
 

 
 
 
 

 
 
 
 
 
 

Elmer Jorge Inácio Carlos 
 
 
 
 

GENERATIVE MODELS FOR SYNTHESIS OF 

ARTIFICIAL HUMAN GENOMES USING 

GWAS SUMMARY STATISTICS 
 
 
 
 

 
 

Dissertation in the context of the Master’s in Computational 
Biology, advised by Joel Perdiz Arrais and presented to the 

Faculty of Sciences and Technology / Department of Life Sciences. 
 
 

July 2023



Faculty of Sciences and Technology

Department of Life Sciences

Generative models for synthesis of

artificial human genomes using GWAS

summary statistics

Elmer Jorge Inácio Carlos

Dissertation in the context of the Master’s in Computational Biology, advised by

Professor Joel Perdiz Arrais and presented to the

Faculty of Sciences and Technology / Department of Life Sciences.

July 2023



ii



This work was developed in collaboration with:

Center for Informatics and Systems of the University of Coimbra

iii



iv
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Resumo

A geração de genótipos é uma tarefa importante na pesquisa genética, oferecendo

oportunidades para aumento de dados e preservação da privacidade em Estudos de

associação do genoma completo (GWAS). Neste trabalho, propusemos um frame-

work de Rede Generativa Adversaria de Wasserstein com Penalidade de Gradiente

(WGAN-GP) para sintetizar dados de genótipos realistas. Nossa abordagem con-

sistiu em duas etapas separadas: um processo de pré-treino auto-supervisionado e o

processo de treinamento do WGAN-GP. Ao longo do processo de pré-treino, o ger-

ador atua como um modelo semelhante a um decodificador, mapeando as estat́ısticas

genéticas de baixa dimensão para os genótipos originais. Esse processo serve como

uma forte inicialização para o subsequente processo de treinamento do WGAN-GP,

onde o objetivo é fazer o gerador aprender a sintetizar genótipos diversos e realistas.

Os resultados de nosso framework proposto, auxiliado pelas informações codificadas

nas estat́ısticas genéticas de resumo, demonstram resultados favoráveis, destacando

valores promissores de estat́ısticas genéticas e utilidade dos dados sintéticos. No en-

tanto, as diversas discrepâncias observadas nos gráficos de Análise de Componentes

Principais (PCA) e a divergência na validação apontam para várias áreas de melho-

ria futura. Planeamos melhorar ainda mais a eficácia e aplicabilidade da geração de

genótipos sintéticos do modelo, explorando a geração multimodal e o melhoramento

do desempenho do pré-treinamento. Com essa abordagem baseada em aprendizagem

profunda, expandimos os limites da geração de genótipos sintéticos e impulsionamos

o progresso da pesquisa genética.

Palavras-Chave

Aprendizagem profunda, Modelos generativos, Redes Generativas Adversarias, Es-

tudo de associação do genoma completo, Coorte caso-controlo
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Abstract

Genotype generation is an useful complement for genetic research, which offers op-

portunities for data augmentation and privacy preservation of Genome-Wide Asso-

ciation Studies (GWAS). With this study, we proposed a Wasserstein Generative

Adversarial Network with Gradient Penalty (WGAN-GP) framework for synthe-

sizing realistic genotype data. Our approach consisted of two separate steps: a

self-supervised pretraining process and the WGAN-GP training process. Through-

out the pretraining process the generator acts like a decoder-like model, mapping

the lower dimensional summary statistics to the original genotype data. This pro-

cess serves as a strong initialization for the subsequent WGAN-GP training process,

where the goal is to make the generator learn to synthetize diverse and realistic

genotypes. The results of our proposed framework aided with the information en-

coded in the summary statistics file demonstrate favourable outcomes, highlighting

promising genetic statistics values and utility of the synthetic data. Nevertheless,

the various discrepancies observed with the principal component analysis (PCA)

plots and divergence in validation hints towards multiple future areas of improve-

ment. We aim to further advance the model’s synthetics genome generation efficacy

and applicability, by exploring multi-modal generation and fine-tuning pretraining.

With this Deep learning based approach, we push the boundaries of synthetic geno-

type generation and foster the progress of genetic research.

Keywords

Deep Learning, Generative Models, Generative Adversarial Networks, Genome-wide

Association Studies, Case-Control Cohorts, Genotype-Informed Synthesis,
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1

Introduction

Biological systems are complex and connect different biological entities within and

across different scales. These biological scales are typically described as atomic/molecular,

subcellular, cellular, organism, population, communities, and ecosystems. In each

scale, researchers usually focus on the interaction of their units [1]. These systems

are difficult to understand and have millions of interactions that occur throughout

the lifespan of all their ’members’, but by increasing our knowledge on how each

scale works, we can better integrate biological data across different scales. Result-

ing in a more nuanced and complete view of biological systems, and consequently a

departure from this view of compartmentalized scales.

To have an idea of how these systems work, one needs to first understand what the

building blocks of biology are. On the subcellular and cellular scale, the building

blocks consist of the four main classes of biological macromolecules: proteins (poly-

mers of amino acids), carbohydrates (polymers of sugars), lipids (polymers of lipid

monomers) and nucleic acids (DNA and RNA; polymers of nucleotides).

All of these play important roles on the physiologic functions necessary for the

life of an organism. For this work, a special focus will inside on nucleic acids.

These biomolecules, comprised of deoxyribonucleic acid (DNA) and ribonucleic acid

(RNA), are the biological macromolecules that are considered the molecular repos-

itories of genetic information. The structure of proteins and every biomolecule and

cellular component is programmed into the sequence of nucleotides (the monomers

of these macromolecules). Throughout the lifespan of a biological entity, this infor-

mation is accessed, interpreted, and changed by a range of factors. These processes

provide a biological entity with the ability to store and transmit genetic information

from one generation to the next.

The genome is the complete set of genetic information of an organism or cell. This
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1. Introduction

provides all the instructions an organism needs to function throughout its life [2].

Single or double-stranded sequences of nucleic acids store this information in a lin-

ear or circular conformation. Methods to determine this sequence from the DNA

molecule, i.e. genome sequencing methods, have been a matter of interest for life

science researchers for decades. As, this sequence can show us how all the intricacies

of biological systems are coded with the four nucleotides present in the molecule.

In 1953, Watson and Crick, supported by unpublished research of Wilkins and

Franklin, published the papers revealing the double helix structure of the DNA

molecule to the world and the possible genetics implications of such structure [3,4].

In their work, they postulated that the sequence of bases on a single chain does not

appear restricted in any way [3]. This affirmation highlights the possible role that

the DNA sequence has on storing the genetic information of organisms, and further

show the importance of figuring out this exact sequence.

In the following decades, a multitude of researchers, such as Allan Maxan, Walter

Gilbert, and Frederick Sanger, developed new DNA sequencing methods that con-

tinued to reduce the time needed to sequence the genome of a biological entity. This

era is called the First Generation of sequencing methods. Their collective work was

fundamental to the appearance of the next-generation sequencing (NGS) methods,

marked by the introduction of the pyrosequencing technique. The key difference

between the methods of the first generation and the methods of the next generation

is the parallelization of the reactions needed to obtain the sequence, this signifi-

cantly decreases the amount of time needed and allows automatizing the process.

These features allowed companies like Roche and Illumina/Solexa to implement this

technology in an automated system and put it on the market.

Recently, even quicker methods started to appear leading to the current genera-

tion of sequencing methods, the Next-Next Generation or Third Generation (TGS).

