

Eurico José Pereira de Sousa

ANALYSIS OF MULTI-TENANCY IN DATA
WAREHOUSE DATABASES

Dissertation in the context of the Master in Informatics

Engineering, specialization in Software Engineering, advised by

Prof. Filipe Araújo and Prof. Pedro Furtado

and presented to the Department of Informatics Engineering of

the Faculty of Sciences and Technology of the University of

Coimbra.

September 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Eurico José Pereira de Sousa

Analysis of Multi-tenancy in Data
Warehouse Databases

From Single-Tenancy to Multi-Tenancy

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Filipe Araújo and Prof.
Pedro Furtado and presented to the Department of Informatics Engineering of

the Faculty of Sciences and Technology of the University of Coimbra.

September 2023

Acknowledgements

This work is funded by the project POWER (grant number POCI-01-0247-FEDER-
070365), co-financed by the European Regional Development Fund (FEDER), through
Portugal 2020 (PT2020), and by the Competitiveness and Internationalization Op-
erational Programme (COMPETE 2020).

This work is funded by the FCT - Foundation for Science and Technology, I.P./MCTES
through national funds (PIDDAC), within the scope of CISUC R&D Unit - UIDB/00326/2020
or project code UIDP/00326/2020

v

Abstract

Software plays a pivotal role in driving diverse industries and businesses.
As organizations strive to streamline operations and reduce costs, many are tran-
sitioning from on-premise infrastructures to cloud-based solutions. Software as
a Service (SaaS) leverages multi-tenancy, where multiple customers utilize the
same infrastructure, enjoying unique configurations and data, thus improving
scalability and efficiency while minimizing expenses.

With this internship I implement multi-tenancy in the analytical microser-
vice, Alexa, within the Autonomous Service Operations Platform (ASOP) from
Altice Labs (ALB), as part of the POWER project. This involves extending sup-
port for various APIs that it contains, and also its data persistence layer. This
corresponds to the first stage of this work, which is intended to provide practical
knowledge, for the analysis of multi-tenancy presented in the next paragraph,
which is the center point of this dissertation.

From the previous stage I move on to the primary focus of this disserta-
tion, which is an in-depth analysis of three distinct approaches to implementing
multi-tenancy in data warehouse databases, concentrating on throughput perfor-
mance, privacy considerations in terms of data isolation, and the overall complex-
ity of the approaches. The study adheres to the guidelines outlined by the TPC-H
Benchmark, and concentrates on the persistence layer, setting the groundwork
for the development of a porting tool cable of automating the process of porting
cloud-based systems, from single-tenant to multi-tenant.

Keywords

Alexa. Analysis. Data-warehouse. Multi-tenancy. Porting.

vii

Resumo

O software desempenha um papel fundamental no progresso de diversas
indústrias e empresas. Conforme as organizações procuram otimizar operações
e reduzir custos, verifica-se um aumento na migração de infraestruturas locais
para soluções baseadas na cloud. O Software como Serviço (SaaS) toma partido
de multi-tenancy, onde vários clientes utilizam a mesma infraestrutura, mas com
configurações e dados exclusivos, melhorando a escalabilidade e a eficiência, re-
duzindo os custos.

Com este estágio eu implemento multi-tenancy no microsserviço analítico,
Alexa, no ASOP do ALB, como parte do projeto POWER. Isto envolve alargar o
suporte de várias APIs e da camada de persistência de dados para tal, o que cor-
responde à primeira fase deste trabalho, e que pretende fornecer conhecimentos
práticos para a análise em multi-tenancy apresentada no parágrafo anterior, que
representa o ponto fulcral desta dissertação.

A partir da etapa anterior, segue-se o ponto fulcral desta dissertação que cor-
responde a uma análise aprofundada de três abordagens distintas para a imple-
mentação de multi-tenancy em bases de dados do tipo data warehouse, concentra-
ndo-se no desempenho de throughput, na privacidade em termos de isolamento
de dados e na complexidade geral das abordagens. O estudo segue as directrizes
delineadas pela Benchmark do TPC-H e concentra-se na camada de persistência,
estabelecendo as bases para o desenvolvimento de uma ferramenta de porte ca-
paz de automatizar o processo de converter sistemas baseados na cloud de single-
tenant para multi-tenant.

Palavras-Chave

Alexa. Análise. Data-Warehouse. Multi-tenancy. Porte.

ix

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Results . 3
1.4 Document Structure . 3

2 State of the Art 5
2.1 Multi-tenancy introduction . 5
2.2 Multi-tenancy related concepts . 5
2.3 Types of Multi-tenancy . 8

2.3.1 Multi-tenant app with one database per tenant 8
2.3.2 Multi-tenant app with multi-tenant databases 9

2.4 Multi-tenancy challenges . 11
2.5 Advantages and risks of multi-tenancy 13
2.6 Technologies . 14

2.6.1 Container & cluster management support tools 14
2.6.2 Databases . 19
2.6.3 Data warehouses - star schema 20

3 Architectural Drivers for Alexa Microservice 25
3.1 ASOP-Alexa current state . 25

3.1.1 Architecture . 25
3.1.2 Metadata management . 27
3.1.3 Data loading . 27
3.1.4 Data querying . 27

3.2 Functional Requirements . 28
3.2.1 Data persistence requirements 28
3.2.2 API requirements . 28

3.3 Restrictions . 29
3.3.1 Technical Restrictions . 29

4 Architecture of Alexa Microservice 31
4.1 C4 Diagram . 31

4.1.1 System Context Diagram . 31
4.1.2 Container Diagram . 32
4.1.3 Component Diagram . 33
4.1.4 Code Diagram . 34

4.2 Alexa Microservice final state . 35

xi

5 Multi-tenancy analysis 37
5.1 Analysis introduction . 37
5.2 Approach Definition . 38
5.3 Workload definition . 40
5.4 Logical database desing . 41
5.5 Query definitions . 47
5.6 Performance test . 49
5.7 Metrics . 50

6 Analysis Experimental Setup 53
6.1 Database creation . 53
6.2 Data Generation . 54
6.3 Query generation . 54
6.4 Data Loading . 55
6.5 Performance test specifications . 57

7 Experimental Results 61
7.1 Graphical Overview of Test Results 61
7.2 Performance analysis . 67
7.3 Scalability and complexity analysis 69

8 Planning 71
8.1 First semester . 71
8.2 Second semester Planned vs Real schedule 71
8.3 Risk Assessment . 73

9 Conclusion 75
9.1 Analysis Reflection . 75
9.2 Future work . 76
9.3 Final Thoughts . 76

Appendix A SQL code used to setup the database 83

Appendix B Analysis approach 1 Physical Diagram 87

Appendix C TPC-H Benchmark Query set 89

Appendix D Commands used to import the database to Amazon Relational
Database Instance (RDS) 111

Appendix E JSR223 PreProcessor script 113

Appendix F TPC-H Guidelines for Database size 115

Acronyms

ALB Altice Labs.

ASOP Autonomous Service Operations Platform.

CISUC Centre for Informatics and Systems of the University of Coimbra.

DB Database.

DBMS Database management system.

DDL Data Definition Language.

DEI Department of Informatics Engineering.

DML Data Manipulation Language.

EC2 Amazon Elastic Compute Cloud.

FCTUC Faculty of Sciences and Technology at the University of Coimbra.

IaaS Infrastructure as a service.

OLAP Online Analytical Processing.

OS Operating System.

PaaS Platform as a service.

RDS Amazon Relational Database Service.

SaaS Software as a service.

SQL Structured query language.

TPC-H TPC-H Benchmark.

VM Virtual machine.

xiii

List of Figures

2.1 Multi-tenancy Patterns . 8
2.2 One database per tenant model . 9
2.3 One database for all tenants model - separation at table level 10
2.4 One database for all tenants model - separation at schema level . . 10
2.5 Several multi-tenant databases model 10
2.6 Docker swarm - relation between worker and manager nodes [17] . 15
2.7 The components of a Kubernetes cluster 16
2.8 Fleet CoreOS with Docker . 17
2.9 Apache Mesos architecture implementation with docker 18
2.10 Star model visualization . 22
2.11 Sales Multidimensional model . 22
2.12 Sales star model example . 23

3.1 Alexa Virtual Flat vs Physical Star schema model 26
3.2 Alexa Logical Architecture . 26

4.1 Context Diagram . 31
4.2 Container Diagram . 32
4.3 Component Diagram . 33
4.4 Code Diagram . 34

5.1 Number of schemas to use: one schema per tenant vs one schema
for all tenants in the database . 38

5.2 Data isolation at the table level: row level isolation mixed with no
isolation . 38

5.3 Approach 1 Diagram . 39
5.4 Approach 2 Diagram . 39
5.5 Approach 3 Diagram . 40
5.6 Analysis tree diagram . 41
5.7 Approach 1 Conceptual Diagram . 44
5.8 Approach 2 Conceptual Diagram . 46
5.9 Approach 3 Conceptual Diagram . 47

7.1 Power Test results for refresh functions. 61
7.2 Power Test results for queries Q1 to Q22 excluding Q17 and Q20. . 62
7.3 Steady Request Rate test results for queries Q1 to Q22 excluding

Q17 and Q20. 63
7.4 Steady Request Rate test results for refresh functions. 63
7.5 Gradual Increase test results for queries Q1 to Q22 excluding Q17

and Q20. 64

xv

7.6 Gradual Increase test results for refresh functions. 64
7.7 Spike Traffic test results for queries Q1 to Q22 excluding Q17 and

Q20. 65
7.8 Spike Traffic test results for refresh functions. 65
7.9 Random Traffic test results for queries Q1 to Q22 excluding Q17

and Q20. 66
7.10 Random Traffic test results for refresh functions. 66

8.1 Schedule of the first Semester . 71
8.2 Planned schedule of the second Semester 72
8.3 Real schedule of the second Semester 72

B.1 Approach 1 Physical Diagram . 87

F.1 Database size guidelines . 115

Chapter 1

Introduction

This is a dissertation in the context of the POWER project that is taking place
in the Centre for Informatics and Systems of the University of Coimbra (CISUC)
at the Department of Informatics Engineering (DEI) of the University of Coimbra.
It is associated with Altice Labs (ALB) and is for a Master’s Degree in Software
Engineering from the Faculty of Sciences and Technology at the University of
Coimbra (FCTUC), in the curricular year of 2022/2023.

1.1 Context and Motivation

Software plays a crucial role in powering various industries and businesses
[23]. Such industries use a variety of software to perform all their operations
uninterruptedly, creating an increasingly competitive environment that pushes
them to replace on-premise infrastructures for cloud-based solutions, to reduce
time to market, development, maintenance, and operational costs.

In this context, Software as a service (SaaS) emerges as a pivotal model, of-
fering scalable and cost-effective solutions by delivering software applications
over the cloud. It takes advantage of the economies of scale, enabled by multiple
customers using the services of a company from the same set of infrastructure
and resources. This model aligns with the practice of multi-tenancy, where a
shared infrastructure supports individual customer configurations, workflows,
and data. This approach not only optimizes resource utilization and operational
efficiency but also fosters greater flexibility and customization for each tenant. As
a result, businesses can harness the benefits of increased scalability and efficiency
while simultaneously reducing costs.

The concept of multi-tenancy is not a recent innovation. It first appeared in
the 1960s as explained in [19]. The origins of this idea stem from universities that
were looking to provide students access to the growing technology of computers.
And to do that more efficiently, a software technique entitled time sharing was
created to enable several people to use the same machine at the same time.

1

Chapter 1

In the past, this concept was not widely adopted as it was not deemed es-
sential for most industries. However, today it has become a vital concept, as it
carries the benefits of SaaS like reduced costs of maintainability and scalability
in the realm of cloud computing, which is now a fundamental aspect of most
modern industries.

For this reason and also because this internship is a collaboration between
DEI and ALB, this dissertation is divided into two stages. The first focuses on
learning how to implement this concept in a data warehouse system based on
a star schema, by porting the Alexa microservice from single tenant to multi-
tenant. This microservice has three separate APIs, one for ingesting data, another
for managing data, and another for query data. The process of porting Alexa
requires adding multi-tenant support to these APIs, and also in the database.
More details about this process can be found in section 3.

From the previous stage, the main purpose is to learn insights into what a
system like a data warehouse needs to be ported to a multi-tenant one, and then
proceed to the second and primary stage, where the objective is to conduct an
in-depth analysis on how to implement this type of software technic on a data
warehouse system based on snowflake schema, to compare aspects like perfor-
mance, privacy or data isolation, and complexity of implementation of the three
different approaches considered, that I explain in detail in section 5. For this pro-
cess the TPC-H Benchmark (TPC-H) was used to guide the testing phase, hence
the analysis being focused on snowflake schema.

1.2 Objectives

The first objective of this internship is to port the analytical microservice
from the Autonomous Service Operations Platform (ASOP), called Alexandria,
or Alexa in short, in the context of the POWER project, from single-tenant to
multi-tenant.

The Alexa functionalities include meta-data management, data loading, and
data querying, all done through APIs. The porting process for this microservice
involves adding support for multi-tenancy at the data loading API, meta-data
management API, querying API, and at the data persistence layer. This process
is important to give practical experience and knowledge on how to implement
this technique on this type of system, but also because it gives some insights on
how to port similar systems, by showing one possible implementation of this
technique on all three layers of a cloud-based system.

The second objective is to compare three different ways of implementing
multi-tenancy in a data warehouse database, with the intent of analyzing through-
put performance, privacy in the sense of data isolation, and complexity of imple-
mentation of the solutions used. These different approaches provide different
views on multi-tenancy, which in turn give guidelines for, in future work, devel-
oping a porting tool capable of automating the process of converting cloud based
systems from single-tenant to multi-tenant.

2

Introduction

To have valid data sets and results this analysis follows the TPC-H [38] guide-
lines, that uses the snowflake schema. Moreover, the approaches considered only
focus on the persistence layer of data warehouse systems, to perform an in-depth
analysis on this layer.

1.3 Results

In the initial phase, the implementation of requirements for the Alexa mi-
croservice offered a focused insight into the intricacies of adapting a data ware-
house microservice rooted in a star schema. The experience involved transform-
ing the database into a multi-tenant model while aligning the business and logic
layers accordingly. The development process executed in the persistence layer
was then carried over to the analysis allowing me to perform a more generic
study with the aid of the TPG-H Benchmark.

This study, delved into evaluating data isolation aspects and the complexities
of three multi-tenancy solutions. Where complexity predictions leaned towards
the first solution as being the most complex, because it requires tenants to be sep-
arated in individual schemas within the same database, as opposed to the other
two solutions where tenants are all in the same schema, with the difference being
that in solution 3 there is a grouping of tenants. However, all three approaches
exhibited similar implementation intricacies.

Moreover, the study allowed me to conclude that there is a penalty in through-
put performance when using the second or third solutions compared to the first,
and the outcome revealed what was expected in terms of which solution would
perform best, but the results hold some interesting surprises.

1.4 Document Structure

This dissertation is separated into the following Chapters:

Chapter 2 is dedicated to research for the state of the art, that aims to under-
stand in detail, and explain to the reader, what is multi-tenancy, what concepts
and technologies it involves, and what challenges it brings.

Chapter 3 details the architectural drivers for the porting process of the Alexa
microservice. It shows the current architecture of the microservice and identifies
the functional requirements, as well as restrictions for this stage of the work.

Chapter 4 describes the resulting architecture of ASOP, using the C4 model,
and the implemented changes after the porting process is complete.

Chapter 5 presents the analysis definition in detail explaining the three so-
lutions to be implemented and tested, as well as the workload definition, all the
details about the database design involved, and metrics used to compare the ap-
proaches. All of this follows the TPC-H Benchmark guidelines.

3

Chapter 1

Chapter 6 is where the test set-up is presented and explained, going through
all the steps on how to create the database, how to generate the data sets and
query sets, how to load the databases, and also what tests to run how they are
executed.

Chapter 7 presents the results gathered from the executed tests, using a graph-
ical medium, also presenting the results for the calculations from the metrics
used, and ending the chapter with an analysis on the aspects analyzed.

Chapter 8 is reserved for the project schedule, where I show the real vs
planned work schedules and talk about the risks involved.

Chapter 9 is where I do a final reflection, talk about future work and give
some final thoughts about the whole process.

4

Chapter 2

State of the Art

2.1 Multi-tenancy introduction

A Multi-tenant application serves multiple customers, called tenants, where
each tenant can customize some parts of the application, usually the styling of
the graphical interface, business rules, and rationale, and their database schema,
however, they cannot personalize the application’s code.

The architecture behind multi-tenant applications, allows them to have only
one instance of software running on a single server while serving multiple ten-
ants. This means the environment is shared between tenants, but their logic is
separated, allowing the reuse of a dedicated instance of configurations, and data,
among other properties [25].

2.2 Multi-tenancy related concepts

Before going into details about multi-tenancy, it is best to explain what are
some related terms, components, and technologies that can be involved. This
section is more oriented for the type of reader less familiarised with such concepts
and terms.

• Cloud application

As defined by Joel Shore "A cloud application, or cloud app, is a software
program where cloud-based and local components work together. This model re-
lies on remote servers for processing logic that is accessed through a web browser
with a continual internet connection." [34].

Such servers are commonly placed in big data centers manage by third party
companies, and their main "tasks may encompass email, file storage and shar-
ing, order entry, inventory management, word processing, customer relationship
management, data collection, or financial accounting features." [34].

5

Chapter 2

• Cloud computing

A system that allows for easy and immediate access to configurable
computing resources, such as networks, servers, storage, applications, and
services, which can be quickly set up and taken down with minimal effort
or interaction with service providers. This model can be delivered in three
different ways:

- Software as a service (SaaS)

The general definition of Software as a service (SaaS) is "The acronym
SaaS stands for software as a service and is defined as a software licens-
ing and delivery method in which software is accessed online, rather
than installed in a device. In SaaS models all the software and appli-
cable data are hosted on the provider’s servers, meaning the provider
is responsible for managing the security, availability, updates and per-
formance of the applications." [21].

- Infrastructure as a service (IaaS)

The general definition of Infrastructure as a service (IaaS) is "In-
frastructure as a Service (IaaS) is a cloud computing service that lets or-
ganizations rent resources like servers, network security features, and
data centers. Instead of investing in building and maintaining your
own IT infrastructure, you simply pay for the resources you need and
focus on your software application." [11].

