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juntas e partilhámos momentos inesquećıveis, a vida vai ser sempre mais bonita com

vocês.

O obrigada mais especial ao Artur, obrigada por todo o amor, por partilharmos a

vida e sonhos.

Por fim, um obrigada de coração cheio à minha irmã, à minha mãe, e ao meu pai.
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Resumo

A indústria farmacêutica desempenha um papel vital na sociedade, fornecendo

medicamentos essenciais e melhorando a qualidade de vida das pessoas. Além disso,

é responsável por garantir que os medicamentos são fornecidos no momento e local

correto e na quantidade ideal. No entanto, esta indústria tem vindo a enfrentar

pressões decorrentes da mudança de paradigmas e da evolução das tendências e pre-

ocupações da sociedade. As cadeias de abastecimento farmacêuticas distinguem-se

das outras cadeias de abastecimento pelas suas caracteŕısticas únicas, uma vez que

os medicamentos são produtos cŕıticos. Mesmo a mais pequena perturbação numa

cadeia de abastecimento farmacêutica pode conduzir a crises graves, como eviden-

ciado pela recente pandemia COVID-19.

Tendo em conta estes desafios, a otimização das cadeia de abastecimento farmacêuticas

surgiu como um promissor campo de investigação. Este trabalho apresenta um mod-

elo matemático que otimiza uma rede de uma cadeia de abastecimento farmacêutica

de quatro ńıveis. Partindo da literatura existente, o modelo proposto considera o

peŕıodo de vida útil dos produtos, múltiplos produtos, múltiplas condições de ar-

mazenamento, e diferentes padrões de procura entre as faixas etárias da população.

O modelo incorpora duas funções objetivo: a minimização do custo total e a mini-

mização do número de encomendas em atraso.

O modelo proposto baseia-se na programação MILP e integra decisões relacionadas

com a integração de instalações na rede, inventário, produção e distribuição, con-

siderando a perecibilidade dos produtos. Para testar e analisar a eficácia do modelo,

é efetuado um caso de estudo sobre a distribuição de vacinas contra a COVID-19,

o que permite uma avaliação exaustiva e uma visão valiosa das implicações práticas

do modelo.

Palavras-chave: Cadeia de Abastecimento Farmacêutica, Planeamento e Desenho

da Rede, Otimização, Programação Linear Inteira Mista (MILP), Perecibilidade de

Produtos
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Abstract

The pharmaceutical industry plays a vital social role by providing essential medicines

and improving the quality of life for individuals. It is responsible for ensuring that

medicines are supplied at the right time, place, and quantity. However, the industry

faces pressures from shifting paradigms and evolving social trends and concerns.

Pharmaceutical supply chains are distinguished from other supply chains by its

unique characteristics, since medicines are critical products. Even the slightest dis-

ruption in a pharmaceutical supply chain can lead to severe crises, as highlighted

by the recent COVID-19 pandemic.

In light of these challenges, pharmaceutical supply chain optimization has emerged

as a promising field of research. This work presents a mathematical model that

optimizes the network design of a four-level pharmaceutical supply chain. Departing

from existing literature, the proposed model considers the shelf life of products,

multiple products and storage conditions, and different demand patterns among

age groups in the population. The model incorporates two objective functions:

minimizing the total cost and minimizing the number of backorders.

The proposed model is based on mixed-integer linear programming and integrates

decisions related to facility integration in the network, inventories, productions, and

distributions, considering the perishability of products. A case study on the distri-

bution of COVID-19 vaccines is conducted to test and analyze the effectiveness of

the proposed model, allowing a comprehensive evaluation and valuable insights into

the model’s practical implications.

Keywords: Pharmaceutical Supply Chain, Network Design, Optimization, Mixed-

integer Linear Programming (MILP), Product Perishability
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Introduction

This chapter consists of a introduction to this master dissertation. A contex-

tualization for the problem under study is presented in section 1.1. In section 1.2

the motivation that supported this dissertation is highlighted, and in section 1.3 the

dissertation’s proposed objectives are defined. Finally, the structure of this docu-

ment is found in the last section of this chapter, section 1.4, where the methodology

employed to accomplish the proposed objectives is described.

1.1 Contextualization

The pharmaceutical industry contributes significantly to the healthcare struc-

ture of each country through the development of new medicines that directly affect

population’s quality of life [10]. Furthermore, the pharmaceutical industry plays a

crucial part in the European economy due to the employment of thousands of people

[11]. This way, the socioeconomic growth path of each country must be sustained

by a strong healthcare system and therefore, by a robust pharmaceutical sector [10].

The Pharmaceutical Supply Chain (PSC) is one of the most vital networks in

healthcare [12]. The PSC is a large network from product development until the

customers, including the suppliers, manufacturers, distributors, and retailers. It also

covers the location, number, and capacity of network facilities, as well as the flow of

materials among them. The final product is created and delivered through the

collaboration of all parties involved [13]. In today’s global economy, the more com-

petitive the industrial environment becomes, the more important the structure and

coordination of a company’s Supply Chain (SC) also becomes [14]. As highlighted

by the recent Coronavirus disease (COVID-19) pandemic, the smallest disruptions

in PSCs might lead to severe crises.

Moreover, the pharmaceutical sector faces significant difficulties, such as, the

growth in SC complexity, the emergence of legal regulations; the increase of individ-

ualized treatments; the entry of new competitors; and the strengthened regulations

1



1. Introduction

concerning economic, environmental, and social issues, all of which increase invest-

ment costs and lower profit margins [2, 15].

Since in healthcare the two most significant aspects are time and accuracy, the

PSC should have the ability to adapt to changes, maintaining demand satisfaction

and, therefore, coordination between all PSC parties involved is critical for effective

production and delivery times [13]. By providing products on time and at the

lowest possible cost, a solid SC network can increase customer satisfaction and,

consequently, contribute to a company’s survival in the competitive market [16].

Adding to this, the complexity and criticality of network design increases when

dealing with perishable products [17]. Perishable products, such as medicines, have

a limited shelf life and, if they are not consumed or used before their expiration

date, they are discarded and result in waste. This leads to economic losses for

companies, wastage of resources, environmental issues, and potential shortages of

critical medicines [18]. Therefore, optimizing SCs for perishable pharmaceutical

products is a key strategy to enhance the efficiency and resilience of these networks.

In light of these concerns, it is expected that pharmaceutical companies incorpo-

rate new strategic approaches [2]. Researchers and several companies believe that de-

cision support systems and modeling tools should be implemented to achieve agility

and improved responsiveness in the operations at every stage of the SC [19, 20].

1.2 Motivation

The creation of the FuturePharma project aims to improve the integration of

complex decisions that take place at many levels of the PSC. This project presents

the concepts of sustainability, cost-effectiveness and adaptability in light of the com-

plexity and uncertainty of this highly regulated industry, by implementing optimiza-

tion models that incorporate these objectives.

FuturePharma research project focuses on the development of mathematical

optimization models for designing responsive and sustainable PSCs. Even in sce-

narios of considerable product and process diversification, the supply chain of the

future must maintain short response times.

1.3 Objectives

The present dissertation intends to contribute to the FuturePharma project and

address some of the challenges faced by the pharmaceutical industry through the

conceptualization and implementation of an optimization model for the planning

2



1. Introduction

and design of a perishable PSC, that aims to act as a tool for supporting decisions.

In order to achieve this, the present dissertation aims to accomplish the follow-

ing additional objectives:

• Provide background information on the pharmaceutical industry;

• Comprehend the paradigm shift occurring within the pharmaceutical industry;

• Conduct a literature review on research focused on PSCs and the most com-

monly used optimization models;

• Develop and implement a thorough decision-support tool for the planning and

design of a PSC under perishability;

• Apply the developed model to a case study and analyze its results.

1.4 Methodological Approach

The methodology employed in the present dissertation is structured as follows:

Figure 1.1: Dissertation’s methodological approach.

Stage 1 - Background: Context on the pharmaceutical industry

The initial stage of the dissertation focuses on providing comprehensive insights

into the problem being addressed. At this stage, the dissertation provides an ex-

tended analysis of the pharmaceutical industry sector and its SCs, with the aim

of identifying the current challenges that it faces. A strong theoretical foundation

is established to contextualize the problem under study, while also addressing con-

cerns regarding the future of this field, emphasizing the ongoing paradigm shift and

the growing significance of concepts in Supply Chain Management (SCM). By rec-

ognizing the prevailing problems and obstacles within the current pharmaceutical

sector, the dissertation further explores their connection to the optimization of SC

processes.

Stage 2 - State of the art: Literature review on optimization models

During the second stage of the research, a comprehensive literature review is

conducted, specifically focusing on PSC network design models. The review en-

compasses an examination of the current literature on PSCs network optimization,

analyzing the existing models documented in literature. By critically evaluating the

3



1. Introduction

existing literature, this stage identifies a gap in the current SC network optimization

models.

Stage 3 - Problem description and formulation

The third stage of this research is devoted to the presentation and description

of the design and planning problem that the study aims to address. A comprehen-

sive overview of a generic multi-product and multi-period four-level SC is provided,

highlighting its significant components and characteristics. Additionally, the chosen

optimization method to model perishability is identified.

Stage 4 - Mathematical model formulation

In this stage, a mathematical model is proposed to provide a decision-support

tool for the design and planning of a perishable PSC. Beyond the chosen optimiza-

tion method for modeling perishability, the model will undergo relevant adaptations

to provide solutions that address some unique requirements of the pharmaceutical

industry. The decisions supported by the model will primarily focus on strategic

and tactical levels, considering factors such as patient-centered goals by the mini-

mization of delivery delays. Simultaneously, cost control remains a key perspective,

as the pharmaceutical industry must maintain profitability while ensuring efficient

operations.

Stage 5 - Application to a case study: Model validation and results

analysis

In the fifth stage of the research, the model developed to address the problem

outlined in stage 3 is applied to a case study focused on the network design of a

COVID-19 vaccine SC. This case study, besides validating the model developed,

serves as a motivating example to demonstrate its practical applicability. The anal-

ysis is centered on a trade-off between the costs of the SC and the population that

suffers a delay in vaccination.

Stage 6 - Conclusion & Future research proposals

The final stage of this dissertation encompasses a concise and comprehensive

discussion of the main conclusions derived from the research conducted. It highlights

the main conclusions and results obtained throughout the work. Additionally, this

stage addresses the limitations and challenges faced during the research process,

highlighting areas where further improvements can be made.
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Background Concepts

This chapter provides a comprehensive introduction to the pharmaceutical in-

dustry, encompassing various key aspects. Section 2.1 starts with the contextualiza-

tion of the pharmaceutical industry environment, emphasizing its significant impact

on the healthcare sector. Additionally, subsection 2.2.3 explores the pressing issue

of the limited shelf life of pharmaceutical products. Moving forward, section 2.2

introduces the concept of PSCs, revealing their dynamics and operations. Finally,

section 2.3 provides a comprehensive overview of the current challenges faced by the

pharmaceutical industry, considering the ongoing paradigm shift within the sector.

2.1 The Pharmaceutical Industry

2.1.1 Pharmaceutical Sector

The pharmaceutical industry encompasses a range of operations and organiza-

tions dedicated to the exploration, advancement, and manufacturing of drugs and

medical products [15].

According to the European Federation of Pharmaceutical Industries and Asso-

ciations [1], the pharmaceutical industry contributes to medical advancement not

only via Research and Development (R&D) but also by bringing new medicines to

citizens worldwide that improve their health and quality of life. In Europe, the av-

erage life expectancy of citizens in the current year of 2023 is up to 30 years longer

than it was last century [1].

Furthermore, according to EUROSTAT data, the pharmaceutical industry has

the highest added value per person employed when compared with other sectors.

For instance, in 2020, 830,000 individuals were employed directly in the European

Union (EU) by the pharmaceutical industry and three times more individuals were

employed indirectly, turning it into a crucial part of the European economy [1, 11].

In 2020, the global pharmaceutical market was estimated to be worth e943,667

million at ex-factory sales, being ex-factory sales the price that a manufacturer
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charges for a direct purchase, i.e., without shipping, handling or taxes [1, 21]. Fur-

thermore, the European market counted for 23.9% of global pharmaceutical sales

in 2020, while the North American market remained the largest with a 49.0% share

[1].

2.1.2 Importance and Impact in Healthcare

Numerous new research directions for better treatment and disease prevention

have been made possible by technological advancements in R&D. The development

of new medicines increases both quality of life and average life expectancy of the

population, making research-based biopharmaceutical firms play a particularly im-

portant role in enhancing global health [10].

The pharmaceutical industry plays a crucial role in supporting the healthcare

systems of each country. Through the development of medicines and vaccines, it not

only enhances people’s health and well-being but also contributes to the financial

sustainability of healthcare. By reducing the need for costly surgeries and prolonged

hospital stays, medicines and vaccines generate significant cost savings, thereby

supporting the long-term viability of healthcare systems [2, 10].

In Europe, medical goods, including medicines, account for the smallest pro-

portion of healthcare spending, with an average of 19.1%. This highlights that

medicines are the most cost-effective element within the healthcare sector [1].

Moreover, every country’s path of socioeconomic growth must be supported

by a strong healthcare system and, therefore, by a robust pharmaceutical sector

[10]. However, not all populations around the world have yet completely profited

from these medical advancements. A continuing objective of The World Health

Organization (WHO) is to ensure that everyone has access to medicines with a

reliable supply [10, 22]. In order to successfully address these concerns, governments,

public society, and the private sector must make sustained commitments [10].

2.1.3 From Product Development to the Market

Nevertheless, the pharmaceutical sector confronts significant difficulties. An

average time of 12 to 13 years will have passed after the first phase of developing

a new pharmaceutical product by the time it is available on the market. Moreover,

only 1 or 2 compounds out of every 10,000 created in laboratories successfully com-

plete the necessary phases of development to become a commercial medicine, i.e.,

the chances of a new pharmaceutical achieving a successful outcome are extremely

low [1].
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There are five main activities in the phase of developing a new product: discov-

ery, pre-clinical trials, clinical trials, the regulatory approval process and subsequent

product launch, which also encompasses post-market pharmacovigilance [2].

The first activity, discovery, consists of identifying the therapeutic targets re-

lated to a pathology by testing thousands of chemical compounds until a promising

new molecule known as an Active Pharmaceutical Ingredient (API) is discovered

[2, 23].

Then follows the pre-clinical trials, where chemical and biological tests are con-

ducted in animals to demonstrate the selectivity, safety, and efficiency of the candi-

date molecule [23].

The third stage is the most expensive and time consuming activity during New

Product Development (NPD) due to all the procedures necessary to demonstrate the

molecular entity’s safety and effectiveness [24]. In 2019, pharmaceutical companies

invested more than e37,700 million in R&D in Europe, with almost 50% representing

clinical trial costs, as illustrated in Figure 2.1 [1]. The API is initially studied in

healthy volunteers during phase I of clinical trials, primarily to determine its safety

and dosage. With the results of dosage determination, the drug in then administered

to diseased and unhealthy patients during phase II [23]. Finally, during phase III,

extensive tests are carried out to compare the effectiveness of the new medicinal

compound with other presently available therapies, as well as to assess its long-term

impacts [2, 23].

The filing of a New Drug Application (NDA) occurs once all stages of clini-

cal trials have been successfully concluded. In Europe, drugs are approved by the

European Medicines Agency (EMA), and in the United States by the Food and

Drug Administration (FDA) [23]. The probability of clinical success, i.e., the esti-

mated probability of a newly developed drug successfully obtaining approval after

undergoing clinical trials is 11.83% [25]. Moreover, despite continuous attempts to

standardize regulatory requirements and procedures across all countries, there are

still substantial discrepancies that make the product’s SC more difficult. This issue

will be addressed in more detail in Section 2.2 [24].

Unfortunately, the product development process in the pharmaceutical industry

is generally inefficient and productively low. Hence, the main challenges faced by this

industry include the need to reduce development time, accelerate time-to-market,

and minimize development costs [2].
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Figure 2.1: Allocation of R&D investment by main activity. From [1].

2.1.3.1 Pharmaceutical Product Life Cycle

The discovery and product development described above are part of the phar-

maceutical product Life Cycle. After passing all these stages, successful products are

launched into the market [24]. Once in the market, the new product goes through

a growing phase in sales, reaches market maturity, and then enters a decline phase

(see Figure 2.2) [26].

Figure 2.2: Pharmaceutical Product Life Cycle. From [2].

The growth rate depends on a variety of factors, such as the comparative ef-

fectiveness of the product versus other therapies, potential adverse effects that may

appear after the medication is used, and economic factors [2]. Depending on these
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factors, the level of demand that the product reaches at the maturity phase is es-

tablished [2].

Furthermore, as with any other product, in the maturity phase more competi-

tors will penetrate the market and unit sales will decline relatively quickly as cus-

tomers prefer newer and usually cheaper alternatives [27]. For the pharmaceutical

industry this means that after the product reaches its life patent, generics manu-

facturers introduce their alternatives drugs with a lower price (generally about 25%

lower) to capitalize on the market that the original brand has established [24, 28].

Generic drugs are bioequivalent alternatives, with the same active components,

dosage form, quality, safety, strength, and method of administration as the original

brand product. However, the regulatory approval is usually much faster and does

not require as many rounds of clinical trials and all the associated costs since the

drug formula has already been proven safe and effective [28]. Hereupon, to respond

and maintain the necessary service levels, companies must take action to guarantee

adequate management of production, capacity, and supply distribution [2].

Several functional areas inside the organization, including R&D, production,

and SCs, handle multiple aspects of the product life cycle. All these involved par-

ties are guided by strategic choices made regarding capital expenditure allocation,

growth and marketing plans, product and technology portfolio management and SC

design choices [24].

2.2 Pharmaceutical Supply Chain

The SC and logistical organization play a crucial part in the commercialization

phase of the pharmaceutical product life cycle. By providing products on time and

at the lowest possible cost, a solid SC network may increase customer satisfaction

and, as a result, contribute to the company’s survival in the competitive market

[16].

One of the most crucial SCs in healthcare is the PSC [12]. The PSC is a complex

network of suppliers, manufacturers, distributors, and retailers, such as hospitals and

pharmacies. It also includes the selection of network facilities’ locations, numbers,

and capacities and the materials’ flow between them. The coordination between all

involved generates and delivers the final product [13].

Therefore, a SC is an integrated process where several different entities collabo-

rate in the sense of acquire raw materials, transform the raw materials into the final

product, and deliver the final product to retailers [3].

Hence, it is naturally characterized by the direct flow of materials and the
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reverse flow of information [3].

In another way, two fundamental, interconnected processes make up a SC: the

Production Planning and Inventory Control Process, and the Distribution and Lo-

gistics Process, illustrated in Figure 2.3 [3].

Figure 2.3: The PSC process. Adapted from [3].

Furthermore, as a result of globalization, these channel partners can be located

in various locations worldwide, as represented in Figure 2.4, which forces pharma-

ceutical companies to cope with different policies, cultures, and tax systems from

other regions [2]. When each of the parties involved operates independently and fol-

lows its own operational goals, the lack of coordination between structures is higher

and enhances the probability of disruptions and inefficiencies to occur, which may

spread along the whole SC network [2, 29].

Figure 2.4: Supply chains globalization. From [4].

For instance, drug shortages are a common occurrence. In 2020, the European

Commission expressed concerns regarding the growing number of reports indicating

shortages that have been impacting all Europe, usually caused by SC disruptions

[30, 31].

Moreover, the global SC’s already-existing problems have been exacerbated by

the shortages of medicines needed to treat patients of hospitals both in the United

States and EU during COVID-19 pandemic [31].
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The availability of medicines in healthcare providers, such as, pharmacies and

hospitals, is directly impacted by the lead time of the SC, i.e., the amount of time

between when a supplier receives an order for a medicine and when the order is

delivered to the entity submitting the request [32].

2.2.1 Pharmaceutical Supply Chain Network

For a better understanding of the PSC, a description of all the parties involved

in the network is presented.