What differentiates the TGS from the NGS methods, besides the single-molecule

sequencing method used, is the possibility to sequence much longer reads, which

helps to overcome technical and computational limitations of NGS-based assemblies

and again a significant increase in speed, which translates to an even shorter amount

of time needed to obtain a complete sequenced genome.

These developments and advances in sequencing and mapping methods, coupled

with their ever-increasing speed and cost-effectiveness, have significantly increased

the amount of genomic data that life sciences research fields can use for a multi-

2



1. Introduction

tude of purposes, such as analysing the effect of drugs on an individual’s genomic

expression or looking for certain mutations associated with a disease, all to further

our understanding of biological systems. However, the exponential growth of the

amount of data available raises the need to work on four key phases when dealing

with data: Data Acquisition, Data Storage and Management, Data Distribution,

and Data Analysis [5]. While data acquisition and storage are factors that already

have putative solutions with favourable results, data distribution, and data analysis

are two phases that are what one might call “a bit problematic” when we are dealing

with genomic data.

Regarding distribution, while some types of genomic data that are obtained from

sequencing and following downstream analysis are safe to store and distribute when

dealing with human cohorts, ethical, and privacy concerns are something researchers

must consider, especially, in the case of raw DNA sequences. It has been shown

that it is possible to identify a particular person in a cohort even with personal

information obfuscated [6, 7], in addition to that, there has been an increase in

legislation regarding the privacy of huge amounts of data generated every day, not

only in genomics, but other fields e.g. social media.

Regarding data analysis, with the zettabytes of genomic data being generated each

year, it is an impossible task to manually analyse and extract useful information

from all of it. Therefore, researchers have been looking for novel ways to analyse

and process this huge quantity of available data. Machine learning has been a

solution that rapidly spread and is now ubiquitous in genomics, mainly because of

its ability to manage large datasets and make accurate predictions. Also, with recent

developments in deep learning, there has been a huge output of research regarding

models that can be used to anonymize data by creating an artificial representation

of that same data.

By exploring the anonymization capabilities of deep learning models, researchers

would have a set of tools that would allow them to publicly store and distribute

human cohorts’ datasets while preserving the patient’s right to privacy. This also

allows a more complete set of data to be available for other researchers to fully

explore the information encoded in these data sets.

3



1. Introduction

1.1 Motivation

GWAS are studies where the researchers have to deal with the distribution and

analysis problem previously presented. These problems lead to low availability of

data to other researchers to use on their independent analyses and can contribute to

the replication crisis. While there has been an effort to deal with these problems by

using summarized representations of the original GWAS data, being able to generate

new datasets with similar characteristics to the original GWAS data, according to

the metrics from its summarized files would be beneficial to the landscape. That

way one could use the summarized file to obtain an artificial approximation of the

original GWAS data, this would solve the problem of privacy and analysis, while

also contributing to data storage and management.

1.2 Objectives

In this work, we propose a deep learning-based framework to augment genomic

datasets based on their calculated summary statistics. The main objective of our

framework is to generate synthetic data that exhibits the same properties as the

original dataset and therefore overcome the limitation of lack of available genomic

data in biological contexts. To reach this goal, a review of the generative modelling

landscape was performed, where previous works pertaining to generation of synthetic

genomic data are presented to identify architectures commonly used in the field.

Then, the development of a Wasserstein Generative Adversarial Network model to

generate synthetic genomic data was done with a subsequent validation of the results

obtained, comparing a subset of the original data with a synthetic sample generated

with the associated summary statistics.

1.3 Document Structure

This document is structured in the following way. Chapter 2 is to provide the

context needed for one’s ability to comprehend this work, comprised of an overview

of subjects focusing on GWAS and Machine Learning methods. Chapter 3 is to

provide a detailed overview of the methodology, datasets, and architectures used for

the work presented in this document. Chapter 4 presents and discusses the results

obtained from the methodologies described in the previous chapter. Lastly, Chapter

5 is to showcase the conclusions and further work regarding this subject.
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Context

2.1 Genomics

Genomics is a sub-field of computational biology that concerns itself with studying

the ever-increasing amount of data generated by sequencing methods to get a better

insight into the structure, function, evolution, mapping, and editing of genomes.

While genetics refers to the study of individuals and/or groups of genes, genomics

aims to have a complete characterization of the full set of an organism’s genes, i.e,

its genome. For that, researchers use various techniques such as genome assembling,

genome annotation, and variant calling, that can extract the genetic information

contained within the organism’s DNA.

Through these techniques and subsequent downstream analysis, researchers can find

and investigate possible relationships between genes and certain traits, gain a better

understanding of mechanisms that underlie complex and/or inherited diseases, and

allow for more personalized medical support as it made possible to develop tailored

treatments based on an individual’s unique genetic makeup. With all this informa-

tion at the researchers’ hands, genomics has the potential to aid the development of

various sectors like healthcare, agriculture, ecology.

2.2 Genome Assembly

The process of assembling a genome starts with using the DNA reads obtained

with sequencing methods. For DNA, the length of these reads can vary between a

few hundred base pairs to around thirty thousand base pairs in the function of the

generation of the sequencing method used. Given that they frequently come from

various sections of the genome, these reads are next examined and aligned to identify

any regions that coincide. Researchers can put the DNA fragments back together to
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2. Context

form contigs, which are larger DNA lengths created by finding overlapping sequences.

However, putting together a full genome might be difficult because of repetitive areas

or gaps in the sequencing data. Advanced algorithms and computational techniques

are used to resolve ambiguities, fix errors, and scaffold the contigs using extra infor-

mation like mate-pair reads or optical mapping to manage these complications.

The final output of the genome assembly process is a high-quality, ordered repre-

sentation of the organism’s genome, providing a valuable resource for understanding

its genetic makeup, evolutionary history, and functional elements.

2.3 Variant Calling

Variant calling is a process in genomics used for identifying and cataloguing the

differences between the observed sequencing reads and a reference genome, mean-

ing that this process identifies the genetic variations of an individual or a certain

population of interest. These variants can be expressed in several ways, single-

nucleotide polymorphisms (SNPs), indels (insertions or deletions), and even other

larger changes in the DNA sequence such as CNV (copy number variants) or Struc-

tural variations. This is one of the processes that are crucial for attaining a better

understanding of a plethora of characteristics pertaining to genetic diversity, evolu-

tionary patterns, disease susceptibility and personalized medicine.

The standard form for this kind of data is the Variant Call Format, or VCF file.

This file is used to store the meta-information, header and data lines containing the

genome information. It can also contain the genotype information of the samples

for each position.

##fileformat=VCFv4.2

##fileDate=20090805

##source=myImputationProgramV3.1

##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta

##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6,species="Homo sapiens">

##phasing=partial

##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">

##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">

##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">

##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">

##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">

##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">

##FILTER=<ID=q10,Description="Quality below 10">

##FILTER=<ID=s50,Description="Less than 50% of samples have data">

##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">

6



2. Context

##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">

##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003

20 14370 . G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.

20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3

20 1110696 . A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4

20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2

20 1234567 . GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3

As presented on this example, the VCF file has lines starting with “##”, preceding

its meta-information, here, information pertaining to the INFO, FILTER, and FOR-

MAT entries used in the body of the file are described. After the meta-information

lines, comes the header line, this line specifies the order for the following data lines.

This line has a mandatory fixed number of eight fields:

• #CHROM – chromosome: An identifier from the reference genome or an angle-

bracketed ID String (“¡ID¿”) pointing to a contig in the assembly file.

