

Ricardo Mendes Figueiredo

VIRTUAL BORDER NETWORK GATEWAY

(VBNG)

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Professor Paulo Simões

and Professor Vasco Pereira and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

September of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Ricardo Mendes Figueiredo

Virtual Border Network Gateway
(vBNG)

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Paulo Simões and Prof.

Vasco Pereira and presented to the Department of Informatics Engineering of
the Faculty of Sciences and Technology of the University of Coimbra.

September of 2023

DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Ricardo Mendes Figueiredo

Virtual Border Network Gateway
(vBNG)

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software, orientada pelo Professor Paulo Simões e Professor

Vasco Pereira apresentada ao Departamento de Engenharia Informática da
Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Setembro of 2023

Acknowledgements

This work is funded by the project POWER (grant number POCI-01-0247-FEDER-
070365), co-financed by the European Regional Development Fund (FEDER), through
Portugal 2020 (PT2020), and by the Competitiveness and Internationalization
Operational Programme (COMPETE 2020). It was also partially supported by
FEDER, via the Competitiveness and Internationalization Operational Program
(COMPETE 2020) of the Portugal 2020 framework, in the scope of Project Smart5Grid
(POCI-01-0247-FEDER-047226).

Gostaria de agradecer ao Professor Doutor Paulo Simões e Professor Doutor Vasco
Pereira, os meus orientadores, pelos conhecimentos e competencias que me trans-
mitiram ao longo da elaboração deste trabalho.

Quero também agradecer ao Professor Doutor Tiago Cruz e ao Mestre Jorge Proença
pela disponibilidade em tirar duvidas quando inevitavelmente alguma coisa cor-
ria mal.

Quero dar um especial agradecimento aos meus pais e às minhas irmãs, por
me terem dado esta oportunidade, por terem feito todos os possíveis para que
eu possa ter um futuro promissor, e por sempre me terem deixado espaço para
seguir o meu próprio caminho e por terem feito o seu melhor para que eu me
tornasse alguém em quem me possa orgulhar.

Por último, mas não menos importante, queria agradecer à minha namorada,
Raquel Ferreira, por ainda me aturar até hoje, por acreditar em mim mesmo
quando eu não o fazia, por sempre estar lá para me apoiar quer com carinho
ou com a franqueza que eu merecia. Por ser a mulher mais forte que conheço, e
por me inspirar a ser uma pessoa melhor. Tenho muito orgulho em ti, e obrigado
por seres a pessoa incrível que és.

vii

Abstract

This document reports the work done in the author’s Master’s dissertation in
Informatics Engineering, specialization in Software Engineering, of the Depart-
ment of Informatics Engineering of the Faculty of Sciences and Technology of the
University of Coimbra.

The increased demand for high-speed broadband network connectivity has been
creating issues for network service providers as their systems, due to their in-
flexibility, struggle to keep up with the ever-more dynamic market. This in turn
creates a scenario where network service providers require ever-more resilient
and flexible solutions for network infrastructures at lower prices, putting pres-
sure on hardware manufacturers. This scenario also creates a demand for highly
qualified personnel, capable of designing and operating such systems. This along
with the competitive market, are just a few of the factors that lead Altice Labs to
create the POWER project, in which this internship is contextualized.

The goal of this work is to design and validate a Virtual Border Network Gateway
(vBNG) proof-of-concept supported by Network Function Virtualization (NFV)
and Software-Defined Networking (SDN).

At the end of this internship the objectives were met successfully, with a proto-
type for the vBNG having been developed. Future work concerns the iteration
of this prototype, implementing more of the Border Network Gateway (BNG)
functionality and further exploring the tools’ features to empower the vBNG.

In this document, all phases of work done during this process are described, in-
cluding familiarization with the technologies, the state of the art which includes
possible approaches discovered, the study of requirements, architecture design,
implementation and validation of the prototype.

Keywords

Border Network Gateway, Broadband Remote Access Server, Software Defined
Networking, Network Function Virtualization, Virtual Network Function

ix

Resumo

Este documento relata o trabalho realizado pelo estagiário no estágio de Mestrado
em Engenharia Informática, especialização em Engenharia de Software, do De-
partamento de Engenharia Informática da Faculdade de Ciências e Tecnologia da
Universidade de Coimbra.

A crescente necessidade de conectividade de rede de banda larga de alta veloci-
dade tem criado problemas para as operadoras de serviços de rede, uma vez os
seus seus sistemas, devido à sua inflexibilidade, têm dificuldades em acompan-
har um mercado cada vez mais dinâmico. Isso, por sua vez, cria um cenário em
que as operadoras de serviços de rede exigem soluções cada vez mais resilientes
e flexíveis para as suas infraestruturas de rede a preços mais baixos, pression-
ando assim os fabricantes de hardware. Este cenário também gera uma necessi-
dade por pessoal altamente qualificado, capaz de desenhar e operar tais sistemas.
Estes, juntamente com o mercado competitivo, são apenas alguns dos fatores que
levaram a Altice Labs a criar o projeto POWER, no qual este estágio se enquadra.

O objetivo deste trabalho é projetar e validar uma prova de conceito de um Virtual
Border Network Gateway (vBNG), suportado por Network Function Virtualiza-
tion (NFV) e Software-Defined Networking (SDN).

No final deste estágio foram cumpridos com sucesso os objetivos, tendo sido de-
senvolvido um protótipo do vBNG. O trabalho futuro prende-se com a iteração
deste protótipo, implementando mais funcionalidades do Border Network Gate-
way (BNG), e explorando mais das funcionalidades das ferramentas utilizadas
para melhorar o vBNG.

Neste documento serão descritas todas as fases do trabalho realizadas ao longo
deste processo, desde a familiarização com as tecnologias, ao estado da arte que
inclui algumas abordagens descobertas, ao estudo de requisitos, desenho da ar-
quitetura, implementação e validação do protótipo.

Palavras-Chave

Border Network Gateway, Broadband Remote Access Server, Software Defined
Networking, Network Function Virtualization, Virtual Network Function

xi

Contents

1 Introduction 1
1.1 Context . 2
1.2 Goals . 2
1.3 Document Structure . 3
1.4 Contributions . 3

2 Background 5
2.1 Software-Defined Networking . 5

2.1.1 Data Plane . 6
2.1.2 Control Plane . 6
2.1.3 OpenFlow . 7
2.1.4 Open Network Operating System 7

2.2 Network Function Virtualization . 7
2.2.1 NFV Platforms . 9
2.2.2 Catalog . 9

2.3 Service Function Chaining . 10
2.3.1 Network Service Header . 10
2.3.2 Classifier . 11
2.3.3 Service Function Forwarder 11

3 State of the Art 13
3.1 The NFV-enabled vBNG . 13

3.1.1 The role of NFV . 13
3.1.2 The role of SDN . 14
3.1.3 The role of SFC . 14

3.2 Approaches . 14
3.2.1 ClickOS . 14
3.2.2 BNG-HAL . 15
3.2.3 ONOS . 15
3.2.4 VyOS . 15
3.2.5 Open Network Automation Platform 15
3.2.6 Open Source MANO . 16
3.2.7 P4 . 16

3.3 Chapter Summary . 16

4 Planning 19
4.1 Methodology . 19
4.2 Timeline . 20
4.3 Risks . 22

xiii

Chapter 0

5 Preliminary Work 25
5.1 Test scenario . 25
5.2 Testbed Setup . 26

5.2.1 Datacenter Node . 27
5.2.2 Traffic Shaper . 27
5.2.3 Docker Registry . 27

5.3 Test Specification . 28
5.3.1 Test 1 - Stable scenario . 28
5.3.2 Test 2 - Controllers failure in one region 29
5.3.3 Test 3 - Latency tolerance awareness 29
5.3.4 Test 4 - Latency tolerance awareness (cont.) 29
5.3.5 Test 5 - Shutting down two ONOS instances from a region . 30
5.3.6 Test 6 - Shutting down two ONOS instances from a region

(cont.) . 30
5.4 Results . 31

5.4.1 Test 1 - Stable scenario . 31
5.4.2 Test 2 - Controllers failure in one region 31
5.4.3 Test 3 - Latency tolerance awareness 34
5.4.4 Test 4 - Latency tolerance awareness (cont.) 35
5.4.5 Test 5 - Shutting down two ONOS instances from a region . 35
5.4.6 Test 6 - Shutting down two ONOS instances from a region

(cont.) . 37
5.5 Difficulties . 38
5.6 Discussion . 39

6 Requirements 41
6.1 Functional Requirements . 41
6.2 Non-Functional Requirements . 42
6.3 Design Constraints . 46
6.4 Threshold of Success . 46

7 System architecture 47
7.1 Platform Architecture . 47
7.2 vBNG Architecture . 48

8 Implementation 51
8.1 Tools Used . 51
8.2 Microstack . 52
8.3 OpenSource MANO . 53
8.4 VyOS . 54

8.4.1 Image . 54
8.4.2 Descriptors . 55

8.5 RADIUS . 57
8.5.1 Image . 57
8.5.2 Descriptors . 57

8.6 Prototype . 58

9 Testing 61
9.1 Test Scenario . 61

xiv

Contents

9.2 Testbed Setup . 62
9.2.1 First Testbed - MicroStack . 62
9.2.2 Second Testbed - Non-nested Virtualization 65
9.2.3 Difficulties and Limitations 66

9.3 Test Definition . 67
9.3.1 Test 1- Bandwidth . 67
9.3.2 Test 2- Resource Utilization 68

9.4 Test Results . 69
9.4.1 Test 1- Bandwidth . 69
9.4.2 Test 2- Resource Utilization 70

9.5 Requirement Validation Summary 71
9.5.1 Functional Requirements . 72
9.5.2 Non-Functional Requirements 73

9.6 Conclusion . 74

10 Conclusion 75
10.1 Conclusions . 75
10.2 Future Work . 76

Appendix A Work Timeline Gantt Chart 89

Appendix B VyOS Configuration Files 91

Appendix C RADIUS Configuration Files 97

Appendix D Add MicroStack to OSM script 101

Appendix E Validation tests 105

xv

Acronyms

AAA authentication, authorization and accounting.

ACL Access Control List.

API Application Programming Interface.

ASIC Application-Specific Integrated Circuit.

BNG Border Network Gateway.

BRAS Broadband Remote Access Server.

CGNAT Carrier-Grade Network Address Translation (NAT).

CH Could Have.

CLI Command Line Interface.

COTS Commercial Off-The-Shelf.

CPU Central Processing Unit.

DC Datacenter.

DHCP Dynamic Host Configuration Protocol.

DPI Deep Packet Inspection.

ETSI European Telecommunications Standards Institute.

FPGA Field-programmable gate array.

GB gigabyte.

Gbps gigabits per second.

GUI Graphical User Interface.

HAL Hardware Abstraction Layer.

IGMP Internet Group Management Protocol.

IPoE IP-over-Ethernet.

IPTV Internet Protocol Television.

xvii

Chapter 0

ISP Internet Service Provider.

KVM Kernel-based Virtual Machine.

MANO Management and Orchestration.

Mbps megabits per second.

MH Must Have.

NAT Network Address Translation.

NFV Network Function Virtualization.

NFVI Network Function Virtualization (NFV) Infrastructure.

NFVO NFV Orchestrator.

NS Network Service.

NSD Network Service Descriptor.

NSH Network Service Headers.

ONAP Open Network Automation Platform.

ONF Open Networking Foundation.

ONOS Open Network Operating System.

OS Operating System.

OSM Open Source MANO.

OVS Open vSwitch.

P4 Programming Protocol-independent Packet Processors.

PBR Policy-Based Routing.

PoC Proof-of-Concept.

PPP Point-to-Point.

PPPoE Point-to-Point Protocol over Ethernet.

QoS Quality of Service.

SDN Software-Defined Networking.

SFC Service Function Chaining.

SFF Service Function Forwarder.

SH Should Have.

SNAT Source Network Address Translation.

xviii

Acronyms

SoA State of the Art.

SP Sub-project.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

vBNG Virtual Border Network Gateway.

VDU Virtual Deployment Unit.

VF Virtual Function.

VIM Virtualised Infrastructure Manager.

VM Virtual Machine.

VNF Virtual Network Function.

VNFD VNF Descriptor.

VNFM Virtual Network Function (VNF) Manager.

VoIP Voice over Internet Protocol.

VPN Virtual Private Network.

xix

List of Figures

1.1 Border Network Gateway (BNG) placement in the network, con-
necting subscriber to the Internet Service Provider (ISP)’s core net-
work, based on [Cisco, 2022] . 1

2.1 Simplified Software-Defined Networking (SDN) architecture, from
[Nencioni et al., 2017] . 5

2.2 High level NFV Framework, [ETSI, 2014a] 8
2.3 Network Service Header, from RFC 8300 [Quinn et al., 2018] 11

4.1 Planned Work Timeline . 21
4.2 Real Work Timeline . 22

5.1 Simplified view of the Datacenters (DCs) 26
5.2 Time taken to perform the mastership balancing operation. The

blue bar presents the average, while the black line shows the stan-
dard deviation. 32

5.3 Number of times each ONOS instance became the master of an
Open vSwitch (OVS) instance. 33

5.4 Number of times each Open Network Operating System (ONOS)
instance became the master of one of Aveiro’s OVS, grouped by
region. For this graph, only the first mastership change of each
OVS in each iteration was counted. 33

5.5 Average of the time each region’s OVS instances took to detect an
Aveiro’s ONOS instance shutting down 34

5.6 Number of times each ONOS instance became the master of one of
Coimbra’s OVS. 35

5.7 Number of times each ONOS instance became the master of one of
Coimbra’s OVS. 36

5.8 Number of times each ONOS instance became the master of one of
Aveiro’s OVS. 37

5.9 Number of times each ONOS instance became the master of one of
Aveiro’s OVS. 38

7.1 High level system architecture . 48
7.2 Virtual Border Network Gateway (vBNG) Architecture 48

8.1 Implemented Architecture . 60
8.2 MicroStack virtual network topology 60

9.1 Simplified view of the testbed . 61

xxi

Chapter 0

9.2 Simplified view of the second testbed 62
9.3 IPTV and Internet bit rate variation with changing number of sub-

scribers . 69
9.4 UDP packet loss with changing number of subscribers 70
9.5 Total CPU utilization variation with changing number of subscribers 71
9.6 CPU utilization variation (per core) with changing number of sub-

scribers . 72
9.7 Memory utilization with changing number of subscribers 73

A.1 Planned Work Timeline . 89
A.2 Actual Work Timeline . 90

xxii

List of Tables

2.1 NFV Management and Orchestration (MANO) solutions 9

3.1 Comparison of BNG Virtualization Approaches 17

4.1 Risks . 22

6.1 vBNG functional requirements . 42
6.2 NFV platform functional requirements 43
6.3 System non-functional requirements 43
6.4 Quality Attribute Scenario NFR-001 44
6.5 Subscriber Model . 44
6.6 Quality Attribute Scenario NFR-002 44
6.7 Quality Attribute Scenario NFR-003 45
6.8 Quality Attribute Scenario NFR-004 45
6.9 Quality Attribute Scenario NFR-005 45
6.10 Quality Attribute Scenario NFR-006 46
6.11 System design constraints . 46

8.1 List of tools used to implement the solution 52

9.1 Validation tests (Excerpt) . 67
9.2 Subscriber Model . 68
9.3 vBNG functional requirements results 72
9.4 vBNG non functional requirements results 73

E.1 Validation tests . 105

xxiii

Chapter 1

Introduction

According to [Hu et al., 2020], a Border Network Gateway (BNG), or Broadband
Remote Access Server (BRAS) "routes traffic to and from broadband remote ac-
cess devices such as digital subscriber line access multiplexers (DSLAM) on an
Internet Service Provider’s (ISP) network". The Border Network Gateway (BNG)
is an integral component as it provides customers an access point to connect to the
broadband network, allowing them access to their provider’s services, as figure
1.1 demonstrates. Its tasks include authentication, authorization and accounting
(AAA), managing Point-to-Point Protocol over Ethernet (PPPoE) sessions, assign-
ing IP addresses, and controlling Quality of Service (QoS) among others [Kundel
et al., 2019].

Figure 1.1: BNG placement in the network, connecting subscriber to the Internet
Service Provider (ISP)’s core network, based on [Cisco, 2022]

Traditionally, the BNG is deployed in specialized proprietary hardware, similarly
to other components of an operator infrastructure. This factor, coupled with its
complexity increases the costs for the operators both for deployment and man-
agement. Since such devices are purpose-built, they cannot provide much in
terms of flexibility either, and introducing new features is a long process, which
in some cases can only be deployed when the vendor releases a new version of
the appliance.

One solution for this problem is to virtualize the BNG. A Virtual Border Network
Gateway (vBNG) could be deployed in Commercial Off-The-Shelf (COTS) hard-
ware, reducing costs, and a disaggregated BNG approach could provide the de-

1

Chapter 1

sired flexibility and scalability. An approach in virtualizing the BNG is Network
Function Virtualization (NFV) which combined with other technologies such as
Software-Defined Networking (SDN) would allow for easier, more scalable, and
cost-effective solutions. With this approach, the different functions of the BNG
could be implemented as Virtual Network Functions (VNFs) and deployed on
COTS hardware, and new instances could be deployed as the needs grow.

The main objective of the work here presented is to design a Proof-of-Concept
(PoC) of such a vBNG, following the concepts of Network Function Virtualization
(NFV) and Software-Defined Networking (SDN), implement it using available
open-source tools when possible, and to validate the proposed solution.

1.1 Context

This internship falls within the scope of the research project "POWER - Empow-
ering a digital future", Sub-project (SP) 2 - Future Networks. This project aims to
expand Altice Labs’ portfolio of products and services with new innovative solu-
tions, mostly based on cloud and cognitive technologies, towards an integrated
offer concept, enabling new approaches to the market, fully aligned with four
strong technological vectors of transformation: 5G networks, Edge/Cloud com-
puting continuum, artificial intelligence, data-driven technologies, and business
models. The project is divided into five sub-projects, SP2 being one of them.

The aim of SP2 is to support the evolution of the current Altice Labs’ network
solutions, by creating new approaches using emergent network technologies, in-
creasing competitiveness in current markets, and being able to achieve new mar-
ket segments. To this end SP2 identifies five dimensions of evolution, amongst
them the one this internship falls within, the creation of new solutions for virtu-
alized networks that take advantage of NFV and SDN technologies to reach new
levels of operational efficiency and flexibility in the access network.

The virtualization of the BNG is one of the project goals. Being the main com-
ponent that connects the subscriber to the ISP core network, its management is
a complex task. As the number of subscribers grow, and new services are devel-
oped, it may require new configurations and software/hardware updates. Addi-
tionally, the deployment and update of a BNG must have minimal to no impact
on the service, which frequently results in BNG updates being a long task to be
completed. These requirements may be easier to meet using virtualized solutions,
as they can improve flexibility on its deployment and management.

1.2 Goals

The main goal of this work is to design, implement and test a PoC for a vBNG
using the concepts of SDN and NFV. The PoC will include only a set of the main
functionality, as a complete BNG implementation would be too extensive for the
length of this thesis. This subset of functions includes AAA, Dynamic Host Con-

2

Introduction

figuration Protocol (DHCP), and Network Address Translation (NAT), and will
be deployed using an NFV platform, into a virtual network managed by SDN
technology.

1.3 Document Structure

The document is organized as follows:

• Chapter 2, Background - In this chapter, the main concepts for this work,
BNG, SDN and NFV are introduced and examples of software related to
each topic are presented.

• Chapter 3, State of the Art - In this chapter, the role of each technology in
the context of the vBNG is presented, as well as examples of vBNG solu-
tions.

• Chapter 4, Planning - This chapter presents the work plan as well as the
methodology used and the identified risks.

• Chapter 5, Preliminary Work - Here it is presented the work done during
the first semester to analyse the behavior of Open Network Operating Sys-
tem (ONOS), when deployed in a geographically distributed scenario.

• Chapter 6, Requirements - In this chapter, the analysis of the requirements
for the planned functionality is presented.

• Chapter 7, System architecture - This chapter presents the designed system
architecture.

• Chapter 8, Implementation - This chapter details the prototype implemen-
tation.

• Chapter 9, Testing - This chapter details how the prototype was validated.

• Chapter 10, Conclusion - This chapter concludes the document and dis-
cusses future work.

1.4 Contributions

This thesis contributes with an analysis of the viability to implement a BNG using
virtualized functions, a proposed solution, instructions on how to set it up and
next steps that could be taken to improved the solution proposed. These results
will also contribute to the project POWER deliverables.

The research efforts of this thesis also lead to the following contributions to open-
source projects:

3

Chapter 1

• Open Source MANO (OSM) Documentation PR#117 - Fixed an error in the
documentation. The page explaining how to deploy the example VNFs was
linking to the wrong Virtual Machine (VM) images, causing errors when
deploying, creating confusion in new users.

• VyOS Phabricator Task T5418 - Presented an error in the documentation
stating there is a limitation when configuring the PPPoE Server that does
not exist.

• VyOS Documentation PR#1052 - Fix the aforementioned error in documen-
tation.

4

Chapter 2

Background

This chapter presents the background for the virtualization of the Border Net-
work Gateway (BNG) by over-viewing three technologies, namely Software-De-
fined Networking (SDN), Network Function Virtualization (NFV) and Service
Function Chaining (SFC).

Section 2.1 will give an overview of SDN and its components. Next, NFV will be
introduced in section 2.2, followed by section 2.3 explaining SFC.

2.1 Software-Defined Networking

In the scope of networking, SDN is a paradigm of network design that eases
network configuration and management, providing increased flexibility and re-
source scaling according to application and data needs, while also reducing costs
[Benzekki et al., 2016].