Primary Manufacturer (Supplier)

The first level of the PSC consists of the production of the API and might

experience severe demand variations [33]. However, demand is generally low so, to

spread the capital costs, the resources (plants) are usually shared between products.

To prevent cross contamination, when a manufactured product is changed, a thor-

ough cleaning is required, which typically takes a lot of time. This way, planning

complexity (number of different products using the same resource) should be kept

to a minimum [33].

As a result of the low production volumes, transportation costs are negligible

at this point in the SC and the primary locations might be anywhere in the world,

generally in developed countries due to the costs of establishment, such as, tax rates,

availability of skilled workers, and political and economic stability [5, 33].

To summarize, this level is characterized by lengthy cycle periods, which make

ensuring responsiveness challenging [33].

Secondary Manufacturer

Transportation to the secondary manufacturer facility often takes between one

or two weeks by ship, the standard form of transportation, and one or two days by

aircraft [15].

At the secondary manufacturers the final product is produced in a suitable form

for final consumers by adding inert materials, called excipient, to the active ingre-

dient produced at the primary manufacturer. For instance, a product available in

pill form would undergo a series of steps. These include granulation, where excip-

ient materials are added, followed by compression to form the pills. Subsequently,

coating is applied, quality control measures are conducted, and finally, packaging is

carried out [15].

When inert materials are added to the API and the drugs are processed and

packed, the product’s volume and mass increase, leading to a significant increase

in transportation costs. Therefore, unlike the previous case, at this point of the
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SC they can no longer be neglected. As a result, there is often a greater number

of secondary manufacturing facilities compared to primary ones. These secondary

facilities supply regional or local markets and are strategically located closer to these

markets than the primary manufacturers [33].

Distribution Centre

The next step consists of final products’ transportation to Distribution Centres

(DCs) [5]. Healthcare distributors play a central role in the distribution of products

and the European healthcare industry cannot function without them [34]. Whole-

salers are the link between the manufacturers and the healthcare providers such as

hospitals and pharmacies through firstly purchasing and warehousing. Hence, these

facilities are responsible for ensuring the constant availability of a full range of prod-

ucts as determined by the market and the authorities [34]. Moreover, they are also

responsible for order preparation and delivery of products [34].

According to the European Healthcare Distribution Association annual report

of 2021/22 [34], distributors ensure the fast, continuous, and cost-effective supply

of medicines to more than 200,000 healthcare retailers throughout the EU, reaching

over 500 million patients.

As illustrated in Figure 2.5 below, manufacturers provide 35% of products di-

rectly to hospitals, 7% to pharmacies and 58% to wholesalers, who then handle

distribution to healthcare retailers [34].

Figure 2.5: Distribution channel model for 2021. Adapted from [5].

Furthermore, DCs also have a financial function between manufacturers and

retailers, insuring the cash flow.
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Healthcare Providers (Retailers)

Finally, retailers correspond to the final level of the PSC. As already mentioned,

healthcare providers receive most of the pharmaceutical products thought DCs and,

then, deliver them to the patients.

It is based on the needs of the patients that the flow of information begins and,

when the response to demand is not efficient, there may be a shortage of stock.

PSCs should be capable of satisfying demand at any and all times, adapting to

changes, and withstanding disruptive events like pandemics, crises, natural catas-

trophes, among others. However, the accuracy of this characterization has been

challenged in reality, as evidenced by the impact of the COVID-19 pandemic [31].

Nevertheless, even before COVID-19 pandemic, drug shortages were already

a concern. A 2019 survey of hospital pharmacists in Europe [35] found that drug

shortages are a current issue in providing patients with the best care, according to

95% of respondents, whilst 63% considered that their hospital’s patient care was

impacted by these shortages.

Drug shortages can result from one or multiple SC issues, such as unavailability

of raw materials, or manufacturing capacity problems, but they can also result from

demand issues [36, 37].

It is the retailer’s responsibility to maintain an inventory of products and de-

cide at what point and in which quantity to reorder a new batch of products [38].

While events as natural disasters and pandemics are unpredictable, average demand

growth, and seasonal demand are predictable [36].

To reduce the estimated cost of acquiring and storing products, the retailer

must establish an ideal inventory policy since a well-established system can avoid

the shortages from predictable reasons [36, 38].

With always bearing in mind that in healthcare the two most significant aspects

are time and accuracy [13], coordination between all network agents is critical for

effective production and delivery times.

2.2.2 Supply Chain Management

In the current global economy, as the industrial environment becomes increas-

ingly competitive, the organization and coordination of a company’s SC becomes

more crucial. This can be effectively achieved through SCM [14].

SCM is defined by the Council of Supply Chain Management Professionals

(CSCMP) [39] as “the planning and management of all activities involved in sourcing

and procurement, conversion, and all logistics management activities. Importantly,
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it also includes coordination and collaboration with channel partners, which can be

suppliers, intermediaries, third party service providers, and customers”.

This definition leads to a number of conclusions. Firstly, any facility that affects

system effectiveness and contributes to bringing the final product to the costumer

is considered by SCM. Secondly, the objective in SCM is to achieve efficiency and

cost-effectiveness throughout the entire system. This involves minimizing expenses

at all levels, including raw material inventory, manufacturing processes, final product

inventory, transportation, and distribution. Finally, since SCM involves planning,

implementing, and controlling the logistics, it encompasses all aspects of the com-

pany’s operations [38].

2.2.2.1 Decision Making Levels

Decision making is the process of selecting certain options to achieve a desired

outcome [40]. It comprehends three levels, as illustrated in Figure 2.6.

Figure 2.6: Decision making levels. Adapted from [6].

The strategic level consists of long-term decisions that generally involve large

investments and have a high impact on the company [2, 38]. Strategic decisions

are mainly regarding the design and structure of the SC network, such as, number,

location, and capacities of facilities [14, 38].

The tactical level deals with the medium-term planning cycle decisions about

production planning, distribution, and inventory management [38, 41].

The operational level refers short-term decisions. These can involve, for in-

stance, decisions about production scheduling and control, vehicle routing, and
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equipment maintenance policies that require a constant control on the SC, being

taken on a daily or weekly basis [41, 42].

Tactical and operational decisions are strongly influenced by strategic decisions.

For example, the location of facilities will affect vehicle routing and inventory control

and, therefore, is critical to evaluate all three strategic, tactical, and operational

decisions at the same time when designing a SC network [18].

2.2.3 Perishable Pharmaceutical Supply Chains

A challenging issue in a PSC is the product perishability. The shelf life of a

drug refers to the period during which its pharmaceutical stability is maintained at

a level greater than 90% [5]. Once a drug reaches its expiration date, it is no longer

guaranteed to be safe and effective for use. Hence, when products have a limited

shelf life, are denominated perishable.

Ignoring the perishability of medicines or lack of attention to its shelf life can

have serious consequences. Firstly, it compromises the effectiveness of the drug,

which can directly endanger the patient’s life [18, 43]. Moreover, from an economic

perspective, the waste of perishable goods translates into financial losses [43]. For

pharmaceutical companies, the inability to sell expired products leads to lost rev-

enue. In addition, the resources invested in producing, packaging, and transporting

these items are wasted when they are not consumed. This not only affects the

profitability of companies but also harms overall resource efficiency.

Furthermore, the waste of perishable goods has environmental and social con-

sequences. Discarded perishable products, particularly medicines, contribute to en-

vironmental waste, which contains dangerous compounds that represent a threat to

the environment and human health if not disposed of correctly [44].

Moreover, the expiricy of medicines can lead to shortages, impacting the avail-

ability of essential medications and affecting the well-being of patients who rely on

them [18].

Hence, when products are perishable, efficient distribution network designs be-

comes even more sophisticated, demanding, and crucial [17, 18]. In perishable PSCs,

incorrect facility location, inefficient routing, and general chain inefficiency leads to

product perishing and, ultimately, an increase in lost demands [18]. A shortage of

certain medicines can lead to adverse consequences for patients. In general, to avoid

shortages, a potential solution could involve acquiring or manufacturing a substan-

tial quantity of the products in advance. However, when dealing with perishable

goods, this approach could potentially result in product perishing, thereby leading
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to the consequences mentioned above [18, 45].

2.3 The New Pharmaceutical Paradigm

For many years, the pharmaceutical industry has relied on a business strategy

centered around the discovery and development of profitable drugs. However, this

strategy has not seen significant updates, leading to a general lack of effectiveness

in the industry. Nevertheless, recent trends imply that the market environment for

pharmaceutical firms has suffered a lot of change, such as with more individualized

treatments, tougher quality control, among others [2].

2.3.1 Pharmaceutical Industry Driving Forces

It has been pointed out by several authors new driving forces that have been

changing and challenging the operational panorama of health. Marques et al. [2]

reviewed several market reports and identified nine driving forces that have the

major impacts on PSC operations.

2.3.1.1 Internal Drivers

The driving forces influenced by companies’ behavior are classified as internal

drivers and are listed below [2]:

Decline in R&D productivity The discontinues flow of new drugs to replace a

close expiring patent drug is, according to Garnier [46], the greatest pharmaceutical

sustainability and competitiveness issue.

Decrease in effective patent life Effective patent life is the time between a prod-

uct regulatory approval and patent expiration, i.e., the period of time that a company

has market exclusivity for that product and, consequently, has the chance to recover

the investment made in discovery and development [2].

However, the long development cycles already mentioned are delaying the time-

to-market, i.e., the speed and rate at which companies can release new products into

the market, and thus limiting the possibility for companies to recover the investment

[2, 47].

As pointed by Marques et al. [2], currently, research on the product develop-

ment process in the pharmaceutical industry primarily emphasizes cost reduction

and portfolio management. However, there is a growing need for greater attention

to be directed towards shortening development times.
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Growth in supply chain complexity As seen in section 2.2, PSC network facili-

ties can be located anywhere in the world, creating large and very complex SCs and

distribution networks.

2.3.1.2 External Drivers

On the other hand, there are external drivers, i.e., factors that are not in com-

panies’ control [2]:

Increasingly regulatory burden The pharmaceutical sector has been facing an

increasing regulatory burden since governments all across Europe have imposed

fiscal austerity measures, which have had a detrimental effect on the industry [1].

Nevertheless, despite these strict requirements, regulatory agencies like the FDA

or EMA are dedicated to creating improved conditions for companies in terms of

both clinical trials and manufacturing procedures [2]. However, FDA has already

recognized the need for improvements in the pharmaceutical industry and it has

taken steps to address these challenges. The Pharmaceutical Quality for the 21st

Century Initiative is an example of the FDA’s vision to foster a more efficient and

adaptable pharmaceutical sector, ensuring the reliable production of high-quality

products while minimizing the need for severe regulatory oversight [48].

Pricing pressures As a result of generic products competition, government pres-

sures, public health policies, and competition with other innovative products for the

same medical need, the sector has been under pressure to lower prices, which is a

difficulty due to the costs involved in R&D [2].

Growth of personalized medicines In contrast to the “one-size-fits-all” approach,

a shift to more proactive approach focused on prevention and early treatment is

growing [2, 49]. Direct patient benefits from personalization include better ther-

apeutic results, fewer adverse effects, and higher patient adherence to treatments,

but also the possibility of lower overall healthcare expenses [2]. Increasingly gaining

prominence, in 2020 personalized medicines already accounted for 39% of all new

drugs approved by the FDA [50].

The structure and operation of SCs will undoubtedly be significantly impacted

by this paradigm change. Instead of mass production, the system needs to mass

customization and give individualized treatments to patients at scale [2].

Growth of emerging markets Most of the total pharmaceutical sales are made in

developed countries however, nowadays developing countries are in a rapid economic

growth, which translates in growth opportunities for the pharmaceutical industry.

However, as their SCs become even more global, pharmaceutical firms have to re-

think their manufacturing practices and business models [51].
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Increased uncertainty Every phase in the SC is subject to uncertainty [4]. There

are different methods used for classifying uncertainties, for example, Garcia and You

[4] classifies them as strategic if they involve socio-political context changes, unpre-

dictable events, etc., and operational when associated to SC operations changes or

execution strategies, such as costs volatility, supply delays, etc. On the other hand,

Láınez et al. [24] classifies these two categories of uncertainty as external or inter-

nal, respectively. Regardless the classification system employed, it is still extremely

difficult for experts to effectively identify and handle all sources of uncertainty and,

hence, there is a definite need for innovative approaches [2].

Sustainability concerns Sustainable development was defined in 1987 by the

World Commission on Environment and Development as the “development that

meets the needs of the present without compromising the ability of future generations

to meet their own needs” [52].

While in the past this concept was more focused on the environment, modern

literature views sustainability as supported by three key pillars: economic, envi-

ronmental, and social sustainability, generally known as the Tripple Bottom Line

(TBL) (figure 2.7) [53, 54]. From the strategic to the operational level, it is the

balance between these three pillars that offers a challenge. Moreover, this balance

has been considered to be crucial for organizations to be agile and resilient, leading

them to be prepared to react to internal and external risks [55, 56].

Figure 2.7: Three pillars of sustainability. Based on [7].
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Sustainability management during the product development cycle is inducing

a shift from cost-oriented development to sustainability-oriented development [6].

Hence, in the modern economic context, a company’s long-term success is based

not just on its capacity to turn a profit and stay profitable, but also on how it

contributes to the future of humanity and the environment [4, 57]. Accordingly,

Sustainable Supply Chain Management (SSCM) refers to the management of mate-

rials, information, and investment flow within a SC, while emphasizing collaboration

among SC partners. Furthermore, it also involves incorporating sustainable devel-

opment goals from the TBL [58].

2.3.2 Old vs New Paradigm

In light of these concerns, it is expected that the new pharmaceutical paradigm

will incorporate the following strategic approaches: a patient-centric model, cost-

oriented operations, personalized medicines, outsourcing strategies, a focus on new

emerging markets, and a sustainable mindset [2].

Figure 2.8 illustrates the six key outbreaks identified by Marques et al. [2] that

contribute to the transition from an old paradigm to a new paradigm: outcome,

efficiency, increased value, flexibility, market expansion, and overall welfare.

Figure 2.8: Paradigm shift in the pharmaceutical industry. Adapted from [2].
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2.3.2.1 Impact of the Paradigm Shift on the PSC

Patient-centricity paradigm puts the focus on the customers instead of the prod-

uct. To maintain a continuous analysis and evolution of the value proposition of

their products, companies will need to strategically engage with patients, focus-

ing on understanding their requirements, expectations, and concerns by innovative

product-service solutions and the creation of new distribution and information chan-

nels [2].

Cost-driven paradigm means that companies must create advanced decision

support tools in addition to cost-effective methods to achieve the aim of cost-

effectiveness [2].

Personalized medicines, i.e., patient-specific autologous gene and cell therapies

are achieved through a two-step process: diagnostic with tests detecting specific

biomarkers and ideal drug prescription [19, 59]. This means a transformation in man-

ufacturing to small-scale, customized agile production that can be cost-effectively

made-to-order, with an extensive coordination of the stakeholders in the SC [19, 20].

Outsourcing strategies will be essential to improve the flexibility, i.e., the ca-

pability to adjust tactics and operations, of companies [2, 60]. In order to enhance

manufacturing capacities and make new technological capabilities accessible, Con-

tract Manufacturing Organizations (CMOs) will be essential [2]. These organizations

consist of manufacturing facilities that produce products under contract for multina-

tional pharmaceutical companies, while offering flexible, quicker, and less expensive

access [61].

New emerging markets also benefit from outsourcing strategies due to their

ability to granting locals access to new markets. With the growth of market expan-

sion, to ensure the availability of medicines in remote areas, companies must adopt

critical strategies such as utilizing multiple distribution channels and maintaining

high levels of transparency [2].

Sustainable mindset paradigm means that companies must now account for the

three pillars of sustainability: economic, environmental and social. In contrast to

the previous paradigm only focused on the economy, environmental considerations

and eco-friendly approaches must be taken in the design and management of a SC in

order to reduce waste, use resources more efficiently and minimize water and energy

consumption. In addition, social responsibilities such as accessibility, availability,

safety issues, and general access to medicines also need to be taken into account

[2, 42].
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2.3.3 Pharma 4.0

Enhancing proximity to patients and meeting their needs more effectively can

be achieved through the creation and implementation of digital tools. Hence, in-

corporating decision support systems and modern modeling tools into operations at

every stage of the SC can offer agility and enhanced responsiveness, leveraging the

power of current technology [19, 20, 62].

The term Pharma 4.0 has been presented to describe the adoption of digital

tactics and tools from Industry 4.0 concepts and their application to practices in

pharmaceutical manufacturing and SCs [20]. The concept of Industry 4.0 was es-

tablished in 2011 as a new industrial stage where several developing technologies are

combining to produce digital solutions [62, 63]. Industry 4.0 enables considerably

better SC coordination as a result of a more integrated approach to communica-

tion, and end-to-end information exchange [19, 20]. These concepts are already put

into practice by some companies. Take the example of Siemens, which has already

developed digital platforms for use by manufacturers [20].

2.3.3.1 Simulation Models & Mathematical Optimization Models

Both simulation models and mathematical optimization models play a role in

Pharma 4.0.

Simulation plays a crucial role in the context of the SC as it enables the rep-

resentation of supply and capacity constraints [64]. Moreover, it provides a visual

representation of their effects on the system’s behavior over time [64]. Consequently,

simulation enables the assessment of operational performance before a system is im-

plemented, providing the following benefits according to Chang and Makatsoris [65]:

• understand of the overall SC processes and characteristics,

• modeling and understanding the impact of unexpected events on the SC,

• minimizing the risk of changes through testing many operation alternatives

before effectively changing the SC.

Thus, simulation can be used as a tool to lead companies to do better planning

decisions and its use has been increasing in the past years [66].

A valid simulation model is only valid for a certain set of objectives, i.e., a

model that succeeds for one objective might not work for another [8].

Moreover, it is important to note that even with significant investment in model

development, there is no concept of absolute model validity in simulation. Simu-

lation models can only approximate the behavior of the actual system to a certain

extent [8]. A well-known quote by Professor George Box refers to this: “All models
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are wrong, but some models are useful” [8].

Figure 2.9 illustrates the approach to successfully develop a simulation study

and create a reliable model, formulated by Averill M. Law [8].

Figure 2.9: Seven step approach to build a valid simulation model. From [8].

On the other hand, mathematical optimization models aim to find the best

possible solution, typically by maximizing or minimizing an objective function while

satisfying a set of constraints. Thus, these models are used to make optimal deci-

sions, allocate resources efficiently, optimize schedules, minimize costs, and maximize

benefits within a given set of constraints [67].

In the context of this research, the goal is to develop a mathematical model to

optimize PSCs and assist in the decision making process, therefore a more detailed

focus is given to the various optimization models existing in the literature in the

following chapter.

22



3

State of the Art

In this chapter, a review of the state of the art on the usage of optimization

methods to model SC challenges is elaborated. By assessing how the various chal-

lenges mentioned in the previous chapter have been addressed and considered in

optimization models, the ultimate goal of reviewing how the use of optimization

models can be implemented to support decision making is achieved, thereby im-

proving companies’ SCs and ultimately market success. Therefore, this chapter is

organized as follows: in subsection 3.1.1 some important concepts for understanding

optimization models are found. Subsection 3.1.2 presents a review of the mathemati-

cal optimization models most commonly used in the context SCs. Lastly, subsection

3.1.3 summarizes the findings of the literature review and identifies a gap in the

reviewed SC network optimization models.

3.1 Pharmaceutical Supply Chain Network Opti-

mization

As already mentioned, a well-designed and efficient SC is crucial for the success

of a company. Thus, over the past decades, SC network design optimization models

have attracted significant interest from both industry and academia [4].

In the present literature review, each model will be evaluated based on its

objective functions, the decisions it aims to facilitate (its output), and the approach

it employs to provide support and solutions. However, first of all, it is necessary

to address the different categories of models present in the literature. Thus, in the

following subsection 3.1.1, some important terms are introduced to understand the

optimization models that will be analyzed.
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3.1.1 Important Terms

Thereby, before beginning the review of the collected literature, it is important

to contextualize some general terms addressed by the authors within: model types,

approaches to handle uncertainty, solution methods, planning horizons, and time

periods. Table 3.1 summarizes the concepts addressed in the literature and their

notation.

