

Henrique Tavares Silva

Design and implementation of a
relational data model supported

in Postgres
Sakai Learning Management System

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Professor Bruno

Cabral and presented to the Department of Informatics Engineering of
the Faculty of Sciences and Technology of the University of Coimbra.

July of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Henrique Tavares Silva

Design and implementation of a
relational data model supported in

Postgres
Sakai Learning Management System

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Bruno Cabral and
presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

July 2023

Agradecimentos (Acknowledgements)

Embora esta tese de mestrado esteja escrita em inglês, tenho que usar o vocab-
ulário e a gramática portuguesa para agradecer a todos os que me ajudaram, di-
reta ou indiretamente, a concluir esta jornada que começou em 2017, com a minha
entrada na Universidade de Coimbra.

Quero agradecer à Apereo Foundation pela oportunidade de participar no pro-
jeto Sakai através deste estágio, e em especial ao doutor Charles Severance pelo
acompanhamento e conhecimento transmitido. Também quero agradecer ao Pro-
fessor Bruno Cabral, pela disponibilidade e orientação desde o início do estágio.

Quero também agradecer à minha família pelo seu apoio incondicional. Que
apesar de não ter sido um trajeto como desejariam, foram fundamentais para que
eu terminasse este ciclo académico.

Também não posso deixar de agradecer a todos os amigos que fiz e mantive du-
rante estes 6 anos, independentemente de termos partilhado uma sala de aula,
um balneário ou uma tenda. Fizeram-se presentes nos meus desalentos e con-
quistas, e por isso vos fico grato.

v

Abstract

This thesis aims to study database portability in the context of the large, enter-
prise legacy code that is Sakai LMS, which is a free, community-source, educa-
tional software platform designed to support teaching and research, and has been
under continuous development and production for the past 20 years.

The application is committed to database portability and currently supports Or-
acle and MySQL and wishes to support PostgreSQL going forward. The applica-
tion mixes hand-constructed SQL, templated SQL, and data persistence by a Java
ORM solution, JPA. The goal is not to rewrite the application to use a new way
to generate SQL but to look at the effort required to convert all SQL approaches
from one dialect to another.

To inform and help accomplish this engineering task, this thesis will have a deeper
examination of how the application executes all database-related operations and
explore how the SQL dialects diverge among the various databases. This paper
will also look at strategies to add a new database dialect or convert SQL from one
dialect to another, exploring the jOOQ library and then testing its effectiveness in
this internship’s problem.

This thesis work contributed to the progress in the challenge of inserting the Post-
greSQL dialect into SakaiLMS:

• Sakai LMS can now start up with a PostgreSQL database, using a MySQL
SQL service that gets translated to Postgres.

• The proposal of an architecture that can build the base for a translations
server that enables Sakai LMS to be fully compatible with Postgres and,
thanks to the way jOOQ’s SQL translator works, other relational databases,
without modifying the SQL service.

In addition to that, this work also allowed us to conclude that jOOQ’s SQL trans-
lator works for most translations, but not always. So it’s necessary to modify
any jOOQ SQL translator layer to cope with the errors it throws. As we could
conclude, manual edition and approval of unsuccessful translations are enough.

Another conclusion taken was that the SQL service in Sakai isn’t the only entity
responsible for executing SQL statements in Sakai. This turned out to be a lim-
itation in the work’s results because the proposed architecture wasn’t expecting
that behavior from Sakai.

Keywords

Sakai LMS, PostgreSQL, MySQL, Oracle, jOOQ, SQL translation

vii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Main objectives and approach . 2
1.3 Results of the thesis . 2
1.4 Outline . 3

2 Background concepts and State of the Art 5
2.1 Open-source . 5
2.2 Apereo Foundation and Sakai LMS 6

2.2.1 Sakai LMS architecture . 6
2.2.2 Using the Sakai LMS . 9

2.3 SQL diversification . 10
2.3.1 PostgreSQL vs MySQL . 10
2.3.2 PostgreSQL vs Oracle . 11

2.4 Schema conversion tools . 13
2.4.1 Data Loader . 13
2.4.2 MySQL migration toolkit . 13
2.4.3 Ora2pg . 13
2.4.4 EDB Postgres Migration Portal 14
2.4.5 Ispirer SQLWays Toolkit . 14

2.5 jOOQ . 14
2.5.1 Code generation . 14
2.5.2 DDL generation from objects 14
2.5.3 SQL Parser API . 15

2.6 Is jOOQ an ORM? . 15
2.6.1 JPA . 15
2.6.2 jOOQ vs JPA . 16
2.6.3 jOOQ is not the typical ORM 17

3 Approach 19
3.1 Architectural drivers . 19

3.1.1 Functional Requirements . 19
3.1.2 Technical/Business constraints 21

3.2 Experiments . 22
3.2.1 jOOQ . 22
3.2.2 Postgres connection . 22
3.2.3 Sakai SQL service integration with jOOQ and Postgres . . . 23

3.3 Architecture design . 26

ix

Chapter 0

3.3.1 First architecture design iteration 26
3.3.2 Second architecture design iteration 26

4 Implementation 31
4.1 Defining parameters for a final comparison 31

4.1.1 What will be compared exactly? 32
4.2 The Postgres Translation Component 32

4.2.1 Startup . 32
4.2.2 Translation Process . 33

4.3 Starting Sakai with a Postgres database 33
4.3.1 Compare dialects for a starting point 34
4.3.2 Improve the translations table 35

4.4 Implementation result . 39

5 Methodology and planning 41
5.1 First semester . 41
5.2 Second semester Planning . 41

6 Conclusion 45
6.1 Contributions and findings . 45
6.2 Future work . 46

Appendix A jOOQ conversion test: Oracle to Postgres 51

Appendix B jOOQ conversion test: MySQL to Postgres 53

x

Acronyms

API Application Programming Interface.

