
 

 
 
 
 

 
 
 
 
 
 

Diogo Miguel Ferreira Gonçalves 
 
 
 
 

HYBRID QUANTUM-CLASSICAL 
COMPUTATION 

HYBRID DIRAC QUANTUM WALKS 
 
 
 
 
 
 
 
 

Dissertation in the context of the Master in Engineering Physics, 
advised by Doctor Professor Yasser Omar and Doctor Professor 

Pedro Vieira Alberto and presented to the Department of Physics 
of the Faculty of Sciences and Technology of the University of 

Coimbra. 
 
 

September 2023 





Department of Physics

Diogo Miguel Ferreira Gonçalves

Hybrid Quantum-Classical
Computation

Hybrid Dirac Quantum Walks

Dissertation in the context of the Master in Engineering Physics, advised by
Doctor Professor Yasser Omar and Doctor Professor Pedro Vieira Alberto and

presented to the Department of Physics of the Faculty of Sciences and Technology
of the University of Coimbra.

September 2023





Departamento de Física

Diogo Miguel Ferreira Gonçalves

Computação Quântica-Clássica
Híbrida

Passeios quânticos de Dirac híbridos

Dissertação no âmbito do Mestrado em Engenharia Física, orientada pelo Professor
Doutor Yasser Omar e Professor Doutor Pedro Vieira Alberto e apresentada ao
Departamento de Engenharia Física da Faculdade de Ciências e Tecnologia da

Universidade de Coimbra.

Setembro 2023





Acknowledgements

Começo por agradecer, aos meus orientadores Prof. Yasser Omar e Prof. Pedro
Vieira Alberto por tornarem possível explorar esta área, que imensa curiosidade me
gerou, com engenho e arte.

À minha família, destacando os meus pais, Maria da Conceição e Fernando, irmãs,
Ana e Raquel, e cunhados, Alexandre e Emanuel, pelo carinho, apoio incondicional
e orientação durante toda a minha vida.

À minha namorada Maria, pela motivação e carinho.

Por fim, serve também de apreço a todos os que de forma direta ou indireta con-
tribuiram para o desenvolvimento não só deste trabalho, mas de todo o meu percurso
académico.

vii





Abstract

Quantum Computing has emerged as a technology capable of changing paradigms
on multiple fields. In the other hand, current development of such applications is
tampered by noisy quantum hardware.

Hybrid Quantum-Classical Computation leverages the strengths of both Quantum
and Classical Computers (such as High Performance Computers (HPC)) to create
a bridge that seamlessly integrates and exploits the advantages of each. This field
is still overlooked, being under the shadow of the great advancement in the field of
quantum hardware. Currently, there is a noticeable void in the efforts to develop
algorithms that use the power of both technologies.

In this work we will explore hybrid computing as a whole, understand all of its fun-
damental parts and its limitations. We began with an introduction of the necessary
theoretical background and a study of the state of the art related to hybrid algorithm
developments. Then we will present the framework for the quantum walk algorithm,
exploring some of its capabilities. Next we will propose an hybrid architecture and
application on an unexplored domain, the simulation of Dirac free particle. Then
we will do a test of our hybrid algorithm for simple problems, using real quantum
hardware, exposing the limitations of it. As a final approach we will use a simulator
of quantum hardware ran on a classical High Performance Computer provided by
the Laboratory for Advanced Computing of the University of Coimbra, to execute
the quantum walk algorithm of the Dirac free-particle trapped in a square potential.

Keywords

quantum computing, hybrid classical-quantum algorithms, high perfor-
mance computing, quantum walk, dirac free particle

ix





Resumo

A computação quântica emergiu como uma tecnologia capaz de mudar paradigmas
em vários campos. Por outro lado, o desenvolvimento atual de tais aplicações é
limitado por hardware quântico ainda muito ruidoso.

A Computação Quântica-Clássica Híbrida usa as capacidades de ambos os Com-
putadores Quântico e Clássico (como High Performance Computers (HPC) ou su-
percomputadores) para criar uma ponte que integra e explora as vantagens de cada
um. Este campo ainda é relativamente ignorado, ficando na sombra de grandes
avanços do hardware quântico. Atualmente, existe um vazio considerável no que
diz direito aos esforços para desenvolver algoritmos que utilizam as capacidades de
ambas as tecnologias.

Neste trabalho, exploraremos a computação híbrida como um todo, compreendendo
todas as suas partes fundamentais e as suas limitações. Começaremos com uma
introdução teórica sendo necessário para contextualizar este trabalho, e um estudo
do estado da arte relacionado ao desenvolvimos de algoritmos híbridos. Depois ire-
mos apresentar a estrutura para o algoritmo de passeios quânticos, propondo uma
arquitetura híbrida e aplicação num domínio inexplorado, a simulação da partícula
livre de Dirac. De seguida, iremos realizar um teste ao nosso algoritmo híbrido, uti-
lizando hardware quântico real, e expor as limitações deste. Como abordagem final,
utilizaremos um simulador de hardware quântico instalado num HPC localizado no
Laboratório para Computação Avançada da Universidade de Coimbra, para calcu-
lar a evolução de uma partícula livre de Dirac aprisionada num potencial quadrado,
utilizando como base o algorithmo de passeios quânticos (quantum walk).

Palavras-Chave

computação quântica, algoritmos híbridos clássicos quânticos , computação
de alta performance, caminhos quânticos, partícula livre de Dirac

xi





Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 Quantum computation history . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classical Random Walks and Quantum Walks . . . . . . . . . . . . . 2
1.3 Framing, Motivation and Structure . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Foundation 7
2.1 Notions on Quantum Information and Quantum Computing . . . . . 9

2.1.1 Principles of quantum information . . . . . . . . . . . . . . . . 9
2.1.2 Principles of quantum computation . . . . . . . . . . . . . . . 10
2.1.3 Quantum computers: physical realization . . . . . . . . . . . . 13
2.1.4 Notable quantum algorithms . . . . . . . . . . . . . . . . . . . 14

2.2 Hybrid Quantum-Classical Algorithms . . . . . . . . . . . . . . . . . 15
2.2.1 Variational Quantum Eigensolver . . . . . . . . . . . . . . . . 15
2.2.2 Quantum Approximate Optimization Algorithm . . . . . . . . 17
2.2.3 Hybrid Quantum Monte Carlo . . . . . . . . . . . . . . . . . . 18
2.2.4 Hybrid Machine Learning . . . . . . . . . . . . . . . . . . . . 19

2.3 High Performance Computing . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 High performance computing and quantum computing . . . . 22

3 Quantum Walks 25
3.1 Coined Quantum Walk . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Dirac quantum walk . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Potential Well . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Algorithm for quantum walk . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Simplified and hybrid quantum walks . . . . . . . . . . . . . . 38
3.2.2 Quantum walk with position-dependent coins . . . . . . . . . 42
3.2.3 Dirac free-particle trapped in a square potential well . . . . . 43
3.2.4 Visualizing time evolution . . . . . . . . . . . . . . . . . . . . 44
3.2.5 Qiskit implementation . . . . . . . . . . . . . . . . . . . . . . 45

4 Algorithm Benchmarking 49
4.1 Quantum walk algorithm advantages . . . . . . . . . . . . . . . . . . 51
4.2 Algorithm execution on classical hardware . . . . . . . . . . . . . . . 55

4.2.1 Classical cluster simulation methodology . . . . . . . . . . . . 55
4.2.2 Laboratory for Advanced Computing - Navigator+ . . . . . . 55

xiii



4.2.3 Simulator architecture . . . . . . . . . . . . . . . . . . . . . . 56
4.2.4 Simulation parameters tuning and validation . . . . . . . . . . 57
4.2.5 Results and analysis between analytical results . . . . . . . . . 61

5 Discussion and Conclusion 67

References 69

Appendix A The Postulates of Quantum Mechanics 77

Appendix B Analytical overview on the one dimensional Dirac Quan-
tum Walk 81
B.1 Evolution Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Spacial Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.3 Wave packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Appendix C ibm_perth calibration data 85

Appendix D Open sourced Quantum Walk Code 87

xiv



Glossary

HPC High Performance Computers.

Hybrid Quantum-Classical Computation algorithm architecture focused on com-
bining quantum and classical computation by leveraging their strengths to ob-
tain an advantage on current state of the art classical and quantum computers.

Noisy Intermediate-Scale Quantum term used to describe the current quan-
tum computers, as machines prone to considerable error rates and limited in
size by the number of logical qubits..

qiskit digital open-source framework to develop algorithms for quantum computers,
provided by IBM. Development is done using python programming language..

Quantum Walk quantum equivalent to random walks. Describes the coherent
propagation of quantum particles in networks. It servers as a foundation for
many quantum algorithms and applications..

Quantum Computing multidisciplinary field comprising aspects of computer sci-
ence, physics, and mathematics that utilizes quantum mechanics to solve spe-
cific complex problems faster than on classical computers..

xv





List of Figures

2.1 Graphical representation of the Bloch sphere. This method allows for
a detail visualization of a qubit state. . . . . . . . . . . . . . . . . . . 10

2.2 Graphical representation of the entanglement circuit we’ll use as a
practical example. Our horizontal lines represent either qubits (q0, q1)
or bits (c2). Gates are applied to the qubits which can affect one or
more of them. The CNOT gate performs operations that involve more
than one qubit, similar to the classical NOT gate. The Hadamard gate
is one of many one qubit gates. Finally, the measurement blocks on
the qubits store the results to classical bits. . . . . . . . . . . . . . . 12

3.1 Probability distribution for different initial coin states, "tails" |0⟩ and
"heads" |1⟩, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Symmetrical probability distribution using 8 qubits and t = 28−1

steps simulated on quantum computer simulator qasm_simulator
from IBMQ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Graph networks for a cycle network (left) and for a limited line (right). 30
3.4 Gate for for the position-dependent coin. . . . . . . . . . . . . . . . . 32
3.5 Circuit for position dependent coin. Important to note, that for the

sake of simplicity we omitted |ψc⟩ from the slice annotations. . . . . . 33
3.6 Quantum circuits for different resolutions on the position space. . . . 33
3.7 Quantum Circuit for the Quantum Walk. For it we want to implement

the coin operator and shift operator. . . . . . . . . . . . . . . . . . . 34
3.8 Left and Right shifts, respectively. . . . . . . . . . . . . . . . . . . . . 35
3.9 Initial position state preparation circuit. . . . . . . . . . . . . . . . . 35
3.10 Initial coin state preparation circuit. . . . . . . . . . . . . . . . . . . 36
3.11 Circuit preparation for the generic cycle quantum walk. . . . . . . . . 36
3.12 Circuit fraction for the S (shift) gate . . . . . . . . . . . . . . . . . . 37
3.13 In the left side we have a graphical representation of the Quantum

circuit complexity with the number of qubits n. In the right side we
have a graphical representation of the Quantum circuit depth with
the number of qubits n. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 Circuit Schematic for the Quantum Fourier Transform . . . . . . . . 39
3.15 Shift operator circuit (V ) using Fourier space simplification. . . . . . 40
3.16 Graph for the Unitary Evolotion Operator . . . . . . . . . . . . . . . 40
3.17 Quantum Walk Simulation, using 10 qubits for position resolution

(210). The simulation was done using qasm_simulator. . . . . . . . . 41
3.18 Quantum walk circuit in the Fourier space, with the basis transfor-

mation at the beginning and at the end of the unitary evolution. . . . 41

xvii



3.19 Quantum Circuit with schematic of the Dirac free-particle coin. . . . 44

3.20 Schematic visually showing how the data in the heatmap plot refers
to the individual histograms. . . . . . . . . . . . . . . . . . . . . . . . 45

3.21 Array of all the available, on cloud, IBMQ quantum hardware devices.
This list has layed out the number of qubits, quantum volume (QV)
and Circuit Layer Operations Per Second (CLOPS) which refer to the
performance metrics of the hardware. . . . . . . . . . . . . . . . . . . 46

3.22 Qiskit’s task flow chart evolution. . . . . . . . . . . . . . . . . . . . . 47

4.1 ibm_perth qubit layout. Its architecture can be visualized through
different tonalities or shades across its layout. Herein, unique shades
correspond to distinct T1 times, while variations in connection tonal-
ities represent different extents of CNOT errors. A gradient effect is
applied to these tonalities, transitioning from dark to light. It’s im-
portant to note that this gradation symbolizes a change from lower to
higher values, respectively. All the details for this quantum backend
can be found on Appendix C. . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Graphs from the results ran on ’ibm_perth’. On the top row the
results relate to the non-hybrid architecture and the bottom ones to
the hybrid architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Graphs from the results ran on ’ibmq_qasm_simulator’ for 2 step
quantum walk. On the left is the probability distribution scatter ad
on the right the counts histogram. . . . . . . . . . . . . . . . . . . . . 52

4.4 Plot with the overlap obtain from the 2 step quantum walk simulation
on the ideal quantum computer (’ibmq_qasm_simulator’) in red (or
dashed) with the ones obtained from ’ibm_perth’, purple (or solid
line). On the left is the graph for the non-hybrid architecture and on
the right for the hybrid architecture. . . . . . . . . . . . . . . . . . . 53

4.5 Graphs from the results ran on ’ibmq_qasm_simulator’ for 1 step
quantum walk. On the left is the probability distribution scatter ad
on the right the counts histogram. . . . . . . . . . . . . . . . . . . . . 53

4.6 Plot with the overlap obtain from the 1 step quantum walk simulation
on the ideal quantum computer (’ibmq_qasm_simulator’) in red (or
dashed) with the ones obtained from ’ibm_perth’, purple (or solid
line). On the left is the graph for the non-hybrid architecture and on
the right for the hybrid architecture. . . . . . . . . . . . . . . . . . . 54

4.7 Plots for the algorithm memory usage using the statistics provided
by the SLURM sacct –format MaxRSS command. On the left is
displayed the memory usage for different number of steps with number
of qubits fixed on 6. On the right is displayed the memory usage for
different number of qubits, with number of steps fixed on 64. . . . . . 57

xviii



List of Figures

4.8 Memory profiler (using the mprof library for python) for a 6 qubits 64
steps algorithm simulation. From 0 to around 2 seconds the circuits
are processed, then until the 82 seconds marks is the transpiler phase
and the rest is dedicated to the run phase which is the one that
should be affected by this parameter. On the left is the graph for
the double precision and on the right for the single precision. Even
though the graph curves on the running phase are not identical, both
simulations reach the same peak of memory usage and take the same
time to simulate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.9 Schematic for the batching diagram. Q[1-10] relates to the all quan-
tum circuits, distributed by the 7 available batches. The red block is
the region until the max memory per pool can be. . . . . . . . . . . . 58

4.10 Memory profiler (using the mprof library for python) for the max_parallel_experiments
(left) and max_parallel_shots (right) optioned for the maximum
number of available threads (80). Unfortunately there are not notice-
able changes in the memory curve between these two different set-
tings. The running time as slightly better for the max_parallel_shots=80
(2.8595 seconds versus 2.6087seconds, respectively). . . . . . . . . . . 59

4.11 Memory profiler (using the mprof library for python) for a 6 qubits
64 steps algorithm simulation, comparing the values 5 and 10 for the
setting max_parallel_experiments. On the left is for 5 parallel ex-
periments and on the right for 10 parallel experiments. The curves are
similar and these differences do not impose changes on the behaviour
of the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Plots for the algorithm time (left) and memory consumption (right)
for different batch sizes using the statistics provided by the SLURM
sacct –format MaxRSS command. For all the combinations cre-
ated, all execution took the same time. On the left the average
was 10087.8461 ± 59.4051 (0.5889%) [s] and on the right 92570.0 ±
1589.6051 (1.717%) [Mb]. . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 Memory profiler plot for a 6 qubits and 64 (top) and 128 steps (bot-
tom) algorithm simulation, comparing the memory performance by
changing the parameter optimization_level, = 0 (left) and = 1
(right). For 64 steps, the transpile times were similar being 363,74
seconds and 362,57 seconds and the execution times were also simi-
lar being 356,15 seconds and 355,59 seconds. For 128 steps, we got
a shorter transpile times of 1670,056 seconds and 1761,844 seconds.
Surprisingly it also got a shorter run time 1391,53 seconds versus
1462,07 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.14 High definition simulation of a Dirac free-particle trapped in a squared
potential well. The available exploratory space was N = 29 = 512
discrete positions and were done 954 steps. . . . . . . . . . . . . . . . 63

4.15 Scatter plots for the simulation of a Dirac free-particle trapped in a
squared potential well for separated in time snippets. (1/3) . . . . . . 64

4.16 Scatter plots for the simulation of a Dirac free-particle trapped in a
squared potential well for separated in time snippets. (2/3) . . . . . . 65

4.17 Scatter plots for the simulation of a Dirac free-particle trapped in a
squared potential well for separated in time snippets. (3/3) . . . . . . 66

xix



B.1 Overlap between analytical solution from the Ψ(x, t) wave packet and
free-Dirac particle Quantum Walk algorithm execution. . . . . . . . . 84

xx



List of Tables

2.1 Six common one-qubit gates and the associated unitary transformations 11
2.2 List of the most popular multi-qubit quantum gates. . . . . . . . . . 12

3.1 Probability of finding the quantum particle in position x at time t,
assuming that the walk starts at the origin with the quantum coin in
“tails” state, |0⟩. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 List of the used partitions and specifications for benchmark testing
and simulation.[70] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Results for the batching test. . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 List of Hermitian operators. . . . . . . . . . . . . . . . . . . . . . . . 78

C.1 Calibration data for the ibm_perth} quantum backend. . . . . . . . 86

xxi





Chapter 1

Introduction

1.1 Quantum computation history

Humanity consequently been profoundly changed by the advent of computing sys-
tems. Each evolution of the computing devices to perform numerical operations
marked a significant leap in society evolution.

computation
noun [ C or U ]
the act or process of calculating an answer or amount by using a machine

The concept of an universal machine (later named Turing machine) that could sim-
ulate any other computing machine given the proper inputs and programming was
created and described by Alan Turing. It paved the way in the mid 1930s for com-
puter science as we know today, giving a more pronounced function to the word
computation. In 1945, John von Neumann demonstrated a concept of computer
architecture that laid the foundation for most modern computers, even though it
was not designed with the Turing machine in mind.

After this theoretical development, it was followed by engineering feats, first by
the use of vacuum tube circuits for logic circuitry and soon after, most notably the
invention of the transistor by John Bardeen, Walter Brattain, and William Shockley
in the Bell Labs. These components truly revolutionized the field of electronics,
paving the way for more highly capable electronic devices in consequently smaller
foot prints.

This unique moment for rapid and effervescent technology advancement, helped to
grasp some particular new ideas in the computation field, namely one crucial for
this work to exist. In 1982, Feynman gave a lecture at the MIT Computer Science
and Artificial Intelligence Laboratory, proposing the idea of quantum computation.
The intuition behind quantum computing is to use quantum mechanics (or quantum
states of quantum bits) as a tool to solve complex problems - ones that may be overly
complex for classical computers. Thus, he proposed a basic model for a quantum
computer that would be capable of such simulations. With this, he outlined the

1



Chapter 1

possibility to exponentially outpace classical computers. However, it took more
than 10 years until a special algorithm was created to change the view on quantum
computing, the Shor algorithm.

In 1994, Peter Shor developed an algorithm that enables quantum computers to
factorize large integers exponentially faster than the most efficient classical algorithm
on traditional machines. These classical algorithms would take millions of years to
factor 300-digit numbers, whereas theoretically, Shor’s algorithm can accomplish
this task much more quickly. Capable of breaking many of today’s cryptosystems,
the prospect of quantum computers doing in hours what would have taken millions
of years sparked significant interest in quantum computing and its applications.

In 1996, Lov Grover invented a quantum database search algorithm that presented
a quadratic speedup for a variety of problems (classical computers takes O(n) steps
whereas a quantum computer can search in O(

√
n), for an unsorted and unstructured

list).

Similarly, the Quantum Fourier Transform — an integral part of Shor’s factoring
algorithm — stands out as well. Additionally, algorithms like Quantum Phase Esti-
mation and Harrow-Hassidim-Lloyd (HHL) algorithm present promising applications
in the sectors of quantum physics and linear algebra respectively.

These innovations led as influence and even as an encouragement to continuously
tackle this domain of computer science. This precedent forms the foundation for our
work, as we intend to further explore and contribute to this scientific field a little
more.