- Platform as a service (PaaS)

The general definition of Platform as a service (PaaS) is "Platform
as a service (PaaS) is a cloud computing model where a third-party
provider delivers hardware and software tools to users over the inter-
net. Usually, these tools are needed for application development. A
PaaS provider hosts the hardware and software on its own infrastruc-
ture. As a result, PaaS frees developers from having to install in-house
hardware and software to develop or run a new application." [8].

6

State of the Art

• Database

As defined in the ORACLE official website, "A database is an organized col-
lection of structured information, or data, typically stored electronically in a com-
puter system. A database is usually controlled by a database management system
(Database management system (DBMS)). Together, the data and the DBMS, along
with the applications that are associated with them, are referred to as a database
system, often shortened to just database.

Data within the most common types of databases in operation today is typ-
ically modeled in rows and columns in a series of tables to make processing and
data querying efficient. The data can then be easily accessed, managed, mod-
ified, updated, controlled, and organized. Most databases use structured query
language (Structured query language (SQL)) for writing and querying data." [30].

Databases can be divided in two main types: relational databases and non
relational databases. In the first, data is organized in through relationships where
it is stored in one or more also called tables, (also called relations), of columns
and rows. The latter does not use the tabular schema of rows and columns, in-
stead uses a storage model tailored for the requirements of the type of data being
stored, for example, a simple key and value pair model, as Json documents.

• Virtual machine

As defined in the vmware official website, "A Virtual Machine (Virtual ma-
chine (VM)) is a compute resource that uses software instead of a physical com-
puter to run programs and deploy apps. One or more virtual “guest” machines
run on a physical “host” machine. Each virtual machine runs its own operating
system and functions separately from the other VMs, even when they are all run-
ning on the same host. This means that, for example, a virtual MacOS virtual
machine can run on a physical PC." [20].

• Container

A software container is a way of packing up an application or service and
everything required for it to run (the program to execute and all its dependen-
cies, such as the code, system libraries, etc), regardless of environment, in a sin-
gle place, making it easy to sharing a fully developed application or service. A
container can be inside the nodes of a clusters or not, therefore a container is the
lowest level of isolation.

• Cluster

In cloud computing a cluster is a group of inter-connected computers, or
virtual machines, or hosts, connected within a virtual private cloud, that work
together to support applications and middleware (e.g. databases). In a cluster,
each computer is referred to as a “node”. A cluster can have many nodes, and
each node can have many containers inside.

7

Chapter 2

• Microservice
As defined in [32]: "Microservices - also known as the microservice

architecture - is an architectural style that structures an application as a col-
lection of services that are:

– Highly maintainable and testable
– Loosely coupled
– Independently deployable
– Organized around business capabilities
– Owned by a small team

The microservice architecture enables the rapid, frequent and reliable deliv-
ery of large, complex applications. It also enables an organization to evolve its
technology stack."

2.3 Types of Multi-tenancy

Figure 2.1: Multi-tenancy Patterns

As illustrated in Figure 2.1 multi-tenancy can be separated into two kinds
of patterns: multiple instances and native multi-tenancy. In the native pattern
everything is shared between tenants, the application instance, hardware, and
Operating System (OS) or a middleware server in a hosting environment. On
the other hand, the latter supports all tenants using the same hardware, but each
tenant has its instance of the app and can share the middleware or not [15]. How-
ever, this is a broader view of the separation. Going into database separation,
multi-tenant applications can be divided into three main models:

2.3.1 Multi-tenant app with one database per tenant

This model uses a single instance of a multi-tenant application with many
databases, one for each tenant, where the database can be in a separate server
or just a separate database within the same machine. This allows for complete
tenant isolation, and complete customizability of each database schema, which
is easy, due to the isolation level. Additionally, the noisy neighbor problem is
avoided. The noisy neighbor problem refers to a scenario where one tenant’s per-
formance is affected by the actions of another tenant sharing the same resources.
[24]. Since each tenant has its database, scaling can be done individually tenant
by tenant [25] [31].

8

State of the Art

Figure 2.2: One database per tenant model

2.3.2 Multi-tenant app with multi-tenant databases

This model can be split into two sub models: one single database for every
tenant; several databases for all the tenants, where each database houses data
from various tenants.

In this model, tenant isolation is sacrificed, because data of multiple tenants
are stored together in one database. Moreover, the computing and storage re-
sources are shared between all tenants, and therefore the risk of having noisy
neighbors is not negligible. However, multi-tenant databases have the lowest
per-tenant cost because resources are shared. [25].

• Multi-tenant app with a single multi-tenant database

In this model, a single database is used to host the data of all tenants, and
the separation between tenants can be made at table level, where tenant logic is
handled in the application layer, which poses a security concern due to how easy
it is to make mistakes and leak tenant data. An alternative is to have separation at
the schema level (a schema is a blueprint for organizing data within a relational
database, including table names, fields, data types, and relationships between
entities, and it is used for data modeling and creating roles, such as database
users, administrators, and programmers [10]), where the schema routing logic
stays on the application side and can be encapsulated in a separate router [31].
To scale this model, more storage and compute resources are added scaling up,
which can quickly become very difficult to manage [25].

• Multi-tenant app with several multi-tenant databases

This model uses several databases, also referred to as shards (sharding is a
way to split a database into multiple smaller pieces called partitions, self-contained

9

Chapter 2

Figure 2.3: One database for all
tenants model - separation at ta-
ble level

Figure 2.4: One database for all
tenants model - separation at
schema level

with the same schema and columns, but each with its own set of rows, allowing
more efficient data management and improved performance [9]), to hold tenant
data, where all the data for each tenant is contained in one shard. Sharding adds
complexity and a catalog is required to maintain the mapping between tenants
and databases, but the advantage is in resource efficiency, which is visible in scal-
ing because it allows adding a new shard and populating it with new tenants,
or in management by splitting densely populated shards into less-densely ones,
or merging shards together that have few tenants and discontinued tenants, and
even to balance workloads tenants can be moved around [25].

This combined with the previous model gives more scaling capabilities. By
distributing tenants across multiple databases the result is smaller databases mak-
ing management easier. One example is the process of restoring a tenant to a past
state only involves restoring a single smaller database from a backup, that holds
few tenants, rather than a larger database with all of them [25].

Figure 2.5: Several multi-tenant databases model

10

State of the Art

2.4 Multi-tenancy challenges

Multi-tenancy comes with a few challenges that should be addressed to bet-
ter benefit from it. In this section, some of these challenges are presented, and the
focus of this report is defined.

• Application upgrades

Starting with application upgrades, if an upgrade is something beneficial for
all tenants, like a security upgrade, then all tenants should get it. But if the up-
grade is not necessary for every tenant, then it is important to allow customiza-
tion at run time without affecting other tenants. Normally, customization implies
changing the code and a re-deployment of the application. However, in a multi-
tenancy scenario, this is impractical because the same instance of the application
is shared, therefore the customizations made by one tenant would be present for
all tenants. Additionally, constantly redeploying can lead to frequent interrup-
tions, which can become more common with a larger number of tenants, greatly
reducing availability [33] [40].

• Data isolation

Another challenge is data isolation. Being able to keep tenant data isolated
and secure inside a shared environment is crucial, and as mentioned before, there
are three approaches to manage this in the Cloud: storing tenant data on separate
Database (DB)s; using the same DB for multiple tenants, where each tenant has
his own set of tables grouped into a schema; using the same DB, and the same set
of tables for multiple tenants data [33] [27].

• Performance

Moving forward, performance and scalability pose another critical challenge,
since resources are shared and tenants use them according to their needs, there
must be a way to balance these resources so that if one tenant obstructs a signif-
icant amount of resources, the performance of all the others is not affected. This
differs from the single-tenant scenario, in which the workload of a tenant only
affects himself. In virtualized instances this problem is solved by assigning an
equal amount of resources to each instance (or tenant), which can be very ineffi-
cient since not every tenant will need the same amount of resources, leading to
wasted resources. This is regarding performance [33] [6].

11

Chapter 2

• Scalability

In regards to scalability in a multi-tenancy scenario, another challenge rises,
because there needs to be resource provisioning and allocation to satisfy all ten-
ant’s needs, the problem is those resources are shared which makes it more diffi-
cult to provision and allocate. Moreover, tenants from different countries impact
scalability requirements, in the way that each country may have its legislation
on data placement or routing. Finally, there may be more constraints related to
specific requirements, like the need to place all data of one tenant on the same
server to speed up regularly used DB queries. Such constraints influence how an
application and its datastore can be scaled [33] [6].

• Security

If in single-tenant applications security is already an important part of it, in
multi-tenant applications the resource sharing aspect, adds security, accessibility,
and privacy concerns. For example, successful SQL attacks on a shared storage
medium will expose and or corrupt the data of all tenants, hence the need for
good security measures.

• Zero-Downtime

The need for constant growth and evolution is always present in multi-tenant
systems because it is necessary for the process of adding new tenants or adapting
the system to changing business requirements of existing tenants. But this process
should not have any impact on the services provided to the other existing tenants.
Therefore the requirement of zero downtime for multi-tenant applications arises,
as downtime is usually very expensive in cloud applications [6].

• Maintenance

Has it was already explained, multi-tenancy brings a lot of benefits over
single-tenancy, specifically in terms of deployment where the number of appli-
cation and database instances that need to be updated is a lot smaller the in its
counterpart. But in terms of maintenance, this clear and cut improvement is not
so clear. In particular, introducing multi-tenancy into a software system adds
complexity, which will likely affect the maintenance process and its cost. The
amount of maintenance needed is probably correlated to the type of services pro-
vided by the software, but to have any kind of conclusion further research would
be needed [6].

12

State of the Art

2.5 Advantages and risks of multi-tenancy

In the previous section, we discussed the various challenges that come with
multi-tenancy, however, multi-tenancy also presents a number of advantages that
can make it a valuable option for an organization or software solution. This sec-
tion will delve deeper into these advantages and also identify potential risks, to
give a balanced and holistic view of the implications of using multi-tenancy.

Advantages

• Fewer costs due to the sharing of resources. Since it is usually a cloud-
based service, tenants only pay for what they need, and a lot of aspects
of management like labor and staff, onboarding new tenants, maintenance,
development, and updates, are handled by the cloud host. [35] [23].

• Because of the previous point, scaling is easy. Low cost means that tenants
can add or remove resources as needed, and support for the microservice
architecture is provided, allowing an entire batch of tenants to be provided
with updates in one go [35] [23].

• It has good security, even though single tenancy can be more secure, multi-
tenancy can also be very secure in tenant data separation [35]. Banking
industries are one example of this, where multi-tenant architecture is used
to maintain customer accounts and databases. [23].

• It is maintenance-free for the tenants. The host takes care of monitoring and
administration costs, as well as upgrade and update costs. This is beneficial
for both tenants, and hosts as they can make changes in a central application
to share with all the tenants [35] [23].

Risks

• Third-party accessibility. Even though it can be very secure, while being
a cloud service, there is always the risk of data being accessible to third
parties, either through bugs or errors in the software or through malicious
activity, like hacking [35].

• Response times can be affected. If one or more tenants are executing heavy
tasks loading the hardware used by the cloud provider too much, response
times for every tenant will slow down [35].

• The tenants have no control over server downtime, which is reserved for
the host only [35].

• Multi-tenancy is more complex than single tenancy to implement [35].

• Introducing multi-tenancy at a later stage may be problematic. Processes
like data migrations and changes in running services and data entities may
cause problems, as well as backward incompatibility with older clients can
occur [23].

13

Chapter 2

2.6 Technologies

This section presents and explains some of the technologies and support
tools that aid in the implementation of multi-tenancy. It focuses on container
and cluster management tools, databases, and data warehouses specifically the
star schema.

The reason why these tools are highlighted is that they possess specific char-
acteristics that make them well-suited for the task of implementing multi-tenancy.
Their features such as containerization, cluster management capabilities, and the
ability to support multiple tenants make them a viable option to implement the
multi-tenancy feature in a microservices architecture.

The goal of this section is to provide an overview of these tools and to demon-
strate how they can be effectively used to implement multi-tenancy in a microservice-
based application.

2.6.1 Container & cluster management support tools

Container and or cluster management tools are software programs that pro-
vide a graphical interface or command line window to manage clusters and con-
tainers. They allow monitoring of nodes and containers inside the clusters, con-
figure services and administer the entire cluster server [1].

• Docker

Docker is an open platform for developing, shipping, and running applica-
tions in containers. Containers are isolated and secure environments allowing a
single host to run many instances at once, making Docker well-suited for multi-
tenancy implementation. However, these instances do not rely on host-installed
software because they already have everything needed to run an application, plus
they can be easily shared to other hosts [16].

Docker also provides a tool for managing clusters called Docker Swarm. It
enables the creation of a cluster of one or more Docker Engines called a swarm.
A swarm consists of one or more nodes: physical or virtual machines in swarm
mode. There are two types of nodes: managers and workers [17], and the swarm
can utilize them to scale up to 50,000 containers and 1,000 nodes with no effect on
performance as new containers are added to the cluster [1].

14

State of the Art

Figure 2.6: Docker swarm - relation between worker and manager nodes [17]

A brief description of worker and manager nodes is presented next. Visit
[17] for more information.

Manager node description

This type of node handles cluster management tasks:

– maintaining cluster state

– serving swarm mode HTTP API endpoints

– scheduling services (containers)

Using a Raft implementation ("raft is a consensus algorithm for managing
a replicated log. Consensus algorithms allow a collection of machines to work
as a coherent group that can survive the failures of some of its members" [28]),
the managers maintain a consistent internal state of the entire swarm and all the
services running on it [17].

Worker node description

Worker nodes are also instances of Docker Engine that execute containers.
They don’t participate in the Raft distributed state, make scheduling decisions,
or serve the swarm mode HTTP API. Every worker node requires at least one
manager node, and all managers are also workers by default [17].

Docker Swarm is a native solution, meaning, it is possible to implement
Docker networking, plugins, and volumes using Docker commands. The Swarm
manager creates several masters and specific rules for leader election, imple-
mented in the event of a primary master failure. Additionally, the Swarm sched-
uler features a variety of filters including affinity and node tags, where filters
can attach containers to underlying nodes for better resource utilization and en-
hanced performance, which allows easily deploy and management multi-tenancy
in a microservices architecture.[1].

15

Chapter 2

• Kubernetes

Developed by Google, "Kubernetes, also known as K8s, is an open-source
system for automating deployment, scaling, and management of containerized
applications. It groups containers that make up an application into logical units
for easy management and discovery."[5].

Figure 2.2 shows a control plane with components that make global decisions
about the cluster (for example, scheduling), as well as detecting and responding
to cluster events (for example, starting up a new pod when a deployment’s repli-
cas field is unsatisfied). Control plane components can be run on any machine
in the cluster. However, for simplicity, set-up scripts typically start all control
plane components on the same machine, and do not run user containers on this
machine [4].

Figure 2.7: The components of a Kubernetes cluster

Cluster components descriptions

– kube-apiserver exposes the Kubernetes API.

– etcd is a key value store for cluster data. (See [18] to learn about etcd).

– kube-scheduler assigns nodes to newly created Pods.

– kube-controller-manager runs controller processes.

– cloud-controller-manager links the cluster into the cloud provider’s API.

Node components descriptions

– kubelet runs on each node in the cluster and makes sure that containers are
running in a Pod.

– kube-proxy is a network proxy that runs on each node of a cluster and main-
tains network rules, that allow network communication.

For more datailed information on this components visit [4].

As shown in Figure 2.2 Kubernetes is based on Clusters and Pods. A Pod
is the smallest deployable unit that holds one or several containers that make

16

State of the Art

up a service, this is how containers are scheduled and deployed at the same time,
which makes pods the basic configuration unit for scheduling. Additionally, pods
are built and eliminated in real time as demand and requirements change [1].
Moreover, groups of pods, related or unrelated, run on a cluster grouped under
logical borders called namespaces (namespaces are used to divide a cluster into
smaller sections, similar to folders, and provide a way to manage access control,
limits, and quotas for resources. [26]), in these groups, a pod is a unit of replica-
tion in the cluster.

Moving onto clusters, they provide all the logic for the nodes to execute and
communicate. Regarding nodes, they stay between the pod and cluster and are
essentially the machines, physical or virtual. Managed by the control plane they
contain the services necessary to run Pods. [7].

Kubernetes architecture based on clusters and pods, makes it an efficient
solution for multi-tenancy, it can handle changes in demand, and resources can
be allocated between tenants with ease using the namespaces feature.

• Fedora CoreOS - Fleet

Fedora CoreOS is an automatically updating, minimal, monolithic, container-
focused operating system, designed for clusters but also operable standalone.
Rather than installing a package through apt or yum, CoreOS leverages Linux
containers to handle services at a higher abstraction level, providing advantages
similar to virtual machines, but with a concentration on applications rather than
complete virtualized hosts [12] [1].

Figure 2.8: Fleet CoreOS with Docker

Moving onto Fleet the tool for cluster and container management. With Fleet,
every machine has an agent and an engine, and the entire community of engines
is active at all times in a cluster. Fleet utilizes etcd, and can also handle socket
activation, meaning, containers can be activated to take care of a connection on
a specific port. This allows the system to create processes when needed as op-
posed to waiting for demand. In the event of a machine failure, the containers
are automatically moved to healthy machines [1].

17

Chapter 2

CoreOS and Fleet provide an efficient solution for multi-tenancy by automat-
ically handling the allocation of resources and responding to changes in demand.

• Apache - Mesos

As defined in the official documentation, Apache Mesos is a distributed sys-
tem that abstracts CPU, memory, storage, and other compute resources away
from machines (physical or virtual), enabling fault-tolerant and elastic distributed
systems to easily be built and run effectively [13].

Apache Mesos can also be used as a cluster manager because it focuses on
the effective isolation of resources and sharing of applications across distributed
networks or frameworks. It is open source and gives managers the ability to share
resources [1].

Apache Mesos is built using the same principles as the Linux kernel but with
a different level of abstraction. It runs on every machine with one machine des-
ignated as the master running all the others and provides applications with APIs
for resource management and scheduling across the entire data center and cloud
environments. Moreover, any Linux program can run on Mesos and provides an
extra layer of safeguards against failure [1].

