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Abstract

Combinatorial Optimization problems are ubiquitous in real-world scenarios.
To solve these, there are a wide range of methods described in the literature
from which we highlight exact and meta-heuristic methods. Exact methods can
find optimal solutions. However, they are often infeasible in practice due to the
NP-Hard nature of most combinatorial optimization problems. On the other
hand, meta-heuristics often cannot provably find optimal solutions, but can
find solutions that are of ”good” quality, which motivates the growing interest
in their use for combinatorial problems.

There has been growing interest in the development of a general-purpose frame-
work for the development of black-box meta-heuristic methods that separates
problem-specific from approach-specific details. In this work, we build upon
this idea and expand on previous work that has looked into the development
of a framework for constructive and local search meta-heuristic approaches.
In particular we give a general framework and corresponding Python imple-
mentation that encompasses both search approaches, and implement several
common algorithms under this framework.

In addition, there is a growing interest in the community in developing a suite
of benchmark problems for accessing the quality of meta-heuristics strategies.
The Google hash code problems, being combinatorial problems in nature and
modelled after real-world scenarios pose themselves as interesting candidates
for this purpose. In this work, we analyze all Google Hash Code problems, and
implement several models for two of the problems under our general framework
to show that it allows for the development of models that give very competitive
results in practice.
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Resumo

Os problemas de Otimização Combinatória são ubíquos em cenários da vida
real. Para resolver estes problemas, existe uma grande variedade de métodos
descritos na literatura, nos quais se destacam métodos exatos e métodos meta-
heurísticos. Embora os métodos exatos consigam encontrar soluções ótimas,
estes, na prática, são frequentemente inviáveis devido à natureza NP-Difícil
da maioria dos problemas de otimização combinatória. Por outro lado, meta-
heurísticas são tipicamente incapazes de encontrar soluções ótimas, no entanto,
conseguem encontrar soluções de “boa” qualidade, o que motiva o crescente
interesse na sua utilização em problemas combinatórios.

Tem existido crescente interesse no desenvolvimento de uma plataforma para
o desenvolvimento de métodos meta-heurísticos de caixa preta que separam
detalhes específicos do problema de detalhes específicos da abordagem. Neste
trabalho, construímos sobre essa ideia e expandimos trabalhos anteriores que
investigaram o desenvolvimento de uma plataforma para abordagens meta-
heurísticas de procura construtiva e local. Em particular, desenvolvemos uma
plataforma em Python que reúne ambas as abordagens de procura e implemen-
tamos também vários algoritmos que seguem esta abordagem.

Para além disso, há também um crescente interesse na comunidade em desen-
volver um conjunto de problemas de referência para avaliar a qualidade das
estratégias meta-heurísticas. Os problemas do Google Hash Code, por serem
problemas combinatórios e baseados em cenários do mundo real, apresentam-se
como candidatos interessantes para esta análise. Neste trabalho, analisamos
todos os problemas do Google Hash Code e implementamos vários modelos
para dois desses problemas, demonstrando que a nossa framework permite o
desenvolvimento de modelos que proporcionam resultados muito competitivos
na prática.
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Chapter 1

Introduction

“Begin at the beginning”, the King said gravely, “and
go on till you come to the end; then stop.”

— Lewis Carroll

1.1 Motivation

Optimization problems are ubiquitous in real-world scenarios. For example,
when considering the task of planning a road trip, we are quickly faced with
several optimization challenges arising from a seemingly simple task, such
as, finding the shortest or cheapest route, and efficiently packing luggage.
When solving these problems, the goal is usually to find “good” solutions in a
time-efficient manner.

Tackling an optimization problem can usually be seen as a two-phase process.
First, we start by understanding the problem and modeling its details. Then, we
can apply, or develop, a solver to find one or more solutions taking into account
the given model. This approach serves, for example, as the foundation of most
mixed-integer linear optimization software packages which are widely used to
solve real-world problems, e.g.,Gurobi 1, CPLEX 2, orGLPK 3. In particular, such
packages expect a mathematical formulation (model) describing the problem as
a linear objective function and a set of linear constraints involving continuous
or discrete variables, and then use one or more algorithms designed to solve

1 https://www.gurobi.com/
2 https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-
optimizer

3 https://www.gnu.org/software/glpk/

1
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Chapter 1. Introduction Motivation

such linear optimization problems. This clear separation of concerns has some
advantages. Notably, practitioners who want to solve a particular problem can
focus on developing the model for that problem and easily use existing solvers
to find solutions without needing to implement state-of-the-art algorithms
themselves. Meanwhile, solver developers can take advantage of existing
problems to test and enhance their solvers’ performance.

In this work, we are interested in tackling Combinatorial Optimization (CO)
problems using a similar separation of concerns. Generally speaking, CO con-
sists of finding an optimal solution, according to some objective function, from
a discrete set of solutions. Several generic approaches have been developed to
solve CO problems exactly, i.e., to find an optimal solution. However, many CO
problems are NP-Hard, meaning that the time required to solve them via any
currently known exact approach grows faster than polynomially with the prob-
lem size. In practice, this means that exact methods are often ineffective to
solve “real-world” CO problems which have large problem sizes.

As a result, there has been a growing interest in the development of methods
that can find “good” solutions for such problems. In this work, we focus on
heuristic and meta-heuristic methods. Heuristic methods are search procedures,
often problem-specific, that attempt to quickly solve a problem and provide
a “rule of thumb” for attaining decent solutions, albeit without optimality guar-
antees. Meta-Heuristic (MH) methods employ several high-level strategies to
construct and improve solutions. It is worth noting that such high-level strate-
gies often depend on problem-specific details, e.g., the neighborhood structure
and search tree definition. However, meta-heuristics do not require knowledge
about these problem-specific details and instead use the high-level strategies
in a black-box fashion. As such, MH approaches are problem-independent and
can be applied to a broad range of problems.

Given the nature ofMHmethods and the inherent diversity of problems, crafting
universal MH solvers is a challenging task made harder due to the difficulty in
separating the problem-specific details on which high-level strategies depend
from the MH problem-independent solving process. In fact, the abundance
ofMH optimization software that provides specific frameworks for evolutionary,
local or constructive search meta-heuristics for CO problems [13, 12, 23] and
the lack of a unifying framework supporting all approaches can be regarded as
a symptom of the difficulty of this endeavor. Still, it is worth remarking the
works by Vieira [15] and Outeiro [36], among others, who partially looked at
the formalization of this objective.

The development of a unifying framework would standardize problem-solving

2



Chapter 1. Introduction Goals & Scope

approaches, facilitate the reuse of MH methods, and distinctly separate the
tasks of problem modeling and solver development. Moreover, it would provide
researchers and practitioners with a valuable tool to experimentally assess the
performance of MH methods across a range of diverse problems.

Simultaneously, alongside the development and application of MH strategies
to address CO problems, there exists a community interested in constructing
a collection of benchmark optimization problems that hold both theoretical
and practical significance [32]. The Google Hash Code competition problems,
arguably, present themselves as suitable candidates.

The Hash Code programming competition, formerly hosted annually by Google,
challenged teams of up to four members to solve intricate CO problems within
a four-hour time frame using any tools, (online) resources, and programming
languages of their choice. These problems often drew inspiration from real-
world challenges, such as vehicle routing, task scheduling, and router placement.
There is often some relation to classical problems found in CO literature, which
may provide theoretical and practical insights on how to solve them. Still, exact
algorithms to solve these problems efficiently are not known, and to the best
of our knowledge there is also no known heuristic or approximation method
that prevails over other approaches.

Given the pertinence of these problems, and the wide range of challenges
they present from both a theoretical and practical standpoint, they should
serve as interesting benchmarks for the evaluation of meta-heuristics offering
ample research potential. Furthermore, they should allow the feasibility of
the aforementioned unifying framework bo be assessed on more realistic and
challenging problems beyond the ones commonly found in the literature.

1.2 Goals & Scope

The main goal of this work is the implementation and evaluation of meta-
heuristic solution approaches for two Google Hash Code problems, using a
principled approach that separates the modeling of the problems from the
solvers.

In particular, we aim to expand upon the modeling approach for meta-heuristics
that has been partially explored in previous research [15, 35, 36]. The objective
is to solidify existing concepts while introducing additional functionality, both
in conceptual understanding and practical application.

Furthermore, we aim to construct models of Google Hash Code problems. These

3



Chapter 1. Introduction Contributions

models will not only be described and discussed in this thesis but will also serve
as illustrative examples documenting the modeling concepts. Furthermore,
they will enable a critical evaluation of the merits and shortcomings of this
principled approach in comparison to more ad-hoc and traditional methods of
problem-solving.

Finally, the implementation of state-of-the-art meta-heuristic solvers is a vital
component of our work as it will enable us to assess the performance and
quality of solutions found for the models of the Google Hash Code problems
as well as the feasibility of the modeling approach for meta-heuristic solver
development.

In summary, the main research questions we outline for this thesis are:

R1. Can existing ideas explored by previous work on modeling frameworks
[15, 35, 36] be formalized and a practical implementation be developed,
potentially contributing with new features?

R2. Can general-purpose meta-heuristic solvers with respect to the principled
modeling framework implementation?

R3. CanGoogle Hash Code problems be solved effectively using this modeling
approach?

1.3 Contributions

Themain contributions of this thesis are related to the aforementioned research
questions, as follows:

C1. Building upon existing research on well-structured modeling for meta-
heuristics [15, 35, 36], this document aims to gather and formalize a
comprehensive specification. Our goal is to bring together all the con-
cepts and developments made so far. For this purpose, we have created
a practical Python implementation of the framework, with the aim of
summarizing the existing ideas related to modeling for both constructive
and local search methods.

C2. We implemented several meta-heuristic solvers and utilities both for
gathering the solutions and for testing the developed models. Given
that these are general-purpose tools they can work with any model that
is developed under the practical implementation of the framework we
devised.

C3. We selected two Google Hash Code problems for which some models

4
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were developed that explore the different properties of each of the prob-
lems in an attempt to obtain the best possible solutions. Furthermore,
these models provide a practical example on how to model relatively com-
plex problems and also allow us to think critically about the framework
capabilities.

1.4 Software

The following software resulted from the development of this thesis and is
distributed under an open source license.

S1. Pedro Rodrigues. Nasf4nio-Py. GitHub. url: https://github.com/
pedromig/nasf4nio-py [41]

S2. Pedro Rodrigues. Hashcode-Models. Github. url: https://github.com/
pedromig/hashcode-models [40]

1.5 Outline

The remainder of thesis is structured as follows. In Chapter 2, we provide an
overview of optimization concepts, meta-heuristics, andmodeling in the context
of meta-heuristics. Moving to Chapter 3, we analyze the Google Hash Code
competition, focusing on the characteristics of the problems and their relation
to existing CO literature. In Chapter 4, we discuss the modeling framework and
its role in meta-heuristic development. Chapters 5 and 6 present detailed studies
of the Hash Code problems “Optimize a Data Center” and “Book Scanning”,
and the experimental results obtained. Finally, Chapter 7 summarizes findings
in this work and suggest future research directions.

5
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Chapter 2

Background

“If I have seen further than others, it is by standing
upon the shoulders of giants.”

— Isaac Newton

This chapter presents a comprehensive literature review of optimization, meta-
heuristics and modeling. Additionally, it provides a background review of
the state-of-the-art regarding the principled modeling approach. In particu-
lar, Section 2.1 describes fundamental CO concepts deemed relevant for better
understanding this work. Section 2.2 discusses multiple well-known techniques
for solving CO problems. Section 2.3 describes MH methods and presents an
extensive review of MH solvers. Finally, Section 2.4 delves into the details of
the modeling approach and describes the existing implementations.

2.1 Optimization Concepts

Optimization, as defined by Papadimitriou and Steiglitz [7], is the task concern-
ing the search for an optimal configuration or set of parameters that maximizes
or minimizes a given objective function. In other words, optimizing involves
finding an optimal solution to a given problem among a set of feasible solutions.
Formally, an optimization problem can be defined as follows:

Definition 2.1.1 (Optimization Problem [7]). An optimization problem is a
tuple (S, 5 ), whereS is a set containing all feasible solutions, and 5 is an objective
(cost) function, with a mapping such that:

6



Chapter 2. Background Optimization Concepts

5 : S −→ R (2.1)

That is, each solution B ∈ S, is assigned a real value representing its quality.

Definition 2.1.2 (Global Optimum [5, 7]). Assuming, without loss of gener-
ality, an optimization problem with a maximizing objective function a global
optimum B∗ ∈ S is expressed by:

∀B ∈ S : 5 (B∗) ≥ 5 (B) (2.2)

Since Google Hash Code problems [38] have a single-objective maximizing
objective function, we will only consider maximization in this work. However,
it is possible to reformulate problems with a minimizing objective function for
maximization [14] using the identity:

min 5 (B) = −max−5 (B) (2.3)

2.1.1 Combinatorial Optimization

Combinatorial Optimization (CO) problems are a subset of optimization prob-
lems characterized by a discrete solution space that typically involves different
permutations, groupings, or orderings of objects that satisfy some problem-
specific criteria [7, 15, 11, 22]. Thus, regarding the previous definition of an
optimization problem, a CO can be formally defined as follows:

Definition 2.1.3 (Combinatorial Optimization Problem [7]). A combinato-
rial optimization problem is an optimization problem (2.1.1) where the set S of
feasible solutions is finite.

Typical examples of CO problems include network flow, matching, scheduling,
shortest path and decision problems. Notably, the Knapsack Problem (KP) [37,
22, 28] is a well-known example of a CO problem where the goal is to find the
subset of items with the highest total profit that can fit in a knapsack without
exceeding its maximum capacity.

Due to the combinatorial nature of CO problems, solutions are often defined in
terms of a ground set.

Definition 2.1.4 (Ground Set [36, 28, 27]).The ground set of a CO problem
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is a finite set of components G = {21, 22, . . . , 2:}, such that every solution to the
problem, feasible or not, can be defined as a subset of G.

For this work, it is also relevant to define the notion of empty, partial and
complete solutions.

Definition 2.1.5 (Empty Solution). A solution B ∈ 2G , where 2G denotes the
powerset of G, is said to be an empty solution if B = ∅.

Definition 2.1.6 (Partial Solution). A solution B ∈ 2G is said to be a partial
solution if there is a feasible solution B′ ∈ S such that B′ ⊇ B .

Definition 2.1.7 (Complete Solution). A feasible solution B ∈ S is said to be a
complete solution if there is no feasible solution B′ ∈ S such that B′ ⊃ B .

It is worth noting that, according to our definition, a partial solution is not
required to be feasible, unlike a complete solution.

To illustrate these concepts, let us consider the practical example of the KP. In
this context, the ground set is the set of all the available items (components).
As such, a feasible solution is one in which the sum of the weights of the items
placed within the knapsack (select components) does not exceed its capacity.
A partial solution is one where additional items (components) can be still be
added to the current solution without exceeding the capacity of the knapsack.
Note that, for the KP every partial solution is feasible. Finally, a complete
solution is a feasible solution where no further items can be added due to
capacity constraints.

In essence, since CO problems involve choosing a combination of components,
any algorithm that is able to enumerate all possible combinations can be used
to solve these problems. However, finding an optimal solution can be difficult,
and exhaustive search strategies may still not be able to efficiently solve CO
problems, which are often NP-Hard [22, 28]. In these cases, heuristic and MH
methods present themselves as effective alternatives to be considered.

2.1.2 Bounds

In mathematics, the notion of bounds has its origins in set (order) theory. More
precisely, upper and lower bounds are defined as the sets of majorants and
minorants of a given parent set. Majorants are the elements greater or equal to
the highest value within the parent set. Likewise, minorants are the elements
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smaller or equal to the smallest value in the parent set. Furthermore, an upper
bound is regarded as tight or strong when no smaller value can serve as an
upper bound, a concept known as the supremum or least upper bound of a set.
Similarly, a lower bound is considered tight when no higher value can function
as a lower bound, which is known as the infimum or greatest lower bound of a
set.

This concept holds significance in CO and is frequently employed when aiming
to estimate the best objective value that can be obtained by adding zero or
more components to a partial solution. In particular, the upper bound of a given
solution is any value that is greater than or equal to the objective function
values of feasible solutions that include the components of that specific solution,
and similarly for the lower bound. The same logic applies to the concept of
tight upper and lower bounds. However, in the context of CO, the term tight is
commonly used to describe a bound that is closer to the optimal value but may
not necessarily be strictly optimal.

Formally speaking, the upper bound and lower bound [7, 36] of a (partial)
solution can be defined as follows.

Definition 2.1.8 (Upper Bound). An upper bound of a (partial) solution B ∈ 2G

is any numeric value given by a function Φub : 2
G → R such that:

∀B′ ∈ S ∧ B′ ⊇ B : 5 (B′) ≤ Φub(B) (2.4)

Definition 2.1.9 (Lower Bound). A lower bound of a (partial) solution B ∈ 2G

is any numeric value given by a function Φlb : 2
G → R such that:

∃B′ ∈ S ∧ B′ ⊇ B : Φlb(B) ≤ 5 (B′) (2.5)

The usage of bounds is common in CO algorithms, especially in exact ap-
proaches, as will be detailed in Section 2.2.1. Nonetheless, concerning MH
methods, bounds can be helpful tools to guide the solution construction process.
For example, consider the choice between adding one of two components to a
partial solution. We can consider the two partial solutions that resulting from
adding either component, compute their upper bound and use it as a way to
determine which choice may be more promising. Note that a tight bound is
often an important factor for keeping this potential.

Moreover, while the objective function holds significance in directing the
optimization process, there are situations where evaluating the quality of a
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partial solution might not be possible due to the solution being infeasible.

In essence, the upper bound value provides an optimistic look at the quality of
a (partial) solution and its potential to improve. Conversely, the lower bound,
provides a realistic perspective on the objective value of the solution.

2.1.3 Global and Local Optimization

With regard to the search of solutions for optimization problems, there are two
primary strategies: Global Optimization (GO) and Local Optimization (LO).

GO involves the process of discovering a global optimum (Definition 2.1.2) for
a given problem, regardless of where it might lie within the solution space.
This search for the best solution is often called exploration. In contrast, LO
concentrates on finding the most optimal solution among those that are in
its proximity, which is commonly referred to as exploitation. The concept of
proximity is related to the definition of a neighborhood, which for a given
solution is specified by a particular neighborhood structure defined as follows:

Definition 2.1.10 (Neighborhood Structure [7, 11]). A neighborhood struc-
ture for an optimization problem is a mapping:

N : S −→ 2S (2.6)

Such that, for every feasible solution B ∈ S there is a set of neighboring solutions
N(B) ⊆ S, namely its neighborhood.