Figure 2.1: Simplified SDN architecture, from [Nencioni et al., 2017]

In figure 2.1, a simplified view of the SDN architecture can be observed. As stated
by [Proença et al., 2019], SDN separates the control plane from the forwarding

5

Chapter 2

plane, which traditionally were tightly coupled in routers, and moves it to a log-
ically centralized software-based controller [VMWare, 2022].

The data plane is described in section 2.1.1, and the control plane in section 2.1.2.
Openflow, a popular protocol used for the communication between SDN con-
trollers and forwarding devices is presented in section 2.1.3. Finally, in section
2.1.4, Open Network Operating System (ONOS), a SDN controller, is presented.

2.1.1 Data Plane

In an SDN network, the data plane consists of forwarding devices, responsible for
moving the network packets. As an example, this can be done using OpenFlow-
enabled switches (see subsection 2.1.3). These devices are responsible for orches-
trating traffic forwarding according to the configuration established in the control
plane. This orchestration is enabled by the Southbound interface, which connects
the two planes, allowing forwarding devices to receive the forwarding rules from
the controllers using the OpenFlow protocol.

2.1.2 Control Plane

The control plane is responsible for making decision on how the network be-
haves, such as defining forwarding rules used by the forwarding devices. It is
composed of the following elements [Freitas et al., 2018]:

• Controller - Software stack responsible for managing almost every aspect of
the network. The controller essentially can manage the network topology,
access the state of each network device and manage flow rule installation in
the forwarding devices. The controller is the critical component of a SDN
network, which could create a scalability issue, in the case of the controller
not being able to handle the load of managing so many devices [Benzekki
et al., 2016]. A common technique used to mitigate this issue and there-
fore achieve scalability is clustering, in which multiple controller work in
tandem, each managing a subset of devices, and propagating any change
in the network to the rest of the cluster [Benzekki et al., 2016],[Berde et al.,
2014]. Some examples of SDN controllers include ONOS, OpenDaylight,
Ryu, and SDN-C.

• Northbound Interfaces - Application Programming Interfaces (APIs) con-
necting the control layer to the applications, typically through REST. These
APIs allow applications, for example, to set network protocols or access net-
work state through an abstraction layer.

• East/Westbound interfaces - Interfaces that connect each controller in a
cluster, used for synchronization of the network state.

• Southbound interfaces - Interfaces through which the controller communi-
cates with the forwarding devices, typically through the OpenFlow protocol

6

Background

[Singh, 2023]. Used for tasks such as managing flow rules and the state of
forwarding devices.

2.1.3 OpenFlow

OpenFlow is one of the main southbound communication protocols used in SDN
[Lantz, 2017a]. This protocol specifies how SDN controllers and forwarding de-
vices communicate.

Although it provides basic configuration capabilities, such as "...bringing a port
up or down, or configuring meters..." [Lantz, 2017a], its primary use is to enable
the installation of forwarding rules in the data plane by the controllers in the form
of flow table entries. Flow table entries map packet attributes (source IP, destina-
tion IP, among others) to an action (such as forwarding the packet, dropping it,
go to another table, among others) and are stored in flow tables. When a switch
receives a packet, it performs a lookup in the first flow table and executes the ac-
tion on the first rule matching the received packet. In case no such entry is found,
a table-miss occurs, and the packet is processed by a table-miss flow entry. This
entry may specify that the packet and the packet is to be sent to the controller,
which in turn sends the missing flow table entries to the switch, allowing it to
process the packet.

2.1.4 Open Network Operating System

The Open Network Operating System (ONOS) project [ONF, 2022] is an open-
source SDN controller implementation. Its development was focused on creat-
ing a "distributed platform for scale-out and fault tolerance" [Berde et al., 2014].
To this end, ONOS was designed to be deployed in clusters, where multiple in-
stances manage the same network, distributing the work amongst all instances.

ONOS is highly modular, exposing JAVA APIs, allowing development of appli-
cations to extend the ONOS’s core functionality [Lantz, 2017b]. As an example,
the application Mastership Load Balancer periodically balances the connected de-
vices across all online controllers [opennetworkinglab, 2018]. These applications
can be activated, deactivated, installed and uninstalled at runtime. REST APIs
are also exposed but should not be used for high-performance applications since
they are slower [Lantz, 2017b].

Lastly, ONOS provides a Command Line Interface (CLI) as well as a Graphical
User Interface (GUI), the latter supporting extensions through applications, al-
lowing for easy visualization and management of the network topology.

2.2 Network Function Virtualization

NFV is the concept of separating network functions usually coupled to propri-
etary hardware and deploying them on Commercial Off-The-Shelf (COTS) hard-

7

Chapter 2

ware as software instances, typically in the form of containers or Virtual Machines
(VMs) [Yi et al., 2018]. The "increasing costs of energy, capital investment chal-
lenges and the rarity of skills necessary to design, integrate and operate increas-
ingly complex hardware-based appliances" were some of the motivations for Eu-
ropean Telecommunications Standards Institute (ETSI) to introduce this concept
[ETSI, 2012]. Moreover, ETSI also pointed out that NFV could enable targeted
and tailored services according to customer needs. Beyond these issues, the de-
pendence on proprietary hardware also increases the time to market and limits
innovation in the industry [Hawilo et al., 2014], while the flexibility provided by
NFV allows for targeted and tailored services [Han et al., 2015].

Figure 2.2: High level NFV Framework, [ETSI, 2014a]

The NFV framework, depicted in figure 2.2, is mainly composed of the following
elements:

• Virtual Network Functions (VNFs), the software implementation of the func-
tions to be virtualized.

• NFV Infrastructure (NFVI), composed of all the hardware infrastructure,
the virtualization layer, and virtual infrastructure which provides the envi-
ronment where the VNFs will be executed.

• Management and Orchestration (MANO), responsible for managing the re-
sources available in the NFVI and the VNFs lifecycle, such as instantiating
and terminating them.

NFV MANO can then be divided into its three main components: the Virtualised
Infrastructure Manager (VIM), the VNF Managers (VNFMs), and the NFV Or-
chestrator (NFVO). The VIM orchestrates the NFVI within its domain, allowing
multiple VIMs to exist, each with its own domain. It manages its resources, and
keeps an inventory of VMs. The VNFs manages the lifecycle of the VNFs, for in-
stance, instantiation and termination. The NFVO interfaces with the previously
mentioned elements and is responsible for coordinating them.

8

Background

In subsection 2.2.1, a few solutions for NFV orchestration are presented and sec-
tion 2.2.2 presents the concept of catalogs in the context of NFV.

2.2.1 NFV Platforms

Over the years, the framework proposed by ETSI has been gaining more accep-
tance and is being implemented by a few prominent open-source projects. One
example is OpenStack [OpenInfra, b], a platform started in early 2010 for manag-
ing distributed compute, storage, and network resources. It is based on a modu-
lar architecture, and in 2016 [OpenInfra, a] it introduced the Tacker [OpenInfra, c]
component, the official OpenStack implementation of the ETSI MANO architec-
ture, enabling the deployment and management of VNFs on an OpenStack net-
work. Another project is Open Network Automation Platform (ONAP), started
in 2017 and hosted by the Linux Foundation by merging the OpenECOMP and
Open-Orchestrator projects. This project aims to develop a platform for "orches-
tration, management, and automation of network and edge computing services
for network operators, cloud providers, and enterprises" [The Linux Foundation].
Finally, Open Source MANO (OSM), started around 2016, is an effort by ETSI to
develop a MANO software stack aligned with ETSI NFV, built from the now de-
funct Open MANO project. Table 2.1 presents a summary of these projects.

Table 2.1: NFV MANO solutions

Product Function Description
Openstack VIM Software stack for cloud management.
Tacker NFVO and VNFM Official OpenStack’s implementation of a

generic VNFM and NFVO.
ONAP NFVO and VNFM

(supports third-
party VNFMs)

MANO platform hosted by the Linux
Foundation, adds extra functionality to
complement the ETSI-NFV architecture.

OSM NFVO and VNFM MANO implementation hosted by ETSI,
aligned with ETSI-NFV architecture.

2.2.2 Catalog

In the context of NFV, catalogs are essentially data repositories. In [ETSI, 2014b],
ETSI defines the following:

• VNF Catalogue: Repository containing all loaded VNF packages, including
images, manifest files and descriptors.

• Network Service (NS) Catalogue: Repository containing all NS templates
and relevant data, such as descriptors, information regarding forwarding,
and service chaining.

9

Chapter 2

• NFV Instances repository: This repository contains information on all de-
ployed VNFs and NSs. The records in this repository are updated to reflect
the state of each instance.

• NFVI Resources repository: This repository contains information about the
hardware and software resources that are available for use in a network,
useful for resource reservation, allocation, and monitoring purposes.

2.3 Service Function Chaining

In a telecommunications network, traffic often passes through multiple functions,
such as firewalls, Deep Packet Inspection (DPI), Network Address Translation
(NAT), and load balancers, among others. Service Function Chaining (SFC) is a
technique that leverages the capabilities of SDN to enable the chaining of mul-
tiple VNFs into a service chain. In the context of this work, SFC could allow
each function of the BNG to be stored as independent VNF images which would
then be chained together into a disaggregated Virtual Border Network Gateway
(vBNG) service. As an example, the functions of Point-to-Point Protocol over
Ethernet (PPPoE) server, NAT and firewall could be deployed as separate Virtual
Functions (VFs), and chained together such that the packets sent from the clients
are received by the PPPoE function, forwarded to the firewall function to inspect
outgoing and incoming traffic and then sent through the NAT function that does
the address translation.

In this section, the various elements of SFC are described. Section 2.3.1 provides
an overview of Network Service Headers (NSH), the packet encapsulation used
in SFC, and sections 2.3.2 and 2.3.3 will introduce the Classifier and Service Func-
tion Forwarder (SFF) components, respectively.

2.3.1 Network Service Header

The Network Service Headers (NSH) is a protocol for packet encapsulation, spec-
ified in RFC 8300 [Quinn et al., 2018]. It consists of a series of headers that provide
information to VNFs and Service Function Forwarders (SFFs) about the service
chain that the packet is part of. It addresses several limitations of SFC, docu-
mented in [Quinn and Nadeau, 2015], such as network services deployments be-
ing tied to the network topology, among others.

The NSH is composed of a Base Header, a Service Path Header, and optional
Context Headers, as shown in Figure 2.3. The Service Path Header is composed
of only 2 fields: the Service Path Identifier, a value set by the classifier which
uniquely identifies the service function chain the packet belongs to, and the Ser-
vice Index, which provides the location of the packet within a chain, meaning
at which step of the chain the packet is to avoid a packet being processed by a
VNF multiple times. The Base Header provides some information about the NSH
headers and the payload. The optional Context Headers provide some metadata
to be shared between the classifier and VNFs.

10

Background

Figure 2.3: Network Service Header, from RFC 8300 [Quinn et al., 2018]

2.3.2 Classifier

The classifier is an important component in SFC, as it matches packets to service
chains using an Access Control List (ACL). If a match is found, it encapsulates
them in NSH packets, sending them along the correct service chain. [OpenDay-
Light]

OpenStack’s Neutron plugin includes the functionality of a SFC classifier. [Open-
Stack, 2022b]. Older versions of OpenDaylight controller also included an SFC
classifier [OpenDayLight], but seems to have dropped it.

2.3.3 Service Function Forwarder

The SFF is a function responsible for forwarding traffic along the service chain.
To accomplish this it uses the data in the NSH encapsulation. Examples of SFF
implementations include OpenVSwitch and FD.io, a collection of projects aiming
to provide high-performance networking solutions for virtualized infrastructure,
providing a variety of components such as a virtual switch, a packet accelerator,
and a service proxy.

11

Chapter 3

State of the Art

This chapter presents the NFV-enabled vBNG, and how each of the different tech-
nologies presented in the previous chapter is important to bring it to fruition.
Moreover, it presents the State of the Art (SoA) on BNG virtualization, including
current proposals and approaches for implementing it.

3.1 The NFV-enabled vBNG

In this document, a NFV-enabled vBNG is proposed. This section details how
NFV, SDN and SFC technologies, which were previously presented in Chapter 2,
could be leveraged to achieve flexibility and scalability.

3.1.1 The role of NFV

As described in section 2.2, NFV is the concept of separating the network func-
tions from the underlying hardware. This would be the main role of NFV for the
vBNG, to separate the BNG functions from the hardware, and deploy them as
VNF instances. This approach would not only allow the vBNG to be deployed
in COTS hardware (reducing costs), but also create a more scalable and flexible
BNG solution as instantiating a new VNF instance is substantially easier than
installing new hardware.

NFV MANO is a key component for the solution, as the task of managing such
a system must be highly automated and coordinated to be viable since there is
a large number of functions that need to work together to make the vBNG a re-
ality. MANO is responsible for instantiating and configuring the various vBNG
functions, scaling them as needed, monitoring them, and orchestrating the SDN
subsystem to ensure that the various VNFs composing the network service have
connectivity.

13

Chapter 3

3.1.2 The role of SDN

The role of SDN (see section 2.1) in the context of the vBNG is simpler to explain
than NFV but just as important, it provides the connectivity to the various VNFs
comprising the solution. By separating the control and data planes, and creating
a logically centralized network control and management, SDN provides a way
for NFV to configure the network according to the service’s needs. This enables
the vBNG to have its resources scaled according to the network traffic. The con-
trollers can also be used to manage Quality of Service (QoS) and traffic shaping
through OpenFlow rules they install in the data plane.

3.1.3 The role of SFC

In the context of vBNG, SFC (see section 2.3) could provide a mechanism to steer
the traffic through the various VNFs. The NSH headers provide NFV and SDN
a way to identify which network service a packet belongs to, and to forward it
through the service chain.

3.2 Approaches

The following sections will provide an overview of different approaches when
implementing a vBNG.

3.2.1 ClickOS

In [Bifulco et al., 2013] and [Dietz et al., 2015] the authors propose the implemen-
tation of a vBNG in ClickOS [NEC Laboratories Europe]. ClickOS is a lightweight
VM based on the click modular router [Kohler]. ClickOS is made with the pur-
pose of developing virtual middleboxes using it. "ClickOS virtual machines are
small (5MB), boot quickly (about 30 milliseconds), add little delay (45 microsec-
onds) and over one hundred of them can be concurrently run while saturating a
10Gb pipe on a commodity server."[NEC Laboratories Europe]. ClickOS is also
very modular, allowing users to effortlessly connect the over 300 stock elements
[NEC Laboratories Europe], or create their own for their specific use case. In
this approach, all functionality would be implemented as a single VM, although
the authors mention it would be possible to migrate some functionality to other
devices in case the workload was too big. However, it is not clear how this migra-
tion would happen. This approach also does not appear to be integrated into any
NFV platform, but considering it runs on top of the XEN hypervisor, a hypervisor
supported by OpenStack [OpenStack, 2019], integration should be possible.

14

State of the Art

3.2.2 BNG-HAL

In [Figueiredo and Kassler, 2021] the authors propose an Hardware Abstraction
Layer (HAL) for a disaggregated BNG, based on the architecture presented in [Fo-
rum, 2020]. This architecture applies to a BNG the same principles of abstracting
control and data planes, in order to achieve a more scalable and easier to con-
figure solution. Mirroring SDN, TR-459 separates the control functions and data
forwarding into two separate components. In [Figueiredo and Kassler, 2021] the
authors suggest the introduction of a HAL with the goal of standardizing the way
the different components communicate.

3.2.3 ONOS

A vBNG application for ONOS was presented in [Lin and Hart, 2015]. Its main
functionality is providing clients with private IP addresses and installing intents
in the SDN network to allow internet access to the hosts. This solution is pre-
sented for the sake of exemplifying a BNG implemented as an SDN controller
application and will not be taken into consideration for the work of this thesis, as
at the time of writing ONOS is being migrated into a new architecture, and XOS
(one of the application’s dependencies) is part of CORD, an Open Networking
Foundation (ONF) project, that has been deprecated [Thengvall and Indermitte,
2021a].

3.2.4 VyOS

VyOS [Thengvall and Indermitte, 2021b] is an open-source network operating
system based on Debian. The project started in 2013 as a fork of Vyatta, by a com-
munity of developers, being actively supported at the time of writing. The project
boasts features relevant to a vBNG, including PPPoE subscriber session man-
agement, IP-over-Ethernet (IPoE) subscriber session management, subscriber au-
thentication using a RADIUS, QoS, firewall, Virtual Private Network (VPN) and
NAT.

3.2.5 Open Network Automation Platform

ONAP [The Linux Foundation] is an open-source platform for automating, or-
chestrating and managing VNFs and services. ONAP can be used to create a
disaggregated vBNG by automating the deployment and management of VNFs
that provide vBNG functions. ONAP also provides tools for chaining different
VNFs, allowing the vBNG to be easily tailored according to the requirements. To
this end, the ONAP project includes a SDN controller based on OpenDaylight,
SDN-C, not requiring any external controller to function.

15

Chapter 3

3.2.6 Open Source MANO

OSM [ETSI] is an open-source project to develop a NFV MANO software stack,
more aligned with ETSI NFV than ONAP. Similarly to ONAP, it can be used to
create a disaggregated vBNG by automating the deployment and management
of VNFs. It also provides tools for chaining VNFs. However, it does not provide
a SDN controller, relying on external ones, such as ONOS.

3.2.7 P4

In [Osiński et al., 2020] and [Kundel et al., 2019] the authors present P4-vBNG and
P4-BNG respectively. These are two implementations of the vBNG’s data plane
implemented using the Programming Protocol-independent Packet Processors
(P4) [ONF] programming language. The P4 language is a high-level domain-
specific language, designed for a specific set of tasks [Fowler, 2019], with the
purpose of specifying how network devices should process packets. It allows
programmers to specify behaviors independent of the underlying hardware.

In these proposals, the authors use programmable Application-Specific Integrated
Circuits (ASICs) or Field-programmable gate arrays (FPGAs), a specialized mi-
crochip and a microchip consisting of a matrix of logic blocks that can be config-
ured by the user to implement custom logic designs [Xilinx] respectively. These
are used to offload data plane packet processing to specialized hardware, while
allowing the control plane to be deployed in COTS hardware, similar in princi-
ple to SDN. Such an approach would allow greater performance than running all
functions of the vBNG on COTS hardware, as shown by the authors in [Kundel
et al., 2019] by comparing the solution proposed to a standard x86 Linux server
and showing greater results.

In [Kundel et al., 2021] the authors present OpenBNG, an extension of P4-BNG
[Kundel et al., 2019] the authors present a P4 BNG data plane implementation
and a queueing chip based on FPGA. In this research paper, the author suggests
adding an additional FPGA to the previous solution, for packet queueing, as P4
is not designed for this use case.

3.3 Chapter Summary

This chapter started by exploring the role of SDN, NFV and SFC in the imple-
mentation of the vBNG. It then presented solutions for the implementation of the
proof-of-concept, both implementations of the VF (such as ClickOS and VyOS)
and supporting components such as MANO (OSM and ONAP). The approaches
are summarized in table 3.1.

16

State of the Art

Table 3.1: Comparison of BNG Virtualization Approaches

Proposal Type Status Notes
ClickOS Proof-of-concept

study
Released No longer under active

development
BNG-HAL Architecture pro-

posal
Proposed archi-
tecture

Architecture only, no
implementation avail-
able

ONOS Open-source net-
work OS

vBNG support
deprecated

Currently migrating to
new architecture

VyOS Open-source net-
work OS

Under active
development

Provides the necessary
functionality

ONAP Open-source NFV
Project

Under active
development

More powerful, but
much higher resource
requirements and
harder to setup

OSM Open-source NFV
Project

Under active
development

Easier to deploy and
setup, provides the
necessary function-
alities, but relies on
external VIM

P4-vBNG Research paper
on deploying a P4
vBNG data plane in
an ASIC

Released

Provides better
performance than
linux based solutions
but relies on external
control plane and
requires specialised
hardware

P4-BNG Research paper
on deploying a P4
vBNG data plane in
an ASIC

Released,
including im-
plementation
source-code

OpenBNG Extension of P4-BNG
that enhances the so-
lution using an addi-
tional FPGA

Released

17

Chapter 4

Planning

In this chapter, the planning of the internship is presented. This includes the
methodology, the work plan for both the first and second semesters, and risks
that might impact the plan.

4.1 Methodology

For this project, an Agile project management methodology was deemed the
most fitting, as it allows incremental development and better adaptability to the
project’s progress compared to other methodologies such as Waterfall [Chaud-
hary]. With this in mind, a simplified version of Scrum [Schwaber and Suther-
land, 2020] was chosen. The following are some of the rules defined for the
methodology:

• At the beginning of the project, the tasks were defined.

• Two week long Sprints or development cycles.

• Biweekly meetings with the internship advisors, Prof. Paulo Simões and
Prof. Vasco Pereira, where the progress was reviewed and the tasks for the
next sprint were defined.

• Biweekly meetings with Altice Labs to report on the project’s progress.

• Frequent contact was maintained between the author and the advisors to
allow quick adaptation to issues.

• In December, the meetings with the advisors were changed from biweekly
to weekly.

To assist the management, a Google Drive folder was shared between the author
and advisors, where the milestones and meeting logs were kept.

19

Chapter 4

4.2 Timeline

In this section, the estimations for the various tasks are presented, as well as the
actual time taken for each task during this work. The identified tasks are the
following:

• Task 1 - Introduction to the project, terminology and themes

• Task 2 - ONOS test definition

• Task 3 - Setting up the scenario for testing, including the time to get familiar
with the tools and various iterations over it.

• Task 4 - Building the tools to gather and analyze the results from the tests,
refining them, and using them.