CRUD CREATE, READ, UPDATE, DELETE.

DBMS Database Management System.

DDL Data Definition Language.

DML Data Manipulation Language.

DSL Domain Specific Language.

JDBC Java Database Connectivity.

jOOQ Java Object-Oriented Querying.

JPA Java™ Persistence API.

LMS Learning Management Systems.

ORM Object-relational mapping.

PTC Postgres Translations Component.

RDBMS Relational Database Management System.

SQL Structured Query Language.

TH Translations Hashmap.

xi

List of Figures

2.1 System Context diagram for Sakai LMS 7
2.2 Current Container diagram for Sakai LMS 8
2.3 Current Component diagram for Sakai LMS kernel 8

3.1 Inital Component diagram for Sakai LMS kernel proposal 28
3.2 New Container diagram for Sakai LMS 29
3.3 New Component diagram for Sakai LMS kernel 30

4.1 Translation Process . 34
4.2 Evolution of the translations table in the number of translated queries 36
4.3 Evolution of the translations table in the number of corrected trans-

lations from the previous iteration 36
4.4 Impact of the translations table on the number of tables in the Sakai

database . 37
4.5 Impact of the translations table on the number of constraints in the

Sakai database . 37
4.6 Startup screens after Sakai used each iteration of the translations

tables . 38
4.7 Screen 1 - screen after starting up Sakai in the third iteration of the

translations table . 38
4.8 Screen 2 - screen after running Sakai in the fourth, fifth, and sixth

iteration of the translations table . 38

5.1 Gantt diagram for the second-semester initial planning 42
5.2 Real Gantt diagram of the second semester 43

A.1 Result of jOOQ translations of Oracle queries to Postgres 52

B.1 Result of jOOQ translations of MySQL queries to Postgres 54

xiii

List of Tables

2.1 Schema conversion tools . 18

3.1 Use case 1 - Using a Postgres database 20
3.2 Use case 2 - Translate queries . 20
3.3 Technical Constraints . 21
3.4 Error example 1 - Unsuccessful jOOQ translation 23
3.5 Error example 2 - jOOQ Error . 24
3.6 Error example 3 - Templated SQL . 24

4.1 Performance of jOOQ in Oracle and MySQL 34

xv

Chapter 1

Introduction

In the realm of education, technology has played a pivotal role in transforming
the way knowledge is disseminated, managed, and accessed. Over the years,
Learning Management Systems (LMS) have emerged as indispensable tools for
educational institutions, facilitating the delivery of online courses, collaborative
learning experiences, and efficient content management. Simultaneously, rela-
tional database management systems have revolutionized the storage and re-
trieval of vast amounts of structured data, becoming the backbone of numerous
applications across various industries.

LMS have come a long way from their early iterations, initially developed as con-
tent repositories with limited interactivity. As educators recognized the need for
more dynamic and personalized learning environments, LMS evolved to incor-
porate features like discussion boards, assessment tools, and multimedia integra-
tion. This metamorphosis was paralleled by the advancement of RDBMS, which
provided the foundation for efficient data management, data integrity, and seam-
less integration of diverse content types within the LMS ecosystem.

1.1 Problem Statement

Nowadays, most software applications use ORM solutions to facilitate the storage
of data, not only because it allows independence from any database type, but also
facilitates the manipulation of data.

Sakai LMS has remained modern and relevant in the current scenario of teach-
ing support platforms, always with a view to adapting to the infrastructures of
institutions and universities that adopt it. As a result of this factor, the databases
currently supported are MySQL and Oracle. This project seeks to expand Sakai’s
spectrum of databases to work with PostgreSQL, making the necessary adapta-
tions in terms of architecture to do so.

However, Sakai, as it was founded at the beginning of the century, still presents
some typical traits of software programs written at that time. One of which is
the large quantity of manual and templated SQL statements written. These state-

1

Chapter 1

ments define the schema of the database as well as manipulate the data in it.

This project doesn’t consist of only changing the database configuration options
to start working with a Postgres database, as it would happen with an application
that only uses ORM to communicate with a database.

This project intends to make use of that large amount of data definition and ma-
nipulation statements and create an architecture capable of translating them to
make Sakai compatible with PostgreSQL. Doing this, instead of rewriting all of
those statements to PostgreSQL, allowed to come up with a solution that could
be advantageous in the long run and facilitate the work for the insertion of other
databases in the future.

This thesis will investigate the potential of manual query conversion, automatic
query conversion, and a hybrid of manual and automatic query conversion for
the database-specific SQL queries in Sakai.

1.2 Main objectives and approach

The main objective and contribution of this work is the addition of PostgreSQL
to the Sakai LMS as well as understanding and reporting on the challenges and
approaches to migrating large legacy software with manually constructed SQL to
a new database.

This could be achieved by using a query conversion tool to convert the existing
hand-constructed SQL queries in the application’s Relational Database Manage-
ment System (RDBMS) (Oracle and MySQL) and then use the converted queries
in the new RDBMS (PostgreSQL).

The approach involved building a layer that could automate the query conver-
sion and reduce the changes in the Sakai code that actually constructs the queries.
We used the Java Object-Oriented Querying (jOOQ) framework, as a library to
implement our initial approach to automated translation of hand-constructed and
templated SQL from one vendor variant to another.

By studying this approach, this work would contribute to Sakai LMS a layer that
could not only enable developers to use the application with a translations server
but also allow, in the future, to use the application with some other RDBMS. This
approach helped create the base for a translations server that can, eventually,
allow Sakai to perform normally with any kind of relational database, without
manually translating the core of its SQL service dialects.

1.3 Results of the thesis

This thesis work contributed to the progress in the challenge of inserting the Post-
greSQL dialect into SakaiLMS:

2

Introduction

• Sakai LMS can now start up with a PostgreSQL database, using a MySQL
SQL service that gets translated to Postgres.