In general, the neighborhood structure refers to the set of rules that must be
applied to a solution in order to generate all of its neighbors. Additionally, we
can define a local optimal solution or just local optimum as follows:

Definition 2.1.11 (Local Optimum [5, 11, 14]). Assuming maximization
without loss of generality, a solution B is a local optimum with respect to a given
neighborhood structure N(B) iff:

∀B′ ∈ N (B) : 5 (B) ≥ 5 (B′) (2.7)

Furthermore, B̂ is a considered a strict a local optimum iff:

∀B′ ∈ N (B) \ {B} : 5 (B) > 5 (B′) (2.8)

10
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As an illustrative example, consider the objective function 5 (B) shown in Fig-
ure 2.1. With respect to the Definitions 2.1.2 and 2.1.11, the solution B1 is a
global optimum and B2, B3 are (strict) local optima. It is worth noting that, in
this example, the neighborhood is defined based on the adjacency to the ( axis.

(

5 (B)

B1 B2 B3

Figure 2.1: Global and Local Optima

In practice, the decision to use either a global or local optimization strategy is
often influenced by factors such as the available time budget and the preferences
of the decision maker. While GO aims to find the optimal solution to a problem,
the search process may be time-consuming or, in some cases, computationally
infeasible due to the size of the search space. On the other hand, LO, while
lacking the optimality guarantees of, is able to quickly generate “good” solutions
that may be acceptable to the decision maker. Nonetheless, the quality of the
solutions may be poor due to the ruggedness of the objective function fitness
landscape (many local optima). Ultimately, the performance of both methods
is closely tied to problem-specific knowledge.

In the Google Hash Code competition, due to the time imposed by the com-
petition setting, it is often not in the interest of the contestants to use global
optimization methods, as they are unlikely to finish on more complex problem
instances. Instead, a balance between global and local optimization (exploration
and exploitation) is typically employed. To elaborate, the strategy typically
involves exploring the search space via GO methods to find “good” starting
solutions, which LO methods can further exploit.
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2.1.4 Black-Box and Glass-Box Optimization

In the field of optimization, two settings are commonly recognized: Black-Box
Optimization (BBO) and Glass-Box Optimization (GBO).

In BBO optimization settings there is no information about the landscape of the
function being optimized, constraints defining the set of feasible solutions [34],
or the objective function is too complex to be approached from an analyti-
cal perspective. As such, algorithms to solve these problems do so only by
interacting with the problem through the evaluation of potential candidate
solutions [33, 18]. Meta-Heuristics, as will be later detailed are examples of
methods that follow this approach for finding/improving solutions. By contrast,
in GBO optimization, also known as white box optimization, there is a good
understanding of the problem instance being optimized and the objective func-
tion properties [33]. Hence, the algorithms used may take advantage of more
analytical properties of the problem since they are transparent to the solver.

In the context of the Hash Code competition, contestants typically engage the
problems from a BBO perspective, as the underlying objective function of the
is too complex to formalize. Additionally, the process of formalization can be
time-consuming and, as a result, the usage of GBO methods post-formalization
would not be justified, as they could turn out to be computationally slower.
However, it is in many cases, possible to use GBO methods, e.g., Integer Linear
Programing (ILP) to tackle sub-problems that are simpler to formalize.

2.2 Optimization Strategies

Combinatorial optimization literature extensively documents a series of meth-
ods for solving multiple problems [7, 22, 26]. The approaches followed by these
methods are diverse and typically defined by factors such as the time complex-
ity, the quality and the strategy for finding solutions. Particularly, algorithms
are often classified in the literature as exact, approximation, or heuristic based
on the quality of solutions. Moreover, (meta-)heuristic approaches are often
described in terms of constructive and local search procedures.

2.2.1 Exact, Approximation and Heuristic Methods

Exact methods are designed to find the optimal solution for a given problem.
These typically involve an exhaustive enumeration and evaluation of solutions.
However, in large problem instances, this may prove to be computationally
infeasible. In the context of CO problems, two general exact algorithms are well-
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known and widely studied: Branch and Bound and Dynamic Programming [8,
28].

These algorithms operate by iteratively breaking down a problem into smaller,
interconnected or standalone sub-problems. The solutions to these are then
combined to form the final solution. However, each algorithm employs distinct
techniques to enhance the exploration of the search space.

In Branch and Bound approaches, the strategy revolves around utilizing bounds
to restrict the search space. Specifically, the upper bound facilitates pruning
the search tree, effectively eliminating the need to explore solutions that are
undoubtedly worse with respect to the best solution found by the algorithm at a
particular stage. Similarly, the lower bound guarantees that solutions of inferior
quality are rejected during the search process. On the other hand, Dynamic
Programming approaches leverage the optimal substructure property [28],
thereby avoiding recomputing repeated sub-problems.

Approximation methods are designed to find solutions that are provably guar-
anteed to be close to the optimal quality with respect to a given approximation
factor. In fact, approximation methods are often able to solve problems in
polynomial time and yield solutions of relatively high quality [24]. However, it
is important to note that they require a mathematical proof of approximation
that is specific to the problem at hand. Notably, a significant amount of research
exists in this field concerning CO problems [1].

Heuristic methods work by finding solutions according to a general “rule of
thumb”, the quality of which can be verified through experimentation. These
methods do not provide any guarantees of optimality, as they are derived from
intuition and their effectiveness is closely tied to the characteristics of the
problem at hand. Nevertheless, they are reliable means of finding solutions in
difficult CO problems, typically yielding good solutions in a short time frame
when compared to exact methods.

A MH is as a high-level heuristic method, as alluded by the word “meta”,
which describes a concept as an abstraction of other. In the literature, the
definition of meta-heuristic varies across different sources, resulting in a lack of
consensus on a formal description [6, 11, 28, 26]. Nonetheless, one commonly
accepted definition, by Osman and Laporte [6], captures the essence of MH
methods, which can be defined as iterative generation processes that “guide and
intelligently combine subordinate heuristics for exploring and exploiting solutions
in the search space” . Moreover, most, if not all heuristic and meta-heuristic
approaches are defined in terms of constructive and local search approaches,
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which we describe next.

2.2.2 Constructive Search

Constructive Search (CS) is an approach for optimization where from an empty
or partial solution for a given problem a feasible complete solution is con-
structed by iteratively adding components selected from the ground set. The
construction process is guided by a pre-established set of rules, which may be
heuristic in nature or informed by other relevant information, e.g., objective
value and bounds. These rules determine what components from the ground
set can be included in the solution at each iteration. The construction stops
when no more components can be added to the solution, i.e., the solution is
complete. For clarification, a generic pseudocode for a CS procedure [27] is
shown in Algorithm 2.1.

Algorithm 2.1: Constructive Search Procedure
Input :Ground Set (G)
Output :Solution (B)

1 B ← ∅
2 C ← { 2 ∈ G \ B | B ∪ {2} is feasible }
3 while C ≠ ∅ do
4 2 ← SelectComponent(C)
5 B ← B ∪ {2}
6 C ← { 2 ∈ G \ B | B ∪ {2} is feasible }
7 end
8 return B

It is important to observe that a constructive search approach hinges on a
strategy for selecting a component to add to a solution, represented in Algo-
rithm 2.1 through the SelectComponent function. Moreover, various other
problem-specific details come into play. These encompass activities such as
enumerating components (C), creating an empty solution, adding a component
to a solution, and evaluating its feasibility. Notably, these details directly in-
fluence the CS procedure’s ability to construct good solutions. This highlights
the importance of having a solid problem model, a concept we will delve into
further in this thesis.

2.2.3 Local Search

Local Search (LS) approaches begin, with a feasible solution to a given problem,
and then make modifications by adding, removing, and swapping components
in order to improve it. The range of possible modifications defined by the user

14



Chapter 2. Background Meta-Heuristics

define the neighborhood structure for a problem, which LS approaches attempt
to exploit. The LS approach terminates when no neighboring solution is better
(or equal), i.e., when the current solution is a local optimum. In the scope of this
work, a transformation that can be applied to a solution within in the context
of a LS procedure will be referred to as local move.

The primary objective of a LS process is to improve a solution in the direction of
the local optimum. However, it is common in a LS approach to allow worsening
a solution in order to explore previously unseen regions of the search space.
This action is commonly referred to as a perturbation [19]. Furthermore, LS
is frequently applied in sequence to a constructive search phase, where a CS
algorithm is used to construct a good initial solution, which is then further
improved through a LS approach.

A generic pseudocode for a local search procedure is outlined in Algorithm 2.2.
It is crucial to clarify that within the pseudocode, the Step function signifies the
execution of a local move, while the Perturb function represents an optional
action introducing a perturbation to the solution, if possible. Additionally, the
enumeration of possible local moves (M) and the selection of a specific local
move to incorporate into the solution are abstracted through the LocalMoves
and SelectLocalMove functions, respectively. Note that, as in CS, the problem-
specific choices made regarding the implementation of each of these functions
will significantly influence the effectiveness of the LS procedure.

Algorithm 2.2: Local Search Procedure
Input :Solution (B)
Output :Solution (B)

1 M← LocalMoves(B)
2 whileM ≠ ∅ do
3 <← SelectLocalMove(M)
4 B ← Step(B,<)
5 B ← Perturb(B) B Optional
6 M← LocalMoves(B)

7 end
8 return B

2.3 Meta-Heuristics

In the literature, amultitude ofmeta-heuristic algorithms have emerged over the
years, exploring various ideas to guide the search process [6]. These encompass
strategies that narrow the search space to promising regions, enhance solutions
in a greedy manner, or utilize randomized and probabilistic techniques, some
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of which draw inspiration from natural phenomena like collective behavior,
natural selection, and physical processes of materials.

However, the majority of state-of-the-art meta-heuristic algorithms can be
described by a few distinctive traits [11] such as:

Search Strategy. This refers to the method used to find a solution. It can be
one of three main types: constructive, local, or a composite approach that
combines both strategies.

Memoization. This concept involves maintaining a record or archive of pre-
viously explored solutions. This record helps in identifying solutions that
may be revisited or disregarded in subsequent stages of the optimization
process.

State Size. This pertains to the number of solutions being evolved during the
construction phase. In population methods, multiple solutions are worked
with at each iteration, while in trajectory methods (single-state), only a
single solution is improved at a time.

In this section, we will offer a brief overview of select state-of-the-art MH
algorithms, which encapsulate all the above properties and will be utilized and
implemented in the context of this work.

2.3.1 Beam Search

Beam Search (BS) [3, 36] is a CS population Meta-Heuristic (MH) inspired
by the breadth-first search algorithm [7]. However, it deviates from the con-
ventional practice of expanding all solutions in the search tree during each
iteration. Instead, this technique maintains a fixed-size archive of previous
solutions, which are expanded at each step (beam). Subsequently, the expanded
solutions undergo filtering, and only the best solutions, determined based on
heuristic information or bound values, are retained within the archive. These
selected solutions act as the starting points for the next iteration. It is important
to acknowledge that the size of this archive, and consequently the number of
solutions filtered at each step, is dictated by a parameter referred to as the beam
width.

The construction process of BS terminates either when there are no more
candidate solutions to expand or when other predetermined stopping criteria
are satisfied. For illustration purposes, the pseudocode for BS is presented in
Algorithm 2.3. In this context, the notation argmaxF is employed to introduce
the concept of selecting the topF elements from a given set.

16



Chapter 2. Background Meta-Heuristics

Algorithm 2.3: Beam Search
Input :Beam Width (F ), Objective Function (5 ), Upper Bound

Function (ΦD1)
Output :Solution (B)

1 B ← ∅
2 1>1 9 ← −∞
3 B ← {∅}
4 if B is feasible then
5 1>1 9 ← 5 (B)
6 end
7 while B ≠ ∅ ∧ stopping criteria not met do
8 B′← ∅
9 foreach B′ ∈ B do
10 B′← B′ ∪ Branch(B′)
11 end
12 if B′ ≠ ∅ then
13 B ← argmaxF

B′ ∈ B′
ΦD1 (B′) B Select the “w” best solutions

14 foreach B′ ∈ B do
15 if B′ is feasible ∧ 5 (B′) > 1>1 9 then
16 B ← B′

17 1>1 9 ← 5 (B′)
18 end
19 end
20 end
21 end
22 return B

The pseudocode assumes that the Branch function generates the set of all
potential (partial) solutions achieved by incorporating components from the
ground set that are not currently part of the solution. It is worth noting
that, since the solution is constructed incrementally, the solutions obtained
through branching might not always be feasible. As a result, an additional
step for feasibility verification is required before updating the best solution (B)
identified during the search process. Likewise, a similar check is carried out
for the empty solution, as its feasibility can vary depending on the specific
problem being addressed.

It is important to emphasize that the beam width parameter directly influences
the quality of the solutions discovered. Smaller values might lead to prema-
ture convergence to a local optimum, while larger values, although capable
of producing better-quality solutions, could lead to increased memory and
computational requirements. Futhermore, the effectiveness of this MH is also
closely linked to the quality of the upper bound function.
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2.3.2 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) [21, 36, 11] is a
stochastic, CS and LS, MH that iteratively builds solutions by sequencing a
construction phase with an optional local search phase. The construction phase
begins with an empty solution and iteratively adds a new component at each
step. This component is chosen at random from a restricted candidate list of
components. This list consists of the best available components for extending
the current (partial) solution, based on either a heuristic value or an upper
bound. Additionally, there is an option to apply a local search phase to the
partial solution obtained during the construction phase. The goal of this local
search is to further exploit the solution, with algorithm concluding when some
predefined stopping criteria are met. The provided pseudocode in Algorithm 2.4
offers an overview of how the GRASP algorithm works.

It is important to highlight that this meta-heuristic, provides a means of control-
ling the balance between randomization and greediness in solution construction
(GreedyRandomizedConstruction). This control is achieved through the pa-
rameter U , which serves as a threshold for the quality of solutions within the
candidate list. Specifically, when U = 1, the construction process is entirely ran-
dom, and all possible components are included in the candidate list, regardless
of their quality. Conversely, with U = 0, only the components with the optimal
heuristic or bound value, will be selected at random, rendering this MH more
greedy. It is worth noting that the inclusion of the optional local search step
(LocalSearch) can significantly enhance the quality of the randomized greedy
process. However, the crux of fine-tuning lies in determining an appropriate
value for U .

2.3.3 Iterated Greedy

Iterated Greedy (IG) [31, 36] is a CS trajectory MH that revolves around the
concept of iteratively destroying a solution and subsequently reconstructing it
to break free from local optima. In its basic form, this MH begins by construct-
ing an initial solution, for example through a randomized greedy approach.
Subsequently, it proceeds to remove one or more randomly chosen solution
components before initiating the construction process anew. This sequence of
operations continues until some predefined stopping criteria are satisfied.

Some less-common variations of this algorithm incorporate local search meth-
ods to further exploit the solution following the construction phase. Further-
more, certain versions of this MH, as detailed in the literature [31], implement
an acceptance criterion that probabilistically permits the acceptance of solu-
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Algorithm 2.4: Greedy Randomized Adaptive Search Procedure
Input :Alpha (U), Objective Function (5 ), Upper Bound Function

(ΦD1)
Output :Solution (B).

1 B ← ∅
2 1>1 9 ← −∞
3 if B is feasible then
4 1>1 9 ← 5 (B)
5 end
6 while stopping criteria not met do
7 B′← GreedyRandomizedConstruction(ΦD1, U)
8 B′← LocalSearch(B′) B Optional
9 if B′ is feasible ∧ 5 (B′) > 1>1 9 then
10 B ← B′

11 1>1 9 ← 5 (B′)
12 end
13 end
14 return B

tions of inferior quality, akin to the mechanisms employed in SA, which will
be elaborated upon in Section 2.3.7.

As an illustration, the pseudocode for an IG algorithm utilizing a randomized
greedy strategy, is outlined in Algorithm 2.5. Here, the functions Construct
and Destruct signify the approach used for (re-)constructing and destroying a
solution, respectively.

Algorithm 2.5: Iterated Greedy
Input :Objective Function (5 ), Upper Bound Function(ΦD1)
Output :Solution (B)

1 B ← Construct (∅,ΦD1)
2 while stopping criteria not met do
3 B′← Destruct(B)
4 B′← Construct(B′,ΦD1)
5 if B′ is feasible ∧ 5 (B′) > 5 (B) then
6 B ← B′

7 end
8 end

2.3.4 Ant Colony Optimization

Ant Colony Optimization (ACO) [16, 10, 26, 11] is a stochastic population
based, CS and LS, MH that is inspired by the foraging behavior of ants, which
in the context algorithm represent (partial) solutions undergoing construction.
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The algorithm simulates the movement of ants through the search space, where
each ant constructs a solution by making a sequence of probabilistic choices
based on the pheromone trail left by previous ants and other heuristic infor-
mation. Notably, the pheromones, associated with the components 28 of the
ground set G, weigh the relevance of the integration of a specific component
in a solution during the construction process. Moreover, the pheromones are
associated with each component of the ground set, and in practice consist in a
parametrized probabilistic model.

One of the key features of ACO is the incorporation of a learning component
through the use of a pheromone update rule that adapts the pheromone trail
based on the quality of the solutions constructed by the ants, with the aim of
guiding the ants towards better solutions over subsequent iterations. As such,
the algorithm requires the tuning of several parameters such as the pheromone
evaporation rate, the choice of the pheromone update rule, and the initialization
of the pheromone model. Notably, there are different models which gave origin
to many variations of this MH. The pseudocode provided in Algorithm 2.6
illustrates this MH.

Algorithm 2.6: Ant Colony Optimization
Input :Pheromone Update Rule (R), Pheromone Values (®g),

Evaporation Rate (U)
Output :Solution (B)

1 B ← B′

2 1>1 9 ← −∞
3 P ← {∅}
4 if B is feasible then
5 1>1 9 ← 5 (B)
6 end
7 while not stopping criteria met do
8 P ← AntBasedSolutionConstruction(P, ®g)
9 P ← LocalSearch(P) B Optional

10 B′← argmax
B′ ∈ P

5 (B′) B Select best solution

11 if 5 (B′) > 1>1 9 then
12 B ← B′

13 1>1 9 ← 5 (B′)
14 end
15 P ← PheromoneUpdate(P, R, ®g , U)
16 end
17 return B∗

In summary, the ACO meta-heuristic can be described as a process that com-
prises of a solution construction phase (AntBasedSolutionConstruction), in
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which each solution of the population is constructed using both the pheromone
model and heuristic information, followed by an optional phase of exploit-
ing these solutions through local search (LocalSearch), and culminating in a
pheromone update phase (PheromoneUpdate). This process is then repeated
for multiple iterations, until certain stopping criteria is met.