• Task 5 - Familiarization with the state of the art

• Task 6 - Requirement Elicitation

• Task 7 - Preliminary System Architecture

• Task 8 - Intermediate Report Writing

• Task 9 - Architecture and Requirements Refinement

• Task 10 - vBNG test plan definition

• Task 11 - Exploratory Work

• Task 12 - Integration of VyOS into the platform

• Task 13 - Configuration of RADIUS server and VyOS

• Task 14 - Migration of RADIUS to SQL database

• Task 15 - Testbed setup, performance tests

• Task 16 - Dissertation and Technical Report writing

• Task 17 - Troubleshooting, setup of second testbed and second round of
performance tests

The Exploratory Work (Task 11) consisted of further researching the tools identi-
fied in section 3.3, as there were some lingering questions at the beginning of the
second semester, regarding SFC support and viable approaches. Once these ques-
tions were closed, meaning the most viable approach was identified, the tools
were selected (section 8.1), and experimentation with deploying VNFs started.

Figure 4.1 presents the plan created at the beginning of the second semester, while
figure 4.2 presents the actual work done. Some clear delays are visible, that unfor-
tunately hindered the ability to fully test the proposed solution. The main cause
of delays were the following:

20

Planning

• Connecting VNFs with the exterior - By default, MicroStack sets an Open
vSwitch (OVS) bridge that grants connectivity between the VNFs and the
exterior. Due to the vBNG acting as a gateway a second bridge was neces-
sary to isolate the traffic between the access network and the Internet Ser-
vice Provider (ISP) network, however this process is not well documented,
with the author resorting to adapting MicroStack’s configuration scripts
[Giessen et al., 2020] to achieve this.

• Integrating VyOS into the platform - While simply deploying VyOS to the
platform is a straight-forward process, to take advantage of the the OSM
and MicroStack’s functions, cloud-init support was necessary to enable au-
tomatic configuration during initial startup. Due to the author having no
prior knowledge of the tool, this process took more time than expected.

• PPPoE and cloud-init - VyOS and cloud-init handle configuration changes
differently, the former being able to commit multiple changes at the same
time while the latter handling one command at the time, this cause issues
configuring the PPPoE server. This issue was exacerbated by the fact that it
would cause VyOS’s configuration to fail and locking the author out of the
machine, unable to access the log files to troubleshoot the problem. While a
workaround was eventually found, it took more time than initially planned.

• Low performance - Due to several factors, including the use of nested virtu-
alization and limitation in hardware virtualization, the initial performance
of the prototype was much worse than expected, requiring a new testbed
to be setup to mitigate those issues, as well as new round of tests to be exe-
cuted.

The Gantt charts were generated using [GanttProject], a larger version of these
figures is available in Attachment A.

Figure 4.1: Planned Work Timeline

21

Chapter 4

Figure 4.2: Real Work Timeline

4.3 Risks

The table 4.1 presents the identified risks for the project. Each risk is assigned
a value for likelihood, impact, and severity. Likelihood and Impact are scaled
between 1 (Low) and 5 (High). Severity is obtained by the product of Likelihood
and Impact.

Table 4.1: Risks

ID Risk Description Li
ke

lih
oo

d

Im
pa

ct

Se
ve

ri
ty

Mitigation Plan
1 Lacking documentation for

the chosen tools.
1 5 5 Verify before choosing a tool

if it is well supported and
the community is active and
helpful.

2 Bad understanding of the
project’s goals. Could re-
sult in badly defined require-
ments and architecture.

3 5 15 Biweekly meetings where the
author’s questions are ex-
posed.

3 Project goals be too complex
to be achievable in the speci-
fied timeframe.

3 5 15 Scale down the requirements
to a manageable point.

4 System architecture does not
cover all requirements.

1 5 5 Refine the architecture.

5 Author is not familiar with
the technologies, causing a
bad understanding of the ob-
jectives and a bad proposed
solution.

3 5 15 Have a period of familiariza-
tion with the technologies to
be used in the project.

22

Planning

6 Tools not compatible with
each other.

3 5 15 Have an exploration phase in
the beginning of the second
semester where the compat-
ibility between the tools is
analysed.

23

Chapter 5

Preliminary Work

In this chapter, the work done to assess how ONOS behaves in a geographically
distributed scenario is presented. Section 5.1 presents the test scenario defini-
tion. Section 5.2 presents an overview of how the testbed was set up. In section
5.3 the specifications for the various tests are presented. Section 5.4 presents the
results obtained. Section 5.5 showcases various difficulties the author was pre-
sented with during the execution of these activities. Finally, section 5.6 contains
a discussion of the activities performed.

The following tests involving ONOS were performed in collaboration with Altice
Labs, as part of an exploratory work regarding ONOS behavior when deployed
in a geographically distributed environment.

5.1 Test scenario

As the goal of the tests was to understand how ONOS behaves in a geographically
distributed scenario, where the connections may be less than ideal, the testbed
must support the simulation of such an environment. As a result, the testbed
presents the following requirements:

• The testbed must simulate at least three regions.

• The SDN controller must be distributed across multiple regions.

• Must provide a way to manually define the parameters of the connections
between the different regions.

• Each region must have multiple controller nodes to test fault tolerance.

Given these requirements, the scenario simulates three geographically distributed
regions: Aveiro, Coimbra, and Faro. Each of these regions contains three nodes
(nine in total). Each node is equipped with an Atomix instance to enable cluster-
ing, an ONOS instance, and an OVS instance. OVS is an open-source OpenFlow-
enabled virtual switch and as such able to be integrated into a SDN network.

25

Chapter 5

The tests were conducted using ONOS version 2.7.0 with a hotfix made by the
author to stop it from crashing when all controllers in a region are shut down,
Atomix version 3.1.5, and finally OVS version 2.9, deployed through Mininet
[Mininet] version 2.3.0.

A transparent bridge connects the different regions, providing traffic shaping ca-
pabilities through iproute2 [The Linux Foundation, 2022]. To automate the tests,
iproute2 is controlled using a script with pre-defined profiles for different latency
values.

Figure 5.1 demonstrates the scenario topology.

Figure 5.1: Simplified view of the Datacenters (DCs)

5.2 Testbed Setup

This section presents the setup of the testbed for the tests (described in section
5.3)

26

Preliminary Work

5.2.1 Datacenter Node

Each DC node is a VM running Ubuntu 22.04 LTS, running the ONOS, OVS and
Atomix instances in Docker [Docker] containers.

ONOS Cluster

The initial configuration files were obtained by following the guide provided by
the ONOS team to automate cluster creation [Zaballa, 2020]. These configuration
files were then modified to include the relevant IP addresses.

The cluster is deployed with the official Atomix Docker image, version 3.1.5 and
a modified version of ONOS version 2.7, the latest version at the time of writing,
had a bug causing a NullPointerException to occur in case all nodes in a region
go offline. As a result, it was impossible to test the scenario, as part of the test’s
objective is to understand how ONOS chooses which controllers to master the
newly-orphaned switches (see section 5.5).

Open vSwitch

To deploy the OVS instances a custom Docker image was created, built from the
Mininet [Mininet] Docker image [iwaseyusuke, 2022]. The main difference be-
tween the custom and the original images is that the custom runs Mininet at
startup, with the topology provided in the shared volume. The topology used
in each instance is a simple OVS switch that connects to all 9 controllers, with
two hosts connecting to the switch, for debugging purposes. It should also be
noted that for these tests, OpenFlow version 1.3 was specified in OVS configura-
tion instead of the default version 1.5, this is due to while both OVS and ONOS
support version 1.5 some discrepancy exists between the two, causing message
parsing errors in ONOS.

5.2.2 Traffic Shaper

The Traffic Shaper bridge is a Kali Linux 2021.4 VM connecting the different DC
sites. It is set up with four network interfaces, one for each DC plus a manage-
ment interface, which are then bridged using a simplified version of the script in
[Backer, 2016]. The version used, instead of parsing a file to load configurations,
has them hardcoded, which can then be chosen by a simple argument.

5.2.3 Docker Registry

To ease deployment of the custom Docker images to the various DC nodes, a
new server was deployed running the official Docker registry image [Team, 2022],
where the images are stored. This server is connected to the DC nodes through

27

Chapter 5

the management interfaces, so traffic between these machines is not forwarded
through the bridge, meaning that no shaping to this traffic happens.

5.3 Test Specification

This section presents the specification for the conducted tests. In order to avoid
repetition, a few notes should be kept in mind:

• All tests were conducted in 4 variations, each one introducing different
amounts of latency between the three different regions to simulate a geo-
graphically distributed scenario, where the connection properties are not
ideal. These variations are (in milliseconds): 0, 250, 500, and 750.

• Unless explicitly stated otherwise, the latency values are set for all links
connecting the different regions.

• Each variation of the tests is executed with 30 repetitions unless explicitly
stated otherwise.

• The term load will be used to describe the number of devices connected to a
controller, as in ONOS’s Wiki [Vachuska, 2019].

• The term Default network configurations will be used to describe a configu-
ration where no latency is artificially added, functionally identical to the
0-millisecond variation of the tests.

• The outputs of each test are part of every ONOS, OVS, and Docker in-
stance’s logs, which are collected at the end of each iteration, starting at
a specific moment specified in each test. These logs are then parsed using
gawk [arnold, 2022] to a normalized format to facilitate analysis.

• At each step the times are relative to the previous step.

5.3.1 Test 1 - Stable scenario

For this test the objective is to assess the stability of the masterships within one
region when the scenario is stable, meaning every controller, switch, and Atomix
instance is online, and the controllers’ loads are balanced. This test, unlike the
others, is not executed with 30 repetitions, only 1 per variation.

The steps for this test are as follows:

1. Testbed is started, with default network configurations.

2. After 3 minutes, the iteration’s latency is applied.

3. The logs are saved from this point onward.

4. After 3 hours, the test is stopped.

28

Preliminary Work

5.3.2 Test 2 - Controllers failure in one region

The objective of this test is to assess how the cluster behaves when all controllers
of a region are shut down.

The steps for this test are as follows:

1. Testbed is started, with default network configurations.

2. After 3 minutes, the iteration’s latency is applied.

3. The logs are saved from this point onward.

4. After 15 seconds, all ONOS instances deployed in Aveiro are shut down.

5. After 5 minutes, the test is stopped.

5.3.3 Test 3 - Latency tolerance awareness

The objective of this test is to check the behavior of device mastership when the
link quality degrades. For this test, the Coimbra DC will not have ONOS in-
stances available, and its OVS are controlled by Aveiro’s ONOS instances. The
link between Coimbra and Aveiro will have its latency values increased to check
how the device mastership behaves.

The steps for this test are as follows:

1. Testbed is started, with default network configurations.

2. After 1 minute, ONOS instances in Coimbra are shutdown, and the Coim-
bra’s OVS instances’ masterships are set to Aveiro’s ONOS instances 1, 2
and 3.

3. The logs are saved from this point onward.

4. After 5 minutes, the iteration’s latency is applied only to the link connecting
Coimbra and Aveiro.

5. After 5 minutes, the test is stopped.

5.3.4 Test 4 - Latency tolerance awareness (cont.)

This test is similar to test 3 but with 2 key differences: the latency is changed on
the link connecting Aveiro and Faro and Coimbra OVS instances are moved to
Faro and not Aveiro.

The steps for this test are as follows:

1. Testbed is started, with default network configurations.

29

Chapter 5

2. After 1 minute, ONOS instances in Coimbra are shutdown, and the Coim-
bra’s OVS instances’ masterships are set to Faro’s ONOS instances 1, 2 and
3.

3. The logs are saved from this point onward.

4. After 5 minutes, the iteration’s latency is applied only to the link connecting
Faro and Aveiro.

5. After 5 minutes, the test is stopped.

5.3.5 Test 5 - Shutting down two ONOS instances from a region

This test is a variation of Test 2 (see section 5.3.2). Its main objective is to assess
how the cluster behaves when two ONOS instances from one region are shut
down, either by changing the OVSs’ mastership to the remaining ONOS instance
or to another region.

The steps for this test are as follows:

1. Testbed is started, with default network configurations.

2. After 3 minutes, the iteration’s latency is applied only to the link connecting
Coimbra and Aveiro.

3. The logs are saved from this point onward.

4. After 15 seconds, two ONOS instances deployed in Aveiro are shutdown
(instances 1 and 2).

5. After 5 minutes, the test is stopped.

5.3.6 Test 6 - Shutting down two ONOS instances from a region
(cont.)

This test is a variation of test 5. In this test, the Mastership Load Balancer app was
disabled in ONOS. The goal of this test is to verify that the behavior observed in
the result of test 5 (see section 5.4.5) is caused by the app. To accommodate this
change a manual balance is made so that both tests start in a balanced state.

The steps for this test are as follows:

1. Testbed is started, with default network configurations.

2. After 3 minutes, the iteration’s latency is applied only to the link connecting
Coimbra and Aveiro.

3. A load balance is triggered.

4. The logs are saved from this point onward.

30

Preliminary Work

5. After 15 seconds, two ONOS instances deployed in Aveiro are shutdown
(instances 1 and 2).

6. After 5 minutes, the test is stopped.

5.4 Results

In this section, the results obtained from the tests specified are presented, as well
as some notes and hypotheses based on them.

5.4.1 Test 1 - Stable scenario

At 0 and 250 ms of latency introduced, nothing worth noting is observed, the
scenario stays in a stable state with no changes to the network.

At 500 ms of latency introduced, the scenario shows some unexpected behaviors.
Because the aveiro1 controller finished booting first it ended up mastering the 9
switches in the beginning. Once the other controllers finished booting, aveiro1’s
ONOS balanced the scenario, but it is clear it is not following the regional rules
(it sends OVS instanced to regions other than their own, for instance sending
coimbra1’s OVS instance to the Faro region). This initial erroneous balancing
cascades into 2:30 minutes of the scenario trying to balance itself while at the
same time trying to move the switches to the correct region. After this period the
scenario stabilizes and no further events of interest are observed.

At 750 ms of latency introduced, the scenario was not able to stabilize during
the 3 hours of simulation. At multiple points in the simulation, it is observable
OVS instances having their mastership changed to other regions despite no loss
of connection with the current master being registered. This phenomenon also
appears at moments when ONOS controllers in the same region are available and
when the load is balanced between the various controllers. While no reason was
discovered it is hypothesized this phenomenon occurs due to the high latency
creating instability in the scenario. This phenomenon appears to be caused by
the latency, as it’s not observed, or at least not to this extent, at lower latencies.

5.4.2 Test 2 - Controllers failure in one region

Mastership change - elapsed time

These results are used to assess the time for the cluster to balance the masterships
when all the ONOS instances from one region (Aveiro) are shut down.

In figure 5.2 is visible the measured averages of time the ONOS cluster takes to
balance the scenario, to be exact the figure displays the average time of each of
ONOS’ attempts at balancing the scenario. This discrepancy is due to ONOS,

31

Chapter 5

Figure 5.2: Time taken to perform the mastership balancing operation. The blue
bar presents the average, while the black line shows the standard deviation.

under certain conditions, which are met in this test, not being able to determine
that the scenario is balanced, which will be discussed later in this document.

As expected, the time the cluster takes to balance the system increases with the
added latency, especially when increasing the latency from 0ms to 250ms. For
the remaining latency values the cluster was able to balance the system within a
reasonable time frame, with the biggest registered value being 997.437ms

Mastership change – region awareness

These results are used to analyze how the mastership associations change when
the ONOS instances from Aveiro are shut down.

The measured results are displayed in figures 5.3 and 5.4. While figure 5.3 ac-
counts for the mastership changes of all OVS instances, figure 5.4 only accounts
for Aveiro’s OVS instances. Both figures show a small number of mastership
changes to Aveiro’s ONOS instances. This is due to the script used to automate
the tests shutting down Aveiro’s ONOS one by one, possibly creating the oppor-
tunity for the orphan OVS instances to transition to the remaining ONOS in the
region. Further analysis of the logs revealed that in the 750ms iterations, some of
these changes into Aveiro are made to OVSs outside of the region, and also hap-
pen before any ONOS instance is shutdown, possibly being caused by instability
due to the high latency.

32

Preliminary Work

Figure 5.3: Number of times each ONOS instance became the master of an OVS
instance.

Figure 5.4: Number of times each ONOS instance became the master of one of
Aveiro’s OVS, grouped by region. For this graph, only the first mastership change
of each OVS in each iteration was counted.

Figure 5.4 reveals that the orphan OVS have a tendency to have their mastership

33

Chapter 5

changed to Faro. This behavior is unexpected and the reasons for such could not
be determined. ONOS’ documentation refers that "A candidate node is selected
from the pool of known standby nodes for a device" and that "... this pool is a
ordered list of NodeIDs in preference order." [Koshibe and Olkhovskaya, 2016],
but the factors in determining preference are not defined.

Detecting mastership connection fail

These results will assess how much time the OVS instances take to detect that the
ONOS instance is no longer available.

Figure 5.5: Average of the time each region’s OVS instances took to detect an
Aveiro’s ONOS instance shutting down

Figure 5.5 presents the averages of the measured times the different regions’ OVS
instances took to detect the loss of connection with Aveiro’s ONOS instances,
as these were shut down. It is observable that at 250 and 750ms the expected
behavior is observed, with Aveiro’s OVS instances taking on average less time
to detect the shutdowns and the other regions taking very similar times. This
behavior is expected since there is no latency added within a region, and the links
Aveiro-Coimbra and Aveiro-Faro have the same latency added. At 0ms, however,
Aveiro’s OVS instances unexpectedly take more time to detect the shutdowns
than the others. Finally, at 500ms, Faro’s OVS instances unexpectedly take less
time to detect the shutdowns than Aveiro’s instances.

5.4.3 Test 3 - Latency tolerance awareness

Figure 5.6 shows that while at higher latencies ONOS tends to set Faro’s con-
trollers as masters more often. Not only that, but the figure also shows that
the OVS instances still transition between regions many times, which is unex-
pected. Further analysis of the log files reveals that most of these transitions are

34

Preliminary Work

Figure 5.6: Number of times each ONOS instance became the master of one of
Coimbra’s OVS.

not caused by either a loss of connection with the current master or by the load
balancer.

5.4.4 Test 4 - Latency tolerance awareness (cont.)

It is observable in figure 5.7 that a high number of mastership changes occur.
This behavior, along with the behaviors observed in tests 2 and 3 (sections 5.4.2
and 5.4.3, respectively) might indicate that the hotfix used to make the system
stop crashing when all controllers in a region went offline might be the cause
the unexpected behaviors. The region-based mastership balance is expecting to
have at least one controller in each region. If there is no controller in a region,
the mastership associations do not stabilize and keep changing between the re-
maining regions. For instance, multiple instances of ONOS transitioning the OVS
instances between regions for no apparent reason as the system is balanced and
yet the OVS instances keep switching regions.

5.4.5 Test 5 - Shutting down two ONOS instances from a region

Multiple instances appear of the OVS’ mastership being changed to one of the
other regions, but later on, being changed back to the remaining Aveiro ONOS

35

Chapter 5

Figure 5.7: Number of times each ONOS instance became the master of one of
Coimbra’s OVS.

instance. While this change appears to happen because of load balancing, as the
former follows the latter, the logs don’t indicate the change like usual. For this
reason, a new set of tests (test 6) were executed to verify if the same behavior
happens when the load balancer is disabled. A tendency to change into Faro is
also observed.

It should be noted that in these tests, once the system is stabilized the transitions
stop, unlike in tests 2 and 3 (sections 5.4.2 and 5.4.3, respectively), which does not
refute the hypothesis presented in test 4 (section 5.4.4).

Figure 5.8 shows the average number of times each ONOS instance became mas-
ter of one of Aveiro’s OVS instances. While the colored lines represent the number
of times one of Aveiro’s OVS instances had their mastership changed to the cor-
responding ONOS instance, the black line represents the standard deviation. It
is observable that the average for aveiro3 is 2 with no standard deviation. This
is the expected behavior, as while the OVS instances may have their mastership
changed to one of the other regions (with the Faro region being preferred for
unknown reasons) they always have their mastership changed back to Aveiro
(aveiro3 more precisely, since it is the only remaining instance).

36

Preliminary Work

Figure 5.8: Number of times each ONOS instance became the master of one of
Aveiro’s OVS.

5.4.6 Test 6 - Shutting down two ONOS instances from a region
(cont.)

The results of this test show that without the load balancer, the Aveiro OVS in-
stances that lose their master don’t necessarily end up in their region. By reading
the logs a pattern is observed: either the OVS stay in the Aveiro region once the
ONOS instances are shut down, or if they are moved to another region, it is never
moved back to the Aveiro region. This leads the author to believe the mastership
load balancer application was the cause of the desired behavior of OVS instances
being moved back to their region when they were moved to another.

Figure 5.9 shows the average number of times each ONOS instance became mas-
ter of one of Aveiro’s OVS instances. While the colored lines represent the number
of times one of Aveiro’s OVS instances had their mastership changed to the cor-
responding ONOS instance, the black line represents the standard deviation. It
is observable that unlike in figure 5.8, the average for aveiro3 (the blue bar) is
lower than 2, the expected value, showing that the 2 orphans OVS instances do
not always have their mastership set to aveiro3.

37

Chapter 5

Figure 5.9: Number of times each ONOS instance became the master of one of
Aveiro’s OVS.

5.5 Difficulties

During the execution of this work a few difficulties were encountered, hindering
progress. The following are some of the encountered difficulties:

• Lacking ONOS documentation - To form an ONOS cluster the use of
Atomix is mandatory, but not all versions of these two tools are compati-
ble with each other, and since no documentation on this was found, some
trial-and-error was necessary.

• OpenFlow version - Although both ONOS and OVS support the latest ver-
sion of OpenFlow (1.5 at the time of writing), some discrepancies appear to
exist between the two causing errors to happen in message parsing. This
issue was solved but forcing OVS to use the older 1.3 version of OpenFlow,
as ONOS will change to the version the switches are using.