• POS – position: The reference position, i.e. the start coordinate of the variant.

• ID – identifier: Semicolon-separated list of unique identifiers where available.

If this is a dbSNP variant, it is encouraged to use the rs number(s).

• REF – reference base(s): The reference allele is the allele found in the reference

genome. It is not necessarily the major allele. Each base must be one of A,

C, G, T, or N. Multiple bases are permitted.

• ALT – alternate base(s): The alternative allele is the allele found in the sample

of interest. Comma-separated list of alternate nonreference alleles. Options

are strings made up of the bases A, C, G, T, N, or *.

• QUAL - quality: Phred-scaled quality score for the assertion made in ALT.

• FILTER – filter status: PASS if this position has passed all filters, FAIL if

it has not, it may also present custom flags, depending on the quality control

and filtering tools used on the data.

• INFO – additional information: Allow us to provide further information on

the variants. INFO fields are encoded as a semicolon-separated series of short

keys with optional values defined in the metainformation portion of the file.

If there is genotype information present, two additional columns can appear:

• FORMAT – Information about the following columns specifying the data types

and order, using keywords reserved to this field, like:

7



2. Context

– GT – genotype: encoded as allele values separated by either of / or |.
The allele values are 0 for the reference allele (what is in the REF field),

1 for the first allele listed in ALT, 2 for the second allele listed in ALT

and so on. For diploid calls, examples could be 0/1, 1 | 0, or 1/2, etc.

– GQ – genotype quality: encoded as a phred quality −10 log10p(genotype

call is wrong, conditioned on the site’s being variant)

– DP – read depth at this position for this sample.

– HQ - haplotype qualities: two comma-separated phred qualities.

• NA00001 – individual identifier: Show the data in the format specified by the

FORMAT column

Following the meta-information and header lines, the data lines contain all the data

described and formatted by the previous lines.

2.4 GWAS

Genome-wide association studies, or GWAS, aim to identify associations of geno-

types with phenotypes by comparing the differences in allelic frequency of genetic

variants between individuals with similar ancestry but different phenotypes. The ge-

netic variants that the majority of GWAS report are in the form of single-nucleotide

polymorphisms (SNPs). Single-nucleotide polymorphisms (SNPs) are base-pair (bp)

variations at certain locations in the genome. GWAS reports groups of correlated

SNPs that show a statistically significant association with a certain trait of inter-

est [8]. Results from these kinds of studies have led to the discovery of many variants

that underlie complex genetic disorders and/or traits and the subsequent publishing

of the data obtained allows the creation of databases of human genetic variations for

further analysis, raising the possibility of finding even more links between genetic

variants and unexplored traits.

However, besides the already mentioned problems regarding storage and manage-

ment, sharing GWAS data raises certain privacy and ethical problems. For exam-

ple, in the European Union, the increase of privacy protection legislation such as

the General Data Protection Regulation (GDPR) requires the de-identification and

consent of the patients, which complicates sharing and publication of this kind of

data. On the other hand, GWAS summary statistics (files typically including in-
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formation such as odds ratio (OR)/effect size (beta), standard error (SE), p-values,

and case/control sample sizes for each SNP being analysed) are becoming increas-

ingly available thanks to endeavours like the GWAS Catalog, GWAS Atlas, and

OpenGWAS databases.

2.5 GWAS Summary Statistics

Summary statistics are the aggregate p-values and association data for every variant

analysed in a GWAS. The information contained in these summary statistics rep-

resents a potential to extend the already significant power of GWAS and improve

disease understanding. Recently, a number of techniques have been developed to

harness the data present in these GWAS summary statistics to further understand

mechanisms of complex human diseases, the identification of drug targets and pos-

tulate eventual disease risk [9–11]. However, one of the challenges associated with

sharing this data is that there is no standard format for this type of file, resulting

in a lack of guidelines for the generation and sharing of these files.

The GWAS Summary Statistics File (GWAS-SSF) format is a collaborative effort

to standardize the format in which the summary statistics of a GWAS are reported.

The specification of this format is detailed in [12]

2.6 Machine Learning

As it was previously referred, the sheer amount of data being generated around the

world is around 120 zettabytes. This makes it impossible to manually explore and

extract meaningful information efficiently, however this kind of problem is a prime

opportunity to use machine learning algorithms.

Machine learning seeks to automatically learn meaningful relationships and pat-

terns from examples and observation [13]. During the last decades, the field of ML

has brought forth a variety of remarkable advancements in sophisticated learning

algorithms and efficient pre-processing techniques.

2.6.1 Types of Machine Learning

When dealing with a machine learning related problem or task, the problem and

the type of data associated usually dictates the type of algorithms that it will be
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used to solve it. These algorithms are mainly divided into four categories: super-

vised learning, unsupervised learning, semi-supervised learning, and reinforcement

learning [14].

Supervised Learning

In the supervised learning category, the algorithms need to have labelled data, that

is, raw data that has been assigned at least one label to add context or meaning to

it. This label is what the various supervised learning algorithms use to learn the

patterns associated to a certain label. The use of supervised learning algorithms

is for two different tasks associated with the type of label that the dataset has:

classification or regression

For example, if we consider a dataset of emails in which each email is either assigned

the label “spam” or “not spam”. To be able to filter these spam emails, we need

to have a model that is capable to classify the emails as spam or not. To train this

model we need to feed it a portion of this email dataset, usually called the training

set, for it to learn to associate patterns in the emails to the assigned label.

Unsupervised Learning

In contrast to the algorithms in the supervised learning category, unsupervised learn-

ing algorithms do not need to have labelled data, instead algorithms from this cat-

egory learn hidden patterns in the data that, at plain sight, might not be evident

for us. The use of unsupervised learning algorithms are typically associated with

grouping similar examples together, i.e. clustering, dimensionality reduction, and

density estimation.

Semi-supervised Learning

The semi-supervised learning algorithms are a kind of algorithms that can be un-

derstood as the middle point between the supervised and unsupervised learning

algorithms category. The usage of this type of algorithms usually entails a problem

or task where the amount of labelled samples in the dataset is low and consequen-

tially the number of unlabelled samples is high. These algorithms are able to make

use of this additional unlabelled data to better capture the shape of the underlying

data distribution and generalize better to new samples.
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Reinforcement Learning

Algorithms in the reinforcement learning category, like the unsupervised learning

ones, do not need to have labelled data to be able to learn, this means that the

learner has no knowledge of which actions to take until it is given a situation. These

actions taken by the learner may affect situations and their actions in the future.

This class of algorithms learn by interacting with its surrounding environment via

these actions, balancing exploration (trying new strategies) and exploitation (making

use of known successful techniques).

2.6.2 Classification & Regression

As it was previously said, in the supervised learning category, we can further sepa-

rate the algorithms between classifiers and regressors according to the type of label

associated with the dataset of interest which then dictates the type of task the

algorithm will have to perform.

Classification

When the class labels of the dataset of interest are categorical values, the type of

algorithm used for that scenario is a classifier. These class labels are discrete and

unordered values that can be understood as groups to which the assigned data points

belong. The goal here is to be able to predict the categorical class label of a new

sample or data point based on the past observations used for training the algorithm.