1.2 Classical Random Walks and Quantum Walks

The simplest example of a random walk is the classical motion of a particle in a
line. It can move left or right with this behaviour being determined by a non-biased
coin. For example, when tossing the coin, if it tails the particle will move one unit
rightward, if it is heads the particle will move one unit leftward, with this process
being repeated every time unit. Being a probabilistic process, when the quantum
walk ends it will result in an array of probabilities of where the particle is likely
to be. The final probability distribution of finding the particle at a given position
— as well as questions like “how long does it take the particle to reach a particular
position?” — are interesting and useful quantities to calculate.

Quantum Walks, the quantum analogous to the classical random walks, were first
introduced by Aharonov et al. [1] in 1993. Classical Random Walks are stochastic
processes used to model random motion in discrete space time. In a classical ran-
dom walk, a walker moves randomly from one location to another in a step wise
fashion, with each step being independent of the previous steps, obeying to classical
probability theory. The degrees of freedom for space time can be seen as a discrete
N -dimensional medium.

Quantum Walks (QW) make use of quantum computing advantages to achieve a
performance benefit of the classical counterpart. While classical random walks evolve

2



Introduction

randomly over each step, QW exploits interference effects to enhance the probability
of finding the walker in certain locations while suppressing it in others, leading to a
faster convergence towards the target state [1]. The evolution of isolated quantum
systems is unitary, there is no room for randomness, which lead to dropping random
for the term Quantum Random Walks [2].

Since Aharonov et al. introduced the concept many have suggested different models
of Quantum Walks for quantum annealers [3, 4], for circuit based quantum comput-
ers in continuous time [5] or discrete time [6, 7] and even classical HPC [8, 9].

Quantum walks emerge as an algorithmic framework for different and interesting
domains but also with an interesting modularity in terms of algorithm architecture
design. This encouraged us to explore then with more detail, becoming an essential
part of this work. More importantly, the quantum walk’s architecture allows to
implement hybridization.

1.3 Framing, Motivation and Structure

Quantum computation is an emerging science that uses laws from quantum mechan-
ics with the purpose of solving problems, complex for classical computers, in a more
efficient way. With transformative applications in areas from chemistry and mate-
rials science to finance, logistics operations, and cybersecurity, it began to receive a
lot of attention in the last decade, as the possibility of dramatically accelerating the
execution time of current supercomputers becomes increasingly realistic.

Faced with these facts, this technology is strongly funded by the United States of
America (with the "National Quantum Initiative" being founded in 2018, with a
budget of 200 million dollars per year), the European Union (with the "Quantum
Technologies Flagship" being founded, which expects to gather one billion euros in
ten years) and especially China (having invested estimated amounts of ten billion
euros). In addition, it also has the participation of private companies with high
skills in this area such as IBM, Google, and Microsoft.

On the other hand, its projection requires cutting-edge engineering solutions. With
current technology, it is impossible so far to develop products and services that are
useful for the industry and society. The number of qubits in current hardware is
very low (for context, the IBM Osprey’s number of qubits, one of the most advanced
quantum computers, has 433 qubits), and hundreds of thousands of qubits will be
necessary to develop some of the most promising areas as well as to significantly
reduce the error rate in each qubit.

Moreover, hybrid quantum-classical computing has seen significant advancements in
both the hardware and software components, as well as in the development of new
algorithms. Despite the hardware limitations, it has not constrained the proposal of
new algorithms and efforts to create a good relation between classical and quantum
domains. It allows to use NISQ era quantum hardware in real world applications.

In an European perspective, ATOS and IQM [10, 11] have made significant efforts
to increase the usability of hybrid quantum-classical computing by partnering to

3



Chapter 1

deliver end-to-end quantum computing technologies as part of their hybrid comput-
ing strategy. The EuroHPC JU [12] has a total planned investment in 100 million
euros for hybrid quantum computing. In the international landscape, NVIDIA [13]
aims to make quantum computing more accessible by creating a coherent hybrid
quantum-classical programming model. There are investments for hybrid computa-
tion to become a reality but there is still research to be done on the algorithm side
of things.

Given these constraints, in this work we want to explore the capabilities that the
High Performance Computers (HPC) world can give to the quantum world.

This will be done by developing a hybrid algorithm that provides a possible sig-
nificant speed-up in performance by effectively harness the benefits of both noise
intermediate-scale quantum (NISQ) computers, despite their limited availability and
efficiency, and classical computers. To complement this we will also understand the
importance of simulating real quantum hardware on HPC to help on systems and
algorithm development.

As a framework for this algorithm we will be employing the quantum walks algo-
rithm. Theoretically it shows that quantum walks are quadratically faster than the
classical counter part when ran in quantum computers and as we discovered though
out this work they can be design to attack many sets of applications. More im-
portantly this framework allows for hybridization, we will be testing with current
publicly available quantum hardware.

Personally, working with quantum computing in my master thesis was an extremely
important ambition. It came after working on the field via a scholarship under
the program "Talents in Quantum Computing" given by the Calouste Gulbenkian
Foundation, where a deep curiosity for the field widen and finally sprouted in this
course’s last hurrah. Supplementing this, was to create something that felt my own,
from start to finish, that transmitted my personality and way of thinking but also
to have the freedom to execute my science.

Secondarily, but equality important, is to create such endeavor that can be malleable
in the various domains it touches. In other words, being an approachable work
for any scientific domain and more importantly bringing the worlds of quantum
computing and high performance computing closer together. I want the reader to
fell a grasp of the passion and intellectual curiosity that fueled this research.

All chapters will include at the beginning some highlights and personal introspection
of its upcoming sections. In Chapter 2 we want to settle the main parts for this
work, beginning with a brief overview through the fundamental elements of quantum
computation and its state of the art in the hardware and software (more in the algo-
rithm) realms. We will also introduce some concepts on high performance computing
and the existing hybrid algorithms. Moreover, in Chapter 3 the problems thought
process is introduced, unraveling not only the theoretical but the practical aspects,
describing the mathematical background of the created algorithms. Pseudo-code
and quantum circuits for the developed algorithms will be shown and explained.
Finally, in Chapter 4 our created algorithms are put to the test, using real quantum
hardware and quantum simulators ran on a high performance computer. We close
this work in Chapter 5 with the work discussion, summarizing our key findings,

4



Introduction

successes and disappointments and new directions for future research work.

Appended to this work, Appendix A lays down the "game rules", the postulates
of quantum mechanics, then Appendix B focus on comparing the analytical result
from the free wave packet for a free Dirac particle with an execution of the quantum
walk algorithm for the same type of problem. Furthermore, Appendix C presents
calibration data for the ibm_perth, one of IBM’s quantum hardware, which was
used for our hybrid algorithm execution but also allows to display real values for
coherence and gate processing times. Lastly, Appendix D gives the details to access
the code of our algorithm and framework versions.

5





Chapter 2

Theoretical Foundation

In the inaugural chapter (2), we aim to lightly touch the central aspects from both
the quantum computing and information domain, as well as the sphere of high-
performance computing. From this study, was difficult to understand on how a
HPC could have a drastic presence on the development of hybrid algorithms. All of
the referred hybrid algorithms do not discuss the potential of use of the capabilities
of the HPC, but more on the difficulties of the QPU (short for Quantum Processing
Unit) and how can these be minimized by moving some of the quantum processing
to a classical computer. In the other hand, HPC is more heavily mentioned as
an important part for the simulators of quantum hardware. This will provide the
requisite knowledge to fuel curiosity to propel throughout the remainder of this
work.

We begin in Section 2.1.1 by showing the most important aspects of quantum in-
formation and progressively we will introduce the computation aspect. The bend
between quantum mechanics and quantum computing was a detail we tried to al-
ways have present, since this is a work done under the Department of Physics of the
University of Coimbra.

Then, in Section 2.2.4 a study on the most integral and recent hybrid algorithms
is covered. The shortness of this section, shows the need to developed further this
field. This also serves as a motivation to explore more fields where hybrid algorithms
make sense and can create a substancial advantage.

Finally, in Section 2.3.1 are explained the goals for high performance computing and
architecture, such in the software and hardware departments. We will also have a
slight look at the available quantum simulator to be ran on HPC.

7





Theoretical Foundation

2.1 Notions on Quantum Information and Quantum
Computing

2.1.1 Principles of quantum information

In the field of information theory, the term bit refers to two related but distinct
things. The term is also used to describe a physical system with two distinct physical
states. A qubit is a quantum system having two distinct (orthogonal) states [14].
These states can be labeled as |0⟩ or |1⟩. A qubit can hold one bit of information
by virtue of it being possible to prepare it in either of these states. Due to the
combination of quantum theory and information theory, a qubit differs from its
classical counterpart allowing for three main special properties: Superposition,
Entanglement and Tunneling. We will only focus on the first since it is the main
property used on this work. The quantum mechanics postulates can be accessed on
Appendix A.

The superposition principle tells us that the qubit can be prepared in any superpo-
sition of the states |0⟩ and |1⟩, that is:

|ψ⟩ = a0 |0⟩+ a1 |1⟩ (2.1)

where a0 and a1 are complex numbers – sometimes called amplitude. |a0|2 and |a1|2
give the probability of measuring each state, with |a0|2 + |a1|2 = 1

A qubit can be represented as a two-dimensional complex Hilbert space, C2, as
we will see in the next sections. The state of the qubit at any given time can be
represented by a vector in this complex Hilbert space:

|ψ⟩ =
(
a0
a1

)
(2.2)

We can represent the states |0⟩ and |1⟩ as vector as shown:

|0⟩ =
(
1
0

)
|1⟩ =

(
0
1

)
(2.3)

Finally, one of the most common ways to represent a qubit is on the Bloch sphere
(figure 2.1). This geometric representation consists of a sphere of unit radius where
each point on the sphere’s surface corresponds to a qubit state. Opposite points
represent a pair of mutually orthogonal states, therefore, being the north pole defined
as |0⟩, the south will be |1⟩. The following is its mathematical representation which
depends on the two spherical coordinates θ and φ:

|ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ (2.4)

Since the qubits are independent from each other is possible to create composite
states connected via a tensor product. Considering two qubits, for example, this

9



Chapter 2

Figure 2.1: Graphical representation of the Bloch sphere. This method allows for a
detail visualization of a qubit state.

allows to create computational basis states denoted by |00⟩, |01⟩, |10⟩ and |11⟩,
which can also be written in decimal notation |0⟩, |1⟩, |2⟩ and |3⟩. This consideration
will be important for the algorithm development. Furthermore, the total number of
possible combinations is determined by (2n), where (n) corresponds to the number
of qubits. A pair of qubits can also exist in superposition of these four states, so
the quantum state of two qubits involves associating a complex coefficient with each
computational basis state, such that the state vector describing the two qubits is:

|ψ⟩ = a00 |00⟩+ a01 |01⟩+ a10 |10⟩+ a11 |11⟩ (2.5)

2.1.2 Principles of quantum computation

The fundamental goal of any quantum information processor would be to enact the
unitary transformation:

|a⟩ → Û |a⟩ = |f(a)⟩ (2.6)

With a being any desired binary number (limited by our number of qubits n, 2n−1)
encoded into a state |a⟩, and f(a) any Boolean function of a (where 0 ≤ f(a) ≤
2n − 1)[14].

There are different ways on how this computation can be performed, with the most
common approach being the circuit model [15], which we will be using in this work.

Quantum Circuits

In computer science, circuits are models of computation in which information is
carried by wires through a network of gates, which represent operations that trans-
form the information carried by the wires. Quantum circuits are just one example

10



Theoretical Foundation

Table 2.1: Six common one-qubit gates and the associated unitary transformations

Gate Diagram Operator

Hadamard H
1√
2

(
1 1
1 −1

)
Pauli-X X

(
0 1
1 0

)
Pauli-Y Y

(
0 −i
i 0

)
Pauli-Z Z

(
1 0
0 −1

)
Phase S

(
1 0
0 i

)
π
8 T

(
1 0

0 e
iπ
4

)

of a model of computation based on this more general concept, implementing new
characteristics as they operate according to the principles of quantum mechanics,
introducing unique properties.

Quantum circuits, comprising a finite sequence of events, beginning with an ini-
tial quantum state (|a⟩) and aim to transform it into a desired state (|b⟩). It results
from the successive application of quantum operators to all or specific pairs of qubits.
These can be decomposed into combinations of CNOT (quantum equivalent of XOR
classical gate) and single qubit gates, in a similar way to the boolean classical logic
gates, important architectural feat as we will see in the DiVincero criteria in the
upcoming pages. Quantum gates, acting on one or multiple qubits in a single op-
eration, facilitate this transformation, provided they satisfy the condition of being
unitary matrices (GG† = I). As the number of qubits increases, the dimensionality
of the matrix operators representing these gates expands exponentially.

In the table 2.1 are detailed the most popular one qubit gates.

The most commonly encountered two-qubit gate is the controlled-NOT or CNOT
gate. This gate acts on the state of two qubits, known as control qubit and target
qubit. For short, if the control qubit is |0⟩ the target qubit does not change but
if it is |1⟩ the Pauli-X matrix is applied to the target qubit. The CNOT shares in
common the classical XOR gate from classical logic:

|A⟩ ⊗ |B⟩ → |A⟩ ⊗ |B ⊕ A⟩ (2.7)

Controlled gates can have n amount of control qubits and can have any type of gate
applied to the target qubit. For these types of gates to be activated, all the n control
qubits need to be in state |1⟩, or more precisely, be on state |1⟩⊗n.

11



Chapter 2

Figure 2.2: Graphical representation of the entanglement circuit we’ll use as a prac-
tical example. Our horizontal lines represent either qubits (q0, q1) or bits (c2).
Gates are applied to the qubits which can affect one or more of them. The CNOT
gate performs operations that involve more than one qubit, similar to the classical
NOT gate. The Hadamard gate is one of many one qubit gates. Finally, the mea-
surement blocks on the qubits store the results to classical bits.

Table 2.2: List of the most popular multi-qubit quantum gates.

Gate Diagram Operator

CNOT (CX)


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Toffoli (CCNOT)



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Controlled-U (Unitary Gate)

U

(
I2 0

0 Û

)

The graphical representation of quantum circuits is general and quite intuitive. More
details can be found on the figure 2.2.

Finally, opposite to the classical counterpart, the act of measurement that seeks
to obtain classical information about a quantum state has a profound effect on its
observation. According to the Measurement Postulate (Appendix A), a projective
measurement is described by a Hermitian operator O, called observable in the state
space of the system being measured. The measurement in the computational basis of
space C is the set {|0⟩ , |1⟩} and therefore, for one qubit, the measurement should be
in the Pauli-Z basis. In the circuit model the symbol for measurement is described in

12



Theoretical Foundation

the end node of figure 2.2. This element converts a single qubit into a probabilistic
classical bit, denoted by the two parallel lines. Given the inherent uncertainty—since
we can’t directly observe the quantum state, as our retrieved information resides in
classical data—the execution of a specific circuit must be repeated multiple times.
This repetition allows us to infer a probability distribution, furnishing us with a
more comprehensive understanding of the quantum system’s behavior.

One last element is subject to this information-processing can be imperfect with
its operations leading, inevitably, to errors. In classical computations this is not
such of a problem because quantum systems tend to be significantly smaller than
their classical counterparts and are far more susceptible to environmental influences.
Secondly a classical bit only has two possible states, where a qubit can be prepared
in an infinitely number of quantum states and also can be modified in a wide variety
of ways by interaction with its environment. The most predominant protocols for
error-correction are the Shor’s[16] and Steane’s[17] error-correcting protocols. These
require extra qubits (nine or seven respectively), to protect a single logical qubit.

Having explored the intricacies of the circuit model in quantum information pro-
cessing, it is enlightening to consider alternative approaches that offer unique ad-
vantages. Such approach is the one-way-measurement [18] where a large entangled
state, called the resource state, is prepared and measurements are performed on
individual qubits to generate the unitary evolution of the computation. This ap-
proach is different from the circuit model as it relies on a sequence of measurements
to generate the desired quantum state. It is one-way because the resource state is
destroyed by the measurements.

Farhi et al.[19] introduced Adiabatic quantum computation (AQC) in which the
evolution of a quantum system is controlled by slowly varying a Hamiltonian over
time. The final state of the system encodes the solution to a computational problem.
AQC is based on the idea that if a system is prepared in its ground state at the
start of the evolution and if the Hamiltonian is slowly varied, the system will stay
in its ground state throughout the evolution and will reach the ground state of the
final Hamiltonian.

2.1.3 Quantum computers: physical realization

To implement a qubit, any type of quantum system with two quantum states can
be used to provide a physical implementation of a qubit. Is important to emphasize
that the qubit is a conceptual framework used to explain and calculate quantum
information processing and communication — it is not tied to any specific physical
realization. Also a quantum computer has to be well isolated in order to retain its
quantum properties, but at the same time qubits have to be accessible so that they
can be manipulated to perform a computation and to read out the results.

The decay of the quantum states produced by the quantum computer establish a
limitation when performing complex quantum algorithm. Quantum decoherence is
usually characterized by measuring two constants: The T1 and T2 times, commonly
known as thermal relaxation time and dephasing time respectively. These often allow
to quantify the noise. T1 is defined as the time needed for a qubit to move from the

13



Chapter 2

excited state |1⟩ to the ground state |0⟩. T2 is defined as the elapsed time before
a qubit’s resonance frequency becomes unidentified. T2 could be thought of as the
loss of quantum coherence over time. In Appendix C is provided a table with values
for T1 and T2 times of real quantum hardware, plus some more details that define
its fidelity, which we will not have time to discuss.

The DiVincenzo criteria, proposed by DiVincenzo[20], establish the conditions re-
quired to realize a quantum information processor. There are five criteria, providing
the means by which we can compare developments in competing systems and mea-
sure progress towards a quantum computer:

• Well-defined state space - scalable system and have well-defined qubits;

• Initialization - capability of initializing the system of qubits in an unique pure
state;

• Long coherence times - preventing qubits from decoherence, causing data loss
and introducing error to computations;

• Universal set of quantum gates - similar to classical gates, be possible to have
a gate or a set of gates that can, in turn, create any other possile configuration
of gates. This is possible to an extremely good aproximation, result of the
Solovay-Kitaev theorem [21];

• Qubit-specific measurements - obtain the state of the qubit accurately.

Some of the current examples of physical realizations of a quantum computer are
trapped ions, nuclear magnetic resonance, cavity quantum electrodynamics, coupled
quantum dots and most notably superconducting Josephson junctions (also popu-
larly referred as superconducting qubits). The latter is responsible for the most
advanced and complex quantum computers, or more precisely Noisy Intermediate-
Scale Quantum (Noisy Intermediate Scale Quantum) computers. As of the date
of publish of this work, the most advanced NISQ quantum processing unit is the
IBM Osprey [22], with 433 qubits. Another breakthrough has been published by
Zhong et al.[23] who admit to have accomplished quantum supremacy (capability of
a quantum computer to solve a problem any other device can) by using a quantum
computer based on photons, the first of its kind to reach such goal.

Another great achievement is the availability of some real quantum hardware, prod-
uct of the revolution in cloud computing, allowed with a single internet connection.

2.1.4 Notable quantum algorithms

Quantum algorithms have the potential to revolutionize various industries with their
innovative applications. Two of the most notable quantum algorithms are the Shor’s
Algorithm and Grover Algorithm.

The Shor’s Factoring Algorithm [24] aims to find the prime factors of an integer
by identifying a number, m, that divides it exactly. Given an integer N, the al-

14



Theoretical Foundation

gorithm’s task is to find this number m. It provides an efficient method for fac-
toring and presents a significant threat to public-key cryptosystems which resulted
in widespread interest in quantum computation. Its efficiency is derived from the
Quantum Fourier Transform as a method for determining the period of a function.

The Grover Algorithm [25] is a quantum search algorithm that allows us to find
a specific item in an unsorted/unstructured database with a quadratic speedup,
O(

√
N), over classical algorithms, O(N). For example, given a function that re-

turns 1 for the desired item and 0 for all other items, the algorithm’s task is to
find the input that produces an 1. It provides an efficient method for searching.
The main advantage of Grover’s algorithm is that it doesn’t require any additional
information about the structure of the data, it only requires the ability to evaluate
the function that encodes the problem.

2.2 Hybrid Quantum-Classical Algorithms

Hybrid quantum-classical computing has seen significant advancements in both the
hardware and software components, as well as in the development of new algorithms.
Despite the hardware limitations, it has not constrained the proposal of new algo-
rithms and efforts to create a good relation between classical and quantum domains.