Figure 2.9: Apache Mesos architecture implementation with docker

Mesos uses a system of agent nodes to run tasks, where nodes can be divided
into masters and slaves. The slave agents send a list of available resources to a
master, and the master nodes distribute tasks to the slave agents. At any given
time, there can be hundreds up to thousands of agent nodes in operation [1].

Apache Mesos is a good solution for multi-tenancy as it allows for the shar-
ing and isolation of resources, the tasks are distributed across a large number of
nodes, and provide an extra layer of safeguards against failure.

• Decision

These are some of the tools that are helpful for cluster and container man-
agement in multi-tenancy scenarios, however, since the technologies used in this
project are already defined, a support tool will not be used.

18

State of the Art

2.6.2 Databases

This section compares the performance of relational and non-relational databases
in multi-tenancy scenarios. PostgreSQL will serve as an example of a relational
database because it is used by Alexa. The goal of this comparison is to highlight
the importance of selecting the appropriate database type when implementing
multi-tenancy and how it can affect the performance of the system.

• Relational databases - PostgreSQL

PostgreSQL is an object-relational database management system (ORDBMS)
based on POSTGRES, Version 4.2. It is open-source and supports a large part of
the SQL standard [14] giving it a lot of community support. It runs on all sig-
nificant Operating System (OS), it is compatible with a lot of different program-
ming languages [22], and it supports Json (non-relational) queries, making this
database technology very flexible.

PostgreSQL has many features but for this section, only the most relevant
ones for multi-tenancy are mentioned. These include support for a customizable
storage interface for tables, support for column and row-level security, and sup-
port for schema.

These features allow tenant separation and customization, in the same database
instance. The first two are more oriented for tenant separation at table level,
which is common in environments that do not require strong separation of tenant
data, where every table that contains per-tenant data has a special column indi-
cating which tenant the row belongs to. The latter is for tenant separation at the
schema level, whose design helps organize data into separate entities, and allows
for more organization and better communication among internal stakeholders
because it provides a common source of truth ensuring data validity.

Additionally, some advantages that help in multi-tenancy are flexible data
management; support for ACID properties (ACID properties in PostgreSQL en-
sure that transactions are atomic (completed in an all-or-nothing manner), consis-
tent (valid according to predefined rules), isolated (determines the level of visibil-
ity by other transactions), and durable (stored permanently [41]); data integrity
and security; reliable data storage with easy backup and recovery; compliance
with data protection standards and regulations (such as GDPR); rapid integra-
tion with commercial software, and a streamlined development cycle.

Some drawbacks include hardware and software costs; scalability can be ex-
pensive; effective and efficient work with RDBMS is not an easy and fast skill to
learn, it requires experience.

Two examples of PostgreSQL databases used by Alexa are TimescaleDB and
CitusDB. TimescaleDB is an extension of PostgreSQL that is optimized for time-
series data and analytics. It provides the scalability, performance, and usability
that applications require when handling large streams of time-series data. Sim-
ilarly, CitusDB is a PostgreSQL-based database that is specifically designed for

19

Chapter 2

horizontally scaling out (horizontal scaling means adding more machines to han-
dle more data or traffic, as opposed to adding more resources to a single machine -
vertical scaling) data warehouses. It distributes data across a cluster of machines,
allowing for efficient querying and processing of large amounts of data.

• Non-relational databases

Non-relational databases can be divided into five types: document data store,
which saves data in a document entity stored in Json format, and does not require
all documents to have identical data structures; columnar data store, which orga-
nizes data into columns allowing sparse data to be structured in a denormalized
way (denormalization consist in introducing redundant data to improve read per-
formance); key-value stores, it is a collection of key-value pairs contained within
an object; document stores, it does not have a document structure specified with
a schema, it stores documents with their original format and structure; graph,
it is designed to efficiently store relations between entities when data is greatly
interconnected, it is the most complex type.

Some benefits that non-relational databases have in multi-tenant applica-
tions are: faster development iterations due to dynamic schema, has seen in the
previous paragraph the type of data structure in these databases is very flexible;
horizontal elastic scalability for peak loads, for example, sharding; high avail-
ability, reliable performance, and better end-user experience, since they are built
to serve low-latency requests; cheap implementation, they only require low-cost
servers for effective operation; the use of Object-relational-mapping, giving non-
relational databases good flexibility in terms of the query language to use.

Some disadvantages of NoSQL databases can be scalability issues in certain
scenarios when the size of the data grows, lack standardization for data models,
query languages, and APIs, require complex data modeling that make it difficult
to understan and work with the data, and lack transactional consistency meaning
that multiple updates to the data may not be executed atomically.

• Final remarks

As it is clear, both types of databases have pros and cons, and the selection
of one over the other in any project depends on the requirements and objectives
of that specific project. For the current project, the first type of database will be
used, due to the reason aforementioned in the introduction of this section.

2.6.3 Data warehouses - star schema

In the context of this project, it is important to understand the concept of a
data warehouse as Alexa is one. The examples given use the star schema because
it is what Alexa uses.

20

State of the Art

A data warehouse is a type of data management system with the purpose of
supporting business activities like the analytical analysis. Built from the opera-
tional data collected from transactional databases and other operational systems,
they store large collections of historical data and are just intended to perform
query operations to this data [29]. They also support advanced querying and
analysis, such as Online Analytical Processing (OLAP) and data mining, that are
beyond the capabilities of traditional transactional databases.

The key characteristics of a data warehouse are:

– Temporal dependency - data is collected over time, and it does not repre-
sent a specific moment, it represents history. This requires that a temporal
reference be associated with all data in the database.

– Nonvolatile - the data in the data warehouse is never updated.

– Target-oriented - the data stored must be relevant for decision support, dis-
carding all other types of data.

– Data integration and consistency - data must be integrated and made con-
sistent before being loaded in the data warehouse. This requires a data for-
mat specification.

– Designed for queries - the data format specification, to store data, must be
designed with query performance in mind, this is why multidimensional
view and partial denormalization are common in data warehouses.

OLAP databases store data in a multi-dimensional schema, where data can
be visualized as a data cube because it allows data visualization through multiple
dimensions. This model has two main components, the Facts and Dimensions,
and a central theme that is represented by a Fact table.

Facts are the metrics or measurements from a business process. A Fact table
is normalized and contains the metrics (also referred to as facts), the foreign keys
to one or more dimensions, and a timestamp for time reference.

A dimension provides the attributes that contextualize the process events
of the business, in other words, it represents the who, the what, and the where
of a fact. Dimensions are denormalized, and there is no limit to the number of
dimensions a fact table can reference.

21

Chapter 2

To help visualize the connection between facts and dimensions the star model
is used as it is visible in Figure 2.10.

Figure 2.10: Star model visualization

To help visualize the Multidimensional data model Figure 2.11 shows a sales
example, where facts can be units sold, sale value, etc, and a dimension can con-
tain the brand of a product, the type, the name, etc.

Figure 2.11: Sales Multidimensional model

22

State of the Art

Figure 2.12 shows one possible star model for the Sales example.

Figure 2.12: Sales star model example

23

Chapter 3

Architectural Drivers for Alexa
Microservice

This Chapter describes the way the Autonomous Service Operations Plat-
form (ASOP) analytical microservice functions, and also the architectural drivers
for the porting process, which comprise functional requirements, and technical.

3.1 ASOP-Alexa current state

3.1.1 Architecture

In the ASOP the Alexa component is dedicated to storing and retrieving an-
alytical data. Its functionalities include metadata management, data loading, and
data querying. The main modeling concepts are

– Dimension - a business domain entity and its attributes, e.g., a CPE equip-
ment with a Unique Identifier, Serial Number, Vendor, Model, Version, etc.

– Fact - a set of measurements, with a timestamp and the identifiers of the
related dimensions.

– Timeseries - a flat view over one or more Fact tables, and selected dimen-
sions.

The Alexa microservice provides a virtual flat table view over timeseries data
stored in a physical star schema in the database. This means that the virtual flat
table abstracts the business model from the clients. The only mandatory field for
each timeseries is the timestamp, the other fields are chosen and defined by the
microservice’s clients and may include dimensional data and facts, see Figure 3.1
below.

25

Chapter 3

Figure 3.1: Alexa Virtual Flat vs Physical Star schema model

These different perspectives provide an abstraction layer between the busi-
ness model (the flat view) and the persistence details, which may be chosen (and
altered) according to functional, performance, or other non-functional require-
ments, without impacting the clients or their usage of the APIs.

The service uses docker containers to store all the data, and there are two
types of data: metadata, always stored in the same Postgres database container
(labeled "metadata" in Figure 3.2), and timeseries data which can be stored in one
or many different database containers (represented in Figure 3.2 as "Database").

The metadata data contains the descriptions for the models of timeseries
data. It details in what instance of database a timeseries is located, what facts
and dimensions it holds, and also what attributes are included.

The timeseries data is organized in a star schema model, each instance of
such database can have multiple timeseries, each timeseries can belong to many
different clients, and each client can have multiple different timeseries. This
means that there is a many-to-many relationship between clients and timeseries.
Additionally, different stars (timeseries) can share fact and dimension tables, as
long as they are in the same database instance.

Figure 3.2: Alexa Logical Architecture

26

Architectural Drivers for Alexa Microservice

3.1.2 Metadata management

Alexa provides a REST API metadata management, it is a CRUD REST API
(MetadataRestApi.java) with endpoints for timeseries, Facts, and Dimensions, to
list, create, update, and delete. The API endpoints follow the OpenAPI/Swagger
specification format [36].

When this API executes Data Manipulation Language (DML) operations in
the metadata database, either to create or update a model of a timeseries, it also
executes Data Definition Language (DDL) operations in the corresponding in-
stance of timeseries database, in order to maintain consistency between the meta-
data and the timeseries data.

3.1.3 Data loading

Loading of data is done via Kafka, a distributed event streaming platform.
Alexa provides a REST API (LoaderRestApi.java) for clients to write into the
Alexa topic in Kafka, and the Alexa service is listening on this topic and writ-
ing to the database via DML operations, specifically Insert and Update, as seen in
Figure 3.2. A timeseries event contains the Fact table attributes to write, and also
the relevant Dimension attributes. A Dimension event contains only the Dimen-
sion’s attributes.

3.1.4 Data querying

Data querying in Alexa is done via another REST API (ServiceRestApi.java).
It serves all the clients and uses plugins to query data. There are two types of plu-
gins: metadata plugins and query plugins. Query plugins are universal to all the
metadata plugins, and are basically "SELECT" queries that fetch data from a cer-
tain instance of timeseries database. It can be TimescaleDB, CitusDB, ORACLE,
etc.

When a client connects to the query API to get data, the request has a Json
body with the required values to create the select query, like which timeseries
to query and the attributes from the fact and dimension tables. This Json pay-
load also includes the name of the database instance to query, specifying what
timeseries the client wants. Alexa will then go to the metadata database to get
the metadata plugin for that timeseries to know in what database it is located, in
turn, the metadata plugin will call the correct query plugin to execute the query
in the database with the parameters passed in the Json payload.

27

Chapter 3

3.2 Functional Requirements

This section presents the requirements to port the Alexa analytical microser-
vice from single tenant to multi-tenant, detailing what will be implemented, what
conditions are involved, and the scenarios of usage. The requirements are aimed
at the three APIs mentioned above as well as some data persistence details.

3.2.1 Data persistence requirements

The first requirement is making tenants explicit, which implies two changes
having a meta-model to represent the tenant entity and adding a column called ten-
ant_id to the fact and dimension tables to allow for data separation at row level.

This is done by adding a table to the metadata database called Tenant, and
also to the timeseries databases that need to be multi-tenant. The metadata ver-
sion of this table details which instances of the timeseries databases have a Tenant
table, and when a timeseries database includes this table, it has all the informa-
tion about the tenants, such as tenant ID and name.

Adding this column to the dimension tables will cause data replication which
could affect performance. However, this will not be a problem since it is not ex-
pected to have many tenants requiring the same attributes.

3.2.2 API requirements

It is important to mention that for the metadata database illustrated in figure
3.2, the TimescaleDB instance is used for metadata and timeseries data storage.

The requirement list aimed at these APIs is the following:

– There must be tenant support in the Load API (LoaderRestApi.java), this
means adding the tenant_id using the tag HEADERS of the Json Body of
the HTTP request.

– When creating a dimension or fact table using the metadata management
API (MetadataRestApi.java) it must be possible to specify if that table must
be multi-tenant or not. For this, the boolean value represented by the tag
"multitenancy" inside the payload of the Json body of the request is added.
If this value is true the column tenant_id is added to the table in question.

– It must be possible to manage tenants inside each timeseries database in-
stance. For this, endpoints to for CRUD operations must be created in the
metadata management API (MetadataRestApi.java), to allow the manage-
ment of the Tenants in the timeseries database.

28

Architectural Drivers for Alexa Microservice

– Invalid relations between different tenant data must be avoided. This means
that rows from a fact table that belong to the tenant with ID 1, must not ref-
erence rows of a dimension that belong to the tenant with ID 2. To avoid
this, the tenant_id value must be associated with the dimension table key.

– It must be possible to filter search queries for the SubQuery API (ServiceR-
estApi.java), by tenant_id. For this, the tenant_id value is passed as path-
Param of the endpoint request. With the previous requirement fulfilled, the
current one corresponds to adding to the "WHERE" statement of the query
the clause "where tenant_id = x" where x is some tenant_id value.

3.3 Restrictions

In this section, the technical restrictions are presented. Such restrictions limit
the flexibility of the project regarding the final result and overall architecture.

3.3.1 Technical Restrictions

The technical restrictions identified come from the fact that this project is
based on another ongoing project from Altice Labs (ALB). The restrictions are:

– Docker must be used for running the system;

– Java must be used as a programing language;

– For the metadata database TimesacleDB must be used, for the timeseries
databases some flexibility is allowed;

– The solution must be in compliance with the Altice Labs (ALB) collaborator
goals, some flexibility is allowed;

29

Chapter 4

Architecture of Alexa Microservice

This Chapter describes Alexa’s intended architecture, using the C4 model,
after the porting process is complete.

4.1 C4 Diagram

The C4 model is comprised of 4 diagrams that go to different levels of detail
of the architecture.

4.1.1 System Context Diagram

Figure 4.1: Context Diagram

31

Chapter 4

This diagram shows three external actors, two are external to the Autonomous
Service Operations Platform (ASOP) and represent tenants and other systems,
and a third actor that is external to Alexa but internal to ASOP that can repre-
sent another service of the platform or an actual person like an administrator.
This third actor executes Data Manipulation Language (DML) and Data Defini-
tion Language (DDL) operations in the metadata database, and the two external
systems, query and send data respectively, to the timeseries databases.

4.1.2 Container Diagram

Figure 4.2: Container Diagram

This diagram goes into detail on the Alexa microservice, it shows what type
of communications are done and where the metadata and timeseries data are
stored.

The communication between external systems and Alexa is done in two
ways: via API REST endpoints and Kafka topics, as demonstrated in the di-

32

Architecture of Alexa Microservice

agram. Between the microservice and the databases, Data Manipulation Lan-
guage (DML) operations (like insert, update, delete, joins, etc.), Data Definition
Language (DDL) operations (like create table, alter table, etc.), and queries, are
executed via SQL.

For storage, this microservice uses several databases. One of these databases
holds all the metadata needed for the Fact entity, Dimension entity, and Tenant
entity, and then there are as many timeseries databases as needed to store time-
series data represented by the (X databases in the container diagram).

4.1.3 Component Diagram

Figure 4.3: Component Diagram

This diagram details the architecture of Alexa at the level of its components.
It is composed of three components or layers, one for data ingestion via Kafka
topics, one for data management via REST API, and one for querying data also
via REST API.

33

Chapter 4

4.1.4 Code Diagram

Figure 4.4: Code Diagram

The code diagram shows in detail the architecture of the metadata database
component, there exists a many-to-many relationship between all the entities ex-
cluding the tenant entity. In all the entities, the name is the primary Key that
uniquely identifies each entry of an entity in the metadata database, the domain
is a tag used for characterizing the tables, the plugin indicates in what instance of
timeseries database the entity is located, and the data attribute holds all the actual
metadata in Json format.

This will be all the columns, the variable type of the values of each column
(int, varchar, boolean, etc.), to what other tables is the table in question connected,
and any other variables required. In the case of the tenant entities the data at-
tribute holds among other data the tenant_id and the name of an individual ten-
ant that uniquely identifies it inside a certain timeseries database instance.

Up until the C4 component diagram, this architecture is identical to the one
explained in Chapter 4, Section 4.1, this is because the changes to implement on
the systems are aimed at the code level.

34

Architecture of Alexa Microservice

4.2 Alexa Microservice final state

In this section I list the changes implemented in the resulting state of the
Alexa microservice. The list is as follows:

• The first change implemented was in the metadata database, where a tenant
model was created using the existing table template to create the Tenant
table and make Tenants explicit.

• Also in this database I added the tenant_id column to the fact and dimension
tables for the data separation at the row level.

• Tenant support was added to the Load API (LoaderRestApi.java) using the
tag HEADERS of the Json Body from the HTTP request.

• In the metadata management API (MetadataRestApi.java), the boolean value
represented by the tag "multitenancy", inside the payload of the Json body
of the request was added, to specify during the creation of a dimension or
fact table, if such table must be multi-tenant or not. When the value is true
the column tenant_id is added to the created table.

• In the metadata management API (MetadataRestApi.java) four endpoints
were added to manipulate Tenants, allowing the create, delete, update, and
read operations on tenants.

• In order to prevent invalid relations between tenant-specific data in dimen-
sion tables and fact tables, the "tenant_id" value is added to the dimension
key during the loading process of dimensions. This way when a row with
data for tenant 2 is added to a dimension, and the dimension table already
has that data but it is owned by tenant 1, the row will be inserted in the
table but the value in the tenant_id column will be 2. This means that there
will be replication of data, but when a new entry for tenant 2 is added to the
fact table, that requires this row, it will connect to the dimension row that
belongs to tenant 2, instead of connecting to the row owned by tenant 1.

• To filter the queries executed through the SubQuery API (ServiceRestApi.java)
the clause "where tenant_id = x" was added to the query, where x corre-
sponds to the tenant_id value.

35

Chapter 5

Multi-tenancy analysis

This section is dedicated to the analysis on multi tenancy. The objective is to
analyze different approaches of implementing multi-tenancy in data warehouse
databases comparing some of the critical aspects presented in the state of the art
of this document, and again in more detail in the next section bellow.