2.3.5 Hill-Climbing

Hill Climbing (HC) [26, 15] is a simple stochastic, LS trajectory MH that works
by iteratively attempting to improve a starting solution through a sequence
of incremental changes, i.e., by selecting the solution in the neighborhood
that yields the best increment with respect to the objective value. This process
terminates when the local optimal solution is found or another stopping criteria
is met. Despite the simplicity of this method it is worth noting that, due to the
inherent greedy choice of the best at each step this approach is susceptible to
getting trapped in local optima. For illustration purposes the pseudocode of
simple version of an HC algorithm is shown in Algorithm 2.7.

Algorithm 2.7: Hill Climbing
Input :Solution (B), Objective Function (5 )
Output :Solution (B)

1 while stopping criteria not met do
2 B′← ApplyRandomLocalMove(B)
3 if 5 (B′) > 5 (B) then
4 B ← B′

5 end
6 end
7 return B

It is worth noting that the presented algorithm’s effectiveness is rooted in
the efficiency of a random process, which strives to improve solution quality
through a sequence of random local move attempts (ApplyRandomLocalMove
function). Nevertheless, there exist two noteworthy variations that more thor-
oughly explore the solution’s neighborhood and take steps in the direction
of the most substantial improvement. These are commonly known as First
Improvement (FI) and Best Improvement (BI). The latter is also known in the
literature as steepest ascent HC [26].

In a FI approach, the first random neighboring solution that improves the
current solution’s quality is retained. Conversely, in a BI scenario, the entire
neighborhood of the current solution is examined, and the best neighboring
solution is selected for the subsequent iteration.
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2.3.6 Iterated Local Search

Iterated Local Search (ILS) [19, 26, 11] is a stochastic LS trajectory MH that
extends the HC method. This algorithm operates through a series of iterations,
where each iteration aims to explore a solution by applying a LS procedure,
typically FI. When an improvement is achieved, the best solution found is
retained and serves as the reference solution for subsequent iterations. This
iterative process continues until the algorithm either converges to the local
optimum or meets predefined stopping criteria.

An integral feature of the ILS is the introduction of a perturbation step at the
end of each iteration. This perturbation injects controlled randomness into
the current solution, allowing for exploration of different regions within the
search space. This exploration aids in preventing the algorithm from becoming
stuck in local optima. Notably, other many variations of this algorithm exist,
with certain versions incorporating an archive mechanism to store starting
solutions for each iteration. This approach helps prevent repeated exploration
of the same regions within the search space.

The core framework of the ILS algorithm is illustrated in Algorithm 2.8. The
parameter : in the Perturb function represents the kick strength, determining
the intensity of the perturbation movement, and can be adjusted accordingly.

Algorithm 2.8: Iterated Local Search
Input :Solution (B), Kick Strength (:), Objective Function (5 )
Output :Solution (B).

1 B′← B

2 while stopping criteria not met do
3 B′← LocalSearch(B)
4 if 5 (B′) > 5 (B) then
5 B ← B′

6 end
7 B′← Perturb(B′, :)
8 end
9 return B

2.3.7 Simulated Annealing

Simulated Annealing (SA) [2, 20, 4] is a stochastic, LS trajectory MH that
draws inspiration from the annealing process in metallurgy. The core concept
adopted from metallurgy and applied to the algorithmic context is the notion
of accepting poorer quality solutions in the early stages of the search and
gradually tightening the acceptance criteria as the search progresses. This
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strategy is based on the understanding that in the initial phases, accepting
suboptimal solutions as the best available option promotes exploration of the
search space. As the search advances towards its final stages, the emphasis
shifts towards convergence to a local optimum, favoring exploitation.

Essentially, SA works by iteratively applying small perturbations to a candidate
solution in order to enhance it. The algorithm accepts or rejects these new
solutions based on their quality and a probability function that emulates the
cooling process of a metal. This probability function depends on a temperature
parameter, which decreases as the algorithm proceeds, causing the acceptance
probability of worst solutions to decrease as well. Ultimately, the algorithm
halts when further improvements to the solution are no longer feasible or when
predefined stopping criteria are met.

The details of the SA algorithm are illustrated in the pseudocode provided
in Algorithm 2.9.

Algorithm 2.9: Simulated Annealing
Input :Solution (B), Initial Temperature (C0), Cooling Rate (U),

Objective Function (5 )
Output :Solution (B)

1 C ← C0
2 while stopping criteria not met do
3 B′← ApplyRandomLocalMove(B)
4 X ← 5 (B) - 5 (B′)
5 if X ≤ 0 ∨ Random(0, 1) < 4−

X
C then

6 B ← B′

7 end
8 C ← C · U
9 end

10 return B

Importantly, the SA algorithm is tunable, allowing for parameter adjustments
to suit the specific problem at hand. Parameters such as the initial tempera-
ture, cooling function, and acceptance criteria can be fine-tuned for optimal
performance. In Algorithm 2.9, the acceptance criteria is defined using an ex-
ponential function, while the cooling process is held constant and governed by
the parameter U .

2.3.8 Tabu Search

Tabu Search (TS) [9, 17, 26] is a stochastic, LS trajectory MH that incorporates
the use of a memory to aid the search process.
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In essence,the TS algorithm operates by conducting an iterative exploration of
the solution space through the repeated application of a series of BI procedures.
During each step, the best solution is updated and added to a list of recently
visited solutions known as the tabu list. The tabu list has a predefined size and
serves as a short-term memory mechanism. This approach aims to prevent the
algorithm from revisiting solutions that have been explored before, thereby
avoiding premature convergence to local optima. By incetivizing exploration of
new regions in the search space, the algorithm enhances its ability to find better
solutions. Similar to other LS meta-heuristics, the Tabu Search (TS) algorithm
terminates when no further improvement to the solution is achievable.

The pseudocode in Algorithm 2.10 illustrates a simple version of this meta-
heuristic.

Algorithm 2.10: Tabu Search
Input :Solution (B), Tabu Length (;<0G ), Objective Function (5 )
Output :Solution (B)

1 T ← {∅}
2 while stopping criteria not met do
3 B′← argmax

B′ ∈ N (B)\T
5 (B′) B Select best neighbor B′ ∉ T

4 if 5 (B′) > 5 (B) then
5 B ← B′

6 T ← T ∪ {B′}
7 end
8 if |T | > ;max then
9 T ← T \ Oldest(T)

10 end
11 end
12 return B

Notably, the size and duration of the tabu list (;max), as well as the rules for
adding and removing solutions from the list, are user-specified parameters that
need to be fine-tuned for each problem. Additionally, a common criterion for the
removal of an element from the tabu list is based on its age. This aspect related
to age-based removal is depicted in Algorithm 2.10 through the utilization of
the Oldest function, which retrieves the oldest solution stored within the tabu
list.

2.3.9 Outline

In this section, we provided a concise overview of well-known state-of-the-art
meta-heuristic algorithms that hold relevance to our study. Our intention was
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to offer the reader a general understanding of the conceptual foundation behind
each algorithm, without delving into an exhaustive exploration. Furthermore,
we categorized each meta-heuristic based on the employed search strategy (CS
or LS), the utilization of a memory archive for solutions, and the state size
(Population vs. Trajectory).

The Table 2.1 presents a succinct summary of various meta-heuristic methods,
organized according to these properties.

Meta-Heuristic Search Strategy State Size Memoization
Constructive Search Local Search Trajectory Population

BS X X
GRASP X X X

IG X X
ACO X X X
HC X X
ILS X X
SA X X
TS X X X

Table 2.1: Meta-Heuristics Summary

2.4 Modeling

Modeling refers to the process of creating a simplified representation or approx-
imation of a real-world system, process, or phenomenon in order to improve
understanding and facilitate analysis. It is commonly used in the fields of
physics and mathematics, where mathematical equations are used to depict
reality and capture the important factors of a particular system in a manageable
and understandable format [30].

In the field of optimization, there is an extensive body of literature on the
development of glass-box ILP models for a wide range of problems [7, 14, 24].
One of the key advantages of this approach is that it allows for the application of
standard solvers that can be used to find solutions to diverse problems. This can
be attributed to the fact that the model encapsulates all the information required
by a generic solver, e.g.,Gurobi, CPLEX, or GLPK, to address any problem in a
principled manner.

As an example of this GBO modeling approach consider the KP for which
an ILP model [22] is represented by the Equation (2.9). Herein, the parameter
= signifies the number of items, while, designates the knapsack maximum
capacity. Additionally, the variables F8 and ?8 correspond to the weight and
profit, respectively, associated with each individual item 8 . Furthermore, the
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binary variable G8 is employed to denote whether a particular item is included
(assigned a value of 1) or excluded (assigned a value of 0) from the knapsack,
for a given solution.

max 5 (G) =
=∑
8=1

?8 · G8

s.t
=∑
8=1

F8 · G8 ≤,

G8 ∈ {0, 1} for 8 = 1, 2, . . . , =

(2.9)

It is crucial to recognize that this formulation highlights several significant
aspects of the problem.These include the solution space, which defines the range
of values each variable can take; the objective function, which expresses the
optimization goal; the construction rules (constraints) that guide the creation
of a valid solution; and the problem instance parameters necessary for defining
and solving the problem instance effectively.

When approaching problems from a BBO perspective, particularly through MH
solvers, the notion of developing a reusable model has yet to be established,
as far as our knowledge extends. However, for such a model to come into
existence, it would need to address, at the very least, the same details as the
aforementioned KP model. Furthermore, considering the strategies employed
by MH solvers to explore solutions (Section 2.3), certain recurring aspects
emerge as essential questions that a model must address:

Problem Instance. What information is required to characterize a particular
problem (instance)?

Solution. How do we characterize an empty, partial or complete solution for
the problem, and its feasibility?

Objective Function & Bounds. Can we evaluate a partial or complete solu-
tion, and how? How do we calculate the bounds for a (partial) solution?

Combinatorial Strutcture (CS). How do we construct solutions? What is
the ground set, components and how are they added/removed to/from
the solution.

Neighborhood Strutucture (LS). How do we characterize neighborhood of
a solution and the possible local moves?

Incorporating a standardized approach to address these fundamental questions
can pave the way for a systematic problem-solving methodology. This enables
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the integration of meta-heuristics as powerful solvers, akin to traditional solvers
in mathematical programming. This approach diverges from existing meta-
heuristic frameworks [13, 12, 23], where custom meta-heuristic solvers are
tailored for each specific problem. Instead, it establishes a problem-independent
abstraction layer (model) that equips solvers with essential information across
diverse meta-heuristics, while abstracting the intricacies of inherent to each
specific problem.

Problem SolutionComputer

Model Solver

Figure 2.2: Principled Modeling Framework

The overall concept for a principled meta-heuristics modeling framework is
to create a standardized model that is applicable to any problem domain. This
model comprises a set of functions that encapsulate the essential aspects of the
problem. This model is then provided to a computer system, which employs
a range of meta-heuristics. These meta-heuristics utilize the set of functions
within the model to effectively generate solutions, as illustrated in Figure 2.2.

Crucially, the set of functions represents the core of the standardized model.
An essential consideration is to refine this set of functions to capture the
fundamental characteristics that are universally present in all problems. This
avoids the need for distinct functions for each problem, which would defeat
the purpose of creating a standardized approach.

Notably, this framework for tackling problems in the context of meta-heuristics,
which we refer to as the principled modeling approach, has been seldomly
researched and constitutes an ongoing research effort. In fact, we identify two
noteworthy studies in the literature and three attempts in practically developing
an Application Programming Interface (API) for this modeling framework [15,
36, 35].

2.4.1 Software

The first attempt at developing a modeling framework for experimental testing
ofmeta-heuristics can be traced back to the pioneering thesis work of Vieira [15].
In this work, the author introduced the concept of designing and implementing
a modeling framework, specifically targeted at local search algorithms, while
also alluding to ideas related to constructive search. The practical implementa-
tion of these modeling concepts was achieved through a Python framework,
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named Python Optimization Framework (POF). Regrettably, the source code is
unavailable, leaving us with only a textual description for reference.

The work, that followed was in the sense of further refining the ideas proposed
by Vieira [15] and culminated in a C API named Not Another Framework for
nature-inspired optimization (nasf4nio). Then, in the context of the thesis work
of Outeiro [36], a version of this API was implemented for constructive search
meta-heuristics (nasf4nio-cs).

The upcoming sections provide a succinct summary of the most relevant fea-
tures and contributions of these works.

Python Optimization Framework

This python framework, developed in the context of the work by Vieira [15], is
the first to implement the modeling principles for meta-heuristics. It does so
by providing an “external” and “internal” interface. The external interface is
designed for use by MH developers who are interested in the implementation
of solvers, while the internal interface is designed for individuals who want to
engage with the framework from a problem-solving perspective and are not
interested in the implementation details of the algorithms.

Generally, the POF is implemented by the means of three main classes:

Problem. This class is where the modeling-related aspects are implemented.
Specifically, the solution generation and evaluation are described by
a series of classes and methods that, when implemented, comprise the
model. These classes and methods allow the user to specify how solutions
are generated, how they can be modified to improve them, and how they
are evaluated, thus constituting the “internal” interface.

Solver. This class is where meta-heuristics can be implemented in a problem-
independent manner. By calling upon the methods defined int the
Problem class the development of these algorithms is standardized and
constitutes the “external” interface of this framework.

Simulator. This class serves as a general-purpose utility that allows the step-
by-step execution of a solver with respect to a given problem, thus being
responsible for the execution of the algorithms and gathering solutions.

Focusing on modeling perspective, the Problem class is the one that exposes
several modeling related functions that when implemented for a problem can
be used by a Solver to obtain solutions. Albeit, from a simple analysis of the
the function set we concluded that it is too complex and intricate possibly being
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one of the reasons that motivated the simpler design of nasf4nio.

Not Another Software Framework for Nature-Inspired Optimization

This API began as an implementation of LS abiding by the concepts proposed
in the POF culminating in nasf4nio [35]. In general, this API follows the
same concepts as the nasf4nio-cs, which we will detail next. Regarding CS,
the work by Outeiro [36] was built upon the concepts presented in the POF
and the existing implementation of nasf4nio, further unifying the concepts
and providing both a conceptual model and an implementation of a C API for
constructive search (nasf4nio-cs).

Specifically, nasf4nio-cs, refines the model definition (the Problem class in
the POF) by narrowing down the specifications into a small subset of operations
and data structures. These elements, when combined, allow for the complete
characterization of a model and the implementation of generic meta-heuristics.

In terms of the core data structures, the API defines the following:

Problem. This data structure is responsible for recording all the problem
instance specific features and other relevant information that may be
acquired and that pertains to the problem at hand and thus not being
changed by the solver in any way

Solution. This data structure is responsible for storing the data pertaining
to a complete/partial solution for a particular problem instance.

Component. This data structure stores the data relative to a component from
the ground set that may added, removed, permitted or forbidden with
respect to a given solution.

In the context of nasf4nio, the majority of the data structures are retained, save
for the substitution of the Component structure with the Move structure. The
latter stores information pertaining to local moves that can be applied to a
solution.

Focusing again in nasf4nio-cs and narrowing our focus to functions primar-
ily concerned with Solution manipulation and excluding those related to
implementation intricacies, such as, inspection, assignment, and memory man-
agement, we can classify them into three main categories:

Generation. In this category we find operations such as: emptySolution
and heuristicSolution which are used to generate solutions for a given
problem.
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Construction. Under this category fall operation that allow a partial solu-
tion to be further improved constructively. These include the functions
applyMove, enumMove, heuristicMove, heuristicMoveWOR, randomMove
and randomMoveWOR, which allow for the application, enumeration and
selection of moves. In this context, a move refers to the modification of a
given solution by performing an action on its components, i.e.,from a CS
perspective.

Evaluation. In this category appear functions such as getObjectiveVector and
getObjectiveLB which allow for evaluation of the quality of the solution
with respect to the objective value and bounds.

Similarly, the same principles apply to nasf4nio. However, the “construction”
operations are primarily designed to interact with solutions and (local) moves,
as opposed to solutions and components. Importantly, there remains yet a
connection to be made between both implementations of this API for construc-
tive and local search. This connection will be further explored and formalized
in Chapter 4.
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Google Hash Code Competition

“understanding a question is half an answer”

— Socrates

This chapter presents an overview of the Google Hash Code competition. In
Section 3.1, we provide a concise review of the competition, encompassing both
its historical background and format. Subsequently, in Section 3.2, we delve into
the problems presented to participants over the years, attempting to categorize
them and establish connections with well-known combinatorial optimization
problems described in the literature. Moving forward, Section 3.3 sheds light
on the design of competition instances. Concluding this chapter, Section 3.4
offers remarks that highlight key aspects of the competition problems, deemed
pertinent to this work.

3.1 History & Format

The Google Hash Code competition, organized by Google from 2014 to 2022,
consisted of two main phases: a qualifying round and a final round. During
this competition, teams of 2-4 skilled individuals were tasked with solving
complex problems that mirrored real-world engineering challenges faced by
Google’s own engineers. The primary aim of the competition was to attract
talented individuals to the company. In the qualifying round, participants
worldwide engaged in a 4-hour problem-solving session. Subsequently, around
40-50 select teams advanced to the final round, which took place at a Google
headquarters. Additionally, participants gathered at designated hubs globally
during the qualifying round, fostering a competitive environment.
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Figure 3.1: Google Hash Code Competition Attendance 2014-2022

In the early years of the competition, it was only open to teams from France.
In the subsequent three years, it was open to teams from Europe, Africa, and
the Middle East before becoming a worldwide competition. Therefore, it is
expected that there will be an increase in the number of results available in the
later years and more challenging problems due to the increase in competition.
Furthermore, the number of participants kept growing throughout the years
which highlights the importance of this event as illustrated in Figure 3.1

Unfortunately, this year Google decided to cease all its coding competitions
including Hash Code. Nevertheless, the competition generated a diverse col-
lection of attempts at solving the problems, resulting in a valuable wealth
empirical data accessible to the community. As the official coding competition
website is no longer accessible, Google created a repository containing all prob-
lem statements and instances distributed under an open source license [38].
However, it is worth noting that the scores achieved by participants are not
integrated into this repository. Instead, they are documented across various
blog posts and third-party websites [39].