Many of the algorithms that will be presented, have proven slightly worse or equal
results when compared with the classical computations using state of the art HPCs.
These results are the foundations for the true potential of hybrid quantum-classical
computations and can draw a path for the quantum supremacy.

It is also important to note than some of the work done on this field has been problem
related which does not trace a clear path for modular and flexible algorithms, which
should be the goal for the NISQ era.

2.2.1 Variational Quantum Eigensolver

In the spectrum of hybrid quantum computing, the Variational Quantum Eigen-
solver [26] is seen as one of the most influencial algorithms given the the pratical
habilities it provides combining classical computation with NISQ computers.

In its essence, this algorithm finds variational solutions to eigenvalue problems,
parameterized by quantum states. The latter is computed in a quantum system
whereas the classical computer guides the obtained solutions to a general min-
ima/maxima by optimizing the state parameters.

Mathematically, we want to obtain the minimal energy (E0) for a given Hamiltonian
(H):

15



Chapter 2

H |GS⟩ = E0 |GS⟩ (2.8)

Where |GS⟩ is the state wave function which corresponds to the ground state.

The variational method [27] tells us there is a state wave function that dictates
an upper, or in the best of cases, equal limit to the minimal energy of a given
Hamiltonian.

EGS ≤ λθ ≡ ⟨ψ(θ)|H|ψ(θ)|ψ(θ)|H|ψ(θ)⟩ ≡ ⟨H|H⟩θ (2.9)

Considering a test wave function |ψ(θ)⟩, with a given number of adjustable pa-
rameters (e.g. θ), calculating repeatedly ⟨H|H⟩ for successive parameters values is
possible to converge to a result close or even equal to the EGS.

The generation and transformation of wave functions is relatively straightforward in
a quantum computer:

|ψ(θ)⟩ = U(θ) |0⟩

where:

• |0⟩ - initial state;

• U(θ) - responsible gate for the input state manipulation. This gate should be
modeled to the dimension and complexity of the problem in question;

• |ψ(θ)⟩ - new (candidate) state.

The next step is in regard of the optimizer architecture. This will operate in a clas-
sical computer, as the hybrid quantum-classical algorithm. Peruzzo et al.[26] has
implemented the Nelder-Mean (NM)[28], a numerical optimization method for
function minimization and which is unconstrained.

Following the proposal of Peruzzo et al.[26], many new ansatzes have been devel-
oped to achieve higher quantum efficiency [29]. These mainly focus on imposing
symmetries associated with particle number, spin and time-reversal symmetries.
Additionally, these are based on the capabilities of the hardware and perform state
preparation by combining parameterized gates available on the processor. However,
despite these efforts, hardware noise remains a major limiting factor for the success
of this approach [30]. Examples of more efficient ansatzes include the qubit coupled
cluster (QCC) [31] and Quantum subspace expansion (QSE) [32].

16



Theoretical Foundation

2.2.2 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm [33] (QAOA) is an algorithm
dedicated to combinatorial optimization problems 1 in NISQ computers.

This algorithm uses the unitary matrix F (β, γ) characterized by the parameters
(β, γ) to prepare the state |ψ(β, γ)⟩. The goal of this algorithm is to find values of
(βopt, γopt) that minimize the state, |ψ(βopt, γopt)⟩.

To achieve |ψ(βopt, γopt)⟩, we begin by defining an initial test state |s⟩ that corre-
sponds, for example, to a superposition of states: |s⟩ = 1√

2n
|z⟩.

⟨C|C⟩ =
∑

z∈{0,1}n
f(z)|az|2 =

1

2n

∑
z∈{0,1}n

f(z) (2.10)

Thus, we have a given probability of obtaining the state that maximizes (or min-
imizes), in this example 1

2n
of obtaining it. On the other hand, we can apply a

rotation to |s⟩ in order to obtain more interesting results, that is, to maximize the
probability of measuring the state corresponding to the maximum (or minimum)
eigenvalue.

We can define a rotation given by:

U(C, γ) = e−iγC) = e−iγ
∑m

α=1 Cα(z) =
m∏

α=1

e−iγCα (2.11)

This rotation translates to that whenever our condition Cα is satisfied, there is a
rotation of e−iγ. γ → [0, 2π] can be seen as the weight of Cα relative to a given
input. Otherwise, the state remains the same. However, by just applying this
rotation, there is still no change in probability, so we will introduce the operator
U(B, β).

We can define the rotation operator B =
∑n

j=1 σ
x
j and β (which has a similar role

to that of γ since represents the weight with which B is relative to a given input):

U(B, β) = e−iβB =
n∏

j=1

e−iβσx
j (2.12)

Knowing that the x-axis rotation operator has the following aspect:

Rx(θ) = e−i θ
2σx (2.13)

1Combinatorial optimization is the process of searching for the maximum (or minimum) of a
given objective function. It is an NP-complete problem. These types of problems are specified by
n bits and m clauses, which are simply the rules for the limits of the subset of bits. For example,
C(z) =

∑m
α=1 Cα(z), where Cα(z) = 1 or = 0 if it satisfies clause α or not, respectively. We can

also define it through C |z⟩ =
∑m

k=1 Ck(<) |z⟩ = f(z) |z⟩, where we want to find the eigenvalue, Ck

that maximizes (or minimizes) our function.

17



Chapter 2

Applying the two rotations in succession does not guarantee that it is possible to
obtain the state corresponding to the maximum (or minimum) eigenvalue. To do
so, these are applied 2p times in a single operation.

This calculation takes advantage of the capabilities of a NISQ and the parameters γ
and β are then optimized using a classical computer, in similarity to the VQE 2.2.1.
This process is repeated until it converges to a value close enough or equal to the
maximum (or minimum).

As of the likes of the VQE 2.2.1 these algorithms have also been worked on to enhance
its quantum efficiency so their more resilient to quantum noise. Recent suggestions to
change the circuit model [34] have shown benefits in terms of improved performance
when benchmarking using the Max-K-problem.

2.2.3 Hybrid Quantum Monte Carlo

Until now, hybrid quantum classical computation has been tackled as an optimiza-
tion problem, but this method is far from being the only capable of bringing appli-
cations to the NISQ era.

An innovative idea was presented by Huggins et al.[35] which departs from the
optimization problems and allocates both the quantum and classical computers to
different tasks.

First, Quantum Monte Carlo (QMC) is a powerful method to study the properties
of many-body quantum systems, such as electrons in a solid or atoms in a gas,
by simulating the quantum system using a classical computer. It is based on the
idea of stochastically sampling the many-body wave functions using a random walk
algorithm [36]. Mathematically, we will have i |ϕi⟩ oversimplified descriptions which
in a weighted average represent a given state. Unfortunately this method will run
into the fermionic sign problem [37]. This can be solved by overlapping the |ϕi⟩ with
a trial wavefunction |ψT ⟩ (which should be an estimator of the ground state energy)
and demanding they remain positive, if not they should be excluded.

Since there is no efficient classical algorithm to estimate the overlap and any wave-
function that can be prepared with a quantum circuit is a candidate for a trial
wavefunction |ψT ⟩ on a quantum computer, there is an advantage in evaluating the
overlap ⟨ψT |ϕi(τ)|ψT |ϕi(τ)⟩ in a quantum computer.

Huggins et al.[35] obtained experimental results to practically demonstrate this algo-
rithm. For the H4 in a square geometry, the results were competitive with classical
state of the art methods. This experiment also showed better results when compar-
ing with the VQE counter part.

It is still to be seen a fundamental work to generalize this procedure.

18



Theoretical Foundation

2.2.4 Hybrid Machine Learning

Quantum Machine Learning Models

Quantum Machine Learning (QML) can show advantages over the classical counter
part, but is wrong to assume that is can leverage any classical ML algorithm [38]. In
this section we will look at the work done on Quantum Machine Learning Models,
namely the foundation that helped to develop this module.

Schuld et al.[39] present that is possible to build a parameterized (θ) quantum model
(fθ(x)), by using quantum gates as a sum of partial Fourier Transformations:

fθ(x) =
∑
ω∈Ω

cω(θ)e
iωx (2.14)

Which translates to an expectation value of some observable (M), our measurement
operator 2, with respect to a state prepared via a parameterized quantum circuit
(U(x, θ)):

fθ(x) = ⟨0|U †(x, θ)MU(x, θ) |0⟩ (2.15)

Focusing on U(x, θ), this composite gate has L layers each one with a data-encoding
block S(x) and trainable circuit block (W(i)(θ)). In each layer the W(i)(θ) can have
different parameters but S(x) is always the same. S(x) consists of the gate G, re-
sponsible for encoding our classical input (x). Encoding procedure used (that can be
applied for full-scale quantum computers [40] and also for NISQ [41]) follows the pre-
sentation in a n-qubit x→ |01011⟩ where x is mapped in an angle ϕ(x) = [ϕ1, ..., ϕn]
where the rotation values represent the qubit values.

Regarding expressivity of such quantum models, in other words the ability of the
model’s architecture to represent and approximate a broader array of functions,
Schuld et al.[39] establish that the given algorithm just needs to be scaled in multiple
blocks, in parallel ↓ (with dimension d) or in serial → (with dimension L). There
are limitations in both hardware and also due to the models architecture. The first
related to the number of available qubits, coehrence time and CNOT error. The
latter is refered to the frequency spectrum that the model can support and the
control of the Fourier coefficients. The size of the frequency spectrum is upper-
bounded by the size of the encoding gate, and the scaling of the degrees of freedom
needed to control the Fourier coefficients is proportional to the size of the frequency
spectrum. Therefore, the accessible frequency spectrum should be asymptotically
rich enough so these models can be universal function approximators.

2The measurement operator determines the properties of the system that will be observed and
provides the output of the model fθ(x).

19



Chapter 2

Quantum Optimization

Stochastic gradient descent (SGD) is an important technique in quantum machine
learning that allows for the efficient optimization of quantum circuits using a form of
gradient descent optimization that utilizes stochastic measurement outcomes. This
method, known as hybrid quantum-classical optimization, is used to optimize a wide
range of quantum algorithms such as VQE 2.2.1, QAOA 2.2.2, and certain quantum
classifiers. It provides a framework for the derivation of rigorous optimization results
in the context of near-term quantum devices (NISQ) and can lead to state-of-the-
art results with significantly fewer circuit executions and measurements. This can
result in a practical advantage over classical counterparts. In a recent work, Sweke
et al.[42] formalize and solidify the approach of optimization using quantum systems
with the Stochastic Gradient Descent for both hybrid quantum-classical algorithms
and generic loss functions, such as the mean-square-error classifier. These also show
good convergence for VQE, QAOA, and MSE quantum classifiers.

Hybrid Decision Trees

Similarly to the presented in 2.2.4 a proactive field of research are Hybrid Decision
Trees, a popular and powerful tool for classification or regression algorithms, using
quantum-classical machines. Sun and Zheng[43] explore the relationship between
the quantum time (depth of the quantum circuit) and the accuracy of the decision
tree by demonstrating that longer quantum time leads to a strictly more powerful
decision tree, or in other words, a decision tree with greater accuracy and efficiency.
It also serves as a foundation on how this type of problems should be documented.

Similarly, Chia et al.[44] had already proven the need of large quantum depth even
in hybrid solutions.

2.3 High Performance Computing

High Performance Computing (HPC) is a collection of technologies of hardware and
software whose aim is to solve computationally challenging problems in areas of
science, technology and sociology. With its advanced hardware and software tech-
nologies, HPC has proven to be a formidable tool in addressing computationally
challenging tasks. Unlike quantum computers, HPC systems have been developed
and refined over many years, resulting in a high degree of reliability and stability.

Additionally, HPC systems are highly scalable and can be easily expanded to meet
the demands of even the largest computational problems. The software used in HPC
systems is also well established, with a vast library of algorithms and tools that can
be leveraged to solve problems. Moreover, HPC systems are more cost-effective than
quantum computers and more widely available, making them accessible to a broader
range of users and organizations. This is especially important for many scientific

20



Theoretical Foundation

and engineering communities that rely on large-scale simulations to advance their
research.

In the following paragraphs will detail some of the most critical technologies that
are important to the functioning of HPCs:

Probably the most meaningful and impactful is Parallel Computing, the execution of
many operations at a single instance in time [45]. It allows to handle big data prob-
lems (up to millions of millions of degrees of freedom) or even problems that were
previously unsolvable. In addition, it is more energy, time and cost efficient when
compared to the serial process (single computational core performance). The Task
Farming approach is a parallel computing method that processes large-scale com-
putational problems by breaking them down into smaller tasks, distributed among
multiple processing units. Therefore, it allows for a brutal speed-up for data anal-
ysis. Is important to mention that there is a limit for parallel computing described
by the Amdahl’s Law [46]. Amdahl[46] states that no matter how fast we make the
parallel part of the code, we will always be limited by the serial portion:

SpeedUp(N) =
1

S + P
N

(2.16)

where,

P parallel fraction of the code
S serial fraction

and P + S = 1
N number of processors

Supercomputing software offers various paradigms for developing parallel programs,
including shared memory systems with OpenMP and distributed memory systems
with MPI. OpenMP uses compiler directives and is easier to program for parallel
processing, but is limited to a single (or in other words a single server) from the
computing cluster. On the other hand, MPI, as a software library, is crucial for
tasks that require large amounts of memory and allows for distributed memory sys-
tems, allowing for the combination of memory from multiple servers. In practice,
a combination of MPI and OpenMP is often used to achieve maximum performance.

The advancement of high-bandwidth dedicated interconnects with low latency fa-
cilitates scalability in high performance computing and enables the creation of dis-
tributed memory systems, also known as clusters (and the nodes are each processing
unit). This leads to the improvement of C/C (computation-to-communication) ra-
tio [47] by maximizing the computation time and minimizing communication time,
where the latter can slow down the process. The standard for interconnects archi-
tecture is InfiniBand [48] being the NDR 400G InfiniBand [49] the latest generation
of the architecture providing communication speeds up to 400 Gb/s.

21



Chapter 2

GPGPUs (General Purpose Graphics Processing Units) [50] are hardware compo-
nents designed to tremendously boost the performance of computing tasks. They
offer high memory bandwidth and computational power and feature many pro-
grammable units that are capable of handling complex mathematical operations,
including vector operations and IEEE floating-point precision. This allows for faster
and more efficient processing of data, making GPGPUs an useful technology in a
wide range of fields. These hardware component are usually benchmarked in terms
of FLOPS (Floating Point Operations Per Second) which relates, as the name sug-
gests, to x amount of floating-point operations per second. NVIDIA Tensor Cores
[51] are some of the most advanced hardware accelerators, with the NVIDIA H100
Tensor Core GPU [52] their flagship GPU. This hardware is complemented with
software development tools such as CUDA and OpenACC.

The most advanced and powerful HPC in the world is the Frontier [53], with 9408
CPUs (602 112 cores) and 37632 GPUs totalling 1,1 exaFLOPS. At the European
level, the EuroHPC JU [12], a joint initiative between the EU, European countries
and private partners are responsible for the LUMI [54] a pre-exascale HPC with a
peak performance of 550 petaFLOPS. This initiative is also working on the first Eu-
ropean exascale supercomputer, JUPITER [55]. The European Union also guaran-
teed a funding programme [56] focused on digital technologies to businesses, citizens
and public administrations where HPC tecnologies and EuroHPC are included.

2.3.1 High performance computing and quantum computing

When mentioning both HPC and Quantum Computing in the same sentence, the
most popular result are the use of highly capable computers to simulate quantum
hardware, i. e., as quantum simulators.

These platforms have the goal to implement and simulate quantum algorithms with-
out the need for access to quantum machines. These mostly use CUDA, MPI and
OpenMP allows programs to run on a wide variety of systems. It not only helps on
testing proof of concepts for quantum algorithms but also as a verification of results
when running on the real-quantum counterpart.

Some of these frameworks are the following:

• Qiskit-Aer [57] - developed by IBM’s Qiskit team, qiskit aer works as a com-
plementary for the qiskit (main framework), providing the simulation of quan-
tum algorithms, designed and transpiled using the IBM’s software, on classical
computers. It provides high-performance quantum computing simulators with
realistic noise models, designed for HPC.

• NWQ-Sim [58] - NWQ-Sim is implemented in C++/CUDA/HIP for general
full-state quantum circuit simulation. It uses internal gate representations for
advanced optimization and profiling. The statevector simulator (SV-Sim) is
designed for high-performance ideal simulation and the density matrix simu-
lator (DM-Sim) for noise-aware simulation.

22



Theoretical Foundation

• hybridq [59] - HybridQ is a highly extensible platform designed to provide a
common framework to integrate multiple state-of-the-art techniques to sim-
ulate large scale quantum circuits on a variety of hardware. HybridQ pro-
vides tools to manipulate, develop, and extend noiseless and noisy circuits
for different hardware architectures. HybridQ also supports large-scale high-
performance computing (HPC) simulations, automatically balancing workload
among different processor nodes and enabling the use of multiple backends to
maximize parallel efficiency.

• quantuloop - the Quantuloop Quantum Simulator Suite for HPC is a collection
of high-performance quantum computer simulators for the Ket programming
language (open-source platform that provides dynamic interaction between
classical and quantum data at the programming level, streamlining classical-
quantum development).

23





Chapter 3

Quantum Walks

For this chapter, we will focus on the coined discrete-time model (DTQW) [2, 7].
A basic discrete time quantum walk is specified by a particle walking on a lattice,
at each time step moving from its current site position to another in its vicinity,
and scattering through self-interaction. The versatility of DTQW extends its utility
to numerous problem domains, including the simulation of the free Dirac particle
equation. Therefore, despite the existence of the Continuous Time Quantum Walk
(CTQW), employing DTQW may often prove more advantageous due to its broad
applicability and easy implementation in discrete time environments. Such use will
be with the Dirac equation as we will see in the upcoming sections. We will consider
the simplest of cases, an one dimensional walk on a finite lattice. Usually this is
called a (1+1D) which relates to the sum of space dimension (1D) with time dimen-
sion (1).

Therefore, we will begin by focusing on describing the coined quantum walk, in its
discrete form, (section 3.1), highlighting some important aspects that will enable us
to use this tool in developing new algorithms. Still inside this topic we will bring to
light the Dirac quantum walk which tends to implement the simulation of a Dirac
free particle using the architecture provided by the coined discrete time quantum
walk. It considers the fundamental correlations between the discrete time quantum
walk and Dirac free particle equation. Next we will explore the implementation of a
potential well also using this tool. In the last chapter (4) we will demonstrate a use
case to create an algorithm that simulates the Dirac-free particle inside a potential
well, using quantum walks.

Subsequently, we will explain thoughtfully the algorithm development for the quan-
tum walk, with consecutive architecture iterations to seek efficiency, workflow that
was part of this project. Also in this section, we will present an implementation of a
hybrid algorithm concept whose results will be shown and discussed in the f chapter.
Besides we will also present the method to implement potential wells using position-
dependent coins. Coherent data visualization for the generated product from the
quantum walk algorithm will be discussed and covered. In the last segment, sec-
tion 3.2.5, we will present the framework used to create and code the algorithm, its
pros and cons and the rationale to use this instead of the other competitive frame-

25



Chapter 3

works available. The available resources, such as classical simulator and quantum
hardware, for algorithm execution have additionally been discussed briefly in this
section.

26



Quantum Walks

3.1 Coined Quantum Walk

The walked position x can be represented as a vector in a N -dimensional Hilbert
space HP , where the computational basis of which is {|x⟩ : x ∈ Z} and is encoded
in base 2. The number of qubits, n, defines the total number of possible positions
N = 2n. The position state can therefore be represented as:

|x⟩ =



0
0
...
0
1
0
...
0



(0)
(1)
...

(x)

...

(3.1)

Each step of the walk moves one position to the "left" |x⟩ → |x− 1⟩ or to the "right"
|x⟩ → |x+ 1⟩ where this evolution depends on a quantum "coin". For example when
one obtains "heads" after tossing the "coin" the walker moves to the "right" and if
it is "tails" it moves to the "left". The "coin" can be represented in two-dimensional
Hilbert space HC , the computational basis of which is {|0⟩ , |1⟩}, respectively.