3.1.1.1 Model Type

Optimization models offer a method for optimizing decisions made in complex

systems such as PSCs. They can be of different types but all of them are a subset

of the larger field of mathematical programming.

Mathematical programming formulations involve a objective function, i.e., a

function that evaluates the quality of the solution found, and a set of variables, and

constraints [67]. Variables indicate actions that can be taken in the system being

simulated while constraints are the limitations of the system. An optimization

model will either minimize or maximize the objective function’s value, according to

the purpose of the problem [67]. A brief explanation between different optimization

models is listed bellow:

Mixed Integer Programming

Mixed Integer Programming (MIP) is a type of mathematical programming that

uses continuous, discrete and integer variables [67]. For instance, in this context, an

integer variable could be a facility be part, or not be part of a SC.

Mixed Integer Linear Programming

On the other hand, when a problem contains integer variables and all constraint

functions and objective functions are linear, the program becomes a Mixed Integer

Linear Programming (MILP) [67, 68].

Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming (MINLP) incorporates a combination

of continuous and discrete variables, as well as nonlinearities, in both the objective

function and problem constraints by combining the modeling capabilities of MILP

and Nonlinear Programming (NLP) [69, 70]. MINLP is often considered a more

difficult type of optimization model, however it is extremely useful as it makes it

possible to accurately model a variety of diverse events, such as the flow of materials

through a manufacturing facility, using linear and nonlinear functions [70].
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3.1.1.2 Uncertainty Approaches

Real-world problems involve uncertainties and difficulties when estimating key

parameters, which affect production processes [71]. According to Galbraith [72],

uncertainty refers to the disparity between the information needed to complete an

activity and the available information at a given moment. Modeling uncertainty has

been explored using different approaches:

Stochastic Programming

In stochastic mathematical programming, information is provided via discrete

or continuous probability distributions, and it can be given or estimated based on

previous data [73]. In the most commonly used and researched stochastic program-

ming models, there are two stages of decision variables and therefore, it is called

two-stage stochastic programming [73, 74]. The first-stage variables are determined

prior to the realization of the uncertain parameters. Once the random events have

occurred, additional enhancements can be achieved by adjusting the values of the

second-stage variables [74].

However, as there is rarely enough historical data for the uncertain parameters

in many real-world scenarios, it is rarely possible to obtain the true probability

distributions of the uncertain parameters [75]. Furthermore, when uncertainty is

modeled using a large number of scenarios, it can result in large and computationally

difficult challenges [75].

Fuzzy Programming

Fuzzy programming takes into account random parameters by treating them

as uncertain or fuzzy numbers. Constraints are then represented as sets in this

approach, whose elements have levels of membership (fuzzy sets) [74]. As a result,

any event can be assigned a value between two extremes, increasing the variety of

choices for real-world scenarios.

Fuzzy programming comprehends two major classes: possibilistic programming

and flexible programming. Possibilistic programming combines available objective

data as well as the decision maker’s own knowledge to deal with model parameters

uncertainties, recognizing uncertainty in both the objective function coefficients and

the coefficients of the constraints [74, 76]. On the other hand, flexible programming

only deals with flexible target value of objective functions and constraints [74, 76]. In

both approaches, a membership function is used to describe the degree of satisfaction

with constraints, the decision maker’s anticipated performance level for the objective

function, and the uncertainty range of coefficients [74].
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Robust Possibilistic Programming

This model type aims at finding the feasible and optimal solution that, despite

parametric uncertainty, can satisfy the constraints. A solution is considered feasible

if it stays feasible for nearly all potential values of uncertainty parameters. Similarly,

it is also considered optimal if, for almost all potential values of the uncertainty

parameters, the value of the objective function remains close to or has minimal

variation from the optimal value [76].

3.1.1.3 Solution Method

The models in the papers under review discuss two categories of solution meth-

ods for addressing optimization problems in the context of PSCs: exact methods

and non-exact methods. While exact methods solve a problem guaranteeing the

optimally of the solution, non-exact methods only obtain a near-optimal solution

given the complexity of real-life data [77, 78].

Non-exact methods include heuristic and metaheuristic approaches. In prob-

lems that are too complex to be solved exactly in a reasonable computational cost

(computational power or time), heuristics methods are employed and, although they

do not find the optimal solution, they produce a feasible one based on previous expe-

riences with similar problems [78, 79]. On the other hand, metaheuristic approaches

integrate diverse methods for widely explore the search space and are therefore more

flexible and address a broader variety of viable solutions [78, 79].

3.1.1.4 Planning Horizon

The planning horizon is the amount of time over which the production-planning

problem extends [80]. As described in subsection 2.2.2.1, decisions can be of long-

term, medium-term, and short-term, corresponding to a strategic, tactical, and op-

erational planning horizon, respectively [38, 41].

3.1.1.5 Time Period

In discrete-time models, the planning horizon is segmented into periods [80].

Each period represents a specific time unit, which could be an hour, a day, a month,

or any other relevant time increment depending on the application. The choice

of the period length depends on the nature of the problem and the level of detail

required in the analysis.

The planning horizon can be segmented into single or multiple periods [80]. In

a single-period model, decisions are made only for the current period, without con-
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sidering future periods. This type of model is suitable for short-term or immediate

decision-making scenarios.

On the other hand, in a multiple-period model, decisions are made for each

period while considering the impact on future periods. This allows for longer-term

planning and optimization, as decisions in one period can affect subsequent periods.

Multiple-period models are commonly used in problems where long-term implica-

tions need to be considered.

Table 3.1: Summary of terms addressed in the literature and their notation.

Model Type

Mixed Integer Programming MIP

Mixed Integer Linear Programming MILP

Mixed Integer Nonlinear Programming MINLP

Uncertainty Programming

Stochastic S

Fuzzy F

Robust R

Solution Method

Exact EXC

Heuristic HEU

Metaheuristic MHEU

Planning Horizon

Strategic STR

Tactical TCT

Operational OPR

Time Period

Single-period SP

Multi-period MP

3.1.2 Optimization Models in Literature

Each reviewed model is evaluated based on its performance measures, the deci-

sion that the formulation intends to support (its output), and its solution approach.

The type of model used and how uncertainty was addressed (when applicable) are

also taken into account.

Knowing that in SCM, the objective function is related with performance mea-

sures [3], Table 3.2 summarizes the objective functions commonly utilized to assess
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the performance of a PSC.

Table 3.2: Objective functions and respective notation.

Objective Function
Minimization of total costs TC
Minimization of the environmental impact EI
Minimization of the delivery time DT
Minimization of the non-resilience NR
Maximization of profit P
Maximization of the customer satisfaction CS
Maximization of the social welfare SW
Maximization of the net present value NPV
Maximization of the value created VC
Maximization of reliability R

Furthermore, a model can have one or more outputs, i.e., its formulation may

support more that one decision. Possible outputs and respective meaning are pre-

sented in Table 3.3.

Finally, a summary of the reviewed papers with PSC network optimization

problems is detailed in Table 3.4.

Table 3.3: Outputs, respective notation, and meaning.

Output Meaning

Location L Decide on the capacity and location of the SC facilities

Allocation A Decide about the assignment between facilities

Distribution D Decide on the flow of products between facilities

Production P Decisions regarding the product’s manufacturing quantities

Routing R Decide about the product transfer vehicles’ route

Inventory I Select the amount of product to store at each location

Transportation T Decide on the transportation mode between facilities

Technology TCH Selection of the technology used for production

In 1999, Rotstein et al. [81] presented one of the first papers addressing capacity

planning, from the drug development until the final manufacture stage. The authors

formulated a single-period MILP model to minimize the Net Present Value (NPV)

while considering uncertain demand forecasts due to the uncertainty in the outcomes

of clinical trials through a two-stage stochastic programming problem. The planning

horizon of the model is both strategical and tactical. Furthermore, an industrial

case study from a portfolio comprising eight products verified the applicability of

the proposed model.
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Papageorgiou et al. [82] proposed a MILP model to address the selection of

a product development and introduction strategy, as well as a long-term capacity

planning and investment strategy across several sites (thus having a strategical and

tactical planning horizon) with the objective of maximizing the NPV. One illustra-

tive example was used to demonstrate the applicability of the suggested multi-period

model however, the authors state that in real case data, the approach formulated

may be too large. Furthermore, the model does not account for the uncertainty

associated to this industry.

This way, Levis and Papageorgiou [83] proposed an extension of the approach

introduced by Papageorgiou et al. [82] to effectively handle uncertainty through the

addition of a stochastic optimization dimension to the problem. In addition, the

authors propose a hierarchical algorithm to lower the computational effort required

for addressing the large-scale MILP. The validity and effectiveness of the approach

are demonstrated through the use of illustrative examples.

In contrast to most of the papers in the literature, Moniz et al. [84] addressed

short-term planning decisions by presenting a case study on the production schedul-

ing of multipurpose batch plants in the chemical-pharmaceutical industry. Multi-

purpose batch plants are facilities that can produce a variety of products in different

batches, allowing for flexibility in production. However, scheduling the production

of multiple products in such plants can be challenging due to the complexity of

managing various constraints and objectives. The primary aim of this study was to

create a scheduling model and methodology capable of effectively managing both

regular and non-regular production scheduling in multipurpose batch plants. Regu-

lar production can be defined as the repetitive manufacturing of established products

(follow a cyclic schedule), whereas non-regular production pertains to the creation

of new or infrequently produced products (have a non-cyclic schedule). A MILP

model was used to formulate the scheduling problem and it incorporates various

constraints such as sequence-dependent changeovers. The objective is to maximize

the profit, while introducing a penalty cost for missing deliveries. The method in-

volves the determination the cycle time for scheduling products in a campaign mode,

assigning and sequencing task units for all products, determining batch sizes and

storage levels for tasks, and deciding on the number of campaign cycles.

Grunow et al. [85] also addressed operation decisions by the development of a

multi-period MILP model to coordinate the schedules of multiple batches of the same

API type produced by the same resource before switching to producing another API.

The goal of the model was the minimizing the total costs and the solution obtained

is exact. Nevertheless, the authors additionally propose an approach that is near-
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optimal and can be effectively implemented in more complex real-world scenario.

The effectiveness of the approach was demonstrated through a case study conducted

in the industry.

Focused on optimal planning and campaign scheduling in biopharmaceutical

processes, Vieira et al. [86] propose a continuous-time formulation to address the

complexities of these processes and optimize productivity, cost, and resource uti-

lization. The authors developed aMILP model that incorporates discrete decisions

and continuous variables related to production rates and resource allocation. The

objective was to find the optimal campaign schedule that maximizes profit, while

considering constraints such as equipment capacity and resource availability. A case

study comparing the continuous-time formulation with a traditional batch-based

approach demonstrates the superiority of the proposed method in the duration of

scheduled campaign tasks in order to meet production demand.

Marques et al. [87] presented a study from the chemical-pharmaceutical in-

dustry, an industry in which decisions regarding process design and planning can

significantly impact the overall performance and profitability of a company. How-

ever, these decisions often need to be made under uncertain conditions, such as

product demand and clinical trial outcomes. To address this challenge, the authors

propose a simulation-optimization framework that combines the use of a simulation

algorithm and MILP model to maximize the NPV. The framework enables decision-

makers to evaluate different medium and long-term design and planning alternatives

while considering the uncertainties present in the system. By integrating simulation

and optimization, the approach provides a more comprehensive understanding of

the product-launch planning problem.

Also Sousa et al. [88] proposed a non-exact approach to maximize the NPV

of a multi-period demand profile company’s PSC while considering product alloca-

tion and distribution structure. Due to the computational complexity of the MILP

model, the authors designed a heuristic method that ensured a high-quality final

solution. The proposed model is evaluated by conducting tests on two illustrative

examples.

An exact approach was used by Mousazadeh et al. [89] to model a PSC network

design. The authors propose a multi-period MILP model to minimize the total

costs and the unmet demand (maximization of the customer satisfaction) and use

a robust possibilistic programming approach to handle uncertain parameters like

demand, unit manufacturing costs, unit transportation, transport costs, and safety

stock levels. Long-term planning decisions, such as establishing and planning the

capacity of pharmaceutical manufacturing and DCs and production technologies
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used, as well as mid-term planning decisions like material flows are supported by

the model. The model was solved with real-world case data. First, the ϵ-constraint

method was applied to optimize each objective function separately and identify the

trade-off between the objectives, while reaching the respective Pareto frontier. Then,

to achieve the final solution, a fuzzy approach was implemented.

In the context of multi-objective function optimization, in general, there is no

one optimal solution that optimizes all objective functions at the same time [105].

This way, to select the most suitable solution, methods like the ϵ-constraint method

can be implemented to generate a satisfactory set of Pareto optimal solutions along

and allow the trade-off analysis between the concerned objectives. Thereby, with the

set of all Pareto optimal solutions, the Pareto Front is generated and the decision

maker can greatly identify the most suitable solution [89, 105, 106].

In their study, Marques et al. [90] developed MILP model as an extension of

their prior research [87] to tackle the stochastic product-launch planning problem.

Their novel contribution involved the development of a multi-objective model that

aimed to maximize productivity. Productivity, in this context, is generally defined

as the relationship between the outputs and inputs of a process. Hence, the authors

propose two objective functions: minimization of the total costs and maximization

of the value created. Furthermore, to quantify the value created, the authors con-

sider two aspects: the potential value for products under development and the real

value for products in commercialization. By integrating these objectives, the model

seeks to strike a balance between minimizing costs and maximizing the overall value

generated by the product launch planning process. This comprehensive approach

allows decision-makers to make informed choices that optimize both financial con-

siderations and the potential impact of their products in the market. Importantly,

the authors recognized the presence of uncertainty in both product demand and

clinical trials outcomes in the same way as their previous work.

Regarding environmental modeling, there are two approaches that can be em-

phasized, as outlined by Eskandarpour et al. [107]: the Life-Cycle Assessment

(LCA) and a partial assessment of environmental factors. In the first case, there is,

for example, the ReCiPe indicator used by Mota et al. [55] and Mota et al. [96].

The LCA quantifies emissions, resources, environmental and health consequences,

and resource depletion connected with any product or service. It includes extraction,

manufacture, usage, recycling, and disposal of the product, i.e., it includes the entire

life cycle of the product [108]. This way, according to the European Commission,

the LCA is the best method for assessing product environmental implications [109].

On the other hand, a partial evaluation of environmental issues focuses on one or
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more environmental concerns, such as greenhouse gas emissions, waste, and energy

consumption, based on what is most pertinent to a particular case study [107]. Take

for example the study conducted by Chaabane et al. [110] that has the minimization

of carbon dioxide (CO2) emissions as objective function. Also Zahiri et al. [91]

formulated the objective function of minimization of the total environmental impact

given that distinct production and shipping modes have different CO2 emissions.

Carrying on from the previous paper, Zahiri et al. [91] developed a multi-

objective MILP model for designing a multi-period PSC network under uncertainty.

The authors include the combination of sustainability and resilience in the SC by

proposing four objective functions that aim to: (1) minimize the total costs, (2)

maximize the economic development and job opportunity (maximization of the so-

cial welfare), (3) minimize the environmental impact, and (4) minimize the non-

resilience. Non-resilience is a concept that was only found in the work developed

by Zahiri et al. [91] and its minimization is achieved by combining 5 metrics: node

criticality, flow complexity, node complexity, demand dissatisfaction level, and pro-

duction with old technologies. Furthermore, to address uncertain parameters the

authors propose a novel fuzzy possibilistic-stochastic approach. Moreover, to solve

the large-sized instances, a metaheuristic algorithm was implemented. The model

was validated through numerical examples and a case study.

Nasrollahi and Razmi [92] proposed a multi-period model that supports deci-

sions on facility location, network allocation, inventory management, and flow of

products in the same echelon of the PSC. The bi-objective model aims to increase

the coverage of demand requests (maximize customer satisfaction) while minimizing

the total costs, and uses a fuzzy programming approach to handle uncertainty about

the amount of demand. To solve the model, the authors developed a metaheuristic

algorithm and validated it using a real-case study.

Cardoso et al. [93] explored in their study five SC structures, first with no

disruptions, and then submitted to different types of disruptions under demand

uncertainty modeled through stochastic programming. The authors created a bi-

objective and multi-period MILP model to maximize the customer satisfaction and

the NPV, with the goal of understanding the key factors that managers should

take into account when designing and planning resilient supply networks. Location,

production, distribution and inventory are the outputs of the model. The formulated

model was applied to an European SC.

Hansen and Grunow [94] propose a two-stage stochastic model to aid in the

preparation of market launch risks. The model balances off the costs of embrac-

ing these risks, such as the risk of packing prior to permission, against the revenue
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lost due to risk-averse operating. Furthermore, the model has the minimization

of the total costs as the objective function and allocation and distribution as its

output being, consequently, a decision support tool for product launch operations,

even when complicated regulatory issues must be taken into account. The authors

provided a detailed case study of a pharmaceutical company that used this frame-

work to successfully launch a new product, demonstrating the effectiveness of their

approach.

Goodarzian et al. [77] developed a multi-objective MINLP model to not only

minimize total costs, but also to minimize delivery time and maximize the reliability

of the transportation system and routes. The model comprises tactical and opera-

tional decisions since it provides information on allocation, production, distribution,

inventory, transportation, and routing. Furthermore, to solve the optimization prob-

lem, the authors compared the performance of several metaheuristics and evaluated

the performance of these algorithms based on different metrics.

Using a MILP model, Janatyan et al. [95] propose a new approach for a sus-

tainable pharmaceutical distribution network under uncertainty with three main

objectives: (1) minimization of the total costs, (2) minimization of the environmen-

tal impact, and (3) maximization of the social welfare. The outcome of the model

assists managers in determining the main and local DCs as strategic decisions and

the flow of products as tactical decisions. The model is evaluated in one of Iran’s

leading pharmaceutical distribution companies.

Considering the three pillars of sustainability, the work of Mota et al. [96] can

be highlighted. The three pillars of sustainability are incorporated by developing a

multi-objective model. Hence, the model has the following objective functions: (1)

maximization of the NPV, (2) minimization of the environmental impact, through

the LCA methodology ReCiPe, and (3) maximization of the social welfare, through

a developed Gross Domestic Product (GDP) metric, a social and economic measure

used by the EU in its strategy for Sustainable Development. The model combines

strategic decisions, such as facility location and capacity determination, with tac-

tical decisions, like setting purchase levels, planning supplies, and recovering and

remanufacturing products.

The previous authors, Mota et al. [96], conducted a review in which they

conclude that literature mostly addresses economic and environmental aspects of

sustainability. Nevertheless, it is possible to highlight that the most frequently

employed indicators for the social pillar of sustainability are: job creation, workers’

safety, health impacts, amount of working hours, and indicators that benefit SC

activities’ location in less developed regions. Take for instance Mota et al.’s [55]
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Social Benefit indicator to encourage the creation of jobs in areas that are less

developed, so contributing to the development of regional areas. This indicator

contains a regional factor that can take on different values based on the objective of

the study, for example, the unemployment rate or population density.

Social responsibility is a global metric to evaluate the social performance of a

company. It evaluates the company’s social impacts on all its stakeholders, particu-

larly its employees, through the assessment of working conditions, level of remuner-

ation, and discrimination [111].

Still taking into account the social impact, designing and planning PSCs with

equity in mind has shown to be vital and a key factor in pushing the pharmaceutical

industry in the direction of a more socially sustainable one however, it has not

yet been handled sufficiently in the literature [54]. As an example of the lack of

equity, the recent COVID-19 pandemic can be mentioned. According to The New

York Times [112], low-income countries had their first COVID-19 vaccine purchase

agreements eight months after the United States and the United Kingdom, resulting

in a significant divergence in vaccination delivery rates.

In addressing equity, the work of Cardoso et al. [97] can be highlighted. The

authors propose a two-stage stochastic MILP model to support the planning of

both strategical and tactical decisions in the long-term healthcare sector. While

the objective function consists of minimizing the expected costs, with the assurance

of a minimum level of demand satisfaction, the various levels of equity are repre-

sented as constraints, with the goal of achieving access, usage, socioeconomic, and

geographical equity.