• The proposal of an architecture that can build the base for a translations
server that enables Sakai LMS to be fully compatible with Postgres and,
thanks to the way jOOQ’s SQL translator works, other relational databases,
without modifying the SQL service.

In addition to that, this work also allowed us to conclude that jOOQ’s SQL trans-
lator works for most translations, but not always. So it’s necessary to modify
any jOOQ SQL translator layer to cope with the errors it throws. As we could
conclude, manual edition and approval of unsuccessful translations are enough.

Another conclusion taken was that the SQL service in Sakai isn’t the only entity
responsible for executing SQL statements in Sakai. This turned out to be a lim-
itation in the work’s results because the proposed architecture wasn’t expecting
that behavior from Sakai. This doesn’t reflect a faulty construction of the project
architecture but the gathering of inaccurate information on the Sakai LMS’s data
control.

1.4 Outline

Chapter 2 provides important background knowledge for the understanding of
the work done in the implementation phase, explores other tools, that are used in
not-so-different situations, and a closer insight into what jOOQ is and why it was
chosen for the solution’s architecture.

Chapter 3 discusses the approach to the problem and states the architectural
drivers that will measure the success of the whole intervention.

Chapter 4 sums up the decisions, experiments, and changes in the Sakai applica-
tion that led to the obtained results.

Chapter 5 points to the methodology used to guide the internship and provides a
comparison between the initial plan for the second semester and the real course
of events at that time.

Chapter 6 summarizes the conclusions drawn from the thesis.

3

Chapter 2

Background concepts and State of the
Art

This chapter provides important background knowledge for the understanding
of the work done in the remainder of the thesis. Firstly, explains what open-
source software is. Secondly, explores the Sakai’s architecturally important parts
for this thesis. Then, compares the differences between Postgres and the two
database dialects present in Sakai, MySQL and Oracle. After that, enumerates
the currently most used schema conversion tools. And the last sections focus
on providing grounding on why the chosen tool for this project, jOOQ, suits the
problem in hand.

2.1 Open-source

Since the products of this thesis will insert an open-source community project, its
fundamental to understand what is expected from open-source technologies and
communities.

By design, open source software licenses promote collaboration and sharing be-
cause they permit other people to make modifications to source code and incor-
porate those changes into their own projects. They encourage computer program-
mers to access, view, and modify open source software whenever they like, as
long as they let others do the same when they share their work. [1]

Open source software refers to computer software whose source code is made
freely available to the public. In other words, users have the freedom to view,
modify, and distribute the source code according to the terms of the software’s
open-source license. This open nature promotes collaboration, transparency, and
community-driven development.

Some of the major objectives of using open-source software include: [2]

• Cost: Open source software is generally cheap to use (if not free), which
may significantly benefit organizations and individuals who are working

5

Chapter 2

with limited budgets.

• Community: Open source software is developed and maintained by a com-
munity of developers, which means that there is often a large and active
user base that can provide support and assistance.

• Customizability: Because open source software is typically published un-
der a license that allows users to modify and distribute the source code, it
can be easily customized to meet the specific needs of an organization or
project.

It is important to retain that any work done in an open-source project should care
for facilitating future customizability and low costs.

2.2 Apereo Foundation and Sakai LMS

The Apereo Foundation [3] is a non-profit organization that supports the devel-
opment and use of open-source software for education. It was founded in 2005
as the Sakai Foundation and was later renamed Apereo Foundation in 2012. The
Apereo Foundation is focused on developing and supporting open-source soft-
ware and tools that are used in education and research.

The Apereo Foundation is supported by a community of educational institutions,
organizations, and individuals who contribute to the development and use of
its open-source software. The foundation is committed to promoting the use of
open-source software in education and research and to supporting the develop-
ment of tools and resources that can improve the learning experience.

Sakai LMS [4] is an open-source learning management system (LMS) that is used
by educational institutions and organizations around the world. It is a com-
prehensive platform that allows users to create and manage courses, assign and
grade assignments, conduct online discussions, and provide resources and mate-
rials for students. Sakai is designed to be a flexible and customizable platform,
and it can be tailored to meet the needs of different educational institutions and
organizations. It supports a wide range of features and tools, including course
and project management, collaboration, assessment, and communication.

Overall, Sakai is a powerful and feature-rich learning management system and
a flexible and customizable platform that can be tailored to meet the needs of
different users and environments.

2.2.1 Sakai LMS architecture

This project has the objective to add modifications to the application’s commu-
nication with the database, therefore the architectural most important parts are
the ones that involve the storage and retrieval of data between Sakai and the
database.

6

Background concepts and State of the Art

Figure 2.1: System Context diagram for Sakai LMS

Figures 2.1 and 2.2 represent, respectively, Sakai’s Context and Container dia-
grams. These figures attempt to represent this platform’s most architecturally
relevant parts for the intervention.

The Sakai presentation layer fetches information from the Sakai LMS kernel and
allows users to use and manipulate it.

The Sakai kernel provides core functionality for the Sakai framework. Contains
the SQL Service and Object Relational Mapper that stores/persists and retrieves
data in the Sakai database. Its Component Diagram is presented in figure 2.3.

The Sakai database contains all data of the application. The Sakai database can
be MySQL or Oracle type.