5.1 Analysis introduction

After the research phase of the first semester, it became apparent that de-
veloping a porting tool within the initial project parameters would be extremely
complex and difficult with the available time, due to the amount of technical as-
pects needed to take into account.

As a result, after a few months of working on porting the Alexa system from
single-tenant to multi-tenant, which was also part of the work plan of the project,
I decided to downsize the original objective by reducing the span of systems that
the porting tool is aimed at. This meant reducing the number of parameters in-
volved in developing such a tool.

With this in mind, I wanted to analyze different approaches to implementing
multi-tenancy in data warehouse systems, to provide a better understanding of
the options for developing a porting tool in future work. I set on analyzing three
different approaches to multi-tenancy in a single data warehouse database.

These approaches serve the purpose of comparing throughput performance,
and complexity of implementation of different levels of isolation, which are in-
tended to help define the type of porting tool to develop and guide its develop-
ment process. The ultimate goal is to have a set of guidelines that help develop
this tool in a way that makes it easy to make it a restrictive tool aimed only at a
small group of systems or make it a more generic tool capable of porting multiple
different systems from single-tenant to multi-tenant.

The aspects I decided to analyze are related to performance, data isolation,
and the complexity of different solutions of how to implement multi-tenancy in a

37

Chapter 5

data warehouse database. For the first aspect mentioned, different execution sce-
narios trying to simulate real usage scenarios, are used to measure performance
and see how much difference is there between the three approaches. It is expected
that the first approach is the best performing in this field, but by how much? Will
there be a big difference in performance compared to the other two approaches
that make it worth considering in the porting tool development process, or not?
And the other two approaches, will they have similar performance or not? Will
there be a big difference between them? These are some of the questions that this
analysis intends to answer. More information about test specification is provided
in detail in section 6.

In regards to the other two aspects, I am focused on implementing differ-
ent solutions of multi-tenancy with different levels of tenant isolation, to see how
complicated the implementation process is, with the intent of gathering insights
that help decide what types of systems should the porting tool be able to pro-
duce when porting single-tenant systems to multi-tenant systems. Figures 5.1
and 5.2, provide a visual representation of how these aspects are reflected in the
approaches considered.

Figure 5.1: Number of schemas to use: one schema per tenant vs one schema for
all tenants in the database

Figure 5.2: Data isolation at the table level: row level isolation mixed with no
isolation

Note that in the context of this analysis, the term isolation does not refer to
transactional isolation of queries, but rather to data isolation as demonstrated in
figure 5.2.

5.2 Approach Definition

Moving on, the three approaches to multi-tenancy considered are:

38

Multi-tenancy analysis

• First approach: consists in using a separate schema for each tenant allowing
for multiple tenants in the same database, while having total tenant sepa-
ration, as figure 5.3 shows. This method also allows for easier tenant cus-
tomization and manipulation, making it less complex to manage each ten-
ant individually but may prove more complex to apply the same changes
to all or several tenants because it does not allow scenarios where data is
shared between tenants.

Figure 5.3: Approach 1 Diagram

• Second approach: consists in using a single schema for all tenants, where
they are uniquely identified by a tenant_id stored in a separate table called
TENANTS. With this, it is possible to separate data at row level, like in
figure 5.2, where dimension and fact tables may or may not be multi-tenant.
If a table is multi-tenant then it includes an extra column called "tenant_id".

If this column is included it means that each row of the table will be-
long to a specific tenant identified by the corresponding id value in this
column, and only this tenant will be able to query the specific row. If the ta-
ble does not include this column, it means that there is no separation of data
in the table, and every tenant can query every row. This approach provides
a flexible framework that enables both unique and shared data scenarios,
however, it is still a bit limited because it needs a separate table for each op-
tion, and it does not allow both in the same table. See figure 5.4 for a visual
representation of this approach.

Figure 5.4: Approach 2 Diagram

• Third approach: consists in using a single schema for all tenants, where ten-
ants are uniquely identified by a tenant_id stored in a separate table called
TENANTS, like in the second approach, but one extra table called GROUPS
is added here. This table allows the creation of tenant groups, where a rela-
tionship of many to many exists between tables TENANTS and GROUPS.

39

Chapter 5

In this relationship, a group consists of one or more tenants, and a ten-
ant can belong to one or several groups. These groups are also represented
by the same unique identifier as the tenants, the tenant_id. This means that
in the dimension and fact tables, the column "tenant_id" contains values
that can represent a single tenant or a group of tenants.

By utilizing the GROUPS table, different levels of data sharing can be
defined, allowing tenants to share specific data while maintaining isolation
for others, based on individual business requirements. Moreover, it is pos-
sible to dynamically group tenants which facilitates seamless changes in
tenant relationships, allowing situations like the creation of temporary joint
ventures or specialized projects. See figure 5.5 for a visual representation of
this approach.

Figure 5.5: Approach 3 Diagram

A pivotal aspect to consider while developing the porting tool is the flexibil-
ity offered by different multi-tenancy approaches. The single schema approaches,
whether it incorporates tenant groups or not, provide distinct advantages over
the approach of using a separate schema for each tenant. Because they enable
unique and shared data scenarios, they can better represent and fulfill the needs
of complex business scenarios involving many different tenants.

Understanding these differences will enable the development of a porting
tool that can accommodate a wider range of multi-tenant system requirements,
maintaining the applicability in different business contexts intended with the
original project idea.

To help visualize this analysis the figure 5.6 below depicts the three ap-
proaches considered, using a binary tree diagram.

5.3 Workload definition

In order to have a business representative data set I used the TPC Bench-
mark™ H [38], which is a decision support benchmark consisting of a group of
business-oriented ad-hoc queries and data, that represent broad industry-wide
relevance while maintaining a sufficient degree of ease of implementation. The

40

Multi-tenancy analysis

Figure 5.6: Analysis tree diagram

example used by the benchmark is the Wholesale business scenario, which rep-
resents any industry that must manage sell, or distribute a product worldwide.

This benchmark is relevant to the analysis because it is aimed at systems
handling substantial data volumes and executing complex queries, both crucial
aspects of the porting tool target systems. Also ensuring relevance for real indus-
try scenarios, it enhances the decision-making process, steering future porting
tool development.

The benchmark tool uses data generation, loading, and querying to gauge
system performance. But for comparing the stated approaches, I use only the
throughput tests from TPC-H Benchmark (TPC-H), using the inbuilt data gener-
ator (dbgen) for data sets and (qgen) for query generation. To ensure a fair com-
parison, the database size and data volume per tenant remain constant across all
approaches.

The guidelines provided by this benchmark are used for the performance
test.

5.4 Logical database desing

Next I will explain the database Entities, relationships, and characteristics,
starting by the table creation process. To create the eight tables required for this

41

Chapter 5

benchmark I used the provided structure for each table from the TPC-H docu-
mentation [39]. It contains the columns, primary and foreign key definitions for
each table.

The Wholesale scenario contains eight tables organized in a snowflake schema.
The fact table is called LINEITEM, and the dimensions are PART, PARTSUPP, OR-
DERS, CUSTOMER, NATION, REGION, and SUPPLIER. This schema is a multi-
dimensional data model that extends the star schema model where dimension
tables are normalized. Meaning that data in these tables are broken down into
additional tables to eliminate redundancy and dependency, leading to more ta-
bles and more complexity, raising the applicability of the benchmark results.

With this structure in mind, the TPC-H benchmark integration into the snowflake
schema is as follows:

• The fact Table is the LINEITEM table that contains keys to the dimension
tables.

• Dimension tables linked to the LINEITEM table are:

– ORDERS: Connected to the LINEITEM table via the orderkey.

– CUSTOMER: Connected to the ORDERS table via the custkey.

– SUPPLIER: Connected to the LINEITEM table via the suppkey.

– PART: Connected to the LINEITEM table via the partkey.

– PARTSUPP: This is a bridge table between the PART and SUPPLIER
tables.

• The NATION and REGION tables connect to the CUSTOMER and SUP-
PLIER tables.

Each of these tables comprises multiple attributes whose details, with respect
to their purpose in the TPC-H context, are as follows:

1. LINEITEM:
l_quantity: The quantity of the product ordered.
l_nextendedprice: The extended price of the product ordered (quantity times
base price).
l_ndiscount: The discount on the item ordered.
l_ntax: The tax on the item ordered.
l_nreturnflag: Flag to indicate if the item was returned.
l_nlinestatus: The status of the item ordered.
l_nshipdate: The shipping date for the item.
l_ncommitdate: The date the order was committed.
l_nreceiptdate: The date the item was received.
l_nshipinstruct: The shipping instructions.
l_nshipmode: The shipping mode.
l_ncomment: The comment about the line item.

42

Multi-tenancy analysis

2. ORDERS:
o_norderpriority: The priority of the order.
o_nclerk: The clerk who processed the order.
o_nshippriority: The shipping priority.
o_ncomment: The comment about the order.
o_norderdate: The date of the order.
o_norderstatus: The status of the order.

3. CUSTOMER:
c_nname: The customer’s name.
c_naddress: The customer’s address.
c_nnationkey: The key to reference the nation the customer belongs to.
c_nphone: The customer’s phone number.
c_nacctbal: The customer’s account balance.
c_nmktsegment: The market segment the customer belongs to.
c_ncomment: The comment about the customer.

4. SUPPLIER:
s_nname: The supplier’s name.
s_naddress: The supplier’s address.
s_nnationkey: The key to reference the nation the supplier belongs to.
s_nphone: The supplier’s phone number.
s_nacctbal: The supplier’s account balance.
s_ncomment: The comment about the supplier.

5. PART:
p_nname: The part’s name.
p_nmfgr: The manufacturer of the part.
p_nbrand: The brand of the part.
p_ntype: The type of the part.
p_nsize: The size of the part.
p_ncontainer: The container in which the part is shipped.
p_nretailprice: The retail price of the part.
p_ncomment: The comment about the part.

6. PARTSUPP:
ps_nsupplycost: The cost of the supply.
ps_navailqty: The quantity of parts available.
ps_ncomment: The comment about the part supply.

7. NATION:
n_nname: The name of the nation.
n_ncomment: The comment about the nation.

43

Chapter 5

8. REGION:
r_nname: The name of the region.
r_ncomment: The comment about the region.

All comment columns in these tables serve as random text strings to add
realism to the database size and to test text manipulation performance. Figure
5.7 below shows the conceptual diagram of the first approach.

Figure 5.7: Approach 1 Conceptual Diagram

The relationships between tables is the following:

• REGION and NATION tables, one region can have multiple nations, and
many nations belong to one region. For instance, the ’Europe’ region can
include nations such as France, Germany, Italy, etc;

• SUPPLIER and NATION tables, one supplier belongs to one nation, and a
nation can have many suppliers;

• NATION and CUSTOMER tables, one nation can have multiple customers,
but a customer belogs to one nation only. For instance, France can have
many customers, but a customer can only live in one nation.

• ORDERS and CUSTOMER tables, each order is associated with one cus-
tomer, and one customer can have multiple orders. For example, consider

44

Multi-tenancy analysis

three orders (Order1, Order2, Order3) all three orders could be associated
with one customer (CustomerA), but no order can be associated with mul-
tiple customers.

• SUPPLIER and PARTSUPP tables, one supplier can supply many parts, but
a part can only be supplied by one supplier. Consider the situation where a
supplier, say "ACME Supplies", provides various parts (e.g., widgets, gad-
gets, sprockets). Each of these parts will have an entry in the PARTSUPP
table that refers back to "ACME Supplies" in the SUPPLIER table.

• PART and PARTSUPP tables, one part can be supplied by multiple suppli-
ers, hence there can be multiple entries in the PARTSUPP table for one part,
on the other hand, many entries in the PARTSUPP table can refer to the
same part in the PART table.

For example, consider a part with partkey ’P1’. This part might be
supplied by multiple suppliers (Supplier S1, Supplier S2, Supplier S3). So,
in the PARTSUPP table, there will be multiple entries like: partkey ’P1’,
suppkey ’S1’; partkey ’P1’, suppkey ’S2’; partkey ’P1’, suppkey ’S3’.

In this case, there is one part ’P1’ that corresponds to many entries in
the PARTSUPP table, which illustrates the One-to-Many relationship from
PART to PARTSUPP. Conversely, multiple entries in the PARTSUPP table
refer to the same part in the PART table, which illustrates the Many-to-One
relationship from PARTSUPP to PART.

• PARTSUPP and LINEITEM tables, one record in the PARTSUPP table can
be associated with multiple records in the LINEITEM table, and each record
in the LINEITEM table can only be associated with one record in the PART-
SUPP table.

For example, a specific combination of a part and supplier (identified
by a unique partkey and suppkey in PARTSUPP table) may supply several
line items (LINEITEM table) in multiple orders.

Note that there isn’t a direct foreign key relationship from the LINEITEM
to the PARTSUPP in the TPC-H schema. The relationship is established
through the combination of the partkey and suppkey in both the LINEITEM
and PARTSUPP tables.

• ORDERS and LINEITEM tables, one order can have multiple line items as-
sociated with it, and each line item can only belong to one order.

For example, if an order is placed for multiple different items (e.g., a
book, a pen, and a notepad), each of these items would represent a different
line item in that order, as in the other way, each of these line items (the book,
the pen, and the notepad) would all link back to the same single order.

From the previous conceptual diagram the resulting physical diagram is pre-
sented in figure B.1.

The figures 5.8 and 5.9 show the corresponding conceptual diagram for ap-
proaches 2 and 3 respectively.

45

Chapter 5

Figure 5.8: Approach 2 Conceptual Diagram

This wholesale model is applicable to approach 1, but for approaches 2 and
3, the model had to change to allow multi-tenant support. This change added
the column "tenant_id" to the tables that directly relate to business operations
like ORDERS, LINEITEM, PARTSUPP, CUSTOMER, SUPPLIER, and PART ta-
bles. These tables represent entities that differ from tenant to tenant in most sce-
narios.

The NATION and REGION tables contain geographical data common across
multiple tenants and therefore do not include this column. For example, America
or Europe are usually the same for all tenants, so it does not make sense to have
a tenant_id attached to these entries.

After adding the column, two extra tables, TENANTS and GROUPS, were
added. Table TENANTS was added in approaches 2 and 3, and table GROUPS
only in approach 3. In the latter, there is a many-to-many relationship between ta-
bles TENANTS and GROUPS, where a single tenant can belong to many groups,
and each group must have at least one or more tenants, as described in section
5.1.

46

Multi-tenancy analysis

Figure 5.9: Approach 3 Conceptual Diagram

5.5 Query definitions

The TPC-H Benchmark provides a set of twenty-two queries used for the
throughput tests in all three approaches. To avoid database caching during the
tests, query variants generated with the qgen file introduce diversity into the
query set. The qgen file uses randomly selected values from a uniform distri-
bution, over the range of list of values specified in the dist.dss file, to generate
variants of the twenty-two queries. Both qgen and dist.dss files are provided in
the TPC-H Benchmark official website [38].

The list below shows a brief description of all the queries of the query set,
but the full set is presented in detail in appendix C, and the complete query set is
available in my public GitHub repository [37].

• Q1 - Pricing Summary Report Query reports the amount of business that
was billed, shipped, and returned.

• Q2 - Minimum Cost Supplier Query finds which supplier should be selected
to place an order for a given part in a given region.

• Q3 - Shipping Priority Query retrieves the 10 unshipped orders with the
highest value.

47

Chapter 5

• Q4 - Order Priority Checking Query determines how well the order priority
system is working and gives an assessment of customer satisfaction.

• Q5 - Local Supplier Volume Query lists the revenue volume done through
local suppliers.

• Q6 - Forecasting Revenue Change Query quantifies the amount of revenue
increase that would have resulted from eliminating certain company-wide
discounts in a given percentage range in a given year. Asking this type of
"what if" query can be used to look for ways to increase revenues.

• Q7 - Volume Shipping Query determines the value of goods shipped be-
tween certain nations to help in the re-negotiation of shipping contracts.

• Q8 - National Market Share Query determines how the market share of a
given nation within a given region has changed over two years for a given
part type.

• Q9 - Product Type Profit Measure Query determines how much profit is
made on a given line of parts, broken out by supplier nation and year.

• Q10 - Returned Item Reporting Query identifies customers who might be
having problems with the parts that are shipped to them.

• Q11 - Important Stock Identification Query finds the most important subset
of suppliers’ stock in a given nation.

• Q12 - Shipping Modes and Order Priority Query determines whether se-
lecting less expensive modes of shipping is negatively affecting the critical
priority orders by causing more parts to be received by customers after the
committed date.

• Q13 - Customer Distribution Query seeks relationships between customers
and the size of their orders.

• Q14 - Promotion Effect Query monitors the market response to a promotion
such as TV advertisements or a special campaign.

• Q15 - Top Supplier Query determines the top supplier so it can be rewarded,
given more business, or identified for special recognition.

• Q16 - Parts/Supplier Relationship Query finds out how many suppliers can
supply parts with given attributes. It might be used, for example, to deter-
mine whether there is sufficient number of suppliers for heavily ordered
parts.

• Q17 - Small-Quantity-Order Revenue Query determines how much average
yearly revenue would be lost if orders were no longer filled for small quan-
tities of certain parts. This may reduce overhead expenses by concentrating
sales on larger shipments.

• Q18 - Large Volume Customer Query ranks customers based on their hav-
ing placed a large quantity order. Large quantity orders are defined as those
orders whose total quantity is above a certain level.

48

Multi-tenancy analysis

• Q19 - Discounted Revenue Query reports the gross discounted revenue at-
tributed to the sale of selected parts handled in a particular manner. This
query is an example of code as might be produced programmatically by a
data mining tool.

• Q20 - Potential Part Promotion Query identifies suppliers in a particular
nation having selected parts that may be candidates for a promotional offer.

• Q21 - Suppliers Who Kept Orders Waiting Query identifies certain suppliers
who were not able to ship required parts in a timely manner.

• Q22 - Global Sales Opportunity Query identifies geographies where there
are customers who may be likely to make a purchase.

5.6 Performance test

The performance test executed in this analysis follows the guidelines pro-
posed by the TPC-H benchmark. And according to the guidelines, the perfor-
mance test is composed of two runs, where a run consists of one execution of the
Power test, followed by one execution of the Throughput test.