Regression

Like the classifiers in the previous section, a regressor is an algorithm that belongs to

the supervised learning category of algorithms, but there is a key difference between

these algorithms i.e., the regressors and the classifiers. While the classifiers need a

discrete/categorical class label to be able to learn from and later be able to make

predictions based on the patterns it observed, when dealing with regressors, instead

of a discrete class label it needs a continuous value to be able to learn from and

make predictions based on the patterns it was able to “catch”.

One important note is that these categories are not mutually exclusive, meaning

that some can be considered classifiers and regressors. In cases like this, it is the

task and/or the objective of that task that dictates if the algorithms are going to

be used as a classifier or regressor.
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2.7 Deep Learning

Up until this point several notions regarding important paradigms encompassed in

the field of Machine Learning have been briefly explained, but due to significant

advances and the uprising of tools that integrate this kind of algorithms in our

everyday life, in the form of facial recognition technology, self-driving cars, and

others, a certain subcategory of machine learning algorithms has been the centre of

attention for the general population and also from researchers from various areas

like mathematics, physics, chemistry, and biology [15–19]. This subcategory is called

Deep Learning.

Deep learning, as a subcategory of machine learning algorithms, take inspiration

from the human brain and the method this organ uses to transmit information

through the 80 billion of brain cells, the neurons [5, 20]. Differently to traditional

machine learning, deep learning does not need to focus on feature engineering, but

directly extracts features due to the different abstractions of the input data and

the incremental complexity of the representations in each layer [21]. That is, deep

learning cuts down the work of designing feature extractors for each problem [22].

Deep learning has been widely used in many fields, such as object detection, face

recognition, image segmentation, machine translation, and text classification [23].

2.8 Notorious Models

Linear Regression

One of the most basic but at the same time most important algorithms in machine

learning is the Linear Regression [24, 25]. Like the name suggests, this algorithm

belongs to the regressor subcategory of the supervised family of the machine learning

algorithms. This means that it is usually used to predict values within a continuous

range, (e.g. the price of a certain house) based on the patterns observed from the

data that it was trained with.

Logistic Regression

Similar to linear regression, logistic regression (Logit) [26] is also used to estimate the

relationship between a dependent variable and one or more independent variables,

but it is used to make a prediction about a categorical variable versus a continuous

one. Making it a supervised machine learning commonly used for classification tasks.
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Decision Trees

Decision trees [27] are algorithms that can be used for classification and regression

tasks. It is a flowchart-like structure that uses yes or no questions to arrive at a

final decision.

The algorithm starts from the root node of the tree and will recursively ask questions

about the features in the data. The algorithm then follows the branch that leads to

the answer to that question. This process continues until the algorithms reaches a

leaf node, which represents a final decision.

Decision trees can be used for a variety of tasks. Their popularity is justified for

being easy to understand, robust to noise, and scalable. Yet, they are prone to

overfitting and are not as accurate as the following machine learning algorithms.

Random Forest

Random Forest (RF) [27] is another algorithm that is popular, as it can be used

for classification and regression problems in machine learning. This algorithm uses

ensemble learning to build the model. Ensemble learning consists of a technique that

combines multiple models into one with the goal of improving the overall predictive

performance. In the case of the random forest algorithms, the individual models are

the decision tree algorithms explored in the previous section.

The strength of RFs lies in its ability to reduce the overfitting that an individual

decision tree is prone to. By using random subsets of data and features, it generates

diversity among the trees, which helps to capture different aspects of the underlying

patterns of the data, ultimately improving generalization.

Beyond their robustness to overfitting this algorithm, it is also easy to interpret

and understand. However, they can be computationally expensive to train and are

sensitive to hyperparameters, like for example the number of estimators pertaining to

the number of individual decision trees in the forest and maximum depth pertaining

to the maximum depth of each individual decision tree.

Support Vector Machine

Support Vector Machines (SVMs) [28] are another class of machine learning algo-

rithms that can be used for classification and regression. They work by finding the

hyperplane that best separates different classes of data, with the hyperplane being

13



2. Context

the line or plane that splits the data into different regions. Each separated region

is a representation of a different class.

These algorithms try to maximize the margin, i.e. the distance between the hyper-

plane and the closest data points of each class. A large margin translates to a higher

confidence the SVM has in its classification.

SVMs can be used as a classifier for problems including spam filtering, image and

text classification, while also being a popular for regression problems, like predicting

stock prices. They are a powerful machine learning algorithm known for being robust

and scalable, but they can be computationally expensive and not as interpretable

as some other machine learning algorithms.

Multilayer Perceptron

The multilayer perceptron (MLP), feedforward neural networks (FFNN) or deep

feedforward network (DFFN) is the quintessential deep learning model [29] as it

forms the basis of all neural networks and have greatly improved the performance of

machine learning when applied to classification and regression problems. A typical

MLP is a fully connected network consisting of an input layer, one or more hidden

layers, and an output layer, represented in the figure 2.1. These layers operate on

the outputs of its preceding layer and all of them, except the input layer, uses a

nonlinear activation function.

To learn, an MLP uses the backpropagation algorithm. This iterative process adjusts

the weight values of the model. The MLP is sensitive to the scale of the features

and to achieve satisfactory results, a variety of hyperparameters have to be tuned,

such as the number of hidden layers, the number of nodes (or neuron) of each layer

and the number of iterations (epochs) of the training process.
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Figure 2.1: Representation of a Multilayer Perceptron (MLP)

Convolutional Neural Network

Convolutional Neural Networks (CNNs) [30], are a specialized kind of neural network

for processing data that has a known grid-like topology. Examples include time-

series data, which can be thought of as a 1-D grid taking samples at regular time

intervals, and image data, which can be thought of as a 2-D grid of pixels.

CNNs are comprised of three types of layers. These are convolutional layers, pooling

layers and fully-connected layers. When these layers are stacked, a CNN architec-

ture has been formed. A simplified CNN architecture for MNIST classification is

illustrated in the figure 2.2

Figure 2.2: Diagram of a Convolutional Neural Network

To understand how CNNs are able to successfully process data in a grid-like topology,

the convolution, and pooling are operations that one needs to know.
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Convolution

Convolution is an operation commonly used in signal processing and deep learning.

This operation is crucial to extract meaningful patterns and features from the in-

put data. In the context of image processing, convolutions involve sliding a small

filter (also referred to as a kernel) over an input image, performing element-wise

multiplication between the filter and the regions of the image, and summing them,

resulting in a new feature map. The use of convolutions allows the detection of

edges, textures, and other patterns which captures complex features. Convolutional

Neural Networks (CNNs) leverage this operation to automatically learn and discover

meaningful features from raw images.

Figure 2.3: Representation of the Convolution operation

Pooling

A limitation of the feature map output of convolutional layers is that they record

the precise position of features in the input. This means that small movements in

the position of the feature in the input image will result in a different feature map.

This can happen with re-cropping, rotation, shifting, and other minor changes to

the input image.

A common approach to address this problem is to perform some kind of down

sampling, that is, the creation of a lower resolution version of an input signal that

still contains the large or important structural elements, without the fine detail that

may not be as useful to the task. A robust and common approach for down sampling

is to use the pooling operation.

The pooling operation shown in the figure 2.4 is specified, rather than learned. Two

common functions used in the pooling operation are:

16



2. Context

Figure 2.4: Representation of the Pooling operation, specifically the max polling
operation

• Average Pooling: Calculates the average of each patch of the feature map.

• Maximum Pooling: Calculates the maximum value of each patch of the

feature map.