The Hilbert space of the system should be:

H = HC ⊗HP (3.2)
H = C2 ⊗ CN (3.3)

The movement of the walker is modeled by the so called shift operator S which
should operate as follows:

S |0⟩ |n⟩ = |0⟩ |n+ 1⟩ (3.4)
S |1⟩ |n⟩ = |1⟩ |n− 1⟩ (3.5)

Given that the shift is restricted to neighboring zones with a step length of one, the
operator can be translated to the general form:

S = |0⟩ ⟨0|C ⊗
∑
n∈Z

⟨n− 1|n⟩P + |1⟩ ⟨1|C ⊗
∑
n∈Z

⟨n+ 1|n⟩P (3.6)

The coin toss operator can be described by a three-parameter SU(2) [60] unitary
matrix:

Cξ,θ,ζ =

[
eiξ cos θ eiζ sin θ

−e−iζ sin θ e−iξ cos θ

]
(3.7)

sufficient to describe the most general form of the discrete-time quantum walk.

27



Chapter 3

A step in a quantum walk consists in applying the following unitary operator:

U = S (C ⊗ 1) (3.8)

In the quantum case, if we measure the particle position after the first step, we
destroy the correlations between different positions, typical of quantum systems.
Therefore we should apply U (3.8) successively allowing for the quantum correla-
tions between different positions generating a different behaviour to the classical
counterpart. After those t steps we make our measurement to uncover the final
position of the particle:

|ψ(t)⟩ = U t |ψ(0)⟩ (3.9)

The methodology described here can be used as a framework to create quantum
walks in two different types of spaces: infinite and cycled. The latter result in an
algorithm architecture that we will discuss in depth in the following section.

Consider using a Hadamard gate as the "coin" operator C:

H =
1√
2

[
1 1
1 −1

]
(3.10)

On an initial "balanced" state:

|coin(t = 0)⟩ = |0⟩+ i |1⟩√
2

(3.11)

When we apply the evolution operator, terms with the imaginary unit are not con-
verted into terms without the imaginary unit and vice versa. There will be no
cancellation of terms of the walk that goes rightward with the terms of the walk
that goes leftward. At the end, the probability distributions are added and we
should obtain a symmetrical distribution (Figure 3.2).

The formula for the standard deviation of the probability distribution is:

σ(t) =

√√√√ ∞∑
n=−∞

n2 p(t, n) (3.12)

where p(t, n) is the probability distribution of the quantum walk.

The standard deviation in a classical random walk, which can be seen as the non-
quantum counterpart to a quantum walk, typically exhibits a square-root relation-
ship with time. However, in a quantum walk, when calculating 3.12 numerically [2],
the standard deviation presents an unique characteristic: it shows a direct, linear
dependence on time. This distinctive behavior highlights the more expansive spread
inherent in quantum walks when compared to their classical equivalents.

To end this section with an interesting perspective, quantum walk position space
can be modelled in a network graph , where each node represents a possible position.

28



Quantum Walks

Table 3.1: Probability of finding the quantum particle in position x at time t,
assuming that the walk starts at the origin with the quantum coin in “tails” state,
|0⟩.

t
n -5 -4 -3 -2 -1 0 1 2 3 4 5

0 1
1 1/2 1/2
2 1/4 1/2 1/4
3 1/8 1/8 5/8 1/8
4 0 1/8 1/8 5/8 0
5 0 1/6 1/8 1/8 1/2 0

100 50 0 50 100
Position

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

100 50 0 50 100
Position

0.00

0.02

0.04

0.06

0.08

0.10
Pr

ob
ab

ilit
y

Figure 3.1: Probability distribution for different initial coin states, "tails" |0⟩ and
"heads" |1⟩, respectively.

100 75 50 25 0 25 50 75 100
Position

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

Figure 3.2: Symmetrical probability distribution using 8 qubits and t = 28−1 steps
simulated on quantum computer simulator qasm_simulator from IBMQ.

29



Chapter 3

This helps to open new algorithmic frontiers to new or already existing applications,
allowing to solve and tackle complex network graphs plus for possible increments in
efficiency. In figure 3.3 we can observe the network graph for the cycled quantum
walk and for the quantum walk with frontiers on its ends (where we will focus more
deeply on the potential well implemented into the quantum walk).

0

1

2

3

4

0

1

2

3

4

Figure 3.3: Graph networks for a cycle network (left) and for a limited line (right).

3.1.1 Dirac quantum walk

One particular important application for quantum walks is the relation between
them and the Dirac Equation. The Dirac Equation is a relativistic wave equation
that describes the behavior of fermions, particles that follows Fermi–Dirac statistics
and obey the Pauli exclusion principle (i.e., no two fermions can occupy the same
quantum state). The equation was first proposed by British physicist Paul Dirac in
1928 and has since become a cornerstone of modern physics.

The connection between quantum walks and the Dirac equation is rooted in the
fact that both describe the behavior of quantum particles. Specifically, it has been
shown that the Dirac Equation can be expressed in terms of a quantum walk on
a lattice [61–63]. This means that by studying the behavior of quantum walks, we
can gain new insights into the behavior of fermions and the properties of the Dirac
Equation.

The applications of this connection are far-reaching. Such application is in research
of properties of the fermions in a material or system such as conductivity, magnetism,
and superconductivity. Also Cellular Automata [64] or even as using transforma-
tions for the Dirac Equation on fluid dynamics [65].

The free Dirac Hamiltonian operator for a particle with zero momentum along the
y and z directions is:

H = cαzp̂z +mc2β (3.13)

with, p̂ = −iℏ d
dx

(3.14)

And also the matrices:

αz =

[
0 σz
σz 0

]
β =

[
12 0
0 12

]
(3.15)

30



Quantum Walks

where σi, i = 1, 2, 3 are the usual Pauli matrices and 12 is the 2× 2 unit matrix.

Demonstrated by Bracken et al. (Sec. II) [62] we can consider an Hamiltonian in
the effective form:

Heff = σ3p̂+ σ2 (3.16)

Assuming:

m = ℏ = c = 1 (3.17)

Considering a fixed small time interval ∆t ≪ 1/E0, the (effective) unitary time
evolution operator for the Dirac particle is:

e−iH∆t = SC +O([E0∆t]
2) (3.18)

S = e−i∆tσ3p̂, C = e−i∆tσ2 (3.19)

Where SC represent the operator for an one-dimensional Discrete Time Quantum
Walk, with S the Shift Operator with a step of length ∆t along the x axis and C
our Coin operator. Considering an unitary time space, ∆t = 1 (step length) and
reorganizing the Pauli operator, σ3, and p̂:

S = e−i(|0⟩⟨0|−|1⟩⟨1|) ⊗ (∆t = 1) p̂

= |0⟩ ⟨0| ⊗ e−ip̂ + |1⟩ ⟨1| ⊗ eip̂

= |0⟩ ⟨0|C ⊗
∑
n∈Z

⟨n− 1|n⟩P + |1⟩ ⟨1|C ⊗
∑
n∈Z

⟨n+ 1|n⟩P
(3.20)

For multiple steps t = n∆t we have:

e−iHt = (SC)n +O([E0∆t]
2) (3.21)

By letting n→ ∞ and ∆t→ 0 we can eliminate O([E0∆t]
2):

lim
n→∞, ∆t→0

e−iHt = (SC)n (3.22)

For the DTQW, ∆t = 1, therefore in order to minimize the intrinsic error the
number of steps, n should be much greater than ∆t. As we will see in the next
sections, the optimal number of steps noptimal is a trade-off between minimizing
the error and exploring the entire space, which is limited by the available number
of qubits. In other words, by increasing the number of qubits, that consecutively
increases the explorable space, we need to perform an increasing number of steps
to gain significant simulation knowledge. In addiction, the simulation time will also
escalate due to the increasing number of steps.

In Appendix B the reader can find a more detailed study on the one dimensional
Dirac quantum walk.

31



Chapter 3

3.1.2 Potential Well

The problem of a relativistic spin 1/2 particle confined to an one-dimensional box
can be emulated via a relativistic quantum walk by introducing barriers or better,
a squared potential well.

The behaviour of the particle trapped inside a square potential with infinite walls
can be replicated by introducing a conditional coin, or in other words, position-
dependent coin operator, C(n). This will allows to have the normal behaviour of the
particle in between our barriers and more importantly to implement a barrier that
repulses our particle, maintaining it inside the enclosure.

Following the suggestion by Nzongani et al. [66] implementing a position-dependent
coin operator implies creating coin operators for each position, Cx. If implemented
in a naive way, only using one qubit to handle the coin state, it places all the coin
operators Cx sequentially, i.e., one after the other, along the coin wire. This already
implies that the depth of the circuit will be exponential with the number of position
qubits.

It terms of Dirac notation, the position-dependent coin’s operator can be described
as:

C(n) =
N−1∑
k=0

|k⟩ ⟨k| ⊗ Ck (3.23)

Implementing this condition for the circuit model requires some additional steps.
First, C(n)’ takes the n-controlled gate form Gn(Cx), as can be seen in figure 3.4.
As for now and for the upcoming sections, we will assume Gn() as a gate function
that return a n controlled gate. It can be represented as an iterative matrix:

G1(Ck) := I2 ⊕ Ck =

[
I2 0
0 Ck

]
(3.24a)

Gn(Ck) := I2n ⊕Gn−1(Ck) =

[
I2n 0
0 Gn−1(Ck)

]
(3.24b)

n

coin Cx

position

Figure 3.4: Gate for for the position-dependent coin.

Since to activate a controlled gate, all the control qubits need to be in |1⟩⊗n, for a
given positional state |ψp⟩ to be activated we will need to make conditional changes,
so the conditional coin can be applied to it. In other words, for a coin to be activated
upon the desired position we will use X gates to change the position state,|ψp⟩ , to
the |1⟩⊗n. For example, with n = 3 and |ψp⟩ = |000⟩ we will need to flip all the
qubits before the gate, so it can be activated and also after so the position state
|ψp⟩ remains unaffected. It can be visualized in figure 3.5.

32



Quantum Walks

|ψp⟩

X X

X X

X X

|ψc⟩ Cx

|000⟩ |111⟩ |000⟩

Figure 3.5: Circuit for position dependent coin. Important to note, that for the sake
of simplicity we omitted |ψc⟩ from the slice annotations.

Applying this to all the possible positions, can be done sequentially, covering all the
conditional coins and without affecting the final state. Nzongani et al. refer this pro-
cess as a "tower of X gates", Tn, to progressively obtain the possible positions. For
example, for n = 3 we will have N = 23 possible position states: |0⟩ , |1⟩ , |2⟩ , ..., |7⟩
or |000⟩ , |001⟩ , |010⟩ , ..., |111⟩. We can cover all positions by progressively applying
X gates. By induction we can define Tn(i):

T1(0) :=X ⊗ I2 (3.25a)
Tn(i) :=Mi ⊗ Tn−1(i mod 2n−2) (3.25b)

with

Mi :=

{
X if i = 0,

I2 otherwise
(3.26)

This will lead to the updated circuit evolution:

U (n) =
N−1∏
k=0

Gn(Ck) Tn (3.27)

In figure 3.6, we can see the circuit for n = 1, 2 and 3 qubits.

position

coin

X

coin_L

X

coin_R

position0

position1

coin

X

X

coin_L

X

coin

X

X

coin

X

coin_R

position0

position1

position2

coin

X

X

X

coin_L

X

coin

X

X

coin

X

coin

X

X

X

coin

X

coin

X

X

coin

X

coin_R

Figure 3.6: Quantum circuits for different resolutions on the position space.

33



Chapter 3

3.2 Algorithm for quantum walk

Let us begin by laying out the pseudocode for the generic (1D +1) cycled quantum
walk:

Algorithm 1 (1D+1) Quantum Walk
1: Define position_state as an integer lattice of n nodes
2: Define coin_state as a two-level quantum system (qubit)
3: Define coin_operation as a 2× 2 quantum operator
4: Initialize walk_state using position_state and coin_state
5: for each time-step do
6: Apply the coin_operation by some SU(2) unitary operation on the coin_state

of walk_state
7: Apply the shift operator on the walk_state which conditionally shifts the

position_state depending upon the coin_state
8: end for
9: Measure the state of the system to obtain the current walk_state

And also the generic one step quantum walk circuit:

coin C

|x0⟩

S...

|xn⟩

Figure 3.7: Quantum Circuit for the Quantum Walk. For it we want to implement
the coin operator and shift operator.

For the sake of simplicity, the position space vector uses its natural ordering, induced
on the basis by values of x, i. e. the position space is a vector with dimensions 1 ×N ,
as we have seen given by the number of allocated qubits, n, for the position space,
N = 2n.

|101⟩ = |1⟩0 ⊗ |0⟩1 ⊗ |1⟩2 =
[
0
1

]
⊗
[
1
0

]
⊗
[
0
1

]
=



0
0
0
0
0
1
0
0



(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)

(3.28)

34



Quantum Walks

Next, the right shift can be represented by a N ×N matrix T :

T =



0 0 0 . . . 1

1
. . . . . . . . . ...

0
. . . . . . 0 0

... . . . 1 0 0

0
. . . 0 1 0


(3.29)

Therefore, T |n⟩ = |n+ 1⟩. For the left shift it corresponds to the transpose matrix
of T , T⊤. For a self shift, our coin should be in state |1⟩ and for a right shift in
state |0⟩. When implementing this operators, these should be dependent on the coin
position, therefore we build the controlled operators:

Tcontrolled := G1(T ) =

[
I2 0
0 T

]
T⊤

controlled := G1(T ) =

[
I2 0
0 T⊤

]
(3.30)

Since the right shift is associated with the coin state |0⟩, we need to add X gates to
flip the space.

Right Shift = (X ⊗ In) G1(T ) (X ⊗ In) (3.31)
These should take the following shape:

|coin⟩

|x0⟩

T⊤...

|xn⟩

|coin⟩ X X

|x0⟩

T...

|xn⟩

Figure 3.8: Left and Right shifts, respectively.

The shift operator can be written in the compact operator [67]:

σ =

[
T 0
0 T⊤

]
(3.32)

The time evolution repeats t times coin and shift operators. Besides this we need to
prepare the initial state for the position qubits and coin qubits. The first is prepared
such that represent the center point of the grid, 2N/2 (this can be achieved by simply
adding an X gate to the nth qubit):

|x0⟩

...

|xn⟩ X

Figure 3.9: Initial position state preparation circuit.

35



Chapter 3

For the coin space, since we usually want to start the state in a "balanced" state,
where interference doesn’t bias our distribution towards only one side:

|i⟩ = |0⟩+ i |1⟩√
2

(3.33)

It can be prepared by applying an Hadamard gate, H, and a Phase gate of π/2
(usually called S gate):

|coin⟩ H S

Figure 3.10: Initial coin state preparation circuit.

Our final quantum circuit should have the shape, as seen in figure 3.11:

coin initial coin state

|x0⟩

initial position state...

|xn⟩


Coin Operator Shift Operator

C X X

T⊤ T



t

Figure 3.11: Circuit preparation for the generic cycle quantum walk.

Sadly, the simplification of the Shift gate, S, in fundamental gates reveals an ex-
tremely complex operation, evolving entangling multiple qubits which not only in-
creases the depth of the circuit, but when simulated in real quantum hardware
produces poor results due to the current low coherence times, i.e., performance
quality drops with subsequent operations. In the other hand, for the general quan-
tum walk’s coin implementation is an one qubit gate and is easy to implement with
sufficient high fidelity.

Fundamentally, when describing the Shift gate from the matricial form to the avail-
able gates, this is composed by multi controlled NOT gates, called CNx or n-Toffoli
gates:

36



Quantum Walks

Shift Operator

. . .

. . .

. . .

... . . . ...
...

...

. . .

. . .

|x0⟩ X

|x1⟩

|x2⟩

...

|xn−1⟩

|xn⟩

Figure 3.12: Circuit fraction for the S (shift) gate

Each CNx (for a minimum of three qubits) as 2n2 − 6n + 5 circuit complexity and
8n − 20 of circuit depth, with n the number of qubits. For a S gate applied to a
subspace of at least two position qubits and one coin qubit (three qubits in total),
the circuit complexity follows the expression [67]:

[
n∑

i=3

2n2 − 6n+ 5] + 2 (3.34a)

Where the plus two is related to the added complexity of CNOT gate and NOT gate
needed for the development of the gate. Since this is an aristhemic progression, it
can be simplified to the following equation

= n(2n2 − 6n+ 7)/3 (3.34b)

The same can be done for the circuit depth:

[
n∑

i=3

8n− 20] + 2 (3.35a)

= 2(2n2 − 8n+ 9) (3.35b)

This leads to a polynomial increase with the number of qubits n when using the ar-
chitecture, restraining the efficiency of such algorithm in current quantum hardware.
Therefore we propose the use of an simplified architecture (3.2.1) whose complexity
and depth increase linearly with the number of qubits n, whose gains can be seen
in the graph 3.13:

2(n− 1) (3.36)

We will also explore the possibility of implementing an hybrid architecture to max-
imize the usage of real quantum hardware.

This topic becomes even more important when we want to implement our conditional
coins 3.1.2.

37



Chapter 3

5 10 15 20 25 30
n, number of qubits

0

2500

5000

7500

10000

12500

15000

17500
(n

3 )
, Q

ua
nt

um
 c

irc
ui

t c
om

pl
ex

ity
Naive approach
Hybrid approach

5 10 15 20 25 30
n, number of qubits

0

500

1000

1500

2000

2500

3000

3500

(n
2 )

, Q
ua

nt
um

 c
irc

ui
t d

ep
th

Naive approach
Hybrid approach

Figure 3.13: In the left side we have a graphical representation of the Quantum
circuit complexity with the number of qubits n. In the right side we have a graphical
representation of the Quantum circuit depth with the number of qubits n.

3.2.1 Simplified and hybrid quantum walks

As we have seen, the efficiency of the walker’s implementation depends mainly on
the shift operator, S, which is a multi-qubit-controlled gate since the coin operator,
being an one-qubit gate, is easy to implement in practice, with sufficiently high
fidelity. The presented architecture that uses the T operator (eq. 3.29) , without
any type of simplification, relies on multi-qubit gates, namely CNX gates, which
require excessive computational power to enhance spacial resolution. This is because
achieving greater spatial resolution requires an increase in the accessible space, which
can be accomplished by utilizing more qubits and a greater number of steps or circuit
depth to cover more distance. To address this issue, it is crucial to implement a more
efficient solution to simulate quantum walks.

One promising and effective approach is to work in the Fourier space. The Fourier
transform acts on the spacial part of the computational basis HP as follows. A
recent work has proposed working with Quantum Fourier Transforms [67] which
deeply simplifies the quantum circuit.

The Fourier Discrete Transform (FT) diagonalizes the shift operator S [67]. In fact,
FT diagonalizes any unitary circulant matrix, i.e., any convolution matrix [68].

Lets assume V and V ′ as the new simplified formats of the right and left shift,
respectivily:

V = T (3.37a)
V ′ = T⊤ (3.37b)

The Fourier transform diagonalizes our (right) shift operator:

V = FΩF−1 (3.38)

where

Fk =
N−1∑
n=0

xne
− 2πi

N
kn, k = 0, 1, . . . , N − 1

38



Quantum Walks

. . . . . . . . .

. . . . . . . . .

...
...

. . . . . . . . .

. . . . . . . . .

|x0⟩ H R2 Rn−2 Rn−1 |0⟩+ e2πi 0.x0x1...xn−1 |1⟩

|x1⟩ H Rn−3 Rn−2 |0⟩+ e2πi 0.x1...xn−1 |1⟩

...

|xn−2⟩ H R1 |0⟩+ e2πi 0.xn−2xn−1 |1⟩

|xn−1⟩ H |0⟩+ e2πi 0.xn−1 |1⟩

Figure 3.14: Circuit Schematic for the Quantum Fourier Transform

Which produces a diagonal matrix Ω:

Ω =


1 0 0 · · · 0

0 ω
. . . . . . ...