The power test is intended to measure the raw query execution capabili-
ties of the system when interacting with a single active user to understand how
efficiently a single query can be processed when no other user is querying the
database. The throughput test is intended to measure the capacity of the system
to process the maximum number of queries in the shortest possible time.

A run is composed of one or more queries from the introduced default and
variant queries. The sequential execution of a given set of queries is called a query
set, and the sequential execution of query sets is called a query stream. A session
is defined as the process context capable of supporting the execution of a query
stream.

Moreover, there is also the use of refresh functions which are operations that
simulate updates to the database, one for inserting new data entries, and another
to delete data entries. The purpose is to simulate a workload that includes both
querying and updating the database.

To automate the bench marking process by submitting queries to the database,
recording the time taken for each query to complete, and measuring performance
metrics the JMeter application is used.

At this stage it is mandatory to mention that in the tests executed query num-
ber 17 and query number 20 were left out of the final query sets, because of the
extremely long execution times and the expensive hardware needed to execute
them, resulting in high costs of service usage in the Amazon cloud platform,
which conflicted with the budget allowed by the University. This decision was
taken after the first round of tests on approach 1. The power test was executed
in about 4 hours which was relatively fine, however, the four throughput tests
started and did not complete, because the execution time was over 12 hours and

49

Chapter 5

none of the tests was close to the halfway point, even after lowering the number
of threads from 25 to 10.

Changing the number of queries does not affect the validity of the final re-
sults, as these queries are intended to represent real queries executed in systems
of several different business scenarios, taking two queries out will simply reduce
the applicability of the results, which seemed the best solution for this problem,
taking into account the remaining time and budget available. This restriction im-
plies editing the formulas used to calculate the performance and the next section
describes how.

5.7 Metrics

To evaluate the performance the composite Query-per-Hour metric (QphH@Size)
from TPC-H is used. To calculate this metric, two parameters are needed, one
comes from the power test and the other from the throughput test. And to calcu-
late these parameters the time measurements in milliseconds taken with JMeter
during the tests are required, which means that the time is also a metric.

The first step is to calculate the TPC-H power parameter with a scale fac-
tor corresponding to the database size in GB, and the individual query execution
times of the 22 queries logged by JMeter. Recall that these 22 queries are the 20
queries from the default set, excluding queries 17 and 20 due to the aforemen-
tioned, plus two queries representing the refresh functions. The formula used to
calculate comes from the TPC-H documentation and the changes made to it are
in the value of i which goes from 1 to 20, and the square root that changes to 22.

Power@Size =
3600 · SF

22
√

∏20
i=1 QI(i, 0) · ∏2

j=1 RI(j, 0)
(5.1)

Where:

• QI(i,0) is the timing interval, in seconds, of query Qi within the single query
stream of the power test.

• RI(j,0) is the timing interval, in seconds, of refresh function RFj within the
single query stream of the power test.

• Size is the database size chosen for the measurement and SF the correspond-
ing scale factor.

With this, it is possible to compare the three approaches in terms of the raw
performance of the database, or in other words how quickly it can execute a set
of queries from a single session.

The other parameter needed is the TPC-H throughput numerical quantity
which measures the total amount of work performed during the throughput test.

50

Multi-tenancy analysis

It also requires the time measurements taken in milliseconds by JMeter during
the throughput test, and it is computed as the number of queries executed per
hour during the throughput test (Qph) multiplied by the scale factor (SF) used
during the test. It is reported as "Qth = SF * Qph" and its unit is queries. To
calculate this the following formula is used, and it was also changed, where the
scale factor (SF) multiplies by 20 instead of 22.

Throughput@Size =
S · 20 · 3600

Ts
· SF (5.2)

Where:

• Ts e the measurement interval, in seconds, and it starts either when the first
character of the executable query text of the first query of the first query
stream is submitted to the database by the driver, and it ends when the
last character of output data from the last query of the last query stream is
received by the driver from the database.

• S is the number of query streams used in the throughput test, in this case 4.

• SF is the scale factor, which is 30.

With these values, it is possible to calculate the TPC-H composite Query-Per-
Hour performance metric, which is the primary metric of the TPC-H benchmark
and represents a balance between the raw querying power of the database (Power
Test) and its ability to handle multiple concurrent query streams (Throughput
Test). To calculate it the following formula is used:

QphH@Size =
√

Power@Size · Throughput@Size (5.3)

51

Chapter 6

Analysis Experimental Setup

In this section I present in detail the the steps taken in the correct order, to
perform this analysis, such steps are the database creation, database loading, data
set generation, query set generation, and also the test plans in JMeter. The objec-
tive with this is to facilitate the implementation of the approaches considered, but
also the replication of the analysis for further investigation.

6.1 Database creation

Starting with step one, database creation, for the databases I used the Ama-
zon Relational Database Service (RDS) with a PostgreSQL instance, and for the
client side I used Amazon Elastic Compute Cloud (EC2) machines. The database
creation process itself, for all three approaches, was executed locally on my per-
sonal machine using a docker container with the latest version of Postgres, in-
stead of directly in the RDS instances. The reason was to avoid possible loss of
data due to internet connection failures, and also avoid unnecessary service costs.
After the creation phase, came the upload phase, where I had to import the re-
sulting databases of each approach to the RDS instances. For this, snapshots of
such versions were taken from the docker console. See appendix D to view the
commands used.

Here I want to mention that initially, the size of the database and the number
of tenants generated were 100GB and 50 tenants respectively, however, after try-
ing to execute the first test from the 18 prepared, (3 Power tests and 15 Through-
put tests divided by 3 approaches), it was clear that such a large amount of data
and number of tenants would result in very high costs in cloud services, and it
would take considerable time to complete, as I realized after unfinished tests that
took over 12 hours until crashing. Therefore the size of the database was reduced
to 30GB and the number of tenants to 25. The database size was determined by
the scale factor values determined by the TPC-H Benchmark guidelines, see ap-
pendix F.

To initialize the required database structure I used the script
create_and_load_DB.sql that builds the 25 tenant schemas, with the eight tables

53

Chapter 6

of the wholesale model. The SQL commands required for the tables and key
constraints were obtained from the TPC-H Benchmark documentation [39], see
appendix A to view the commands.

After creating the tables, the script also loads the data generated for the first
approach. And due to limited disk space, the data was stored on an external
hard drive, to then copy it into the database using the necessary SQL code in
the script mentioned. Details about the data generation process come in the next
subsection. Both the docker-compose.yaml file and the create_and_load_DB.sql script
are available in my public GitHub repository [37].

6.2 Data Generation

In this section I explain how the 30GB data set used in the tests was obtained.
The generation process consisted of using two auxiliary scripts built to manage
and execute the provided dbgen and dist.dss files from the TPC-H Benchmark. The
first script is called tenant_folder_creator.py, and generates 25 folders copying the
files into each folder. The second script is called table_data_gen.sh, and it iterates
over each folder executing the dbgen file inside it.

During the execution of dbgen a random data size between 512MB and 2048MB
is selected, using a uniform distribution, to determine the amount of data to gen-
erate for each tenant. With each iteration, the size of data generated for the cur-
rent tenant is subtracted from the total of 30720MB. All the scripts used for this
step are available in my public Github repository [37].

6.3 Query generation

Up next is the query generation step, where the 22 default queries provided
in the TPC-H Benchmark documentation [39] were used. However, these queries
are not completed in the form available in the documentation, they contain tem-
plate fields where the values generated by the provided qgen file, are inserted. To
produce the query sets for the tests I used the script query_set_generator.sh, which
iterates through the 22 default queries, using the iterator value as seed to gener-
ate random values for the template fields of each query, and creating 35 variants
of each query. From this process, 35 different query sets were generated, one
for each tenant and one for each group of tenants, for a total of 770 queries. After
this, the sets still required some modifications to allow filtering data by tenant_id,
such modifications are:

• In approach 1, the tenant schema has to be specified for a query to execute
correctly, this means editing the from clause of the queries like this: " ... from
tenant_19.<table_name> ... ".

• In approaches 2 and 3 to allow filtering queries by tenant_id another state-
ment was added to the WHERE clause like this: " ... WHERE X_tenant_id =

54

Analysis Experimental Setup

<id> AND ... " where "X" represents the table initial, "l" for LINEITEM, "o"
for ORDERS, "s" for SUPPLIER, "ps" for PARTSUPP, "p" for PART and "c"
for CUSTOMER.

As for the refresh functions, two were generated, one for inserting a new
entry in table REGION, and another to delete that entry. These functions were
tested in the power test like the other queries, but in the throughput test, they
were only used in the first query set corresponding to tenant 1. This was to avoid
duplicate key constraint problems if multiple simulated users were to try and
execute these queries because they are not tenant-specific. All the scripts used for
this step are available in my public Github repository [37].

6.4 Data Loading

This next step is where I explain how the data set was loaded and then con-
verted to be reused in approaches 2 and 3, to maintain data consistency. The gen-
erated data set for approach 1 was loaded during the database creation process.
The create_and_load_DB.sql script iterates over the 25 tenant folders containing the
generated table data, and in each iteration creates the respective schema and the
tables, and proceeds to copy the data from the generated files into the database
inside the docker container.

For approaches 2 and 3 this process was different because it consisted of
adapting the data set used in approach 1. For this, I used the script called cre-
ate_sql_for_approach_2.sql, which produces an SQL script called
adapt_DB_for_approach_2.sql containing all the commands needed to migrate each
tenant data from the corresponding tenant schema to the public database schema,
and to create the table TENANTS.

The Python script can be explained with the following steps:

1. Creates a line_counts_lineitem dictionary where the keys are the tenants and
the values the total number of rows in the corresponding LINEITEM table,
obtained with the tbl files generated by dbgen. Example {tenant_1:3000000,
tenant_2:7281267, ..., tenant_50:20938475}.

2. Initializes an increment_var with the row count of tenant_1. This variable is
used to increment the primary and foreign keys of all tables.

3. Starts writing the adapt_DB_for_approach_2.sql script by adding the column
tenant_id to tenant_1 populating it with the value 1.

4. Disables key constraints of tenant_1.

5. Iterates over the line_counts_lineitem dictionary writing for each tenant the
commands to disable key constraints, incrementing primary and foreign

55

Chapter 6

key values with the increment_var, adding the column tenant_id and popu-
lating it with the respective tenant id. After each iteration adds to the in-
crement_var the row count of the LINEITEM table of the current tenant plus
100000.

This 100000 is used to account for the fact that for some tables like
LINEITEM, dbgen does not linearly generate primary key values, there are
"jumps" in the generation process, like so: 1, 2, 3, 4, 7, 8, 13, 20, ..., adding
this extra value makes sure there are no overlaps in primary or foreign keys.

6. Writes the commands to create the eight tables of the wholesale model and
the TENANTS table in the public schema.

7. Creates five dictionaries like the line_counts_lineitem dictionary, one for each
of the following tables PART, SUPPLIER, CUSTOMER, PARTSUPP, and OR-
DERS. Tables REGION and NATION do not require this because they only
have 5 and 25 rows respectively in every tenant.

8. Iterates over each dictionary, writing the commands to copy and then delete
the rows of every tenant schema into the public schema.

9. Writes the commands to drop all the tenant schemas.

10. Writes the commands to create the table TENANTS with the columns ten-
ant_id and Name, where the first is the primary key.

For approach number 3, I used the script called create_sql_for_approach_3.sql,
that builds the SQL script called adapt_DB_for_approach_3.sql, and this python
script can be described with the following steps:

1. Writes the commands to create the table GROUPS with the columns g_group_id
and g_Name, where the first is the primary key.

2. Writes the commands to create the tenants_groups table to establish a many-
to-many relationship between the tables TENANTS and GROUPS.

3. Creates a tenant_groups dictionary where the key is the group_id and the
values are the list of tenants in that group.

4. Creates 10 groups by looping 10 times, while randomly selecting several
tenants between 2 and 10, and randomly selecting tenants to insert in each
group.

5. Writes the commands to populate the tables GROUPS and tenants_groups.

6. Creates the lines_to_update_for_each_group dictionary, where the keys are the
group names and the values are the number of lines to update in the LINEITEM
table.

7. Loops through the groups selecting a random number of lines between 1
line and 3% of the total lines in the LINEITEM table to update.

56

Analysis Experimental Setup

8. For each group, for each of the tables: ORDERS, PARTSUPP, SUPPLIER,
CUSTOMER, and PART, selects 3% of the total lines in the respective table
to update.

9. For each group divides the number of lines to update in each table by the
total tenants included in the group.

10. Writes the commands to update the tables in the order: LINEITEM - OR-
DERS - PARTSUPP - CUSTOMER - PART - SUPPLIER, to avoid data in-
consistencies, the updates are only made to the rows that are referenced by
the foreign keys, and that have the tenant_id from the current tenant in the
tenant_id column.

This method of selecting group data was used because initially just 3%
of the LINEITEM rows were allocated to each group, and the rows updated
from the other tables connected to these LINEITEM updated rows, had no
limit. This resulted in the majority of lines in the other tables to be updated,
causing almost no tenant-specific data to be retained. With 3% of the total
lines of each table updated for each group, a better balance between tenant-
specific data and tenant-group data is achieved allowing me to analyse the
impact of grouping tenants.

These scripts are all available in my public GitHub repository [37].

6.5 Performance test specifications

In this section I explain in detail the JMeter plans produced for the tests. As
mentioned before, the client side consisted of EC2 machines, where JMeter was
installed and from where the test plans were executed. A total of 5 machines were
used all with the t3.micro CPU with 2 cores and 2 GB of RAM, and to connect to
these instances I used SHH in VSCode. The full specification for these machines
is available here [2]. For the database instances, I used 5 RDS instances with a
t3.2xlarge CPU with 8 cores and 32GB of RAM, each instance contained the latest
PostgreSQL image. The full specification and pricing are available here [3]. Next,
I explain the test plans created in JMeter, step by step.

The power test corresponds to a single query stream with 22 queries, where
20 are query variants generated with qgen and the other two are refresh functions.
Here, tenant number 19 was selected to be queried in all three approaches because
it is the tenant with the most amount of data, and using the same tenant ensures
test consistency. The timing intervals for each individual query are collected by
JMeter.

1. The power test follows these steps below:

A. Create a Thread Group with 1 thread to represent a single user.

B. Set the thread group loop count to 1, so that the single user executes
the 22 queries only once.

57

Chapter 6

C. Add a JDBC request sampler for each query.

D. Add a JDBC connection configuration sampler to set the connection to
the RDS database instance, providing the Database URL, server IP, port
number, DB name, username, password, and the JDBC driver class
name.

E. Add two listeners inside the thread group, a View Results Tree and a
Summary Report to view the results and collect metrics.

The throughput test must be driven by queries submitted by a driver through
sessions. The number of sessions depends on the scale factor of the database. The
database total size is 30GB, therefore the scale factor is 30, which means that at
least 4 sessions must be executed according to the benchmark guidelines. See
appendix F.

Sessions serve to mimic the behavior of one or multiple users interacting
with the system in a way that represents a specific usage scenario. With 25 ten-
ants considered in the database, initially, the intent was to use 25 threads in each
scenario, simulating 25 separate users querying each tenant’s data. However,
due to cost and time restrictions, the hardware used in the database instances
did not support that amount of queries at the same time leading to only mem-
ory swaps taking place during execution, resulting in unending and expensive
sessions. Therefore the number of threads was reduced to 10.

The scenarios are:

2. Steady Request Rate: This scenario represents a typical steady state of sys-
tem usage, where tenants send queries at regular intervals. This is the most
basic case of a multi-tenant system during regular business hours. To set it
up I did the following steps:

A. Create 25 Thread Groups with 1 thread each (representing 25 users)
and disable thread groups from 11 to 25.

B. Add a constant timer to the test plan with a two-second delay between
each request to ensure that each thread sends requests every two sec-
onds.

C. Set the thread groups loop count to 1.

D. Add a JDBC connection configuration sampler inside the test plan to
set the connection to RDS database instance, providing the Database
URL, server IP, port number, DB name, username, password, and the
JDBC driver class name.

E. Inside each thread group, add a Random Order Controller to random-
ize the order in which threads send requests with queries.

F. Inside the Random Order Controller add one JDBC request sampler for
each query variant of the respective query set, from the 25 query sets
generated.

58

Analysis Experimental Setup

G. Add two listeners inside the test plan, a View Results Tree, and a Sum-
mary Report to view the results and collect metrics, specifying an out-
put file to print the results.

3. Gradual Increase: This scenario models a situation where the tenant base
within the system expands over time, leading to a gradual increase in the
number of queries, with the threads representing tenants sending requests
as soon as they are initiated.

A. Create 25 Thread Groups with 1 thread each (representing 25 users)
and disable thread groups from 2 to 16.

B. Repeat the steps C. to G. from the scenario 2.

C. In each thread group specify the start-up delay, dividing 300 seconds
by 25 threads, which means that each thread starts within 12 seconds
from the previous thread.

4. Spike Traffic: In this scenario, the system experiences a sudden influx of
queries.

A. Create 25 Thread Groups with 1 thread each (representing 25 users)
and disable thread groups from 2 to 8 and from 18 to 25.

B. Repeat the steps C. to G. from the scenario 2.

5. Random Traffic: This scenario represents a situation where the system re-
ceives a random number of queries at random times.

A. Create 25 Thread Groups with 1 thread each (representing 25 users)
and disable thread groups from 11 to 25.

B. Repeat the steps C. to G. from the scenario 2.

C. Add a Gaussian Random Timer inside the test plan to introduce a ran-
dom delay between requests. Set the constant delay offset to 300 mil-
liseconds, and the deviation to 150 milliseconds. This introduces de-
lays to each user request that center around 300 milliseconds but will
vary within the range of approximately 150 to 450 milliseconds of ran-
dom delay with each user request. Mimicking a more realistic scenario
of unevenly distributed requests.

In these tests thread 1 queries tenant 1 in the database, thread 2 queries tenant
2, and so on, this is why it is specified which threads are disabled in each test
scenario. As mentioned before in this section, the number of threads active in
each test was reduced from 25 to 10, and different sets of threads were selected in
each test scenario to allow querying every tenant in the database.