It is worth noting, that due to the nature of the problems and format of the
competition, participants frequently made use of heuristic and meta-heuristic
strategies to solve the problems as best as possible in the alloted time. Moreover,
the majority of competition problems are structurally different from one other,
which makes it demanding to write general-purpose heuristic solvers that can
be easily reused. Hence, it is a common practice for competitors to use solvers
that are easily implementable or readily available online, given that internet
access is permitted.
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3.2 Problems

The primary focus of this section is to provide a comprehensive understanding
of the relevant details of the Google Hash Code problems and drive connec-
tions with well-studied topics in combinatorial optimization literature. For
an exhaustive review of the problem specifics, the reader can refer to the
problem statements made freely available in the Google Coding Competitions
Archive [38].

3.2.1 Google Hash Code 2014

Street View Routing

In the context of constructing street viewmaps there is a need to collect imagery
that is taken by specialized vehicles equipped for that purpose. This constitutes
a challenging problem since given a fleet of cars which may only be available
for a limited amount of time a route for each must be defined as to maximize
the number of streets photographed. City streets are modelled as a graph
where nodes are junctions and the edges are streets connecting said junctions.
Moreover, streets are defined by three distinct properties: direction, length and
cost that will take for the car to traverse the street.

The challenge consists of scheduling the routes for street view cars in the city,
adhering to a pre-determined time budget. The goal is to optimize the solution
by maximizing the sum of the lengths of the traversed streets, while minimizing
the overall time expended in the process. The quality of the solution for this
problem is evaluated by using the sum of the lengths of the streets as the
primary criterion and the time spent as a tie-breaker.

The problem at hand bears a strong resemblance to a combination of the Vehicle
Routing Problem and the Maximum Covering Problem. This is because the
scheduling of routes for the fleet of cars must be done in a way that ensures
that the combination of all sets of streets visited by each car encompasses the
entire city, in the most time-efficient manner possible.

3.2.2 Google Hash Code 2015

Optimize a Data Center

The optimization of server placement within data centers is a critical aspect,
revolving around achieving optimal design efficiency. In this scenario, the
problem presents participants with the task of designing a data center and
devising the most effective server allocation. The data center’s structure is
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represented by a collection of rows, each containing slots where servers of
varying sizes and computing capacities can be positioned. When placed, these
servers are also assigned to specific resource pools, allowing them to contribute
their computing capacity to those pools.

Objectively, the goal is to assign multiple servers to available slots and resource
pools in a manner that maximizes the guaranteed capacity for all resource pools.
This metric serves as the criterion for evaluating solutions to this problem and
can be defined as the lowest amount of computing power that will remain for
a specific resource pool in the event of a failure of any arbitrary row in the
data center. Notably, this objective is considered a bottleneck, as even minor
changes in a solution might not yield significant score changes, rendering the
optimization process more challenging.

Importantly, the problem of optimizing the placement of servers in a data center
can be conceptualized as a combination of a Multiple-Knapsack Problem and an
assignment problem. This is because the servers must fit within the available
space constraints of the data center rows and, subsequently, must be assigned
to resource pools.

Loon

Project Loon, which was a research endeavor undertaken by Google, aimed
at expanding internet coverage globally by utilizing high altitude balloons.
The problem presented in this competition drew inspiration from this concept,
requiring contestants to devise plans for position adjustments for a set of
balloons, taking into consideration various environmental factors, particularly
wind patterns, with the objective of ensuring optimal internet coverage in a
designated region over a specific time frame.

The objective of this problem was to develop a sequence of actions, including
ascent, descent, and maintaining altitude, for a set of balloons with the goal of
maximizing a score. In this case, the score is calculated based on the aggregate
coverage time of each location, represented as cells on a map of specified
dimensions, at the conclusion of the available time budget.

In summary, this problem can be classified as both a simulation and a coverage
and routing problem, based on the properties previously described. It is impor-
tant to note that the simulation aspect of this problem has a direct impact on the
calculation of the score, and is not solely limited to constraints on the available
time budget for operations. Furthermore, this problem can be represented in
a forest, where the vertices represent spatiotemporal coordinates (G,~, I, C),
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and the edges symbolize changes in altitude and lateral movement (wind) for a
given balloon.

3.2.3 Google Hash Code 2016

Delivery

In today’s world, with the widespread availability of internet, online shopping
has become a prevalent activity. As a consequence, there is an ever-growing
need for efficient delivery systems. This competition challenges participants to
manage a fleet of drones, which are to be used as vehicles for the distribution
of purchased goods. Given a map with delivery locations, a set of drones, each
with a set of operations that can be performed (load, deliver, unload, wait), a
number of warehouses, and a number of orders, the objective is to satisfy the
orders in the shortest possible time, taking into consideration that the products
to be delivered in an order may have product items stored in multiple different
warehouses and therefore require separate pickups by drones.

In this problem, the simulation time T is given and the goal is to complete
each order within that time frame. The score for each order is calculated as
(T−C)
T × 100, where C is the time at which the order is completed. The score

ranges from 1 to 100, with higher scores indicating that the order was completed
sooner. The overall score for the problem is the sum of the individual scores
for all orders, and it is to be maximized.

In summary, this problem can be classified as a variant of the Vehicle Routing
Problem, specifically as a Capacitated, Pickup and Delivery Time Windowed
Multi-Depot Vehicle Routing Problem. This classification takes into account
the pickup and delivery of items, the time window for delivery, the multiple
routes and warehouses that each vehicle may need to visit in order to fulfill
the orders.

Satellites

Terra Bella was a Google division responsible for managing and operating a
constellation of satellites that collected and processed imagery for commercial
purposes. Specifically, these satellites were tasked with capturing images in
response to client requests.

The challenge presented to participants involves crafting schedules for individ-
ual satellites within the fleet. The goal is to secure image collections that match
customer preferences. These collections are characterized by geographical co-
ordinates on Earth and specific time windows for image capture. Each satellite,
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originating from unique latitude and longitude coordinates and possessing a
certain velocity, possesses the ability to make minor positional adjustments
along both axes to access potential photography sites. The problem’s score is
determined by aggregating the points earned through the successful comple-
tion of customer collections. In this context, completion signifies capturing all
images for a given collection within the designated time frame.

In essence, this problem falls into the categories of both an assignment and
a maximum covering problem. It involves not only covering the maximum
number of images with the available satellites to complete collections, but also
making decisions about which satellites will capture each photo. Additionally,
the simulation aspect is crucial as it directly affects scoring; images not taken
within the specified time frame will not contribute to the collection, potentially
influencing its completion and the overall score.

3.2.4 Google Hash Code 2017

Streaming Videos

In the era of online streaming services like YouTube, effectively distributing
content to users is crucial. This challenge focuses on optimizing video distribu-
tion across cache servers to minimize transmission delays and waiting times
for users. Contestants must strategize video placement within servers while
considering space limitations.

With a roster of videos, each assigned a specific size, an collection of cache
servers with designated space, and an index of endpoints initiating multiple
requests for various videos, this challenge entails determining an optimal video
assignment within servers. The time saved for each request is measured as
the difference between data center streaming time and cache server streaming
time with minimal latency. The overall score is computed by summing the time
saved for each request, multiplied by 1000, and then divided by the total request
count. It is important to note that the problem description offers transmission
latencies between different nodes.

In general, we categorize this problem as a combination of assignment and
knapsack problems. Contestants are tasked not only with determining the
allocation of videos to servers but also with accounting for capacity limitations
on the number of videos per server. It is worth noting that the calculation of
time saved for each request may encounter a bottleneck effect, which can pose
challenges when optimizing the overall score.
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Router Placement

Strategically optimizing the placement of Wi-Fi routers to achieve optimal
signal coverage is a challenge encountered by many institutions and individual
users. This issue becomes particularly prominent in larger and complex build-
ings. Furthermore, in such scenarios, the task may involve setting up a wired
connection to establish internet connectivity from the source point, facilitating
the strategic positioning of routers for maximum coverage.

The challenge tasked participants with optimizing the arrangement of routers
and fibber wiring within a building’s cell-based layout, along with a desig-
nated backbone connection point. The aim was to strategically position routers
and devise an effective wiring configuration. The primary goal encompassed
achieving optimal coverage while adhering to a predefined budget. The prob-
lem’s score comprised two components: the count of cells covered by routers,
multiplied by 1000, and the remaining budget. Notably, the scoring approach
emphasized both extensive coverage and economical budget allocation.

In essence, this problem falls under the category of a maximum covering
problem, as the central aim is to ensure the coverage of as many cells as possible.
Furthermore, considering the budget limitations and wiring arrangement, we
observe that this challenge shares similarities with the Steiner Tree Problem.
This likeness arises from the possibility of determining the optimal cost of
wiring placement based on the router locations, which may hold significance
for the problem’s resolution.

3.2.5 Google Hash Code 2018

Self-Driving Rides

Daily car commuting is a ubiquitous practice globally, involving trips to homes,
schools, workplaces, and more. As a means of travel, cars remain a common
choice, with ongoing efforts to enhance safety through the advancement of self-
driving technology. In this challenge, contestants assume the role of managing
a fleet of self-driving cars within a simulated setting. The goal is to ensure
commuters reach their destinations securely and punctually.

With a fleet of cars at disposal and a roster of rides defined by their starting
and ending intersections on a square grid representing the city, along with the
earliest start time and the latest end time to ensure punctuality, the task is to
allocate rides to vehicles. The aim is to maximize the number of completed rides
before a predefined simulation time limit is reached. The scoring is determined
by the summation of the individual ride scores. A ride’s score is computed
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as the sum of a value proportional to the distance covered during the ride,
augmented by a bonus if the ride commences precisely at its earliest allowed
start time.

Generally, this problem can be categorized as an assignment and vehicle routing
problem with time windows. This classification arises from the necessity to
assign rides to cars within specific time constraints. Notably, the car’s route is
determined by the sequence of rides assigned to it. Moreover, this challenge
falls under the simulation category, as it directly impacts the scoringmechanism
and cannot be simplified or abstracted.

Google City Plan

With the world’s population increasingly concentrating in urban areas, the
demand for expanded city infrastructure is on the rise. This entails not only
residential buildings but also the incorporation of essential public facilities and
services to cater to the growing populace. This challenge mirrors a scenario
where participants are tasked with planning a city’s building layout, involving
both the selection of building types and their strategic placement.

For this challenge, participants receive building projects with specific width
and height dimensions, covering both residential and utility structures. The
city is a square grid of cells. Overall, the goal is to create buildings from these
plans, arranging them within the city to optimize space and create a balanced
mix of structures. This minimizes residents’ walking distance to reach essential
services. The overall score is the sum individual residential building scores,
calculated by multiplying the number of residents and the number of utility
building types within walking distance of that building. Notably, the walking
distance parameter is specific to each problem instance.

Essentially, this problem belongs to the category of packing problems. The
core objective revolves around determining how to fit buildings within the city
layout. Importantly, there is no predetermined limit on the number of buildings
that can be constructed for each plan, granting contestants the flexibility to
make choices accordingly.

3.2.6 Google Hash Code 2019

Photo Slideshow

Given the surge in digital photography and the vast number of images traversing
the internet daily, this challenge delves into the interesting concept of crafting
picture slideshows using the available photo pool.
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In this scenario, participants were tasked with creating a slideshow composed
of pictures, which could be oriented either vertically or horizontally in the
slides. Notably, a slide could contain two photos if they were arranged ver-
tically. Additionally, these photos could be tagged with multiple descriptors
corresponding to their subjects. The scoring of this problem revolves around
the slideshow’s appeal, determined by a calculated value that depends on con-
secutive slide pairs. This value is computed as the minimum between the tags
count of the first picture, the second picture in the sequence and the count of
the common tags shared between the two images.

Overall, this challenge can be categorized as a scheduling problem, to be precise,
a single-machine job scheduling problem. If we liken the jobs to photos, the
goal is to sequence them to optimize a specific objective function in this context,
the “appeal” factor. Additionally, the interactions between slides introduce
elements resembling a grouping problem.

Compiling Google

Given Google’s extensive codebase spanning billions of lines of code across
numerous source code files, compiling these files on a single machine would be
time-consuming. To address this, Google distributes the compilation process
across multiple servers.

This challenge tasks participants with optimizing compilation time by strate-
gically distributing source code files across available servers. Notably, the
compilation of a single code file can depend on other files being compiled prior
to it, involving dependencies. Given a certain number of available servers and
specific deadlines for compilation targets, the problem’s score is calculated by
summing the scores for the completion of each compilation target. These scores
are determined by a fixed value for meeting the deadline, with an additional
bonus if the compilation is completed ahead of the expected time.

This problem can be categorized as a scheduling problem, as the primary objec-
tive involves distributing compilation tasks (jobs) among different machines
while adhering to dependencies between files. In essence, this problem resem-
bles a variation of the classical job-shop scheduling problem.

3.2.7 Google Hash Code 2020

Book Scanning

Google Books is project that aims to create a digital collection of many books by
scanning them from libraries and publishers around the world. In this challenge,
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contestants are put in the position of managing the operation of setting up a
scanning pipeline for millions of books.

Given a dataset describing libraries and available books, the objective of this
challenge is to select books for scanning from each library within a specified
global deadline. Each library has a distinct sign-up process duration before
it can commence scanning, and only one library can be signed up at a time.
Moreover, each library has a fixed scanning rate for books per day, and each
scanned book contributes to the final score. The problem’s goal is to maximize
the overall score, which is calculated as the sum of the scores for unique books
scanned within the given deadline.

This problem exhibits a combination of characteristics from classical schedul-
ing, assignment, covering, and knapsack problems. It resembles a scheduling
problem as the order in which libraries are signed up needs to be determined.
It involves assignment, since libraries can share books, necessitating a decision
on which libraries will scan each book. The covering aspect is apparent in the
scoring mechanism, where the aim is to maximize the number of unique books
scanned. Lastly, the problem also incorporates a knapsack-like element. While
the time-related simulation factor exists, it can be abstracted into a knapsack
scenario where the goal is to optimize the overall score by considering the
number of books a library can scan until the deadline as its capacity.

Assembling Smartphones

Constructing smartphones is a intricate process that entails assembling a mul-
titude of hardware components. This challenge delves into the concept of
creating an automated assembly line for smartphones, employing robotic arms
to streamline the manufacturing process.

Contestants are tasked with placing robotic arms within a workspace depicted
as a rectangular cell grid. The objective is to optimize the arrangement of
these arms to allow the execution of assigned tasks. Each task involves specific
movements that a robotic armmust perform, essentially traversing a designated
number of cells to accomplish the task. Notably, robotic arms cannot cross
each other, necessitating precise task assignment and arm positioning to ensure
unobstructed task execution for all arms. The problem’s score is derived from
the summation of scores obtained by successfully completing tasks within the
constraints.

In summary, this challenge falls under the category of both assignment and
scheduling problems since it encompasses the assignment of robotic arms to
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suitable positions and the scheduling of tasks across these arms to optimize
the completion of tasks.

3.2.8 Google Hash Code 2021

Traffic Signaling

This challenge delves into the optimization of traffic light timers to enhance
the travel experience in a city. While traffic lights inherently contribute to road
safety, their built-in timers are important in regulating traffic flow. The focus
here is to fine-tune these timers with the aim of optimizing overall travel time
for all commuters within the city.

Contestants are presented with a city layout, complete with intersections
housing traffic lights. The task is to strategically allocate time intervals to these
traffic light timers, optimizing traffic flow to ensure the maximum number
of car trips are successfully completed within a predefined simulation time
limit. The problem’s score is the cumulative sum of scores assigned to each
completed trip. These scores comprise a fixed value for trip completion and a
bonus proportional to how early the trip concludes relative to the simulation’s
time limit. While the challenge may seem complex due to its detailed rules
and operational aspects, its core objective revolves around this fundamental
optimization process.

In summary, this challenge can be categorized as a simulation problem. It is
worth highlighting that this problem aligns closely with the Signal Timing
problem in the literature of Control Optimization.

Software Engineering at Scale

This challenge addresses the complexity of managing Google’s vast monolithic
codebase, which has grown significantly alongside the expanding number of
engineers. To overcome the hurdles of effective feature deployment, partic-
ipants are tasked with creating a solution that optimally schedules feature
implementation work among engineers.

In this challenge, there are three primary components to be considered: features,
services, and binaries. Each feature may require certain services, which can be
present in specific binaries. The main objective is to efficiently assign features
to engineers, considering that their implementation might entail additional
tasks such as service implementation, binary relocation, new binary creation,
or waiting for a designated time. The challenge revolves around optimizing
this workflow to minimize delays caused by multiple engineers working in the
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same service. The scoring is based on the sum of scores awarded for feature
completion. Each completed feature’s score is determined by the product of
the number of users benefiting from it, as specified in the problem statement,
and the number of days between the maximum day (also defined) and the day
the feature was launched.

In essence, this challenge falls within the realm of classic scheduling problems.
It involves assigning tasks (jobs) to engineers with the aim of optimizing a
quantity influenced by the order in which each engineer performs their tasks
and the interactions of tasks among multiple engineers.

3.2.9 Google Hash Code 2022

Mentorship and Teamwork

This challenge delves into the concept of a teamwork environment, where
knowledge sharing among peers and collaborative efforts are central to task
completion. In this challenge, participants are tasked with orchestrating a
team comprising individuals with diverse backgrounds to successfully execute
projects that demand a variety of skills.

The main goal is to efficiently assign a list of contributors, each possessing
specific skills and the potential to improve them through project involvement,
mentoring, or being mentored. The challenge involves allocating contributors
to projects with skill requirements to ensure timely completion. Notably,
contributors can participate in multiple projects concurrently. The key factor
here is the order inwhich contributors develop or enhance their skills, a decision
that significantly impacts the overall project completion process. The score
in this challenge is the sum of project scores achieved by completing them
before the defined overall deadline. A project’s score comprises a fixed value
for completion, minus penalty points if it surpasses the deadline but is still
within a tolerance window. Projects exceeding the deadline or tolerance will
not add to the score but will still contribute to workers’ training.

In summary, this challenge shares similarities with a scheduling problem, as
it involves assigning projects to contributors while considering the order in
which they are completed to maximize the overall score achieved through
project completion.

Santa Tracker

The Google Santa Tracker is a project that visualizes the route taken by the
famous Santa Claus character during his December gift distribution to children
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globally. In this challenge, participants were taskedwith optimizing the delivery
route to enhance the efficiency of gift distribution.

The challenge scenario revolves around a 2D cell grid with no friction, symbol-
izing the world. Within this grid, children are located, and two types of items,
carrots (providing speed boosts) and gifts, can be picked up by the cart. While
the cart maintains its speed on the frictionless grid, the total weight affects the
impact of carrot consumption. Thus, the main goal consists in devising a route
that efficiently delivers the most gifts within the time constraints. The scoring
metric for this problem involves summing the scores of successfully delivered
items.