0 0 ω2 . . . 0
... . . . . . . . . . 0
0 0 0 · · · ωN−1

 (3.39)

This can be simplified in a tensor product that can be seen as controlled phase
changes in each individual qubit:

Ω =

[
1 0
0 ω

]
⊗
[
1 0
0 ω2

]
⊗ · · · ⊗

[
1 0
0 ωN−1

]
(3.40)

where ω = e2πi/2
n . Is important to note that in order to have the output of the

results ordered correctly due to the effects of the Fourier Transform we can simply
express Ω as:

Ω = Rn ⊗Rn−1 ⊗Rn−2 ⊗ · · · ⊗R1 (3.41)

where:

Rk =

[
1 0

0 e2πi/2
k

]
(3.42)

For the left shift:
Ω = Rn ⊗Rn−1 ⊗Rn−2 ⊗ · · · ⊗R1 (3.43)

where:

Rk =

[
1 0

0 e−2πi/2k

]
(3.44)

For the shift to be coin dependent the matrices should be displayed in their controlled
form:

C(Rk) =

[
I2 0
0 Rk

]
(3.45a)

C(Rk) =

[
I2 0
0 Rk

]
(3.45b)

39



Chapter 3

Since for the right shift, we need to invert the coin state, |0⟩ to |1⟩ so the control
qubits can target the gate, we need to surround the control element by X gates:

C |1⟩ = (X ⊗ I2)C
|0⟩(Rj)(X ⊗ I2) (3.46)

We finally can display the controlled rotation as:

C(Ω) =
n∏

k=1

C(Rk) (3.47a)

C(Ω) =
n∏

k=1

C(Rk) (3.47b)

The simplified shift operator V , should be:

V = (I2 ⊗F †)C(Rk, Rk)(I2 ⊗F) (3.48)

The circuit for the shift operator, V , gains the following form:

. . .

. . .

. . .

. . .

. . .

. . .

|coin⟩ X X X X

|x0⟩

QFT

P (−2π/2(n−1))) P (2π/2(n−1)))

QFT †

|x1⟩

|x2⟩

...

|xn−1⟩

|xn⟩ P (−2π/2(n−(n−1))) P (2π/2(n−(n−1)))

Figure 3.15: Shift operator circuit (V ) using Fourier space simplification.

And the full unitary evolution is:

n

|coin⟩

|position⟩


Unitary Evolution

C X X

QFT Left shift Right shift QFT†



t

Figure 3.16: Graph for the Unitary Evolotion Operator

An example for a quantum walk is shown on figure 3.17 using 10 qubits.

40



Quantum Walks

400 300 200 100 0 100 200 300 400
Position

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

Figure 3.17: Quantum Walk Simulation, using 10 qubits for position resolution (210).
The simulation was done using qasm_simulator.

In this work we went even further, is possible to assume that the position space is on
the Fourier space, i.e. we drop the quantum Fourier transformation at the beginning
and at end of each shift and only apply them at the beginning and at end of the
algorithm. When this is possible to apply, we significantly reduce the number of
circuit depth, since we do not need two QFTs for every single shift operation, only
two QFTs for all the shift operations.

n

|coin⟩

|position⟩ QFT

 U


t

QFT†

Figure 3.18: Quantum walk circuit in the Fourier space, with the basis transforma-
tion at the beginning and at the end of the unitary evolution.

The interesting part is for our simple case, (i.e. preparing the particle in a central
position of the line grid) we can create the initial state and apply the Classical
Fourier transformation to this state, all in a classical computer [69]! This allows for
a decreasing (slightly!) of the depth and complexity of the circuit. More specifically
we can reduce the circuit by 2n (QFT depth) with the downside of the increased
complexity, since instead of one rotation in one qubits we need to apply n rotation
for all n qubits. The depth of the initial state preparation remains the same.

In the next chapter 4 we will delve a little bit in the possible implications of this
three different architectures for the coined quantum walk.

41



Chapter 3

Algorithm 2 Hybrid (1D+1) quantum walk
1: Define position_state as an integer lattice of n nodes in the fourier space
2: Define coin_state as a two-level quantum system (qubit)
3: Define coin_operation as a 2× 2 quantum operator
4: Initialize walk_state using position_state and coin_state
5: for each time-step do
6: Apply the coin_operation by some SU(2) unitary operation on the coin_state

of walk_state
7: Apply the shift operator on the walk_state which conditionally shifts the

position_state depending upon the coin_state
8: end for
9: Apply QFT†

10: Measure the state of the system to obtain the current walk_state

3.2.2 Quantum walk with position-dependent coins

The implementation of the position-dependent coin in a quantum walk, unfortu-
nately, limits the use of some of the techniques we looked at. In a controlled gate,
the control qubits, to correctly perform as intended, i.e., activate the target gate,
must be in the computational basis {|0⟩ , |1⟩}. If we implement the hybrid quantum
walk architecture in this case, is impossible to have an ordinary control of the target
gates due to the different computational base. Thus, we can only implement the
simplified shift operator 3.48.

Also, given the exponential increase of coins due to the need for one coin for every
possible position, regular personal hardware is not capable of developing highly
detailed graphs, which lead us to dedicate a big part of this work on exploring the
benefits of using high performance computing to simulate quantum hardware, aspect
that is reserved to the next chapter 4.

Redirecting our focus to the aspects of the position-dependent coin, we want to
implement a square potential well, where the barriers are perfectly repulsive. For
this to happen in practice, in our quantum algorithm, it’s crucial to tailor our
position-dependent coins to behave like this:

C(n) =

{
Repulsion, if n = barrier position
Standard coin(ex. Hadamard, Dirac Particle),otherwise

(3.49)

In practice the algorithm should work as follows:

42



Quantum Walks

Algorithm 3 (1D+1) Quantum Walk in potential square well
1: Define position_state as an integer lattice of n qubits
2: Define coin_state as a two-level quantum system (one qubit)
3: Define barrier_position_left and barrier_position_right in the available po-

sition space
4: Define main_coin_operation as a 2×2 quantum operator, with n control qubits

5: Define coin_barrier_left and coin_barrier_right as a 2 × 2 quantum con-
trolled operator, with n control qubits

6: Initialize walk_state using position_state and coin_state
7: for each time-step do
8: for each position do
9: if position = barrier_position_left then

10: Apply the coin_barrier_left on the coin_state of walk_state
11: else if position = barrier_position_right then
12: Apply the coin_barrier_right on the coin_state of walk_state
13: else
14: Apply the coin_operation on the coin_state of walk_state
15: end if
16: end for
17: Apply the shift operator on the walk_state which conditionally shifts the

position_state depending upon the coin_state
18: end for
19: Measure the state of the system to obtain the current walk_state

To display the correct coin behaviour in each of the two limits of the position space,
when tried to reach the left limit, the coin needs to force a right shift and vice versa.
This implies that the last coin state, before reaching the barrier was technically |1⟩
for the left side and |0⟩ for the right side. Therefore we want to flip that state
and lead the coin to be in the left limit in |0⟩ and in the right limit in the |1⟩. To
exhibit this behaviour using the circuit model, it can be accomplished by setting
coin_barrier_left and coin_barrier_right as CnX gates.

3.2.3 Dirac free-particle trapped in a square potential well

One of the objectives of this work is to integrate the various distinctive characteristics
of the Quantum Walk algorithm and combine them to develop something interesting
and with scientific importance.

Such product is the simulation of a Dirac free-particle trapped inside a square po-
tential well. This perfectly combines one of the most attractive applications of
the quantum walks algorithms, the relationship between quantum walks and Dirac
free-particle equation, with the position-dependent coin.

The algorithm implementation follows a similar architecture to the one depicted
in section 3.2.2. The most important and notorious change is the need to develop
a coin specific to model the Dirac free-particle behaviour, while we maintain the

43



Chapter 3

"barrier" coins in the ends of our lattice, modelled by the CnX gates. The "main"
coin will be the the RY (θ) with a θ = 2:

n

|coin⟩ RY (2) = e−iY

|position⟩

Figure 3.19: Quantum Circuit with schematic of the Dirac free-particle coin.

with RY (θ) given by:

RY (θ) = e−i θ
2
Y =

[
cos
(
θ
2

)
sin
(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)], Y =

[
0 −i
i 0

]
(3.50)

3.2.4 Visualizing time evolution

Until now, we displayed the data representation of the 1D coined quantum walk
as a single circuit execution, where its result product is in regard to the particle
state after a certain amount to time steps given by the particle. Although already
quite interesting, would be far more practical to observe all the consecutive time
steps, or in better words, the time evolution of the particle’s state. Following the
3rd quantum mechanics postulate A, after a measurement of |Ψ⟩, it collapses into
one of its eigenstate, i. e., we end up with a different initial state. This is to say
that we cannot simply consecutively gather information from the quantum walk by
adding measurement operators after each time step, since that would fundamentally
disrupt the evolution of the quantum walk. Each measurement would collapse the
state of the system and change the initial conditions for the next time step, making
it impossible to continuously gather information about the initial quantum walk
without interfering with its progression.

To avoid this problem and effectively visualize the evolution of a quantum walk with
l steps, we will need to create l different quantum walk circuits. Each individual
circuit in this series will represent a quantum walk incrementally increasing in the
number of steps, commencing with a single step in the first circuit and culminating
with an l-step quantum walk in the final circuit:

44



Quantum Walks

Algorithm 4 Incremental Evolution Visualization in (1D+1) Quantum Walk
1: Define position_state as an integer lattice of n nodes
2: Define number of steps l
3: Define coin_state as a two-level quantum system (qubit)
4: Define coin_operation as a 2× 2 quantum operator
5: Initialize walk_state using position_state and coin_state
6: for step in range from 0 to l do
7: for each time-step do
8: Generate Circuit
9: Apply the coin_operation using some SU(2) unitary operation on the

coin_state of walk_state
10: Apply the shift operator on the walk_state which conditionally shifts the

position_state depending on the coin_state
11: end for
12: Measure the state of the system to obtain the current walk_state
13: end for
14: Save results in (l, n) array

Following is a graph schematic of how we intend to display part of the data:

Figure 3.20: Schematic visually showing how the data in the heatmap plot refers to
the individual histograms.

3.2.5 Qiskit implementation

For this work, the framework used to work on the quantum information and com-
puting domain is the Qiskit framework. Established by IBM as an open-source
software development kit it is based on Python programming language and is in-
tended to work with the quantum circuit model, providing a broad array of core
components for the creation, processing, simulation and visualization on quantum
computing tasks. The component Qiskit Aer will be of high interest in the next chap-
ter, because it provides high-performance quantum computing simulators capable
of running in CPUs or GPU and multiple options to tone and maximize the simu-

45



Chapter 3

Compute resources
Access IBM Quantum systems and simulators via our available access plans.
Learn more

Your resources All systems All simulators

Card Table

Search by system name

ibm_seattle Exploratory

System status Offline
maintenance

Processor type

Qubits

433

Osprey r1

ibm_sherbrooke

System status Online
Processor type

Qubits

127
QV

32
CLOPS

904

Eagle r3

ibm_kyiv

System status Online - Queue paused
in maintenance

Processor type

Qubits

127

Eagle r3

ibm_brisbane

System status Online - Queue paused
maintenance

Processor type

Qubits

127

Eagle r3

ibm_nazca

System status Online
Processor type

Qubits

127

Eagle r3

ibm_cusco

System status Online
Processor type

Qubits

127

Eagle r3

ibm_ithaca Exploratory

System status Online - Queue paused
maintenance

Processor type

Qubits

65

Hummingbird r3

ibm_prague Exploratory

System status Offline
internal

Processor type

Qubits

33

Egret r1

ibm_algiers

System status Online
Processor type

Qubits

27
QV

128
CLOPS

2.2K

Falcon r5.11

ibmq_kolkata

System status Online
Processor type

Qubits

27
QV

128
CLOPS

2K

Falcon r5.11

ibmq_mumbai

System status Online
Processor type

Qubits

27
QV

128
CLOPS

1.8K

Falcon r5.10

ibm_cairo

System status Online
Processor type

Qubits

27
QV

64
CLOPS

2.4K

Falcon r5.11

ibm_auckland Exploratory

System status Online - Queue paused
maintenance

Processor type

Qubits

27
QV

64
CLOPS

2.4K

Falcon r5.11

ibm_hanoi

System status Online
Processor type

Qubits

27
QV

64
CLOPS

2.3K

Falcon r5.11

ibm_peekskill Exploratory

System status Online - Queue paused
maintenance

Processor type

Qubits

27

Falcon r8

ibmq_guadalupe

System status Online
Processor type

Qubits

16
QV

32
CLOPS

2.4K

Falcon r4P

ibm_perth

System status Online
Processor type

Qubits

7
QV

32
CLOPS

2.9K

Falcon r5.11H

ibm_lagos

System status Online
Processor type

Qubits

7
QV

32
CLOPS

2.7K

Falcon r5.11H

ibm_nairobi

System status Online
Processor type

Qubits

7
QV

32
CLOPS

2.6K

Falcon r5.11H

ibmq_jakarta

System status Online - Reserved
available

Processor type

Qubits

7
QV

16
CLOPS

2.4K

Falcon r5.11H

ibmq_manila

System status Online
Processor type

Qubits

5
QV

32
CLOPS

2.8K

Falcon r5.11L

ibmq_quito

System status Online
Processor type

Qubits

5
QV

16
CLOPS

2.5K

Falcon r4T

ibmq_belem

System status Online
Processor type

Qubits

5
QV

16
CLOPS

2.5K

Falcon r4T

ibmq_lima

System status Online
Processor type

Qubits

5
QV

8
CLOPS

2.7K

Falcon r4T

IBM Quantum

Figure 3.21: Array of all the available, on cloud, IBMQ quantum hardware devices.
This list has layed out the number of qubits, quantum volume (QV) and Circuit
Layer Operations Per Second (CLOPS) which refer to the performance metrics of
the hardware.

lation efficiency. It also allows to easily run quantum algorithms in real quantum
hardware, but with a lot of limited resources and availability.

Moreover, IBM has invested heavily in educational components as well as providing
extensive documentation for its framework. Unfortunately this produces tones of
available documents, whereas some parts of this vast repository are repeated or even
deprecated, which introduces some expected challenges, something we experienced
in the course of this work. The highly vibrant community to help on debugging our
code and also some existing experience on using this framework add to the reasons
to work with this tool.

Following, we will explaining on how the algorithm is implemented into this frame-
work:

In Qiskit there are about 3 main stages to correctly implement a given quantum
circuit 3.22. First we generate the quantum circuit(s) in respect to the desired
task or algorithm. It allows to create our unique operators and easily initialize
quantum states. Then we need to choose the type of backend to use. Backend
represents either a simulator or a real quantum computer and are responsible for
running quantum circuits, running pulse schedules, and returning results. The last
main stage is responsible for compiling and running our tasks. In this stage first
comes the transpiler process which involves converting the operations in the circuit

46



Quantum Walks

Backend selectCreate Quantum
Circuit(s) Transpile Run Result

Figure 3.22: Qiskit’s task flow chart evolution.

to those supported by the device and/or to optimize the circuit. This parameter
can be highly tuned so it can be adapted to specific demands. Also in real quan-
tum hardware, not all the qubits have direct connections, needed to performance
controlled actions, therefore this process is capable of reorganizing qubits to over-
come this connectivity limit. The transpile process if followed by the run process
where it executes the quantum circuit(s). Each one runs a shots amount of times
to obtain the desired probability distribution of results. Lastly, the result process-
ing operation reformulates the data outputted by the execution process into the
form of a dictionary. Given the presumption that the execution process yields a
’job’ Python object, invoking job.result().get_counts() is expected to provide
a Python dictionary. This dictionary organizes the count of occurrences for each
quantum state. It’s important to note that each state is a single observed outcome
from one execution of the quantum circuit. The repeated execution of the Quantum
circuit, regulated by the shots variable, enables us to construct a probability dis-
tribution. This distribution is critical for comprehending the potential final states
of our quantum system.

Also, if we need to simulate multiple circuits, it is possible and also recommended
since it allows for efficiency improvements.

The error between experiments, i.e., not between each shots, but between two
separated executions with the same number of shots for the same quantum circuit
is usually given by the Hellinger Fidelity which equivalent to the standard classical
fidelity:

F (Q,P ) =

(∑
i

√
piqi

)
(3.51)

This equation comes handy when comparing the runs in different real quantum back-
ends or even between a classical quantum simulator and a real quantum backend.
When comparing the results from different runs ran in the same classical simulator,
the fidelity even for just 1000 shots is extremely high, around 99.98%, which is
expected since our probability distributions cannot always be exactly the same.

47





Chapter 4

Algorithm Benchmarking

The ultimate goal is to understand how far-reaching our algorithm can be. Under-
standing the current limits from the publicly available NISQ quantum computers
and classical quantum hardware simulators is important to perceive what can be
done, i.e., what is capable of being implemented on useful applications using new,
hybrid, and non-hybrid quantum algorithms. Unfortunately, at the time of test,
the public available hardware is still too limited in resources and accessibility. In
the other hand, the software was successfully implemented showing a clear path to
future iterations.

In this chapter, we began with section 4.1, where we explore the available features
and resources from NISQ quantum hardware, available via the IBMQ cloud service.
In addiction to showcasing the obtained results, we also discuss the current state of
available hardware and how it impacts the execution of quantum algorithms. This
also serves to display the importance of hybrid quantum algorithms, as a bridge to
the full quantum hardware and how noise effects completely jeopardize the result.

Furthermore, we dedicate the next section 4.2 to adapt our algorithm to the high per-
formance computing (HPC) by executing our algorithm using a quantum computer
simulator. Such an approach not only helped on bringing to light the importance
of running code on classical hardware, since it gives a greater perspective on how
algorithms can be developed to use some of its unique capabilities. We tried to
maximize efficiency so, in the same time frame, we could execute the quantum walk
algorithm, for a problem specific case, with more spacial resolution and step count.

We end this chapter by demonstrating the substantial impact of executing HPC
algorithms at high resolutions with a high step count. Using the quantum walk
algorithm framework, we were capable of simulating the behaviour of a Dirac free-
particle trapped inside a potential square well. This produces highly complex and
depth quantum circuits, executions that could only be accomplished, without noise
errors, on a HPC.

49





Algorithm Benchmarking

4.1 Quantum walk algorithm advantages

As we seen through out section 3.2, we discussed some architectures to run our
quantum walk algorithm. Here we want to analyse in more detail the implications
these have when ran in different computing hardware: real quantum hardware (in a
hybrid approach) and classical quantum simulator.

First, in this test we tackled the architectures on section 3.2.1, applying the quantum
Fourier transform on a real quantum computer (i.e. using the Fourier transform) vs
applying it on a classical computer. We performed tests using the IBMQ cloud com-
puters: ’ibmq_qasm_simulator’, classical quantum computer simulator (represent
a fault free, environment intolerant, quantum computer) and on ’ibm_perth. This
backend has available 7 qubits, connected in an H shape as we can see in the figure
4.1. On Appendix C are available all the details regarding this quantum backend.

Figure 4.1: ibm_perth qubit layout. Its architecture can be visualized through
different tonalities or shades across its layout. Herein, unique shades correspond to
distinct T1 times, while variations in connection tonalities represent different extents
of CNOT errors. A gradient effect is applied to these tonalities, transitioning from
dark to light. It’s important to note that this gradation symbolizes a change from
lower to higher values, respectively. All the details for this quantum backend can
be found on Appendix C.

The algorithm will use 3 qubits and perform 2 steps (we will see that even this low
number will display an exaggerated uncertainty in our results). We performed 10000
shots for each circuit. The initial position will be in the middle of the lattice |100⟩
and the coin will be an Hadamard coin starting in a "balanced" position.

In this experiment, ’ibmq_qasm_simulator’ displays the desired result, the one we
want the algorithms ran on quantum computers to converge to. This result comes
in the shape of a probabilistic distribution and the disparity between these results
is given by the Hellinger Fidelity (eq. 3.51).

First, the results from running the code on ’ibmq_qasm_simulator’ can be found
on figure 4.2. Here we only made use of the Hybrid architecture since it produces
the same result:

51



Chapter 4

non-Hybrid

4 2 0 2 4
Position

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Pr
ob

ab
ilit

y

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

500

1000

1500

2000

Co
un

t

972

1782

674

1355

774

2044

1258
1141

Hybrid

4 2 0 2 4
Position

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Pr
ob

ab
ilit

y

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

0

500

1000

1500

2000

Co
un

t
559

1756

772

2038

756

2010

667

1442

Figure 4.3: Graphs from the results ran on ’ibm_perth’. On the top row the results
relate to the non-hybrid architecture and the bottom ones to the hybrid architecture.

4 2 0 2 4
Position

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

01
0

10
0

11
0

0

1500

3000

4500

Co
un

t

2526

4948

2526

Figure 4.2: Graphs from the results ran on ’ibmq_qasm_simulator’ for 2 step
quantum walk. On the left is the probability distribution scatter ad on the right the
counts histogram.