Moreover, Bessa et al. [98] developed a capacity allocation model that incorpo-

rates an unfairness indicator that accounts for drug shortages to reach an equilibrium

between market demands and economic goals. To highlight the difference between

equality and fairness, take the example given by the authors that follows the idea of

the divergence in COVID-19 vaccination delivery rates stated above: knowing that

around 85% of all vaccinations were administered in high-income and upper-middle-

income countries, and 75% of those vaccines were distributed to only ten countries

[113], if every country received the same quantity of vaccines, equality would be

achieved, but the result would be unfair, considering that countries have distinct

population numbers. This way, a fair outcome would be to give each country the

same relative number of vaccines. Thus, fairness refers to the application of equity

to the desired outcome, i.e., granting each region an equal share of resources in pro-

portion to its need. The study came to the conclusion that a significant amount of

unfairness may be addressed with comparatively little influence on economic goals.
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Based on a case study of a SC where vaccine production and distribution are

considered, Duarte et al. [54] validated a sustainable MILP model that integrates

economic, environmental, and social sustainability objectives through the NPV, the

environmental LCA methodology, and concerns regarding equity in the distribution

of vaccines, respectively. To integrate the social sustainability indicator, an index

that evaluates and publicly acknowledges the top twenty pharmaceutical corpora-

tions for improving medical access- the Access to Medicine Index (AtMI), is analyzed

by the authors. Then, two social objective functions are formulated: (1) maximiza-

tion of the equal accessibility of pharmaceutical products by giving preference, using

the metric Disability-Adjusted Life Year (DALY), to the location of entities facili-

ties in regions with a higher disease burden, and (2) maximization of the minimum

delivery-to-demand ratio of each country, ensuring pharmaceutical products avail-

ability. Strategic decisions such as facility location, as well as tactical decisions

like production levels, storage levels, and transportation network establishment are

supported by the model.

Sazvar et al. [99] developed a multi-objective model to design a resilient SC that

takes into account economic, environmental, and social sustainability aspects, while

also applying uncertainty to various parameters. This model offers an approach for

considering the social anxiety that arises from a rise in demand, as can happen, for

example, after a natural disaster. The model also considers deprivation caused by

the inability to meet consumer demand when the company is very susceptible to

operational risks and disruption. The model has the following sustainability goals:

(1) minimize the total costs (economic component of a sustainable SC), (2) minimize

CO2 emissions rate (environmental impact of a sustainable SC), and (3) maximize

the corporate social responsibility (CSR) by lowering lost sales and enhancing ac-

cessibility to order fulfillment locations as well as job creation (social aspect of a

sustainable SC); and it aims at making strategic decisions, such as facilities location,

transportation mode selection, and technology selection, as well as tactical decisions,

more specifically inventory and production levels.

3.1.2.1 Models that Account for Perishability

As discussed in subsection 2.2.3, neglecting the limited shelf life of pharmaceu-

ticals can result in significant consequences, yet this is not taken into account in the

previous optimization models.

Indeed, most papers on distribution network design models disregard products’

lifetime [17]. Contraryly, Savadkoohi et al. [17] proposed a MINLP model that

takes into account the perishability of products by incorporating the concept of

36



3. State of the Art

expiration dates and spoilage rates. Specifically, the authors developed a multi-

period inventory location-allocation model that considers the perishability of the

pharmaceutical products over multiple periods. The spoilage rate represents the

percentage of the product that spoils per unit of time, and the expiration date

represents the maximum shelf life of the product. The model aims to determine

the optimal location and inventory levels of warehouses and retailers, as well as

the optimal allocation of products to each location, such that the total cost of the

SC is minimized, while meeting the demand for the products and respecting the

perishability constraints.

Also Roshan et al. [43] integrated product’s perishability in their mathematical

model by incorporating the concept of degradation rate. The degradation rate is

considered in the model as a constraint on the maximum amount of time that the

product can be stored before its quality deteriorates beyond an acceptable level.

Hence, this constraint limits the amount of inventory that can be produced for a

given product and time period. By considering the degradation rate in their model,

the authors are able to develop an optimal production plan that balances the trade-

off between meeting demand and minimizing the amount of inventory that may

become unusable due to spoilage. Moreover, the MINLP model proposed is able to

manage the PSC during crises. A Pareto front is performed to obtain a compromise

between the three objective functions : (1) minimize the total costs, (2) maximize the

customer satisfaction, by the minimization of the unmet demand, and (3) maximize

the social welfare.

Susarla and Karimi [100] developed an exact MILP model to support a multi-

period corporate planning. The model aims to minimize the total costs while ad-

dressing the product manufacturing and distribution, as well as some peculiarities

of the pharmaceutical industry, such as international tax differences. Moreover, the

authors considered expiration dates as one of the constraints in their mathemati-

cal optimization model. Specifically, the model ensures that products are allocated

to customers or DCs based on the expiration date, thus avoiding waste caused by

expired products. To achieve this, the authors considered the time required for

transportation and storage of products, as well as the expiration dates of products.

In addition, one of the key contributions of the paper is the inclusion of regulatory

compliance requirements in the optimization model. The authors considered regula-

tory constraints related to product approval, labeling, and packaging, ensuring that

the proposed SC network design meets all relevant regulations.

Le et al. [101] proposed a heuristic algorithm as a solution to an inventory

routing problem, a specific issue in SCM. The inventory routing problem involves the
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simultaneous optimization of inventory management and vehicle routing decisions.

In the context of perishable goods, the problem becomes more challenging due to

the limited shelf life of the products. Therefore, efficient management of inventory

and routing is crucial to minimize waste and ensure timely delivery. The proposed

model takes into account perishability constraints, which restrict the quantities of

goods that can be delivered to customers at any given time based on the shelf life of

the products. By considering these constraints, the algorithm aims to ensure that

the delivered goods are still within their acceptable shelf life limits.

In their study, Jia et al. [102] also addressed the integrated inventory routing

problem. To achieve the coordination of inventory management and routing deci-

sions, the authors developed a model that takes into account the time-dependent

deterioration of items, which significantly impacts their quality over time. By con-

sidering quality time windows and incorporating the time-dependent deterioration

factor, the proposed model aims to minimize the total costs associated with in-

ventory holding, transportation, and loading. Additionally, the model ensures that

customer demand is met within the specified quality time windows, ensuring that

products are delivered to customers within acceptable quality limits.

Zandkarimkhani et al. [18] modeled product perishability by considering the

shelf life of the products in the SC network. To model perishability, the authors

introduced a fuzzy parameter called the quality decay rate, which captures the re-

duction in product quality over time due to perishability. The decay rate is assumed

to be a fuzzy number, as the exact rate of quality decay may vary based on various

factors such as temperature, humidity, and handling conditions. Then, the quality

decay rate was used to calculate the remaining shelf life of the products at each

stage of the SC network. Following that, this information was used to determine

the optimal routing and inventory decisions for the products to minimize the overall

cost while ensuring that the products meet their quality requirements. In addition,

the first-in-first-out (FIFO) method is employed for inventory management.

The FIFO method is a common practice for managing inventory and means

that the products or resources that were manufactured or acquired first are sold

or used first [114]. By analyzing the applicability of this method in the literature,

the work of Weraikat et al. [115] can be highlighted. The authors study the op-

timal amount of medication that must be sent from a manufacturer to a hospital

throughout each period of time during the course of a planned horizon and use the

FIFO method in order to minimize the quantity of the expired medicines at the

hospitals. However, although issuing a FIFO policy may frequently contribute in

reducing waste and total costs since products approaching expiration may be used
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sooner, Xu et al. [103] observes that enforcing a FIFO policy is not required for

achieving optimal performances.

Xu et al. [103] studied a platelets SC and the impact of transshipment between

hospitals in it. Platelets and other blood components are extremely perishable,

causing them to be susceptible to expiration and waste. This way, the authors

present an optimization model to minimize the total costs considering the possi-

bility of transshipment. Also demand uncertainties, and stock age data are taken

into account. The model uses a perishability index to represent the remaining life-

time of the platelets, which was determined by the time elapsed since the platelets

were collected and the temperature at which they were stored. Furthermore, it pro-

vides both tactical and operational decisions on production (amount of whole blood

collected), allocation, inventory, and flow.

Zahiri et al. [5] developed a MILP model that aims to minimize the total

cost and the unmet demand (maximization of the customer satisfaction) on a PSC

network design problem. The exact model supports decisions on facility location,

network allocation, production, inventory management and flow of products from

facilities in distinct or in the same level of the PSC, i.e., it includes both strategical

and tactical decisions. The authors also address uncertainties in costs and demand

by implementing a novel robust possibilistic optimization approach. Moreover, this

model was the pioneer in addressing simultaneously product substitutability, per-

ishability and quantity discounts, which are highly prevalent challenges in the real-

world industry. To address perishability, the authors defined the shelf life period

of each product and used an index of production periods and an index of delivery

periods to establish inventory and flow restrictions. Moreover, the concept of prod-

uct substitution allows the use of alternative products when the primary product is

unavailable or expired.

More recently, Sun et al. [104] addressed the challenges and trade-offs involved

in managing the production, inventory, and routing decisions for multiple perishable

products while considering both economic and environmental goals. In its objective

function for minimizing total costs, the model takes into account the deterioration

of products over their lifetime. Through constraints, the authors impose that per-

ishable goods cannot be held, delivered, or utilized after their expiration dates.

Hence, it can be observed that there exist various methods to integrate the

concept of product perishability. While some methods provide waste prevention,

by not allowing products to exceed their shelf life, others only considered waste

reduction, as highlighted by Malladi and Sowlati [116].

When optimization models are designed to prevent products from expiring,
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it eliminates the need to consider the lost value of perished products. This is in

contrast to situations where product expiration is allowed and the potential loss of

value must be taken into account [116].

Table 3.5 summarizes the different ways of modeling perishability found in

literature.

Table 3.5: Literature’s different approaches of modeling perishability.

Paper Perishability Modeling Waste Prevention Waste Reduction
Savadkoohi et al. [17] Expiration Date and Degradation Rate x
Roshan et al. [43] Degradation Rate x

Susarla and Karimi [100] Expiration Date x
Le et al. [101] Shelf Life Limit x
Jia et al. [102] Degradation Rate x

Zandkarimkhani et al. [18] Degradation Rate x
Xu et al. [103] Remaining Lifetime Index x
Zahiri et al. [5] Production and Delivery Periods Indexes x
Sun et al. [104] Degradation Rate x

3.1.3 Chapter Final Remarks

In the decision-making process, optimization models are applied to provide valu-

able insights. Each model is specifically designed to tackle one or more particular

decisions, addressing various aspects of the decision-making process. The predom-

inant focus in the existing literature is on models pertaining to location decisions,

often in conjunction with allocation and distribution decisions. Moreover, integra-

tion of lower-level decisions such as production, routing, and inventory management

with network design considerations is commonly observed. This emphasizes the

importance of these lower-level decisions in the designing of a PSC network.

Based on the number of instances and the level of complexity of the model,

researchers may select between exact and non-exact methods to address a problem.

While some authors rely solely on exact methods, others combine an exact method

with a non-exact method if they find that the former is insufficient to obtain a

single optimal solution within a computationally feasible timeframe. In contrast,

some authors exclusively use non-exact methods.

When it comes to modeling uncertainty in PSC, demand uncertainty has been

the most studied. It is possible to conclude that the type of uncertainty program-

ming may depend on the type of uncertainty parameters that need to be taken into

account.

Moreover, according to the literature review conducted, it is possible to con-

firm the effects of the paradigm shift (discussed in section 2.3.2) on PSCs, mostly

regarding the Outcome, Flexibility, and Overall Welfare.
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The shift to the patient-centric paradigm is present in models that have the

objective of increasing the customer satisfaction by minimizing the unmet demand,

or that impose constraints on demand satisfaction.

Flexibility is incorporated into the optimization models through outsourcing

strategies. Most of the models output location decisions, which provides decision

support regarding which manufacturers (i.e., outsourcing facilities) should be incor-

porated into the network.

Although all analyzed models have an objective function focused on the eco-

nomic aspect (minimization of total costs, or maximization of profit, or maximization

of the NPV), some also have environmental and social concerns. Since companies

must remain profitable to survive on the market, economic concerns will always

exist and, therefore, the important thing to do is try to combine them with environ-

mental and social aspects to contribute to a more sustainable SCs. Environmental

concerns are present in the literature when the objective of minimizing the environ-

mental impact is formulated, which can be done through LCA or through a partial

assessment of environmental factors, based on what is most pertinent to a particular

case study [107]. On the other hand, the most frequently employed indicators for

the social pillar of sustainability are job creation, workers’ safety, health impacts,

amount of working hours, and indicators that benefit SC activities’ location in less

developed regions [96], all of which attempt to maximize the social welfare. Besides

that, equity aspects were also considered as relevant, particularly when addressing

pharmaceutical industry SCs. Yet, when there is a lot of pressure to reduce costs,

equity is not the first concern.

Furthermore, it is important to point out that many papers do not take into

account the shelf life of products. This oversight is particularly problematic for

perishable pharmaceutical products, as neglecting their perishability not only re-

duces their effectiveness and jeopardizes patient safety, but also leads to financial

losses for the company. In addition, expired medicines become useless and constitute

environmental waste, making it important to address this issue.

In addition, the reviewed papers did not specifically discuss the integration of

multiple perishable products to meet demand based on the specifications of different

age groups. Considering a general demand for the entire population can sometimes

be inaccurate or inadequate, particularly when it comes to medicines, as each age

group may have distinct and specific needs. For example, factors such as dosage,

formulation, and potential contraindications can vary depending on age. Therefore,

it is essential to take into account the unique requirements of different age groups

when optimizing inventory and meeting demand for pharmaceutical products. As a
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result, the focus of the subsequent research will be to address this challenge.
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4

Model Conceptualization &

Formulation

This chapter focuses on the mathematical formulation development of a perish-

able PSC network. The chapter begins by defining the generic problem under study

in section 4.1. Subsequently, section 4.2 introduces the proposed mathematical for-

mulation, which is further divided into subsections. In subsection 4.2.1, detailed

information is provided on the indices, sets, and parameters involved in the for-

mulation. Subsection 4.2.2 discusses the decision variables, while subsection 4.2.3

explores the objective functions. Finally, in subsection 4.2.4, the constraints of the

model are presented and explained, providing a comprehensive understanding of the

various limitations and considerations within the formulated model.

4.1 Problem Formulation

The approach adopted to model the perishable nature of products is the one

that ensures the prevention of product expiration, as it offers significant advantages

over allowing products to expire. By implementing this strategy, the risks associated

with product expiration can be effectively avoided.

Based on this objective, the model developed by Zahiri et al. [5] stands out as

preferable due to its efficient management of perishable products within a SC net-

work. By defining the shelf life period for each product and establishing inventory

and flow restrictions based on production and delivery periods, their model offers a

systematic and practical approach to handle perishability. The model also consid-

ers strategic and tactical decisions related to facility location, network allocation,

production, inventory management, and distribution, which are very important de-

cisions when designing an efficient SC and ultimately lead to customer satisfaction.

This way, the model developed by Zahiri et al. [5] inspired the conceptualization

and development of the present decision-support tool for the design and planning of
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a reliable, and flexible perishable PSC. Yet, significant adjustments were made to

address some significant challenges facing the pharmaceutical industry, such as the

need for different storage conditions, demand according to different age groups, and

the possibility of backorders creation.

The proposed model includes API manufacturers, product manufacturers, DCs,

and demand zones, as depicted in Figure 4.1. This way, in a four-level SC, the

model developed encompasses strategic and tactical decisions on facilities’ location,

production and inventory levels, and product flows.

Figure 4.1: Pharmaceutical supply chain of the proposed problem.

Thus, at API manufacturers, the raw materials needed for each product are

produced and carried to the product manufactures to be transformed into final

products. The maximum quantity of goods that can be stored from one period to

the next is determined by the storage capacity of each API manufacturer and product

manufacturer for each type of good manufactured and per time period. Afterwards,

products flow to the DCs, which in turn are in charge of directly satisfying demand

zones. Also the DCs have their own storage capacity, as well as handling capacity,

defined by the maximum quantity of items that can pass through each DC in a

specified time period. In addition, all facilities integrated in the first three levels of

the SC have inventories: at the API manufacturers, it is possible to keep a stock

of finished APIs, and at the product manufacturers, and DCs, there are product

inventories.

The proposed model supports the flow of multiple APIs and multiple products,

as well as different storage conditions in the inventory of each facility. Pharma-

ceutical products are regulated by strict storage requirements to prevent product

degradation [117]. Thus, when planning and designing a PSC, it may be insufficient

to consider a general inventory for all the products. This way, the model considers

the fact that each product must be kept along the SC in accordance with a par-

ticular set of storage conditions. Also, the shelf life of each product is considered

in the model, as proposed by Zahiri et al. [5]. Hence, the problem under research

aims to optimally locate API and product manufactures and DCs, establish the op-
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timal levels of production and inventory, as well as establish the interaction between

facilities in each period during products’ shelf life.

Furthermore, the model proposed by Zahiri et al. [5] aims to minimize the total

costs and the unfulfilled demands, however, the current model allows demand to be

delayed and accumulated until the next time period. This way, a backorder is defined

as the delaying of the supply of one product for one period of time. Therefore, the

current model’s goal is to minimize the backorders and minimize the network total

costs. The costs to be minimized are the costs that are incurred by the facilities

in order to integrate the network (integration costs), the costs incurred in order

to distribute the goods between facilities (transportation costs), and the costs of

storing the goods (inventory costs).

Table 4.1 presents the characteristics of each entity of the concerned PSC.

Table 4.1: Characteristics of each entity of the concerned supply chain.

Entities Features

API manufacturers

Have a maximum production capacity
Have a maximum inventory capacity to hold API stock
Is able to respond to orders from product manufacturers
Sends APIs to product manufacturers

Product manufacturers

Have a maximum production capacity
Have a maximum inventory capacity to hold products
Is able to respond to orders from DCs
Sends products to DCs

DCs

Have a maximum handling capacity
Have a maximum inventory capacity to hold products
Is able to respond to orders from demand zones
Sends products to demand zones

Demand zones
Have a known location
Have their demand segmented by age groups
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4.2 Mathematical Formulation

The mathematical formulation of the proposed MILP model is described in this

section, beginning with the indices and related sets, parameters, and decision vari-

ables. Following that, the objective functions and model constraints are presented.

4.2.1 Indices, Sets, and Parameters

Let A represent the set of APIs that are produced in the set of API manufac-

turers F. Each API manufacturer f has a maximum production capacity for each

API a, denoted as Mprod
af . Then, APIs may be transferred to product manufacturers

within the set S, or may be stored under diverse storage conditions, denoted by

C within each API manufacturer f. With regards to the storage of APIs within a

specific storage condition c, a predetermined maximum capacity is assigned to each

API manufacturer f, which is represented as M stor
fc . Furthermore, the retention of

an API storage unit in the API manufacturer f incurs a cost, denoted as Cinv
fc . The

notation Uac is used to represent the storage space requirement, measured in units,

to store a single unit of API a under condition c.

A cost of Ctran
afs occurs for each API unit transported from a API manufacturer

f to a product manufacturer s. In product manufacturers, a set of pharmaceutical

products, denoted by P are produced in a given production period i. Let T be

the set of time periods under consideration, the set of production periods for each

product p is denoted by I and has the same domain as T. Furthermore, for producing

one unit of product p, an amount of API a in required, defined as ρap. For each

product manufacturer s, a maximum production capacity of product type p to be

administrated to age group g is represented byMprod
pgs . Each age group g is part of the

set of considered age groups denoted by G. After manufactured, the products can be

sent immediately to the DCs (from set L) or can remain in inventory. Each product

manufacturer s has a maximum storage capacity of M stor
sc units under condition

c and a cost of Cinv
sc per units of storage space for each time period in inventory,

being that a unit of product p requires Upc units of storage space under condition c.