7

Chapter 2

Figure 2.2: Current Con-
tainer diagram for Sakai
LMS Figure 2.3: Current Component diagram for

Sakai LMS kernel

8

Background concepts and State of the Art

2.2.2 Using the Sakai LMS

To start the Sakai LMS, the user must define the configurations in the sakai.properties
file to choose from. Here is an example of how the sakai.properties file should
look:

auto.ddl=true
hibernate.show_sql=false

MySQL settings
vendor@org.sakaiproject.db.api.SqlService=mysql
driverClassName@javax.sql.BaseDataSource=org.mariadb.jdbc.Driver
hibernate.dialect=org.hibernate.dialect.MariaDBDialect
url@javax.sql.BaseDataSource=jdbc:mariadb://127.0.0.1:3306/sakai
username@javax.sql.BaseDataSource=root
password@javax.sql.BaseDataSource=password
validationQuery@javax.sql.BaseDataSource=select 1 from DUAL

Oracle settings
#vendor@org.sakaiproject.db.api.SqlService=oracle
#driverClassName@javax.sql.BaseDataSource=oracle.jdbc.driver.OracleDriver
#hibernate.dialect=org.hibernate.dialect.Oracle10gDialect
#url@javax.sql.BaseDataSource=jdbc:oracle:thin:@localhost:1521/xepdb1
#username@javax.sql.BaseDataSource=system
#password@javax.sql.BaseDataSource=password
#validationQuery@javax.sql.BaseDataSource=select 1 from DUAL

defaultTransactionIsolationString@javax.sql.BaseDataSource=
TRANSACTION_READ_COMMITTED

bodyPath@org.sakaiproject.content.api.ContentHostingService=
${sakai.home}data

bodyPathDeleted@org.sakaiproject.content.api.ContentHostingService=
${sakai.home}deleted/bodyContentDeleted/

In this example, the user intends to use the MySQL database named "sakai" with
the MariaDB Java Database Connectivity (JDBC) driver and Hibernate dialect. If
they wanted to use the Oracle database, the definitions for the MySQL database
would have to be commented (by adding a at the beginning of each line) and the
Oracle ones uncommented.

9

Chapter 2

2.3 SQL diversification

The Structured Query Language (SQL) standard has been revised multiple times
since the 1980s, although the core features of the standard SQL have been stable
since 1992. However, new variations kept appearing as database implementers
working at different vendors needed to solve new problems or circumvent ex-
isting problems that were not addressed in the standard. This explains why a
multiple of SQL dialects made their apparition and still co-exist today. [5]

So, although there is only one standard of the SQL language, there is a variety
of SQL dialects created for the Database Management Systems (DBMSs). These
dialects extend the standard SQL, in order to add features and adapt the syntax
to their DBMS.

2.3.1 PostgreSQL vs MySQL

This section describes the main differences between the PostgreSQL and MySQL
databases regarding their data types, Data Definition Language (DDL) and Data
Manipulation Language (DML) statements, and constraints.

Data types

Both MySQL and PostgreSQL support many data types, ranging from traditional
ones (e.g., Integer, Date, Timestamp) to complex ones (e.g., JSON, XML, TEXT).
However, there is a difference between these two database products when it
comes to the capability of catering to complex, real-time data search require-
ments. Let’s take a look at both. PostgreSQL not only supports traditional SQL
data types (e.g., Numeric, Strings, Date, Decimal, etc.) but also supports un-
structured data types (e.g., JSON, XML, and HSTORE) as well as network data
types, bit strings, etc. What makes PostgreSQL stand out is its support for a
wider range of data types, such as ARRAYs, NETWORK types, and Geometric
data types (including advanced spatial data functions) to store and process spa-
tial data. Supported data types can be found here. The support for spatial data
types and functions comes from an external module called PostGIS, which is an
open-source extension. MySQL supports various data types that help a variety of
applications store and process data in different formats, including the following:
traditional data types to store Integers, Characters or Strings, Date with Times-
tamps and Time Zones, Boolean, Float, Decimal, Large Text, and BLOB to store
binary data (like images). There is no support for geometric data types in MySQL.
[6]

Here are available all of the data types for MySQL and Postgres

10

https://dev.mysql.com/doc/refman/8.0/en/data-types.html
https://www.postgresql.org/docs/current/datatype.html

Background concepts and State of the Art

DDL and DML

MySQL is not a fully SQL-compliant database and does not support all SQL fea-
tures, making it a tough choice for developers and not a great choice for data
warehousing applications, as there will be a need here for advanced and complex
SQLs. MySQL doesn’t yet support “LIMIT & IN/ALL/ANY/SOME subquery.”
Also, MySQL does not support standard SQL clauses such as FULL OUTER
JOINS, INTERSECT, and EXCEPT, which are commonly used. Index types, in-
cluding Partial Indexes, Bitmap Indexes, and Expression Indexes, are also not
supported, and these are important to speed up query performances. PostgreSQL,
on the other hand, is a fully SQL-compliant database and supports all SQL stan-
dard features. Applications of pretty much any nature from any domain can use
PostgreSQL as their database, which makes it a popular choice for OLTP, OLAP,
and DWH environments. PostgreSQL is the best choice for developers who have
to write complex SQLs. [6]

Constraints

MySQL contains the constraint of types PRIMARY KEY, UNIQUE Index, FOR-
EIGN KEY, ENUM and SET data types [7] and CHECK [8]. Although NOT NULL
is not documented as a constraint in the MySQL 8.0 Reference Manual, MySQL
enables tagging NOT NULL to a column for it not to accept NULL values.

Postgres doesn’t have the ENUM or SET data types, but these data types have the
same effect as a string or numeric column with a check constraint. Postgres can
also apply, beyond the previously mentioned, the EXCLUDE constraint.[9]

2.3.2 PostgreSQL vs Oracle

This section describes the main differences between the PostgreSQL and Oracle
databases regarding their data types, DDL and DML statements, and constraints.