• Regions implementation - The implementation of regions in ONOS seems
to have either not been finished or fully tested, as a NullPointerException oc-
curs at the time of load balancing if all controllers in a region are offline,
putting the whole system in an unstable state where it is unable to balance
the load of the available nodes. To solve this issue, firstly ONOS was up-
dated from version 2.5 which was being used to 2.7, the latest at the time of

38

Preliminary Work

writing, when this update proved ineffective the only found solution was to
change the source code to check for this edge case and use all online nodes
for balancing if needed.

• Upgrading ONOS version - As stated before, an update to ONOS was as-
sumed to be needed to fix the NullPointerException in case of all nodes in
a region being down. This proved to be inconvenient, since not only the
Atomix version used until then was not compatible with the new ONOS
version, but the configuration files were not compatible with the new ver-
sion either and had to be remade.

5.6 Discussion

The goal of these tests was to analyze the behavior of ONOS as a distributed SDN
controller in a geographically distributed scenario and how it behaves when the
quality of the links connecting the different regions degrades. With that said, the
behavior observed demonstrated that ONOS is not ready for this use case. While
the tool has the potential, with the desired behaviors being observed when a re-
gion has at least one master available, the bug that causes the whole cluster to
stop functioning correctly when all masters in a region shutdown is not accept-
able, as it not only affects the masterless region but all others too. While the au-
thor tried to fix the problem, it was nothing more than a band-aid solution, as it is
hypothesized that said solution is causing the erratic behaviors seen in tests 2, 3,
and 4 (see sections 5.4.2, 5.4.3 and 5.4.4). While the project is still active, a solution
for this issue should not be expected in the foreseeable future as the project is, at
the time of writing, being migrated to a new architecture code-named µONOS.

39

Chapter 6

Requirements

This chapter presents the requirements elicited for the project. Requirements are
of extreme importance when designing a piece of software as they detail the de-
sired functionality and characteristics of the software system, guiding the devel-
opment process by defining the scope of the project and what needs to be accom-
plished. In the context of a software system, requirements can be divided as:

• Functional requirements - Define the functions the system must be able to
perform to achieve the user’s goals, how the system should react to the
user’s inputs and how the system should behave in certain situations.

• Non-Functional requirements - Also known as quality attributes, describe
how the system must perform in terms of usability, security, performance,
among other characteristics. These requirements define what characteris-
tics the system needs to meet the needs of its users, as such they must be
measurable.

• Design Constraints - Define limitations on the design of a software system.
These can vary, from budget constraints to specific languages among other
limitations. As they can have a significant impact on the design they must
be carefully defined so the development team can consider them when de-
signing the system.

As explained in section 1.2 the project’s goal is to create a vBNG to be deployed
in a NFV platform. To achieve this, both the requirements of the vBNG and the
NFV platform must be considered.

6.1 Functional Requirements

The identified functional requirements are displayed in tables 6.1 and 6.2. Table
6.1 shows the functional requirements for the vBNG while table 6.2 details the
requirements for the platform supporting it.

41

Chapter 6

Each requirement is assigned a priority. This is done to define which require-
ments must be achieved, which requirements should be achieved but are sec-
ondary and which will not be achieved. To this end, the following priorities are
used:

• Must Have (MH) - The highest priority, requirements with this priority are
considered critical for the success of this project.

• Should Have (SH) - Requirements with this priority while important are
deemed not critical for the success of the proof-of-concept.

• Could Have (CH) - Requirements with this priority are deemed out of scope
of the proof-of-concept, although would be necessary in a real scenario.

Table 6.1: vBNG functional requirements

ID Requirement Description Priority
FR-001 Packet For-

warding
The system forward packets to their desti-
nation.

MH

FR-002 PPPoE The system allows clients to establish PP-
PoE connections to it.

MH

FR-003 IP Address
Assignment

The system assigns unique IP addresses to
the connected clients for proper communi-
cation and identification.

MH

FR-004 Multicast The system enables one-to-many commu-
nication by sending packets to the perti-
nent subscribers.

CH

FR-005 Rate Limiting The system sets limits to data transmission
rate in a a per-customer basis.

SH

FR-006 User Authen-
tication

The system authenticates users connecting
to the network, verifying their identities
before granting access.

MH

FR-007 Access Con-
trol

The system enforces access control poli-
cies, restricting and granting network re-
source access to based on predefined rules.

MH

FR-008 QoS Control The system prioritizes specific traffic types,
ensuring quality of service levels accord-
ing to predefined parameters.

CH

6.2 Non-Functional Requirements

Table 6.3 summarizes the non-function requirements elicited for this project. To
each requirement is assigned a priority, between HIGH, MEDIUM and LOW.

42

Requirements

Table 6.2: NFV platform functional requirements

ID Requirement Description Priority
FR-009 Ease of De-

ployment
The platform offers straightforward instal-
lation and setup procedures.

MH

FR-010 Templates The platform supports the creation and
management of templates for VNFs and
NSs.

MH

FR-011 Simple de-
ployment
process

The platform allows users to easily select a
template to deploy.

MH

FR-012 Networking The platform allows configuration and
management of networking aspects, such
as virtual networks, subnets, IP address-
ing, and routing.

MH

FR-013 Lifecycle
Management

The platform provides capabilities for
managing the full lifecycle of VNFs and
NSs, including creation, deployment, up-
dating, and destruction.

MH

FR-014 Access to
VNFs

The platform provides mechanisms to
access VNF instances directly for trou-
bleshooting purposes.

MH

FR-015 Web Interface The platform provides a user-friendly
web-based interface for managing VNFs,
NSs and templates.

MH

FR-016 CLI The platform offers a robust CLI to allow
automation of tasks.

SH

Table 6.3: System non-functional requirements

ID Requirement Priority
NFR-001 The vBNG should efficiently handle high throughput

demands during peak load conditions.
HIGH

NFR-002 The vBNG should effectively manage concurrent user
connections.

HIGH

NFR-003 The vBNG should minimize packet loss. LOW
NFR-004 The vBNG should contribute to low latency in network

communication.
MEDIUM

NFR-004 The vBNG should manage memory usage efficiently. MEDIUM
NFR-005 The vBNG should optimize CPU usage for efficient

performance.
MEDIUM

NFR-006 The vBNG should ensure establishment of subscriber
sessions.

Low

Quality attributes must be testable, as such the following tables present the qual-
ity attribute scenarios defined.

43

Chapter 6

Table 6.4: Quality Attribute Scenario NFR-001

Id NFR-001
Description The vBNG should efficiently handle high throughput de-

mands during peak load conditions.
Priority HIGH
Source of stimulus Subscribers
Stimulus Surge in traffic demand.
Environment Normal Operation
Artifact vBNG
Response The vBNG forwards user traffic to it’s destination.
Response Measure The vBNG should maintain a total throughput of atleast

2 Gbps on average.

For NFR-002, a subscriber reference model is necessary. Table 6.5 showcases the
defined model. This model was based on the "High User" model from [Cruz et al.,
2013], while the Voice over Internet Protocol (VoIP) bitrate was based on [Altice].

Table 6.5: Subscriber Model

Service Bitrate (Mbps)
Internet 10.0
Telephony 1.0
SDTV 2 channels (MPEG-4) 3.0
HDTV 2 channels (MPEG-4) 16.0
Total 30

Table 6.6: Quality Attribute Scenario NFR-002

Id NFR-002
Description The vBNG should effectively manage concurrent user

connections.
Priority HIGH
Source of stimulus Subscribers
Stimulus Normal network usage
Environment Normal Operation
Artifact vBNG
Response The vBNG forwards user traffic to it’s destination.
Response Measure The vBNG should provide an average throughput of 30

Mbps to 100 subscribers.

44

Requirements

Table 6.7: Quality Attribute Scenario NFR-003

Id NFR-003
Description The vBNG should minimize packet loss.
Priority LOW
Source of stimulus IPTV and VoIP services
Stimulus UDP traffic stream
Environment Normal Operation
Artifact vBNG
Response The vBNG forwards UDP traffic to relevant subscribers.
Response Measure The vBNG should provide a packet loss ratio of at most

1%.

Table 6.8: Quality Attribute Scenario NFR-004

Id NFR-004
Description The vBNG should manage memory usage efficiently.
Priority MEDIUM
Source of stimulus Network traffic processing demands.
Stimulus Memory usage
Environment Normal Operation
Artifact System memory
Response The vBNG manages available memory to prevent re-

liance on swap file.
Response Measure The vBNG should not use more than 2GB of memory.

Table 6.9: Quality Attribute Scenario NFR-005

Id NFR-005
Description The vBNG should optimize CPU usage for efficient per-

formance.
Priority MEDIUM
Source of stimulus Network traffic processing demands.
Stimulus CPU workload
Environment Normal Operation
Artifact CPU
Response The vBNG manages the CPU time efficiently.
Response Measure The vBNG should show an average CPU usage of at most

80% while serving up to 100 subscribers

45

Chapter 6

Table 6.10: Quality Attribute Scenario NFR-006

Id NFR-006
Description The vBNG should ensure establishment of subscriber

sessions.
Priority LOW
Source of stimulus Subscriber
Stimulus Attempts to establish a session
Environment Normal Operation
Artifact vBNG
Response The vBNG establishes the subscriber session.
Response Measure The average time between an authentication request and

the response should not exceed 10 seconds.

6.3 Design Constraints

Table 6.11 presents the identified design constraints for the project.

Table 6.11: System design constraints

ID Constraint
DC1 The system must integrate the concepts of SDN and NFV.
DC2 The vBNG must be compatible with the chosen NFV platform.
DC3 The vBNG should rely on an external AAA server for better scalability.
DC4 The system must be implemented using available free open-source

tools.

6.4 Threshold of Success

This project will be considered a success if the following criteria are met:

• All Must Have functional requirements are met

• At least 70% of the Should Have functional requirements are met

• All the High non-functional requirements are met

• At least 50% of the Medium non-functional requirements are met

46

Chapter 7

System architecture

This chapter details the software architecture of the platform proposed in this
thesis. Since the architecture of each component highly depends on the imple-
mentation used, a low level view of each component is not provided. Despite
this, this chapter details the functions of each component in order to specify the
desired functionality, which lead to the solutions used in chapter 8.

7.1 Platform Architecture

Figure 7.1 presents the high-level architecture of the system. This architecture is
composed of four main components: the NFV MANO, the NFVI, the field net-
work and the VNFs.

The Field Network, being part of the SDN subsystem, is composed of a mesh of
OpenFlow-enabled Forwarding devices, as support for the protocol is required
for such devices to interact with the SDN controller. These devices are responsible
for forwarding data between the different hosts and VNFs, according to the flow
rules installed by the SDN controller.

The NFV MANO is the central of the NFV sub-system. It is responsible for man-
aging the NFVI, and the VNFs and setting up connections between. It is com-
posed by three main components: NFVO, VNFM and VIM (see section 2.2). The
NFV MANO is responsible for managing all aspects of the VNFs, including de-
ployment, managing and terminating them.

The SDN controller is the central component of the SDN subsystem. Its primary
role is to enable connectivity between the many hosts and VNFs. Despite being a
logically centralized controller, the SDN controller should be composed of multi-
ple controller nodes in a cluster in order to avoid single points of failure, and so
meet the availability requirements.

The NFVI consists of the servers where the virtualization layer is installed and
the VNFs are deployed. The virtualization layer used is completely dependent
on the solution used for NFV MANO.

47

Chapter 7

Figure 7.1: High level system architecture

7.2 vBNG Architecture

While the vBNG was originally planned to follow a disaggregated design, the
research done during the exploratory phase (see section 4.2) work revealed that
the tools available were at the time of writing better suited to a more traditional
aggregated architecture, therefore such an architecture was designed, as seen in
figure 7.2.

Figure 7.2: vBNG Architecture

This architecture was designed to fulfill the requirements presented in chapter 6,
with a major focus on the functional requirements (see section 6.1).

48

System architecture

The Access Interfaces component refers the connection points through which sub-
scribers connect to the broadband network. These include Ethernet and PPPoE
interfaces.

The Network Interfaces component refers to the interfaces connecting the vBNG
to the internal network, it’s services and the internet.

The Forwarding component illustrates the function of directing incoming and
outgoing data packets between the subscribers and the ISP’s network, packet en-
capsulation/decapsulation and QoS enforcement. Functional requirement FR-
001 is satisfied by the operation of this component.

The Subscriber Database holds subscriber information, such as credentials, usage
records, service plans, access control data and more. Therefore it’s an essential
component in achieving the functional requirements FR-002, FR-005, FR-006 and
FR-007.

The AAA Server component is responsible for authenticating subscribers con-
necting to the vBNG, granting them access to the ISP’s internal network and ser-
vices. This component is also tasked with accounting for billing purposes. It
does this by interfacing with the Subscriber Database component. This compo-
nent plays a role in fulfilling functional requirements FR-002, FR-005, FR-006 and
FR-007.

The QoS component illustrates the service that defines the policies and rules en-
forced by the Forwarding component, ensuring distinctive treatment for diverse
data traffic types within the network, by following predefined policies. Tradi-
tionally, in the context of a BNG, the QoS control prioritizes Internet Protocol
Television (IPTV) and telephony traffic, ensuring these services receive the neces-
sary bandwidth, reduced latency, and minimal packet loss, resulting in smoother
and more reliable performance and therefore a better experience. This component
was introduced to address functional requirement FR-008.

The IPTV Multicast component is responsible for establishing multicast streams
with sources and processing Internet Group Management Protocol (IGMP) mes-
sages from subscribers, fulfilling the functional requirement FR-004. In summary,
this component establishes the multicast streams with the upstream sources, and
duplicates packets which are then forwarded to the relevant subscribers. Sub-
scribers send IGMP messages to subscribe and unsubscribe from this streams,
informing the BNG that they want to receive this content. This avoids network
congestion by not having a stream between the BNG and data source for each
subscriber consuming the content.

The Carrier-Grade NAT (CGNAT) component is responsible for translating sub-
scribers IP addresses to a single public IP address. This technology is commonly
used by ISPs to mitigate IPv4 address exhaustion [Jiang et al., 2011]. This com-
ponent was introduced to facilitate the fulfillment the functional requirements
FR-001 and FR-003.

The Access Control component is responsible for defining rules and policies to
manage the access that devices and subscriber have over the resources, such as
restricting access to the AAA server and Subscriber Database, as defined in func-

49

Chapter 7

tional requirement FR-007.

The IP Assignment component was introduced to address functional requirement
FR-003. This component is responsible for assigning IP addresses to the sub-
scribers once the Point-to-Point (PPP) connection is established.

The PPPoE Server component play as crucial role in the proposed solution, as it
provides many functions that facilitate the connection between subscribers and
the ISP’s network. It provides the following functions:

• Packet Encapsulation/Decapsulation - The PPPoE encapsulates packets into
PPP frames and then encapsulates those frames within Ethernet frames.
These PPP frames facilitates the establishment and management of point-
to-point connections by adding session, control, and protocol information
to network data, fulfilling the functional requirement FR-003.

• Authentication and Authorization - By interfacing with the AAA client, the
PPPoE server authenticates subscribers by requiring them to provide cre-
dentials such as username and password, taking a role in achieving the
functional requirement FR-006. Once authenticated, subscribers are granted
access to the ISP’s network and resources.

• Billing and Accounting - The PPPoE server collects usage data that can be
used for billing and accounting purposes, such as session times and data
transferred.

• IP Assignment - By interfacing with the AAA client, the PPPoE server as-
signs IP addresses to subscribers once the connection is established, making
it essential in addressing the functional requirement FR-003.

• Security - Once the session is established, traffic encryption encryption may
be used.

• Traffic Shaping - The PPPoE Server is able to control the flow of data for each
subscriber. It allocates bandwidth based on predefined policies, preventing
any single subscriber from monopolizing the available resources.

50

Chapter 8

Implementation

This chapter describes how the various components were configured to imple-
ment the system. Section 8.1 lists the chosen tools and their function in the con-
text of the architecture detailed in chapter 7. Section 8.2 details how MicroStack
was deployed and configured, section 8.3 details how OSM was deployed and
configured, section 8.4 describes how VyOS was configured to enable the vBNG
functionality and section 8.5 shows how RADIUS was configured for AAA.

8.1 Tools Used

In this section, the selection of tools used in the implementation of the proposed
solution are listed and explained. Table 8.1 showcases a summarised view of the
choices and their rationale.

When researching NFV platforms that could support the solution, two options
were discovered, ONAP and a combination of OSM and a VIM. Both these alter-
natives provide the required functionality. Ultimately, it was decided that OSM
would be the better choice, as ONAP has steep system requirements [ONAP],
requiring a minimum of 224 gigabyte (GB), 112 vCPUs and 160 GB of storage,
which the author could not meet. This problem was not observed in the case of
OSM. Furthermore, the author also could not obtain access to ONAP’s support
channels which was not a problem in the case of OSM.

Having chosen to pursue an implementation using OSM, a VIM was necessary.
The OSM documentation details a few options for a VIM deployment, although
the only option fitting the design constraint DC4 was OpenStack as the other
options were not free or open-source, or were deprecated. The option chosen
was MicroStack, a small-scale OpenStack deployment, created to allow devel-
opers to quickly and easily obtain an working environment that while limited,
still presented all the necessary functionality, although it should be noted that for
production a full OpenStack environment would be necessary. MicroStack im-
plements the functions of the VIM and Virtualization Infrastructure components.
It also manages the connectivity between the various VNFs and the exterior us-
ing OVS bridges that are manage by the Neutron service, an analog to an SDN

51

Chapter 8

controller.

VyOS was chosen as the basis for the vBNG as it was the only solution found
that met all the requirements of providing all the necessary functionality, free
and open-source and compatible with the already chosen tools and environment.
While not a requirement, the fact the project is under active development and
having good documentation, which eases the process of getting started, made it
clear that VyOS was the most viable choice.

FreeRADIUS was chosen as the AAA Server for being the standard open-source
implementation of the RADIUS protocol, which is necessary to allow VyOS to
use an external server. Similarly, MySQL was chosen as the Subscriber Database
for its compatibility with FreeRADIUS and due to the author having some prior
experience with the technology.

Table 8.1: List of tools used to implement the solution

Solution Components Reason

OSM NFVO
VNFM

Under active development
Simple deployment process
Support from community members

MicroStack

VIM
Virtualization Infras-
tructure
Field Network
SDN Controller

Under active development
Simple deployment process
Low system requirements

VyOS vBNG
Meets most functional requirements
Good documentation
Active development

FreeRADIUS AAA Server
Free Open-Source implementation of
the RADIUS protocol
Compatible with VyOS

MySQL Subscriber Database
Compatible with FreeRADIUS
Author has Some prior experience with
the solution

8.2 Microstack

To deploy MicroStack, a machine was setup with two network interfaces, one
connecting it to the internal network, providing connection to the MANO and
internet, and another providing a connection point for the the future subscribers.
This machine is equipped with 8 vCPUs, 50 GB of memory and 64 GB of storage.
Due to this machine being used to deploy VMs, virtualization extensions should
be enabled. Finally, to allow PPPoE connections to be established, the switch
connecting the clients to the machine should have both promiscuous mode and
forged transmits enabled, to allow establishment of the PPPoE connections.

The guide present in MicroStack’s documentation [Canonical] was followed to

52

Implementation

install it. Following this, the images necessary to deploy the VNFs are loaded.
Finally, the external network "access" is create (along side a sub-network "access-
subnet") and a OVS bridge that connects it to the access network is setup. The
necessary commands are listed in Listing 8.1 (alternatively the web interface can
be used).

Listing 8.1: Commands used to setup the MicroStack infrastructure
#add images to MicroStack
microstack . openstack image c r e a t e −− f i l e =" ./ bionic −server −

cloudimg−amd64 . img " −−container −format=bare −−disk −
format=qcow2 ubuntu18 . 0 4

microstack . openstack image c r e a t e −− f i l e =" ./ vyos −1.3 .3 −
c l o u d i n i t . qcow2 " −−container −format=bare −−disk −format=
qcow2 vyos − 1 . 3 . 3

c r e a t e e x t e r n a l network and subnet
microstack openstack network c r e a t e −− e x t e r n a l −−provider −

physical −network physnet1 −−provider −network−type f l a t
a c c e s s

microstack openstack subnet c r e a t e −−network a c c e s s −−
subnet −range 1 9 2 . 1 6 8 . 0 . 0 / 2 4 −−no−gateway access −subnet

c r e a t e bridge to e x t e r n a l network
microstack . ovs− v s c t l −− r e t r y −−may− e x i s t add−br br−ac −−

s e t bridge br−ac datapath_type=system p r o t o c o l s=
OpenFlow13 , OpenFlow15

#map bridges to e x t e r n a l networks (br−ex i s crea ted by
microstack a t setup)

microstack . ovs− v s c t l s e t open . ex terna l −ids : ovn−bridge −
mappings=physnet1 : br−ex , physnet2 : br−ac

microstack . ovs− v s c t l add−port br−ac ens192

8.3 OpenSource MANO

To deploy OSM the guide present in the documentation [OSM, c] was followed.
A virtual machine was setup for this deployment, equipped with 8 vCPUs, 32 GB
of memory and 50 GB of storage. Once OSM is installed the VIM account must
be created so OSM can deploy NSs into Microstack.