The problem under consideration deals with perishable products, therefore, to each

product p is associated its shelf life Sp.

A product of type p is transported from a product manufacturer s to a DC l

with a Ctran
psl cost per unit. When a product p arrives at a DC, it is assigned an

delivery period e. Let E be the set of delivery periods within the set of time periods

T under consideration. Also within each DC, it is possible to stock each product p

under specific storage conditions c. As such, a maximum storage capacity for the
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DCs is established and denoted as M stor
lc . Additionally, a cost is associated with

storing a storage unit of a product p in the DC l, indicated as Cinv
lc . The occupancy

of storage space by a unit of product p under condition c is represented by Upc. The

maximum capacity of products that each DC l can handle per time period is defined

as Mhand
l .

Lastly, based on the demand per age group g in each demand zone r at time

period t, defined asDrgt, the products are transported from the DCs to the respective

demand zones at a cost of Ctran
plr . The location of the demand zones is known

and, with the exception of these, all other facilities have network integration costs.

Integration costs of the API manufacturer f, product manufacturer s, and DC l are

denoted by Copen
f , Copen

s , Copen
l , respectively.

Table 4.2 summarizes the indices and related sets of the present mathematical

model model, while Table 4.3 summarizes its parameters.

Table 4.2: Indices and related sets of the mathematical model.

Indices Sets

f API manufacturer F API manufacturers

s Product manufacturer S Product manufacturers

l DC L DCs

r Demand zone R Demand zones

a API A APIs

p Product P Products

g Age group G Age groups

c Storage condition C Storage conditions

t Time period T Time periods

i Production period I ∈ T Production periods

e Delivery period E ∈ T Delivery periods

Table 4.3: Parameters of the mathematical model.

Integration Costs

Copen
f Cost of open API manufacturer f

Copen
s Cost of open product manufacturer s

Copen
l Cost of open DC l
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Transportation Costs

Ctran
afs Cost of transporting API a from the API manufacturer f to the

product manufacturer s

Ctran
psl Cost of transporting product p from the product manufacturer s to

the DC l

Ctran
plr Cost of transporting product p from the DC l to the demand zone

r

Inventory Holding Costs

Cinv
fc Cost of storing one storage unit in the API manufacturer f for one

time period under conditions c

Cinv
sc Cost of storing one storage unit in the product manufacturer s for

one time period under conditions c

Cinv
lc Cost of storing one storage unit in the DC l for one time period

under conditions c

Production Capacities

Mprod
af Maximum production capacity of API a at the API manufacturer

f

Mprod
pgs Maximum production capacity of product p for age group g at the

product manufacturer s

Handling Capacities

Mhand
l Maximum handling capacity of DC l

Storage Capacities

M stor
fc Maximum storage capacity of APIs by the API manufacturer f,

under conditions c

M stor
sc Maximum storage capacity of products by the product manufac-

turer s, under conditions c

M stor
lc Maximum storage capacity of products by DC l, under conditions

c
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Bill of Materials

ρap Required amount of API a for producing one unit of product p

Shelf Life

Sp Shelf life period of product p

Storage Units Required

Uac Number of units of storage space required to store a unit of API a,

under conditions c

Upc Number of units of storage space required to store a unit of product

p, under conditions c

Demand

Drgt Demand of products in demand zone r, for age group g, during

period t

4.2.2 Decision Variables

The decision variables to which the model intends to provide a response are

divided into two groups: binary variables and continuous variables. The first group

is concerned with the decision-making process regarding whether the facilities should

be included in the network or, in other words, whether they should be opened or

not. The decision whether a API manufacturer f, product manufacturer s, or DC l

should open is represented by Xf, Xs, and Xl, respectively.

On the other hand, the continuous variables are divided into four subgroups of

non-negative variables. Firstly, the production variables Paft and Ppst indicate the

quantity of goods produced in each manufacturer and time period. The product flow

variables ψafst, ψpslt, ψ
′i
pslt, ψplrgt, and ψ

′ie
plrgt indicate the amount of each good that

flows from one facility to another facility in the subsequent level of the SC, within

each time period. The quantity of APIs/products that must be kept in inventory

at each facility and time period is determined by the inventory variables Iaft, I
i
pst,
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and I ieplt. Finally, the decision variable backorders Brtg is used to determine the

quantity of products that will not be satisfied in the time period in which they were

demanded. The description of each variable can be found in more detail in the Table

4.4.

Table 4.4: Decision variables of the mathematical model.

Binary Variables

Network Integration

Xf 1 if API manufacturer f is opened, 0 otherwise

Xs 1 if product manufacturer s is opened, 0 otherwise

Xl 1 if DC l is opened, 0 otherwise

Continuous Variables

Production

Paft Quantity of API a produced in API manufacturer f at period t

Ppst Quantity of product p produced in product manufacturer s at pe-

riod t

Product Flow

ψafst Quantity of API a shipped from the API manufacturer f to the

product manufacturer s at period t

ψpslt Quantity of product p shipped from the product manufacturer s to

DC l at period t

ψ
′i
pslt Quantity of product p shipped from the product manufacturer s to

the DC l at period t that is produced in period i

ψplrgt Quantity of product p shipped from DC l to the demand zone r, to

attend demand age group g at period t

ψ
′ie
plrgt Quantity of product p shipped from DC l to the demand zone r, to

attend demand age group g at period t, that is produced in period

i and received in period e

Inventory

Iaft Quantity of API a in inventory at the API manufacturer f at the

end of the period t
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I ipst Quantity of product p in inventory at the product manufacturer s

at the end of period t produced in period i

I ieplt Quantity of product p in inventory at DC l at the end of period t

produced in period i and received in period e

Backorders

Brtg Number of units demanded to attend demand age group g by de-

mand zone r but undelivered in the time period t

4.2.3 Objective Functions

When dealing with models that have multiple objective functions, there are two

approaches that can be employed: treating the objective functions individually or

integrating them into a single objective function [105].

If the single objective function approach is chosen, it requires the use of weight-

ing factors. However, this method can lead to unfavorable effects, particularly in

terms of subjectivity and uncertainty. These factors can diminish the model’s clarity

and make it more challenging to comprehend the trade-offs between the objectives

[105].

Therefore, in the proposed model, the objective functions are treated separately.

Consequently, there are two distinct objectives: (1) minimization of the total costs,

and (2) minimization of the backorders.

Minimization of the Total Costs

min
∑
f

XfC
open
f +

∑
s

XsC
open
s +

∑
l

XlC
open
l +

∑
a

∑
f

∑
s

∑
t

ΨafstC
tran
afs +

∑
p

∑
s

∑
l

∑
t

ΨpsltC
tran
psl +∑

p

∑
l

∑
r

∑
g

∑
t

ΨplrgtC
tran
plr +

∑
t

∑
f

∑
c

(∑
a

IaftUac C
inv
fc

)
+
∑
t

∑
s

∑
c

(∑
p

I ipstUpc C
inv
sc

)
+

∑
t

∑
l

∑
c

(∑
p

I iepltUpc C
inv
lc

)
(4.1)
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The first objective function defined in equation 4.1 aims to minimize the costs

of the entire SC by adding all the costs. The equation terms correspond to the

costs of facility integration, transportation, and inventory, respectively. Integration

costs are calculated as the sum of the integration costs of all facilities to establish

a network, taking into account the binary variable that is 1 if the facility integrates

the network and 0 otherwise. Furthermore, transportation costs are given as the

sum of the amount of goods that flow from each origin facility to each destination

facility multiplied by the cost of transporting that good in that path for all goods,

time periods, origin facilities, and destination facilities. Lastly, inventory costs are

the sum of the final inventory of each good in each facility and in each time period,

multiplied by the storage space that that good requires for the storage condition

considered, and multiplied by the cost of one storage space under the storage con-

dition considered, in each facility.

Minimization of the Backorders

min
∑
t

∑
r

∑
g

Brtg (4.2)

Equation 4.2 defines the second objective function, which minimizes the net-

work’s total number of backorders as the sum of backorders for all demand zones,

age groups, and time periods.

4.2.4 Constraints

The imposed constraints are categorized as follows: material balances, entity

capacity, demand satisfaction, and variables’ constraints. From equation 4.3 to

equation 4.35, these constraints are defined and characterized.

1. Material Balances

1.1 API Consumption

∑
p∈P

(Ppst ρap) =
∑
f∈F

Ψafst, ∀ a ∈ A, s ∈ S, t ∈ T (4.3)

The parameter ρap of the proposed model allows the definition of the amount

of API a units needed to produce one unit of product p, therefore, in the product

manufacturers, APIs are used sole or combined to produce pharmaceutical prod-

ucts. Since in the context of the proposed model, the product manufacturers receive

APIs just-in-time and the consumption is immediate, equation 4.3 assures that the
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consumption of API a needed to produce pharmaceutical products in each product

manufacturer s is equal to the inflow of that API a in that facility.

1.2 Flow Balance on each Facility

Iaft = Paft −
∑
s∈S

Ψafst, ∀ a ∈ A, f ∈ F, t ∈ T, t = 1 (4.4)

Iaft = Iaft-1 + Paft −
∑
s∈S

Ψafst, ∀ a ∈ A, f ∈ F, t ∈ T, t > 1 (4.5)

Constraints 4.4 and 4.5 are concerned to the inventory of API manufacturing

facilities and are differentiated by the time period to which they refer. For the first

time period (i.e., t = 1), there are not any APIs in inventory thus, the inventory level

corresponds to the APIs manufactured minus the outflow to product manufacturers,

as assured by equation 4.4. On the other hand, for the remaining time periods it is

necessary to take into account the accumulated stock from the previous period.

t∑
i=1

I ipst =
∑
p∈P

Ppst −
∑
l∈L

Ψpslt, ∀ p ∈ P, s ∈ S, t = 1 ∧ t < Sp (4.6)

t∑
i=1

I ipst =
t−1∑
i=1

I ipst-1 +
∑
p∈P

Ppst −
∑
l∈L

Ψpslt, ∀ p ∈ P, s ∈ S, 1 < t < Sp (4.7)

t∑
i=t+1−Sp

I ipst =
t−1∑

i=t+1−Sp

I ipst-1 +
∑
p∈P

Ppst −
∑
l∈L

Ψpslt, ∀ p ∈ P, s ∈ S, t ≥ Sp (4.8)

Constraint sets 4.6 to 4.8 calculate the inventory of products p within their per-

ish time for a product manufacturer s in different periods t. Equation 4.6 calculates

the stock level for the first time period (i.e., t = 1), when there are not any stocked

products added from its previous period. On the other hand, constraints 4.7 and

4.8 guarantee that the products that are kept in inventory in product manufactur-

ers are equal to the inventory from the last time period plus the products produced

minus the products that are sent to DCs. Furthermore, the constraints are treated

separately for different values of time period t since, when the time period exceeds

the perish time (i.e., t ≥ Sp), constraint 4.8 guarantees that the production of the

products in stock occurred within the product’s perish time (i.e., i ∈ [t+1−Sp, t]).

I ipst =
∑
p∈P

Ppst −
∑
l∈L

Ψ
′i
pslt, ∀ p ∈ P, s ∈ S, t ∈ T, i = t (4.9)
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I ipst = I ipst-1 −
∑
l∈L

Ψ
′i
pslt, ∀ p ∈ P, s ∈ S, t− i < Sp ∧ t > i (4.10)

Furthermore, constraints 4.9 and 4.10 determine the inventory level for product

manufacturers based on the products’ production period. That is, when the time

period equals the production period (i.e., i = t), as in equation 4.9, the inventory

level is calculated by the addition of the products manufactured in that time period

to the previous inventory level minus the outflows to DCs. On the other hand, when

t-i < Sp (equation 4.10), the production and the current periods are still within the

product’s shelf time and the inventory level should be determined as the previous

stock level minus the outflows in that period.

Ψpslt =
t∑

i=1

Ψ
′i
pslt, ∀ p ∈ P, s ∈ S, l ∈ L, t < Sp (4.11)

Ψpslt =
t∑

i=t+1−Sp

Ψ
′i
pslt, ∀ p ∈ P, s ∈ S, l ∈ L, t ≥ Sp (4.12)

Equations 4.11 and 4.12 determine the total flow of product type p between a

product manufacturer s and a DC l with regard to its production period. The same

way as in equations 4.7 and 4.8, total product flows between concerned facilities are

treated differently depending on the value of t <Sp and t ≥ Sp.

t∑
e=i

t∑
i=1

I ieplt =
∑
s∈S

Ψpslt −
∑
r∈R

∑
g∈G

Ψplrgt, ∀ p ∈ P, l ∈ L, t = 1 ∧ t < Sp (4.13)

t∑
e=i

t∑
i=1

I ieplt =
t−1∑
e=i

t−1∑
i=1

I ieplt-1 +
∑
s∈S

Ψpslt −
∑
r∈R

∑
g∈G

Ψplrgt, ∀ p ∈ P, l ∈ L, 1 < t < Sp

(4.14)

i+Sp−1∑
e=i

t∑
i=t+1−Sp

I ieplt =
t−1∑
e=i

t−1∑
i=t+1−Sp

I ieplt-1+
∑
s∈S

Ψpslt−
∑
r∈R

∑
g∈G

Ψplrgt, ∀p ∈ P, l ∈ L, t ≥ Sp

(4.15)

Constraint sets 4.13 to 4.15 calculate the stock level for each DC over different

time periods. When t <Sp as in equations 4.13 and 4.14, the authorized interval for

the production period is i ∈ [1, t ] and e ∈ [i, t ] for the delivery periods. There is a

distinction between these two equations since for the first time period (i.e., t = 1), the

54



4. Model Conceptualization & Formulation

DCs have no products in inventory. On the other hand, if the time period is greater

than the product’s shelf life, as in equation 4.15, production and distribution must

occur within the product’s shelf life. This way, the production period transforms

to i ∈ [t+1-Sp, t ] and, by changing the minimum allowable production time to i

=t+1-Sp, the time period changes to t=i -1+Sp and, consequently, the acceptable

interval of delivery period is given as e ∈ [i, i -1+Sp].

I ieplt =
∑
s∈S

Ψ
′i
pslt −

∑
r∈R

∑
g∈G

Ψ
′ie
plrgt, ∀ p ∈ P, l ∈ L, i ∈ I, e = t (4.16)

I ieplt = I ieplt-1 −
∑
r∈R

∑
g∈G

Ψ
′ie
plrgt, ∀ p ∈ P, l ∈ L, i ∈ I, t− e < Sp ∧ i ≤ e < t (4.17)

Based on the delivery period of products, equations 4.16 and 4.17 calculate the

inventory levels of DCs. If the time period is equal to the delivery period of products

in the DC (i.e., e=t), as in equation 4.16, the inventory level is calculated as the

products that arrive from the product manufacturers minus the flows to demand

zones. However, when t-e < Sp (equation 4.17), there are no inflows from the

product manufacturers thus, the inventory level is given as the subtraction of the

products that flow to demand zones from the inventory level of the previous period.

Ψplrgt =
t∑

e=i

t∑
i=1

Ψ
′ie
plrgt, ∀ p ∈ P, l ∈ L, r ∈ R, g ∈ G, t < Sp (4.18)

Ψplrgt =

i+Sp−1∑
e=i

t∑
i=t+1−Sp

Ψ
′ie
plrgt, ∀ p ∈ P, l ∈ L, r ∈ R, g ∈ G, t ≥ Sp (4.19)

Constraints 4.18 and 4.19 calculate the flow of products from DCs to demand

zones based on the products’ delivery periods. So that the products do not expire

in inventory, when the time period exceeds the product’s shelf life, constraint 4.19

assures that the flow of products occurred within the product’s shelf life. Thus, the

production period’s interval transforms to i ∈ [t+1-Sp, t ] and, consequently, the

acceptable interval of delivery period is given as e ∈ [i, i -1+Sp].
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2. Entity Capacity

2.1 Production Capacity

Paft ≤ XfM
prod
af , ∀ a ∈ A, f ∈ F, t ∈ T (4.20)

Ppst ≤ Xs M
prod
pgs , ∀ p ∈ P, s ∈ S, t ∈ T (4.21)

The production capacity constraints limit the production of each manufactur-

ing facility based on its installed capacity. If a facility has a limited capacity for

producing a certain number of units, it cannot manufacture more than that amount.

Equation 4.20 ensures that the amount of API a produced by the API manufacturer

f does not exceed the facility’s production capacity for each API and time period,

while equation 4.21 ensures that the amount of product p produced by the product

manufacturer s does not exceed the facility’s production capacity for product type

p and age group g, per time period. In addition, both equations (4.20 and 4.21)

need to account for whether the manufacturers are part of the network or not.

2.2 Handling Capacity

∑
g∈G

∑
r∈R

∑
p∈P

Ψplrgt ≤ Xl M
hand
l , ∀ l ∈ L, t ∈ T (4.22)

DCs have limited resources thus, the handling capacity is the maximum amount

of products that the DCs can handle in each time period. Constraint 4.22 guarantee

that the flow exiting each DC does not exceed their handling capacity for all prod-

ucts, in each time period.

2.3 Storage Capacity

∑
a∈A

(Iaft Uac) ≤ Xf M
stor
fc , ∀ f ∈ F, c ∈ C, t ∈ T (4.23)

∑
p∈P

(I ipst Upc) ≤ Xs M
stor
sc , ∀ s ∈ S, c ∈ C, t ∈ T (4.24)

∑
p∈P

(I ieplt Upc) ≤ Xl M
stor
lc , ∀ l ∈ L, c ∈ C, t ∈ T (4.25)

Storage capacity constraints found in 4.23 to 4.25 ensure that the maximum

storage capacity of any given facility at any time period and for any given storage
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condition is never exceeded, regardless of the facility, the time period, or the storage

condition.

3. Demand Satisfaction

∑
l∈L

∑
p∈Pg

Ψplrgt ≥ Drgt −Brtg, ∀ r ∈ R, g ∈ G, t = 1 (4.26)

∑
l∈L

∑
p∈Pg

Ψplrgt ≥ Drgt +Brtg-1 −Brtg, ∀ r ∈ R, g ∈ G, t ∈ T, t > 1 (4.27)

Brtg = 0, ∀ r ∈ R, g ∈ G, t = T (4.28)

Not all the products are safe to be administrated to all age groups, so by creating

a new set Pg, the model focuses on considering only the relevant products to satisfy

the demand. To this end, the selection criteria requires that for each combination

of a demand zone and age group, only products that can be used in that age group,

as determined by the Mprod
pgs parameter, are included in the new set Pg.

Thus, to ensure that demand is satisfied, constraint 4.26 guarantees that, in

the first time period, the flow of all products from all DCs to each demand zone

is higher than the demand of that demand zone minus the backorders that will be

fulfilled in the subsequent time period. For the remaining time periods, constraint

4.27 additionally takes into account the backorders accumulated from the previous

time period. Both constraints 4.26 and 4.27 allow for flexibility in the products used

to meet demand. As long as the products are safe for the age group corresponding

to the demand to be satisfied, and the total flow of products is sufficient to meet

the demand of each demand zone in each time period, any product can be used.

Finally, at the end of the time horizon (i.e., t = T ), equation 4.28 ensures that

all demand zones have their demand satisfied, since no backorders are allowed.

4. Variables’ Constraints

4.1 Binary Variables

Xf, Xs, Xm, Xl ∈ {0,1} (4.29)

The integration or not of a given facility in the network is defined by the binary

decision variables, which can only take the value 0 or 1, as guaranteed by equation

4.29.
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4.2 Null Variables

I ipst = 0 ∀ p ∈ P, s ∈ S, i ∈ I, t ∈ T, t < i (4.30)

I ieplt = 0 ∀ p ∈ P, l ∈ L, i ∈ I, e ∈ E, t ∈ T, t < i (4.31)

I ieplt = 0 ∀ p ∈ P, l ∈ L, i ∈ I, e ∈ E, t ∈ T, e < i (4.32)

Equations 4.30 to 4.32 display the decision variables that must take on a value

of zero. When the time period is shorter than the production period (i.e., t < i) or

the delivery period is shorter than the production period (i.e., e < i), the inventory

must be null.