Data types

Data type names between these two dialects often need translation. For exam-
ple, in Oracle string values are commonly declared as being of type VARCHAR2,
which is a non-SQL-standard type. In PostgreSQL, use type VARCHAR or TEXT
instead. Similarly, replace type NUMBER with NUMERIC, or use some other
numeric data type if there’s a more appropriate one. [10]

Here are available all of the data types for Oracle and Postgres

DDL and DML

Data definition language (DLL) statements define, structurally change, and drop
schema objects. In Oracle, DDL statements enable to:

11

https://dev.mysql.com/doc/refman/8.0/en/
https://docs.oracle.com/en/database/oracle/oracle-database/21/sqlrf/Data-Types.html#GUID-7B72E154-677A-4342-A1EA-C74C1EA928E6
https://www.postgresql.org/docs/current/datatype.html

Chapter 2

• Create, alter, and drop schema objects and other database structures, in-
cluding the database itself and database users. Most DDL statements start
with the keywords CREATE, ALTER, or DROP.

• Delete all the data in schema objects without removing the structure of these
objects (TRUNCATE).

• Grant and revoke privileges and roles (GRANT, REVOKE).

• Turn auditing options on and off (AUDIT, NOAUDIT).

• Add a comment to the data dictionary (COMMENT). [11]

Postgres can produce similar DDL statements, except for the auditing options.
[12] The only way to enable Postgres with auditing operations could be by devel-
oping some auditing trigger. [13]

In Oracle, DML statements are the most frequently used SQL statements and
enable you to:

• Retrieve or fetch data from one or more tables or views (SELECT).

• Add new rows of data into a table or view (INSERT) by specifying a list of
column values or using a subquery to select and manipulate existing data.

• Change column values in existing rows of a table or view (UPDATE).

• Update or insert rows conditionally into a table or view (MERGE).

• Remove rows from tables or views (DELETE).

• View the execution plan for a SQL statement (EXPLAIN PLAN).

• Lock a table or view, temporarily limiting access by other users (LOCK TA-
BLE). [14]

Postgres can produce the same DML statements. [15] [16] [17]

Constraints

Oracle Database enables you to apply constraints both at the table and column
level.

• NOT NULL Allows or disallows inserts or updates of rows containing a
null in a specified column.

• Unique key Prohibits multiple rows from having the same value in the
same column or combination of columns but allows some values to be null.

• Primary key Combines a NOT NULL constraint and a unique constraint. It
prohibits multiple rows from having the same value in the same column or
combination of columns and prohibits values from being null.

12

Background concepts and State of the Art

• Foreign key Designates a column as the foreign key and establishes a rela-
tionship between the foreign key and a primary or unique key, called the
referenced key.

• Check Requires a database value to obey a specified condition. [18]

Postgres can apply, beyond the previously mentioned, the EXCLUDE constraint.[9]

2.4 Schema conversion tools

Schema conversion tools play a crucial role in enabling smooth database migra-
tion processes by efficiently converting and adapting database schemas to fit the
requirements of the target database system. In the next subsections some of the
most used schema and currently used data conversion tools are described and
compared.

2.4.1 Data Loader

Data Loader [19] is a tool developed by Interface Computers, that can in a sim-
ple graphical user interface, convert a database instance into another type of
database. This tool allows customizing the translations, like defining the type
and name of the new columns and other customizations and choosing to main-
tain constraints, indexes, and default values. The trial version doesn’t load more
than 50 rows per table, so for schema conversion, it’s still suitable.

2.4.2 MySQL migration toolkit

The MySQL migration toolkit [20] was created by MySQL AB and translates re-
lational database systems to MySQL. The Migration Toolkit may also support
migrating data to other databases that are compatible with the MySQL protocol
and syntax.

2.4.3 Ora2pg

Ora2pg [21] was developed by Gilles Darold. It connects an Oracle database,
scans it automatically and extracts its structure or data, then generates SQL scripts
that you can load into your PostgreSQL database. It can also apply the same pro-
cess to a MySQL database. It doesn’t provide the most user-friendly interaction,
because the desired modifications involve manually changing a configurations
file (ora2pg.conf) and running the program in a command prompt.

13

Chapter 2

2.4.4 EDB Postgres Migration Portal

The EDB Postgres Migration Portal [22] was produced by EnterpriseDB Corpora-
tion. The Migration Portal consists in a web-based interface that generates data
definition language (DDL) statements that are compatible with EDB Postgres Ad-
vanced Server, and, consequently, Postgres.

2.4.5 Ispirer SQLWays Toolkit

Ispirer Systems created the Ispirer SQLWays Toolkit [23]. SQLWays Toolkit is an
easy-to-use cross-database migration tool with a basic graphical user interface. It
allows migrating an entire database schema, including SQL objects, tables, and
data from source to target databases. This tool isn’t open source and doesn’t
support MySQL conversion to Postgres.

2.5 jOOQ

Java Object-Oriented Querying (jOOQ) is an open-source library for accessing
and manipulating data stored in a relational database. It is written in Java and
is designed to provide a simple and intuitive way to write SQL queries in a Java
application.

jOOQ supports a wide range of database management systems, including MySQL,
Oracle, and PostgreSQL. It provides a variety of features and tools, including
support for stored procedures, functions, and triggers, as well as support for ad-
vanced SQL features such as window functions and common table expressions.

2.5.1 Code generation

Source code generation is one of jOOQ’s main assets to increase developer pro-
ductivity. jOOQ’s code generator takes a database schema and reverse-engineers
it into a set of Java classes modeling tables, records, sequences, POJOs, DAOs,
stored procedures and user-defined types. jOOQ generates Java code from a
database schema, which allows developers to work with a high-level, type-safe
API that represents the structure of the database. This can make it easier to write
and maintain complex SQL queries, as the developer does not need to be con-
cerned with the details of the underlying database schema. [24]

2.5.2 DDL generation from objects

When using jOOQ’s code generator, a whole set of metadata is generated with
the generated artifacts, such as schemas, tables, columns, data types, constraints,
default values, etc. This metadata can be used to generate DDL CREATE state-
ments in any SQL dialect, in order to partially restore the original schema again

14

Background concepts and State of the Art

on a new database instance. This is particularly useful, for instance, when work-
ing with an Oracle production database, and an H2 in-memory test database. [25]

2.5.3 SQL Parser API

In the context of a database, the primary function of a SQL parser is to break down
the SQL statements into smaller components, such as keywords, table names,
column names, operators, and values. It checks the syntax and structure of the
SQL statement to ensure it conforms to the rules of the SQL language. If the
statement is not well-formed or contains errors, the parser will typically raise an
error or exception.