Recurrent Neural Network

Recurrent Neural Networks (RNNs) [31] are a family of neural networks for process-

ing sequential data. A recurrent neural network is a neural network that is special-

ized for processing a sequence of values x(1), . . . , xn. Just as convolutional networks

can readily scale to images with large width and height, recurrent networks can scale

to much longer sequences than would be practical for networks without sequence-

based specialization [29]. The basic structure of a recurrent neural network is shown

in the figure 2.5.

Figure 2.5: An RNN and the corresponding computational graph unfolded in
time
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Variational Autoencoders

Variational Autoencoders (VAEs) [32] are a family of generative models, but first

to understand how the variational autoencoder architecture works, having basic

notions about the architecture of a vanilla autoencoder can be useful.

An autoencoder is a neural network that is trained to attempt to copy its input to

its output. Its basic structure is defined in the figure 2.6. This architecture has

a hidden layer h that encodes a latent representation of the received input. This

architecture can be described as two parts, an encoder h = f(x) and a decoder

x′ = g(h)

Figure 2.6: Structure of an autoencoder

Traditionally, autoencoders were used for dimensionality reduction or feature learn-

ing. Recently, theoretical connections between autoencoders and latent variable

models have brought autoencoders to the forefront of generative modelling, with

the appearance of the VAEs, represented in the image 2.7.
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Figure 2.7: Diagram of a Variational Autoencoder (VAE)

For the VAEs, instead of directly generating a latent representation directly from

the input, the encoder outputs a mean µ and a standard deviation σ which then

both are sampled from a Gaussian distribution with mean µ and standard deviation

σ. This key difference makes their latent spaces to be continuous, allowing easy

random sampling and interpolation.

Generative Adversarial Networks

Generative Adversarial Networks (GANs) [29] are a class of deep learning models

introduced by Ian Goodfellow and his colleagues, that can generate new, previously

unseen examples of data. They have been used for a wide variety of tasks. The basic

idea behind GANs is to train two neural networks, a generator, and a discriminator,

in an adversarial manner, similar to a zero-sum game, where the loss of a player is

the gain of the other [33].

The generator produces new examples of data, and the discriminator tries to de-

termine whether each example is real or fake. Through this process, the generator

learns to produce more realistic examples, and the discriminator learns to better

distinguish between real and fake examples.

The architecture of a GAN typically consists of a generator network and a discrim-
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Figure 2.8: Diagram of a Generative Adversarial Network (GAN)

inator network. The generator network maps a random noise vector to an example

of data, while the discriminator network takes an example of data and outputs a

probability of whether it is real or fake.
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Generative modelling has been a compelling paradigm in the field of ML. This form

of unsupervised learning revolves around the use of algorithms with the capability to

learn the underlying statistical patterns of a dataset and with this learned knowledge

the algorithms can subsequently generate new data samples based on the distribution

of the original data [34].

For instance, in an image classification scenario, an image is fed to a model and

this model outputs the category of the image. This process is flipped in gener-

ative modelling. Instead of feeding an image to the model, it is fed a descrip-

tion and the model outputs an image corresponding to the description provided.

As the overall field of machine learning continues to evolve, generative modelling

has shown to be a powerful tool because of its several applications, such as the

generation of realistic images. An example of the generative capabilities of this

kind of modelling can be found on https://www.thispersondoesnotexist.com and

https://www.whichfaceisreal.com/index.php [35,36]. These two website display high

quality synthetic face images generated by a GAN.

The use of generative modelling in machine learning has been prevalent since the

1950s, with the development and application of algorithms like Hidden Markov

Models (HMMs) [37] and Gaussian Mixture Models (GMMs). Models like this were

usually tasked with the generation of synthetic sequential data such as text and time

series [38–40]. However, the recent increase of interest in this category of machine

learning algorithms can be associated with the ever-increasing quantity of freely

available datasets as well as the appearance and subsequent development of deep

learning algorithms.

The use of neural networks in the context of generative modelling has its roots in

the 1980s. In that era, the goal was simply to be able to do supervised learning and
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reinforcement learning while using less labelled data [34, 41]. This way researchers

did not have to spend time and resources to collect labelled data or label themselves

the unlabelled data that they had but at the same time could extract the underlying

statistical information from this unlabelled data using the unsupervised generative

models.

More recently the landscape pertaining to generative modelling has been the centre

of attention of a large portion of the research around machine learning, with sev-

eral kinds of architectures being developed and used for a myriad of purposes such

as image synthesis, super-resolution, text-to-image and image-to-image conversion,

in painting, attribute manipulation, pose estimation; video: synthesis and retar-

geting; audio: speech and music synthesis; text: summarization and translation;

reinforcement learning; computer graphics: rendering, texture generation, charac-

ter movement, liquid simulation; medical: drug synthesis, modality conversion; and

out-of-distribution detection [34].

One family of generative models of interest are the Generative Adversarial Net-

works (GANs). Since their introduction to the machine learning landscape in 2014

by Goodfellow et al. [42], this architecture has achieved remarkable success in the

computer vision field such as generating synthetic images [42], image style transfer,

image inpainting, and image super-resolution.

However, there are intrinsic issues associated with this architecture. It is notorious

for being prone to mode collapse, being slow and unstable to converge, and vanish-

ing gradients [43, 44]. For that reason, in the following years modifications of the

original architecture and/or the method of training that try to remedy these issues,

were proposed. The implementation of the Wasserstein GAN (WGAN) [45] and

Wasserstein GAN with gradient penalty (WGAN-GP) [46], are two examples that

yield good results compared to their standard counterpart.

The Wasserstein Generative Adversarial Network (WGAN) training process like the

standard GAN consist of a zero-sum game between two adversarial networks where

one player’s loss is the gain of another [33]. The key difference between the GAN

and WGAN training procedure lies in the loss function used. The WGAN uses the

Wasserstein-1 metric (W1) also called Earth-Movers Distance (EMD), because it

can be understood as the minimum work needed to transform one distribution to

another, where work is defined as the product of mass of the distribution that has

to be moved and the distance to be moved. This metric can be expressed in the
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following manner:

W1(P,Q) = inf
π∈Π(P,Q)

∑
x,y∈X

π(x,y) · d(x, y)

where:

• W1(P,Q) represents the Wasserstein-1 distance between distributions P and

Q.

• Π(P,Q) is the set of all joint probability distributions π(x, y) with marginals

P and Q.

• d(x, y) is the distance between elements x and y in the metric space (X, d).

The reason that the change of loss function was proposed is that the goal of the GAN

training process is to minimize the Jensen-Shanon divergence between the distribu-

tion of the original data and the distribution of the generated synthetic data, but

a problem arises during this process. As the critic gets better, the Jensen-Shanon

divergence locally saturates, making the gradients converge to zero and vanishing.

In contrast, such phenomenon doesn’t happen when using the Wasserstein-1 metric.

Another benefit of the Wasserstein-1 metric is that is continuous and almost differ-

entiable everywhere [45], which allows the model to be trained to optimality. The

Wasserstein distance is also considered a meaningful metric, i.e, as it converges to

0 as the distributions get close to each other and diverges as they get farther away.

Following the proposal of the WGAN, another proposition of the which expands

the WGAN was made. While the original WGAN [45] improves training stability,

there still are cases where it generates poor samples or fails to converge. The issues

with WGAN arises mainly because of the weight clipping method used to enforce

Lipschitz continuity on the critic. This new proposed WGAN, called Wasserstein

GAN with gradient penalty (WGAN-GP), replaces weight clipping with a constraint

on the gradient norm of the critic to enforce Lipschitz continuity [46]. This allows

for more stable training of the network than the WGAN with weight clipping and

requires very little hyperparameter tuning.