Next the results from running the code on ’ibm_perth’ using the non-hybrid and
hybrid architectures, can be found on figure 4.3.

To better visualize the difference between the ideal result (’ibmq_qasm_simulator’)
and the result from real quantum hardware (’ibm_perth’) we built the following
graph (figure 4.4).

52



Algorithm Benchmarking

4 2 0 2 4
Position

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

4 2 0 2 4
Position

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Figure 4.4: Plot with the overlap obtain from the 2 step quantum walk simulation
on the ideal quantum computer (’ibmq_qasm_simulator’) in red (or dashed) with
the ones obtained from ’ibm_perth’, purple (or solid line). On the left is the graph
for the non-hybrid architecture and on the right for the hybrid architecture.

The Hellinger Fidelity (eq. 3.51) was, using as term of comparison the result ob-
tained by the ideal quantum computer, ibmq_qasm_simulator, for the hybrid ar-
chitecture 0.254459 and for the non-hybrid architecture 0.214234.

This process was repeated for 1 step quantum walk to see if we could obtain a better
result. First the ideal results, as on figure 4.5:

4 2 0 2 4
Position

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

01
1

10
1

0

1500

3000

4500

Co
un

t

5008 4992

Figure 4.5: Graphs from the results ran on ’ibmq_qasm_simulator’ for 1 step
quantum walk. On the left is the probability distribution scatter ad on the right the
counts histogram.

53



Chapter 4

And the overlap with the obtain results on real quantum hardware, ’ibm_perth’:

4 2 0 2 4
Position

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

4 2 0 2 4
Position

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Figure 4.6: Plot with the overlap obtain from the 1 step quantum walk simulation
on the ideal quantum computer (’ibmq_qasm_simulator’) in red (or dashed) with
the ones obtained from ’ibm_perth’, purple (or solid line). On the left is the graph
for the non-hybrid architecture and on the right for the hybrid architecture.

For the hybrid architecture we obtained a fidelity of 0.352498 and for the non-
hybrid architecture 0.253564. This result is quite more interesting, showing a more
significant difference between these two architectures.

Unfortunately, is difficult to assume that the hybrid architecture is straight out
better. Each circuit execution in a quantum computer is always different due to the
ever changing environment conditions. Ideally, to perform this tests with much more
accuracy to extract substantial statistical data, we would need multiple repeated
circuit executions. As of today, we could not submit jobs with multiple circuits in
IBMQ Provider component, which in theory is possible, but in its absence implies to
create separate submissions to each circuit. This leads to a difficult situation where
the amount of data generated, that cannot be automatically sorted, would lead to
a tedious task, to have marginally better results.

Not just only from the visual data, but from the statistical data we can easily
understand the current hardware limitations to perform any kind of quantum walk.
At this stage is difficult to suggest any type of modification to enhance results.
Theoretically we can separate all the qubit computations by multiple backends,
when using the hybrid architecture. In the other hand, this is more difficult in
practice. Real-quantum hardware is still limited with the few available backends
with characteristics that point to our needs coupled with long waiting times (just to
give an example one of the executions stood in queue to be executed by three days).
To add to this, separating our qubits evolution would expose different environments
to our qubits what would create inconsistencies and random errors.

54



Algorithm Benchmarking

4.2 Algorithm execution on classical hardware

4.2.1 Classical cluster simulation methodology

As we saw in the previous section (4.1)the execution of the algorithm in real quantum
hardware is far from a viable solution. The generated quantum circuits to output a
sufficient high resolution image for the quantum walks algorithm are too complex.
Therefore we focus now on executing the code on a quantum classical simulator.
Is important to clarify that a classical simulator and hybrid algorithms relate to
different aspects.

Classical simulators of quantum hardware have ever since been an important com-
ponent in the quantum computing realm. They no only help on the development
of quantum algorithms by being a more accessible mean to debug and allow for a
proof of concept for the algorithm, with testing and tuning in a fast an reliable way,
without changing the underlying architecture of the quantum algorithm.

Running our algorithm in a classical quantum simulator is quite different from simply
sending the quantum circuits for a cloud-available quantum computer. The goal is
to maximize the capabilities of the available hardware by maximizing the efficiency
at which the results of the quantum walk algorithm are produced.

To achieve this, we will use the resources provided by the Laboratory of Advanced
Computing at the University of Coimbra. Running our code on a HPC allows for
more higher memory, higher number of threads and large number of nodes when
compared with a typical personal computer.

4.2.2 Laboratory for Advanced Computing - Navigator+

Navigator+ is the latest deployment of the HPC infrastructure of the Laboratory
for Advanced Computing (in Portuguese Laboratório para Computação Avançada)
of the University of Coimbra. Following is a table of the available partitions and
respective specifications:

Table 4.1: List of the used partitions and specifications for benchmark testing and
simulation.[70]

Partition Name Prefix # Nodes MEM # vCPUs Local Disk
cpu1 barinel 158 96GB 48 0
cpu2 caravela 13 96GB 80 239GB
hmem1 nau 7 384GB 80 239GB
hmem2 caraca 1 3TB 144 3.8TB
gpu galeao 4 96GB 80 239GB

The Navigator+ supports many of most important and used compilers, tools and
message passing interface libraries. A complete list can be accessed in the reference:
[70].

55



Chapter 4

4.2.3 Simulator architecture

For the simulation of our algorithm we will be using the Qiskit Aer component,
more specifically the Aer-Simulator [57] v0.12.1 framework, a high-performance
quantum computing simulator, supporting many of the available technologies on the
Navigator+ to improve performance. Given its easy accessibility and functionality it
is contrasted by an absence of comprehensive community testing. To ensure we took
the maximum capabilities of the Aer we did a series of validation and benchmark
tests.

The Aer-Simulator offers a selection of simulation methods, in other words, classical
quantum computing simulators tailored to specific simulation needs. For this work
the following was used:

• statevector - statevector simulator that can sample measurement outcomes
from ideal circuits with all measurements at end of the circuit. Is also capable
of introducing noise to obtain results similar to the ones on current, state of
the art, quantum computing hardware. Since we are studying our quantum
state evolution (expressed by the position of the particle in the mesh), this is
the indicated simulator.

It is worth mentioning that throughout this work, we made use of other simula-
tors such as qasm_simulator, aer_simulator and aer_statevector_simulator.
However due to the ever-evolving nature of the framework’s documentation, these
simulators have been deprecated or dropped in favour for the newer implementa-
tions.

In addition, the Aer-Simulator offers developers a range of advanced options to opti-
mize the software’s performance. This allows for tailoring the simulator software to
the algorithm and classical hardware needs, however this results in hundreds of pos-
sible combinations, a time-consuming and occasionally frustrating task, particularly
considering long wait times in the queue and during simulations. On top of that,
given the novelty of qiskit-aer, we found a bug on the code, helping the community
on developing the framework, detail we will see latter.

Each set of options has effects in the Memory and CPU use on the Navigator+,
being the goal to maximize the efficiency of both. The set of advanced options
tested are the following:

• max_job_size - divides the array of quantum circuits into smaller sub pro-
cesses, which should allow for better efficiency.

• max_parallel_experiments - number of maximum quantum circuits executed
in parallel. This option is coupled with max_parallel_threads, responsible
to set the number of available threads.

• max_parallel_shots - number of maximum shots to be executed in parallel
up to the max_parallel_threads.

56



Algorithm Benchmarking

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295

Number of Steps, n

0

500

1000

1500

2000

2500

3000

3500

4000

M
ax

 M
em

or
y 

U
sa

ge
 [M

B
]

4 5 6 7 8 9 10 11

Number of Qubits

0

50000

100000

150000

200000

M
ax

 M
em

or
y 

U
sa

ge
 [M

B
]

Figure 4.7: Plots for the algorithm memory usage using the statistics provided by
the SLURM sacct –format MaxRSS command. On the left is displayed the memory
usage for different number of steps with number of qubits fixed on 6. On the right
is displayed the memory usage for different number of qubits, with number of steps
fixed on 64.

• precision: Set the floating point precision for certain simulation methods to
either "single" or "double" precision (default: "double").

Also, within the Qiskit framework, the transpile()[71] function is a crucial process
to tune efficiency and extract the maximum performance of the classical cluster. In
this work we tested the option optimization_level, which runs in levels from 0
to 3, with the first being where there is little to no optimization, and 3 to have
heavy optimization. These levels have an effect on how the simulation reacts to the
quantum circuit, therefore was also an important variable to test.

4.2.4 Simulation parameters tuning and validation

Memory Consumption

We begin this test by one of the cornerstones of qiskit-aer. Such limitation is the
unexpected use of memory by the Aer Simulator. Only the state vector memory
usage is clearly defined (n-qubits use 2n complex values each occupying 16Bytes),
when in reality the circuit depth also has a sightly well defined memory consumption
even though not specified or correctly documented.

For our benchmark test we wanted to evaluate how by changing the number of steps
and qubits could influence the memory consumption. By gaining an insight into
the predicted behavior of memory consumption, in theory we could have a more
predictable and consistent memory usage from our algorithm, thus allowing us to
plan according the circuit execution in compliance to the available resources in the
Navigator+.

In figure 4.7 are displayed the memory measurements for the different number of
steps and qubits. As expected by the algorithm characteristics with the linear
increase of number of steps, the increase in memory usage is also linear. However
there is a slightly randomness in the maximum memory used. For the qubits, since
the circuit depth increases exponentially with the number of qubits, the memory
usage doubles with qubits increments.

57



Chapter 4

Figure 4.8: Memory profiler (using the mprof library for python) for a 6 qubits 64
steps algorithm simulation. From 0 to around 2 seconds the circuits are processed,
then until the 82 seconds marks is the transpiler phase and the rest is dedicated to
the run phase which is the one that should be affected by this parameter. On the left
is the graph for the double precision and on the right for the single precision. Even
though the graph curves on the running phase are not identical, both simulations
reach the same peak of memory usage and take the same time to simulate.

The Aer-simulator also has the precision option which should reduce by half the
memory usage when running the simulation and, in certain cases, enhance the effi-
ciency. In our testes was not possible to see any benefits of running our code in the
’single’ option instead of the ’double’, as is visually explained by the memory
profiler plot in figure 4.8.

With this information we tried to design a sort of batching system. To maximize the
memory usage of the simulator, we defined a pool, or batch, where the maximum
size of it would be roughly limited by the depth of biggest circuit. The method can
be seen in more detail on the schematic 4.9:

Q1

Q2

Q4
Q6 Q7 Q8 Q9 Q10

Q3
Q5

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6 Batch 7

Figure 4.9: Schematic for the batching diagram. Q[1-10] relates to the all quantum
circuits, distributed by the 7 available batches. The red block is the region until the
max memory per pool can be.

The results from this test showed that this batching method required a higher mem-
ory usage, when compared to the default method. In the other hand, we obtained a
small speed-up in terms of job execution time. The added complexity of the method
and the invisible different of tuning the parameters max_parallel_experiments
lead us to drop its usage.

58



Algorithm Benchmarking

Table 4.2: Results for the batching test.

Method Job Wall-clock time Memory Usage
Batched 01:46:53 9.51 GB
Default 02:07:00 2.17 GB

Figure 4.10: Memory profiler (using the mprof library for python) for the
max_parallel_experiments (left) and max_parallel_shots (right) optioned for
the maximum number of available threads (80). Unfortunately there are not no-
ticeable changes in the memory curve between these two different settings. The
running time as slightly better for the max_parallel_shots=80 (2.8595 seconds
versus 2.6087seconds, respectively).

CPU Time Usage Efficiency

A key principle of supercomputing is to enhance computational speeds through the
parallelization of as many aspects of the running code as possible (as discussed in
Section 2.3). The metric to evaluate the efficiency will be given by Slurm’s seff com-
mand, which indicates the number of threads used divided by those made available.
It essentially provides a measure of how efficiently a job is using the allocated CPU
resources. max_parallel_experiments and max_parallel_shots are the two op-
tions capable of implementing parallelization on our simulator, that can only be used
individually, i.e., if max_parallel_experiments> 1 then max_parallel_shots = 1
and vice versa. However, during our experiments when tuning this parameters for
different scenarios never outputted a noticeable change in performance and effi-
ciency. When optioned max_parallel_experiments and max_parallel_shots to
the maximum number of available threads (80), individually, the running times for
running a Hadamard coin quantum walk of 6 qubits and 64 steps were just slightly
different, (2.8595 seconds versus 2.6087 seconds, respectively). This lead us to cre-
ating an issue ticket in the Qiskit’s Github [72], which fortunately helped to unveil a
bug in the source framework, being label as issue # 1880. At the time of submission
of the work, the fix has not still been implemented in a qiskit release.

The experiment depicted in Figure 4.12 was designed to analyze the performance
impact of the max_parallel_experiments setting in an environment saturated with
a high number of circuits. We were particularly concerned that the intense circuit
activity could undermine the efficacy of this setting. To deal with this, we im-
plemented an exploratory approach wherein we divided the data into evenly sized
batches, being these governed by the job_size parameter. Unfortunately, this did
not result in any benefits, performance-wise or efficiency-wise.

59



Chapter 4

Figure 4.11: Memory profiler (using the mprof library for python) for a 6 qubits
64 steps algorithm simulation, comparing the values 5 and 10 for the setting
max_parallel_experiments. On the left is for 5 parallel experiments and on the
right for 10 parallel experiments. The curves are similar and these differences do
not impose changes on the behaviour of the simulation.

10 20 40 50 80

Job Size

0

2000

4000

6000

8000

10000

C
om

pu
ta

tio
n 

Ti
m

e 
[s

ec
on

ds
]

max_parallel_experiments
5
10
20
40
50
80

10 20 40 50 80

Job Size

0

20000

40000

60000

80000

100000

M
ax

 M
em

or
y 

U
sa

ge
 [M

B
]

max_parallel_experiments
5
10
20
40
50
80

Figure 4.12: Plots for the algorithm time (left) and memory consumption (right) for
different batch sizes using the statistics provided by the SLURM sacct –format
MaxRSS command. For all the combinations created, all execution took the same
time. On the left the average was 10087.8461 ± 59.4051 (0.5889%) [s] and on the
right 92570.0± 1589.6051 (1.717%) [Mb].

60



Algorithm Benchmarking

Figure 4.13: Memory profiler plot for a 6 qubits and 64 (top) and 128 steps (bottom)
algorithm simulation, comparing the memory performance by changing the parame-
ter optimization_level, = 0 (left) and = 1 (right). For 64 steps, the transpile times
were similar being 363,74 seconds and 362,57 seconds and the execution times were
also similar being 356,15 seconds and 355,59 seconds. For 128 steps, we got a shorter
transpile times of 1670,056 seconds and 1761,844 seconds. Surprisingly it also got a
shorter run time 1391,53 seconds versus 1462,07 seconds.

Transpiler Optimization

For the transpiler phase, the optimization parameter (optimization_level =) con-
trols the amount of simplification of the circuit. Higher levels of optimization provide
better run times of circuits but require more time to transpile, therefore is necessary
to find a sweet spot to maximize performance. During our tests, for our algorithm,
optimization_level = 2, 3 could not compile our circuit, which lead us to only test
for values of optimization 0 and 1.

optimization_level = 0 only does the required transpile method for the circuit to
run in the desired backend, optimization_level = 1 does light circuit simplification.

We tested for 6 qubits and for 64 and 128 steps. Detail results can be analysed in
figure 4.13. Given these results, we opted to default the optimization_level = 0.

4.2.5 Results and analysis between analytical results

After an extensive range of tests, we were left with a distinct aftertaste, as none of
the elements we experimented with, resulted in any significant benefits.

We were, therefore, faced with two options, or run the code as is, in the Aer-
simulator, or hard-code some sort of parallelization on the available resources. To
achieve this sort of "parallelization" we would distribute all the quantum circuits
by the available partition nodes, drastically reducing the global execution time. We
opted for the hard-code method, allowing for full control on the parallization process.

The partition used was the hmem1 due to the large available memory. We used all the
available threads (80) to give access to the max memory (384Gb). It was ensured

61



Chapter 4

that each job had its memory totally reserved to minimize possible errors within the
cluster framework.

The options used were the following:

• max_job_size = 1

• max_parallel_experiments = 1 max_parallel_threads, responsible to set
the number of available threads.

• max_parallel_shots = 80

• precision = double

The selected problem to simulate on a quantum algorithm was the simulation of
a Dirac free-particle trapped in a square well potential. To achieve good spacial
resolution to minimize the error, we used 9 qubits. This would also allow to explore
deeply the available space. During roughly thirty days, we executed 954 quantum
circuits distributed by 7 nodes. In figure 4.14 is displayed a graph of the temporal
evolution and in figures 4.15, 4.16, 4.17 histograms of specific time snippets.

In the plots we wanted to mainly visualize the correct propagation of the particle
in the available space but also the reflection on the barriers, defined as the ends of
the available space (positions 0 and 511).

62



Algorithm Benchmarking

Figure 4.14: High definition simulation of a Dirac free-particle trapped in a squared
potential well. The available exploratory space was N = 29 = 512 discrete positions
and were done 954 steps.

63



Chapter 4

0 100 200 300 400 500
Position

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Scatter Plot - Line 1

0 100 200 300 400 500
Position

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

Scatter Plot - Line 51

0 100 200 300 400 500
Position

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

Scatter Plot - Line 101

0 100 200 300 400 500
Position

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

Scatter Plot - Line 151

0 100 200 300 400 500
Position

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y

Scatter Plot - Line 201

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y

Scatter Plot - Line 251

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y

Scatter Plot - Line 301

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y

Scatter Plot - Line 351

Figure 4.15: Scatter plots for the simulation of a Dirac free-particle trapped in a
squared potential well for separated in time snippets. (1/3)

64



Algorithm Benchmarking

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y
Scatter Plot - Line 401

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

Scatter Plot - Line 451

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y

Scatter Plot - Line 501

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Scatter Plot - Line 551

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Scatter Plot - Line 601

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y

Scatter Plot - Line 651

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

Scatter Plot - Line 701

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Scatter Plot - Line 751

Figure 4.16: Scatter plots for the simulation of a Dirac free-particle trapped in a
squared potential well for separated in time snippets. (2/3)

65



Chapter 4

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Scatter Plot - Line 601

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y

Scatter Plot - Line 651

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

Scatter Plot - Line 701

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

Scatter Plot - Line 751

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y

Scatter Plot - Line 801

0 100 200 300 400 500
Position

0.000

0.005

0.010

0.015

0.020

Pr
ob

ab
ilit

y

Scatter Plot - Line 851

Figure 4.17: Scatter plots for the simulation of a Dirac free-particle trapped in a
squared potential well for separated in time snippets. (3/3)

66



Chapter 5

Discussion and Conclusion

Great new technologies and innovations usually open up vast new opportunities
leading to a succession of events until it is possible to achieve its true potential. The
idea of quantum computing lead to the investment in quantum hardware, but soon
it was realized that to achieve quantum supremacy in between steps would need to
be made. Hybrid quantum-classical computing has the possibility to fill but also
further develop for this in between void.

The main goal for this thesis was to develop an hybrid algorithm and to attribute a
specific problem for it to solve. Secondarily was to approach the HPC and quantum
computing worlds to more easily introduce hybridization in algorithms. We believe
these goals where accomplished even though in ways we did not expect.

In Chapter 2 we not only laid down all the prerequisites for developing such algorithm
but also showed the potential and existing work that has been made on the field,
which contributed with ideas and motivation.

More importantly, in Chapter 3 the framework for our hybrid algorithm was pre-
sented, the quantum walk algorithm. Its hybridization was focused on reducing
the depth and complexity of algorithm’s quantum circuit by passing the quantum
Fourier transform (QFT) to a classical computer (exactly by 2n, with n the number
of qubits). This can be an interesting and promising architecture for quantum walk
based algorithms that require a relatively low step count, since the depth decrease
would have a bigger impact. It also allows for a parallelization of our qubits since
these are independent from each other, important element given the constrains in
the number of qubits in current state of the art quantum computers. In a more
broader perspective, it allows for any quantum algorithm that uses simply the QFT
for a change of computational basis, to perform it in a classical computer.

Equally significant, in Appendix B we demonstrated that the execution of the free-
Dirac particle in a quantum walk algorithm matches the free wave packet propaga-
tion for the same particle, something that had not been previously done. It followed
the pure theoretical work done by Strauch [61] and gives confidence to develop more
complex research in the same domain.