The jOOQ’s SQL Parser API [26] is accessible from the DSL API [27], which is the
part of jOOQ that adds lexical convenience for programmers on top of the model
API [28]. jOOQ’s SQL Parser API can produce jOOQ API elements from arbitrary
SQL string fragments.

SQL parser as a SQL translator

jOOQ’s SQL Parser API can act as a SQL translator when merging two of jOOQ’s
features: the parsing of SQL queries to the jOOQ’s internal domain-specific lan-
guage in Java and the rendering of the query object model again into a SQL string
written in the desired SQL dialect [29].

The result of this feature combination can be used online.

2.6 Is jOOQ an ORM?

Object-relational mapping (ORM) is a technique that is used to map data between
a database and an object-oriented programming language. It is used to bridge the
gap between the data model used by a DBMS and the object model used by an
application.

This chapter will explain the main differences between jOOQ and ORMs by com-
paring jOOQ with JPA, a ORM solution used by Sakai LMS.

2.6.1 JPA

Data Persistence is a means for an application to persist and retrieve information
from a non-volatile storage system. The Java™ Persistence API (JPA) provides
a mechanism for managing persistence and object-relational mapping and func-
tions since the EJB 3.0 specifications. JPA represents a simplification of the per-
sistence programming model. The JPA specification explicitly defines the object-
relational mapping, rather than relying on vendor-specific mapping implemen-
tations. [30]

15

https://www.jooq.org/translate/

Chapter 2

Overall, JPA is a useful tool for developers who need to access and persist data
in a Java application. It provides a simple and standard way to map Java objects
to a relational database, which can help to simplify the development process and
improve the maintainability of the code.

2.6.2 jOOQ vs JPA

The jOOQ API has a built Domain Specific Language (DSL) Application Program-
ming Interface (API), that emulates SQL in Java. This allows to write complex
SQL statements in Java code when it really is manipulating jOOQ objects that can
be rendered to a SQL query to be executed in a database.

However, jOOQ shouldn’t be seen as a JPA replacement, not only when creating
a new application, but also when inserting jOOQ into an existing application that
uses JPA.

The main differences between both solutions rely on the relation between the
application and the database [31]:

1. Will the application design drive the data model, or will the data model
drive the application design?

• If the purpose of the application’s database is just to persist data, Hi-
bernate is the simplest choice, especially in a project’s early stages.
Because the database schema can be easily generated from the Entity
model.

• But in cases where the database is expected to outlive the application
and be accessed by multiple applications, database design is a priority.
So, jOOQ could be more appropriate, since it allows easy construction
and manipulation of objects that can generate SQL queries that fit the
database.

2. Complex reading and light writing, or easy reading and heavy writing?

• If the application’s objects were created with the jOOQ’s code gener-
ator, jOOQ can perform simple CREATE, READ, UPDATE, DELETE
(CRUD) operations in a database [32]. But its main focus is executing
actual SQL statements. In other words, jOOQ’s DSL API allows writ-
ing complex SQL statements with more safety and less coding. JPA
can also perform more inventive SQL statements with the Java Persis-
tence Query Language [33], however, it doesn’t support DML opera-
tions and the syntax is limited by SQL standards.

• jOOQ is prepared to support elaborate reading/writing operations from
a set theory context. But when these operations implicate loading a
complex object graph with multiple entities involved into memory,
performing optimistic locking on it, modifying it in many different
ways, and then persisting it again in one go, then jOOQ won’t be help-
ful. This is what Hibernate was originally created for.

16

Background concepts and State of the Art

2.6.3 jOOQ is not the typical ORM

Like JPA and other ORMs, jOOQ facilitates CRUD by using a specific API. But
jOOQ could not be considered a usual ORM, because it is not capable of robust
writing to solve the object graph persistence problem. Instead, jOOQ should be
seen as a solution for embedding SQL in Java code.

jOOQ is the answer

jOOQ suits this thesis problem because it doesn’t act as a tool that persists data in
a vendor-agnostic way, but as a tool that standardizes SQL. jOOQ’s SQL Parser
API can reduce any given query written in MySQL or Oracle to its own data
model and render it to a Postgres query as it was a live translation technique,
which isn’t something that can be achieved by the other tools reviewed in this
chapter. Therefore, and given that Sakai LMS relies on a big amount of pre-built
SQL queries, jOOQ fits the best, theoretically, as a solution to this project. The
approach design and implementation phases will prove that jOOQ can be as suit-
able as it seems.

Table 2.1 compares the referenced tools in 2.4 with jOOQ.

17

Chapter 2

Live
Transla-

tion

Source
schema
conver-

sion
and

target
schema
import

Target
database
Defini-

tion
Queries
Genera-

tion

Open-
source

MySQL
to Post-

gres
conver-

sion

Oracle
to Post-

gres
conver-

sion

Data
Loader

✗ ✓ ✗ ✓ ✓ ✓

MySQL
Migra-

tion
Toolkit

✗ ✓ ✓ ✓ ✗ ✗

Ora2Pg ✗ ✗ ✓ ✓ ✓ ✓

EDB
Post-
gres

Migra-
tion

Portal

✗ ✗ ✓ ✓ ✗ ✓

Ispirer
SQL-
Ways

Toolkit

✗ ✓ ✓ ✗ ✗ ✓

jOOQ ✓ ✓ ✓ ✓ ✓ ✓

Not
avail-
able in

the
open

source
version

Table 2.1: Schema conversion tools

18

Chapter 3

Approach

This chapter contains the architectural drivers of the proposed software, a de-
scription of the experiments made to validate the fundamentals of the chosen
approach, and the changes that will be made in Sakai’s architecture.