For approach 3, the thread selection was done differently. Here the same
thread-tenant relation exists for groups, in the sense that thread G1 queries group
1, and so on. With this in mind, the selected threads were, in scenario 1 threads

59

Chapter 6

1 to 5 for groups and threads 1 to 5 for tenants. In scenario 2, threads 1 to 5 for
groups and threads 1, 22, 23, 24, and 25 for tenants. In scenario 3, threads 6 to
10 for groups and threads 1, 14, 15, 16, and 17 for tenants. Finally, in scenario 4
threads 6 to 10 for groups and for tenants 1 to 5. The test plans created to execute
in JMeter are accessible in my public GitHub repository [37].

60

Chapter 7

Experimental Results

In this chapter I present the graphical results of the tests, the calculations
from the metrics used for the throughput performance, along with some conclu-
sions and observations.

7.1 Graphical Overview of Test Results

This section shows the graphical test session results. The results of the re-
fresh functions are displayed in separate graphics in each session, for better vi-
sualization of the throughput results. In the Power Test graphics and the refresh
function graphics, the queries correspond to the execution of a single thread, but
in the throughput graphics, the queries represent the average result from the ex-
ecution of the 10 threads considered in each test session. The average is used to
simplify the graphics and make them easier to analyze.

Figure 7.1: Power Test results for refresh functions.

61

Chapter 7

Figure 7.2: Power Test results for queries Q1 to Q22 excluding Q17 and Q20.

62

Experimental Results

Figure 7.3: Steady Request Rate test results for queries Q1 to Q22 excluding Q17
and Q20.

Figure 7.4: Steady Request Rate test results for refresh functions.

63

Chapter 7

Figure 7.5: Gradual Increase test results for queries Q1 to Q22 excluding Q17 and
Q20.

Figure 7.6: Gradual Increase test results for refresh functions.

64

Experimental Results

Figure 7.7: Spike Traffic test results for queries Q1 to Q22 excluding Q17 and Q20.

Figure 7.8: Spike Traffic test results for refresh functions.

65

Chapter 7

Figure 7.9: Random Traffic test results for queries Q1 to Q22 excluding Q17 and
Q20.

Figure 7.10: Random Traffic test results for refresh functions.

66

Experimental Results

7.2 Performance analysis

In this section I analyze and compare the aspect of performance. The graph-
ics show a better throughput performance from approach 1 in both the Power
test and all Throughput test sessions and revealed that there is a very significant
performance difference between approach 1 and the other two.

For example, analyzing Q4, which is the query with the biggest performance
difference in 3 of the 5 test results, if we divide the throughput result of approach
1 by the result of approach 3, for all 5 tests, and then calculate the average of
those divisions, the result is 19.48 times better in approach 1 than it is in the third.
Redoing this to compare approach 1 with approach 2, the first has 22.78 times
better throughput, and comparing approach 2 with approach 3 in the same way,
the latter has 1.272 times better throughput performance. This suggests that the
difference in performance is directly related to the size of the data queried.

Furthermore, the graphics also revealed that approach 3 almost always has
better performance than the second approach, which tells that grouping tenants
improves performance, by reducing the amount of tenant-specific data to search
through during query processing. This means that the difference in performance
will vary according to the amount of grouped data, where the throughput perfor-
mance will always be better in approach 3 until the percentage of total grouped
data reaches the point of diminishing returns, where the queries have to search
through similar amounts of record as in approach 2.

However, there are some cases where this is not true, namely Q8, Q19, and
Q21 from the Power test, Q12 and Q4 from the Throughput test 1, Q13 from
the Throughput test 2, and Q4 from the Throughput test 4, where throughput
is the same or slightly better in the second approach. This is most likely due to
the amount of tenant-specific data queried in these specific queries, which corre-
sponds to a tenant with more data.

Analyzing the refresh function graphics, the results verify the previous find-
ings in terms of performance difference. However, here this difference is not so
drastic between approaches 1 and 3. Doing the same calculation as before, for
RF1, approach 1 is only 1.6 times better than approach 3 and 4.7 times better than
approach 2, in the throughput test results. This is probably because these are re-
sults from a single thread execution only. The individual query results for every
test can be viewed, by running the index.html file generated by JMeter, inside the
results folder in my public Github repository [37].

Now I move on to present the throughput results calculated with the TPC-H
Benchmark metrics by using the formulas presented in section 5.7. For the Power
test formula, the sum of the execution times of every query is considered, but in
the Throughput test results, these times from each approach, correspond to the
sum of the 4 test sessions performed.

In the Throughput formula, the response times of the refresh functions are
excluded because these were only executed by one thread in the four throughput
test sessions. This makes the refresh functions not suitable to use in the calcula-

67

Chapter 7

tions, and because TPC-H benchmark does not make refresh functions manda-
tory, I decided to not include them in these calculations. The result from the
composite query metric is given in queries per hour (Q/H).

• Approach 1

Power@30 =
3600 · 30

22
√

29.329 · 10
= 83420.7 Q/H (7.1)

Throughput@30 =
4 · 20 · 3600

2138.564
· 30 = 4040 Q/H (7.2)

QphH@30 =
√

83420.7 · 4040 = 18358.1 Q/H (7.3)

• Approach 2

Power Test =
3600 · 30

22
√

1326.758 · 13
= 69317.8 Q/H (7.4)

Throughput@30 =
4 · 20 · 3600
526965.277

· 30 = 16.3 Q/H (7.5)

QphH@30 =
√

69317.8 · 16.3 = 1063 Q/H (7.6)

• Approach 3

Power Test =
3600 · 30

22
√

1876.334 · 12
= 68483 Q/H (7.7)

Throughput@30 =
4 · 20 · 3600
39186.746

· 30 = 220.4 Q/H (7.8)

QphH@30 =
√

68483 · 220.4 = 3885.1 Q/H (7.9)

Analyzing the composite query metric results, the throughput of approach 1
is 17.27 times better than approach 2, it is 4.73 times better than approach 3, and
approach 3 is 3.65 times better than approach 2. This again reinforces the idea that
the performance difference is directly related to the table sizes and the amount of
data queried. In approach 1 these tables are much smaller than in the other two
as contain millions of records instead of hundreds of millions.

68

Experimental Results

In the case of approach 3, the tables have the same size as in approach 2, but
the amount of data queried is smaller, because by grouping data there are fewer
rows to search through when querying group-specific data, or tenant-specific
data. It’s worth emphasizing that while the composite query metric provides an
insightful snapshot of system performance, the overall assessment should take
into account other dimensions such as the complexity and scalability of these so-
lutions, which I analyze next.

7.3 Scalability and complexity analysis

In terms of scalability these approaches scale well with using more RAM in
the database machines. I concluded this by executing an incremental testing pro-
cess where I started using the cheapest hardware available in the RDS instances,
which was a 2-core CPU with 1 GB of RAM, it took over 12 hours without be-
ing able to reach the end of the tests, and from there I went through the process
of scaling the RAM and number of cores used but always with the same result.
The tests would slow down after about 6 hours where memory swap operations
would take the majority of the execution. Only when I used an 8-core CPU with
32 GB of RAM was I able to get results for the tests for approaches 2 and 3.

In terms of complexity of implementation, it was expected that approach 1
would be the most complex to handle, however, I encountered that all three ap-
proaches were of similar complexity to implement and I will explain by referring
to the several steps I took. Starting with the database generation process, for ap-
proach 1 I had to create several schemas for all the tenants, for approach 3 I had to
generate one schema and the two extra tables to be able to group tenants, and for
approach 2 I had only to generate one schema and an extra table, but overall all of
these processes were handled with auxiliary scripts that were not to complicated
to create.

The data generation process was simple because of the use of the provided
dbgen file. I only generated the data set once and reused it in all three approaches.
Moreover, the query generation process was similar for all approaches, only re-
quiring similar changes to all query sets, that were handled with simple aux-
iliary scripts. Lastly, the data loading process was more complex to handle in
approaches 2 and 3 than it was in approach 1. Because of the need to reuse the
generated data for the first approach, adapting such data without generating pri-
mary and foreign key conflicts took more time and thought.

These three phases are crucial steps to take into consideration during the
development process of the porting tool, be it in the case where it is required that
such tool is able to covert some or all existing data from the database of the system
being ported. But also in the case where just new data in the database is required
to be multi-tenant, the different levels of isolation implemented and tested, give
a starting point and guidelines for the porting tool development process.

69

Chapter 8

Planning

This Chapter is used to present the planned versus real internship schedules,
and the risks associated with the project. For better visualization of the schedule
Gantt charts are used.

8.1 First semester

The schedule for this semester was divided into four separate timelines, the
first was dedicated to defining the application to port, which was defined by the
Altice Labs (ALB) collaborators, the second to do research on the state of the art
and technologies available to do the porting, the third was aimed at defining the
requirements and architecture, and the last timeline would be dedicated to write
the intermediate report. Figure 2.1 shows the Gantt chart for this semester.

Figure 8.1: Schedule of the first Semester

8.2 Second semester Planned vs Real schedule

The second semester contains the implementation phase, which is divided
in five stages. The first is for setting up and installing the application, the second
is aimed at porting the application and testing, the third is define the analysis
in detail, the fourth stage is dedicated to testing and analyzing the results, and
the final stage is dedicated to writing the dissertation. A Gantt chart with the
schedule is presented in Figure 2.2.

71

Chapter 8

The figure 8.2 shows the original plan and figure 8.3 shows the actual sched-
ule executed in the second semester.

Figure 8.2: Planned schedule of the second Semester

Figure 8.3: Real schedule of the second Semester

The schedule for the second semester ended up being longer than expected
due to several factors. First, in the process of porting Alexa, there were delays in
access to the system, which meant I was only able to set it up and understand fully
how it works, later on. Also during this phase, I had to redo the same task several
times, because there were discrepancies between my implementations and the
requirements that the ALB collaborators wanted. This made the Alexa porting
process more time-consuming the initially expected.

Furthermore, during the analysis definition, almost all of the tasks took longer
than predicted. Because I had no experience working with such a benchmark or
doing an experimental setup, the expected timelines were too ambitious. For this
reason, it was necessary to extend the time budget for the project by two months.

72

Planning

8.3 Risk Assessment

Here I outline the possible risks that did not impact and the ones that did im-
pact the development and analysis process as well as, the decisions taken during
the whole process, the list includes:

• Delays in the access to the Alexa microservice code. This did happen which
caused a delay in the start of the development phase.

• Problems with integration of the technologies and tools, selected by ALB
collaborators for the porting process of Alexa. This did not happen, the
setup process was straightforward without problems.

• Changes in requirements of Alexa during the implementation phase, caus-
ing delays. This did not happen.

• Requirements of the Alexa microservice are not well defined, causing delays
during development. This did happen which caused extra iterations in the
development process to occur.

• Not having access to a real business data set to validate the analysis. This
was an issue that led to the decision to use the TPC-H Benchmark.

• Costs restrictions impacting the hardware selection to run the tests. The
cost of using Amazon Web services impacted the selection of the hardware
used in the tests performed. The decision to use cheaper options led to a
downsize in the scale of the test threads and database size used, due to the
extremely long execution times recorded in the initial failed test tries.

• The time available to run the tests impacts the hardware selection. Despite
what is reported in the previous risk, the time of the initial test executions
forced an incremental process of selecting hardware with increasing mem-
ory capacity, until the times were within the time frame with not more than
4 hours.

73

Chapter 9

Conclusion

In this concluding chapter, I synthesize the key findings and insights drawn
from the analysis, comment about future work, and provide some thoughts on
this experience.

9.1 Analysis Reflection

In this section I present my final reflection regarding the results and insights
gathered. Starting with the porting process of the Alexa microservice, this stage
of the project allowed me to test different solutions to multi-tenancy studied in
the state-of-the-art phase, in a complete system with all three layers, business,
logic, and persistence.

After the requirements for the Alexa microservice were implemented, I gained
a better understanding of the details involved in porting a data warehouse mi-
croservice based on a star schema. I gained knowledge on how to convert the
database to a multi-tenant one, and also how to adapt the business and logic lay-
ers to work with the new database. However, these findings were specific to the
system at hand, and I wanted to expand this into a more broad implementation
to apply to something like the porting tool.

From the previous stage, I moved on to the analysis, where in terms of
throughput performance approach 1 is the best-performing solution as expected,
and approaches 2 and 3 have similar performance that will vary according to the
amount of data grouped among tenants, the number of tenants each group has,
and the amount of shared data from each tenant. These results provide insights
on the performance impact of each solution, that are relevant when developing
the porting tool because they better help define to what type of systems the tool
should be developed for.

With these results it is easy to conclude that approach 1 is the best way for
systems where performance is the most critical aspect, however, it must be noted
that throughput performance is only one aspect of a system, there might be other
more important aspects to consider when developing a system, and that these

75

Chapter 9

tests were executed without any performance enhancement technics used. Like
the use of indexes that might speed up the throughput and reduce the perfor-
mance deficit between these three solutions.

9.2 Future work

As stated before throughout this document, this work is intended to be used
as a guideline for the development process of a porting tool. Giving insights on
three possible solutions for multi-tenancy on data warehouse databases, which
help in identifying the requirements of such tool when deciding what type of sys-
tems is the tool aimed at. The results gathered here point to the fact that joining
multiple tenants can have significant impact on performance but allow more flex-
ibility in menaging the data, which helps when developing a porting tool aimed
at many different types of systems.

9.3 Final Thoughts

In conclusion this thesis gave me practical experience on how to work with
data warehouse systems based on star schema and snowflake schema. Allowed
me to learn how to do a detailed and comprehensive experimental setup, and
bettering my skills of working with cloud-based solutions like Amazon Web Ser-
vices, and also learning what is the TPC-H Benchmark, a relevant benchmarking
standard, and how I can use it perform data analysis.

76

References

[1] Anand Akela. 4 cluster management tools to com-
pare. https://www.appdynamics.com/blog/product/
4-cluster-management-tools-to-compare/, 2016. Last visited on
27/10/2022.

[2] Amazon. Ec2 instances hardware. https:
//aws.amazon.com/pt/ec2/instance-types/?trk=
e011bdeb-247d-4bc7-92eb1b11f87bfc8a&sc_channel=ps&ef_id=
CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2Po0yLNRoCfeMQAvD_
BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%
20services%20ec2%20instance!12195830327!119606866280. Last vis-
ited on 17/8/2023.

[3] Amazon. Rds instances hardware. https://docs.aws.amazon.
com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#
Concepts.DBInstanceClass.Types. Last visited on 17/8/2023.

[4] The Kubernetes Authors. Kubernetes components. https:
//kubernetes.io/docs/concepts/overview/components/, 2022. Last
visited on 26/10/2022.

[5] The Kubernetes Authors. Kubernetes definition. https://kubernetes.io/,
2022. Last visited on 07-10-2022.

[6] Cor-Paul Bezemer and Andy Zaidman. Multi-tenant saas applica-
tions: Maintenance dream or nightmare? https://azaidman.github.io/
publications/bezemerIWPSE2010.pdf, 2010. Last visited on 11/10/2022.

[7] Kevin Casey. What’s the difference between a pod, a cluster, and
a container? https://enterprisersproject.com/article/2020/9/
pod-cluster-container-what-is-difference, 2020. Last visited on
28/10/2022.

[8] Wesley Chai, Kate Brush, and Stephen J. Bigelow. What is paas? plat-
form as a service definition and guide. https://www.techtarget.com/
searchcloudcomputing/definition/Platform-as-a-Service-PaaS, 2022.
Last visited on 08-10-2022.

[9] Mark Drake. Understanding database sharding.
https://www.digitalocean.com/community/tutorials/
understanding-database-sharding, 2022. Last visited on 26-10-2022.

77

https://www.appdynamics.com/blog/product/4-cluster-management-tools-to-compare/
https://www.appdynamics.com/blog/product/4-cluster-management-tools-to-compare/
https://aws.amazon.com/pt/ec2/instance-types/?trk=e011bdeb-247d-4bc7-92eb 1b11f87bfc8a&sc_channel=ps&ef_id=CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2 Po0yLNRoCfeMQAvD_BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%20services%20ec2%20instance!12195830327!119606866280
https://aws.amazon.com/pt/ec2/instance-types/?trk=e011bdeb-247d-4bc7-92eb 1b11f87bfc8a&sc_channel=ps&ef_id=CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2 Po0yLNRoCfeMQAvD_BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%20services%20ec2%20instance!12195830327!119606866280
https://aws.amazon.com/pt/ec2/instance-types/?trk=e011bdeb-247d-4bc7-92eb 1b11f87bfc8a&sc_channel=ps&ef_id=CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2 Po0yLNRoCfeMQAvD_BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%20services%20ec2%20instance!12195830327!119606866280
https://aws.amazon.com/pt/ec2/instance-types/?trk=e011bdeb-247d-4bc7-92eb 1b11f87bfc8a&sc_channel=ps&ef_id=CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2 Po0yLNRoCfeMQAvD_BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%20services%20ec2%20instance!12195830327!119606866280
https://aws.amazon.com/pt/ec2/instance-types/?trk=e011bdeb-247d-4bc7-92eb 1b11f87bfc8a&sc_channel=ps&ef_id=CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2 Po0yLNRoCfeMQAvD_BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%20services%20ec2%20instance!12195830327!119606866280
https://aws.amazon.com/pt/ec2/instance-types/?trk=e011bdeb-247d-4bc7-92eb 1b11f87bfc8a&sc_channel=ps&ef_id=CjwKCAjwivemBhBhEiwAJxNWN-AGgkOfl21-cSmTrRY3dDg7ICM2AQeomCyECNDZeccYH2 Po0yLNRoCfeMQAvD_BwE:G:s&s_kwcid=AL!4422!3!536392690705!p!!g!!amazon%20web%20services%20ec2%20instance!12195830327!119606866280
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.DBInstanceClass.html#Concepts.DBInstanceClass.Types
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/
https://azaidman.github.io/publications/bezemerIWPSE2010.pdf
https://azaidman.github.io/publications/bezemerIWPSE2010.pdf
https://enterprisersproject.com/article/2020/9/pod-cluster-container-what-is-difference
https://enterprisersproject.com/article/2020/9/pod-cluster-container-what-is-difference
https://www.techtarget.com/searchcloudcomputing/definition/Platform-as-a-Service-PaaS
https://www.techtarget.com/searchcloudcomputing/definition/Platform-as-a-Service-PaaS
https://www.digitalocean.com/community/tutorials/understanding-database-sharding
https://www.digitalocean.com/community/tutorials/understanding-database-sharding

Chapter 9

[10] IBM Cloud Education. What is a database schema? https://www.ibm.com/
cloud/learn/database-schema, 2021. Last visited on 06/11/2022.