4.3 Non-negative Variables

ψafst, ψpslt, ψ
′i
pslt, ψplrgt, ψ

′ie
plrgt ≥ 0, (4.33)

∀ a ∈ A, p ∈ P, f ∈ F, s ∈ S,

l ∈ L, r ∈ R, i ∈ I, e ∈ E, t ∈ T

Iaft, I ipst, I ieplt ≥ 0, ∀ a ∈ A, p ∈ P, f ∈ F, s ∈ S, (4.34)

l ∈ L, r ∈ R, i ∈ I, e ∈ E, t ∈ T

Paft, Ppst ≥ 0, ∀ a ∈ A, p ∈ P, f ∈ F, s ∈ S, t ∈ T (4.35)

Finally, negative values cannot exist for flows, inventories, or productions, which

is assured by equations 4.33, 4.34, and 4.35, respectively.
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5

Model Validation & Results

Analysis

This chapter focuses on the practical application of the formulated model to the

Portuguese COVID-19 vaccine SC network and it is organized as follows: section

5.1 defines and characterizes the case study chosen for analysis. In section 5.2, the

approach employed to solve the multi-objective problem is defined and justified.

Finally, the results obtained from the application of the model to the case study are

analyzed in section 5.3, followed by a discussion of the findings in section 5.4.

5.1 Case Study: Portugal’s COVID-19 Vaccines

The COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that

can affect individuals of all ages and may result in severe illness or even death

when contracted [118]. In 2020 and 2021, the WHO estimated that the pandemic

caused approximately 15 million deaths. Nonetheless, the launch of vaccinations has

saved millions of lives. Notably, researchers have determined that the initial year of

COVID-19 vaccination played a significant role in reducing global deaths by more

than half, averting an estimated 14 to 20 million fatalities [119].

Even though the WHO officially announced the conclusion of the emergency

phase of the pandemic in May 2023, it emphasized that COVID-19 still poses a

health risk. This is due to the potential of new virus variants to evade the body’s

immune system, leading to infections, severe illness, and even death. Therefore,

it is crucial for countries to continue monitoring infection rates and ensuring the

availability of COVID-19 vaccination [119].

Vaccines against COVID-19 have a limited shelf life and must be stored in

freezing temperatures, making its management a significant logistical challenge. To

ensure the success of vaccination programs, it is imperative to implement efficient

and effective planning and management of the SC. Failing to do so can result in the
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waste of valuable vaccine doses, leading to significant financial losses and increased

environmental waste.

This way, a study on the SC of COVID-19 vaccines in Portugal is carried out

based on publicly available information in order to apply and validate the model

developed. However, it should be noted that due to the lack of substantial data, the

case study serves only as a representative study of a perishable PSC network.

5.1.1 Data Gathering

Based on the data provided by EMA, as of April 2023, there are eight vaccines

authorized for use in the EU for protecting people against COVID-19: Comirnaty

(commercialized by BioNTech and Pfizer), Spikevax (commercialized by Moderna),

Vaxzevria (commercialized by AstraZeneca), Jcovden (commercialised by Janssen),

Nuvaxovid (commercialized by Novavax), COVID-19 Vaccine Valneva (commercial-

ized by Valneva), VidPrevtyn Beta (commercialized by Sanofi Pasteur), and Bimer-

vax (commercialized by HIPRA) [119]. By analyzing the product information doc-

uments, it is possible to identify the API and final product manufacturers for each

vaccine. For this case study, only manufacturers located in Europe are considered.

Products Information

Comirnaty and Spikevax are the only vaccines currently available that can be

administered to any age group, however, they are the ones that need more expensive

storage conditions. Comirnaty vaccine requires ultra-freezing conditions (store in a

freezer at -90°C to -60°C), which will be referred to as C1 hereafter, and is manufac-

tured by two secondary manufacturers in Mainz (Germany) and Puurs (Belgium).

As for its API, it can be manufactured in four different locations, Dublin (Ireland),

Mainz, Marburg, and Laupheim (Germany) [120]. On the other hand, Spikevax vac-

cine can be manufactured in six different manufactures, whereas three of them are

located in Madrid (Spain), one in Monts (France) and two in Monza and Ferentino

(Italy), while its API can only be manufactured in Visp (Switzerland) [121]. This

vaccine requires freezing storage conditions (-50°C to -15°C), henceforth designated

C2.

The remaining available vaccines cannot be administered to children, which

further restricts their use. Nevertheless, apart from Jcovden vaccine, which needs to

be kept in ultra-cold temperatures of -25°C to -15°C (referred to as C3 hereafter), the

storage requirements for the remaining vaccines are no longer as stringent, as they

solely mandate cold conditions within the range of 2°C to 8°C, henceforth designated

C4. As to their manufacturers, Jcovden vaccine has one API manufacturer in Leiden
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(The Netherlands), which also works as a final product manufacturer and, therefore,

there will be no associated costs for transportation between these two facilities, and

another possible product manufacturer in Beerse (Belgium) [122].

Vaxzevria vaccine is manufactured in Nijmegen (The Netherlands) and its

API can be manufactured in multiple locations, such as Seneffe (Belgium), Oxford

(United Kingdom), and Leiden (The Netherlands) [123].

Moreover, both the Nuvaxovid vaccine and its API are manufactured in Jevany

(Czechia) therefore, there are no transportation costs between both manufacturers

[124].

Furthermore, COVID-19 Vaccine Valneva has its API manufactured in Liv-

ingston (Scotland) or Dessau-Rosslau (Germany), while the vaccine itself can be

manufactured in Solna (Sweden) or Vienna (Austria) [125]. This particular vaccine

is contraindicated for individuals above the age of 65.

VidPrevtyn vaccine is manufactured, as well as its API, in France yet, in the

different cities of Marcy l’Etoile and Vitry sur Seine Cedex, respectively [126].

Finally, both Bimervax API and vaccine are manufactured in Girona (Spain)

thus, there are no associated transportation costs between the manufactures of this

vaccine [127].

It is essential to recognize the criticality of batch testing and transportation time

in the distribution of various COVID-19 vaccines. Extensive testing is an indispens-

able process for ensuring the safety and efficacy of vaccine batches. Consequently,

the duration required for this testing can span several days, thereby influencing the

overall lead time before vaccines can be made available to the public. To address

this, an approximation of the lead time, encompassing both batch testing and trans-

portation time, is made by considering the remaining shelf life since manufacture

for the COVID-19 vaccines, including Comirnaty, Spikevax, Vaxzevria, Jcovden,

Nuvaxovid, COVID-19 Vaccine Valneva, VidPrevtyn Beta, and Bimervax, as 12, 5,

5, 7, 5, 12, 8, and 8 months, respectively.

Table 5.3 at the end of this section summarizes the information of each vaccine

and respective assigned code in the case study, while Table 5.2 presents each vaccine

specification considered in the case study and its assigned code.

Portugal’s Distribution Network

In the context of this study, it is assumed that each district of Portugal repre-

sents a demand zone and it is proposed that each district has the capacity to ac-

commodate a DC. Since Portugal comprises 18 districts along with 2 Autonomous

Regions, the distribution network will include a total of 20 possible DCs and 20
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demand zones. This assumption enables a comprehensive coverage of the entire ge-

ographical area of Portugal, ensuring efficient distribution and accessibility to each

district and Autonomous Region. Table 5.1 presents each DC considered in the case

study and its assigned code.

Table 5.1: Distribution centres codification in the case study.

Distribution Centres

Lisboa d0 Faro d5 Funchal d10 Évora d15
Porto d1 Leiria d6 Ponta Delgada d11 Beja d16
Setúbal d2 Santarém d7 Viana do Castelo d12 Guarda d17
Braga d3 Coimbra d8 Vila Real d13 Bragança d18
Aveiro d4 Viseu d9 Castelo Branco d14 Portalegre d19

Transportation Costs

Given the criterion of exclusively considering manufacturers situated in Europe,

only truck transportation is accounted for among the manufacturers and between

product (vaccine) manufacturers and DCs, with the exception of the autonomous

regions of Açores and Madeira (islands). In Portugal, after the vaccines arrive to

the DCs, except for Açores and Madeira, the transportation mode considered is also

the truck. For routes to Funchal and Ponta Delgada, air transportation by plane

is considered. As suggested by Mousahadeh et al. [89], the transportation costs

between manufacturers, DCs, and demand zones are calculated based on the weight

of each good and kilometers traveled, whose distances were calculated for each route

using Google Maps 1.

This way, almost all transportation costs are calculated based on the average

cost of road transportation in Europe, which can range from 0.08 to 0.20 euros per

kilogram per kilometer (e/(km.kg)), according to a freight quote agency. Since

vaccines require specific transportation conditions and careful handling, an average

value of 0.15 e/ (km.kg) is considered for the present problem. Transportation costs

are converted from cost per weight to cost per vaccine dose, assuming an average

weight of 4.2 grams per dose 2, resulting in an average of 0.00063 e/ (km.dose).

On the other hand, APIs do not require such strict transportation conditions, so

an average of 0.08 e/ (km.kg) is considered between API manufacturers and fi-

nal product manufacturers. An average weight of 2 grams per API is considered,

resulting in an average of 0.00016 e/ (km.API). In the case of the routes by air

(to Funchal and Ponta Delgada), the transportation costs were calculated based on

the average cost of air transportation of 0.40 e/ (km.kg) and therefore, 0.00168

1
https://www.google.nl/maps

2
https://expresso.pt/sociedade/2020-12-26-Covid-19-Primeiro-lote-de-vacinas-ja-chegou-a-Portugal
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e/ (km.dose). Routes to the islands were only considered for demand zones with

airports or aerodromes.

Transportation costs based on the distances between each facility can be found

in appendix, from Table A.11 to Table A.14.

Inventory Holding Costs

The storage costs were estimated using data provided by Mousazadeh et al.

[89]. In the mentioned case study, an average of e40 per ton and per time period is

considered, which in the present study would result in an average of e0.18 per thou-

sand doses and per time period. Nevertheless, the product under consideration is

the amoxicillin 500 mg capsules. Capsules, by their nature, do not require stringent

storage conditions and, as such, in order to obtain a more accurate representation of

the storage requirements for vaccines, an estimation is made. This estimation entails

considering the cost of e0.36, e0.72, e1.44, and e2.88 per thousand doses and per

time period for vaccines stored in C4, C3, C2, and C1 conditions, respectively.

Integration Costs

Since realistic information about the costs of opening a facility in Europe is

difficult to obtain, the average cost of Mousazadeh et al. [89] is adapted to the

European market in proportion to the GDPs of both regions, according to the World

Bank 3.

It is considered that the average cost of opening a product manufacturer is

approximately 121 million Iranian Rials based on Mousazadeh et al. [89], which is

equivalent to e2,597,199.50 at the current market exchange rates. Based on this

value, the cost of opening each product manufacturer can be calculated in proportion

to the GDP of the country in which the manufacturer is located. Table 5.3 shows the

cost of integration of each product manufacturer in the SC under study, calculated

using the ratio of Iran’s GDP to the GDP of each facility’s country (see Table A.1

in appendix).

In this study it is considered that the costs associated with opening API man-

ufacturers are encompassed by the overall opening costs of product manufacturers.

Considering this interdependence, open API manufacturers is considered to only in-

cur a cost of e100. This minimal cost is applied to avoid a scenario where the model

would automatically open every API manufacturer without any cost consideration

since the aim is to identify the API manufacturers that should be established within

the network.

3
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD
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As for the costs of opening a DC, an average of 4,096 million Iranian Rials

is considered based on Mousazadeh et al. [89]. At the current exchange rate this

value corresponds to e87,918.42, which is adapted to the Portuguese market in

proportion to the GDPs of both countries according to the World Bank (see Table

A.1 in appendix). This way, is considered the cost of e109,019 for opening each DC.

Production, Storage, and Handling Capacities

Due to the limited publicly available information, in the present case study, it

is estimated that API manufacturers possess a production capacity of 600 thousand

units per time period. In this study, each time period is considered to correspond

to a duration of one month. This estimation is based on the consideration that

API manufacturers are equipped with the necessary resources and infrastructure to

produce a significant quantity of units. On the other hand, product manufacturers

are estimated to have a production capacity of 135 thousand doses per time period.

This estimation can be attributed to various logical reasons. Firstly, vaccine pro-

duction involves a complex and intricate process that requires meticulous attention

to detail, stringent quality control measures, and adherence to regulatory guidelines.

These factors can potentially limit the production capacity of vaccine manufacturers

compared to API manufacturers.

Regarding storage capacities, it is assumed that both API and vaccine manu-

facturers have varying capacities based on different conditions. For conditions C1,

C2, C3, and C4, the storage capacities are considered to be 600, 700, 800, and 900

thousand doses per time period, respectively. These values reflect the facilities’ ca-

pabilities to accommodate the storage needs for the produced units while ensuring

proper conditions for preservation and stability.

Moreover, it is assumed that each DC has the capacity to handle 12 million

doses per time period to ensure that a single DC is capable of managing the entire

volume of vaccines within a given time period.

Demand

To accommodate the fact that certain vaccines are not appropriate for all age

groups, the demand of the present problem has been categorized into three groups:

individuals aged 65 and above, those under 18, and the rest of the population,

which falls between 18 and 65 years old. As a result, the demand for each group

is calculated based on the population in each district belonging to the relevant age

group.

Therefore, the determination of total demand in the present problem was made
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from official statistics provided by the National Institute of Statistics, which involved

an evaluation of the population of Portugal according to age groups in the year 2021.

Subsequently, the estimation of the demand for each district, i.e., the demand in

each demand zone, was made taking into account the proportion of inhabitants

residing in each respective district and can be found in Table A.2 of the appendix.

Furthermore, it is considered that the demand is not constant, but occurs in

peaks, in order to simulate a scenario closer to reality. In Figure 5.1, the data from

the WHO illustrates a clear pattern where COVID-19 outbreaks predominantly

occur during January, coinciding with the coldest month of the year. To effectively

curb the spread of an outbreak, it is crucial to ensure that the population is already

immunized in the months when the risk of infection is highest. Consequently, in this

particular study, a precautionary measure is implemented by providing a booster

dose to the population. As part of this approach, individuals over 65 years of age

(henceforth designated G1) are vaccinated in September, those between 18 and 65

years of age (henceforth designated G2) in October, and individuals under 18 years

of age (henceforth designated G3) in November. Figure 5.2 illustrates the total

demand per time period. It is important to note that although the figure represents

the overall demand, it does not explicitly present the distribution of demand by each

age group and demand zone.

Figure 5.1: Global COVID-19 confirmed cases. From [9].

Figure 5.2: Total demand per time period.
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Table 5.2: Vaccine specifications’ codification.

Population eligible for administration
65 years old G1

18 – 65 years old G2
18 years old G3

Storage Conditions
-90ºC to -60ºC C1
-50ºC to -15ºC C2
-25ºC to -15ºC C3
2ºC to 8ºC C4

Table 5.3: Vaccines’ information and respective codification in the case study.

Vaccines API Manufacturers
Product Manufacturers

(ant their opening costs (e))
Shelf Life
(months)

Age
Groups

Storage
Cond.

Comirnaty v0

Mainz (Germany) a0
Marburg (Germany) a1 Mainz (Germany) p0 207,776 12 G1, G2, C1
Laupheim (Germany) a2 Puurs (Belgium) p1 1,558,320 G3

Dublin (Ireland) a3

Spikevax v1 Visp (Switzerland) a4

Monts (France) p2 311,664
Monza (Italy) p3 441,524

Ferentino (Italy) p4 441,524 5 G1, G2, C2
Madrid (Spain) I p5 649,300 G3
Madrid (Spain) II p6 649,300
Madrid (Spain) III p7 649,300

Vaxzevria v2
Seneffe (Belgium) a5

Nijmegen (NL) p8 934,992 5 G1, G2 C4Oxford (UK) a6
Leiden (NL) I a7

Jcovden
v3 Leiden (NL) II a8

Leiden (NL) p9 934,992
7 G1, G2 C3

Beerse (Belgium) p10 1,558,320

Nuvaxovid
v4 Jevany (Czechia) a9 Jevany (Czechia) p11 3,324,415 5 G1, G2 C4

COVID-19
Vaccine Valneva

v5
Livingston (Scotland) a10 Solna (Sweden) p12 1,480,404

12 G2 C4
Dessau-Rosslau (Germany) a11 Vienna (Austria) p13 1,947,900

VidPrevtyn Beta
v6

Vitry sur Seine Cedex
(France)

a12
Marcy l’Etoile

(France)
p14 311,664 8 G1, G2 C4

Bimervax
v7 Girona (Spain) a13 Girona (Spain) p15 649,300 8 G1, G2 C4

5.2 Multi-objective Approach

The decisions involved in this problem must consider multiple trade-offs re-

sulting from minimizing both the total costs of the network and the backlog of

orders, which are the two objective functions. In Multi-Objective Mathematical

Programming (MOMP), there are multiple objective functions, and generally, there

is no optimal solution that simultaneously optimizes all objective functions. There-

fore, in these situations, the search for an single optimal solution is replaced by the

achievement of a compromise solution that takes into account the decision-maker’s

preference between the two objectives [105].

The current classification of MOMP methods defines three categories: a priori,

interactive, and a posteriori. These classifications differ based on the moment in
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the decision-making process at which the decision maker makes their preferences

[105]. A priori methods involve the establishment of predetermined goals or weights

for objectives by the decision-maker prior to the resolution process. On the other

hand, interactive methods involve iterative cycles of computation and communica-

tion with the decision-maker until a state of convergence is achieved [105].

The method chosen in the present problem is a posteriori method, which in-

volves the identification of a set of efficient solutions, commonly referred to as a

Pareto optimal set, rather than relying on a single solution. Subsequently, in poste-

riori methods, the decision-maker selects the most desirable solution from this set.

Pareto optimal solutions are defined by the property that any attempt to enhance

one objective function would result in a decline in at least one of the other objective

functions [105].

The approach used to generate the Pareto Set is the ϵ-constraint method, which

consists of optimizing one of the objective functions while the other is constrained

[89]. Hence, the problem was first solved for the cost minimization objective func-

tion, and then for the backorders minimization objective function (determination of

the two extreme points of the Pareto front). Subsequently, an approximation of the

Pareto efficient frontier was determined by dividing the linear space between the two

extreme points into equal distance vertical lines, and then determining the ordinate

of the point by adding the ϵ-constraint [89]. In other words, by knowing the two

extreme points of the decision variable representing the number of backorders, and

dividing its linear space with an distance ϵ, is possible to solve the problem for the

cost minimization objective, with the number of backorders as a constraint. Then,

by gradually changing the value of the constraint, a diverse set of solutions repre-

senting different trade-offs between the cost and backorders objectives are gererated.

5.3 Results Analysis

In this section, the results obtained from the application of the model proposed

in chapter 4 to the case study described in the previous subchapter 5.1 are presented.

The model has been implemented in DOcplex Python Modeling API, which uses the

ILOG CPLEX Optimization Studio 22.1.1, in an Intel Core i7-1065G7, 1.30-1.50

GHz processor with 12GB RAM.

The problem under study consists of a four-level PSC with 8 distinct products

(COVID-19 vaccines), which can be manufactured in 16 possible product manufac-

turers, while the production of the 8 types APIs can be distributed among 14 API

manufacturers. Following the manufacturing stage, the vaccines are subsequently
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transported to 20 possible DCs and subsequently distributed across 20 demand

zones. The study evaluated the model’s performance over a duration of one year,

comprising 12 time periods, with each time period representing one month.

5.3.1 Pareto Front

To solve the MOMP, the ϵ-constraint method was implemented with an ϵ value

of 212,000 in accordance with the prescribed procedure detailed in section 5.2, allow-

ing the exploration of 12 diverse optimal solutions. For the backorders minimization

objective function, the model successfully achieved the goal of zero backorders, re-

sulting in a total cost of e18,315,981. However, since no constraint is set for the

maximum cost, the model opens all facilities, leading to an extremely high cost.