To create the VIM account, OSM’s installation script was adapted to add a re-
motely deployed MicroStack instance. The full script can be seen in Appendix D.
In summary, the script does some basic setup (creating a management network
and keypairs) and in the end obtains the file /var/snap/microstack/common/
etc/microstack.rc which contains the necessarily information to create the VIM

53

Chapter 8

Listing 8.2: Commands to import the descriptors
#add vnfd , run in d i r e c t o r y conta in ing d e s c r i p t o r packages
osm vnfpkg− c r e a t e radius_sq l_vnf
osm vnfpkg− c r e a t e vyos_vnf

#add nsd
osm nspkg− c r e a t e radius_sq l_ns
osm nspkg− c r e a t e vyos_ns

account in OSM, including the username, password and the url for authentica-
tion. To add the descriptors, the web interface can be used or alternatively the
commands shown in listing 8.2. It should be noted that the VNF descriptors
must be added before the network service descriptors, or an error will occur, as
the latter reference the former.

8.4 VyOS

This section documents the steps taken to configure VyOS. All the relevant files
are included in Appendix B.

8.4.1 Image

To configure VyOS it is necessary to obtain an image that can be deployed into a
cloud infrastructure. The version used was VyOS 1.3.3, an LTS release. The guide
present in [Vyos, b] was followed to obtain the iso file. Once the iso has been
obtained, VyOS’s official VM image building tool [Vyos, a] is used to create a VM
image that can be deployed in MicroStack.

To create the image the command shown in listing 8.3 was used. This command
takes a few parameters but the most relevant ones are the ones pertaining to
cloud-init as these allow VyOS to be configured during deployment using the
tool.

Listing 8.3: VyOS VM image build command
ans ib le −playbook qemu . yml −e i s o _ l o c a l =/tmp/vyos . i s o −e

grub_console=kvm −e vyos_version = 1 . 3 . 3 −e c l o u d _ i n i t =
true −e c l o u d _ i n i t _ d s=OpenStack , ConfigDrive , None −e
enable_dhcp=true −e guest_agent=qemu −e enable_ssh=true
−e keep_user=true

Then, the resulting image is loaded into the VIM using the command presented
in listing 8.4, it should be noted the image name must match the one defined in
the descriptors, or an error occurs.

54

Implementation

Listing 8.4: VyOS VM image build command
microstack . openstack image c r e a t e −− f i l e =" ./ vyos −1.3 .3 −

c l o u d i n i t . qcow2 " −−container −format=bare −−disk −format=
qcow2 vyos − 1 . 3 . 3

8.4.2 Descriptors

The descriptors were based on the hackfest_vyos_vnf and hackfest_vyos_ns pack-
ages hosted in OSM’s demo repository [OSM, a], for the sake of speeding up
development. It should be noted that OSM provides tools to ease the creation of
new descriptors, both using the command line [OSM, b] and web interfaces.

The VNF Descriptor (VNFD) is composed by two files, the YAML file describing
the VNF and a cloud-init file to be used for configuration at boot time. These
files can be viewed in appendix B, in listings B.1 and B.2 respectively. The YAML
file describes a rather simple VNF, composed of a single Virtual Deployment Unit
(VDU), the VM hosting the virtual function, with three connection points: one for
the internal network, one for the external network and one for management. It
also details the image the VNF uses, in this case "vyos-1.3.3", the same name that
was given to the image when imported into the VIM, and the file to be used for
cloud-init configuration. At the bottom it defines the resources to be allocated to
the VNF, two virtual CPUs, 2GB (2 gigabytes) of memory and 10GB (10 gigabytes)
of storage.

The cloud-init file contains a series of commands that VyOS should execute when
booting to enable the BNG functionality. According to [VyOS, a] VyOS uses two
cloud-config modules: "vyos_userdata" and "write-files". The first module runs
each command in the "vyos_config_commands" section while booting for the first
time, while the second module is capable of writing to files in the file system. Ide-
ally all commands would be in the block corresponding to the first module but
it was not possible so the second was used as a workaround. This is due to how
VyOS handles its configuration, it is handled in the form of commits, where multi-
ple configuration changes can happen but will only take effect once the "commit"
command is used. This is a generally useful feature but caused an issue with
the desired configuration, as the configuration for PPPoE requires multiple com-
mands to be committed at once, which is impossible in the first module, addition-
ally bash variables are used to automate the process, which is equally impossible
using the first module. To this end the cloud-init script details that the commands
to be used should be written to VyOS’s postconfig script [VyOS, b], a script called
after the initial boot. Finally, the double brackets are used to signal OSM that
that value is a parameter and it should be replaced with the value provided in
the configuration file. This provides a bit more flexibility to the descriptor, allow-
ing for little changes to be made to the deployment without needing to edit the
descriptor.

The postconfig script can be divided into the following sections:

1. Check user group - It starts by checking the group of the user running the

55

Chapter 8

file and if it is not "vyattacfg" runs it as said group in order to avoid the
problems, as explained here [VyOS, b],

2. Setup PPPoE - The script sets up the PPPoE server, setting the interface it
listens in, the address passed to the clients, the pool of IP addresses to assign
to clients, enabling rate limiting and setting the authentication mode to use
a remote RADIUS server, although it could manage users locally. The deci-
sion to use an external RADIUS server was made with the intent of laying
the groundwork for a future iteration of the project where multiple VyOS
instances are deployed and access the RADIUS server for authentication,
for better scalability.

3. Setup SNAT - The script sets up a NAT with IP masquerading, to hide
the client’s IP address and so MicroStack stops blocking packets coming
from the clients. This happens due to the internal OVS bridge lacking the
necessary flow rules to allow it, and creating them manually is not feasible.

4. Setup Firewall - Finally, the script sets up a firewall to block clients from
accessing restricted networks.

5. Commit - The script commits the changes, applying the configurations and
enabling the services configured.

The Network Service Descriptor (NSD), which can be seen in listing B.3, is used to
create the template for a NS. As this NS is composed by a single VNF it’s a rather
simple one, simply mapping each of the VNF’s connection points to a virtual link,
that will be assigned to a network withing the VIM. In a more complex NS the
virtual link would define the connection path between the different VNFs.

Once the descriptors are created, the commands presented in listing 8.5 to add
them to the catalog, keeping in mind the VNFD must be added first. It should
be noted that in this example vyos_vnf and vyos_ns are the directorys contain-
ing the descriptors, while vyos-vnf and vyos-ns are the names assigned to the
descriptors.

Listing 8.5: Commands to add the VyOS descriptors to catalog
#Import d e s c r i p t o r s
osm vnfpkg− c r e a t e vyos_vnf
osm nspkg− c r e a t e vyos_ns

#Update d e s c r i p t o r s
osm vnfpkg−update vyos−vnf −−content vyos_vnf
osm nspkg−update vyos−ns −−content vyos_ns

Finally the configuration file, which can be viewed in listing B.4, is a file passed
to OSM when deploying a NS to specify parameters about the deployment, such
as which networks each VNF should be connected to, their IP addresses, or pa-
rameters defined in the VNFD. In this instance, the file is used to specify the IP
address of the RADIUS server used for authentication, as well as the name of
the networks the VNF should be connected to. For more information about the

56

Implementation

parametrization of the NS, refer to [OSM, d], keeping in mind the examples given
pass the parameters inline instead of using a configuration file.

8.5 RADIUS

This section documents the steps taken to configure the RADIUS to be used for
AAA. All the relevant files are included in Appendix C.

8.5.1 Image

The RADIUS server uses Ubuntu 18.04 cloud image as a base, as such it must be
obtained from the official ubuntu repository and loaded into the VIM, as shown
in listing 8.6, keeping note of the name given to the image.

Listing 8.6: VyOS VM image build command
microstack . openstack image c r e a t e −− f i l e =" ./ bionic −server −

cloudimg−amd64 . img " −−container −format=bare −−disk −
format=qcow2 ubuntu18 . 0 4

Once OSM is deployed and properly configured, the instances can simply be cre-
ated using the commands shown in Listing 8.7, or using OSM’s web interface.

Listing 8.7: Commands used to launch the instances
launch vyos
osm ns− c r e a t e −−ns_name vyos−ns −−nsd_name vyos−ns −−

vim_account microstack − s i t e −vim1 −− c o n f i g _ f i l e
vyos_config . yaml

launch radius
osm ns− c r e a t e −−ns_name radius −sql −ns −−nsd_name radius −sql

−ns −−vim_account microstack − s i t e −vim1 −− c o n f i g _ f i l e
r a d i u s _ s q l _ c o n f i g . yaml

The files vyos_config.yaml and radius_sql_config.yaml serve as alternatives
to the commands in [OSM, d], allowing the user to pass parameters to OSM at
the moment of instantiation, such as which networks the instance should be con-
nected to.

8.5.2 Descriptors

Similarly to the previously detailed VNFD, the one for the RADIUS server is com-
posed by two files, the YAML file and the cloud-init file. This VNF is equipped
with two network interfaces, one for management and the other to provide con-
nection to the clients, the systems connecting to RADIUS for authentication, in
this instance VyOS.

57

vyos_config.yaml
radius_sql_config.yaml

Chapter 8

To configure the RADIUS server the guide present in [Ciro, 2022] was followed.
The cloud-init file can be divided into the following main sections:

1. Install packages- The file defines the packages that Ubuntu should install
when booting.

2. Setup MySQL Database- The script starts by configuring the database. It
applies the schema and setup files provided by freeradius (open source RA-
DIUS server) for the basic setup and then creates the row in the clients table,
allowing VyOS access to the authentication service.

3. Setup SQL Modules- The script configures the modules to use the MySQL
database, as freeradius allows the data to be loaded from configuration files.
This process is mostly done by uncommenting the correct lines, as the de-
fault values are valid, and specifying the SQL syntax used.

4. Enable SQL Modules- Once the modules are properly configured, the script
enables them by creating a symbolic link into the mods-enabled directory.

5. Restart Freeradius- Finally, once freeradius is properly configured, it is
restarted as some of the configurations are only read once when the service
starts.

As the NS is composed by a single VNF, the NSD, visible in listing C.2 simply
maps each connector defined in the VNF to a virtual link.

As with VyOS descriptors, it is required to import them to the catalog, with the
commands shown in listing 8.8

Listing 8.8: Commands to add the VyOS descriptors to catalog
#Import d e s c r i p t o r s
osm vnfpkg− c r e a t e radius_vnf
osm nspkg− c r e a t e radius_ns

#Update d e s c r i p t o r s
osm vnfpkg−update radius −sql −vnf −−content radius_vnf
osm nspkg−update radius −sql −ns −−content radius_ns

Finally, the configuration file is used to define the network the RADIUS will be
connected to, and defines a static IP address for the interface used to serve the
clients, for better control over the addresses used.

8.6 Prototype

Figure 8.1 presents the platform supporting the vBNG implemented using the
chosen tools, Microstack and OSM.

MicroStack provides a several of services, including [Page et al., 2020]:

58

Implementation

• Horizon - The official implementation of OpenStack’s Dashboard. It pro-
vides a user interface to interact with OpenStack’s services [Horizon, 2019].
In the context of this work, it was necessary to setup the virtual networks.

• Keystone - OpenStack service that provides authentication and authoriza-
tion mechanism [Keystone, 2019], used to authenticate OSM and allow it to
manage the VNFs.

• Glance - OpenStack’s image catalog service [Glance, 2019]. This service al-
lows users to register and discover VM images to use for VNF deployment.

• Nova - OpenStack service that provides mechanisms to provision the vir-
tual servers. It supports creating virtual machines, baremetal servers and
has limited support for system containers [Nova, 2019]. It also provides the
metadata service [OpenStack, 2020a] that provides instances with data for
configuration via cloud-init [Esler et al.], allowing for more flexible VNF
deployments.

• Neutron - OpenStack’s networking service, tasked with providing network
connectivity to the instances [OpenStack, 2020b], by managing the br-int
OVS bridge, where ports are created and to which the instances are con-
nected. It’s also tasked with intercepting the instances requests for meta-
data, and redirecting them to the Nova service [OpenStack, 2020a].

Some of the services provided by OSM include [Salguero et al., 2020]:

• NBI - OSM’s North Bound Interface, Restful server that allows external ap-
plications to interact with OSM.

• NG-UI - Interacts with the NBI to provide a web GUI, where users can
access OSM’s functions.

• LCM - Live Cycle Management module, responsible for managing the work-
flows associated with the lifecycle events of VNFs and NS, such as instanti-
ation, termination, scaling, healing, and upgrading.

• RO - Resource Orchestration module, responsible for interacting with the
VIM layer to orchestrate resource allocation.

Figure 8.2 presents the topology of the virtual networks within MicroStack. The
figure presents the following types of network:

• External network - Also known as Provider network, these networks are
attached to the physical network infrastructure to provide connectivity be-
tween the VNFs and networks outside the virtual environment [OpenStack,
2023b].

• Internal network - Virtual network within the MicroStack environment that
provides connectivity between the various VNFs [OpenStack, 2022a].

59

Chapter 8

Figure 8.1: Implemented Architecture

• Management network - Functionally identically to the Internal Network,
but needs to be accessible by OSM for VNF configuration [OSM, e].

The OVS bridges are setup to bridge the data center’s network interfaces and
external networks, allowing traffic to be forwarded between the two, enabling
connections to be established between the subscribers and VyOS.

Figure 8.2: MicroStack virtual network topology

60

Chapter 9

Testing

This chapter presents the steps taken toward validating the prototype, and eval-
uating its performance. In section 9.1 the test scenario is presented, including the
goals of the tests and how the testbeds were designed. Section 9.2 presents an
overview of how the testbeds were setup. The detailed steps for each individual
test are defined in section 9.3. The results are presented in section 9.4. Finally,
section 9.6 presents the concluding thoughts based on the obtained results.

9.1 Test Scenario

The goal of these tests is to evaluate how the prototype behaves when deployed.
As such, the testbed must be able to simulate subscribers that connect to the
vBNG and network services that serve the subscribers. It must also provide a
way to generate traffic between the subscribers and the service.

Considering the requirements, the testbed was designed to use 3 machines: one
to simulate the subscribers, one to host the MicroStack cloud infrastructure and
one to host the OSM deployment. For the network service it was decided that it
would consist of a instance deployed into the provider network, hosting iperf
servers to which the subscribers would connect. Figure 9.1 demonstrates the
topology.

Figure 9.1: Simplified view of the testbed

61

Chapter 9

Early tests revealed lower performance than expected, while the exact nature of
this behaviour could not be determined, one of the factors hypothesised to cause
this was the the nested virtualization happening. Due to the resources available,
the author was deploying the testbed into a VMware ESXi environment, includ-
ing MicroStack which itself would virtualize the functions deployed. To mitigate
the issues it was decided that a second testbed would be setup, emulating the
VIM’s network directly in the VMware ESXi. The author understands this choice
might compromise the results, but it was taken as it approximates the environ-
ment to what a real scenario would be, without the nested virtualization. Figure
9.2 demonstrates the topology.

Figure 9.2: Simplified view of the second testbed

9.2 Testbed Setup

In this section presents how each of the testbeds were setup.

9.2.1 First Testbed - MicroStack

For the deployment of OSM and MicroStack please refer to sections 8.3 and 8.2
respectively.

Subscribers

To simulate the subscribers, a Ubuntu 22.04.2 LTS machine was setup. This ma-
chine will be used to simulate the subscribers establishing the PPPoE connections
with the bng and to generate traffic. Therefore, it requires a connection to the
same network as the prototype’s access network. This machine is equipped with
8 vCPUs, 32GB of memory and 25GB of storage.

To establish PPP connections in Ubuntu, the ’ppp’ is necessary as this package
includes ’pppd’ [Mackerras], the component that establishes and manages the
connections. Additionally, the package ’pppoeconf’ was used to generate a base
configuration file to used in the scripts created to automate the process of estab-
lishing connections. A basic configuration file is presented in Listing 9.1, these
files are typically located in the /etc/ppp/peers/ directory.

62

/etc/ppp/peers/

Testing

Listing 9.1: Sample pppoed configuration file
hide −password
noauth
p e r s i s t
plugin rp−pppoe . so
usepeerdns

To simulate multiple subscribers, multiple PPP connections are necessary, which
isn’t a common use case. So, a few extra steps are necessary to the success of the
connections.

Firstly, a virtual network card is needed for each subscriber, as using the same for
all of them would create MAC Address conflicts. To do this, the guide presented
in [SteveYi, 2021] is adapted into a generic script that creates multiple virtual
network cards. Secondly,a configuration file is needed. For that we use the one
’pppoeconf’ generated, adding the missing information (network interface and
username). Thirdly, the configuration file does not include the password, those
are stored in the file /etc/ppp/pap-secrets, so the script appends the password
to that file if needed (it is assumed the user credentials were previously inserted
into the RADIUS database). Listing 9.2 presents the finalised script.

Listing 9.2: Script to configure the connections
#!/ bin/bash

cd / e t c /ppp/peers/

f o r ((i =1 ; i <=$1 ; i ++)) do
#add conf ig f i l e f o r each connect ion
cp example s u b s c r i b e r $ i
echo " nic −wan$i " >> s u b s c r i b e r $ i
echo " user \" u s e r $ i \"" >> s u b s c r i b e r $ i

#add password so we can i n i t i a t e pppoe connect ion
i f ! sudo grep −q " u s e r $ i \"" "/ e t c /ppp/pap− s e c r e t s " ;

then
echo "\" u s e r $ i \" * \" password$i \"" >> / e t c /ppp/pap−

s e c r e t s
f i

c r e a t e v i r t u a l network card f o r user
i f ! ip l i n k show wan$i >/dev/n u l l 2>&1; then

ip l i n k add l i n k ens192 name wan$i type macvlan
f i
ip l i n k s e t dev wan$i up

done

At this stage, the PPPoE connections can be started manually or using a script as

63

/etc/ppp/pap-secrets

Chapter 9

the one presented in Listing 9.3. Despite this, not all preparations are done as the
routing rules are missing, due to them causing conflicts (duplicates of the same
route).

Listing 9.3: Script to establish PPP connections
#!/ bin/bash
pof f −a # stop a l l e x i s t i n g pppoe c l i e n t s

f o r ((i =1 ; i <=$1 ; i ++)) do
pon s u b s c r i b e r $ i

done

To fix the routing problem, the author used Policy-Based Routing (PBR), with
network namespaces being a possible alternative, PBR essentially being a tech-
nique to select the path that network traffic takes based on predefined policies or
criteria, in this case the criteria being the source.

Firstly, the routing table has to be created by defining it in the /etc/iproute2/rt_
tables file. One way to automate the process is to grab the interface’s name and
check whether a table with that name exists, and create one if it doesnt. take note
to prepend the number obtained as the first PPP interface is always "ppp0" and ta-
ble 0 being the default routing table. Secondly, the new table must be populated,
with the gateway and the default routing rule. And finally, the new routing table
is assigned the desired source IP. For convenience, this process was automated
in a script as seen in listing 9.4. This script is located in the /etc/ppp/ip-up.d/
directory, such that is run when a new PPP interface comes up.

Listing 9.4: Script to setup PBR for the ppp interfaces
#!/ bin/bash
Arg Name Example
$1 I n t e r f a c e name ppp0
$4 Local IP number 1 2 . 3 4 . 5 6 . 7 8
$5 Peer IP number 1 2 . 3 4 . 5 6 . 9 9

Get the name of the i n t e r f a c e
i n t e r f a c e =$1

E x t r a c t the i n t e r f a c e name from the f u l l i n t e r f a c e s t r i n g
interface_name=$ (basename " $ i n t e r f a c e ")

Check i f the i n t e r f a c e s t a r t s with "ppp"
i f [[" $ interface_name " == ppp*]] ; then

Get the i n t e r f a c e number
interface_number=$ (echo " $interface_name " | sed ’ s/ppp

// ’)

Check i f the rout ing t a b l e e x i s t s
i f ! ip route show t a b l e $interface_name &> /dev/n u l l ;

64

/etc/iproute2/rt_tables
/etc/iproute2/rt_tables
/etc/ppp/ip-up.d/

Testing

then
Create the rout ing t a b l e
add a 1 to the beginning because the f i r s t ppp

i n t e r f a c e has number 0 and the rout ing t a b l e 0
i s the d e f a u l t one

echo "1 $interface_number $interface_name " |
sudo t e e −a / e t c /iproute2/ r t _ t a b l e s

f i

ip route f l u s h t a b l e $1

Add a d e f a u l t route via the i n t e r f a c e to the t a b l e
ip route add $5 dev $1 t a b l e $1
ip route add d e f a u l t via $5 dev $1 t a b l e $1

ass ign rout ing t a b l e
ip r u l e add from $4 t a b l e $1

f i

9.2.2 Second Testbed - Non-nested Virtualization

The majority setup of the second testbed is simply done by deploying VMs with
the configurations defined in the VNFDs (see sections 8.4.2 and 8.5.2). As such
only the differences from those configurations will be detailed in this section. It
should be noted, the configuration of the subscribers will not be mentioned as it
is the exact same as in the previous testbed.

Network

To simulate the intended scenario in the VMware ESXi 3 virtual switches were
used, one for the access network, one for the provider network and a third one
for management. The virtual switch used for the access network must have both
promiscuous mode and forged transmits enabled to allow the establishment of
the PPPoE connections.

Prototype

The VyOS VM is created according to the specifications of the VNFD, with one
interface connected to each of the switches mentioned before. It is then config-
ured using the commands present in the cloud-init file (see Appendix B), with
the distinction of the IP address of the provider network interface having to be
configured manually (as DHCP was not configured). The command for this con-
figuration is can be seen is listing 9.5.

Similarly, RADIUS was deployed by manually applying the configurations spec-

65

Chapter 9

Listing 9.5: Setting a static IP address in VyOS
conf ig
s e t i n t e r f a c e s e t h e r n e t eth1 address 1 9 2 . 1 6 8 . 2 2 2 . 1 / 2 4
commit

Listing 9.6: Setting a static IP address in RADIUS server
sudo ip addr add 1 9 2 . 1 6 8 . 2 2 2 . 3 / 2 4 dev ens192

ified in the corresponding VNFD (see Appendix C), with a interface connected to
both the management and provider switches. Just as with VyOS, the distinction
is that the IP address of the provider network must be manually set, as seen in
listing 9.6.