The use of deep generative models like the previously explored GAN, VAEs and

Large Language Models, has proven to be useful not only to computer vision and

natural language processing but also pertaining to biological and biomedical re-

search [47–53] and also for a particular case, the generation of artificial genomes [54,
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55].

The potential of generative modelling has been underexplored in genetics, which is

surprising due to the difficulties of researchers in these areas to obtain and analyse

genomics data due to its reduced access to many databases due to concerns about

violations of individual privacy. With that in mind, Yelmen et al. [54, 55] proposed

the use of generative models like the GAN, WGAN, and RBM for the generation of

artificial human genomes. This approach proved to be able to learn the complex dis-

tribution of real genomic datasets and also be able to generate high quality artificial

genomes that replicate genomic characteristics such as allele frequencies, linkage dis-

equilibrium and population structure. These results using generative models, that

are able to capture the underlying statistical characteristics of genomic data and

generate samples with those same characteristics, only reinforce the potential of

this subsection of machine learning has for the field of genomics.
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Materials & Methods

4.1 Data description

The dbGaP dataset phs000473.v2.p2 was investigated and analysed for this work.

It comprises 12,380 samples from a Swedish case-control Whole-Exome Sequencing

project, including 6,245 controls, 4,969 SCZ patients, and 1,166 Bipolar disorder

cases.

The cases of schizophrenia were identified using the Swedish Hospital Discharge

Register. Such cases must have had at least two hospitalizations with a discharge

diagnosis of schizophrenia to be included in this dataset. Regarding the controls,

they were selected at random from population registries. The single exclusion cri-

terion was hospitalization for SCZ. The participants in all samples were at least 18

years old, with both parents born in Scandinavia.

The original data had previously been filtered for a variant Phred-score quality

(QUAL) greater than thirty percent. Variant sites having a mean read depth (DP)

of less than eight or a genotype call rate of less than ninety percent were also filtered

from our dataset.

The Variant Quality Scores Recalibration steps on the Genome Analysis Toolkit

(Version 3.8) Best Practices Workflow were followed. Multi-allelic variants were

separated and filtered according to the resultant genotype call rate.

For our work, we worked with the genotype call encoded in an additive format,

meaning that 0 refers to a homozygous to the reference allele, 1 refers to a het-

erozygous with one reference allele and one alternative allele, and 2 refers to an

homozygous alternative allele.
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4.2 Genotype-phenotype association

For the genotypes of cases and controls, a chi-square test was run on all variations in

a 3x3 contingency table, with the exclusion of bipolar samples. Sexual chromosomal

indels and variations were also screened. The SNPs were annotated using the most

recent Annovar version for the hg19 genome assembly. To include a larger and more

representative number of variations in the subsequent analysis, the p-values were not

adjusted for multiple comparisons. The total dataset had 18,970 variations derived

from 9,160 genes.

4.3 Summary Statistics Calculation

The calculation of the summary statistic pertaining to the dataset phs000473.v2.p2.

was performed with the plink2 program [56] with the resulting file was outputted in

the GWAS-SSF format [12].

4.4 Pretrained Generator

Pretraining is a technique used to initialize a model’s parameters before fine-tuning

it to the target task. The goal of pretraining is to provide the model with a useful

initial set of weights, which can speed up the convergence and improve performance

on the target task.

With that in mind, in this work the process of pretraining was used in a self-

supervised learning manner, where the generator is treated as a decoder-like model

that maps the lower dimensional data of the summary statistics to the original

data. This was done to prevent dealing with common problems of WGANs like

mode collapse, slow training and stability issues, since the pretrained generator of

the WGAN has a better starting point and also a good internal representation of

the data ultimately leading to a faster convergence

The generator was designed with two portions. One portion f , that processes the

summary statistics input SumStats:
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

f1 = GELU(FC4→16)(SumStats)

f2 = GELU(FC16→32)(f1)

f3 = GELU(FC32→32)(f2)

ProcSumStats = GELU(FC32→64)(f3)

and the second portion g, that concatenates the processed summary statistics to a

random vector z sampled from a Gaussian distribution N (0, 1):



z ∼ N (0, 1)

in = ProcSumStats⊕ z

g1 = GELU(FC100→128)(in)

g2 = GELU(FC128→256)(g1)

g3 = GELU(FC256→512)(g2)

g4 = GELU(FC512→1024)(g3)

ysynth = tanh(FC1024→5000)(g4)

The pretraining process was performed using the parameters showcased in table 4.1,

using the Binary Cross Entropy (BCE) loss function between the real genotype yreal

and the synthetic sample ysynth. The BCE function is described in the following

manner:

BCE(yreal, p(yreali)) = − 1

N

N∑
i=1

yreali × log(p(yreali)) + (1− yreali)× log(1− p(yreali))

where:

N is the number of samples in the dataset,

yreali is the true binary label of the ith sample,

p(yreali) is the predicted probability of the ith sample belonging to the positive class.

27



4. Materials & Methods

Table 4.1: Hyperparameters used for the pretraining of the WGAN-GP generator

Parameter Value

epochs 200

Generator Learning rate 1× 10−4

Optimizer Adam

4.5 WGAN implementation

This architecture was implemented and trained using python-3.10 & pythorch-

2.01 [57, 58]. The implementation of this work’s WGAN is a Wasserstein GAN

with gradient penalty (WGAN-GP) that consists of a critic which estimates the

Wasserstein metric between real and generated data distributions, and a genera-

tor which generates new genomic data from a concatenation of summary-statistics

file and a random vector with values sampled from a Gaussian distribution. The

generator of the WGAN-GP follow the same structure of the pretrained generator

previously described. The Discriminator d (usually called the Critic while using the

WGAN architecture), has the following design:



in = yreal | ysynth
d1 = GELU(FC5000→1024)(y)

d2 = GELU(FC1024→512)(d1)

d3 = GELU(FC512→256)(d2)

d4 = GELU(FC256→128)(d3)

out = FC128→1(d4)

A relevant characteristic to note is that the last layer of the Critic of the WGAN

doesn’t have an activation function like, for example, the commonly used sigmoid

function. This is done to be able to calculate the Wasserstein-1 Distance between the

synthetic data generated and the real data. The training process for the WGAN-GP

was performed with the parameters showcased in the table 4.2
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Table 4.2: Hyperparameters used for the training of the WGAN-GP model

Parameter Value

epochs 200

Generator Learning rate 1× 10−4

Critic Learning rate 4× 10−4

Optimizer Adam

beta1 0.555

beta2 0.9

lambda gp∗ 10
*value used on the gradient

4.6 Evaluation

To evaluate the performance of our generative model, we calculated a group of

metrics pertaining to basic statistics regarding genomics data and compare them

to the correspondent original data values. Also, as a complement we proceeded to

simulate a scenario where there is a need to classify the diagnosis of a patient, to

evaluate the utility of the synthetic data compared to its original counterpart.