Yet, with this objective function it is found that it is possible to achieve a backo-

rder value as low as 0, therefore, to obtain the Pareto extreme points, the problem

was first solved for the cost minimization objective function, and then for the cost

minimization objective function with the additional constraint of zero backorders,

disallowing any backlog of orders.

Table 5.4 provides an overview of the trade-off values between backorders and

total costs for each optimal solution. Additionally, Figure 5.3 illustrates the Pareto

front curve, which represents the optimal solutions resulting from the multi-objective

problem.

In Table 5.5, the comparison between solution 1 and solution 12 reveals signif-

icant differences in their SC designs and cost minimization strategies. Solution 1

focuses on minimizing total costs while maintaining the additional constraint of zero

backorders. In contrast, solution 12 solely aims to minimize total costs, allowing for

backlogged orders in subsequent time periods. This discrepancy in objectives leads

to distinct SC configurations.

Solution 12 represents an extreme Pareto optimal solution, demonstrating that

the minimum cost achievable by this SC is e4,744,963. However, to achieve this cost

efficiency, a substantial number of 2,333,000 orders are backlogged. This approach

results in a SC design where specific vaccine types, namely v0, v1, v3, v6, and v7,

are manufactured. To understand this choice further, an analysis of the selected

product manufacturers and their opening costs is necessary. Analyzing Table 5.3,

it becomes evident that p0, p2, p14, p3, p4, p5, p6, p7, p15, p8, and p9 product

manufacturers are the most cost-effective options. Notably, the model chooses to

open the p0 product manufacturer, responsible for manufacturing the v0 vaccine,

along with the corresponding API manufacturer, a0. It is particularly interesting

to observe that the model selects a0 as the API manufacturer because it is located
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in the same city as the product manufacturer (Mainz, Germany). This decision

is driven by the model’s consideration of transportation costs, as having the API

manufacturer in close proximity to the product manufacturer results in the lowest

transportation expenses.

Moreover, despite v1 vaccine having only one API manufacturer, its high pro-

duction capacity enables it to supply APIs for multiple product manufacturers,

including p2, p3, p4, p5, and p6. This flexibility allows v1 vaccine to be produced

in a larger number of facilities compared to other vaccines. Consequently, v1 vac-

cine emerges as the most widely produced vaccine due to the availability of multiple

product manufacturing facilities, as depicted in Figure 5.4.

Due to the comparatively lower opening costs associated with p14 product

manufacturer, the model chooses to manufacture the v6 vaccine using this facility.

Consequently, the corresponding API manufacturer, a12, is opened.

Furthermore, although p15 and p7 product manufacturers have the same open-

ing costs, the model prioritizes p15 as the preferred choice. This preference can be

attributed to the fact that p15 is responsible for producing the v7 vaccine, which

has a longer shelf life compared to the v1 vaccine produced by p7. This consid-

eration aligns with the model’s objective to maximize SC efficiency by minimizing

the risk of vaccine expiration. Additionally, the fact that a13 API manufacturer,

which supports the production of v7 vaccine, is located in the same city as the p15

facility (Girona, Spain) also justifies the preference for p15 product manufacturer

since it reduces transportation costs associated with the movement of APIs between

the API manufacturer and the product manufacturer.

On the other hand, solution 1 successfully satisfies the constraint of zero back-

orders, aligning with the expected outcome. However, achieving this constraint

necessitates the opening of two additional product manufacturers: p1 and p7. This

product manufacturers are responsible for the production of v0 and v1 vaccines,

which were already being manufactured in solution 12. Therefore, the number of

vaccine types manufactured and the number of API manufacturers opened remains

consistent across both solutions.

The selection of p7 as a product manufacturer aligns with the same reasoning

as solution 12, as it offers lower opening costs compared to other possible options.

On the other hand, the decision to open p1 as a product manufacturer is no longer

based on its opening costs, as it actually has one of the highest costs. However,

the objective of solution 1 is to prevent backorders, necessitating an increased pro-

duction volume and inventory to meet demand promptly. In this context, the v0

vaccine stands out due to its longer shelf life, ensuring it does not expire within the
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studied time horizon. Therefore, the opening of the p1 facility, which specializes

in manufacturing the v0 vaccine, is justified to ensure an adequate supply and re-

duce the risk of potential stock shortages. The implementation of these additional

product manufacturers, as well as the increase of products in inventory, results in

an increased total cost of e6,975,767.

However, one might question why the model did not choose to produce the v5

vaccine instead of v0 since it also has the maximum shelf life in the time horizon

studied. Several factors likely influenced this decision. Firstly, v5 vaccine has a

smaller population coverage, limited to age group G2. Furthermore, since the API

manufacturer for v0 vaccine was already opened to supply p0 facility, utilizing it for

p1 manufacturer avoids the additional costs associated with opening another API

manufacturer specifically for v5 vaccine.

A more detailed analysis of these extreme Pareto optimal solutions is presented

in the following subsection 5.3.1.1.

By also analyzing the non-extreme points of the Pareto front (solutions 2 to 11)

in Table 5.4, it becomes clear that the PSC total cost increases as less backorders

are allowed to exist. Although there is not a large variation in the number of

open facilities, this increase of costs can be justified by the amount of products in

stock. As evident in Table 5.5, the substantial reduction in backorders makes the

model suggest the use of more inventory. Given the inherent production capacity

limitations of the product manufacturers, relying solely on production in each time

period would lead to delays in meeting demand. Therefore, this outcome aligns with

expectations, as the prevention of backorders and timely demand fulfillment require

the increase of inventory.

Finally, for all the suggested solutions, exclusively the d1 DC, which corresponds

to Porto, is established. The establishment of a single DC was anticipated since the

handling capacity of all possible distribution center is sufficient to accommodate

the storage and distribution requirements for all vaccines. Hence, by consolidating

distribution in a single location, the model promotes efficiency and cost-effectiveness

in the SC.
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Table 5.4: Pareto optimal solutions.

Solution Backorders Total Cost (e)
1 0 6 975 767
2 212 000 6 316 225
3 424 000 5 695 242
4 636 000 5 692 990
5 848 000 5 515 771
6 1 060 000 5 407 342
7 1 272 000 5 407 009
8 1 484 000 5 406 406
9 1 696 000 5 032 899
10 1 908 000 4 757 009
11 2 120 000 4 755 862
12 2 333 000 4 744 963

Figure 5.3: Pareto front: The trade-off between total costs and number of
backorders.

5.3.1.1 Extreme Solutions Analysis

In order to analyze the model’s output in more detail, Tables 5.6 and 5.7 exhibit

the results of the model per time period for the solutions in which the minimum

cost is reached (solution 12), and in which the minimum cost is reached with the

constraint of no backorders (solution 1), respectively.

In Table 5.6, it is possible to observe that a higher number of products are

kept in inventory at the DC starting from time period 5. This can be seen as a

precautionary measure to mitigate the risk of expiration that exists in the previous

time periods. Nevertheless, although maintaining a high level of inventory incurs
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Table 5.5: Outputs for each optimal solution.

Solution
Vaccines

IDs
Nº of

API Man.
API Man.

IDs
Nº of

Prod. Man.
Prod. Man.

IDs
DCs
IDs

Total
Inv.

1
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
11

0, 1, 2, 3, 4, 5,
6, 7, 9, 14, 15

1 31 830

2
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 1, 2, 3, 4, 5,
7, 9, 14, 15

1 28 183

3
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 1, 2, 3, 4, 5,
7, 9, 14, 15

1 29 492

4
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 2, 3, 4, 5,
7, 8, 9, 14, 15

1 28 803

5
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 2, 3, 4, 5,
6, 7, 9, 14, 15

1 27 468

6
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 2, 3, 4, 5,
6, 7, 9, 14, 15

1 27 464

7
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 2, 3, 4, 5,
7, 9, 14, 15

1 27 259

8
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 2, 3, 4, 5,
6, 7, 9, 14, 15

1 26 788

9
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
10

0, 2, 3, 4, 5,
6, 7, 9, 14, 15

1 26 513

10
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
9

0, 2, 3, 4, 5,
6, 9, 14, 15

1 26 164

11
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
9

0, 2, 3, 4, 5,
6, 9, 14, 15

1 26 077

12
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
9

0, 2, 3, 4, 5,
6, 9, 14, 15

1 23 749

Figure 5.4: Production level per vaccine type for: (a) solution 12, and (b)
solution 1.

costs, it is observed that a cummulative total of 23,749 thousand vaccines are kept

in stock. This decision is possibly made because the alternative of opening more
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manufacturers to increase production capacity would result in even higher costs.

Another significant finding is that, except for the first time period, production takes

place in all time periods. This indicates a well-implemented production strategy

where vaccine manufacturing is consistently maintained throughout the analyzed

period.

Moreover, the production, inventory, and flow levels match for all time pe-

riods, which suggests that the material balances constraints (found in subsection

4.2.4) were successfully implemented. In the specific case of time period 9, the

analysis shows that the vaccines in inventory are sufficient to meet the demand.

Consequently, no orders are backlogged during this time period. However, in the

subsequent time period, no inventory remains left, resulting in backorders being

created. This is best illustrated in Figure 5.5, in which it is possible to see the

relation between backorders and age groups. The G1 age group, being the first to

be vaccinated, benefits from having all the necessary products in inventory to meet

their demand. This successful allocation ensures that no backorders are accumu-

lated for the G1 age group, indicating an efficient planning. For the G2 age group,

a high accumulation of backorders is observed due to the absence of inventory and

a demand for 6,353 thousand doses. On the other hand, vaccination for the G3 age

group occur in the penultimate time period. This approach to scheduling reduces

the possibility of high backorders creation for this age group since all demand must

be met in the subsequent time period.

On the other hand, the solution in which backorders are not allowed is analyzed

in Table 5.7. As expected, during the periods of vaccination (time periods 9, 10,

and 11), it is observed that the total flow of vaccines from the DC to the demand

zones meets the total demand, leading to the absence of backorders. This result

verifies the constraint’s effectiveness. Moreover, to achieve this, the model adjusts

the production levels in each time period, increasing them.

A comparison between solution 1 and solution 12 reveals noticeable differences

in inventory management. Notably, solution 1 exhibits a larger number of vaccines

in stock, aligning with expectations. This increase in inventory demonstrates the

model’s sensible decision-making in achieving a sufficient supply of vaccines during

vaccination periods to satisfy the zero backorders constraint. Additionally, solution

1 demonstrates a higher quantity of APIs stored by API manufacturers. This strate-

gic approach highlights the model’s proactive measures to ensure a consistent and

reliable supply of vaccines throughout the distribution process to avoid backorders.

Once again, the synchronization of production, inventory, and flow levels across

all time instants demonstrates the successful implementation of material balances
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constraints (found in subsection 4.2.4).

In Figure 5.6 the inventory usage per storage condition is evaluated. In (b)

solution 1 is depicted and the inventory analysis reveals that condition C2 is the

most frequently verified storage condition. It is worth to notice that condition

C2 incurs the second-highest storage costs. However, this high presence of C2-

conditioned vaccines can be justified by the fact that the v1 vaccine, which requires

C2 storage conditions, is the most produced vaccine in this solution. This production

prioritization justifies the increased inventory of C2-conditioned vaccines, despite the

associated storage costs.

On the other hand, condition C1, which requires the highest storage costs, is

still found in large quantities in solution 1. This is attributed to the v0 vaccine,

which necessitates C1 storage and has the longest shelf life. The longer shelf life

of the v0 vaccine allows it to be manufactured earlier and remain in stock for a

longer duration, explaining the substantial presence of C1-conditioned vaccines in

inventory.

In contrast, solution 12 (in (a)) exhibits a different inventory pattern due to

the allowance of backorders. The model strategically avoids the expensive storage

condition C1. Instead it opts for the storage of products under condition C4, which

is the cheapest to maintain in inventory. This decision highlights the model’s goal

of minimizing the total costs through the reduction of storage costs. However, the

high presence of condition C2 is still observed. This can be attributed to the fact

that the v1 vaccine, requiring C2 storage, remains the most produced vaccine in this

solution.

Overall, the analysis in Figure 5.6 highlights the trade-off between storage con-

ditions (which have different associated costs in inventory) and inventory levels.

While solution 1 emphasizes the presence of C2 and C1 conditions, reflecting the

production and longer shelf life considerations respectively, solution 12 prioritizes

cost-effectiveness by favoring C4 storage. The presence of C2 in both solutions can

be justified by the prominence of the v1 vaccine in production.
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Table 5.6: Outputs: Solution 12.

Time
Period

API’s
Production

Flow API
Man. to

Prod. Man.

Inv.
API Man.

Product’s
Production

Flow
Prod. Man.

to DC

Inv.
Prod. Man.

Flow
DC to

Demand
Zones

Inv.
DCs

Demand
(in thousand
of doses)

Backorders
(in thousand
of doses)

1 0 0 0 0 0 0 0 0 0 0
2 272 272 0 272 272 0 0 272 0 0
3 408 408 0 408 276 132 0 548 0 0
4 933 408 525 408 268 272 0 816 0 0
5 1082 1157 450 1157 1158 271 0 1974 0 0
6 1143 1218 375 1218 885 604 0 2859 0 0
7 1143 1218 300 1218 1218 604 0 4077 0 0
8 1143 1218 225 1218 938 884 0 5015 0 0
9 1143 1218 150 1218 608 1494 2434 3189 2434 0
10 1143 1218 75 1218 2365 347 5554 0 6353 799
11 1126 1201 0 1201 1412 136 1157 255 1892 (+799) 1534
12 1143 1143 0 1143 1279 0 1534 0 0 (+1534) 0

Table 5.7: Outputs: Solution 1.

Time
Period

API’s
Production

Flow API
Man. to

Prod. Man.

Inv.
API Man.

Product’s
Production

Flow
Prod. Man.

to DC

Inv.
Prod. Man.

Flow
DC to

Demand
Zones

Inv.
DCs

Demand
(in thousand
of doses)

Backorders
(in thousand
of doses)

1 204 204 0 204 0 204 0 0 0 0
2 476 476 0 476 21 659 0 21 0 0
3 712 612 100 612 320 951 0 341 0 0
4 1212 612 700 612 205 1358 0 546 0 0
5 1212 1312 600 1312 544 2126 0 1090 0 0
6 1211 1311 500 1311 1408 2029 0 2498 0 0
7 1212 1312 400 1312 802 2539 0 3300 0 0
8 1212 1312 300 1312 1498 2353 0 4798 0 0
9 1212 1312 300 1312 1721 1944 2434 4085 2434 0
10 1212 1312 100 1312 2311 945 6353 43 6353 0
11 804 904 0 904 1849 0 1892 0 1892 0
12 0 0 0 0 0 0 0 0 0 0

Figure 5.5: Number of backorders per age group for: (a) solution 12, and (b)
solution 1.
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Figure 5.6: Inventory level per storage condition for: (a) solution 12, and (b)
solution 1.

Subsequently, the model response is evaluated through various simulated sce-

narios, namely changing the open DC, increasing and decreasing vaccines’ shelf life,

and maintaining a constant level of demand. For all scenarios, when possible, re-

sults are presented in comparison with the baseline scenario studied so far for two

distinct solutions: solution A, in which the minimum cost is reached (solution 12

in the baseline scenario, as seen in Table 5.4), and solution B, in which the mini-

mum possible cost is reached, given the constraint that no backorders are allowed

(solution 1 in the baseline scenario, as shown in Table 5.4).

5.3.2 Opening of Coimbra’s Distribution Centre

The model proposes the opening of d1 DC (in Porto), however, in the urgent

situation of 2020, the Portuguese government decided to allocate the vaccines in

Coimbra. Based on this, the simulation of only considering the Coimbra DC (herein

referred to as d8) is conducted to see what impacts this has on the SC. Tables 5.8

and 5.9 show the comparison of the impact that the opening of this two different DCs

has on the SC, without and with the maximum number of backorders restriction,

respectively. Based on the results presented in the Tables 5.8 and 5.9, it is possible

to conclude that, despite the fact that the same vaccines are manufactured using

the same API and product manufacturers, the d1 DC enables a lower minimum

total cost in both situations, certainly due to transportation costs, demonstrating

the model’s efficiency by choosing this DC in the present case study.
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Table 5.8: Comparison of the impact of d1 and d8 DCs on the SC for solution A.

Scenario
Nº of

Vaccines

Vaccines

IDs

Nº of

API Man.

API Man.

IDs

Nº of

Prod Man.

Prod. Man.

IDs

Total Cost

(e)

Backorders

(doses)

Porto

(d1)
5

0, 1,

6, 7
5

0, 4,

8, 12, 13
9

0, 2, 3, 4

5, 6, 9, 14, 15
4 744 963 2 333 000

Coimbra

(d8)
5

0, 1,

6, 7
5

0, 4,

8, 12, 13
9

0, 2, 3, 4

5, 6, 9, 14, 15
4 753 942 2 442 000

Table 5.9: Comparison of the impact of d1 and d8 DCs on the SC for solution B.

Scenario
Nº of

Vaccines

Vaccines

IDs

Nº of

API Man.

API Man.

IDs

Nº of

Prod Man.

Prod. Man.

IDs

Total Cost

(e)

Backorders

(doses)

Porto

(d1)
5

0, 1,

3, 6, 7
5

0, 4,

8, 12, 13
11

0, 1, 2, 3, 4

5, 6, 7, 9, 14, 15
6 975 767 0

Coimbra

(d8)
5

0, 1,

3, 6, 7
5

0, 4,

8, 12, 13
11

0, 1, 2, 3, 4

5, 6, 7, 9, 14, 15
6 975 877 0

5.3.3 Vaccines with unlimited shelf life

To assess the impact of vaccines with an unlimited shelf life, the shelf life

parameter was set to the maximum (12 months) for all vaccine types. Tables 5.10

and 5.11 present the results of the SC structure for solutions A and B, respectively.

For both solutions, when comparing the two scenarios, it can be observed that

having an unlimited shelf life reduced the number of vaccine types manufactured.

V3 vaccine is not produced, therefore, the model does not open a8 API manufacturer

and p9 product manufacturer, in which v3 vaccine is produced, which results in a

reduction of total costs.

Moreover, for solution B, also p7 product manufacturer is not established, which

suggests that v1 vaccine is able to be produced in one less product manufacturer.

This can be explain since the prolonged shelf life of vaccines reduces the urgency

for rapid distribution and administration. Vaccines with shorter shelf lives require

faster production, delivery, and utilization to prevent wastage. However, with un-

limited shelf life, there is more flexibility in the distribution and administration of

vaccines, allowing more vaccines to be kept in inventory since there is no risk or

expiry. This can better be seen in Figure 5.7 in which the total inventory usage

is depicted. According to it, in the scenario where shelf life is unlimited (scenario

(b)), the inventory level is higher, which results in a reduction of backorders since

more vaccines are available to meet the demand, as seen in Figure 5.8. This can

also explain the fact that although the same facilities are open for the scenario of

unlimited shelf life of both solutions, for solution B the total costs are slightly higher
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since there are additional storage costs.

Table 5.10: Impact of unlimited shelf life on the SC for solution A

Scenario
Nº of

Vaccines
Vaccines

IDs
Nº of

API Man.
API Man.

IDs
Nº of

Prod Man.
Prod. Man.

IDs
Nº of
DCs

Total Cost
(e)

Backorders
(doses)

Limited
shelf life (a)

5
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
9

0, 2, 3, 4
5, 6, 9, 14, 15

1 4 744 963 2 333 000

Unlimited
shelf life (b)

4
0, 1,
3, 6, 7

4
0, 4,
12, 13

8
0, 2, 3, 4
5, 6, 14, 15

1 3 184 504 1 706 000

Table 5.11: Impact of unlimited shelf life on the SC for solution B.

Scenario
Nº of

Vaccines
Vaccines

IDs
Nº of

API Man.
API Man.

IDs
Nº of

Prod Man.
Prod. Man.