3.1 Architectural drivers

Architectural drivers are requirements that shape architecture. Therefore every
iteration of the software architecture design depends on its fit with the architec-
tural drivers. Only after positive approval from the drivers’ perspective, can the
architecture design be executed.

3.1.1 Functional Requirements

The following functional requirements explain what is expected the system to do.
For the development of the architecture design, only the high-level functionality
of each requirement is expected. A use case will be defined to describe each
functional requirement.

Use cases

The first requirement states that Sakai must be able to start and run with Post-
greSQL as its database (Table 3.1).

Sakai contains a SQL service component that provides for SQL queries in two
dialects, MySQL and Oracle. So, for the second functional requirement, it is pre-
dicted that Sakai can translate its SQL service queries to Postgres (Table 3.2).

19

Chapter 3

Name Using a Postgres database
Description If a user wants to run Sakai with a

Postgres database, they must be
able to do it

Actor Sakai LMS end-user

Precondition The user set the sakai.properties file
to run Sakai on a Postgres database

Flow User starts Sakai. After startup, the
user can use Sakai. If the user
decides to check the database

defined in sakai.properties, the user
will observe that the database is
filled with over 320 tables that

contain the data created by Sakai
LMS

Table 3.1: Use case 1 - Using a Postgres database

Name Translate queries
Description Sakai must be able to translate the

SQL service queries (written in
MySQL or Oracle dialect) to

Postgres
Actor Sakai LMS kernel

Precondition The Sakai kernel invokes a SQL
query from its SQL service.

Flow The SQL service returns a
translated Postgres query, instead
of the original MySQL or Oracle

query

Table 3.2: Use case 2 - Translate queries

20

Approach

3.1.2 Technical/Business constraints

This thesis’s work will be integrated with Sakai LMS, which is a large enterprise
legacy system. As a result, the design decisions that shape the Sakai architecture
will inevitably shape this project’s architecture.

Table 3.3 represents the main constraints that affected the architecture design.

Technical/Business constraint Description

Java In order to implement the
necessary changes in Sakai, all code

had to be written in Java since
that’s the language by which the

Sakai kernel runs
Open-source Since this is a project for an

open-source community, it would
be fundamental that the developed

work was oriented keeping
open-source technologies and

communities in mind. This means
prioritizing low costs and easy

customizability

Table 3.3: Technical Constraints

21

Chapter 3

3.2 Experiments

This section clarifies the experiments taken to test the viability and expected dif-
ficulties in the integration of jOOQ and Postgres into the Sakai SQL service.

3.2.1 jOOQ

To test the jOOQ SQL translator, two independent projects were created. Each
project contained queries that could reproduce identic databases one in Oracle
and another one in MySQL. In each project, the queries were translated to Post-
gres with jOOQ, and then executed, to check for its validity.

In the Oracle project, out of 37 queries, jOOQ failed to translate one query (Java
throws error "org.jooq.impl.ParserException" in the translation process) and also
provided one translation that wasn’t effective in the target database (Java throws
error "org.postgresql.util.PSQLException").

jOOQ didn’t seem to have any problem converting MySQL statements to Post-
gres. However, as seen in the Oracle translation, it is possible that jOOQ may
not be always effective. Therefore, the same level of concern should be given to
both dialect conversions. These tests also showed that jOOQ may divide a single
query into multiple queries, in order to provide an effective translation.

SQL scripts to count and compare the constraints in each database, that were
created to use in this experiment and in the implementation phase, proved that
the jOOQ translations and the manually corrected translations generated similar
databases to their original ones.

Overall, this experiment showed that, despite some incorrect translations, jOOQ
was effective in translating most of the queries.

Pictures A.1 and B.1 display the results of the standalone projects used to test
jOOQ.

3.2.2 Postgres connection

Another key element of the project would be the connection to a Postgres database.
Since Sakai uses JDBC to connect to a database, the solution would implicate re-
defining the properties file that defines the database used by the application:

vendor@org.sakaiproject.db.api.SqlService=mysql #or oracle
driverClassName@javax.sql.BaseDataSource=org.postgresql.Driver
hibernate.dialect=org.hibernate.dialect.PostgreSQLDialect
url@javax.sql.BaseDataSource=

jdbc:postgresql://localhost:5432/sakai_pg_db
username@javax.sql.BaseDataSource=postgres_user
password@javax.sql.BaseDataSource=postgres_password

22

Approach

validationQuery@javax.sql.BaseDataSource=
SELECT 1 FROM pg_catalog.pg_tables LIMIT 1

This part wasn’t exposed to some direct testing, because, inevitably, the Sakai
connection to Postgres would be tested in the next experiment.

3.2.3 Sakai SQL service integration with jOOQ and Postgres

In the initial approach, the biggest change in the Sakai LMS kernel would be the
integration with jOOQ and Postgres, by inserting a Postgres Translations Com-
ponent that would receive every query that went through the SQL service, jOOQ-
translate it and execute in Postgres. For this experiment, we registered every SQL
query that was translated, and its translation. From 3.2.1, we knew that there
were going to be faulty translations, so we decided to check them. We identified
3 types of queries that would lead to inexecutable jOOQ translations (Tables 3.4,
3.5, 3.6).