The statistics that will be used as comparison between the real and the synthetic

genomic data are:

Allelic Frequencies - the relative frequencies of an allele in a population, ex-

pressed as a fraction or percentage. if f(0), f(1), and f(2) are the frequencies of

the three genotypes of a particular variant. The frequency p and q correspond to

the alternative allele and reference allele frequency, respectively. These frequencies

are calculated in the following manner:

p = f(1) + 2× f(2)

q = f(1) + 2× f(0)

Minor Allele Frequency - is the frequency of the second most common allele in

a given population. This value range from 0 to 0.5. With the allele frequencies p

and q of a specific variant var the calculation of the MAF is:
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MAFvar = min(pvar, qvar)

Fixation Index - is the measure of population differentiation due to genetic struc-

ture. It ranges from 0 (i.e. no genetic differentiation) to 1 (complete genetic differ-

entiation). To calculate it we considered the control and diagnosed case samples as

two populations with their allele frequencies being pcase, qcase, pcontrol and qcontrol.

Now this statistic has the following formula:

HS =
Hscase +Hscontrol

2

HT = 2× ptotal × qtotal

FST =
HT −HS

HT

where:

HS = expected heterozygosity = 2pq

HT = average expected heterozygosity
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5.1 Model Training

As it was mentioned, in our work the generator was pretrained with the goal of

having a better starting point and an encoded representation of the data to achieve

a faster convergence for the subsequent training process of the WGAN.

During the self-supervised pretraining phase (figure 5.1), the generator showed to

converge. As the generator was treated as a decoder-like model that maps the

lower dimensional summary statistics to the original data, it demonstrated consis-

tent progress in reconstructing the original data accurately. Here, the summary

statistic acted as informative intermediaries, allowing the generator to learn how to

decode the compressed information present in the summary statistics file. Analysing

the figure, the downward trend signifies a consistent reduction in the discrepancy be-

tween the generated synthetic data and the original data. This convergence provided

a strong starting point for the generator of the WGAN-GP training phase.

Figure 5.1: Evolution of the pretraining process of the generator

Throughout the WGAN-GP training phase, the generator showed promising hints

of convergence with a diverging trend present in the validation values at the later
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epochs. The loss curves displayed an evident initial reduction, demonstrating the

generator’s ability to generate realistic synthetic data. However, as training pro-

gressed, the validation value showed hints that it was starting to diverge from the

training one.

Figure 5.2: Evolution of the Wasserstein loss during the training process of the
WGAN. On the left we have the training loss values of the Generator and the

Critic. On the right we have the validation loss value of the Generator

5.2 Principal Component Analysis

Results of a Principal Component Analysis (PCA) can provide insight into the

performance of the model and its ability to capture the overall structure of the

data. By reducing the dimensionality of the data and projecting onto the principal

components (PCs), we obtained a visual representation of the data’s variability.

The PCA plots in the figures 5.3 & 5.4 suggest that our model has learned some

prominent features and structures from the original data.

Visually, the plots reveal that the synthetic data tends to condense around specific

regions, suggesting that the model has successfully learned and generated instances

that share similar patterns. Even though the clustering might hint that the syn-

thetic data is focused on specific spots, it is important to consider the context and

distribution of the original data. This could mean that the model is prioritizing

regions of high density or that are essential to capture the overall characteristics of

the data.

Coupled with the focus on specific spots, the marginal plots for PC1 and PC2 in the

figure 5.3 provide further insight into the model’s ability to capture the structure

of the data. Inspecting the marginal plots, which provide a one-dimensional view

of the data distribution along the two principal component, it is evident that the

synthetic data aligns with the original data along PC2. However, when looking at
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PC1, the PCA plot reveals deviations between the synthetic and original data. This

deviation, supported by the calculation of the Wasserstein distance between the real

data and fake data first component (W1 = 7.98), suggests that our model may be

struggling to accurately capture the underlying distribution of PC1 values.

Figure 5.3: The first two principal components resulted from a Principal
component analysis of the real and synthetic data
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Figure 5.4: The first two principal components resulted from Principal
component analysis of the real and synthetic data, separated by the diagnosis of

the sample

5.3 Alternative Allele Counts

Showcased in the figures 5.5 & 5.6 is the distribution of the alternative allele counts

present in the samples. The goal of calculating this value was to ascertain if the

model was able to deviate from its initial predictions of total homozygosity to the

reference allele i.e. outputting all 0’s. These results show that the distribution of

the synthetic data exhibits some deviation from the distribution for the original

data. However, these discrepancies are not substantial, given that the Wassertein

distance calculated between the two distributions was relatively low (W1 = 0.0229).

These results suggest that the model is successful in approximating the underlying

distribution of the real data to a certain extent.
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Figure 5.5: Alternative allele counts of the 5000 samples for the real and
synthetic data

35



5. Results

Figure 5.6: Alternative allele counts of the 5000 samples for the real and
synthetic data, separated by the diagnosis of the sample

5.4 Allelic Frequencies

The allelic frequencies can provide insight into the ability of our model to capture

the genetic characteristics of the original dataset. The distributions of the calculated

allelic frequencies are displayed in the figures 5.7 for the whole dataset, 5.8 for the

control samples, and 5.9 for the SCZ samples.

Upon analysing the allelic frequency distribution in the figures, it is evident that

there are deviations between the real and the synthetic data. These discrepancies

might suggest that the generative model might not be able to fully replicate the

complex genetic patterns present in the original data. However, it is relevant to

note that while there are deviations present, the Wasserstein distances calculated

for both the p (alternative allele) and q (reference allele) between the real and the
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synthetic data are relatively low, withW1 = 0.05613 andW1 = 0.05612, respectively.

The low Wasserstein distances suggest that the allelic frequency distributions of the

synthetic data are close to their real counterpart.

Overall, these results hint that our model was able to capture a considerable portion

of the genetic information present in the original data, by approximating the allelic

frequency of the real data to a considerable degree.

Figure 5.7: Allelic frequency distributions of the real and the synthetic data

37



5. Results

Figure 5.8: Allelic frequency distributions of the real and synthetic data from the
control samples
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Figure 5.9: Allelic frequency distribution of the real and synthetic data from the
samples with a schizophrenia diagnosis

5.5 Minor Allele Frequency

The minor allele frequency (MAF) is another genetic feature that can provide useful

insight about the performance of our model capability of capturing genetic informa-

tion from the real data. MAF is defined as the frequency of the less common allele

at a specific locus. This feature is crucial to understand genetic diversity and pop-

ulation genetics. After calculating the allelic frequencies, we proceeded to calculate

the MAFs, with the results displayed in the figure 5.10.

Again, upon analysing the resulting figures, there is a certain amount of deviation

present between the real and the synthetic data. This further suggests the challenges

of the model to fully replicate the intricate genetic patterns and patterns encoded

in the original data. Nevertheless, this discrepancy is not substantial with the

Wasserstein distance between the real and the fake MAF values being relatively

low, at (W1 = 0.0528).
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These results of the MAFs comparison, coupled with the low Wasserstein distance

between the real and synthetic data, may be signs that the generative model was

capable of capturing the genetic diversity of the original dataset.

Figure 5.10: Minor allele frequency distribution of the real and synthetic data

5.6 Fixation Index

Using the Fixation Index (FST ) we can obtain even more insight into our model’s

ability to capture genetic information. FST is a measure used in population genetics

to quantify the degree of genetic differentiation between populations, meaning that

values closer to zero show a strong indication that the populations of interest belong

to the same population. Here with the FST , we measure if our model is capable of

generating synthetic data close enough to the original data, to the point that the

FST hints that these two belong to the same population.

It is apparent in the figure ??, that the difference between the FST values of the

real and the synthetic data is not very evident. These small difference supports the

notion that the model was able to replicate the genetic variation and population

structure encoded in the original data. A difference of this magnitude indicates that

our model is able to capture a considerable amount of the genetic differentiation

and population structure encoded in the original data.
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Overall, the results of the FST comparison between the real and synthetic data high-

light the model’s success in approximating the genetic differentiation and population

structure present in the original dataset.