Chapter 4, focused on the more experimental component. Even thought we im-

67



Chapter 5

plemented successfully the algorithm’s connection between classical and quantum
computers, the latter still compromised a lot, resulting in noisy experiments. There
is still a lot of compromise, at least in the public available hardware to get decent
results, even in light computational tasks. In the other hand, we feel that there are
still some techniques that seek to improve the performance of quantum hardware,
such as multiple sequenced experiments, algorithm changes on the transpile function
to further optimize the gates used and also qubit error correcting algorithms.

We then sought to further combine HPC and quantum computing by conducting a
simulation of our algorithm on an HPC using a quantum computer simulator. As
shown in section 4.2, although the simulation process was sub-optimal, it made soft-
ware validation and verification possible. Moreover, despite the difficulty in extract-
ing the maximum efficiency from the available hardware, the simulation showcased
the potential of such simulators, given the high depth and resolution of the algo-
rithm execution. Additionally, it’s worth noting that many of the frameworks used
(qiskit, qiskit aer) are still ongoing projects, primarily for educational purposes. On
a positive note, our commitment to extracting every possible aspect of efficiency
from qiskit aer led us to identify a software bug, which allowed us to contribute to
the qiskit community.

For future work, we would want to demonstrate the match between the analytical
result of the free-Dirac particle trapped in a square potential well and quantum
algorithm, so we can validate the results from section 4.2.5. Besides this is to simu-
late our developed algorithm on more reliable quantum hardware and maximize the
techniques to mitigate and minimize the environmental noise, element responsible
for deprecating the quality of our qubits. For example using the state of the art
computers privately available on IBMQ, such as the ibm_ seattle that uses the
Osprey QPU, being one of the most resource capable at the write of this work. This
would allow us to truly understand the state of the art in hybrid algorithm perfor-
mance (for our own algorithm) and perceive the needed steps for it to be competitive
with the full-stack HPC. Besides this, exploring different quantum simulators such
as the QuantuLOOP[73], HybridQ [59] or NWQ-Sim[58] so we can obtain results
with even higher spacial resolution and step count. Finally we will also want this
work to result in a scientific paper.

In sum, we certainly accomplished our main goals: we developed a hybrid algorithm
that can reduce the workload of quantum computers but also spark ideas to adapt
existing algorithm or create new ones; this research helped to contribute to the bridge
between HPC and quantum computing, that even tough we did not specifically
create an hybrid algorithm for HPC we helped to lay down the elements for it to
happen. Also, in the beginning of March, we had the opportunity to share some
details from this work on a workshop promoted by the University of Coimbra and
IBM, focused on Quantum Computing, showing the interest of many to work on
this field. Globally we were satisfied with the end product of this research work,
assuming gains in both educational and experience levels.

68



References

[1] Y. Aharonov, L. Davidovich, and N. Zagury. Quantum random walks. Phys.
Rev. A, 48:1687–1690, Aug 1993. doi: 10.1103/PhysRevA.48.1687. URL https:
//link.aps.org/doi/10.1103/PhysRevA.48.1687.

[2] Renato Portugal. Quantum walks and search algorithms. Quantum Science and
Technology. Springer, New York, NY, 2013 edition, February 2013.

[3] A. Ramezanpour. Quantum walk in a reinforced free-energy landscape: Quan-
tum annealing with reinforcement. Physical Review A, 106(1), jul 2022. doi:
10.1103/physreva.106.012418. URL https://doi.org/10.1103%2Fphysreva.
106.012418.

[4] James G Morley, Nicholas Chancellor, Sougato Bose, and Viv Kendon. Quan-
tum search with hybrid adiabatic-quantum walk algorithms and realistic noise.
September 2017.

[5] Edward Farhi and Sam Gutmann. Quantum computation and decision trees.
Phys. Rev. A, 58:915–928, Aug 1998. doi: 10.1103/PhysRevA.58.915. URL
https://link.aps.org/doi/10.1103/PhysRevA.58.915.

[6] M Szegedy. Quantum speed-up of markov chain based algorithms. In 45th
Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2004.

[7] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quan-
tum walks on graphs, 2002.

[8] P Lara, A Leão, and R Portugal. Simulation of quantum walks using HPC. J.
Comput. Interdiscip. Sci., 6(1), 2016.

[9] Marek Sawerwain and Roman Gielerak. GPGPU based simulations for one
and two dimensional quantum walks. In Computer Networks, pages 29–38.
Springer Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-13861-4_3. URL
https://doi.org/10.1007%2F978-3-642-13861-4_3.

[10] A quantum accelerator to solve your computational needs. https://meetiqm.
com/products/for-hpc-centers/, . Accessed: 2022-01-23.

[11] Atos and iqm partner up in quantum simulation.
https://www.meetiqm.com/articles/press-releases/
atos-and-iqm-partner-up-in-quantum-simulation/, . Accessed: 2022-01-
21.

69

https://link.aps.org/doi/10.1103/PhysRevA.48.1687
https://link.aps.org/doi/10.1103/PhysRevA.48.1687
https://doi.org/10.1103%2Fphysreva.106.012418
https://doi.org/10.1103%2Fphysreva.106.012418
https://link.aps.org/doi/10.1103/PhysRevA.58.915
https://doi.org/10.1007%2F978-3-642-13861-4_3
https://meetiqm.com/products/for-hpc-centers/
https://meetiqm.com/products/for-hpc-centers/
https://www.meetiqm.com/articles/press-releases/atos-and-iqm-partner-up-in-quantum-simulation/
https://www.meetiqm.com/articles/press-releases/atos-and-iqm-partner-up-in-quantum-simulation/


Chapter 5

[12] The european high performance computing joint undertaking (eurohpc ju), .
URL https://eurohpc-ju.europa.eu/index_en. Accessed: 2022-02-01.

[13] Nvidia announces hybrid quantum-classical comput-
ing platform. https://nvidianews.nvidia.com/news/
nvidia-announces-hybrid-quantum-classical-computing-platform,
. Accessed: 2022-01-23.

[14] Stephen M Barnett. Quantum Information. Oxford Master Series in Physics.
Oxford University Press, London, England, May 2009.

[15] Richard P Feynman. Quantum mechanical computers. Found. Phys., 16(6):
507–531, June 1986.

[16] Multiple-particle interference and quantum error correction. Proceedings of the
Royal Society of London. Series A: Mathematical, Physical and Engineering
Sciences, 452(1954):2551–2577, nov 1996. doi: 10.1098/rspa.1996.0136. URL
https://doi.org/10.1098%2Frspa.1996.0136.

[17] Peter W. Shor. Scheme for reducing decoherence in quantum computer memory.
Phys. Rev. A, 52:R2493–R2496, Oct 1995. doi: 10.1103/PhysRevA.52.R2493.
URL https://link.aps.org/doi/10.1103/PhysRevA.52.R2493.

[18] Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measurement
calculus. April 2007.

[19] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum
computation by adiabatic evolution. January 2000.

[20] David P. DiVincenzo. The physical implementation of quantum com-
putation. Fortschritte der Physik, 48(9-11):771–783, sep 2000. doi:
10.1002/1521-3978(200009)48:9/11<771::aid-prop771>3.0.co;2-e. URL
https://doi.org/10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%
3A%3Aaid-prop771%3E3.0.co%3B2-e.

[21] A Yu Kitaev. Quantum computations: algorithms and error correction. Russian
Mathematical Surveys, 52(6):1191–1249, 1997. ISSN 0036-0279. doi: 10.1070/
rm1997v052n06abeh002155.

[22] Ibm unveils 400 qubit-plus quantum processor and next-
generation ibm quantum system two. https://newsroom.ibm.com/
2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two.
Accessed: 2022-01-21.

[23] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng,
Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang,
Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang,
Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan.
Quantum computational advantage using photons. Science, 370(6523):1460–
1463, December 2020.

70

https://eurohpc-ju.europa.eu/index_en
https://nvidianews.nvidia.com/news/nvidia-announces-hybrid-quantum-classical-computing-platform
https://nvidianews.nvidia.com/news/nvidia-announces-hybrid-quantum-classical-computing-platform
https://doi.org/10.1098%2Frspa.1996.0136
https://link.aps.org/doi/10.1103/PhysRevA.52.R2493
https://doi.org/10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3Aaid-prop771%3E3.0.co%3B2-e
https://doi.org/10.1002%2F1521-3978%28200009%2948%3A9%2F11%3C771%3A%3Aaid-prop771%3E3.0.co%3B2-e
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two
https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two


References

[24] P W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science. IEEE Comput. Soc. Press, 2002.

[25] Lov K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting - STOC ’96, New York, New York, USA, 1996. ACM Press.

[26] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi
Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’Brien. A variational
eigenvalue solver on a photonic quantum processor. Nature Communications,
5(1):4213, July 2014.

[27] David J Griffiths and Darrell F Schroeter. Introduction to Quantum Mechanics.
Cambridge University Press, Cambridge, England, 3 edition, August 2018.

[28] J. A. Nelder and R. Mead. A Simplex Method for Function Minimization.
The Computer Journal, 7(4):308–313, 01 1965. ISSN 0010-4620. doi: 10.1093/
comjnl/7.4.308. URL https://doi.org/10.1093/comjnl/7.4.308.

[29] Dmitry A Fedorov, Bo Peng, Niranjan Govind, and Yuri Alexeev. VQE method:
a short survey and recent developments. Materials Theory, 6(1):2, January
2022.

[30] Enrico Fontana, M Cerezo, Andrew Arrasmith, Ivan Rungger, and Patrick J
Coles. Non-trivial symmetries in quantum landscapes and their resilience to
quantum noise. November 2020.

[31] Ilya G Ryabinkin, Tzu-Ching Yen, Scott N Genin, and Artur F Izmaylov. Qubit
coupled cluster method: A systematic approach to quantum chemistry on a
quantum computer. J. Chem. Theory Comput., 14(12):6317–6326, December
2018.

[32] Nobuyuki Yoshioka, Hideaki Hakoshima, Yuichiro Matsuzaki, Yuuki Tokunaga,
Yasunari Suzuki, and Suguru Endo. Generalized quantum subspace expansion.
July 2021.

[33] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. November 2014.

[34] Bence Bakó, Adam Glos, Özlem Salehi, and Zoltán Zimborás. Near-optimal
circuit design for variational quantum optimization. September 2022.

[35] William J Huggins, Bryan A O’Gorman, Nicholas C Rubin, David R Reichman,
Ryan Babbush, and Joonho Lee. Unbiasing fermionic quantum monte carlo with
a quantum computer. Nature, 603(7901):416–420, March 2022.

[36] Paulo H. Acioli. Review of quantum monte carlo methods and their
applications. Journal of Molecular Structure: THEOCHEM, 394(2):75–
85, 1997. ISSN 0166-1280. doi: https://doi.org/10.1016/S0166-1280(96)
04821-X. URL https://www.sciencedirect.com/science/article/pii/
S016612809604821X. Proceedings of the Eighth Brazilian Symposium of The-
oretical Chemistry.

71

https://doi.org/10.1093/comjnl/7.4.308
https://www.sciencedirect.com/science/article/pii/S016612809604821X
https://www.sciencedirect.com/science/article/pii/S016612809604821X


Chapter 5

[37] Matthias Troyer and Uwe-Jens Wiese. Computational complexity and fun-
damental limitations to fermionic quantum monte carlo simulations. Phys.
Rev. Lett., 94:170201, May 2005. doi: 10.1103/PhysRevLett.94.170201. URL
https://link.aps.org/doi/10.1103/PhysRevLett.94.170201.

[38] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Ser-
gio Boixo, Hartmut Neven, and Jarrod R McClean. Power of data in quantum
machine learning. Nature Communications, 12(1):2631, May 2021.

[39] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. The effect of data en-
coding on the expressive power of variational quantum machine learning models.
August 2020.

[40] Michael A Nielsen and Isaac L Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, Cambridge, England, December
2010.

[41] Edward Farhi and Hartmut Neven. Classification with quantum neural net-
works on near term processors. February 2018.

[42] Ryan Sweke, Frederik Wilde, Johannes Meyer, Maria Schuld, Paul K
Faehrmann, Barthélémy Meynard-Piganeau, and Jens Eisert. Stochastic gradi-
ent descent for hybrid quantum-classical optimization. October 2019.

[43] Xiaoming Sun and Yufan Zheng. Hybrid decision trees: Longer quantum time
is strictly more powerful. November 2019.

[44] Nai-Hui Chia, Kai-Min Chung, and Ching-Yi Lai. On the need for large quan-
tum depth. September 2019.

[45] Robert Robey and Yuliana Zamora. Parallel and high performance computing.
Manning Publications, New York, NY, June 2021.

[46] Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference on - AFIPS ’67 (Spring), New York, New York, USA,
1967. ACM Press.

[47] M. Crovella, R. Bianchini, T. LeBlanc, E. Markatos, and R. Wisniewski.
Using communication-to-computation ratio in parallel program design and
performance prediction. In [1992] Proceedings of the Fourth IEEE Sym-
posium on Parallel and Distributed Processing, pages 238–245, 1992. doi:
10.1109/SPDP.1992.242738.

[48] Introduction to infinibandTM , . URL https://network.nvidia.com/pdf/
whitepapers/IB_Intro_WP_190.pdf. Accessed: 2022-02-02.

[49] Introducing ndr 400gb/s infinibandTM , . URL https://www.nvidia.com/
en-us/on-demand/session/supercomputing2020-sc2018/. Accessed: 2022-
02-02.

72

https://link.aps.org/doi/10.1103/PhysRevLett.94.170201
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://network.nvidia.com/pdf/whitepapers/IB_Intro_WP_190.pdf
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2018/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2018/


References

[50] David Luebke, Mark Harris, Naga Govindaraju, Aaron Lefohn, Mike Houston,
John Owens, Mark Segal, Matthew Papakipos, and Ian Buck. S07—GPGPU.
In Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC ’06,
New York, New York, USA, 2006. ACM Press.

[51] Nvidia tensor cores: Versatility for hpc and ai, . URL https://www.nvidia.
com/en-us/data-center/tensor-cores/. Accessed: 2022-02-01.

[52] Nvidia h100 tensor core gpu, . URL https://www.nvidia.com/en-us/
data-center/h100/. Accessed: 2022-02-01.

[53] Top 500, the list. URL https://top500.org/lists/top500/2022/11/. Ac-
cessed: 2022-02-01.

[54] Lumi - pre-exascale eurohpc supercomputer located in kajaani, finland. URL
https://www.lumi-supercomputer.eu. Accessed: 2022-02-01.

[55] One step closer to exascale: Eurohpc ju and forschungszen-
trum jülich sign the hosting agreement for exascale super-
computer jupiter. URL https://eurohpc-ju.europa.eu/
one-step-closer-exascale-eurohpc-ju-and-forschungszentrum-julich-sign-hosting-agreement-exascale-2022-12-14_
en. Accessed: 2022-02-01.

[56] The digital europe programme, . URL https://digital-strategy.ec.
europa.eu/en/activities/digital-programme. Accessed: 2022-02-01.

[57] IBM. Aer simulator; qiskit aer 0.12.1 documentation — qiskit.org.
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.AerSimulator.
html#qiskit_aer.AerSimulator. [Accessed 06-Jul-2023].

[58] Northwest quantum simulator (nwq-sim) framework. https://www.pnnl.gov/
publications/scalable-simulation-quantum-circuits. [Accessed 19-08-
2023].

[59] Github - nasa/hybridq. https://github.com/nasa/hybridq. [Accessed 19-
08-2023].

[60] C. M. Chandrashekar, R. Srikanth, and Raymond Laflamme. Optimizing the
discrete time quantum walk using a su(2) coin. Phys. Rev. A, 77:032326, Mar
2008. doi: 10.1103/PhysRevA.77.032326. URL https://link.aps.org/doi/
10.1103/PhysRevA.77.032326.

[61] Frederick W. Strauch. Relativistic quantum walks. Phys. Rev. A, 73:054302,
May 2006. doi: 10.1103/PhysRevA.73.054302. URL https://link.aps.org/
doi/10.1103/PhysRevA.73.054302.

[62] A. J. Bracken, D. Ellinas, and I. Smyrnakis. Free-dirac-particle evolution as
a quantum random walk. Phys. Rev. A, 75:022322, Feb 2007. doi: 10.1103/
PhysRevA.75.022322. URL https://link.aps.org/doi/10.1103/PhysRevA.
75.022322.

73

https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.nvidia.com/en-us/data-center/h100/
https://www.nvidia.com/en-us/data-center/h100/
https://top500.org/lists/top500/2022/11/
https://www.lumi-supercomputer.eu
https://eurohpc-ju.europa.eu/one-step-closer-exascale-eurohpc-ju-and-forschungszentrum-julich-sign-hosting-agreement-exascale-2022-12-14_en
https://eurohpc-ju.europa.eu/one-step-closer-exascale-eurohpc-ju-and-forschungszentrum-julich-sign-hosting-agreement-exascale-2022-12-14_en
https://eurohpc-ju.europa.eu/one-step-closer-exascale-eurohpc-ju-and-forschungszentrum-julich-sign-hosting-agreement-exascale-2022-12-14_en
https://digital-strategy.ec.europa.eu/en/activities/digital-programme
https://digital-strategy.ec.europa.eu/en/activities/digital-programme
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.AerSimulator.html#qiskit_aer.AerSimulator
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.AerSimulator.html#qiskit_aer.AerSimulator
https://www.pnnl.gov/publications/scalable-simulation-quantum-circuits
https://www.pnnl.gov/publications/scalable-simulation-quantum-circuits
https://github.com/nasa/hybridq
https://link.aps.org/doi/10.1103/PhysRevA.77.032326
https://link.aps.org/doi/10.1103/PhysRevA.77.032326
https://link.aps.org/doi/10.1103/PhysRevA.73.054302
https://link.aps.org/doi/10.1103/PhysRevA.73.054302
https://link.aps.org/doi/10.1103/PhysRevA.75.022322
https://link.aps.org/doi/10.1103/PhysRevA.75.022322


[63] C. M. Chandrashekar, Subhashish Banerjee, and R. Srikanth. Relationship
between quantum walks and relativistic quantum mechanics. Phys. Rev. A, 81:
062340, Jun 2010. doi: 10.1103/PhysRevA.81.062340. URL https://link.
aps.org/doi/10.1103/PhysRevA.81.062340.

[64] Xingyou Song. Quantum cellular automata models for general dirac equation,
2019.

[65] Julien Zylberman, Giuseppe Di Molfetta, Marc Brachet, Nuno F. Loureiro,
and Fabrice Debbasch. Hybrid quantum-classical algorithm for hydrodynamics,
2022.

[66] Ugo Nzongani, Julien Zylberman, Carlo-Elia Doncecchi, Armando Pérez, Fab-
rice Debbasch, and Pablo Arnault. Quantum circuits for discrete-time quantum
walks with position-dependent coin operator, 2023.

[67] Asif Shakeel. Efficient and scalable quantum walk algorithms via the quantum
fourier transform. December 2019.

[68] Gene H Golub and Charles F Van Loan. Matrix Computations. Johns Hop-
kins Studies in the Mathematical Sciences. Johns Hopkins University Press,
Baltimore, MD, 4 edition, February 2013.

[69] Julien Zylberman, Giuseppe Di Molfetta, Marc Brachet, Nuno F Loureiro,
and Fabrice Debbasch. Hybrid quantum-classical algorithm for hydrodynamics.
February 2022.

[70] Universidade de Coimbra. Navigator cluster. URL https://www.uc.pt/lca/
computing-resources/navigator-cluster/.

[71] IBM. Transpiler (qiskit.transpiler). qiskit 0.43.2. https://qiskit.org/
documentation/apidoc/transpiler.html, 2023. [Accessed 17-Jul-2023].

[72] Pull request # 1880: Increased accuracy of simulator calculation, 2022. URL
https://github.com/Qiskit/qiskit-aer/pull/1880. Accessed: 2022-08-01.

[73] Quantum simulation architectures in hpc sys-
tems. https://quantumspain-project.es/en/
quantum-simulation-architectures-in-hpc-systems/. [Accessed 19-
08-2023].