IDs
Nº of
DCs

Total Cost
(e)

Backorders
(doses)

Limited
shelf life (a)

5
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
11

0, 1, 2, 3, 4
5, 6, 7, 9, 14, 15

1 6 975 767 0

Unlimited
shelf life (b)

4
0, 1,
6, 7

4
0, 4,
12, 13

8
0, 2, 3, 4
5, 6, 14, 15

1 3 842 674 0

Figure 5.7: Total inventory usage for scenario with: (a) limited shelf life, and (b)
unlimited shelf life.
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Figure 5.8: Total number of backorders for scenario with: (a) limited shelf life,
and (b) unlimited shelf life.

5.3.4 Vaccines with a shorter shelf life

In order to evaluate the effects of vaccines with a reduced shelf life, a shelf

life parameter of 3 months was established across all vaccine types. Tables 5.12

and 5.13 present the results of the SC structure for solution A and solution B,

respectively. Comparing the two scenarios within each solution, it is evident that

a shorter shelf life has a notable impact on the SC dynamics since it leads to an

expansion in the number of vaccine types manufactured and therefore the model is

forced to establish new facilities (both API and product manufacturers) compared

to the baseline scenario (scenario (a)). This expansion results in higher total costs

and a larger number of backorders.

For solution A, a shorter shelf life causes the SC to add v2 and v4 vaccines to the

vaccine types manufactured and, consequently, the API and product manufactures

in which these vaccines are produced are also established. It is interesting to note

that v2 vaccine is manufactured in p8 (Nijmegen, the Netherlands) however, its

API can be produced in a5 (Seneffe, Belgium), a6 (Oxford, United Kingdom), or

in a7 (Leiden, the Netherlands). The model opted for the opening of the API

manufacturer that led to the lowest transport costs, i.e. manufacturer a7, since it is

located in the same country as the product manufacturer. Furthermore, the choice

for the v2 vaccine is easily understood because it is the one, among those that were

not manufactured (v2, v4, and v5 vaccines), that has the lowest costs for opening a

product manufacturer, as Table 5.3 suggests.

In addition, the model also suggests manufacturing the v4 vaccine. This vaccine

is manufactured in p11, which is a product manufacturer with higher opening costs

when compared to the product manufacturer for v5 vaccine. This may be attributed
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to the fact that v5 vaccine has a smaller population coverage, i.e., it can only be

used in age group G2, while v4 vaccine can be administrated to age groups G1 and

G2.

Moreover, the model also increased the production levels of v0, v1, and v3 vac-

cines, as suggested by the opening of the additional product manufacturers p1, p7,

and p10. This can be attributed to the reduced shelf life, which imposes restric-

tions on the timing of vaccine production. Due to the risk of product expiration,

the model is unable to produce vaccines in advance and store them in inventory.

Instead, it suggests that the manufacture of vaccines should occur within a specific

time window to ensure they are still within their shelf life. Since product manu-

facturers have limited production capacities for each time period, it was already

expected that the production of a high amount of vaccines in a short window of

time was not possible. As a result, the model optimizes the solution by opening

additional product manufacturers closer to the time of demand.

On the other hand, when no backorders are allowed the model did not solve

successfully, being possible to infer that for a shorter shelf life, backorders are always

necessary. Therefore, the model was then applied for the backorders minimization

objective function, resulting in a objective value of 3,044,000. Hence, in this case,

solution B for scenario (b) represents the solution in which the minimum cost is

reached with the constraint of 3,044,000 backorders and is depicted in Table 5.13.

According to it, to minimize backorders as much as possible, the model is forced to

manufacture all vacine types, and open all API and product manufacturers, which

translates into a SC with very high costs.

Again, the behavior of the inventory levels and number of backorders in studied

for this new scenario. The total inventory is illustrated in Figure 5.9 in which is

possible to see that, for a shorter shelf life (scenario b) the inventory level decreases

since there is a higher risk or expiration. This decrease in inventory level makes it

difficult to meet demand effectively, increasing the number of backorders, as Figure

5.10 suggests.

Table 5.12: Impact of a shorter shelf life on the SC for solution A

Scenario
Nº of

Vaccines
Vaccines

IDs
Nº of

API Man.
API Man.

IDs
Nº of

Prod Man.
Prod. Man.

IDs
Nº of
DCs

Total Cost
(e)

Backorders
(doses)

Peak
demand

5
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
9

0, 2, 3, 4
5, 6, 9, 14, 15

1 4 744 963 2 333 000

Shorter
shelf life (b)

7
0, 1, 2

3, 4, 6, 7
7

0, 4, 7
8, 9, 12, 13

14
0, 1, 2, 3, 4, 5, 6

7, 8, 9, 10, 11, 14, 15
1 14 240 587 4 270 000
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Table 5.13: Impact of a shorter shelf life on the SC for solution B.

Scenario
Nº of

Vaccines
Vaccines

IDs
Nº of

API Man.
API Man.

IDs
Nº of

Prod Man.
Prod. Man.

IDs
Nº of
DCs

Total Cost
(e)

Backorders
(doses)

Limited
shelf life (a)

5
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
11

0, 1, 2, 3, 4
5, 6, 7, 9, 14, 15

1 6 975 767 0

Shorter
shelf life (b)

8 all 14 all 16 all 1 16 239 050 3 044 000

Figure 5.9: Total inventory usage for scenario with: (a) limited shelf life, and (b)
shorter shelf life.

5.3.5 Constant Level of Demand

The demand in the present problem occurs in peaks since it is considered that

vaccination phases happen in September, October, and November. In this subsec-

tion, the effects of a constant level of demand are investigated. To simulate this

scenario, the demand for each age group and demand zone was divided for the 12

time periods.

Surprisingly, for this scenario, the solution that gives the lowest costs is simul-

taneously the solution that minimizes backorders to 0, i.e., both objectives are met

without the need to treat one of them as a constraint. This is justified because man-

ufactures have a maximum production capacity greater than the demand in each

time period and therefore the model is capable of satisfying demand without the

need to create inventory. Moreover, beyond the costs saved by reducing inventories,

is is also feasible to manufacture one less vaccine type, as seen in Table 5.14. As

expected, the vaccine eliminated from the SC is the v3 vaccine since it is the one

that is manufactured at the product manufacturer with the highest opening costs.

Naturally, as a consequence, the model closes a8 API manufacturer, and p9 product

manufacturer. In addition, also p5 product manufacturer is closed, which suggests

that the SC can meet demand even with fewer v1 vaccine production.

This scenario represents the most cost-effective SC between all the tested sce-

81



5. Model Validation & Results Analysis

Figure 5.10: Total number of backorders for scenario with: (a) limited shelf life,
and (b) shorter shelf life.

narios, and it accomplishes this without any delivery delays, being therefore the

ideal scenario.

Table 5.14: Impact of a constant level of demand on the SC.

Scenario
Nº of

Vaccines
Vaccines

IDs
Nº of

API Man.
API Man.

IDs
Nº of

Prod Man.
Prod. Man.

IDs
Nº of
DCs

Total Cost
(e)

Backorders
(doses)

Peak
demand

5
0, 1,
3, 6, 7

5
0, 4,

8, 12, 13
9

0, 2, 3, 4
5, 6, 9, 14, 15

1 4 744 963 2 333 000

Constant
demand

4
0, 1,
6, 7

4
0, 4,
12, 13

7
0, 2, 3

4, 6, 14, 15
1 3 135 564 0

5.4 Discussion

The study employed the ϵ-constraint method to address the MOMP, leading to

the identification of the Pareto front. The Pareto front represents a set of optimal

solutions, where each solution reflects a compromise between conflicting objectives

(i.e., total costs minimization and backorders minimization). From this set, the

decision maker can select the most desirable solution based on their preferences and

priorities.

The analysis of the Pareto front reveals a clear trade-off between backorders and

total costs since, as backorders decrease, total costs tend to increase. This is due

to the fact that minimizing backorders necessitates higher production and increased

inventory levels to meet demand promptly.

Solution 1 and solution 12 represent the extreme Pareto solutions and exhibit

significant differences in their SC designs. Solution 1 focuses on minimizing total

costs while maintaining the additional constraint of zero backorders. On the other
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hand, solution 12 solely aims to minimize total costs, allowing for backlogged orders

in subsequent time periods. Hence, network total costs are higher for solution 1 as

more product manufacturers are established and the total inventory level increases.

This way, inventory management strategies play a crucial role in the different so-

lutions. Solution 1 maintains a larger inventory to prevent backorders and meet

demand promptly, resulting in increased total costs. In contrast, solution 12 allows

for backorders, leading to a lower total cost but a significant number of orders being

backlogged. These approaches reflect the trade-off between inventory costs and the

risk of stock shortages or delays in meeting demand.

Furthermore, the selection of product and API manufacturers is driven by var-

ious factors, including cost-efficiency, vaccine shelf life, and transportation consid-

erations. The results showed that by carefully selecting manufacturers, the SC can

optimize production capacities and reduce operational costs.

Moreover, the characteristics of vaccines, such as their shelf life and population

coverage, also influence their prioritization in production and inventory manage-

ment. Vaccines with longer shelf life, such as the v0 vaccine, are prioritized to

minimize the risk of expiration and stock shortages. These considerations demon-

strate the need to take into account the unique characteristics of each vaccine when

designing a SC for efficient distribution of perishable goods.

Subsequently, the model’s responsiveness was evaluated by conducting distinct

simulated scenarios to determine its performance under different situations.

Among the scenarios, the one with a constant level of demand stood out as the

most favorable in terms of SC costs and patient-centered outcomes since it resulted

in the lowest SC costs while still meeting the demands of population effectively.

Furthermore, the scenario assuming unlimited shelf life for vaccines revealed a

beneficial trade-off between the objective functions. With vaccines having an unlim-

ited shelf life, it becomes feasible to meet demand on time without incurring high SC

costs. This scenario allowed for the possibility of opening fewer manufacturers since

vaccines could stay longer in inventory, reducing the need for excessive production

and logistics.

On the contrary, the scenario with a shorter shelf life represented the worst-

case scenario. In this scenario, a significant number of manufacturers needed to be

established due to the limited shelf life of vaccines. The short shelf life imposed

constraints on inventory management, leading to a higher frequency of backorders.

This scenario highlighted the challenges associated with managing perishable prod-

ucts and the importance of carefully considering shelf life when designing a PSC.

Overall, the results of the various scenarios demonstrated that the model ex-
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hibits sensitivity towards alterations in demand patterns and the products’ shelf life.

Hence, the model’s adaptability in making decisions based on specific situations is

demonstrated by its sensitivity. Furthermore, the model successfully determined

the optimal number of facilities, the quantity of vaccines to be produced, and the

optimal inventory levels in each scenario.
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In conclusion, this work presents a new optimization model aimed at supporting

decision-making in the design of a perishable PSC. The main objectives of this

model are to enhance SC flexibility, improve management of perishable products,

reduce costs, meet the needs of society and minimize consequences due to products’

expiration.

To validate the effectiveness of the proposed model, a case study was con-

ducted focusing on optimizing the distribution of COVID-19 vaccines to Portugal.

The study considered the distribution of eight approved vaccines from various Eu-

ropean manufacturers to the different districts of Portugal. The model considered

different storage conditions, demand patterns across age groups and districts, and

vaccination phases over a one-year time horizon.

The objective of the case study was to determine the optimal number and lo-

cation of facilities, production quantities, and distribution schedules while minimiz-

ing costs and backorders. To address the multi-objective problem, the ϵ-constraint

method was employed to obtain an approximation of the Pareto front, which rep-

resents the set of optimal solutions. This allows the decision-maker to choose the

most preferable solution based on the available information.

The findings of the study indicate that minimizing backorders is crucial for

timely vaccination, but it requires the creation of additional inventory, leading to

increased costs. The decision-maker must carefully evaluate the trade-off between

minimizing costs and ensuring sufficient vaccine availability.

Furthermore, various scenarios were simulated to explore the sensitivity of the

model. In return, the computational studies revealed that the model is sensitive to

changes in demand patterns and product shelf life. The different scenarios demon-

strated the model’s flexibility in terms of determining the appropriate number of

facilities, the quantity of vaccines to be produced, and the optimal inventory levels,

demonstrating the model’s ability to adapt. Moreover, the change in the demand

pattern revealed that a constant level of demand would result in the lowest SC
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costs and the best patient-centered outcomes. However, maintaining population

immunity for an entire year poses a significant challenge, especially for the most

at-risk groups. Therefore, advancements in medicine and vaccine development are

necessary to achieve this ideal scenario.

It is important to note that given the limited availability of publicly accessible

information on production, handling, and inventory capacities of facilities, and their

associated costs, certain assumptions and adaptations from existing literature were

necessary in this study. Despite this limitation, it is expected that the overall results

of the model remain valid and provide valuable insights for decision-makers.

Furthermore, while the model was developed specifically for the pharmaceu-

tical industry and tested on the COVID-19 vaccine distribution, it can be easily

generalized for other scenarios, such as the annual influenza virus outbreak.

As part of future research proposals, several approaches can be explored to

further enhance the optimization model and address additional aspects of the PSC

design. Firstly, extending the time horizon of the study beyond the current 12

months would be highly recommended. This is particularly important as some

vaccines have a shelf life longer than a year. Studying the model’s outputs over

a three-year horizon could provide valuable insights into long-term planning and

decision-making. However, it should be noted that the extension of the time horizon

may present challenges in terms of computational resources. In the present case

study, attempting to include a longer time period resulted in memory errors with

the CPLEX solver.

In addition, expanding the scope of the study to include producers outside of

Europe would contribute to a more comprehensive analysis. This global perspective

would require considering different modes of transportation and allowing the model

to choose the preferred mode based on various factors. This expansion would lead

to a larger-scale problem and therefore, developing heuristic methods could be a

promising approach for future research.

Addressing demand uncertainty is another crucial aspect that can be incorpo-

rated into the optimization model. The COVID-19 pandemic has highlighted the

significance of uncertainty in SC management. Including demand uncertainty in the

model’s parameters would provide more robust and adaptable solutions to dynamic

market conditions. The PSC is particularly susceptible to market volatility, making

this an important consideration for future research.

Furthermore, considering the real lead time of the COVID-19 SC and reformu-

lating the model accordingly would enhance its accuracy and practical relevance.

Incorporating lead time variability and considering the time required for various
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stages of the SC, including production, batch testing, transportation, and distribu-

tion, would enable a more realistic representation of the system.

In summary, this work presents a novel optimization model that contributes to

the design of efficient and effective PSCs. The case study on COVID-19 vaccine dis-

tribution demonstrates the model’s applicability and provides insights into decision-

making for vaccine SCM. Further research and improvements in data availability

would contribute to the ongoing improvement and applicability of the optimization

model in addressing complex challenges within the PSC.
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[84] S. Moniz, A. P. Barbosa-Póvoa, and J. P. de Sousa, “Simultaneous regu-

lar and non-regular production scheduling of multipurpose batch plants: A

real chemical–pharmaceutical case study,” Computers & chemical engineer-

ing, vol. 67, pp. 83–102, 2014.

[85] M. Grunow, H.-O. Günther, and G. Yang, “Plant co-ordination in pharma-

ceutics supply networks,” OR spectrum, vol. 25, no. 1, pp. 109–141, 2003.

[86] M. Vieira, T. Pinto-Varela, S. Moniz, A. P. Barbosa-Póvoa, and L. G. Papa-
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[93] S. R. Cardoso, A. P. Barbosa-Póvoa, S. Relvas, and A. Q. Novais, “Resilience

metrics in the assessment of complex supply-chains performance operating

under demand uncertainty,” Omega, vol. 56, pp. 53–73, 2015.

[94] K. R. N. Hansen and M. Grunow, “Planning operations before market launch

for balancing time-to-market and risks in pharmaceutical supply chains,” In-

ternational Journal of Production Economics, vol. 161, pp. 129–139, 2015.

[95] N. Janatyan, M. Zandieh, A. Alem-Tabriz, and M. Rabieh, “A robust opti-

mization model for sustainable pharmaceutical distribution network design: a

case study,” Annals of Operations Research, pp. 1–20, 2021.

[96] B. Mota, M. I. Gomes, A. Carvalho, and A. P. Barbosa-Povoa, “Sustainable

96



Bibliography

supply chains: An integrated modeling approach under uncertainty,” Omega,

vol. 77, pp. 32–57, 2018.

[97] T. Cardoso, M. D. Oliveira, A. Barbosa-Póvoa, and S. Nickel, “An integrated
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Supplementary Data

Table A.1: Ratio of Iran’s GDP to the GDP of each facility’s country.

Country
GDP

(billion $) Ratio

Iran 359,71 -
Portugal 253,66 1,42
Germany 4259,90 0,08
Ireland 504,18 0,71
Belgium 594,10 0,60
Italy 2107,70 0,17
France 2957,90 0,12
Spain 1427,38 0,25

United Kingdom 3131,40 0,11
The Netherlands 1012,85 0,36

Czechia 281,78 1,28
Sweden 635,66 0,57
Austria 480,37 0,75

Table A.2: Demand considered in the present problem (by demand zone and age
group).

District Age Group
Demand

(thousand doses)

Lisboa

<18 years 410

19 - 64 years 1377

>65 years 526

Porto

<18 years 328

19 - 64 years 1101

>65 years 422

Setúbal

<18 years 161

19 - 64 years 542
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Table A.2 continued from previous page

>65 years 207

Braga

<18 years 155

19 - 64 years 523

>65 years 200

Aveiro

<18 years 129

19 - 64 years 434

>65 years 166

Faro

<18 years 85

19 - 64 years 287

>65 years 110

Leiria

<18 years 84

19 - 64 years 280

>65 years 107

Santarém

<18 years 78

19 - 64 years 261

>65 years 100

Coimbra

<18 years 76

19 - 64 years 255

>65 years 98

Viseu

<18 years 64

19 - 64 years 217

>65 years 83

Madeira

<18 years 46

19 - 64 years 153

>65 years 58

Açores

<18 years 44

19 - 64 years 146

>65 years 56

Viana do Castelo

<18 years 42

19 - 64 years 140

>65 years 53

Vila Real

<18 years 34

19 - 64 years 115

>65 years 44

Castelo Branco

<18 years 32

19 - 64 years 108
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Table A.2 continued from previous page

>65 years 41

Évora

<18 years 28

19 - 64 years 96

>65 years 37

Beja

<18 years 27

19 - 64 years 89

>65 years 34

Guarda

<18 years 27

19 - 64 years 89

>65 years 34

Bragança

<18 years 23

19 - 64 years 76

>65 years 29

Portalegre

<18 years 19

19 - 64 years 64

>65 years 29

Table A.3: Distances and transportations costs between manufacturers of v0
vaccine (km/ e).

Mainz Marburg Laupheim Dublin
Mainz 0 120/ 0,192 325/ 0,052 1327/ 0,21232
Puurs 390/ 0,0624 429/ 0,06864 652/ 0,10432 959/ 0,15344

Table A.4: Distances and transportations costs between manufacturers of v1
vaccine (km/ e).

Visp
Monts 784/ 0,12544
Monza 186/ 0,02976

Ferentino 803/ 0,12848
Madrid 1 1590/ 0,2544
Madrid 2 1590/ 0,2544
Madrid 3 1590/ 0,2544
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Table A.5: Distances and transportations costs between manufacturers of v2
vaccine (km/ e).

Seneffe Oxford Leiden
Nijmegen (NL) 239/ 0,03824 636/ 0,10174 124/ 0,01984

Table A.6: Distances and transportations costs between manufacturers of v3
vaccine (km/ e).

Leiden
Leiden 0/ 0
Beerse 120/ 0,0192

Table A.7: Distances and transportations costs between manufacturers of v4
vaccine (km/ e)

Jevany
Jevany 0/ 0

Table A.8: Distances and transportations costs between manufacturers of v5
vaccine (km/ e)

Livingston Dessau
Solna 2557/ 0,40912 1187/ 0,18992
Vienna 2132/ 0,34112 644/ 0,10304

Table A.9: Distances and transportations costs between manufacturers of v6
vaccine (km/ e)

Vitry sur Seine
Marcy l’Etoile 455/ 0,0728

Table A.10: Distances and transportations costs between manufacturers of v7
vaccine (km/ e)

Girona
Girona 0/ 0
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