In summary, this challenge can be categorized as a type of Vehicle Routing
Problem, specifically a Capacitated with Pick up and Delivery Vehicle Routing
Problem. This is due to the presence of capacity constraints on the cart and the
need to pick up and deliver items throughout the cart’s journey.

3.2.10 Outline

In summary, this section provided an overview and description of the key as-
pects of the Hash Code problems. Furthermore, a categorization that links these
problems to topics commonly found in combinatorial optimization literature
was presented. The Table 3.1 shows a summary of the analysis conducted.

Problem Categories

Assignment Knapsack Coverage Vehicle Routing Simulation Scheduling Packing

Street View Routing X X
Optimize a Data Center X X

Loon X X X
Delivery X
Satellites X X X

Streaming Videos X X
Router Placement X
Self-Driving Rides X X X

City Plan X
Photo Slideshow X
Compiling Google X
Book Scanning X X X X

Assembling Smartphones X X
Traffic Signaling X

Software Engineering at Scale X
Mentorship and Teamwork X

Santa Tracker X

Table 3.1: Categorization of Google Hash Code Problems

3.3 Instances

In the competition context, in combination with the problem statements, test
case instances are provided to participants with the primary aim of providing a
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mechanism for scoring teams, thus quantitatively assessing the efficacy of their
strategies. These instances are carefully generated to conform to the stipulated
limits and constraints inherent to the challenge, as described in upon in the
problem statement.

The initial instance, commonly denoted as the “example”, is routinely included
within the problem statement for contestants’ reference. This instance is in-
cluded in the problem statement for contestants’ reference, but is not solved
optimally. Its purpose is to illustrate the input and output format for the in-
stance and solution. However, the example is intentionally designed with small
dimensions, making it approachable via exact brute force methodologies.

Subsequent instances are typically designed to push the boundaries of the
problem. These instances are intentionally large and design to discourage exact
methods and general heuristics, aiming to thoroughly examine various aspects
of the problem and avoid that (non-exact) greedy approaches find an optimal
solution. The ruggedness of their objective space introduces challenges for
solvers, potentially rendering some of them ineffective or even unusable within
the available time budget.

In the competition context, teams are allowed to provide unique solutions
for each instance, thus becoming a common practice among participants to
conduct thorough cross-instance analysis. This practice proves valuable in
revealing patterns that can offer insights into tackling the challenge with
greater efficiency. As such, participants have the flexibility to develop focused
strategies for each instance. This can in fact be interesting for the study of
general-purpose meta-heuristics, to understand whether they can achieve
comparable results to instance-specific approaches.

Finally, given the articulated problem statements and the transparent instance
generation process, participants can create customized test instances. This
capability proves valuable for debugging purposes in a competition setting and
further advocates these problems as interesting benchmarks for BBO [32].

3.4 Concluding Remarks

In this chapter, we conducted a comprehensive exploration of the Google Hash
Code competition, delving into its structure, problem descriptions, and in-
stances. In particular, we established links between the challenges presented
and well-known CO problems. Furthermore, we highlighted common tech-
niques employed by participants, drawing from our own engagement over
several years.
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We consider this analysis to be an important step that not only facilitated a
deeper comprehension of the challenges, but also guided our choice of two
specific problems (Optimize a Data Center and Book Scanning) for detailed
exploration in this study. The particular choice of these problems is mainly
motivated by the range of combinatorial optimization topics covered, leaving
only vehicle routing and simulation as subjects to address in future work.

Moreover, based on the conducted analysis, we once again emphasize the im-
portance of these problems as promising candidates for BBO [32]. However, we
believe that for this potential to be realized, it is essential to establish a repos-
itory containing the scores achieved across various problems and instances.
Ideally, this repository should be accompanied by the corresponding source
code for reproducibility purposes. From the standpoint of experimentally eval-
uating meta-heuristics for these problems, we consider it vital to generate a
diverse set of instances, eventually generated through different methods.

Having understood the Google Hash Code problems, in the ensuing chapters,
we will discuss our modeling approach to solve them, analyze the chosen
problems, and conclude with a reflection on the work carried out.
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Chapter 4

Principled Modeling Framework

“Before software can be reusable, it first has to be
usable.”

— Ralph Johnson

In this chapter, we introduce a modeling framework designed to address the
challenges of Google Hash Code problems. This framework integrates existing
modeling concepts from the POF, nasf4nio, and nasf4nio-cs projects. In Sec-
tion 4.1, we establish the model by defining a standard specification that sup-
ports the development of meta-heuristics. Subsequently, in Section 4.2, we
provide examples illustrating how these operations can be utilized for crafting
meta-heuristics solvers. Moving forward, in Section 4.3, we reflect on how the
this model specification can aid in the (property) testing process. Finally, we
conclude the chapter in Section 4.4, where we offer observation on the usage
of this framework within the context of this work.

4.1 Specification

This section, establishes a collection of operations that a model must support,
all while motivating their necessity and applicability in the context of meta-
heuristic solver development. To achieve this, our description will draw from
the Python-based implementation that we have devised. However, it is crucial
to underline that our implementation serves as a demonstration of a plausible
way to materialize an API that facilitates modeling operations. As such, con-
siderations such as naming conventions and programming language-specific
concepts ought to be viewed as secondary.
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Moreover, it is important to underscore that this framework represents a con-
solidation of prior efforts undertaken by Vieira [15], Fonseca [35], and Outeiro
[36]. Consequently, it should be perceived as an enhancement of the prereq-
uisites and specifications established in those works, tailored to encompass
constructive and local search techniques, as well as the comprehensive model-
ing procedure.

4.1.1 Data Structures

This framework is based around a set data structures that are standard and
utilized as a way to return information from the model. This design allows for
data hiding and isolation of the problem-specific details, which any MH solver
can query and manipulate in a black-box fashion. In the our implementation
of the framework this corresponds to the following four classes.

• class Problem: ...

Contains data that is known a priori and fully characterizes a problem
instance. It is not meant to be modified by the solver.

• class Solution: ...

Holds data that defines an empty or partially complete solution. It serves
as the mutable state that a solver can modify using a set of pre-defined
functions during the optimization process.

• class Component: ...

Characterizes any component within the ground set of a given problem.

• class LocalMove: ...

Characterizes any local move that can be applied to a solution

Concerning the Problem class, since it holds problem-specific data, it might be
advantageous to include methods within it for loading or parsing input data, in
addition to the class constructor. However, the primary intent remains focused
on storing problem-specific data and providing a away to initialize a solution
for a specific problem instance. This can be achieved through the following
method, which returns an empty solution.

def empty_solution(self: Problem) → Solution: ...

It is important to acknowledge that the definition of an empty solution is tied
to the specific problem under consideration. Nevertheless, this method when
invoked returns an encapsulated solution object that abstracts the details of
the problem.
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As previously mentioned, the Component class serves as a representation of a
component from the ground set, encapsulating its relevant data. Nonetheless,
certain MH methods, such as, ACO, require a means for identifying specific
components during solution construction. To address this requirement, the
following method was incorporated:

def id(self: Component) → Hashable: ...

As can be inferred by the methods’s type signature, this method should return
an unique (Hashable) identifier for a given component.

Concerning the LocalMove class, it primarily encapsulates information about a
specific local move applicable to a particular solution, and it does not necessitate
any additional functionality. Notably, these two classes are frequently used
in the model as they embody the dynamic aspects, encompassing actions
capable of altering solution states. Thus, from a practical standpoint, their
instances should be kept lightweight as they can have a significant impact on
performance.

The Solution class is of extreme importance as it represents object undergoing
optimization. Apart from housing data fields that correspond to the solution
representation – which will be populated during solver execution – this class
also contains the method definitions that we consider fundamental and which
describe the model. Consequently, in the subsequent sections, we will com-
prehensively detail the methods within this class. These methods represent
the operations that a model should implement to allow CS, LS procedures and
other essential functionality.

4.1.2 Inspection Methods

The methods outlined in this section provide access to metrics that characterize
the state of a solution. In terms of implementation, these act as getters for
the properties of the model and should avoid executing resource-intensive
computations when possible, given the high frequency at which they are meant
to be invoked by solvers.

Objective Value

def objective(self: Solution) → Optional[T]: ...

This method returns the objective value of a solution. In the type signature for
this method, the return type T signifies a generic type. While this type is usually
numeric, it can be any other comparable type. This requisite is fundamental
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from the solver’s standpoint, as it is through comparing this value that a solver
evaluates whether a particular solution outperforms others.

The wrapping Optional type indicates that a method has the option to either
return a value or, if the value is not available or not defined, it can emit a sentinel
value. In our implementation, this sentinel value is represented by None. This
convention will be consistently applied to all methods where the Optional

type is employed.

Upper Bound

def upper_bound(self: Solution) → Optional[T]: ...

This method returns the upper bound value of a given solution. Similar to the
objective method, the parameter T in the function’s type signature signifies
a generic type, typically numeric.

Feasibility

def feasible(self: Solution) → bool: ...

Thismethod can be used to assess the feasibility of a candidate solution, yielding
a Boolean value of True when the solution is feasible, and False otherwise.

4.1.3 Constructive Search

The subsequent methods delineate modeling operations for CS. As such, these
methods revolve around operations involving components. Specifically, these
action involve enumeration, selection, application, and evaluation of their
contribution with respect to the objective and upper bound values.

Component Enumeration

From a CS perspective, a central operation involves recognizing the components
that constitute the ground set of the problem – those that can be added, or
removed from a specific solution. Therefore, it is imperative for a model to offer
a means through which a solver can access this essential information. This is
accomplished in our implementation via the following set of methods.

def add_moves(self: Solution) → Iterable[Component]: ...

def remove_moves(self: Solution) → Iterable[Component]: ...

Notably, all these methods yield a sequence of components specific to their cor-
responding operations, denoted as Iterable[Component] in the return type
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signature. However, in our implementation, these methods are implemented
as iterators, signifying that upon invocation, they provide the first available
item and then pause until the next call to the same method is initiated, essen-
tially maintaining state. This approach holds significance from a performance
standpoint, both in conserving memory, as storing all components for a given
problem could be infeasible, and in terms of execution speed, since there’s no
necessity to enumerate more components than what is required.

Furthermore, the intention behind these methods is for them to yield all con-
ceivable components that can be either added or removed from a specific
solution. However, in practice, this might become unfeasible if the ground
set is excessively large. In such cases, an alternative strategy for component
enumeration may need to be contemplated. It is important to note that this
consideration is relevant to the implementation of the method itself by the user
who models the problem, but it does not alter the method signature in any way.

Finally, within the context of ACO, there is a need to enumerate all components
that are already included in a solution. This requirement is due to the necessity
to update the pheromone model. As a result, this justifies the introduction of
the following method.

def components(self: Solution) → Iterable[Component]: ...

Heuristic Component Enumeration

In the context of component enumeration, it can be advantageous to fol-
low a problem-specific heuristic order. With this in mind, we introduced the
heuristic_add_moves method, designed to offer a sequence of components
enumerated in accordance with the heuristic. Additionally, we introduced
the heuristic_add_movemethod to provide a means for exclusively returning
a single heuristic move, if available. The type signatures for both methods are
shown below.

def heuristic_add_moves(self: Solution) → Iterable[Component]:

↩→ ...

def heuristic_add_move(self: Solution) → Optional[Component]:

↩→ ...

Random Component Selection

As components can be enumerated in a heuristic order, there are situations
where selecting components randomly is advantageous. This is particularly
relevant, for instance, during processes like random solution construction or
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destruction (IG). The subsequent methods, when called, provide randomized
components that can potentially be added or removed, contingent upon the
current state of the solution.

def random_add_move(self: Solution) → Optional[Component]: ...

def random_remove_move(self: Solution) → Optional[Component]:

↩→ ...

Component Application

It is essential for all constructive search methods to possess a mechanism for
incorporating or removing a component from a solution under construction.
Therefore, the ensuing methods have been introduced, and upon invocation,
allow the addition and removal of the specified component to/from the solution.

def add(self: Solution, c: Component) → None: ...

def remove(self: Solution, c: Component) → None: ...

Objective Increment Calculation

When evaluating the contribution of a component to the objective value of a
solution, there are two approaches to consider. The first approach involves
recalculating the entire objective value from scratch each time a component
is added or removed from the solution (full evaluation). The second approach
involves incremental evaluation, where only the change in objective value due
to the addition or removal of the component is computed. The latter method
is more efficient as it avoids the potentially expensive operation of recom-
puting the entire objective value and should be preferred for its performance
advantages.

This fact motivates the overall design of the Solution API and thus all oper-
ations involving evaluations are considered in function of their increments.
Albeit, it is possible for a user to implement a full evaluation and return only the
increment, but that aspect is practical and beyond the scope of this specification.

That being said, the following methods are exposed, granting a solver the capa-
bility to quantify the objective value contribution (increment) that is obtained
from adding or removing a designated component with respect to the current
state of the solution.

def objective_increment_add(self: Solution, c: Component) →
↩→ Optional[T]: ...
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def objective_increment_remove(self: Solution, c: Component) →
↩→ Optional[T]: ...

The return type of thesemethods is generic (denoted as T), with the precondition
that it must be comparable and for all increment relatedmethods it must support
the basic arithmetic operations of addition and subtraction.

Upper Bound Increment Calculation

Just as there is a need to calculate increments concerning the objective value, the
same functionality is essential for upper bounds. This leads to the introduction
of the following methods, which serve the purpose of quantifying the increment
in the upper bound resulting from the addition or removal of a component
from a solution. Once more, the preference should lean towards incremental
evaluation for determining this value, as it is often evenmore resource-intensive
than calculating a contribution to the objective value.

def upper_bound_increment_add(self: Solution, c: Component) →
↩→ Optional[T]: ...

def upper_bound_increment_remove(self: Solution, c: Component)

↩→ → Optional[T]: ...

Component Heuristic Value

The concept of a heuristic value is associated with a component and offers
a means to rank the importance of components with respect to the current
solution state via a problem-specific heuristic. The method’s type signature is
as follows.

def heuristic_value(self: Solution, c: Component) →
↩→ Optional[T]: ...

Notably, this method was introduced to offer an alternative approach for the
GRASP algorithm to construct a randomized solution.

4.1.4 Local Search

The subsequent methods define modeling operations for LS approaches. These
methods are centered on operations concerning local moves, encompassing
their enumeration, selection, application, and evaluation.
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Local Move Enumeration

In a manner similar to the approach adopted for CS, the same principle holds
when addressing LS. Here, the necessity arises to enumerate all plausible
alternatives for optimizing (exploiting) a candidate solution, which in turn
pertains to the exploration of neighboring solutions. To fulfill this requirement,
the following method serves as a mechanism for enumerating all the local
moves that can be executed on a given solution. This method adheres to the
same pattern as previous enumeration methods as it is meant to function as
an iterator for feasible local moves.

def local_moves(self: Solution) → Iterable[LocalMove]: ...

Random Local Move Enumeration

While local moves can indeed be enumerated in a specific order, as enabled
by the local_moves method, the majority of local search strategies depend
on random processes for selecting moves. This motivation gives rise to the
subsequent two methods: one for systematically iterating all potential local
moves in a randomizedmannerwithout repeating the same localmove twice, i.e.,
without replacement (random_local_moves_wor method), and the other for
returning a random local move (random_local_move method).

def random_local_moves_wor(self: Solution) →
↩→ Iterable[LocalMove]: ...

def random_local_move(self: Solution) → Optional[LocalMove]:

↩→ ...

When it comes to random enumeration of the neighboring moves of a candidate
solution without replacement, as performed by the random_local_moves_wor

method, important insights can be obtained regarding its efficient implementa-
tion.

Conventionally, a naive method would involve shuffling all " possible local
moves, selecting a local move, utilizing it, and then repeating the shuffling
process minus the : moves that were rendered infeasible due to the use of
the chosen move. This would leave the remaining " − : moves for selection.
Nonetheless, repeating this until exhausting all local moves would result in
an additional space complexity of O("). However, as this approach can be
memory-intensive, we propose an alternative method that achieves the same
outcome with a space complexity of O(1).

The alternative approach entails employing a Linear Congruential Generator
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(LCG) to achieve the same outcome with a constant spacial complexity, thereby
eliminating the need for additional space.

Definition 4.1.1 (Linear Congruential Generator [29]). A linear congruen-
tial generator is a pseudo-random number generator described by the following
recurrence relation:

X=+1 = (0X= + 2) mod< (4.1)

Where,

<, 0 < < — is the modulus

0, 0 < 0 < < — is the multiplier

2, 0 ≤ 2 < < — is the increment

X0, 0 ≤ X0 < < — is the “seed” or “starting value”

For a LCG it is known [29] there is a choice of parameters that guarantees
a maximal period for generator, and equal to <. This in means that all the
numbers until< will be emitted by the generator in a random order exactly
once.Albeit, the choice of parameters must obey the following conditions [29]:

1. 2 is relatively prime to<

2. 0 − 1 is a multiple of all prime factors dividing<

3. 0 − 1 is multiple of 4, if m is a multiple of 4

For example, the choice of the parameters 0 = 5, < = 8 and 2 = 1, yields
a LCG that has maximal period. Remarkably, the choice of< as a power of
two has important implications in terms of performance from a computational
perspective, allowing for faster modulus operations.

With this in mind, a properly configured LCG can be harnessed for the purpose
of random local move enumeration without replacement. This is achieved by
associating each local move with a number 0 < 8 < <, which, upon generation,
is decoded into the corresponding LocalMove object. Notably, the parameter
< needs to be adjusted in order to contemplate all possible moves.

Local Move Application

As it is crucial for CS methods to be able to apply components, the same holds
true for LS methods, albeit in the context of local moves. Therefore, this method
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is specifically designed to facilitate the application of a LocalMove to a given
candidate solution.

def step(self: Solution, m: LocalMove) → None: ...

Local Move Objective Increment Calculation

Similar to the approach used for CS, where the objective_increment_add

method is employed to evaluate the incremental contribution of a particular
component to the objective value, a comparable functionality is necessary for
local search. However, in this case, the evaluation pertains to local moves. This
requirement is addressed through the following method.

def objective_increment_local(self: Solution, m: LocalMove) →
↩→ Optional[T]: ...

From an implementation perspective, similar to all incremental evaluations
(including those for CS), this operation should maintain efficiency. Arguably,
this could be one of the most frequently used operations within an optimization
process, as it enables the assessment of whether a candidate solution has
improved or worsened following a particular action.