Figure 5.11: Fixation index values for the real and synthetic data

5.7 Data Utility

In the previous sections of this work, the results pertaining to the genetic character-

istics of the real and synthetic data were showcased, now we’ll compare the utility

of the real data and the generated data. For that purpose, we’re going to try to

predict if a specific sample has the SCZ diagnosis or not. Here, the goal was to
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assess our model’s ability to produce synthetic data that could mimic the real data

while also keeping its predictive characteristics. The results of this experiment and

the models used are in the tables 5.1

The models used, and their performance, are showcased in the tables 5.1 and 5.2.

We could observe that the results are not the best. However, the fact that they

are comparable suggests that the synthetic data has in it encoded some predictive

characteristics of the original data.

Table 5.1: Models performance with the real data

Random Forest kNN SVM Logit

Accuracy 0.582000 0.500000 0.624000 0.605000
Precision 0.569536 0.524731 0.624788 0.613074
Recall 0.822180 0.466539 0.703633 0.663480
F1 0.672926 0.493927 0.661871 0.637282

Table 5.2: Models performance with the synthetic data

Random Forest kNN SVM Logit

Accuracy 0.553000 0.532000 0.543000 0.502000
Precision 0.553672 0.549020 0.543536 0.523277
Recall 0.749522 0.588910 0.787763 0.537285
F1 0.636881 0.568266 0.643247 0.530189
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In this work, the WGAN generative model was implemented for the generation of

artificial genomes based on their common summary statistics.

The training process was divided in two portions. In the first, the generator was

pretrained in a self-supervised manner with the aid of summary statistic and in

the second the weights of the pretrained generator were transferred to the wgan

generator and then the conventual WGAN training process took place. During the

self-supervised portion, the generator exhibited a noteworthy ability to converge.

This decoder-like model, was able to successfully map the lower-dimensional sum-

mary statistics data to the original data and demonstrated consistent progress while

doing so. Such convergence was vital for providing the subsequent WGAN-GP

training phase a strong starting point, which enables the generator to build upon

the learned genetic knowledge encoded in the summary statistics and further refine

its performance.

During the WGAN-GP training process, the initial convergence, made evident by

the loss curves, showed that the generator was able to generate high quality syn-

thetic data. However, as the training process continued the validation values began

to fluctuate and ultimately showing signs of divergence at the later epochs. This

observed divergence suggests a certain inability of the model in capturing the full

complexity of the data. Even though, our models showed promising results, the

divergence at the end of the training process showed that further fine-tuning might

be beneficial to fully harness its capabilities

With the PCA, we were able to see that the generated synthetic data when compared

with the original data, had a tendency to cluster in the certain regions. This could

mean that these clusters present in the synthetic data are the evidence of important

regions that are needed to be able to capture the overall structure of the real data.
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Another possibility is that these regions have a high density of data points and that

made the model start to prioritize the generation of data with those characteristics

resulting in the clusters we observed. The marginal plots, show that this cluster

of data mainly occurs along the first principal component (PC1) in contrast to

what occurs along the second principal component that even though there is some

deviation between the real and the fake distribution it is not to the degree observed

in PC1. The concentration of data on PC1 and the calculation of the Wasserstein

distance between the real and the synthetic data distribution that resulted in a value

of W1 = 7.98 make it evident that the divergence between these distributions are

considerably high. This hints that the model was not able to capture the information

regarding variation encoded in the original data. However, it is important to note

that PCA is a linear dimensionality reduction method. There’s the possibility that

the model might be prioritizing the non-linear characteristics of the data, then these

observed divergences would be expected. However, this does not mean that the

model is not able to capture important information during the training process. In

the future, to see if the model is able to capture linear and non-linear characteristics

of the original data, the usage of PCA coupled with a non-linear dimensionality

reduction method, for example, the T-distributed stochastic neighbour embedding

(t-SNE).

Regarding the statistics pertaining to genetics, like the alternative allele counts,

allelic frequency, minor allele frequency and fixation index, we could see that visually

there is always deviation between the distributions of these statistics for the original

and the synthetic data. This deviation show that the model is facing challenges in

perfectly replicating the information pertaining to these statistics encoded in the

original data. Nevertheless, the Wasserstein distance shows that these differences

evident in the plots are relatively low across the board, with the values of W1 =

0.0229 for the alternative allele counts, W1 = 0.05613 and W1 = 0.05612 for the

allelic frequencies of the reference allele q and the alternative allele p between the

real and the synthetic data, and W1 = 0.0528 for the minor allele frequencies.

Even though these differences are visually apparent, genetic data is complex and

influenced by factors such as population demographic, genetic drift, and selective

pressure. Our model was able to generate, with some success, these statistics without

explicitly supplying this information, made evident by the low Wasserstein distance

across the board. This shows that in spite of showing some differences between

their original counterpart, there’s a potential of using synthetic data from generative
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models like ours for genetics studies simulations and downstream analysis.

This contrast between the results of the PCA and the results of the genetic statistic

raise intriguing questions about our models’ ability to generate high quality synthetic

data. While the model showed that it was as able to replicate the genetic character-

istics by encoded in the original data, but at the same time encountered challenge

in accurately reproducing the more complex and high-dimensional structure of the

data.

Lastly, the predictive characteristics of the data were compared, by simulating a

scenario where the goal was to be able to predict if the patient was a control or

diagnosed with SCZ. For this portion of the work the models used showed for the

original data and the generated synthetic data similar performance for all the metrics

considered. This suggests that the predictive characteristics of the original data were

retained by the model. However, to verify if the generated data could be used for

similar scenarios, a more thorough analysis and more complex predictive models

would be needed. That way would be able to have a deeper understanding of how

these models understand the patterns hidden in the data.
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Conclusion

Our proposed framework for genotype generation with the aid of their associated

summary statistics consisted of two steps: self-supervised pretraining and WGAN-

GP training. The results obtained from this proposed approach have been promising,

with the achievements observed through the comparison of the genetic statistics and

the utility of the generated synthetic data with its real data counterpart.

The self-supervised pretraining upon the summary statistics effectively provided

the WGAN-GP a strong starting point, aiding in the accurate decodification of this

lower-dimensional data format to reconstruct the original data. This results in the

generation of realistic synthetic genotypes.

Nevertheless, there are some faults. We observed certain areas that require further

refinement. The discrepancy made evident by the principal component analysis

(PCA) indicate that the model representation might not entirely align with the

original data distribution. Also, during the training process of the WGAN-GP, we

were able to detect hints of divergence in the validation loss at the later epochs,

suggesting that our model faces challenges regarding generalization and stability.

7.1 Future Work

In future work, we plan to extend the application of this framework to additional

complex diseases other than schizophrenia. By incorporating diverse datasets rep-

resenting various diseases, our goal would be to assess our WGAN-GP based frame-

work ability to generate synthetic genotypes with characteristics of different genetic

conditions.

Additionally, we will focus on enhancing the fine-tuning process to achieve better

results regarding the framework’s ability to generate synthetic data that matches
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real-world complex datasets. This requires the investigation of regularization tech-

niques and optimization strategies with the goal of improving the overall quality

and diversity of generated genotypes.

Addressing these future directions, our research aims to aid the field of generative

modelling in the context of bioinformatics, specifically synthetic genotype genera-

tion.
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