9.2.3 Difficulties and Limitations

Initial tests in the first testbed revealed lower performance than expected, for
example a maximum throughput of 600Mbps. While no concrete cause could
be identified, during troubleshooting various aspects were noted that could be
causing the issue:

• Nested Virtualization- As mentioned before, the testbed was deployed in a
VMware ESXi environment, which lead to nested virtualization that could
be impacting the performance.

• MicroStack- MicroStack was created to allow developers to quickly create
an environment where they could develop their solutions, it was not built
for performance. Ideally a full OpenStack environment would be used for
such tests but it was deemed too complex.

• Kernel-based Virtual Machine (KVM)- Although during deployment Mi-
croStack detected and reported the use of KVMs, hardware assisted virtu-
alization, when deploying the VNFs it was observed the tecnology was not
being used, analysing the logs revealed that libvirt, the tool used by Mi-
croStack to manage the virtualization, reported that KVMs were not sup-
ported.

Furthermore, despite the prototype not having QoS capabilities, each subscriber
uses multiple traffic streams to simulate the various services used, those being
Internet, IPTV and VoIP. This may cause the traffic streams for IPTV and VoIP
to suffer losses of bandwidth that may not happen in a real scenario, as these
streams are typically given priority over Internet traffic.

66

Testing

9.3 Test Definition

In this section the tests conducted to validate the prototype are specified.

To validate the prototype, acceptance tests were conducted to verify that the func-
tional requirements are properly met. An excerpt of the tests conducted is visible
in table 9.1, with the full list being present in Appendix E.

Table 9.1: Validation tests (Excerpt)

ID Requirement Details Result

Test 4 FR-002

Description: Establish PPPoE connection
with correct credentials
Expected Behaviour: PPPoE connection is
established
Observed Behaviour: PPPoE connection is
established

Pass

Test 12 FR-008 and
FR-001

Description: As a subscriber, attempt to ac-
cess the internet
Expected Behaviour: Subscriber can access
the internet
Observed Behaviour: Subscriber can access
the internet

Pass

The following subsections will detail how each performance test was conducted.
To avoid repetition, a few notes should be kept in mind:

• All tests conducted assume the users were registered beforehand.

• The tests are conducted in the second testbed, which doesn’t use nested
virtualization.

• Each test is executed with 15 repetitions.

• For automation purposes, ssh is used to remotely execute commands and
collect metrics from the vBNG. The impact of which will be disregarded as
it is minimal.

9.3.1 Test 1- Bandwidth

This test aims to measure the number of subscribers connected after the band-
width available to each subscriber. To this end the following procedure was de-
fined, for an number of subscribers N:

1. Setup the subscriber rate limits in the RADIUS’ database.

2. Setup N virtual network interfaces.

3. Setup the configuration file of each PPPoE subscriber.

67

Chapter 9

4. Start 2N iperf servers, as each subscriber connects to two servers.

5. Initiate the PPPoE clients.

6. Wait 30 seconds so that the PPPoE connections are fully configured.

7. Initiate 2N iperf clients, in reverse mode (the reason will be explained later),
saving the outputs to files for later analysis.

Based on the reference subscriber model showcased in table 9.2, the following
properties were defined for the simulated subscribers:

• A subscriber is subject to a rate limit of 100Mbps for both upstream and
downstream data transmission. This is defined in RADIUS’ database, specif-
ically the radreply table. Based on [Altice].

• A subscriber has an iperf -generated User Datagram Protocol (UDP) traffic
stream, limited to 20Mbps, to simulate IPTV and VoIP traffic.

• A subscriber has an iperf -generated Transmission Control Protocol (TCP)
traffic stream, limited to 100Mbps to use the remaining bandwidth, to sim-
ulate internet traffic.

• Both iperf processes are set to Reverse mode, meaning the server sends traffic
to the subscriber, as this is more representative of a real scenario.

Table 9.2: Subscriber Model

Service Bitrate (Mbps)
Internet 10.0
Telephony 1.0
SDTV 2 channels (MPEG-4) 3.0
HDTV 2 channels (MPEG-4) 16.0
Total 30

The test will be conducted in ten variants, each with a different number of sub-
scribers connecting to the vBNG. These variations are: 1, 10, 20, 25, 30, 40, 50, 100,
150, 200. Each iteration of the variations will take three minutes, with an extra
five seconds added, as the first five are ignored to account for TCP slow start,
that causes iperf to report rates beyond the limits of the connection.

9.3.2 Test 2- Resource Utilization

This test aims to measure the CPU and memory utilization of the prototype. To
achieve this, these resources were monitored using the tool top while executing
the previous tests using the function shown in listing 9.7.

68

Testing

Listing 9.7: Monitoring the prototype’s resource utilization
funct ion r e s o u r c e _ u t i l i z a t i o n {
wait f o r 5 seconds to keep c o n s i s t e n t with i p e r f
s leep 5

monitor resource f o r N seconds , provided by the parameter ,
f o r each cpu core

ssh vyos_baremetal " sudo top −1 −b −d 1 −n $1 "
}

9.4 Test Results

This section presents the data collected from the defined tests.

9.4.1 Test 1- Bandwidth

Figure 9.3: IPTV and Internet bit rate variation with changing number of sub-
scribers

Figure 9.3 presents the average throughput of all subscribers. It is visible that the
prototype can provide a stable 100Mbps of throughput to around 25 subscribers.
These results also show that the prototype should support around 100 reference

69

Chapter 9

model subscribers. Although no QoS control is active, it is visible that the TCP
stream has its bit rate lowered at a faster rate than UDP stream. This can be
explained by TCP’s congestion control and its bigger overhead.

Figure 9.4: UDP packet loss with changing number of subscribers

Figure 9.4 presents the average UDP packet loss as the number of subscribers in-
creases. When more than 30 subscribers are connected, this value becomes bigger
than 1%, which is not acceptable [Biljan, 2023]. These results can be justified by
the lack of QoS control functionality.

Finally, from these results it can be extrapolated that the prototype supports
around 3Gbps of throughput.

9.4.2 Test 2- Resource Utilization

Figure 9.5 presents the average of total Central Processing Unit (CPU) usage as
the number of subscribers changes. The results show that the CPU usage is at its
peak with 25 subscribers, while also presenting a big standard deviation, an un-
expected result. While the concrete reason could not be ascertained, the fact that
this peak coincides with the number of subscribers where the vBNG no longer
is able to maintain a full 100Mbps connection, it leads the author to believe that
from this point a bottleneck in some other component of the vBNG exists, but
further testing would be necessary to diagnose this behaviour.

Figure 9.6 presents the usage of individual cores as the number of subscribers

70

Testing

Figure 9.5: Total CPU utilization variation with changing number of subscribers

changes. It is visible that in less demanding tasks, the usage percentage is sim-
ilar between both cores, meanwhile on more demanding tasks, there is a clear
preference of one core over the other. Analysing the log files it is also visible
that the majority of CPU time is being taken by the process ksoftirqd, which is a
"per-cpu kernel thread that runs when the machine is under heavy soft-interrupt
load" [Gohr]. This leads the author to formulate the following hypothesis: in the
less demanding scenarios, the kernel scheduler balances the task of handling the
interrupts between the two available CPUs, but as the the number of interrupts
increases and this form of handling becomes ineffective, the scheduler assigns
as many interrupts as possible to one of the CPUs to optimize performance, by
reducing the need to fetch data from memory into cache.

Figure 9.7 presents the average memory used in each test. It shows a consistent
use of memory resources, and as such it can be concluded that it was not a bottle-
neck in the system. It also shows that slightly lowering the amount of allocated
memory from 2GB should not cause performance issues.

9.5 Requirement Validation Summary

In this section the results of the requirement validation are summarized, based
on the validation and performance tests.

71

Chapter 9

Figure 9.6: CPU utilization variation (per core) with changing number of sub-
scribers

9.5.1 Functional Requirements

Table 9.3 summarizes the results for the functional requirements. Most require-
ments were met, with the exception of FR-004 and FR-008. This was due to time
constraints that would not allow their validation in a timely manner, as the val-
idation of both these requirements would require extra components for the test
bed. It should be noted however, that these requirements had been assigned the
Could Have priority, the lowest, meaning their implementation is not at all critical
to the success of the project and could be implemented in future iterations.

Table 9.3: vBNG functional requirements results

ID Requirement Result
FR-001 Packet Forwarding PASS
FR-002 PPPoE PASS
FR-003 IP Address Assignment PASS
FR-004 Multicast FAIL
FR-005 Rate Limiting PASS
FR-006 User Authentication PASS
FR-007 Access Control PASS
FR-008 QoS Control FAIL

72

Testing

Figure 9.7: Memory utilization with changing number of subscribers

9.5.2 Non-Functional Requirements

Table 9.4 summarizes the results for the non functional requirements.

Table 9.4: vBNG non functional requirements results

ID Requirement Result
NFR-001 The vBNG should efficiently handle high throughput

demands during peak load conditions.
PASS

NFR-002 The vBNG should effectively manage concurrent
user connections.

PASS

NFR-003 The vBNG should minimize packet loss. FAIL
NFR-004 The vBNG should contribute to low latency in net-

work communication.
UNTESTED

NFR-004 The vBNG should manage memory usage efficiently. PASS
NFR-005 The vBNG should optimize CPU usage for efficient

performance.
PASS

NFR-006 The vBNG should ensure establishment of subscriber
sessions.

UNTESTED

73

Chapter 9

9.6 Conclusion

The goal of these tests was to analyse the behaviour of the proposed solution in
a high fidelity scenario, one that approximates a real-world scenario as closely as
feasibly possible. As the threshold of success was met it can be concluded that
the thesis was a success.

Due to various circumstances more data could not be gathered, the obtained re-
sults already show potential in the proposed solution. Continuing to leverage the
robust foundation laid by the VyOS project, a project that is still in active devel-
opment, with NFV platforms like OpenStack should prove a viable solution for a
virtualized BNG.

As a final note, the author is aware that these tests may be insufficient to analyse
the solution, the following is a list of planned tests that due to constraints could
not be conducted, and could be conducted on a future iteration of the work:

• Average time needed to establish a PPPoE session.

• Varying number network interfaces, for redundancy and load balancing.

• Vary number of CPUs to better understand the CPU usage balancing.

• Measure latency with varying number of concurrent subscribers.

• Diagnose the cause for CPU usage at 25 subscriber being above the remain-
ing tests.

74

Chapter 10

Conclusion

In this chapter, the conclusions taken are presented, as well as a brief reflection on
the progress achieved and a proposal for the work to be done to a possible future
iteration of the project

10.1 Conclusions

This thesis documents the efforts in studying, designing, implementing and vali-
dating a solution for a virtualized BNG, based on the concepts of SDN and NFV.
This effort started with a study of the BNG and the two technologies, as well
as SFC, a complementary technology, to understand what functions the solution
must provide and how each of these technologies help empower the idea of a vir-
tualized BNG. This research was followed by a study on available solutions that
could be used to create the vBNG. Meanwhile a study on ONOS was conducted
in order to understand how it works and if it would be be useful to this project,
while also providing the author with hand-on experience in SDN. This research
and experience resulted in an architecture for the platform that would support
the vBNG, concluding the first semester of this project.

To kick off the semester an exploratory phase was held to address still open ques-
tions, like the tools to be used. It started by analysing the various approaches,
by analysing the documentation, attempting to access the support channels and
researching user guides. This research concluded that an approach not using SFC
would be more viable which was reflected on the architecture, and that a solution
based on OSM, MicroStack and VyOS would be the most viable. Following this, a
more practical phase started, where the author deployed and experimented with
OSM and MicroStack, with the help of a member of the community to understand
how these two complex systems interact and learn the basics of creating and de-
ploying VNFs. In this stage it was decided to ultimately drop the integration of
an SDN controller, due to multiple difficulties and MicroStack’s Neutron service
providing the necessary functionality.

Once the exploratory phase was completed, a lengthy development phase was
conducted. The first step was to integrate VyOS into the platform, a task that

75

Chapter 10

revealed more complex than expected, as a cloud image with cloud-init support
is required, a tool that the author had no prior experience in. Once VyOS had
been integrated into OSM and MicroStack the configuration was done, starting
with the PPPoE which also revealed itself to be an issue, as connecting the VNF
with the exterior was not a straight forward process at first, requiring a new OVS
bridge to connect the VIM’s access interface to a virtual network within the Mi-
croStack environment. The remaining features were then configured with no ma-
jor issues, except for needing to introduce an Source Network Address Transla-
tion (SNAT) into the prototype, as otherwise the packets forwarded by the VyOS
would be dropped by MicroStack due to lack of flow rules.

With all but the optional functional requirements implemented, a testing phase
was conducted. In terms of functional requirements, the solutions passed all the
tests with the exception of the lowest priority requirements. In terms of perfor-
mance however, not all tests could be conducted due to time constraints. De-
spite this, the obtained results showed potential, the solutions was able to handle
around 100 users with acceptable bandwidth, keeping a total throughput of about
3Gbps. It can be concluded that the thresholds of success were met and therefore
the thesis was a success.

Finally, this dissertation was written with the goal of documenting the process of
achieving the final proof-of-concept.

10.2 Future Work

A future iteration of the prototype would include implementing the remaining
functions and refine the existing ones. In summary:

• Migration to a full OpenStack without the need for nested virtualization.
This could prevent some of the issues detailed in section 9.1 and provide
more accurate results.

• Implement the remaining, low priority, functional requirements such as
Multicast and QoS.

• Separate the RADIUS server from the subscriber database. This would pro-
vide better scalability as multiple RADIUS servers could connect to the
same database for authentication.

• Database replication to improve redundancy and high-availability.

• Deployment of backup RADIUS servers, and configuration of the vBNGs to
use them, improving scalability.

• Diagnose unexpected behaviours observed section 9.4.2 through more test-
ing.

• Take better advantage of the functions provided by both MicroStack and
OSM, as deadlines and the complexity of both these systems, as well as

76

Conclusion

the remaining tools, left some options unexplored that could provide better
flexibility and automation of the processes. As an example, OSM’s Net-
work Slice Templates would automate the process of configuring the VIM’s
virtual networks.

77

References

Altice. Condições Específicas De Prestação Do Serviço De Acesso À
Internet Em Banda Larga. https://conteudos.meo.pt/meo/Documentos/
Condicoes-Utilizacao/clausulas-alteradas-anexo-II.pdf. [Online, Ac-
cessed: 2023-7-1].

arnold. Gawk - GNU Project - Free Software Foundation (FSF). https://www.
gnu.org/software/gawk/, 9 2022. [Online, Accessed: 2022-11-28].

Tim De Backer. tc.sh. https://github.com/excentis/impairment-node/blob/
master/tc.sh, 11 2016. [Online, Accessed: 2022-11-30].

Kamal Benzekki, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui.
Software-defined networking (sdn): a survey. Security and Communication Net-
works, 9:5803–5833, 12 2016. ISSN 19390114. doi: 10.1002/sec.1737.

Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,
William Snow, and Guru Parulkar. Onos: towards an open, distributed sdn os.
pages 1–6. ACM, 8 2014. ISBN 9781450329897. doi: 10.1145/2620728.2620744.

Roberto Bifulco, Thomas Dietz, Felipe Huici, Mohamed Ahmed, Joao Martins,
Saverio Niccolini, and Hans-Joerg Kolbe. Rethinking access networks with
high performance virtual software brases. pages 7–12. IEEE, 10 2013. ISBN
978-1-4799-2433-2. doi: 10.1109/EWSDN.2013.8. URL http://ieeexplore.
ieee.org/document/6680551/.

Ivan Biljan. How to Build an IPTV Core Network: A Complete Digital TV
Network Architecture Design Guide. https://www.uniqcast.com/blog/
iptv-core-network-tutorial#:~:text=For%20example%2C%20in%20IPTV%
20service,than%2030ms%20is%20considered%20acceptable., 2023. [Online,
Accessed: 2023-7-1].

Canonical. MicroStack - Single-node quickstart . https://microstack.run/docs/
single-node. [Online, Accessed: 2023-3-23].

Lovy Chaudhary. Scrum vs Waterfall. https://www.educba.com/
scrum-vs-waterfall/. [Online, Accessed: 2022-11-30].

Damiano Ciro. Configure FreeRADIUS to use MySql on Linux. https://medium.
com/codex/configure-freeradius-to-use-mysql-on-linux-95fa546cc3a7,
2022. [Online, Accessed: 2023-7-1].

79

https://conteudos.meo.pt/meo/Documentos/Condicoes-Utilizacao/clausulas-alteradas-anexo-II.pdf
https://conteudos.meo.pt/meo/Documentos/Condicoes-Utilizacao/clausulas-alteradas-anexo-II.pdf
https://www.gnu.org/software/gawk/
https://www.gnu.org/software/gawk/
https://github.com/excentis/impairment-node/blob/master/tc.sh
https://github.com/excentis/impairment-node/blob/master/tc.sh
http://ieeexplore.ieee.org/document/6680551/
http://ieeexplore.ieee.org/document/6680551/
https://www.uniqcast.com/blog/iptv-core-network-tutorial#:~:text=For%20example%2C%20in%20IPTV%20service,than%2030ms%20is%20considered%20acceptable.
https://www.uniqcast.com/blog/iptv-core-network-tutorial#:~:text=For%20example%2C%20in%20IPTV%20service,than%2030ms%20is%20considered%20acceptable.
https://www.uniqcast.com/blog/iptv-core-network-tutorial#:~:text=For%20example%2C%20in%20IPTV%20service,than%2030ms%20is%20considered%20acceptable.
https://microstack.run/docs/single-node
https://microstack.run/docs/single-node
https://www.educba.com/scrum-vs-waterfall/
https://www.educba.com/scrum-vs-waterfall/
https://medium.com/codex/configure-freeradius-to-use-mysql-on-linux-95fa546cc3a7
https://medium.com/codex/configure-freeradius-to-use-mysql-on-linux-95fa546cc3a7

Chapter 10

Cisco. Broadband Network Gateway Configuration Guide for Cisco ASR
9000 Series Routers, IOS XR Release 7.3.x - Broadband Network Gateway
Overview [Cisco ASR 9000 Series Aggregation Services Routers]. https://
www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-3/
bng/configuration/guide/b-bng-cg-asr9000-73x/bng-overview.html, 12
2022. [Online, Accessed: 2022-12-26].

Tiago Cruz, Paulo Simões, Nuno Reis, Edmundo Monteiro, Fernando Bastos, and
Alexandre Laranjeira. An architecture for virtualized home gateways. In 2013
IFIP/IEEE International Symposium on Integrated Network Management (IM 2013),
pages 520–526. IEEE, 2013.

Miguel Rosado Borges de Freitas et al. Network softwarization for iacs security
applications. 2018. URL http://hdl.handle.net/10316/83548.

Thomas Dietz, Roberto Bifulco, Filipe Manco, Joao Martins, Hans-Joerg Kolbe,
and Felipe Huici. Enhancing the bras through virtualization. pages 1–5. IEEE,
4 2015. ISBN 978-1-4799-7899-1. doi: 10.1109/NETSOFT.2015.7116144.

Docker. Docker: Accelerated, Containerized Application Development. https:
//www.docker.com/. [Online, Accessed: 2022-11-30].

Mark Esler et al. OpenStack — cloud-init 22.1 documentation. https:
//cloudinit.readthedocs.io/en/22.1_a/topics/datasources/openstack.
html. [Online, Accessed: 2023-9-3].

ETSI. OSM. https://osm.etsi.org/. [Online, Accessed: 2022-12-1].

ETSI. Network Functions Virtualization — Introductory White Paper. https:
//portal.etsi.org/NFV/NFV_White_Paper.pdf, 10 2012. [Online, Accessed:
2022-11-24].

ETSI. Gs nfv 002 - v1.2.1 - network functions virtualisation (nfv); architectural
framework, 12 2014a. URL https://www.etsi.org/deliver/etsi_gs/nfv/
001_099/002/01.02.01_60/gs_nfv002v010201p.pdf.

ETSI. Network Functions Virtualisation (NFV); Management and Orches-
tration. https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.
01.01_60/gs_nfv-man001v010101p.pdf, 12 2014b. [Online, Accessed: 2022-11-
24].

Rubens Figueiredo and Andreas Kassler. Bng-hal: A unified api for disaggre-
gated bngs. pages 116–119. IEEE, 11 2021. ISBN 978-1-6654-3983-1. doi:
10.1109/NFV-SDN53031.2021.9665122.

Broadband Forum. Control and user plane separation for a disaggregated broad-
band network gateway (bng). Technical report, Broadband Forum, 2020.

Martin Fowler. DSL Guide. https://martinfowler.com/dsl.html, 8 2019. [On-
line, Accessed: 2023-1-13].

GanttProject. GanttProject: free project management tool for Windows, macOS
and Linux. https://www.ganttproject.biz/. [Online, Accessed: 2022-9-29].

80

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-3/bng/configuration/guide/b-bng-cg-asr9000-73x/bng-overview.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-3/bng/configuration/guide/b-bng-cg-asr9000-73x/bng-overview.html
https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k-r7-3/bng/configuration/guide/b-bng-cg-asr9000-73x/bng-overview.html
http://hdl.handle.net/10316/83548
https://www.docker.com/
https://www.docker.com/
https://cloudinit.readthedocs.io/en/22.1_a/topics/datasources/openstack.html
https://cloudinit.readthedocs.io/en/22.1_a/topics/datasources/openstack.html
https://cloudinit.readthedocs.io/en/22.1_a/topics/datasources/openstack.html
https://osm.etsi.org/
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://martinfowler.com/dsl.html
https://www.ganttproject.biz/

References

Pete Vander Giessen, Gabor Meszaros, and Dmitrii Shcherbakov.
microstack/setup-br-ex at master - microstack - OpenDev: Free Software
Needs Free Tools. https://opendev.org/x/microstack/src/branch/master/
snap-overlay/bin/setup-br-ex, 2020. [Online, Accessed: 2023-8-30].