Perturbation

This method serves the purpose of applying a problem-specific perturbation to
a given solution undergoing LS. The integer parameter in the method signature
shown bellow is used to identify the “kick strength”, i.e. the intensity of the
perturbation to be applied.

def perturb(self: Solution, ks: int) → None: ...

4.1.5 Utility Methods

From an implementation perspective, there exists a need for a copy operation
to manage the preservation of the best solution(s) found in memory. This
operation prevents the unintended overwriting of a given solution due to
modifications made during the optimization process. In the specific context of
this framework, this operation applies to the Solution object and is significant
for both CS and LS approaches.

Although it might be perceived as an implementation detail, we consider that
it deserves its distinct place within the model definition. This stems from the
critical aspect that a solution object must consistently access the problem object,
which contains problem-specific information. However, during the copying
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process of a solution, duplicating this information is usually unnecessary, and
referencing it suffices. With this in mind, the following method was, introduced
to address this requirement.

def copy(self: Solution) → Solution: ...

4.1.6 Outline

In summary, this specification encompasses what we consider as the model
within the realm of meta-heuristics. While not formulated mathematically
but rather in computational terms, this representation through the described
constructs, from our perspective, effectively captures the attributes of a problem.
It enables the problem to be addressed in a black-box manner by solvers,
which make use of this standardized set of methods, as we will describe next,
in Section 4.2. The modeling endeavor then involves implementing each of
these methods in accordance with their context within a particular problem.

The Table 4.1 serves as a summary of all the methods related to the model API
which were documented in this section and are part of our implementation of
the principled modeling framework [41].

4.2 Solvers

This section introduces a potential implementation of solvers using the pro-
posed framework. The aim is to provide an overview of how meta-heuristic
algorithms can be developed utilizing the methods provided by the model API.
To accomplish this, we will start by describing a basic solver that utilizes heuris-
tic information for constructing solutions. Subsequently, we will demonstrate
how solvers for both CS and LS methods can be implemented, using BS and ILS
meta-heuristics as illustrative examples.

4.2.1 Heuristic Construction

Listing 4.1 describes a possible implementation of a MH solver that iteratively
constructs a solution using only heuristic information. This solver takes as
input a Problem instance and returns a Solution.

This solver can be summarized as follows:

1. Initialization: Initialize a new empty Solution and select a Component
to be added heuristically (lines 2-3)

2. Construction: Build the solution (lines 4-6).
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1: def heuristic_construction(problem: Problem) → Solution:
2: solution = problem.empty_solution()
3: c = solution.heuristic_add_move()
4: while c is not None:
5: solution.add(c)
6: c = solution.heuristic_add_move()
7: return solution

Listing 4.1: Heuristic Construction Solver Implementation

(a) If there is a component (c) available for addition to the current
solution, (i.e., c is not the None sentinel value), proceed; otherwise
stop the Construction. (line 4)

(b) Add the selected component to the solution (line 5).

(c) Heuristically select a new component (line 6).

(d) Repeat the process.

3. Termination Return the final Solution (line 7).

In fact, this simple solver can serve as practical tool for testing the implementa-
tion of a model. Its simplicity arises from its reliance on only two fundamental
methods: the add method, which introduces a component to the solution, and
the heuristic_add_move method, which determines the next component to
be added using a heuristic criterion. For testing purposes, other uncompli-
cated MH solvers can be crafted using the same model. For instance, solvers
that handle construction in a random or a in greedy manner, based on compo-
nents that yield the most favorable increments with respect to the objective
value and/or bound.

From an implementation perspective, this particular version takes a problem
instance as input and uses it to generate an initial empty solution. However,
this method could have been designed to accept a partial solution and then
complete its construction from that point onwards. Albeit, the option to provide
the problem instance rather than a solution as a parameter was chosen primarily
for illustrative purposes and to showcase the interaction between the Problem
and the Solution data structures.

4.2.2 Beam Search

Listing 4.2 presents a possible implementation of a BS constructive MH solver.
This MH, as discussed earlier in Chapter 2, can be viewed as having two phases.
In the first phase, it generates a candidate list of partial solutions that extend
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the solutions present in a limited-size archive. Then, in the second phase, it
filters and selects the best solutions based on either the upper bound value or a
heuristic value. The selected solutions are retained in the archive for the next
iteration. Additionally, during this process, if a feasible solution is encountered,
the best solution found thus far is updated accordingly.

The execution time of this algorithm is not limited a stopping criterion is re-
quired. In this implementation, we define the stopping condition as a time bud-
get, which is represented by the Timer data structure. The finished method
of the Timer indicates whether the allocated time budget has been used up. If
the time budget is exhausted, the algorithm stops.

Additionally, this solver takes other parameters as input in this implementa-
tion.These include a Problem instance and the beamwidth (bw), which specifies
the size of the solution archive. The choice for supplying the problem as a
parameter instead of a solution follows the same motivation as previously
mentioned in Section 4.2.1.

1: def beam_search(problem: Problem, timer: Timer, bw: int) → Solution:
2: solution = problem.empty_solution()
3: best = solution if solution.feasible() else None
4: bobj = solution.objective() if solution.feasible() else None
5: beam = [(solution.upper_bound(), solution)]
6: while not timer.finished():
7: cs = []
8: for ub, s in beam:
9: for c in s.add_moves():

10: cs.append((ub + s.upper_bound_increment_add(c), s, c))
11: if not len(cs):
12: break
13: cs.sort(reverse=True, key=lambda x: x[0])
14: beam = []
15: for ub, s, c in cs[:bw]:
16: s = s.copy()
17: s.add(c)
18: if s.feasible():
19: obj = s.objective()
20: if bobj is None or obj > bobj:
21: best, bobj = s, obj
22: beam.append((ub, s))
23: return best

Listing 4.2: Beam Search Solver Implementation

In brief, this BS solver implementation is described by the following steps:

1. Initialization: Start by initializing an empty Solution. If this initial
solution is feasible, store it as the best solution found so far. Add a
tuple representing this solution to the archive (beam), including its upper
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bound value. (lines 2-5)

2. Construction: Construct the solution while there is still available time
in the budget (lines 6-22).

(a) Create an empty candidate list (cs) (line 7).

(b) Branch: Expand the current solutions in the archive by adding
components to create new partial solutions (lines 8-10).

i. Select a solution from the archive (line 8).

ii. Enumerate all possible components that can be added to that
solution (line 9).

iii. Add these new solutions to the candidate list cs as tuples
containing the upper bound value, the partial solution, and the
component leading to this contribution (line 10).

iv. Repeat while possible.

(c) If the candidate list (cs) is not empty, filter the bw best candidate
solutions based on their upper bound values. (lines 11-13)

(d) Empty the the beam list (line 14).

(e) Update: Build the beam for the next iteration and update best
solution (lines 15-22).

i. Select a candidate solution (make a copy) to potentially update
the best solution (lines 16).

ii. Add the respective component to the current candidate solu-
tion (line 17).

iii. If the solution is feasible and its objective value is better than
the best solution found so far, update the best solution by
replacing it with the current one (lines 18-21).

iv. Add the candidate solution to the beam list (line 22).

v. Repeat while possible.

3. Termination Return the best Solution found (line 23).

It is important to note that, this algorithm requires the implementation of
certain methods within the model, specifically in Solution class. However, the
algorithm can still function successfully even if some of the remaining methods
are not implemented, as long as these mandatory methods are provided.
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4.2.3 Iterated Local Search

The Listing 4.3 presents a possible implementation of an ILS solver which is
a LS MH. As discussed in Chapter 2, This meta-heuristic commences with a
feasible solution and subsequently employs a LS procedure. Upon discovering
a solution that outperforms the current best solution, the algorithm updates
the best solution, and optionally perturbs the solution, before repeating the
entire process. In our implementation, we use FI for as the LS strategy.

Similarly to the previous section’s implementation of the BS, this algorithm is
also not limited by execution time and requires a stopping criterion. Here, we
utilize a time budget represented by the Timer object, as previously discussed.
Additionally, this solver accepts several other input parameters. These include
a Solution instance and the kick strength (ks), which determines themagnitude
of the perturbation to be applied to the solution.

1: def ils(solution: Solution, timer: Timer, ks: int) → Solution:
2: best = solution.copy()
3: bobj = best.objective()
4: while not timer.finished():
5: for m in solution.random_local_moves_wor():
6: increment = solution.objective_increment_local(m)
7: if increment > 0:
8: solution.step(m)
9: break

10: if timer.finished():
11: if solution.objective() > bobj:
12: return solution
13: else:
14: return best
15: else:
16: if solution.objective() >= bobj:
17: best = solution.copy()
18: bobj = solution.objective()
19: else:
20: solution = best.copy()
21: solution.perturb(ks)
22: if solution.objective() > bobj:
23: return solution
24: else:
25: return best

Listing 4.3: Iterated Local Search Solver Implementation

In brief, this ILS solver implementation is described by the following steps:

1. Initialization: Begin with the current best solution as the starting
solution. (lines 2-3)

2. Local Search: Conduct local search while there is available time in the
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budget. (lines 4-21)

(a) First Improvement: Enhance the solution through the first local
move that results in a better objective value. (lines 5-14)

i. Randomly pick a local move from the neighborhood of the
current solution. (line 5)

ii. Calculate the incremental change in the objective value due to
the local move. (line 6)

iii. Check if applying the current local move results in a better
solution. (line 7)

iv. If improvement is achieved, apply the local move and proceed
to the Update stage. (lines 8-9)

v. If the time budget is exhausted during the first improvement
stage, halt the Local Search and goto Termination. (lines
10-14)

vi. Repeat this process until all possible local moves have been
explored.

(b) Update: Update the current best solution if an improvement or a
different solution of the same quality was achieved during the first
improvement stage. (lines 15-20)

(c) Perturb: Optionally, perturb the current solution with a kick
strength of ks, if an improvement was obtained in the first im-
provement stage. (line 21)

3. Termination Return the best Solution found. (lines 22-15)

4.2.4 Outline

This section demonstrated the process of implementing solvers using the pro-
vided modeling framework. We provided practical examples for both CS and LS
meta-heuristics. However, it is important to note that in this work, all the
meta-heuristics described in Chapter 2 were implemented [41]. Furthermore,
each of these meta-heuristics requires different methods from the model, which
we summarize in Table 4.2.
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4.3 Property Tests

As discussed, this framework offers capabilities in both problem modeling and
the implementation of meta-heuristic solvers. This versatility allows it to satisfy
the needs of two distinct user profiles: those primarily focused on problem-
solving, seeking access to a variety of solvers for effective results, and MH
developers who concentrate on MH refinement. The latter group employs the
framework’s provided problems as a means to rigorously evaluate and test their
developed meta-heuristics. Albeit, there can also be individuals interested in
both aspects.

A common thread among all users of the framework is the need to test imple-
mentations. From the vantage point of a MH developer, the primary objective
revolves around constructing tests that assess the meta-heuristic’s correct im-
plementation, e.g., unit-tests. From the perspective of a model developer, these
tests, while valuable for assessing the correctness of the model’s implementa-
tion, extend beyond mere verification of whether methods yield the expected
result. Instead, the tests should encompass the evaluation of whether these
outcomes adhere to fundamental properties that should universally held true
for any given input-output pair, irrespective of the specific problem at hand.
This type of testing, is known as property testing.

To illustrate, let us take a scenario where a component we intent to add a
component to a solution. In a conventional unit-test approach, one could ver-
ify if the objective value of the solution matches the expected outcome after
adding that particular component. Yet, a broader property to consider is that,
irrespective of the specific objective value, the solution’s value following the
component addition should be equivalent to the value prior to the addition,
plus the incremental contribution attributable to that specific component. This
property testing goes beyond specific cases and encapsulates the core behavior
of the operation.

1: def objective_increment_add_test(self: Problem) → Solution:
2: solution = self.empty_solution()
3: c = solution.random_add_move()
4: while c is not None:
5: before = solution.objective()
6: increment = solution.objective_increment_add(c)
7: solution.add(c)
8: assert before + increment == solution.objective()
9: c = solution.random_add_move()

10: return solution

Listing 4.4: Objective Increment Add Property Test
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Importantly, the design of the modeling framework offers a user-friendly in-
terface for creating these tests, as exemplified in Listing 4.4. In essence, the
implementation of a property test for an objective value increment is follows
the subsequent steps:

1. Initialization: Start by initializing a random solution and selecting a
random component to add to the solution. (lines 2-3)

2. Property Test: Execute a property test by constructing a random solu-
tion. (lines 4-9)

(a) If a random component (c) is available for addition to the current
solution (i.e., c is not the None sentinel value), proceed; otherwise,
conclude the Property Test. (line 4)

(b) Record the objective value of the current solution and calculate the
increment achieved by applying the chosen component. (lines 5-6)

(c) Add the component to the solution. (line 7)

(d) Assert that the sum of the objective value before adding the com-
ponent and the calculated increment equals the current objective
value. If this assertion fails, the property is not verified. (line 8)

(e) Choose a new component and repeat the process. (line 9)

3. Termination Conclude the property test and return the Solution. (line
10)

It is worth noting that this type of testing is inherently randomized, and it should
undergo multiple iterations to ensure statistical validation of the implemented
model’s adherence to the properties. Furthermore, this test is designed to
take the Problem instance as an input, illustrating the potential for seamlessly
integrating (or injecting) these tests into any Problem. This offers the same
possibility as with implementing solvers — allowing others to also develop and
contribute with test implementations in a similar manner.

Additionally, this specific example of a property test is just a single instance,
with the potential for similar tests to be conducted for various types of op-
erations. For instance, one could examine the enumeration of local moves —
whether performed in a random manner (random_local_moves_wor) or fol-
lowing a specified order (local_moves) — to validate that they consistently
yield identical components and maintain a consistent count of components
with each iteration. This underscores the versatility and ease-of-use of property
tests in evaluating a range of aspects within the proposed framework.
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4.4 Concluding Remarks

In this chapter, we a proposed framework for problemmodeling that enables the
development of solvers capable of addressing problems in a black-box manner.
While we used our Python implementation to illustrate the framework from a
modeling, solver development, and testing perspective, the fundamental con-
structs of this framework can be extrapolated and applied to any programming
language. Our intent was to demonstrate the general principles that underlie
the framework. We applied this implementation of the framework to model
two specific problems in the Google Hash Code competition, which we will
discuss in Chapters 5 and 6.

The selection of Python as the programming language, for developing the frame-
work and models, was primarily driven by its ease of use, rapid prototyping
capabilities, and rich high-level features. However, the language interpreted
nature and relative slowness compared to compiled languages can impact the
efficiency of solver execution. To mitigate this, we turned to an alternative
Python implementation known as PyPy1. This just-in-time (JIT) compiled ver-
sion of Python has a substantial speed boost, claiming to be approximately 4.8
times faster than the implementation found and average interpreter (CPython).

In fact, this became particularly evident when dealing with complex problem
instances, where the performance difference was remarkable. While the cur-
rent Python implementation served its purpose for prototyping and exploring
ideas for problem-solving, a reimplemented version of this framework in a
more performant programming language would be necessary for optimal per-
formance. Nonetheless, rapidly testing new ideas from a modeling standpoint
this framework remains a valuable choice.

Lastly, it is important to acknowledge that the specification of the framework
might not be exhaustive. The range of MH methods, as documented in the
literature [6], is extensive, and new methods could potentially emerge in the
future. While the range of meta-heuristics covered in the framework is sub-
stantial, it is possible that certain use-cases could necessitate the addition of
new functionalities. Therefore, the framework’s completeness and stability will
certainly depend on insights from the community.

1 https://www.pypy.org/
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Class Methods Input Output

Problem empty_solution — Solution

Solution

copy Solution Solution

feasible — bool

objective — Optional[T]

upper_bound — Optional[T]

components — Iterable[Component]

add_moves — Iterable[Component]

remove_moves — Iterable[Component]

heuristic_add_moves — Iterable[Component]

heuristic_add_move — Optional[Component]

random_add_move — Optional[Component]

random_remove_move — Optional[Component]

local_moves — Iterable[LocalMove]

random_local_moves_wor — Iterable[LocalMove]

random_local_move — Optional[LocalMove]

add Component None

remove Component None

step LocalMove None

perturb int None

heuristic_value Component Optional[T]

objective_increment_local LocalMove Optional[T]

objective_increment_add Component Optional[T]

objective_increment_remove Component Optional[T]

upper_bound_increment_add Component Optional[T]

upper_bound_increment_remove Component Optional[T]

Component id — Hashable

LocalMove — — —

Table 4.1: Modeling API Specification

Note: The parameter T denotes a generic comparable type. In the case of the “increment”
functions this type must also support addition and subtraction. The class LocalMove
does not expose any methods, and was only added for completeness.
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Meta-Heuristic Methods

BS

copy objective

upper_bound feasible

add add_moves

upper_bound_increment_add

GRASP
copy objective

add feasible

upper_bound_increment_add add_moves

IG

copy objective

add feasible

upper_bound remove

add_moves random_remove_move

upper_bound_increment_add

ACO

copy feasible

objective add

add_moves upper_bound

upper_bound_increment_add components

FI step objective_increment_local

random_local_moves_wor

BI step local_moves

objective_increment_local

ILS
objective copy

step perturb

random_local_moves_wor objective_increment_local

SA
copy objective

step random_local_moves_wor

objective_increment_local

TS
copy objective

step random_local_moves_wor

objective_increment_local

Table 4.2: Required Methods from Model API for the Implemented Meta-
Heuristics

Note: Only the essential methods according to our implementation are presented,
although other implementations may utilize different methods. Additionally, for the
context of ACO, our implementation adopts the Max-Min Ant System variant [10].
Nevertheless, the method prerequisites should generalize to various other variants of
this MH.
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Chapter 5

Optimize a Data Center Problem

“In theory, theory and practice are the same. In
practice, they are not.”

— Albert Einstein

This chapter offers an in-depth analysis of the “Optimize a Data Center” problem
of the Google Hash Code 2015 qualification round. Particularly, in Section 5.1
we provide a formal description of the problem, highlighting details that we
considered essential for modeling. In Section 5.2 we delve into the details of
the model that was developed for this problem. In Section 5.3 we present an
overview of the results obtained, comparing them to those achieved by other
participants during the competition. Finally, Section 5.4 offers some concluding
remarks on the entire process, regarding both the implementation and problem
modeling aspects.