[11] EMnify. What is iaas? infrastructure as a service ex-
plained. https://www.emnify.com/iot-glossary/iaas?utm_
term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_
Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=
2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&
hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=
Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_
oQaAhIrEALw_wcB, 2021. Last visited on 08-10-2022.

[12] Fedora. Fedora coreos documentation. https://docs.fedoraproject.org/
en-US/fedora-coreos/, 2022. Last visited on 28/10/2022.

[13] The Apache Software Foundation. What is mesos? a distributed systems
kernel. https://mesos.apache.org/, 2022. Last visited on 29/10/2022.

[14] The PostgreSQL Global Development Group. What is postgresql? https:
//www.postgresql.org/docs/current/intro-whatis.html. Last visited on
06/11/2022.

[15] Chang Jie Guo1, Wei Sun1, Ying Huang2, Zhi Hu Wang1, and Bo Gao1.
A framework for native multi-tenancy application development and man-
agement. https://ieeexplore.ieee.org/abstract/document/4285271/
authors#authors, 2007. Last visited on 12/10/2022.

[16] Docker Inc. Docker overview. https://docs.docker.com/get-started/
overview/. Last visited on 07-10-2022.

[17] Docker Inc. How nodes work. https://docs.docker.com/engine/swarm/
how-swarm-mode-works/nodes/. Last visited on 27-10-2022.

[18] Red Hat Inc. What is etcd? https://www.redhat.com/en/topics/
containers/what-is-etcd, 2019. Last visited on 30/10/2022.

[19] Red Hat Inc. What is multitenancy? https://www.redhat.com/en/
topics/cloud-computing/what-is-multitenancy, 2020. Last visited on
28/09/2022.

[20] VMware Inc. What is a virtual machine? https://www.vmware.com/topics/
glossary/content/virtual-machine.html. Last visited on 06-10-2022.

[21] Wix.com Inc. Software as a service (saas). https://www.wix.
com/encyclopedia/definition/software-as-a-service-saas?
utm_source=google&utm_medium=cpc&utm_campaign=
13708482660^124757113432&experiment_id=S0755701269fflDSA&gclid=
Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_
wcB. Last visited on 05-10-2022.

[22] JavaTpoint. Postgresql features. https://www.javatpoint.com/
postgresql-features. Last visited on 06/11/2022.

78

https://www.ibm.com/cloud/learn/database-schema
https://www.ibm.com/cloud/learn/database-schema
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://www.emnify.com/iot-glossary/iaas?utm_term=&utm_campaign=SEA-EN-EUR_EN-MC-NB-NoFu-Performance_Max%7CPilot&utm_source=google&utm_medium=cpc&hsa_acc=2935385868&hsa_cam=17491136806&hsa_grp=&hsa_ad=&hsa_src=x&hsa_tgt=&hsa_kw=&hsa_mt=&hsa_net=adwords&hsa_ver=3&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qhCTBjytzn80pCSfOYgDdcOk1X9FYvDG2blyuMV1E6Nlu4DRSJg_oQaAhIrEALw_wcB
https://docs.fedoraproject.org/en-US/fedora-coreos/
https://docs.fedoraproject.org/en-US/fedora-coreos/
https://mesos.apache.org/
https://www.postgresql.org/docs/current/intro-whatis.html
https://www.postgresql.org/docs/current/intro-whatis.html
https://ieeexplore.ieee.org/abstract/document/4285271/authors#authors
https://ieeexplore.ieee.org/abstract/document/4285271/authors#authors
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://www.redhat.com/en/topics/containers/what-is-etcd
https://www.redhat.com/en/topics/containers/what-is-etcd
https://www.redhat.com/en/topics/cloud-computing/what-is-multitenancy
https://www.redhat.com/en/topics/cloud-computing/what-is-multitenancy
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.vmware.com/topics/glossary/content/virtual-machine.html
https://www.wix.com/encyclopedia/definition/software-as-a-service-saas?utm_source=google&utm_medium=cpc&utm_campaign=13708482660^124757113432&experiment_id=S0755701269�DSA&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_wcB
https://www.wix.com/encyclopedia/definition/software-as-a-service-saas?utm_source=google&utm_medium=cpc&utm_campaign=13708482660^124757113432&experiment_id=S0755701269�DSA&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_wcB
https://www.wix.com/encyclopedia/definition/software-as-a-service-saas?utm_source=google&utm_medium=cpc&utm_campaign=13708482660^124757113432&experiment_id=S0755701269�DSA&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_wcB
https://www.wix.com/encyclopedia/definition/software-as-a-service-saas?utm_source=google&utm_medium=cpc&utm_campaign=13708482660^124757113432&experiment_id=S0755701269�DSA&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_wcB
https://www.wix.com/encyclopedia/definition/software-as-a-service-saas?utm_source=google&utm_medium=cpc&utm_campaign=13708482660^124757113432&experiment_id=S0755701269�DSA&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_wcB
https://www.wix.com/encyclopedia/definition/software-as-a-service-saas?utm_source=google&utm_medium=cpc&utm_campaign=13708482660^124757113432&experiment_id=S0755701269�DSA&gclid=Cj0KCQjw-fmZBhDtARIsAH6H8qgDBfP5QKqZKsmbXQ5Tfuadqpw4rzxVSFb4tULCooj2qdPezgE0iHkaAs-mEALw_wcB
https://www.javatpoint.com/postgresql-features
https://www.javatpoint.com/postgresql-features

References

[23] Impelsys Private Limited. Importance of multi tenancy – true architec-
ture for software-as-a-service (saas). https://www.impelsys.com/blog/
importance-of-multi-tenancy-true-architecture-for-software-as-a-service-saas/,
2022. Last visited on 27/09/2022.

[24] Microsoft. Noisy neighbor antipattern. https://learn.microsoft.
com/en-us/azure/architecture/antipatterns/noisy-neighbor/
noisy-neighbor. Last visited on 25-10-2022.

[25] Microsoft. Multi-tenant saas database tenancy patterns. https:
//learn.microsoft.com/en-us/azure/azure-sql/database/
saas-tenancy-app-design-patterns?view=azuresql, 2022. Last vis-
ited on 25-09-2022.

[26] Lukonde Mwila. Kubernetes multi-tenancy | best practices in 2022. https:
//www.containiq.com/post/kubernetes-multi-tenancy, 2022. Last visited
on 27/10/2022.

[27] Isaac Odun-Ayo, Sanjay Misra, Olusola Abayomi-Alli, and Olasupo Ajayi.
Cloud multi-tenancy: Issues and developments. https://dl.acm.org/
doi/abs/10.1145/3147234.3148095?casa_token=3Qk1Wv4rbLoAAAAA:
aJsUiwm0Y7xZIsmnIN0SH44CfkgRfepXuEZo9uF4pCUrU3Wa_
hLH8NqfAm5sGLo6r-T9j5lg5Gytldg, 2017. Last visited on 11/10/2022.

[28] Diego Ongaro and John Ousterhout. In search of an understandable con-
sensus algorithm (extended version). https://raft.github.io/raft.pdf,
2022. Last visited on 27-10-2022.

[29] Oracle. What is a data warehouse? https://www.oracle.com/pt/database/
what-is-a-data-warehouse/. Last visited on 05/12/2022.

[30] Oracle. What is a database? https://www.oracle.com/database/
what-is-database/. Last visited on 05-10-2022.

[31] Tal Perry. Database multi-tenancy for saas. https://www.lighttag.io/
blog/database-multi-tenancy/. Last visited on 25-09-2022.

[32] Chris Richardson. What are microservices? https://microservices.io/.
Last visited on 06/10/2022.

[33] Joel Shore. 7 challenges in multi-tenancy testing and
their solutions. https://www.netsolutions.com/insights/
multi-tenancy-testing-top-challenges-and-solutions/, 2020. Last
visited on 10/10/2022.

[34] Joel Shore. cloud application. https://www.techtarget.com/
searchcloudcomputing/definition/cloud-application, 2021. Last
visited on 05-10-2022.

[35] Simplilearn. What is multitenancy: Definition, importance, and applica-
tions. https://www.simplilearn.com/what-is-multitenancy-article#
benefits_of_multitenancy_architecture, 2022. Last visited on
26/09/2022.

79

https://www.impelsys.com/blog/importance-of-multi-tenancy-true-architecture-for-software-as-a-service-saas/
https://www.impelsys.com/blog/importance-of-multi-tenancy-true-architecture-for-software-as-a-service-saas/
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor
https://learn.microsoft.com/en-us/azure/architecture/antipatterns/noisy-neighbor/noisy-neighbor
https://learn.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns?view=azuresql
https://www.containiq.com/post/kubernetes-multi-tenancy
https://www.containiq.com/post/kubernetes-multi-tenancy
https://dl.acm.org/doi/abs/10.1145/3147234.3148095?casa_token=3Qk1Wv4rbLoAAAAA:aJsUiwm0Y7xZIsmnIN0SH44CfkgRfepXuEZo9uF4pCUrU3Wa_hLH8NqfAm5sGLo6r-T9j5lg5Gytldg
https://dl.acm.org/doi/abs/10.1145/3147234.3148095?casa_token=3Qk1Wv4rbLoAAAAA:aJsUiwm0Y7xZIsmnIN0SH44CfkgRfepXuEZo9uF4pCUrU3Wa_hLH8NqfAm5sGLo6r-T9j5lg5Gytldg
https://dl.acm.org/doi/abs/10.1145/3147234.3148095?casa_token=3Qk1Wv4rbLoAAAAA:aJsUiwm0Y7xZIsmnIN0SH44CfkgRfepXuEZo9uF4pCUrU3Wa_hLH8NqfAm5sGLo6r-T9j5lg5Gytldg
https://dl.acm.org/doi/abs/10.1145/3147234.3148095?casa_token=3Qk1Wv4rbLoAAAAA:aJsUiwm0Y7xZIsmnIN0SH44CfkgRfepXuEZo9uF4pCUrU3Wa_hLH8NqfAm5sGLo6r-T9j5lg5Gytldg
https://raft.github.io/raft.pdf
https://www.oracle.com/pt/database/what-is-a-data-warehouse/
https://www.oracle.com/pt/database/what-is-a-data-warehouse/
https://www.oracle.com/database/what-is-database/
https://www.oracle.com/database/what-is-database/
https://www.lighttag.io/blog/database-multi-tenancy/
https://www.lighttag.io/blog/database-multi-tenancy/
https://microservices.io/
https://www.netsolutions.com/insights/multi-tenancy-testing-top-challenges-and-solutions/
https://www.netsolutions.com/insights/multi-tenancy-testing-top-challenges-and-solutions/
https://www.techtarget.com/searchcloudcomputing/definition/cloud-application
https://www.techtarget.com/searchcloudcomputing/definition/cloud-application
https://www.simplilearn.com/what-is-multitenancy-article#benefits_of_multitenancy_architecture
https://www.simplilearn.com/what-is-multitenancy-article#benefits_of_multitenancy_architecture

Appendix

[36] SmartBear Software. Openapi specification. https://swagger.io/
specification/. Last visited on 03/12/2022.

[37] Eurico Sousa. My github repository. https://github.com/Eurico-98/
Multi-tenancy-support-scripts.git. Last visited on 2/8/2023.

[38] TPC. Tpc-h description. https://www.tpc.org/tpch/default5.asp. Last
visited on 1/6/2023.

[39] TPC. Tpc-h documentation. https://www.tpc.org/TPC_Documents_
Current_Versions/pdf/TPC-H_v3.0.1.pdf. Last visited on 1/6/2023.

[40] Avneesh Vashistha and Pervez Ahmed. Saas multi-tenancy isolation
testingchallenges and issues. https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.477.1823&rep=rep1&type=pdf, 2012. Last visited on
10/10/2022.

[41] PostgreSQL Tutorial Website. What is a database transaction.
https://www.postgresqltutorial.com/postgresql-tutorial/
postgresql-transaction/. Last visited on 06/11/2022.

80

https://swagger.io/specification/
https://swagger.io/specification/
https://github.com/Eurico-98/Multi-tenancy-support-scripts.git
https://github.com/Eurico-98/Multi-tenancy-support-scripts.git
https://www.tpc.org/tpch/default5.asp
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.1823&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.477.1823&rep=rep1&type=pdf
https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-transaction/
https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-transaction/

Appendices

81

Appendix A

SQL code used to setup the database

CREATE TABLE nation(
n_nationkey INTEGER NOT NULL,
n_name CHAR(25) NOT NULL,
n_regionkey INTEGER NOT NULL,
n_comment VARCHAR(152));

CREATE TABLE region(
r_regionkey INTEGER NOT NULL,
r_name CHAR(25) NOT NULL,
r_comment VARCHAR(152));

CREATE TABLE part(
p_partkey INTEGER NOT NULL,
p_name VARCHAR(55) NOT NULL,
p_mfgr CHAR(25) NOT NULL,
p_brand CHAR(10) NOT NULL,
p_type VARCHAR(25) NOT NULL,
p_size INTEGER NOT NULL,
p_container CHAR(10) NOT NULL,
p_retailprice DECIMAL(15, 2) NOT NULL,
p_comment VARCHAR(23) NOT NULL);

CREATE TABLE supplier(
s_suppkey INTEGER NOT NULL,
s_name CHAR(25) NOT NULL,
s_address VARCHAR(40) NOT NULL,
s_nationkey INTEGER NOT NULL,
s_phone CHAR(15) NOT NULL,
s_acctbal DECIMAL(15, 2) NOT NULL,
s_comment VARCHAR(101) NOT NULL);

CREATE TABLE partsupp(
ps_partkey INTEGER NOT NULL,
ps_suppkey INTEGER NOT NULL,

83

Appendix A

ps_availqty INTEGER NOT NULL,
ps_supplycost DECIMAL(15, 2) NOT NULL,
ps_comment VARCHAR(199) NOT NULL);

CREATE TABLE customer(
c_custkey INTEGER NOT NULL,
c_name VARCHAR(25) NOT NULL,
c_address VARCHAR(40) NOT NULL,
c_nationkey INTEGER NOT NULL,
c_phone CHAR(15) NOT NULL,
c_acctbal DECIMAL(15, 2) NOT NULL,
c_mktsegment CHAR(10) NOT NULL,
c_comment VARCHAR(117) NOT NULL);

CREATE TABLE orders(
o_orderkey INTEGER NOT NULL,
o_custkey INTEGER NOT NULL,
o_orderstatus CHAR(1) NOT NULL,
o_totalprice DECIMAL(15, 2) NOT NULL,
o_orderdate DATE NOT NULL,
o_orderpriority CHAR(15) NOT NULL,
o_clerk CHAR(15) NOT NULL,
o_shippriority INTEGER NOT NULL,
o_comment VARCHAR(79) NOT NULL);

CREATE TABLE lineitem(
l_orderkey INTEGER NOT NULL,
l_partkey INTEGER NOT NULL,
l_suppkey INTEGER NOT NULL,
l_linenumber INTEGER NOT NULL,
l_quantity DECIMAL(15, 2) NOT NULL,
l_extendedprice DECIMAL(15, 2) NOT NULL,
l_discount DECIMAL(15, 2) NOT NULL,
l_tax DECIMAL(15, 2) NOT NULL,
l_returnflag CHAR(1) NOT NULL,
l_linestatus CHAR(1) NOT NULL,
l_shipdate DATE NOT NULL,
l_commitdate DATE NOT NULL,
l_receiptdate DATE NOT NULL,
l_shipinstruct CHAR(25) NOT NULL,
l_shipmode CHAR(10) NOT NULL,
l_comment VARCHAR(44) NOT NULL);

ALTER TABLE region ADD PRIMARY KEY (r_nregionkey);
ALTER TABLE nation ADD PRIMARY KEY (n_nnationkey);
ALTER TABLE customer ADD PRIMARY KEY (c_ncustkey);
ALTER TABLE supplier ADD PRIMARY KEY (s_nsuppkey);
ALTER TABLE part ADD PRIMARY KEY (p_npartkey);

84

SQL code used to setup the database

ALTER TABLE partsupp ADD PRIMARY KEY (ps_npartkey, ps_nsuppkey);
ALTER TABLE orders ADD PRIMARY KEY (o_norderkey);
ALTER TABLE lineitem ADD PRIMARY KEY (l_norderkey, l_nlinenumber);
ALTER TABLE nation ADD FOREIGN KEY (n_nregionkey) REFERENCES re-
gion(r_nregionkey);
ALTER TABLE supplier ADD FOREIGN KEY (s_nnationkey) REFERENCES na-
tion(n_nnationkey);
ALTER TABLE customer ADD FOREIGN KEY (c_nnationkey) REFERENCES na-
tion(n_nnationkey);
ALTER TABLE partsupp ADD FOREIGN KEY (ps_nsuppkey) REFERENCES sup-
plier(s_nsuppkey);
ALTER TABLE partsupp ADD FOREIGN KEY (ps_npartkey) REFERENCES part(p_npartkey);
ALTER TABLE orders ADD FOREIGN KEY (o_ncustkey) REFERENCES customer(c_ncustkey);
ALTER TABLE lineitem ADD FOREIGN KEY (l_norderkey) REFERENCES or-
ders(o_norderkey);
ALTER TABLE lineitem ADD FOREIGN KEY (l_npartkey,l_nsuppkey) REFER-
ENCES partsupp(ps_npartkey,ps_nsuppkey);

85

Appendix B

Analysis approach 1 Physical
Diagram

Figure B.1: Approach 1 Physical Diagram

87

Appendix C

TPC-H Benchmark Query set

The parameters DELTA, REGION, SIZE, TYPE, SEGMENT, DATE, DISCOUNT,
QUANTITY, NATION, COLOR, FRACTION, SHIPMODE, WORD, STREAM_ID,
BRAND, CONTAINER, represent the randomly selected values by the qgen file
when generating query variants. The SCHEMA parameter is only used in ap-
proach one and it represents the tenant schema selected during the throughput
tests.