Andreas Gohr. Linux Manpages Online - man.cx manual pages. https://man.
cx/ksoftirqd. [Online, Accessed: 2023-7-31].

Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE Communi-
cations Magazine, 53:90–97, 2 2015. ISSN 0163-6804. doi: 10.1109/MCOM.2015.
7045396.

Hassan Hawilo, Abdallah Shami, Maysam Mirahmadi, and Rasool Asal. Nfv:
state of the art, challenges, and implementation in next generation mobile
networks (vepc). IEEE Network, 28:18–26, 11 2014. ISSN 0890-8044. doi:
10.1109/MNET.2014.6963800.

Shujun Hu, Donald E. Eastlake 3rd, Fengwei Qin, Tee Mong Chua, and Daniel
Huang. The China Mobile, Huawei, and ZTE Broadband Network Gateway
(BNG) Simple Control and User Plane Separation Protocol (S-CUSP). RFC 8772,
May 2020. URL https://www.rfc-editor.org/info/rfc8772.

iwaseyusuke. iwaseyusuke/mininet Tags | Docker Hub. https://hub.docker.
com/r/iwaseyusuke/mininet/, 3 2022. [Online, Accessed: 2022-11-30].

Sheng Jiang, Brian E. Carpenter, and Dayong Guo. An Incremental Carrier-Grade
NAT (CGN) for IPv6 Transition. RFC 6264, June 2011. URL https://www.
rfc-editor.org/info/rfc6264.

Eddie Kohler. Click. https://github.com/kohler/click. [Online, Accessed:
2022-12-1].

Ayaka Koshibe and Elena Olkhovskaya. Cluster Coordination - ONOS - Wiki.
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination, 11
2016. [Online, Accessed: 2022-12-29].

Ralf Kundel, Leonhard Nobach, Jeremias Blendin, Hans-Joerg Kolbe, Georg
Schyguda, Vladimir Gurevich, Boris Koldehofe, and Ralf Steinmetz. P4-bng:
Central office network functions on programmable packet pipelines. pages 1–
9. IEEE, 10 2019. ISBN 978-3-903176-24-9. doi: 10.23919/CNSM46954.2019.
9012666.

Ralf Kundel, Leonhard Nobach, Jeremias Blendin, Wilfried Maas, Andreas Zim-
ber, Hans-Joerg Kolbe, Georg Schyguda, Vladimir Gurevich, Rhaban Hark,
Boris Koldehofe, and Ralf Steinmetz. Openbng: Central office network func-
tions on programmable data plane hardware. International Journal of Net-
work Management, 31(1):e2134, 2021. doi: https://doi.org/10.1002/nem.2134.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2134. e2134
nem.2134.

81

https://opendev.org/x/microstack/src/branch/master/snap-overlay/bin/setup-br-ex
https://opendev.org/x/microstack/src/branch/master/snap-overlay/bin/setup-br-ex
https://man.cx/ksoftirqd
https://man.cx/ksoftirqd
https://www.rfc-editor.org/info/rfc8772
https://hub.docker.com/r/iwaseyusuke/mininet/
https://hub.docker.com/r/iwaseyusuke/mininet/
https://www.rfc-editor.org/info/rfc6264
https://www.rfc-editor.org/info/rfc6264
https://github.com/kohler/click
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination
https://onlinelibrary.wiley.com/doi/abs/10.1002/nem.2134

Chapter 10

Bob Lantz. OpenFlow - ONOS - Wiki. https://wiki.onosproject.org/display/
ONOS/OpenFlow, 1 2017a. [Online, Accessed: 2022-10-17].

Bob Lantz. Introduction to the ONOS APIs - ONOS - Wiki. https://wiki.
onosproject.org/display/ONOS/Introduction+to+the+ONOS+APIs, 2 2017b.
[Online, Accessed: 2022-11-21].

Pingping Lin and Jonathan Hart. Virtual BNG. https://wiki.onosproject.org/
display/ONOS/Virtual+BNG, 10 2015. [Online, Accessed: 2022-12-1].

Paul Mackerras. Ubuntu Manpage: pppd - Point-to-Point Protocol Daemon.
https://manpages.ubuntu.com/manpages/focal/en/man8/pppd.8.html. [On-
line, Accessed: 2023-7-7].

Mininet. Mininet: An Instant Virtual Network on Your Laptop (or Other PC) -
Mininet. https://mininet.org/. [Online, Accessed: 2022-11-28].

NEC Laboratories Europe. ClickOS - Systems and Machine Learning. http://
sysml.neclab.eu/projects/clickos/. [Online, Accessed: 2022-12-1].

Gianfranco Nencioni, Bjarne Helvik, and Poul Heegaard. Implementing the avail-
ability model of a software-defined backbone network in möbius, 11 2017.

ONAP. Offline Installer - Installation Guide — onap master documenta-
tion. https://docs.onap.org/projects/onap-oom-offline-installer/en/
latest/InstallGuide.html. [Online, Accessed: 2023-7-31].

ONF. P4 – Language Consortium. https://p4.org/. [Online, Accessed: 2023-1-
13].

ONF. Open Network Operating System (ONOS) SDN Controller for SDN/NFV
Solutions. https://opennetworking.org/onos/, 2022. [Online, Accessed:
2022-9-30].

OpenDayLight. Service Function Chaining User Guide — ODL SFC master
documentation. https://docs.opendaylight.org/projects/sfc/en/latest/
user-guide.html#sfc-classifier-user-guide. [Online, Accessed: 2023-8-
31].

OpenInfra. OpenStack Releases: Mitaka. https://releases.openstack.org/
mitaka/index.html, a. [Online, Accessed: 2022-11-30].

OpenInfra. Open Source Cloud Computing Infrastructure - OpenStack. https:
//www.openstack.org/, b. [Online, Accessed: 2022-11-30].

OpenInfra. Tacker - OpenStack. https://wiki.openstack.org/wiki/Tacker, c.
[Online, Accessed: 2022-11-30].

opennetworkinglab. Mastership Load Balancer. https://github.com/
opennetworkinglab/onos/tree/master/apps/mlb, 10 2018. [Online, Accessed:
2022-11-21].

82

https://wiki.onosproject.org/display/ONOS/OpenFlow
https://wiki.onosproject.org/display/ONOS/OpenFlow
https://wiki.onosproject.org/display/ONOS/Introduction+to+the+ONOS+APIs
https://wiki.onosproject.org/display/ONOS/Introduction+to+the+ONOS+APIs
https://wiki.onosproject.org/display/ONOS/Virtual+BNG
https://wiki.onosproject.org/display/ONOS/Virtual+BNG
https://manpages.ubuntu.com/manpages/focal/en/man8/pppd.8.html
https://mininet.org/
http://sysml.neclab.eu/projects/clickos/
http://sysml.neclab.eu/projects/clickos/
https://docs.onap.org/projects/onap-oom-offline-installer/en/latest/InstallGuide.html
https://docs.onap.org/projects/onap-oom-offline-installer/en/latest/InstallGuide.html
https://p4.org/
https://opennetworking.org/onos/
https://docs.opendaylight.org/projects/sfc/en/latest/user-guide.html#sfc-classifier-user-guide
https://docs.opendaylight.org/projects/sfc/en/latest/user-guide.html#sfc-classifier-user-guide
https://releases.openstack.org/mitaka/index.html
https://releases.openstack.org/mitaka/index.html
https://www.openstack.org/
https://www.openstack.org/
https://wiki.openstack.org/wiki/Tacker
https://github.com/opennetworkinglab/onos/tree/master/apps/mlb
https://github.com/opennetworkinglab/onos/tree/master/apps/mlb

References

OpenStack. Welcome to Glance’s documentation! — glance 27.0.0.0b3.dev24 doc-
umentation. https://docs.openstack.org/keystone/latest/, 2019a. [On-
line, Accessed: 2023-9-3].

OpenStack. Horizon: The OpenStack Dashboard Project — horizon 23.2.1.dev21
documentation. https://docs.openstack.org/horizon/latest/, 2019b. [On-
line, Accessed: 2023-9-3].

OpenStack. Keystone, the OpenStack Identity Service — keystone 23.1.0.dev62
documentation. https://docs.openstack.org/keystone/latest/, 2019c.
[Online, Accessed: 2023-9-3].

OpenStack. OpenStack Docs: Hypervisors. https://docs.openstack.org/
ocata/config-reference/compute/hypervisors.html, 8 2019. [Online, Ac-
cessed: 2022-12-18].

OpenStack. Metadata service — nova 27.1.0.dev168 documentation. https:
//docs.openstack.org/nova/latest/admin/metadata-service.html, 2020a.
[Online, Accessed: 2023-9-3].

OpenStack. Welcome to Neutron’s documentation! — Neutron 23.0.0.0b4.dev16
documentation. https://docs.openstack.org/neutron/latest/, 2020b. [On-
line, Accessed: 2023-9-3].

OpenStack. OpenStack Docs: Networking (neutron) concepts. https://docs.
openstack.org/neutron/rocky/install/concepts.html, 2022a. [Online, Ac-
cessed: 2023-9-3].

OpenStack. OpenStack Docs: Service function chaining. https://docs.
openstack.org/neutron/queens/admin/config-sfc.html, 1 2022b. [Online,
Accessed: 2022-12-1].

OpenStack. OpenStack Compute (nova) — nova 27.1.0.dev168 documentation.
https://docs.openstack.org/nova/latest/, 2023a. [Online, Accessed: 2023-
9-3].

OpenStack. Provider network — Installation Guide docu-
mentation. https://docs.openstack.org/install-guide/
launch-instance-networks-provider.html, 2023b. [Online, Accessed:
2023-9-3].

Tomasz Osiński, Mateusz Kossakowski, Mateusz Pawlik, Jan Palimąka, Michał
Sala, and Halina Tarasiuk. Unleashing the performance of virtual bng by of-
floading data plane to a programmable asic. In Proceedings of the 3rd P4 Work-
shop in Europe, EuroP4’20, page 54–55, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450381819. doi: 10.1145/3426744.
3431325. URL https://doi.org/10.1145/3426744.3431325.

OSM. OSM Packages. https://osm.etsi.org/gitlab/vnf-onboarding/
osm-packages, a. [Online, Accessed: 2023-7-1].

83

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/horizon/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/ocata/config-reference/compute/hypervisors.html
https://docs.openstack.org/ocata/config-reference/compute/hypervisors.html
https://docs.openstack.org/nova/latest/admin/metadata-service.html
https://docs.openstack.org/nova/latest/admin/metadata-service.html
https://docs.openstack.org/neutron/latest/
https://docs.openstack.org/neutron/rocky/install/concepts.html
https://docs.openstack.org/neutron/rocky/install/concepts.html
https://docs.openstack.org/neutron/queens/admin/config-sfc.html
https://docs.openstack.org/neutron/queens/admin/config-sfc.html
https://docs.openstack.org/nova/latest/
https://docs.openstack.org/install-guide/launch-instance-networks-provider.html
https://docs.openstack.org/install-guide/launch-instance-networks-provider.html
https://doi.org/10.1145/3426744.3431325
https://osm.etsi.org/gitlab/vnf-onboarding/osm-packages
https://osm.etsi.org/gitlab/vnf-onboarding/osm-packages

Chapter 10

OSM. ANNEX 2: Reference of OSM Client commands and library. https://osm.
etsi.org/docs/user-guide/latest/10-osm-client-commands-reference.
html, b. [Online, Accessed: 2023-7-1].

OSM. Installing OSM. https://osm.etsi.org/docs/user-guide/latest/
03-installing-osm.html, c. [Online, Accessed: 2023-7-7].

OSM. Advanced instantiation: using instantiation parameters.
https://osm.etsi.org/docs/user-guide/latest/05-osm-usage.html#
advanced-instantiation-using-instantiation-parameters, d. [Online,
Accessed: 2023-7-22].

OSM. 4. How to Set Up Virtual Infrastructure Managers (VIMs) — Open Source
MANO documentation. https://osm.etsi.org/docs/user-guide/latest/
04-vim-setup.html, e. [Online, Accessed: 2023-7-1].

James Page, Pete Vander Giessen, Peter Matulis, Zuul, Nikolay Vinogradov, and
Corey Bryant. microstack/README.md at master - microstack - OpenDev:
Free Software Needs Free Tools. https://opendev.org/x/microstack/src/
branch/master/README.md, 2020. [Online, Accessed: 2023-8-30].

Jorge Proença, Tiago Cruz, Paulo Simões, and Edmundo Monteiro. Virtualization
of residential gateways: A comprehensive survey, 4 2019. ISSN 1553877X.

P. Quinn and T. Nadeau. Problem Statement for Service Function Chaining.
RFC 7498, RFC Editor, April 2015. URL http://www.rfc-editor.org/rfc/
rfc7498.txt. http://www.rfc-editor.org/rfc/rfc7498.txt.

P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH). RFC 8300,
RFC Editor, January 2018.

Francisco-Javier Ramon Salguero et al. README.md · master · osm
/ NG-UI · GitLab. https://osm.etsi.org/docs/developer-guide/
02-developer-how-to.html, 2020. [Online, Accessed: 2023-9-3].

Ken Schwaber and Jeff Sutherland. Scrum Guide: The Definitive Guide to Scrum: The
Rules of the Game. 11 2020. URL https://scrumguides.org/docs/scrumguide/
v2020/2020-Scrum-Guide-US.pdf.

Gaganpreet Singh. Common protocols used in Southbound APIs. https://www.
telecomtrainer.com/common-protocols-used-in-southbound-apis/, 2023.
[Online, Accessed: 2023-9-3].

SteveYi. Implementing Virtual WAN Multi-PPPoe on Linux. https://blog.
steveyi.net/en/posts/multi-pppoe-in-linux/, 2021. [Online, Accessed:
2023-7-7].

Docker Team. registry - Official Image | Docker Hub. https://hub.docker.com/
_/registry, 11 2022. [Online, Accessed: 2022-11-30].

The Linux Foundation. Home - ONAP. https://www.onap.org/. [Online, Ac-
cessed: 2022-12-1].

84

https://osm.etsi.org/docs/user-guide/latest/10-osm-client-commands-reference.html
https://osm.etsi.org/docs/user-guide/latest/10-osm-client-commands-reference.html
https://osm.etsi.org/docs/user-guide/latest/10-osm-client-commands-reference.html
https://osm.etsi.org/docs/user-guide/latest/03-installing-osm.html
https://osm.etsi.org/docs/user-guide/latest/03-installing-osm.html
https://osm.etsi.org/docs/user-guide/latest/05-osm-usage.html#advanced-instantiation-using-instantiation-parameters
https://osm.etsi.org/docs/user-guide/latest/05-osm-usage.html#advanced-instantiation-using-instantiation-parameters
https://osm.etsi.org/docs/user-guide/latest/04-vim-setup.html
https://osm.etsi.org/docs/user-guide/latest/04-vim-setup.html
https://opendev.org/x/microstack/src/branch/master/README.md
https://opendev.org/x/microstack/src/branch/master/README.md
http://www.rfc-editor.org/rfc/rfc7498.txt
http://www.rfc-editor.org/rfc/rfc7498.txt
http://www.rfc-editor.org/rfc/rfc7498.txt
https://osm.etsi.org/docs/developer-guide/02-developer-how-to.html
https://osm.etsi.org/docs/developer-guide/02-developer-how-to.html
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf
https://www.telecomtrainer.com/common-protocols-used-in-southbound-apis/
https://www.telecomtrainer.com/common-protocols-used-in-southbound-apis/
https://blog.steveyi.net/en/posts/multi-pppoe-in-linux/
https://blog.steveyi.net/en/posts/multi-pppoe-in-linux/
https://hub.docker.com/_/registry
https://hub.docker.com/_/registry
https://www.onap.org/

References

The Linux Foundation. networking:iproute2 [Wiki]. https://wiki.
linuxfoundation.org/networking/iproute2, 1 2022. [Online, Accessed: 2022-
11-30].

Mary Thengvall and Ain Indermitte. CORD - Community - Confluence. https:
//wiki.opennetworking.org/display/COM/CORD, 8 2021a. [Online, Accessed:
2022-12-1].

Mary Thengvall and Ain Indermitte. VyOS – Open source router and firewall
platform. https://vyos.io/use-cases/bras, 8 2021b. [Online, Accessed:
2022-12-1].

Thomas Vachuska. Basic ONOS Tutorial - ONOS - Wiki. https://wiki.
onosproject.org/display/ONOS/Basic+ONOS+Tutorial, 2 2019. [Online, Ac-
cessed: 2022-11-28].

VMWare. What is Software-Defined Networking (SDN)? | VMware
Glossary. https://www.vmware.com/topics/glossary/content/
software-defined-networking.html, 2022. [Online, Accessed: 2022-10-
17].

Vyos. vyos-vm-images. https://github.com/vyos/vyos-vm-images, a. [Online,
Accessed: 2023-7-31].

Vyos. Build VyOS — VyOS 1.3.x (equuleus) documentation. https://docs.vyos.
io/en/equuleus/contributing/build-vyos.html, b. [Online, Accessed: 2023-
7-31].

VyOS. VyOS cloud-init — VyOS 1.3.x (equuleus) documentation. https://docs.
vyos.io/en/equuleus/automation/cloud-init.html, a. [Online, Accessed:
2023-7-1].

VyOS. Command Scripting — VyOS 1.3.x (equuleus) documentation. https:
//docs.vyos.io/en/equuleus/automation/command-scripting.html, b. [On-
line, Accessed: 2023-7-1].

Xilinx. What is an FPGA? Field Programmable Gate Array. https://www.xilinx.
com/products/silicon-devices/fpga/what-is-an-fpga.html. [Online, Ac-
cessed: 2023-1-13].

Bo Yi, Xingwei Wang, Keqin Li, Sajal k. Das, and Min Huang. A comprehensive
survey of network function virtualization. Computer Networks, 133:212–262, 3
2018. ISSN 13891286. doi: 10.1016/j.comnet.2018.01.021.

Eder Ollora Zaballa. Automating cluster creation. https://wiki.onosproject.
org/display/ONOS/Automating+cluster+creation, 10 2020. [Online, Ac-
cessed: 2022-11-30].