5.1 Problem Description

As outlined in the problem statement, over the years, Google has been build-
ing its own distinctively designed data centers, deploying numerous machines
around theworld. Within these facilities, arrays of servers operate continuously,
fueling essential services that a multitude of people rely on daily. Nevertheless,
the process of designing data centers is a complex optimization challenge with
multiple factors to consider. While the primary objective is to optimize the
utilization of computing capacity offered to users, it is equally imperative to en-
sure the uninterrupted provision of computing power, even in scenarios where
hardware failures are inevitable. Drawing inspiration from these engineering
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challenges, this problem presents a Google Data Center design scenario that
mirrors real-world complexities, as we describe next.

The data center, as outlined in the problem statement, is modelled as collection
of distinct rows. Each row consists of a specific number of “slots”, designated
for the placement of servers. Notably, this number of slots remains consistent
across all rows within the data center. Additionally, certain slots within the data
center may be unusable due to other installations that impose restrictions on
the utilization of those specific spaces. However, because rows share resources,
such as electrical power, a hardware failure in one row can render the entire
row of servers inoperable.

In Figure 5.1, an illustration depicts a layout featuring two rows, each consisting
of a total of seven slots. Note that some of these slots are marked as unavailable,
as indicated by the cross symbol.

Figure 5.1: Example Data Center Layout

The servers are defined by a tuple that includes two attributes: the size of the
server, which is measured in terms of the number of consecutive slots occupied
by the machine, and the computing capacity of the server, represented as an
integer value that indicates the machine’s CPU resources. Henceforth, we shall
denote asM the total number of servers, and use ℓ< and 2< to represent the size
and computing capacity of each server (< = 1, . . . ,M), respectively.

For illustration purposes, Table 5.1 presents potential values for the aforemen-
tioned parameters, showcasing examples of four distinct servers.

Server Size Capacity

1 3 2
2 2 5
3 3 10
4 2 3

Table 5.1: Server Properties

When servers are positioned within the data center rows, they are logically
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associated with resource pools, to which they can contribute their individual
computing capacities. The capacity of a pool is defined as the collective sum of
the capacities of all the servers allocated to it.

For clarification, Figure 5.2 offers a potential assignment of servers based on
the data center layout depicted in Figure 5.1, and the server attributes provided
in Table 5.1. In this particular instance, servers are distributed across two
separate resource pools, resulting in a total capacity of 15 and 5 for pools
numbered 1 and 2, respectively.

Server 1 Server 2

Server 3 Server 4

Row 1

Row 2

Pool 1

Pool 2

Figure 5.2: Example Server Assignment

By examining Figure 5.2, it becomes evident that the number of available slots
for a row does not solely determine the constraint for placing servers. In reality,
the presence of unavailable slots can further limit this placement, even if the
total number of slots in that row would otherwise allow it. Consequently only
the set of contiguous slots within each row, which we refer to as segments, can
be considered.

Another important aspect is that ensuring the reliability of a specific resource
pool implies the distribution of servers across various rows. This strategy
ensures that in the event of a row failure, the pool can still operate with
diminished capacity, drawing upon the servers located in the unaffected rows. In
the context of the problem, this represents the concept of a guaranteed capacity
for a pool.

Let, P be the number of resource pools, R the number of rows, I the number
of segments, L the set containing the size (in slots) of each segment (8 =

1, . . . ,I), and IA the set containing the indices of all segments for a given
row (A = 1, . . . ,R). The guaranteed capacity, 62? , of a pool (? = 1, . . . ,P) is a
measure of the remaining computing capacity available in the event that at
most one arbitrary row of the data center becomes inoperable. Formally, this
can be described as shown in Equation (5.1) where, G<,?,8 , is a binary variable
indicating whether the server, <, is assigned (1) or not (0) to pool, ? , and
segment 8 .
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62? (G) =
M∑
<=1

R∑
A=1

∑
8∈IA

2< · G<,?,8 −
R

max
A=1

M∑
<=1

∑
8∈IA

2< · G<,?,8 (5.1)

In simple terms, the leftmost part of Equation (5.1) represents the capacity
assigned to pool ? , and the rightmost part indicates the capacity that pool ?
loses if the row with the highest capacity contribution to that pool becomes
unavailable.

The objective of this problem can thus be succinctly described as: given a layout
description of a data center, determine the optimal arrangement of servers to
data center rows and resource pools, such that, the minimum guaranteed
capacity across all pools is maximized. Mathematically, this can be expressed
as shown in Equation (5.2).

max 5 (G) =
P

min
?=1

62? (G)

s.t.
P∑
?=1

R∑
A=1

∑
8∈IA

G<,?,8 ≤ 1 ∀< = 1, . . . ,M

M∑
<=1

P∑
?=1

ℓ< · G<,?,8 ≤ L8 ∀ 8 = 1, . . . ,I

G ∈ {0, 1}M×P×R

(5.2)

Note that, the constraints encapsulate the fundamental conditions that a server,
once assigned to a specific row and segment, cannot be reassigned elsewhere,
and that the sum of the sizes of of servers allocated to a particular segment
must not exceed its predefined size.

To demonstrate the evaluation of the objective, consider the capacities assigned
to each resource pool per row as showcased in Table 5.1. The resulting objective
value for this server placement is determined as min(5, 2) = 2.

Pool Row 1 Row 2 Guaranteed Capacity 5 (G)
1 5 10 5
2 2 3 2 2

Table 5.2: Guaranteed Capacity & Score

Lastly, it is important to note that several instance-specific constraints are
applied to various parameters that define the data center design within the
context of this problem. These constraints are outlined as follows:
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R. The number of rows in the data center (1 ≤ R ≤ 1000)

K . The number of slots in each row of the data center (1 ≤ K ≤ 1000)

U. The number of unavailable slots (0 ≤ U ≤ R × K)

P. The number of resource pools (1 ≤ P ≤ 1000)

M. The number of servers to be allocated (1 ≤ M ≤ R × K)

5.2 Problem Modeling

In the following, we delve into the modeling developed for this problem, and
highlight important aspects related to its implementation within the framework
proposed in Chapter 4.

Problem

A problem instance is uniquely defined by the set of available servers eligible
for allocation, along with their respective sizes and capacities, the number
of resource pools to be created, and the set of segments, each of which is
characterized by its size.

This corresponds to the information stored within the Problem class. From an
implementation standpoint, certain pre-processing operations were necessary
to obtain this information. In particular, the construction of set of available
segments using information related to available rows and the list of unavailable
slots. Furthermore, given that this class serves as a repository for immutable
problem-related information and is instantiated only once, a server ordering
relevant for the construction rules was also included. This enabled us to iterate
through and access the server order without the need to recompute it.

Solution

A solution is characterized by a collection of server assignments to pools and
segments. Notably, in the context of this problem, any partial solution is feasible.

This data is contained within the Solution class, along with other pertinent
information that is helpful in describing the state of the solution. This includes
details such as the set of unassigned servers, the guaranteed capacities for
each of the pools, the total capacities for each pool, and the same capacities
data broken down by row. Furthermore, it also encompasses the details of
evaluation metrics like the current objective function and upper bound values,
in addition to other relevant data that facilitates their incremental calculations.
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Component

A component can be represented as a tuple that contains a server, a pool, a
segment, effectively representing an assignment. However, it is important to
note that a valid decision is to refrain from placing a server in any of the
available segments. As such, another valid component can be characterized
solely by the server, indicating the action of forbidding it from being placed.
Notably, this information is encoded in the Component class.

C = {(<, ?, 8) | ∀< = 1, . . . ,M, ∀? = 1, . . . ,P, ∀8 = 1, . . . ,I} (5.3)

F = {< | ∀< = 1, . . . ,M} (5.4)

Given the component definitions in Equations (5.3) and (5.4), the ground set
can be defined as G = C ∪ F .

Construction Rules

Since not all subsets of components represent feasible solutions, the construc-
tion rules specify which components can be enumerated and the order by
which the enumeration is done. As such, the following sections describe the
approaches that were considered.

Standard This approach involves enumerating all possible combinations of
segments and pools where any of the unassigned servers can be assigned. It
also considers the option of forbidding a server from being used. Algorithm 5.1
illustrates the pseudocode for this enumeration. Note that, the function IsUsed

denotes whether a given server is available for assignment. Moreover, the
function Fit indicates if a server< can be assigned to segment 8 .

Sequential In this approach, a predetermined order for the servers is fol-
lowed. The process involves selecting the next server in a sequence and, similar
to the standard approach, enumerate all possible combinations of segments and
pools where a given server can be assigned. Again, the option for forbidding a
server from being used is considered. The pseudocode for this enumeration is
demonstrated in Algorithm 5.2.

Notably, the order considered for server enumeration qM , where qM< denotes
the <-th server within this order, is inspired by heuristics for the KP, and
prioritizes servers based on a non-decreasing order of the ratio between size
and capacity, ℓ</2< .
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Algorithm 5.1: Standard Component Enumeration
Input :Number of Servers (M), Number of Pools (P), Number of

Segments (I)
Output :Enumerated Components

1 for< = 1 toM do
2 if IsAssigned(<) then
3 continue
4 end
5 for ? = 1 to P do
6 for 8 = 1 to I do
7 if Fit(<, 8) then
8 yield (<, ?, 8) B Assign server < to pool ? and

segment 8

9 end
10 end
11 end
12 yield< B Forbid server <

13 end

Heuristic This approach entails establishing a specific order for servers,
pools, and rows, and then enumerating the potential combinations following
that predefined order. In terms of pools, the order prioritizes pools with the
lowest capacity. Concerning rows, the order gives preference to rows that have
the least capacity with respect to the pool undergoing enumeration. Finally,
segments are enumerated based on whether the chosen server can fit into
the available space. It is worth noting that the option of forbidding server
placement is also taken into account in this approach.

In Algorithm 5.3, the symbol qM represents the previously mentioned order for
server enumeration. The symbol qP signifies the order for pool enumeration,
with qP? indicating the ?-th pool in this order. Finally, the symbol qR signifies
the order for row enumeration, where qR?,A specifies the A -th row affected by
the choice of the ?-th pool in this order.

Objective Function

The objective function for this problem remains the same as defined in the
problem description, which involves maximizing the minimum guaranteed
capacity across all pools. However, this function is a bottleneck. Therefore, for
the purpose of optimization, we used an alternative objective function, 6(G),
that, for a given assignment, G , uses as the objective value the tuple containing
all guaranteed capacities for all the pools sorted in non-decreasing order, as
illustrated in Equation (5.5).
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Algorithm 5.2: Sequential Component Enumeration
Input :Server Index (<), Server Order (qM), Number of Pools (P),

Number of Segments (I)
Output :Enumerated Components

1 if ¬ IsAssigned(qM< ) then
2 for ? = 1 to P do
3 for 8 = 1 to I do
4 if Fit(qM< , 8) then
5 yield (qM< , ?, 8)
6 end
7 end
8 end
9 yield qM<

10 end

6(G) = (62c1, 62c2, . . . , 62cP )
s.t. 62c1 ≤ 62c2 ≤ . . . ≤ 62cP

(5.5)

In this equation, c is a permutation of the set {1, 2, . . . ,P}.

Upper Bound

The upper bound developed for this problem is grounded in a relaxation of the
second constraint presented in Equation (5.2). Rather than directly assigning
servers to individual segments, we opt to consider the number of slots available
for server placement in each row. This number is determined by summing the
count of available slots across all segments within that row. Following this
relaxation and for the purpose of computing the upper bound, we refer to the
set containing the number of available slots for placement in all rows except
row A asWA . The calculation of the initial values for all elements of this set is
displayed in Equation (5.6):

WA =
∑
8∈IA
L8 A ∈ {1, . . . ,R} \ {A } (5.6)

The upper bound calculation process is then divided into two steps, with the first
step involving the estimation of an optimistic guaranteed capacity, followed by
a second step for correction to ensure a tight upper bound.

In the first step, we consider the total size resulting from every combination of
rows, excluding one row denoted asWA . We systematically assign available
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Algorithm 5.3: Heuristic Component Enumeration
Input :Number of Servers (M), Number of Pools (P), Number of

Segments (I), Server Order (qM), Pool Order (qP), Row
Order (qR)

Output :Enumerated Components
1 for< = 1 toM do
2 if IsAssigned(qM< ) then
3 continue
4 end
5 for ? = 1 to P do
6 I ← qP?
7 for A = 1 to R do
8 : ← qRI,A
9 for 8 = 1 to I: do
10 if Fit(qM< , 8) then
11 yield (qM< , qP? , 8)
12 end
13 end
14 end
15 end
16 yield qM<
17 end

servers to these rows until the cumulative size is fully utilized. The sum of
server capacities for each row, except one, is then divided by the total number
of pools to derive a quantity referred to as the “row-wise upper bound”.

Additionally, the assignment of servers adheres to the previously mentioned
heuristic order (qM), inspired by the knapsack problem. However, in the
context of the upper bound calculation, this order prioritizes servers that
are already assigned, followed by the unassigned servers, and excludes those
marked as forbidden.

Formally, the row-wise upper bound calculation process is outlined in Equa-
tion (5.7):

ΦA
D1

=

∑M
<=1 2qM<

P

s.t.
M∑
<=1

ℓqM<
≤ WA

(5.7)

In the second step of this calculation, we can further refine each row-wise
upper bound by removing pools and servers that already possess a guaranteed
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capacity exceeding the value of the row-wise upper bound when dropping that
row. After removing these elements, we recalculate the bound for the reduced
server set and the number of remaining pools. This process is repeated until
no further corrections can be applied, meaning that no considered pool has a
guaranteed capacity greater than the bound.

The upper bound is determined by selecting the minimum value among all the
row-wise upper bounds after applying the correction, which is calculated, as
illustrated in Equation (5.8):

ΦD1 =
R

min
A=1

ΦA
D1

(5.8)

While this bound is valuable, it can be enhanced for greater informativeness.
During the computation of each row-wise upper bound, we maintain the
smallest value for each pool in a vector denoted as Λ. It is important to note
that at the end of this process, the values withinΛ correspond to an upper bound
on the guaranteed capacity of each pool. Subsequently, this vector is utilized to
define an upper bound for the problem, as depicted in Equation (5.9), where
c represents a permutation of the set 1, 2, . . . ,P. Notably, this upper bound
aligns with the choice for the alternative objective function, 6(G), mentioned
earlier.

ΦD1 = (Λc1, Λc2, . . . , ΛcP )
s.t. Λc1 ≤ Λc2 ≤ . . . ≤ ΛcP

(5.9)

Local Moves

The local moves considered for this problem are as follows:

1. Assigning a server to a pool and segment if there is an available one.

2. Removing a server from a segment.

3. Changing the segment to which a particular server is allocated, if other
segments that can accommodate its size are available.

4. Changing the pool to which a server is allocated, moving it to a different
pool.

5. Swapping the pools of two assigned servers, thereby transferring the
capacity of the servers between pools.

6. Swapping the segment in which servers are assigned. This is applicable
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when there is available space on both sides of the transfer to accommodate
the change.

Notably, these operations in the context of the modeling framework implemen-
tation are encoded in the LocalMove class.

Perturbation

Regarding the perturbation of the solution, for this problem, we did not employ
any specific operation apart from randomly applying the described local moves.

5.3 Results

After formally describing the problem model, the information was translated
into a practical implementation developed within the modeling framework
mentioned in Chapter 4. This implementation enabled the use of various meta-
heuristic methods for experimentation. Multiple iterations of the model were
tested, each involving different types of component enumerations, bounds,
heuristics, and various solvers.

The machine used to run the solvers on the single available instance for this
problem had the following s specifications:

OS CPU RAM

Ubuntu 22.04.2 LTS Intel i7-12700H (20 cores) — 4.600GHz 64 GB

Table 5.3: Benchmark Machine Specifications

The best results were achieved through a simple heuristic strategy in a construc-
tive search phase. This strategy involved enumerating ten first components
at each iteration using the heuristic strategy described in Algorithm 5.3. The
selected component to add to the solution was the one that contributed the
most increment to the upper bound value. Notably, the upper bound function
used was the one described in Equation 5.9, which effectively discriminated
the results, allowing for a construction that yielded a final score of 386 points
in only 1 second.

Other CS algorithms, such as GRASP, IG and BS proved to be slower in con-
structing solutions of similar quality compared to the simple heuristic strat-
egy. Multiple add-hoc parametrizations were tested for each of these algorithms,
but they consistently produced initial results ranging from 280 to 320 points,
taking additional time to further improve them as to match the described
heuristic.
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For LS strategy, the best meta-heuristic was ILS. When run with a total timeout
time of 15 seconds and using a perturbation with a kick strength of 2, ILS
consistently improved the solution returned by the heuristic construction
strategy (regardless of the seed), yielding a score of 410 points. This result was
satisfying and led to us move on to the next problem.

Notably, the score of 410 is better than the best score in the competition
leaderboard (407).

5.4 Concluding Remarks

In this chapter, we provided our analysis and described model for the Google
Hash Code problem entitled “Optimize a Data Center”. Despite having only a
single instance, which seemed simple, this problem posed a several optimization
challenges, mainly due to its bottleneck objective function.

The task of optimizing the implementation of the model within the framework
was a meticulous process that required extensive thought and many hours
of development. It involved the incremental calculation of various values
to achieve computational efficiency, enabling solvers to address the problem
within a reasonable time frame. This work has provided valuable insights
into the effective modeling of problems and the design of robust upper bounds.
While progress has been made, there are still ideas that can be explored, ranging
from different component enumerations to more advanced bound techniques,
which we plan to explore the future.

The process of modeling posed significant challenges; however, it underscored
the effectiveness of this modeling approach. It offers a structured method for
problem-solving, which, when translated into implementation, enables rapid
testingwith a variety of algorithmswithout the need for additional development
efforts, as the models can be reused. Furthermore, having these models in place
allows for a more comprehensive study of the performance of MH methods in
the future. This will enable the assessment of which algorithms work best for
this problem.
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Book Scanning Problem

“Success is walking from failure to failure with no loss
of enthusiasm.”

— Winston Churchill

In this chapter, we delve into an extensive analysis of the problem presented in
the Google Hash Code 2020 qualification round, titled “Book Scanning”. Simi-
larly to the previous chapter, our primary goal lies in describing the modeling
process for this particular problem. As such, in Section 6.1 we present a descrip-
tion of the problem focusing on the details found most relevant. In Section 6.2
we describe the modeling strategy used for this problem. In Section 6.3 we
highlight the main results that were obtained in comparison to those achieved
by participants during the competition. Lastly, Section 6.4 offers some remarks
on problem-solving process.