74

https://link.aps.org/doi/10.1103/PhysRevA.81.062340
https://link.aps.org/doi/10.1103/PhysRevA.81.062340
https://www.uc.pt/lca/computing-resources/navigator-cluster/
https://www.uc.pt/lca/computing-resources/navigator-cluster/
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://github.com/Qiskit/qiskit-aer/pull/1880
https://quantumspain-project.es/en/quantum-simulation-architectures-in-hpc-systems/
https://quantumspain-project.es/en/quantum-simulation-architectures-in-hpc-systems/


Appendices

75





Appendix A

The Postulates of Quantum Mechan-
ics

There are six postulates of quantum mechanics [27] being the foundation of the
theory and provide a mathematical framework for describing the behavior of matter
and energy at the atomic and subatomic level.

Postulate 1

The state of a quantum mechanical system is completely specified by the function
Ψ(r, t) that depends on the coordinates of the particle, r and the time, t. This
function is called the wavefunction or state function and has the property that
Ψ∗(r, t)Ψ(r, t)dτ is the probability that the particle lies in the volume element dτ
located at r and time t.

This follows as the probabilistic or statistical interpretation of the wavefunction.
As a results the wavefunction must satisfy the condition that finding the particle
somewhere is space is 1 and this gives us the normalisation condition,∫ +∞

−∞
Ψ∗(r, t)Ψ(r, t)dτ (A.1)

The other conditions that arise from this interpretation are that is must be single-
valued, continuous and finite.

Postulate 2

To every observable in classical mechanics there corresponds a linear, Hermitian
operator in quantum mechanics.

This postulate comes from the observation that the expectation value of an operator
that corresponds to an observable must be real and therefore the operator must be
Hermitian. Some examples of Hermitian operators are:

77



Appendix A

Observable Classical
Symbol

Quantum
Operator

Operation

position r r̂ multiply by r

momentum p p̂ −iℏ(̂i ∂
∂x

+ ĵ ∂
∂y

+ k̂ ∂
∂z

kinetic energy T T̂ − ℏ2
2m

(̂i ∂
∂x2 + ĵ ∂

∂y2
+ k̂ ∂

∂z2

potential energy V (r) V̂ (r) multiply by V (r)

total energy E H − ℏ2
2m

(̂i ∂
∂x2 + ĵ ∂

∂y2
+ k̂ ∂

∂z2
+ V (r)

Table A.1: List of Hermitian operators.

Postulate 3

In any measurement of the observable associated with operator Â, the only values
that will ever be observed are the eigenvalues, a, that satisfy the eigenvalue equation:

ÂΨ = aΨ (A.2)

This shows that the values of dynamical variables are quantized in quantum me-
chanics (although it is possible to have a continuum of eigenvalues in the case of
unbound states). If the system is in an eigenstate of Â with eigenvalue a then any
measurement of the quantity A will always yield the value a.

Although measurement will always yield a value, the initial states does not have to
be an eigenstate of Â. An arbitrary state can be expanded in the complete set of
eigenvectors of Â, ÂΨi = aiΨi, as

Ψ =
n∑
i

ciΨi (A.3)

where n may go to infinity. In this case, measurement of A will yield one of the
eigenvalues, ai, but we do not know which one. The probability of observing the
eigenvalue ai is given by the absolute value of the square of the coefficient, |ci|2.
This postulate also implies that, after the measurement of Ψ yields some value, ai,
the wavefunction collapses into the eigenstate, Ψi, that corresponds to ai. If ai is
degenerate Ψ collapses onto the degenerate subspace. This the act of measurement
affects the state of the system.

Postulate 4

If a system is in a state described by the normalised wavefunction, Ψ, then the
average value of the observable corresponding to Â is given by:

< Â >=

∫ +∞

−∞
Ψ∗ÂΨ dτ (A.4)

78



The Postulates of Quantum Mechanics

Postulate 5

The wavefunction or state function of a system evolves in time according to the
time-dependent Schrödinger equation:

HΨ(r, t) = iℏ
∂Ψ

∂t
(A.5)

Postulate 6

The total wavefunction must be anti symmetric with respect to the interchange of all
coordinates of one fermion with those of another. Electronic spin must be included
in this set of coordinates.

The Pauli exclusion principle is a direct result of this antisymmetry postulate.

79





Appendix B

Analytical overview on the one dimen-
sional Dirac Quantum Walk

B.1 Evolution Operator

Let’s consider the Hamiltonian for a free Dirac particle in the dimension configura-
tion (1+1):

H = σ1pc+ σ3mc
2 (B.1)

where p = −iℏ(d/dx) and σ1 and σ3 are Pauli matrices. In the representation where
σ1 is diagonal (Weyl representation) we have:

σw
1 = σ3 =

[
1 0
0 −1

]
σw
3 = σ1 =

[
0 1
1 0

]
(B.2)

Formerly, the Hamiltonian gains the shape:

H = σ3pc+ σ1mc
2 (B.3)

The time propagator for a state ψ is given by:

U(t) = e(−i/ℏ)Ht U(∆t)ψ(t) = ψ(t+∆t) (B.4)

As σ1 and σ3 do not commute, in general, the exponential of the Hamiltonian cannot
be written as products of exponentials, except when the exponents are small, that
is, for small ∆t, i.e.:

e(−i/ℏ)H∆t = e−i/ℏ(σ3pc+σ1mc2)∆t ∼ I −
(
i

ℏ
σ3pc+ iσ1

mc2

ℏ

)
∆t (B.5)

∼ e−i/ℏσ3pc∆te−iσ1mc2/ℏ∆t = e−σ3c∆t(d/dx)e−iσ1mc2/ℏ∆t

(B.6)

81



Appendix B

retaining terms up to 1st order in ∆t. More explicitly, this happens when:

⟨p⟩c
ℏ

∆t ∼ mc2

ℏ
∆t≪ 1 (B.7)

with ⟨p⟩ the *expectation value* of the linear momentum. One operator of type
e∆x(d/dx) makes a translation in space, i.e., applied to the function f(x) we have:

e∆x(d/dx)f(x) =
∞∑
n=0

(∆x)n

n!

(
d

dx

)n

f(x) =
∞∑
n=0

(∆x)n

n!
f(x)(n) = f(x+∆x) (B.8)

as one can verify from the Taylor series expansion of f(x + ∆x) around x. The
operator eσ3∆x(d/dx) acts in the space of 2-dimensional spinors in the 1+1 space (1
spatial dimension + one temporal dimension). We can decompose a spinor of this
type in the form

Ψ(x, t) =

[
ψ+(x, t)
ψ−(x, t)

]
= ψ+(x, t)

[
1
0

]
+ ψ−(x, t)

[
0
1

]
(B.9)

Since the spinors
[
1 0

]T and
[
0 1

]T are spinors eigenstates of σ3 with eigenvalues
+1 and −1 respectively, it is obtained (with ∆x = c ∆t)

e−σ3∆x(d/dx)Ψ(x, t) = e−σ3∆x(d/dx)ψ+(x, t)

[
1
0

]
+ e−σ3∆x(d/dx)ψ+(x, t)

[
0
1

]
= (B.10)

= e−∆x(d/dx)ψ+(x, t)

[
1
0

]
+ e−∆x(d/dx)ψ−(x, t)

[
0
1

]
=

[
ψ+(x−∆x, t)
ψ−(x+∆x, t)

]
(B.11)

The action of e−iσ1mc2/ℏ∆t on the spinor Ψ(x, t) is

e−iσ1mc2/ℏ∆tΨ(x, t) ∼
(
I − iσ1

mc2

ℏ
∆t

) [
ψ+(x, t)
ψ−(x, t)

]
=

[
ψ+(x, t)
ψ−(x, t)

]
−imc

2

ℏ
∆t

[
ψ−(x, t)
ψ+(x, t)

]
(B.12)

The action of the evolution operator comes as:

U(∆t)Ψ(x, t) = e−σ3c∆t(d/dx)e−σ1(mc2/ℏ)∆tΨ(x, t) = (B.13)

=

([
ψ+(x, t)
ψ−(x, t)

]
− i

mc2

ℏ
∆t

[
ψ−(x, t)
ψ+(x, t)

])
(B.14)

=

[
ψ+(x−∆x, t)
ψ−(x+∆x, t)

]
− i

mc2

ℏ
∆t

[
ψ+(x−∆x, t)
ψ−(x+∆x, t)

]
→ Ψ(x, t+∆t)

(B.15)

The evolution for an instance t = n∆t is given by

U(t)Ψ(x, t) = U(n∆t)Ψ(x, 0) = Un(∆t)Ψ(x, t) ∼
τ≪1

(
eσ3c∆t(d/dx)

)n (
e−iσ1(mc2/ℏ)∆t

)
Ψ(x, 0)

(B.16)

where τ = (mc2/ℏ). The first operator is the shift operator and the second the
coin. These only commute until the first order in ∆t and therefore the algorithm
application depends from this approximation.

82



Analytical overview on the one dimensional Dirac Quantum Walk

B.2 Spacial Grid

In a box of size L, we can define a grid of point xi = i∆x−L/2, i = 0, 1, ..., N , with
N even, ∆x = L/N . If we want to identify the instance where discrete increases on
the index n = 0, 1, ...

If we also identify the instant using discrete increases of the instants by an index
n = 0, 1, ... such that tn = n∆t, the wave function is described as Ψ(xi, tn) or simply
Ψ(i, n). Thus, the action of the evolution operator is given by:

U(∆t)Ψ(i, n) = Ψ(i, n+1) ∼ U(∆t)

[
ψ+(i, n)
ψ−(i, n)

]
=

[
ψ+(i− 1, n)
ψ−(i+ 1, n)

]
−imc

2

ℏ
∆t

[
ψ+(i, n)
ψ−(i, n)

]
(B.17)

B.3 Wave packet

For an eigenstate of H with well defined momentum p and positive energy E =√
m2c4 + p2c2 is given by:

Ψp(x, t) =
N

E
e−(i/ℏ)pxe(i/ℏ)Et

[
E + pc+mc2

E − pc+mc2

]
(B.18)

where N is a normalization constant

A wave packet with these characteristics is given by

Ψ(x, t) =

∫
dpf(p)Ψp(x, t) (B.19)

If we choose:
f(p) = e−aE/(ℏc) (B.20)

a > 0, the integral

Ψ(x, t) =

∫ ∞

−∞
dp
N

E
e−aE/(ℏc)e(i/ℏ)pxe(i/ℏ)Et

[
E + pc+mc2

E − pc+mc2

]
(B.21)

can be calculated analytically. Depending on whether the remaining terms are even
or odd, the exponential e(i/ℏ)px = cos(px/ℏ) + i sin(px/ℏ) contributes with the cos
or sin term, respectively.

Thus, one has (formulas 3.914 from Gradstein and Ryzhik)

Ψ(x, t) = Nmc

[
K0(smc/ℏ) + s−1[a+ i(ct+ x)]K1(smc/ℏ)
K0(smc/ℏ) + s−1[a+ i(ct− x)]K1(smc/ℏ)

]
s =

√
(a+ ict)2 + x2

(B.22)

withK0 andK1 modified Bessel function of degree 0 and 1. This expression coincides
with the one from Phys. Rev. A 73 054302. Since this is an exact result:

Ψ(x, t+∆t) = U(∆t)Ψ(x, t) (B.23)

83



Appendix B

for any t. The probability at the end of ∆n is given by |Ψ(x, n∆t)|2

Finally, the goal is to understand if the results from the free-Dirac particle Quantum
Walk algorithm execution can reproduce a good estimate of the analytical result.
This allows us to understand the fidelity of such algorithm since the result of this
specific problem has a well known solution.

The figure B.1 depicts an overlap between the analytical solution from the Ψ(x, t)
wave packet (with parameters a = 0.311, t = 50, c = m = 1) with the free-Dirac
particle Quantum Walk algorithm execution (using 7 qubits and 100 unitary time
steps and as starting state a single particle in the middle of the lattice). The only
parameters we tuned was a for the wave packet and the algorithm time steps.

60 40 20 0 20 40 60
Position

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y 
De

ns
ity

Analytical Solution
QW Algorithm Solution

Figure B.1: Overlap between analytical solution from the Ψ(x, t) wave packet and
free-Dirac particle Quantum Walk algorithm execution.

As we could see, this roughly demonstrates a good match between the two results
from different calculations. A perfect match was not expected due to the sampling
nature of quantum algorithms.

84



Appendix C

ibm_perth calibration data

In the next page we have available a table with all the calibration data for the
ibm_perth quantum backend. This quantum information processor has 7 qubits
and uses the processor architecture Falcon r5.11H. At the time of this work it was
in version 1.2.8.

The errors value should be interpreted as a specified amount of erroneous values out
of the total measurement, i.e., for a gate error with 4.40·10−2, in 1000 measurements
44 of those values are going to be faulty. Is also needed to take into consideration
the gate times with the respective T1 and T2 times.

85



Appendix C

Ta
bl

e
C

.1
:

C
al

ib
ra

ti
on

da
ta

fo
r

th
e
ib

m_
pe

rt
h}

qu
an

tu
m

ba
ck

en
d.

Q
ub

it
T

1
(u

s)
T

2
(u

s)
Fr

eq
ue

nc
y

(G
H

z)
A

nh
ar

m
on

ic
ity

(G
H

z)
R

ea
do

ut
as

si
gn

m
en

t
er

ro
r

0
23

5.
00

38
29

20
25

96
9

96
.9

68
57

44
53

92
64

2
5.

15
75

66
03

94
36

63
1

-0
.3

41
52

45
17

47
84

64
8

0.
02

75
99

99
99

99
99

99
58

1
16

4.
22

72
57

95
71

73
6

57
.2

22
12

09
11

34
39

5.
03

35
42

12
00

92
72

9
-0

.3
44

36
87

02
21

63
67

3
0.

02
43

99
99

99
99

99
99

77
2

14
6.

75
14

21
60

47
49

85
10

4.
76

19
88

39
62

03
11

4.
86

26
42

92
00

06
38

1
-0

.3
47

27
24

72
33

47
95

6
0.

02
46

99
99

99
99

99
99

44
3

16
8.

75
99

31
43

01
57

42
19

6.
95

94
26

27
75

91
1

5.
12

51
01

58
10

16
99

2
-0

.3
40

44
18

99
21

42
74

6
0.

01
59

00
00

00
00

00
00

25
4

11
5.

74
32

61
90

73
20

62
11

3.
48

69
23

83
72

74
57

5.
15

92
09

39
48

67
25

7
-0

.3
33

36
65

37
11

83
12

16
0.

02
58

00
00

00
00

00
00

45
5

15
0.

63
35

62
58

87
30

85
70

.1
51

26
53

42
53

00
5

4.
97

85
91

25
10

15
99

5
-0

.3
46

02
20

31
65

33
78

4
0.

03
06

99
99

99
99

99
99

5
6

16
0.

85
39

60
29

79
11

93
14

5.
46

18
85

68
97

89
97

5.
15

66
38

02
78

76
55

5
-0

.3
40

45
43

90
72

67
03

25
0.

01
10

99
99

99
99

99
99

99
Q

ub
it

P
ro

b
m

ea
s0

pr
ep

1
P

ro
b

m
ea

s1
pr

ep
0

R
ea

do
ut

le
ng

th
(n

s)
ID

er
ro

r
√
x

(s
x)

er
ro

r
0

0.
03

15
99

99
99

99
99

99
6

0.
02

36
72

1.
77

77
77

77
77

77
7

0.
00

01
70

03
21

07
89

25
37

3
0.

00
01

70
03

21
07

89
25

37
3

1
0.

02
23

99
99

99
99

99
99

75
0.

02
64

72
1.

77
77

77
77

77
77

7
0.

00
03

43
39

79
89

64
32

08
86

0.
00

03
43

39
79

89
64

32
08

86
2

0.
02

04
0.

02
90

00
00

00
00

00
00

26
72

1.
77

77
77

77
77

77
7

0.
00

02
22

49
78

38
38

75
76

02
0.

00
02

22
49

78
38

38
75

76
02

3
0.

01
42

0.
01

75
99

99
99

99
99

99
5

72
1.

77
77

77
77

77
77

7
0.

00
02

32
20

21
15

60
89

36
06

0.
00

02
32

20
21

15
60

89
36

06
4

0.
02

78
0.

02
38

00
00

00
00

00
00

43
72

1.
77

77
77

77
77

77
7

0.
00

04
76

93
26

35
23

02
65

7
0.

00
04

76
93

26
35

23
02

65
7

5
0.

03
08

00
00

00
00

00
00

5
0.

03
06

72
1.

77
77

77
77

77
77

7
0.

00
02

63
59

17
32

69
77

02
56

0.
00

02
63

59
17

32
69

77
02

56
6

0.
01

41
99

99
99

99
99

99
9

0.
00

8
72

1.
77

77
77

77
77

77
7

0.
00

03
47

45
34

93
06

57
49

7
0.

00
03

47
45

34
93

06
57

49
7

Q
ub

it
P
au

li-
X

er
ro

r
C

N
O

T
er

ro
r

G
at

e
ti

m
e

(n
s)

0
0.

00
01

70
03

21
07

89
25

37
0_

1:
0.

00
53

68
23

61
19

17
0_

1:
39

1.
11

1
1

0.
00

03
43

39
79

89
64

32
08

1_
3:

0.
00

44
55

14
00

02
69

;1
_

2:
0.

00
92

09
92

29
39

;1
_

0:
0.

00
53

68
23

61
19

1_
3:

36
9.

77
6;

1_
2:

64
0;

1_
0:

42
6.

66
6

2
0.

00
02

22
49

78
38

38
75

76
2_

1:
0.

00
92

09
92

29
39

40
2_

1:
60

4.
44

5
3

0.
00

02
32

20
21

15
60

89
36

3_
5:

0.
00

73
46

69
23

21
79

;3
_

1:
0.

00
44

55
14

00
02

7
3_

5:
28

4.
44

4;
3_

1:
33

4.
22

3
4

0.
00

04
76

93
26

35
23

02
65

4_
5:

0.
01

06
67

79
91

60
82

4_
5:

59
0.

22
2

5
0.

00
02

63
59

17
32

69
77

02
5_

6:
0.

01
27

71
98

08
90

02
;5

_
4:

0.
01

06
67

79
91

60
;5

_
3:

0.
00

73
46

69
23

22
5_

6:
64

0;
5_

4:
62

5.
77

8;
5_

3:
32

0
6

0.
00

03
47

45
34

93
06

57
49

6_
5:

0.
01

27
71

98
08

90
02

6_
5:

60
4.

44
5

86



Appendix D

Open sourced Quantum Walk Code

The code we developed is made available in the following GitHub web link: https:
//github.com/dup0nt/Dirac-Quantum-Walk

All code developed for this work, ran in the software versions:

• Python: 3.9.12

• Numpy: 1.23.1

• Qiskit: 0.44.0

– qiskit-aer: 0.12.2

– qiskit-ibmq-provider: 0.20.2

– qiskit-terra: 0.25.0

87

https://github.com/dup0nt/Dirac-Quantum-Walk
https://github.com/dup0nt/Dirac-Quantum-Walk



	List of Figures
	List of Tables
	Introduction
	Quantum computation history
	Classical Random Walks and Quantum Walks
	Framing, Motivation and Structure

	Theoretical Foundation
	Notions on Quantum Information and Quantum Computing
	Principles of quantum information
	Principles of quantum computation
	Quantum computers: physical realization
	Notable quantum algorithms

	Hybrid Quantum-Classical Algorithms
	Variational Quantum Eigensolver
	Quantum Approximate Optimization Algorithm
	Hybrid Quantum Monte Carlo
	Hybrid Machine Learning

	High Performance Computing
	High performance computing and quantum computing


	Quantum Walks
	Coined Quantum Walk
	Dirac quantum walk
	Potential Well

	Algorithm for quantum walk
	Simplified and hybrid quantum walks
	Quantum walk with position-dependent coins
	Dirac free-particle trapped in a square potential well
	Visualizing time evolution
	Qiskit implementation


	Algorithm Benchmarking
	Quantum walk algorithm advantages
	Algorithm execution on classical hardware
	Classical cluster simulation methodology
	Laboratory for Advanced Computing - Navigator+
	Simulator architecture
	Simulation parameters tuning and validation
	Results and analysis between analytical results


	Discussion and Conclusion
	References
	Appendix The Postulates of Quantum Mechanics
	Appendix Analytical overview on the one dimensional Dirac Quantum Walk
	Evolution Operator
	Spacial Grid
	Wave packet

	Appendix ibm_perth calibration data
	Appendix Open sourced Quantum Walk Code