Q1 - Pricing Summary Report Query reports the amount of business that was
billed, shipped, and returned.

select
l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice*(1-l_discount)) as sum_disc_price,
sum(l_extendedprice*(1-l_discount)*(1+l_tax)) as sum_charge,
avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from
SCHEMA.lineitem

where
l_shipdate <= date ’1998-12-01’ - interval ’DELTA’ day (3)

group by
l_returnflag,
l_linestatus

order by
l_returnflag,
l_linestatus;

89

Appendix C

Q2 - Minimum Cost Supplier Query finds which supplier should be selected to
place an order for a given part in a given region.

select
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

from
SCHEMA.part,
SCHEMA.supplier,
SCHEMA.partsupp,
SCHEMA.nation,
SCHEMA.region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_size = SIZE
and p_type like ’%TYPE’
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’REGION’
and ps_supplycost = (

select
min(ps_supplycost)

from
SCHEMA.partsupp,
SCHEMA.supplier,
SCHEMA.nation,
SCHEMA.region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’REGION’

)
order by

s_acctbal desc,
n_name,
s_name,
p_partkey;

90

TPC-H Benchmark Query set

Q3 - Shipping Priority Query retrieves the 10 unshipped orders with the highest
value.

select
l_orderkey,
sum(l_extendedprice*(1-l_discount)) as revenue,
o_orderdate,
o_shippriority

from
SCHEMA.customer,
SCHEMA.orders,
SCHEMA.lineitem

where
c_mktsegment = ’SEGMENT’
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date ’DATE’
and l_shipdate > date ’DATE’

group by
l_orderkey,
o_orderdate,
o_shippriority

order by
revenue desc,
o_orderdate;

91

Appendix C

Q4 - Order Priority Checking Query determines how well the order priority sys-
tem is working and gives an assessment of customer satisfac-tion.

select
o_orderpriority,
count(*) as order_count

from
SCHEMA.orders

where
o_orderdate >= date ’DATE’
and o_orderdate < date ’DATE’ + interval ’3’ month
and exists (

select
*

from
SCHEMA.lineitem

where
l_orderkey = o_orderkey
and l_commitdate < l_receiptdate

)
group by

o_orderpriority
order by

o_orderpriority;

92

TPC-H Benchmark Query set

Q5 - Local Supplier Volume Query lists the revenue volume done through local
suppliers.

select
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue

from
SCHEMA.customer,
SCHEMA.orders,
SCHEMA.lineitem,
SCHEMA.supplier,
SCHEMA.nation,
SCHEMA.region

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’REGION’
and o_orderdate >= date ’DATE’
and o_orderdate < date ’DATE’ + interval ’1’ year

group by
n_name

order by
revenue desc;

93

Appendix C

Q6 - Forecasting Revenue Change Query quantifies the amount of revenue in-
crease that would have resulted from eliminating certain company-wide discounts
in a given percentage range in a given year. Asking this type of "what if" query
can be used to look for ways to increase revenues.

select
sum(l_extendedprice * l_discount) as revenue

from
SCHEMA.lineitem

where
l_shipdate >= date ’DATE’
and l_shipdate < date ’DATE’ + interval ’1’ year
and l_discount between DISCOUNT - 0.01 and DISCOUNT + 0.01
and l_quantity < QUANTITY;

94

TPC-H Benchmark Query set

Q7 - Volume Shipping Query determines the value of goods shipped between
certain nations to help in the re-negotiation of shipping contracts.

select
supp_nation,
cust_nation,
l_year,
sum(volume) as revenue

from (
select

n1.n_name as supp_nation,
n2.n_name as cust_nation,
extract(year from l_shipdate) as l_year,
l_extendedprice * (1 - l_discount) as volume

from
SCHEMA.supplier,
SCHEMA.lineitem,
SCHEMA.orders,
SCHEMA.customer,
SCHEMA.nation n1,
SCHEMA.nation n2

where
s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and c_custkey = o_custkey
and s_nationkey = n1.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(n1.n_name = ’NATION1’ and n2.n_name = ’NATION2’)
or (n1.n_name = ’NATION2’ and n2.n_name = ’NATION1’)

)
and l_shipdate between date ’1995-01-01’ and date ’1996-12-31’

) as shipping
group by

supp_nation,
cust_nation,
l_year

order by
supp_nation,
cust_nation,
l_year;

95

Appendix C

Q8 - National Market Share Query determines how the market share of a given
nation within a given region has changed over two years for a given part type.

select
o_year,
sum(case

when nation = ’NATION’
then volume
else 0

end) / sum(volume) as mkt_share
from (

select
extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
SCHEMA.part,
SCHEMA.supplier,
SCHEMA.lineitem,
SCHEMA.orders,
SCHEMA.customer,
SCHEMA.nation n1,
SCHEMA.nation n2,
SCHEMA.region

where
p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’REGION’
and s_nationkey = n2.n_nationkey
and o_orderdate between date ’1995-01-01’ and date ’1996-12-31’
and p_type = ’TYPE’

) as all_nations
group by

o_year
order by

o_year;

96

TPC-H Benchmark Query set

Q9 - Product Type Profit Measure Query determines how much profit is made on
a given line of parts, broken out by supplier nation and year.

select
nation,
o_year,
sum(amount) as sum_profit

from (
select

n_name as nation,
extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) - ps_supplycost * l_quantity
as amount

from
SCHEMA.part,
SCHEMA.supplier,
SCHEMA.lineitem,
SCHEMA.partsupp,
SCHEMA.orders,
SCHEMA.nation

where
s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like ’%COLOR%’

) as profit
group by

nation,
o_year

order by
nation,
o_year desc;

97

Appendix C

Q10 - Returned Item Reporting Query identifies customers who might be having
problems with the parts that are shipped to them.

select
c_custkey,
c_name,
sum(l_extendedprice * (1 - l_discount)) as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment

from
SCHEMA.customer,
SCHEMA.orders,
SCHEMA.lineitem,
SCHEMA.nation

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate >= date ’DATE’
and o_orderdate < date ’DATE’ + interval ’3’ month
and l_returnflag = ’R’
and c_nationkey = n_nationkey

group by
c_custkey,
c_name,
c_acctbal,
c_phone,
n_name,
c_address,
c_comment

order by
revenue desc;

98

TPC-H Benchmark Query set

Q11 - Important Stock Identification Query finds the most important subset of
suppliers’ stock in a given nation.

select
ps_partkey,
sum(ps_supplycost * ps_availqty) as value

from
SCHEMA.partsupp,
SCHEMA.supplier,
SCHEMA.nation

where
ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = ’NATION’

group by
ps_partkey having

sum(ps_supplycost * ps_availqty) > (
select

sum(ps_supplycost * ps_availqty) * FRACTION
from

SCHEMA.partsupp,
SCHEMA.supplier,
SCHEMA.nation

where
ps_suppkey = s_suppkey
and s_nationkey = n_nationkey
and n_name = ’NATION’

)
order by

value desc;

99

Appendix C

Q12 - Shipping Modes and Order Priority Query determines whether selecting
less expensive modes of shipping is negatively affecting the critical-prior-ity or-
ders by causing more parts to be received by customers after the committed date.

select
l_shipmode,
sum(case

when o_orderpriority = ’1-URGENT’
or o_orderpriority = ’2-HIGH’
then 1

else 0
end) as high_line_count,
sum(case

when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’
then 1

else 0
end) as low_line_count

from
SCHEMA.orders,
SCHEMA.lineitem

where
o_orderkey = l_orderkey
and l_shipmode in (’SHIPMODE1’, ’SHIPMODE2’)
and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate
and l_receiptdate >= date ’DATE’
and l_receiptdate < date ’DATE’ + interval ’1’ year

group by
l_shipmode

order by
l_shipmode;

100

TPC-H Benchmark Query set

Q13 - Customer Distribution Query seeks relationships between customers and
the size of their orders.

select
c_count,
count(*) as custdist

from(
select

c_custkey,
count(o_orderkey) as c_count

from
SCHEMA.customer left outer join SCHEMA.orders on

c_custkey = o_custkey
and o_comment not like ’%WORD1%WORD2%’

group by
c_custkey

) as c_orders (c_custkey, c_count)
group by

c_count
order by

custdist desc,
c_count desc;

101

Appendix C

Q14 - Promotion Effect Query monitors the market response to a promotion such
as TV advertisements or a special campaign.

select
100.00 * sum(case

when p_type like ’PROMO%’
then l_extendedprice * (1 - l_discount)

else 0
end) / sum(l_extendedprice * (1 - l_discount)) as promo_revenue

from
SCHEMA.lineitem,
SCHEMA.part

where
l_partkey = p_partkey
and l_shipdate >= date ’DATE’
and l_shipdate < date ’DATE’ + interval ’1’ month;

102

TPC-H Benchmark Query set

Q15 - Top Supplier Query determines the top supplier so it can be rewarded,
given more business, or identified for special recogni-tion.

create view SCHEMA.revenueSTREAM_ID (supplier_no, total_revenue) as
select

l_suppkey,
sum(l_extendedprice * (1 - l_discount))

from
SCHEMA.lineitem

where
l_shipdate >= date ’DATE’
and l_shipdate < date ’DATE’ + interval ’3’ month

group by
l_suppkey;

select
s_suppkey,
s_name,
s_address,
s_phone,
total_revenue

from
SCHEMA.supplier,
SCHEMA.revenueSTREAM_ID

where
s_suppkey = supplier_no
and total_revenue = (

select
max(total_revenue)

from
SCHEMA.revenueSTREAM_ID

)
order by

s_suppkey;

drop view revenueSTREAM_ID;

103

Appendix C

Q16 - Parts/Supplier Relationship Query finds out how many suppliers can sup-
ply parts with given attributes. It might be used, for example, to determine
whether there is sufficient number of suppliers for heavily ordered parts.

select
p_brand,
p_type,
p_size,
count(distinct ps_suppkey) as supplier_cnt

from
SCHEMA.partsupp,
SCHEMA.part

where
p_partkey = ps_partkey
and p_brand <> ’BRAND’
and p_type not like ’TYPE%’
and p_size in (SIZE1, SIZE2, SIZE3, SIZE4, SIZE5, SIZE6, SIZE7, SIZE8)
and ps_suppkey not in (

select
s_suppkey

from
SCHEMA.supplier

where
s_comment like ’%Customer%Complaints%’

)
group by

p_brand,
p_type,
p_size

order by
supplier_cnt desc,
p_brand,
p_type,
p_size;

104

TPC-H Benchmark Query set

Q17 - Small-Quantity-Order Revenue Query determines how much average yearly
revenue would be lost if orders were no longer filled for small quantities of cer-
tain parts. This may reduce overhead expenses by concentrating sales on larger
shipments.

select
sum(l_extendedprice) / 7.0 as avg_yearly

from
SCHEMA.lineitem,
SCHEMA.part

where
p_partkey = l_partkey
and p_brand = ’BRAND’
and p_container = ’CONTAINER’
and l_quantity < (

select
0.2 * avg(l_quantity)

from
SCHEMA.lineitem

where
l_partkey = p_partkey

);

105

Appendix C

Q18 - Large Volume Customer Query ranks customers based on their having
placed a large quantity order. Large quantity orders are defined as those orders
whose total quantity is above a certain level.

select
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(l_quantity)

from
SCHEMA.customer,
SCHEMA.orders,
SCHEMA.lineitem

where
o_orderkey in (

select
l_orderkey

from
SCHEMA.lineitem

group by
l_orderkey having

sum(l_quantity) > QUANTITY
)
and c_custkey = o_custkey
and o_orderkey = l_orderkey

group by
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice

order by
o_totalprice desc,
o_orderdate;

106

TPC-H Benchmark Query set

Q19 - Discounted Revenue Query reports the gross discounted revenue attributed
to the sale of selected parts handled in a particular manner. This query is an ex-
ample of code as might be produced programmatically by a data mining tool.

select
sum(l_extendedprice* (1 - l_discount)) as revenue

from
SCHEMA.lineitem,
SCHEMA.part

where
(

p_partkey = l_partkey
and p_brand = ‘BRAND1’
and p_container in (‘SM CASE’, ‘SM BOX’, ‘SM PACK’, ‘SM PKG’)
and l_quantity >= QUANTITY1 and l_quantity <= QUANTITY1 + 10
and p_size between 1 and 5
and l_shipmode in (‘AIR’, ‘AIR REG’)
and l_shipinstruct = ‘DELIVER IN PERSON’

)
or
(

p_partkey = l_partkey
and p_brand = ‘BRAND2’
and p_container in (‘MED BAG’, ‘MED BOX’, ‘MED PKG’, ‘MED PACK’)
and l_quantity >= QUANTITY2 and l_quantity <= QUANTITY2 + 10
and p_size between 1 and 10
and l_shipmode in (‘AIR’, ‘AIR REG’)
and l_shipinstruct = ‘DELIVER IN PERSON’

)
or
(

p_partkey = l_partkey
and p_brand = ‘BRAND3’
and p_container in (‘LG CASE’, ‘LG BOX’, ‘LG PACK’, ‘LG PKG’)
and l_quantity >= QUANTITY3 and l_quantity <= QUANTITY3 + 10
and p_size between 1 and 15
and l_shipmode in (‘AIR’, ‘AIR REG’)
and l_shipinstruct = ‘DELIVER IN PERSON’

);

107

Appendix C

Q20 - Potential Part Promotion Query identifies suppliers in a particular nation
having selected parts that may be can-didates for a promotional offer.

select
s_name,
s_address

from
SCHEMA.supplier,
SCHEMA.nation

where
s_suppkey in (

select
ps_suppkey

from
SCHEMA.partsupp

where
ps_partkey in (

select
p_partkey

from
SCHEMA.part

where
p_name like ’COLOR%’

)
and ps_availqty > (

select
0.5 * sum(l_quantity)

from
SCHEMA.lineitem

where
l_partkey = ps_partkey
and l_suppkey = ps_suppkey
and l_shipdate >= date ’DATE’
and l_shipdate < date ’DATE’ + interval ’1’ year

)
)
and s_nationkey = n_nationkey
and n_name = ’NATION’

order by
s_name;

108

TPC-H Benchmark Query set

Q21 - Suppliers Who Kept Orders Waiting Query identifies certain suppliers who
were not able to ship required parts in a timely manner.

select
s_name,
count(*) as numwait

from
SCHEMA.supplier,
SCHEMA.lineitem l1,
SCHEMA.orders,
SCHEMA.nation

where
s_suppkey = l1.l_suppkey
and o_orderkey = l1.l_orderkey
and o_orderstatus = ’F’
and l1.l_receiptdate > l1.l_commitdate
and exists (

select
*

from
SCHEMA.lineitem l2

where
l2.l_orderkey = l1.l_orderkey
and l2.l_suppkey <> l1.l_suppkey

)
and not exists (

select
*

from
SCHEMA.lineitem l3

where
l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate

)
and s_nationkey = n_nationkey
and n_name = ’EGYPT’

group by
s_name

order by
numwait desc,
s_name;

109

Appendix C

Q22 - Global Sales Opportunity Query identifies geographies where there are cus-
tomers who may be likely to make a purchase.

select
cntrycode,
count(*) as numcust,
sum(c_acctbal) as totacctbal

from (
select

substring(c_phone from 1 for 2) as cntrycode,
c_acctbal

from
SCHEMA.customer

where
substring(c_phone from 1 for 2) in

(’20’, ’40’, ’22’, ’30’, ’39’, ’42’, ’21’)
and c_acctbal > (

select
avg(c_acctbal)

from
SCHEMA.customer

where
c_acctbal > 0.00
and substring(c_phone from 1 for 2) in

(’20’, ’40’, ’22’, ’30’, ’39’, ’42’, ’21’)
)
and not exists (

select
*

from
SCHEMA.orders

where
o_custkey = c_custkey

)
) as custsale

group by
cntrycode

order by
cntrycode;

110

Appendix D

Commands used to import the
database to Amazon Relational
Database Instance (RDS)

$ docker exec <container name> pg_dump -U <username> > <output file path>
$ psql -f ./<output file path> –host <RDS instance endpoint> –port <port> –username
<username>

111

Appendix E

JSR223 PreProcessor script

Code used in the preprocessor to handle query 15 from the query set.

// Read the three lines from the CSV file
String queryPart1 = vars.get("QUERY_PART1");
String queryPart2 = vars.get("QUERY_PART2");
String queryPart3 = vars.get("QUERY_PART3");

// Combine the three lines to form the complete Query 15 variant
String fullQuery15 = queryPart1 + ";\n" + queryPart2 + ";\n" + queryPart3 + ";";

// Store the complete query in a JMeter variable
vars.put("FULL_QUERY_15", fullQuery15);

113

Appendix F

TPC-H Guidelines for Database size

The Scale Factor (SF) corresponds to the size of the data base in GB, and the
Streams (S) to the minimum number of through put tests to execute.

Figure F.1: Database size guidelines

115

	Introduction
	Context and Motivation
	Objectives
	Results
	Document Structure

	State of the Art
	Multi-tenancy introduction
	Multi-tenancy related concepts
	Types of Multi-tenancy
	Multi-tenant app with one database per tenant
	Multi-tenant app with multi-tenant databases

	Multi-tenancy challenges
	Advantages and risks of multi-tenancy
	Technologies
	Container & cluster management support tools
	Databases
	Data warehouses - star schema

	Architectural Drivers for Alexa Microservice
	ASOP-Alexa current state
	Architecture
	Metadata management
	Data loading
	Data querying

	Functional Requirements
	Data persistence requirements
	API requirements

	Restrictions
	Technical Restrictions

	Architecture of Alexa Microservice
	C4 Diagram
	System Context Diagram
	Container Diagram
	Component Diagram
	Code Diagram

	Alexa Microservice final state

	Multi-tenancy analysis
	Analysis introduction
	Approach Definition
	Workload definition
	Logical database desing
	Query definitions
	Performance test
	Metrics

	Analysis Experimental Setup
	Database creation
	Data Generation
	Query generation
	Data Loading
	Performance test specifications

	Experimental Results
	Graphical Overview of Test Results
	Performance analysis
	Scalability and complexity analysis

	Planning
	First semester
	Second semester Planned vs Real schedule
	Risk Assessment

	Conclusion
	Analysis Reflection
	Future work
	Final Thoughts

	Appendix SQL code used to setup the database
	Appendix Analysis approach 1 Physical Diagram
	Appendix TPC-H Benchmark Query set
	Appendix Commands used to import the database to Amazon Relational Database Instance (RDS)
	Appendix JSR223 PreProcessor script
	Appendix TPC-H Guidelines for Database size