6.1 Problem Description

As described in the problem statement, the primary objective of the Google
Books project is to create a digital library with global accessibility. Through
collaborations with libraries and publishers worldwide, the project has amassed
a collection of over 40 million books in more than 400 languages. The process
of adding a book to the digital library involves several key steps, such as
library registration, on-site visits by logistics experts, and shipping the books
for scanning. Therefore, the development of an efficient scanning process
requires careful planning for optimal efficiency. Motivated by these real-world
challenges, this problem presents a scenario that resembles the real-world
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challenges face by the Google Books team.

In the context of this problem, we are presented with a global library system
housing a diverse collection of books, with each library having at most one copy
of these books. Libraries are characterized by three key factors: the books they
hold, sign-up time, and shipping rate. The sign-up time represents the duration
(measured in days) required for a library to complete the sign-up process before
it can commence sending books for scanning. The shipping rate indicates how
many books a library can send for scanning daily once the sign-up process
concludes. Henceforth, given a number of libraries denoted as L, we shall use
the notation Cℓ and Aℓ to refer to the sign-up time of a library, ℓ = 1, . . . ,L,
respectively.

There are specific constraints associated with tThe book scanning process, as
described, is nevertheless limited by time as there is a fixed global deadline,D.
Consequently, it is likely that only a portion of all available libraries will
undergo the sign-up process. Moreover, for the libraries that are already signed
up, this deadline restricts the number of days during which they are allowed
to ship books for scanning. Firstly, only one library can be signed-up at any
given time, irrespective of any predefined order. Moreover, once the sign-up
process commences for a particular library, it cannot be halted, and as soon as
it concludes, that library becomes immediately available for sending books for
scanning. Notably, each book scanned contributes a designated score; however,
this score is counted only once, regardless of how many times the book is
scanned. Given a number of books, B, the notation B1 will be used to denote
the score of book 1 = 1, . . . ,B.

The book scanning process, as described, is nevertheless limited by time as
there is a fixed global deadline,D. Consequently, it is likely that only a portion
of all available libraries will undergo the sign-up process. Moreover, for the
libraries that are already signed up, this deadline restricts the number of days
during which they are allowed to ship books for scanning.

As an illustrative example, refer to Figure 6.1, which depicts a possible book
scanning process. The characteristics of the libraries in the example are detailed
in Table 6.1. It is important to note that, in this specific example, the global
deadline has been set at 7 days (inclusive).

In this specific example, two libraries have signed up in a non-decreasing order
based on their labels, resulting in a combined sign-up time of 5 days. Addi-
tionally, the scanning rates for these libraries are 2 and 1 for library 1 and
2, respectively. This implies that with this library order, library 1 can ship a
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Signup Time

Signup Time

1

2

3

4

1 3 6

5

1 2 3 4 5 6 7 8
Day

Library

(deadline)

1

2

Figure 6.1: Book Scanning Process Example

Library Sign-up Time Rate Books

1 3 2 1, 2, 3, 4, 5
2 2 1 1, 3, 6

Table 6.1: Library Properties

maximum of 8 books, while library 2 can ship 2 books at most. Consequently,
the latter ends up not contributing one of its books to the scanning process. Im-
portantly, this example also highlights a scenario where both libraries possess
duplicate copies of the same books (books 1 and 3). As mentioned earlier,
these duplicate copies will only be scanned once, regardless of the number of
duplicates, ensuring that they are counted for scoring only once.

In essence, the objective of this problem is to determine the optimal order for
library sign-ups and book selections for scanning, aiming to maximize the
sum of the scores of the unique books sent for scanning before the deadline.
Mathematically, this can be expressed as shown in Equation (6.1), where, I the
number of libraries signed-up, qI denotes the order for the signed-up libraries
8 = 1, . . . ,I, and G1,; is a binary variable indicating whether a particular book,
1, was shipped by library ℓ for scanning (1) or not (0).

max 5 (G) =
B∑
1=1

B1 ·min

( I∑
8=1

G1,qI
8
, 1

)
s.t

B∑
1=1

G1,qI
8
≤ A8 ·

(
D −

8∑
:=1

CqI
:

)
∀8 = 1, . . . ,I

I∑
8=1

CqI
8
≤ D

(6.1)
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Note that in the objective function given by Equation (6.1), the constraints
represent the maximum number of books that a library can ship for scanning
between its sign-up date and the deadline, as well as the maximum number of
libraries that can undergo the sign-up process before the deadline.

For clarification of all the above concepts, consider the books scores presented
in Table 6.2.

Book 1 2 3 4 5 6

Score 3 1 5 4 7 1

Table 6.2: Example Book Scores

Given the order for the libraries shown in Figure 6.1 and the properties exposed
in Table 6.1 the resulting objective value for this scheduling is 3+1+5+4+7 = 20.

Lastly, several instance-specific constraints are applied to various parameters
that define the data center design within the context of this problem. These
constraints are as follows:

L. The number of libraries (1 ≤ L ≤ 105).

T . The number of days required to finish a library sign-up (1 ≤ T ≤ 105).

B. The number of unique books (1 ≤ B ≤ 105).

N . The number of books per library (1 ≤ N ≤ 105).

D. The deadline (0 ≤ D ≤ 105).

6.2 Model

In the following, we present the modeling developed for this problem, and
highlight aspects that are relevant for its implementation.

Problem

A problem instance is defined by the set of all libraries available, along with
their sign-up times, book shipping rate, and list of books that can be shipped,
the scores for all the books, and the deadline.

Solution

The solution in this problem is defined by a collection of assignments of books
to libraries and the order in which libraries are scanned. It is important to note
that, in the context of this problem, any partial solution is considered feasible.
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Component

One type of component is a tuple containing a book and library, representing
an assignment. Moreover, given that libraries need to be signed-up in order
be possible to scan books, another type of component is a pair of libraries
(8, 9) where, 8 = 0, . . . ,L and 9 = 1, . . . ,L; denoting that library 9 is signed-up
after library 8 . To denote the first library that is signed up we consider the
component (0, 9).

Construction Rules

For this problem, we considered two construction rules which are described as
follows:

Standard This approach encompasses enumerating all possible combinations
of already signed-up libraries and not yet scanned books. Additionally, it also
enumerates all libraries that can be signed-up next before the deadline.

Sequential This approach is a slight variation of the previous one. Instead
of enumerating all possible books for all signed-up libraries simultaneously,
it only generates assignments for the last signed-up library and enumerates
the books strictly for that library. Note that, the selection of which library to
sign-up next is also an enumerated component. As a result, we reduce the
complexity of the enumeration of all components by a factor of L.

Objective Function

The objective function for this problem is the same as the one defined in the
problem description.

Upper Bound

A possible bound for this problem is to consider each library as a knapsack
problem where the capacity is the number of books that can still be signed-up
by a library until the deadline, and each book represents an item with weight
of 1 and profit equal to its score. Note that, for libraries already signed-up the
time until the deadline is known, whereas for libraries that have not yet been
signed up that time is not known. However, we can consider that each not
signed up library will be the next to open, thus relaxing the constraint that
dictates that two libraries can not be signed-up simultaneously. The bound for
this problem is then the sum of a knapsack bound for all libraries considering
only the books that have not yet been scanned and that are available for each
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library. Note that, we are also relaxing the fact that each book can only score
once by possibly counting it for the bound of multiple libraries.

Another bound for this problem, is to consider the number of books that can
be scanned until the deadline for all libraries as the knapsack. Thus, we relax
the constraint set on the number of books that can be scanned for a particular
library imposed by the objective function. Additionally, we consider that a
book can be placed in the knapsack regardless of which library it belongs to.
The association with a specific library is taken into account once the book is
actually scanned. The value of this upper bound is determined by the sum of
the scores of the unique books that can fit within the knapsack.

Local Moves

The local moves considered for this problem include:

1. Adding a book to the set of books to be scanned by a given library.

2. Removing a book from the set of books that were going to be scanned
by a library.

3. Swapping books between libraries. This move ensures that both libraries
have copies of the books being swapped.

4. Removing a book from the list of books to be scanned by a library and
adding that book to another library. If possible, replace the removed
book in the first library with another one that is available there.

Perturbation

Regarding the perturbation of the solution, for this problem, we did not employ
any specific operation apart from randomly applying the described local moves.

6.2.1 Two-Phase Approach

The previous model, although valid, was not competitive in practice. Therefore,
an alternative strategy for modeling this problem was developed. This strategy
involved breaking down the optimization tasks into two distinct stages. The
first stage focused on finding an good order for the libraries, and the second
stage employed an algorithm to assign books to the libraries, effectively solving
the problem.
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Construction Rules

The library selection strategy employed was based on a heuristic value calcu-
lated at each step for each library not yet signed-up. The objective was to rank
the libraries according to their potential contribution given by the books they
contained. There are numerous possible criteria for ranking libraries, such as
prioritizing those with the shortest sign-up time, libraries containing the rarest
books, or libraries with the highest score, among others. However, the most
effective heuristic value for ranking libraries in practice was the one that takes
into account libraries with the highest cumulative score of books not present in
any of the assigned libraries and could be shipped before the deadline, divided
by the sign-up time.

After iteratively selecting libraries based on their heuristic values until it is
no longer possible and defining the library order, we can then solve the book
assignment optimally using an exact method. There are various algorithms in
the literature to solve assignment problems, such as the Hungarian Method [25].
However, these algorithms require, in general, the use of an assignment matrix,
which for the instances of this problem becomes too large and impractical due
to memory constraints.

The alternative approach considered involved modeling the problem as a bi-
partite graph and using the max-flow min-cost algorithm [25] to determine
the assignment. In this approach, books and libraries were represented as
nodes, and the presence of each book in a library was represented as an edge.
Additionally, source and sink nodes were added to the graph as required by the
algorithm. The bipartite graph is illustrated in Figure 6.2, where there are 3
books and libraries, and book 2 has duplicate copies in two libraries.

Books Libraries

1

2

3

1

2

3

Source Sink

Figure 6.2: Assignment Problem Modeled as a Bipartite Graph
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The edges of the graph are then adjusted in the following way:

From Source to Books. The cost of the edge was set to 0 since we do not
wish to count the contribution of this edge, and the capacity was set to 1,
symbolizing that all books can be considered for assignment.

From Books to Libraries. The cost was set to -B1 to formulate the problem
for maximization, and the capacity was set to 1, symbolizing that each
book can be assigned once to that particular library, thereby contributing
with its score.

From Libraries to Sink. The cost was set to 0 since libraries do not con-
tribute to the score, and the capacity was given a value equal to the
number books can be placed in that library, until the deadline D.

It is important to note that, the assignment will correspond to edges in the
graph that maximize the flow, and secondarily minimize the cost.

Local Moves

To further improve the objective value, we can experiment with different library
orderings by applying the following local moves to the existing order, qI .

• Reverse the sign-up order between two libraries in qI

• Change the positions of two libraries in the order qI , adjusting the
sign-up times of every library in between.

• Select one library to remove and add another library that is not currently
considered in that position, if possible.

6.3 Results

This chapter, described our model and analysis of the google hash code problem
entitled “Book Scanning”. This problem presented instances, each with different
challenges and relatively large sizes.

We began by approaching the problem from a constructive search perspec-
tive, and in doing so, we made several choices related to the enumeration of
components and the calculation of the upper bound. Initially, we attempted to
use the standard enumeration method for components, but it quickly became
apparent that this approach was impractical due to the size of the instances.
Consequently, we switched to the sequential enumeration method, which was
better suited for handling the large instances and ultimately became our default

86



Chapter 6. Book Scanning Problem Results

choice. Concerning the upper bound, the first one presented in the problem
model proved to be too computationally demanding and was not used in prac-
tice. However, the second bound, which further relaxed the constraints of the
problem, proved to be more performant and is the one we utilized in practice.

These choices enabled us to employ a greedy constructive MH that selected the
solution with the best upper bound value at each step with a 15 minute timeout,
leading to the results presented in Table 6.3. Other experiments were conducted
with various constructive meta-heuristics we developed in the context of the
modeling framework. However, these approaches proved to be slower in
optimizing the solution within the aforementioned time frame.

Instance Score

“Read On” 5 822 900
“Incunabula” 185 017
“Tough Choices” 2665
“So many books” 140 189
“Libraries of the world” 275 446

Table 6.3: Book Scanning Simple Constructive Search Results

From a local search perspective, we encountered challenges in achieving im-
proved results using the implemented meta-heuristics. Despite having promis-
ing local moves in theory, none of them led to improvements in the solution
obtained after constructive search. Consequently, we considered an alternative
approach that focused on optimizing the ordering of libraries and then solved
the book assignment problem exactly.

For this purpose, we employed the two-phase approach which yielded the
best results we were able to achieve. Remarkably, the usage of an exact solver
for the max-flow min-cost problem provided in the Python package networkx1

achieved surprisingly good performance, taking at most 2 minutes to fully
construct a solution after an ordering for the libraries was established, even in
the largest instance. Furthermore, the local search following this construction,
using a HC technique, was able to further improve the scores for some of the
instances within the 30-minute time limit we set for this procedure.

This approach indeed yielded the best results we were able to achieve, which
are presented in detail in Table 6.4 alongside the best results obtained by other
contestants during the competition.

Remarkably, this placed us in 33rd place on the competition leaderboard.
1 https://networkx.org/
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Instance Score Best Known Score

“Read On” 5 822 900 5 822 900
“Incunabula” 5 689 822 5 690 888
“Tough Choices” 5 028 530 5 107 113
“So many books” 5 208 455 5 237 345
“Libraries of the world” 5 328 034 5 348 248

Table 6.4: Book Scanning Best Results

6.4 Concluding Remarks

In this chapter, we presented our analysis and described the model for the
Google Hash Code problem entitled “Book Scanning” This problem posed
significant challenges, both in terms of conceptualization and implementation
using the modeling framework.

From a conceptual perspective, developing the model for this problem involved
a great deal of thought about possible approaches to address the issues arising
from the large instance sizes. Many ideas were tested, and most of them yielded
poor results due to either slowness or worse performance on specific prob-
lem instances with more complex characteristics. Nevertheless, this problem
underscored the importance of creating a highly descriptive model and demon-
strated that a well-crafted model can significantly impact the effectiveness of
problem-solving algorithms.

From an implementation perspective, our experience showed that the frame-
work is flexible enough to accommodate various problem-solving approaches.
It provides a versatile API that gives users the freedom to employ different
strategies for solving problems while adhering to the framework’s specifica-
tions. This flexibility allows users to leverage existing solvers and experiment
with new algorithms easily.
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Conclusion

“We can only see a short distance ahead, but we can
see plenty there that needs to be done.”

— Alan Turing

In this thesis, our main objective was to address two complex combinatorial
optimization problems from the Google Hash Code competition using MH
approaches. Our approach was centered on developing conceptual models
for these problems and implementing them within a framework we designed.
This enabled the utilization of generic MH solvers that were also developed to
conform to the framework’s specification. Essentially, the framework acted
as a practical tool to bridge the gap between conceptual problem modeling
and actual problem-solving, while offering a platform for creating generic MH
solvers that can tackle any problem in a black-box fashion.

Our efforts resulted in successful problem modeling and promising outcomes
for both of the problems we attempted to solve. Notably, all the problem models
we devised could be implemented through the framework, highlighting the
adaptability and effectiveness of our approach in tackling intricate problems.
Moreover, our framework allowed the development of all the MH strategies
discussed in Chapter 2, demonstrating that is indeed possible to this. However,
it is important to acknowledge that the framework we constructed will benefit
from further refinement, especially in terms of accommodating different mod-
eling aspects, such as describing models for other types of meta-heuristics like
evolutionary algorithms, which were not within the scope of this work.

Overall, the experience of working with this framework was positive, primarily
due to its transparency in addressing essential modeling questions and its
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clear separation of solvers and models, making a wide range of utilities readily
available. However, becoming proficient in the framework requires training
and conceptual familiarity, which will only come with practice.

7.1 Future Work

Possible research directions in future work are presented as follows:

Problem Models Expanding the repertoire of problem models, both for the
existing Google Hash Code problems and for other challenges within
the competition, holds significant importance. This broader range of
models will enable a comprehensive assessment of how the framework
performs when applied to problems with diverse characteristics. The
models we have constructed so far represent just a small subset, and a
more extensive selection will facilitate a more in-depth analysis of MH
behavior. This expansion is crucial, as having a variety of performant
models will support extensive testing and refinement of solvers.

Meta-Heuristic Implementation Further implementations of other meta-
heuristic techniques, such as evolutionary algorithms, can be explored.
The introduction of new meta-heuristics may necessitate updates and
additional functionalities for the framework to accommodate these ap-
proaches effectively.

Experimental Evaluation of Meta-Heuristics The results obtained from
the developed models have not yet delved into the parametrization of
meta-heuristic methods. This analysis is crucial for optimizing and fine-
tuning these techniques to achieve the best possible performance in
solving complex problems. Furthermore, future work should include a
thorough examination and comparison of different meta-heuristics.

90



Acronyms

ACO Ant Colony Optimization. xii, 19, 20, 25, 48, 50, 66

API Application Programming Interface. 27–30, 46, 51, 56, 88

BBO Black-Box Optimization. 12, 26, 44, 45

BI Best Improvement. 21, 24, 66

BS Beam Search. xii, 16, 17, 25, 56–58, 60, 66, 77

CO Combinatorial Optimization. 2, 3, 5–9, 12, 13, 44

CS Constructive Search. xii, 14–16, 18, 19, 25, 26, 29, 30, 48, 49, 53–56, 61, 77

FI First Improvement. 21, 22, 60, 66

GBO Glass-Box Optimization. 12, 25

GO Global Optimization. 10, 11

GRASP Greedy Randomized Adaptive Search Procedure. xii, 18, 19, 25, 52,
66, 77

HC Hill Climbing. xii, 21, 22, 25, 87

IG Iterated Greedy. xii, 18, 19, 25, 51, 66, 77

ILP Integer Linear Programing. 12, 25

ILS Iterated Local Search. xii, 22, 25, 56, 60, 66, 78

KP Knapsack Problem. 7, 8, 25, 26, 72

LCG Linear Congruential Generator. 53, 54

LO Local Optimization. 10, 11
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LS Local Search. xii, 14, 15, 18, 19, 21–26, 29, 48, 52–56, 60, 61, 78

MH Meta-Heuristic. 2, 3, 6, 8, 9, 13, 16–23, 26, 28, 47, 48, 56, 57, 60, 62, 64, 66,
78, 87, 89, 90

nasf4nio Not Another Framework for nature-inspired optimization. 28–30,
46

nasf4nio-cs Not Another Framework for nature-inspired optimization —
Constructive Search. 28, 29, 46

POF Python Optimization Framework. 28, 29, 46

SA Simulated Annealing. xii, 19, 22, 23, 25, 66

TS Tabu Search. xii, 23–25, 66
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