pii/S1566253521001834
https://www.sciencedirect.com/science/article/pii/S1566253521001834
https://api.semanticscholar.org/CorpusID:2745878
https://api.semanticscholar.org/CorpusID:2745878
https://arxiv.org/abs/1706.02863
https://doi.org/10.1007/s00521-018-3468-3
https://arxiv.org/abs/1411.1792
https://arxiv.org/abs/2104.11892
https://doi.org/10.1109/TNNLS.2018.2876865
https://ieeexplore.ieee.org/document/8627998/
https://ieeexplore.ieee.org/document/8627998/
http://arxiv.org/abs/1905.05055
http://arxiv.org/abs/1905.05055

BIBLIOGRAPHY

.1 Detection examples from the thermal indoor dataset

(a) No detection. (b) Successful detection.

Figure 1: Examples of unsuccessful and successful detection..

(a) Occlusion that did not interfere with detection. (b) Occlusion that interfered with detection.

Figure 2: Occlusion.

59 of 60

BIBLIOGRAPHY

(a) Reflection. (b) Sobreposition of labels.

Figure 3: Examples of reflection detection.

60 of 60

	Acknowledgements
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Thesis outline

	2 State of The Art
	2.1 General view of object detection
	2.1.1 Object detectors

	2.2 Thermal imaging
	2.3 Transfer-learning
	2.4 Related work

	3 Methodology
	3.1 Datasets
	3.2 Research Design and experimental setup
	3.3 Model Architecture
	3.3.1 Overview of YOLOv5
	3.3.2 Detailed architecture
	3.3.3 Loss, learning rate, activation and optimization functions

	3.4 Evaluation Metrics

	4 Experimental results
	4.1 Results on human detection using YOLOv5
	4.2 A deeper look into layer freezing
	4.3 The effects of data augmentation
	4.4 Optimizers

	5 Conclusion
	5.1 Future Work
	.1 Detection examples from the thermal indoor dataset