85

https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.opennetworking.org/display/COM/CORD
https://wiki.opennetworking.org/display/COM/CORD
https://vyos.io/use-cases/bras
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial
https://wiki.onosproject.org/display/ONOS/Basic+ONOS+Tutorial
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://github.com/vyos/vyos-vm-images
https://docs.vyos.io/en/equuleus/contributing/build-vyos.html
https://docs.vyos.io/en/equuleus/contributing/build-vyos.html
https://docs.vyos.io/en/equuleus/automation/cloud-init.html
https://docs.vyos.io/en/equuleus/automation/cloud-init.html
https://docs.vyos.io/en/equuleus/automation/command-scripting.html
https://docs.vyos.io/en/equuleus/automation/command-scripting.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://wiki.onosproject.org/display/ONOS/Automating+cluster+creation
https://wiki.onosproject.org/display/ONOS/Automating+cluster+creation

Appendices

87

Appendix A

Work Timeline Gantt Chart

Figure A.1: Planned Work Timeline

89

Appendix A

Figure A.2: Actual Work Timeline

90

Appendix B

VyOS Configuration Files

Listing B.1: VyOS VNF descriptor file
vnfd :

d e s c r i p t i o n : A v i r t u a l BNG
ext −cpd :
− id : vnf−mgmt−ext

in t −cpd :
cpd : vdu−eth0 − i n t
vdu−id : vyos−VM

− id : vnf− i n t e r n a l −ext
in t −cpd :

cpd : vdu−eth1 − i n t
vdu−id : vyos−VM

− id : vnf−externa l −ext
in t −cpd :

cpd : vdu−eth2 − i n t
vdu−id : vyos−VM

id : vyos−vnf
mgmt−cp : vnf−mgmt−ext
product −name : vyos−vnf
sw−image−desc :
− id : vyos − 1 . 3 . 3

image : vyos − 1 . 3 . 3
name : vyos − 1 . 3 . 3

vdu :
− cloud − i n i t − f i l e : vyos−userdata

id : vyos−VM
int −cpd :
− id : vdu−eth0 − i n t

v i r t u a l −network− i n t e r f a c e −requirement :
− name : vdu−eth0

p o s i t i o n : 0
v i r t u a l − i n t e r f a c e :

type : PARAVIRT

91

Appendix B

− id : vdu−eth1 − i n t
v i r t u a l −network− i n t e r f a c e −requirement :
− name : vdu−eth1

p o s i t i o n : 1
v i r t u a l − i n t e r f a c e :

type : PARAVIRT
− id : vdu−eth2 − i n t

v i r t u a l −network− i n t e r f a c e −requirement :
− name : vdu−eth2

p o s i t i o n : 2
v i r t u a l − i n t e r f a c e :

type : PARAVIRT
name : vyos−VM
supplemental −boot −data :

boot −data −drive : t rue
sw−image−desc : vyos − 1 . 3 . 3
v i r t u a l −compute−desc : vyos−VM−compute
v i r t u a l −storage −desc :
− vyos−VM−storage

vers ion : 1 . 0
v i r t u a l −compute−desc :
− id : vyos−VM−compute

v i r t u a l −cpu :
num− v i r t u a l −cpu : 2

v i r t u a l −memory :
s i z e : 2 . 0

v i r t u a l −storage −desc :
− id : vyos−VM−storage

s ize −of −s torage : 10

Listing B.2: VyOS cloud-init file
#cloud −conf ig
vyos_config_commands :

− s e t system host −name ’ vbng ’
− s e t i n t e r f a c e s e t h e r n e t eth0 ip disable −forwarding
− s e t i n t e r f a c e s e t h e r n e t eth2 dhcp−options no−defaul t −

route
w r i t e _ f i l e s :

− path : /opt/vyat ta/ e t c /conf ig/ s c r i p t s /vyos−postconf ig −
bootup . s c r i p t

owner : root : v y a t t a c f g
permissions : ’0775 ’
content : |

#!/ bin/vbash
source /opt/vyat ta/ e t c /f u n c t i o n s/ s c r i p t −template

check user group to avoid c o n f i g u r a t i o n lockup
i f [" $ (id −g −n) " != ’ vyat tac fg ’] ; then

92

VyOS Configuration Files

exec sg v y a t t a c f g −c "/ bin/vbash $ (readl ink − f $0
) $@"

e x i t 0
f i

conf igure

setup pppoe
s e t s e r v i c e pppoe−server a u t h e n t i c a t i o n radius

server { { radius_ ip } } key ’ openstack ’
s e t s e r v i c e pppoe−server a u t h e n t i c a t i o n mode radius
s e t s e r v i c e pppoe−server i n t e r f a c e eth2
s e t s e r v i c e pppoe−server gateway−address

1 9 2 . 1 6 8 . 0 . 1
s e t s e r v i c e pppoe−server name−server 8 . 8 . 8 . 8
s e t s e r v i c e pppoe−server c l i e n t −ip −pool s t a r t

1 9 2 . 1 6 8 . 0 . 2
s e t s e r v i c e pppoe−server c l i e n t −ip −pool stop

1 9 2 . 1 6 8 . 0 . 2 5 4

enable r a t e l i m i t i n g using radius
s e t s e r v i c e pppoe−server a u t h e n t i c a t i o n radius rate

− l i m i t a t t r i b u t e F i l t e r −Id
s e t s e r v i c e pppoe−server a u t h e n t i c a t i o n radius rate

− l i m i t enable

enable snat
s e t nat source r u l e 100 outbound− i n t e r f a c e eth1
s e t nat source r u l e 100 source address

1 9 2 . 1 6 8 . 0 . 2 − 1 9 2 . 1 6 8 . 0 . 2 5 4
s e t nat source r u l e 100 t r a n s l a t i o n address

masquerade

block users from ac ce s s i n g r e s t r i c t e d networks
cidr_mngt=$ (ip −o − f i n e t addr show eth0 | awk ’ {

p r i n t $4 } ’)
c idr_provider=$ (ip −o − f i n e t addr show eth1 | awk

’ { p r i n t $4 } ’)
s e t f i r e w a l l name BLOCK_CLIENTS defaul t − a c t i o n

accept
s e t f i r e w a l l name BLOCK_CLIENTS r u l e 10 a c t i o n drop
s e t f i r e w a l l name BLOCK_CLIENTS r u l e 10 d e s t i n a t i o n

address $c idr_provider
s e t f i r e w a l l name BLOCK_CLIENTS r u l e 10 protoco l

a l l
s e t f i r e w a l l name BLOCK_CLIENTS r u l e 10 source

address 1 9 2 . 1 6 8 . 0 . 2 − 1 9 2 . 1 6 8 . 0 . 2 5 4
s e t f i r e w a l l name BLOCK_CLIENTS r u l e 11 a c t i o n drop

93

Appendix B

s e t f i r e w a l l name BLOCK_CLIENTS r u l e 11 d e s t i n a t i o n
address $cidr_mngt

s e t f i r e w a l l name BLOCK_CLIENTS r u l e 11 protoco l
a l l

s e t i n t e r f a c e s e t h e r n e t eth1 f i r e w a l l out name
BLOCK_CLIENTS

commit
e x i t

Listing B.3: VyOS NS descriptor file
nsd :

nsd :
− d e s c r i p t i o n : S in g le VyOS BNG VNF

df :
− id : defaul t −df

vnf− p r o f i l e :
− id : VyOS Router

v i r t u a l −l ink − c o n n e c t i v i t y :
− c o n s t i t u e n t −cpd−id :

− c o n s t i t u e n t −base −element −id : VyOS Router
c o n s t i t u e n t −cpd−id : vnf−mgmt−ext

v i r t u a l −l ink − p r o f i l e −id : mgmtnet
− c o n s t i t u e n t −cpd−id :

− c o n s t i t u e n t −base −element −id : VyOS Router
c o n s t i t u e n t −cpd−id : vnf− i n t e r n a l −ext

v i r t u a l −l ink − p r o f i l e −id : i n t e r n a l
− c o n s t i t u e n t −cpd−id :

− c o n s t i t u e n t −base −element −id : VyOS Router
c o n s t i t u e n t −cpd−id : vnf−externa l −ext

v i r t u a l −l ink − p r o f i l e −id : e x t e r n a l
vnfd−id : vyos−vnf

id : vyos−ns
name : vyos−ns
vers ion : 1 . 0
v i r t u a l −l ink −desc :
− id : mgmtnet

mgmt−network : t rue
− id : i n t e r n a l
− id : e x t e r n a l
vnfd−id :
− vyos−vnf

Listing B.4: Configuration file for VyOS’ deployment
{

additionalParamsForVnf :
[

{

94

VyOS Configuration Files

member−vnf−index : "VyOS Router " ,
addit ionalParams :

{
radius_ ip : " 1 9 2 . 1 6 8 . 2 2 2 . 3 "

} ,
} ,

] ,
vld :

[
{ name : i n t e r n a l , vim−network−name : provider } ,
{ name : ex terna l , vim−network−name : a c c e s s } ,

] ,
}

95

Appendix C

RADIUS Configuration Files

Listing C.1: RADIUS VNF descriptor file
vnfd :

d e s c r i p t i o n : A RADIUS VNF backed by a SQL Database
df :

− id : defaul t −df
i n s t a n t i a t i o n − l e v e l :

− id : defaul t − i n s t a n t i a t i o n − l e v e l
vdu− l e v e l :

− number−of − i n s t a n c e s : 1
vdu−id : radius −VM

vdu− p r o f i l e :
− id : radius −VM

min−number−of − i n s t a n c e s : 1
ext −cpd :

− id : vnf−mgnt−ext
in t −cpd :

cpd : vdu−eth0 − i n t
vdu−id : radius −VM

− id : vnf−cp0−ext
in t −cpd :

cpd : radius −VM−eth_6MmH
vdu−id : radius −VM

id : radius −sql −vnf
mgmt−cp : vnf−mgnt−ext
product −name : radius −sql −vnf
sw−image−desc :

− id : ubuntu18 . 0 4
image : ubuntu18 . 0 4
name : ubuntu18 . 0 4

vdu :
− cloud − i n i t − f i l e : user −data

id : radius −VM
int −cpd :

97

Appendix C

− id : vdu−eth0 − i n t
v i r t u a l −network− i n t e r f a c e −requirement :

− name : vdu−eth0
v i r t u a l − i n t e r f a c e :

type : PARAVIRT
− id : radius −VM−eth_6MmH

v i r t u a l −network− i n t e r f a c e −requirement :
− name : radius −VM−eth_6MmH

p o s i t i o n : 1
v i r t u a l − i n t e r f a c e :

type : PARAVIRT
name : radius −VM
supplemental −boot −data :

boot −data −drive : t rue
sw−image−desc : ubuntu18 . 0 4
v i r t u a l −compute−desc : radius −VM−compute
v i r t u a l −storage −desc :

− radius −s torage
vers ion : ’1 ’
v i r t u a l −compute−desc :

− id : radius −VM−compute
v i r t u a l −cpu :

num− v i r t u a l −cpu : 2
v i r t u a l −memory :

s i z e : 2
v i r t u a l −storage −desc :

− id : radius −s torage
s ize −of −s torage : ’10 ’

Listing C.2: RADIUS NS descriptor file
nsd :

nsd :
− d e s c r i p t i o n : radius server with s q l database

df :
− id : defaul t −df

vnf− p r o f i l e :
− id : radius server

v i r t u a l −l ink − c o n n e c t i v i t y :
− c o n s t i t u e n t −cpd−id :

− c o n s t i t u e n t −base −element −id : radius
server

c o n s t i t u e n t −cpd−id : vnf−mgnt−ext
v i r t u a l −l ink − p r o f i l e −id : mgntnet

− c o n s t i t u e n t −cpd−id :
− c o n s t i t u e n t −base −element −id : radius

server
c o n s t i t u e n t −cpd−id : vnf−cp0−ext

v i r t u a l −l ink − p r o f i l e −id : i n t e r n a l

98

RADIUS Configuration Files

vnfd−id : radius −sql −vnf
id : radius −sql −ns
name : radius −sql −ns
vers ion : ’ 1 . 0 ’
v i r t u a l −l ink −desc :

− id : mgntnet
mgmt−network : t rue

− id : i n t e r n a l
mgmt−network : f a l s e

vnfd−id :
− radius −sql −vnf

Listing C.3: RADIUS cloud-init file
#cloud −conf ig
hostname : radius
ssh_pwauth : t rue
chpasswd : { expire : Fa l se }
password : password
packages :

− f r e e r a d i u s
− freeradius −mysql
− f reeradius − u t i l s
− mysql−server

package_update : t rue
package_reboot_ i f_required : t rue
runcmd :

− mysql −uroot −e "UPDATE mysql . user SET
a u t h e n t i c a t i o n _ s t r i n g =PASSWORD(’ $rootpass ’) WHERE User
= ’ root ’ ; "

− mysql −uroot −e "DELETE FROM mysql . user WHERE User = ’
root ’ AND Host NOT IN (’ l o c a l h o s t ’ , ’ 1 2 7 . 0 . 0 . 1 ’ ,
’ : : 1 ’) ; "

− mysql −uroot −e "DELETE FROM mysql . user WHERE User = ’ ’ ; "
− mysql −uroot −e "DELETE FROM mysql . db WHERE Db= ’ t e s t ’

OR Db= ’ t e s t _ % ’ ; "
− mysql −uroot −e "FLUSH PRIVILEGES ; "
− mysql −uroot −e "CREATE DATABASE radius ; "
− mysql −uroot radius < / e t c / f r e e r a d i u s /3.0/mods−conf ig/

s q l /main/mysql/schema . s q l
− mysql −uroot radius < / e t c / f r e e r a d i u s /3.0/mods−conf ig/

s q l /main/mysql/setup . s q l
− mysql −uroot radius −e "INSERT INTO nas VALUES (NULL ,

’ 1 9 2 . 1 6 8 . 2 2 2 . 0 / 2 4 ’ , ’ openstack ’ , ’ other ’ , NULL, ’
openstack ’ , NULL, NULL, ’ Provider Network ’) ; "

− sed − i ’ s/\$ { modules \. s q l \ . d i a l e c t \}/mysql/g ’ / e t c /
f r e e r a d i u s /3.0/mods− a v a i l a b l e /sq lcounter

− sed − i ’ s/ d i a l e c t = " s q l i t e "/ d i a l e c t = " mysql "/g ’ / e t c /

99

Appendix C

f r e e r a d i u s /3.0/mods− a v a i l a b l e / s q l
− sed − i ’ s/dr iver = " r lm_sql_nul l "/ dr iver = "

rlm_sql_mysql "/g ’ / e t c / f r e e r a d i u s /3.0/mods− a v a i l a b l e /
s q l

− sed − i ’/^\ s *#\ s\+server = " l o c a l h o s t "/ s /#//’ / e t c /
f r e e r a d i u s /3.0/mods− a v a i l a b l e / s q l

− sed − i ’/^\ s *#\ s\+port = 3306/ s /#//’ / e t c / f r e e r a d i u s
/3.0/mods− a v a i l a b l e / s q l

− sed − i ’/^\ s *#\ s\+login = " radius "/ s /#//’ / e t c /
f r e e r a d i u s /3.0/mods− a v a i l a b l e / s q l

− sed − i ’/^\ s *#\ s\+password = " radpass "/ s /#//’ / e t c /
f r e e r a d i u s /3.0/mods− a v a i l a b l e / s q l

− sed − i ’/^\ s *#\ s\+ r e a d _ c l i e n t s /s /#//’ / e t c / f r e e r a d i u s
/3.0/mods− a v a i l a b l e / s q l

− sed − i ’ s /^\#\(\ s \+\) da i ly$ /\1 dai lycounter / ’ / e t c /
f r e e r a d i u s /3.0/ radiusd . conf

− ln −s . . / mods− a v a i l a b l e / s q l / e t c / f r e e r a d i u s /3.0/mods−
enabled/ s q l

− ln −s . . / mods− a v a i l a b l e /sq lcounter / e t c / f r e e r a d i u s /3.0/
mods−enabled/sq lcounter

− sys temct l r e s t a r t f r e e r a d i u s

Listing C.4: Configuration file for RADIUS’ deployment
{

vld :
[

{
name : i n t e r n a l ,
vim−network−name : provider ,
vnfd−connection −point − r e f :

[
{

member−vnf−index − r e f : " radius server " ,
vnfd−connection −point − r e f : vnf−cp0−ext ,
ip −address : " 1 9 2 . 1 6 8 . 2 2 2 . 3 " ,

}
] ,

} ,
] ,

}

100

Appendix D

Add MicroStack to OSM script

Listing D.1: Commands used to launch the instances
! /bin/bash
hosts =(" vim1 ")

f o r host in " $ { hosts [@] } "
do

echo " Configuring microstack f o r $host "

echo " Updating d e f a u l t s e c u r i t y group in MicroStack to
allow a l l a c c e s s "

f o r i in $ (ssh $host microstack . openstack s e c u r i t y
group l i s t | awk ’/ d e f a u l t /{ p r i n t $2 } ’) ; do

f o r PROTO in icmp tcp udp ; do
echo " $PROTO i n g r e s s "
CHECK=$ (ssh $host microstack . openstack s e c u r i t y

group r u l e c r e a t e $ i −−protoco l $PROTO −−
remote−ip 0 . 0 . 0 . 0 / 0 2>&1)

i f [$? −ne 0] ; then
i f [[$CHECK != * " 4 0 9 " *]] ; then

echo " Error c r e a t i n g i n g r e s s r u l e f o r
$PROTO"

echo $CHECK
f i

f i
done

done

ssh $host microstack . openstack network show osm−ext &>/
dev/n u l l

i f [$? −ne 0] ; then
echo " Creat ing osm−ext network with router to

bridge to MicroStack e x t e r n a l network "

101

Appendix D

ssh $host microstack . openstack network c r e a t e −−
enable −−no−share osm−ext

ssh $host microstack . openstack subnet c r e a t e osm−
ext −subnet −−network osm−ext −−dns−nameserver
8 . 8 . 8 . 8 −−subnet −range 1 7 2 . 3 0 . 0 . 0 / 2 4

ssh $host microstack . openstack router c r e a t e
ex terna l −router

ssh $host microstack . openstack router add subnet
ex terna l −router osm−ext −subnet

ssh $host microstack . openstack router s e t −−
externa l −gateway e x t e r n a l ex terna l −router

f i

i f ! ssh $host [− f ~/. ssh/microstack] ; then
echo " Generating microstack keypair "
ssh $host ’ ssh −keygen − t rsa −N " " − f ~/. ssh/

microstack ’
f i

ssh $host microstack . openstack keypair show microstack
&>/dev/n u l l

i f [$? −eq 0] ; then
echo " Keypair e x i s t s , d e l e t i n g . . . "
ssh $host microstack . openstack keypair d e l e t e

microstack
f i

echo " Generating keypair "
ssh $host microstack . openstack keypair c r e a t e −−public −

key ~/. ssh/microstack . pub microstack

echo " Creat ing VIM microstack − s i t e in OSM"
scp $host :/ var/snap/microstack/common/ e t c /microstack . rc

.
. microstack . rc

osm vim− d e l e t e microstack − s i t e −$host &>/dev/n u l l
osm vim− c r e a t e \

−−name microstack − s i t e −$host \
−−user "$OS_USERNAME" \
−−password "$OS_PASSWORD" \
−−auth_url "$OS_AUTH_URL" \
−−tenant "$OS_USERNAME" \
−−account_type openstack \
−−conf ig = ’ { u s e _ f l o a t i n g _ i p : True ,

insecure : True ,
keypair : microstack ,
management_network_name : osm−ext } ’

102

Add MicroStack to OSM script

rm microstack . rc
echo " "

done

103

Appendix E

Validation tests

The tests conducted to validate the prototype are visible in table E.1. For clari-
fication, the term client used refers to a device connecting to the RADIUS server
for authentication (VyOS in this case), a user is a person registered in RADIUS’
database and a subscriber refers to a device connected to the prototype via a PP-
PoE connection.

Table E.1: Validation tests

ID Requirement Details Result

Test 1 FR-006

Description: Attempt to authenticate using
RADIUS from a valid client, with correct se-
cret
Expected Behaviour: Authentication is suc-
cessful
Observed Behaviour: Authentication is
successful

Pass

Test 2 FR-006

Description: Attempt to authenticate using
RADIUS from a valid client, with incorrect
secret
Expected Behaviour: Authentication is not
successful
Observed Behaviour: Authentication is not
successful

Pass

Test 3 FR-006

Description: Attempt to authenticate using
RADIUS from an invalid client
Expected Behaviour: Authentication is not
successful
Observed Behaviour: Authentication is not
successful

Pass

105

Appendix E

Test 4 FR-002

Description: Establish PPPoE connection
with correct credentials
Expected Behaviour: PPPoE connection is
established
Observed Behaviour: PPPoE connection is
established

Pass

Test 5 FR-002

Description: Establish a PPPoE connection
with wrong credentials
Expected Behaviour: PPPoE connection is
not established
Observed Behaviour: PPPoE connection is
not established

Pass

Test 6 FR-003

Description: Establish a PPPoE connection
Expected Behaviour: IP assigned is within
the limits established
Observed Behaviour: IP assigned is within
the limits established

Pass

Test 7 FR-003

Description: Establish more PPPoE connec-
tions than there are available IP addresses
Expected Behaviour: IP addresses are not
repeated
Observed Behaviour: IP addresses are not
repeated

Pass

Test 8 FR-006

Description: Create a new user at runtime
Expected Behaviour: The new user is able
to log in without the need of restarting the
vBNG
Observed Behaviour: The new user is able
to log in without the need of restarting the
vBNG

Pass

Test 9 FR-008

Description: As a subscriber, attempt to ac-
cess the RADIUS server.
Expected Behaviour: Subscriber cannot ac-
cess the server
Observed Behaviour: Subscriber cannot ac-
cess the server

Pass

Test 10 FR-008

Description: Attempt to access the radius
server from the VyOS instance.
Expected Behaviour: Access is allowed
Observed Behaviour: Access is allowed

Pass

Test 11 FR-008 and
FR-001

Description: As a subscriber, attempt to ac-
cess the iperf server.
Expected Behaviour: Subscriber can access
the server
Observed Behaviour: Subscriber can access
the server

Pass

106

Validation tests

Test 12 FR-008 and
FR-001

Description: As a subscriber, attempt to ac-
cess the internet
Expected Behaviour: Subscriber can access
the internet
Observed Behaviour: Subscriber can access
the internet

Pass

107

	Introduction
	Context
	Goals
	Document Structure
	Contributions

	Background
	Software-Defined Networking
	Data Plane
	Control Plane
	OpenFlow
	Open Network Operating System

	Network Function Virtualization
	NFV Platforms
	Catalog

	Service Function Chaining
	Network Service Header
	Classifier
	Service Function Forwarder

	State of the Art
	The NFV-enabled vBNG
	The role of NFV
	The role of SDN
	The role of SFC

	Approaches
	ClickOS
	BNG-HAL
	ONOS
	VyOS
	Open Network Automation Platform
	Open Source MANO
	P4

	Chapter Summary

	Planning
	Methodology
	Timeline
	Risks

	Preliminary Work
	Test scenario
	Testbed Setup
	Datacenter Node
	Traffic Shaper
	Docker Registry

	Test Specification
	Test 1 - Stable scenario
	Test 2 - Controllers failure in one region
	Test 3 - Latency tolerance awareness
	Test 4 - Latency tolerance awareness (cont.)
	Test 5 - Shutting down two ONOS instances from a region
	Test 6 - Shutting down two ONOS instances from a region (cont.)

	Results
	Test 1 - Stable scenario
	Test 2 - Controllers failure in one region
	Test 3 - Latency tolerance awareness
	Test 4 - Latency tolerance awareness (cont.)
	Test 5 - Shutting down two ONOS instances from a region
	Test 6 - Shutting down two ONOS instances from a region (cont.)

	Difficulties
	Discussion

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Design Constraints
	Threshold of Success

	System architecture
	Platform Architecture
	vBNG Architecture

	Implementation
	Tools Used
	Microstack
	OpenSource MANO
	VyOS
	Image
	Descriptors

	RADIUS
	Image
	Descriptors

	Prototype

	Testing
	Test Scenario
	Testbed Setup
	First Testbed - MicroStack
	Second Testbed - Non-nested Virtualization
	Difficulties and Limitations

	Test Definition
	Test 1- Bandwidth
	Test 2- Resource Utilization

	Test Results
	Test 1- Bandwidth
	Test 2- Resource Utilization

	Requirement Validation Summary
	Functional Requirements
	Non-Functional Requirements

	Conclusion

	Conclusion
	Conclusions
	Future Work

	Appendix Work Timeline Gantt Chart
	Appendix VyOS Configuration Files
	Appendix RADIUS Configuration Files
	Appendix Add MicroStack to OSM script
	Appendix Validation tests