Description jOOQ translation failed to execute
properly

Error org.postgresql.util.PSQLException:
ERROR: operator does not exist:

character = integer
Postgres Translation query create table SAKAI_SITE_PAGE

(PAGE_ID varchar(99) not null,
SITE_ID varchar(99) not null,

TITLE varchar(99) null, LAYOUT
char(1) null, SITE_ORDER int not
null, POPUP char(1) null, check

(POPUP in (1, 0)))
MySQL query CREATE TABLE

SAKAI_SITE_PAGE (PAGE_ID
VARCHAR (99) NOT NULL,

SITE_ID VARCHAR (99) NOT
NULL, TITLE VARCHAR (99)

NULL, LAYOUT CHAR(1) NULL,
SITE_ORDER INTEGER NOT

NULL, POPUP CHAR(1) NULL
CHECK (POPUP IN (1, 0)))

Table 3.4: Error example 1 - Unsuccessful jOOQ translation

From these errors we can understand that:

• Human validation of all queries must be enabled, to correct faulty transla-
tions;

• Other components in the Sakai LMS kernel bind params to queries and re-
trieve the information needed from the database. Trying to figure out where

23

Chapter 3

Description jOOQ failed to translate original
query

Error org.postgresql.util.PSQLException:
ERROR: syntax error at or near

"org"
Postgres Translation query org.jooq.impl.ParserException:

Unexpected clause: [1:111]
..._NAME=’SAKAI_SESSION’

ORDER BY CREATE_TIME LIMIT
1[*];

MySQL query select TABLE_ROWS FROM
information_schema.TABLES

WHERE
TABLE_NAME=’SAKAI_SESSION’
ORDER BY CREATE_TIME LIMIT

1;

Table 3.5: Error example 2 - jOOQ Error

Description Templated SQL without binding
params causes a syntax error

Error org.postgresql.util.PSQLException:
ERROR: syntax error at or near ";"

Postgres Translation query select USER_ID from
SAKAI_USER_ID_MAP where

EID=?;
MySQL query select USER_ID from

SAKAI_USER_ID_MAP where
EID=?;

Table 3.6: Error example 3 - Templated SQL

24

Approach

are those statements built and executed, would require more alterations on
code and an understanding of the current Sakai architecture, which isn’t
documented or known, than changing the SQL statements when going through
the SQL Service.

In the end, it could be a good idea to responsibilize the Postgres Translation Com-
ponent with only the translation of queries, rather than take the SQL service place
in the communication with the database.

25

Chapter 3

3.3 Architecture design

The next subsections define the architecture design iterations for the project and
the reasons that make them valid or not.

3.3.1 First architecture design iteration

At the beginning of the semester, the only predicted change was the insertion of a
Postgres Translation Component in the communication between the SQL service
and the Sakai database. This would mean that the Postgres Translation Com-
ponent would receive queries from the SQL service, translate them, and execute
them in the Postgres database. Figure 3.1 shows what was initially planned in
this stage.

However, after running the experiments in 3.2, we concluded that this architec-
ture suggested very basic and unrealistic means to the desired goal, running Sakai
LMS with Postgres.

This happened because, although this iteration satisfied the technical constraints,
from the functional requirements point of view this architecture wasn’t devel-
oped enough to fulfill the functional requirements, translate queries correctly
and, consequently, run Sakai on a Postgres database.

3.3.2 Second architecture design iteration

After the experiments in 3.2, we knew that the next architecture design iteration
would have to maintain a direct connection between the SQL service, as well as
enable human approval and correction of the jOOQ-generated queries.

The figures 3.2 and 3.3, represent the new Container diagram for Sakai LMS and
the new Component diagram for the Sakai LMS kernel. The differences from the
previous architecture are:

1. The SQL service won’t change its usual communication with the Sakai
database - The SQL service will receive the translated Postgres queries from
the Postgres Translation Component and execute them into the Sakai database.

2. The edition and approval of jOOQ translations - The edition and approval
of jOOQ translations will happen with the use of the Translations database,
which contains a table that relates a SQL service query with its translation
to Postgres, as well as a flag that informs if the translation has been revised
or not. On every Sakai run this table gets unregistered queries, that can be
edited and must be approved, to be used on the next run.

From the functional requirements perspective, this architecture is approved since
it plans for Sakai to run in a Postgres database, by translating the SQL service
queries.

26

Approach

At this point, the proposed architecture didn’t seem to need more refinement, as
it was authorized from the standpoint of the requirements, and there were no
more uncovered errors or experiments to perform.

27

Chapter 3

Figure 3.1: Inital Component diagram for Sakai LMS kernel proposal

28

Approach

Figure 3.2: New Container diagram for Sakai LMS

29

Chapter 3

Figure 3.3: New Component diagram for Sakai LMS kernel

30

Chapter 4

Implementation

This chapter has the purpose to provide a closer look at the development of the
work that led Sakai to work with a Postgres database, by translating its SQL ser-
vice. First, we define an endpoint that allows guidance and a final evaluation for
this work’s implementation. Then, we’ll describe in detail how the main object
of the implementation, the Postgres Translations Component (PTC), works, its
relation with the rest of the implementation objects, and its impact on the Sakai
LMS architecture. After illustrating the core implementation, it’s presented the
steps to recreate the evolution of the translations table, and its influence on Sakai
LMS’s goal to run using Postgres. Finally, we’ll make use of the initial endpoint
defined at the beginning of the chapter, to analyze the implementation’s result.

4.1 Defining parameters for a final comparison

Defining a possible endpoint for this project could help guide the implementation
and allow more concrete conclusions in the evaluation phase.

For this, we used the jOOQ’s functionalities of code generation and ddl queries
generation to create a Postgres database. First, the code generator would take an
instance of the Sakai database schema in MySQL and generate the Java classes,
then jOOQ would get, from the classes that were created, the ddl queries that
could replicate the initial MySQL database schema into Postgres. This predicted
database originated from a MySQL one, was because despite jOOQ successfully
generating the Java classes from Oracle, it failed to generate the ddl queries that
would recreate a Postgres database.

This jOOQ-generated Postgres database was created from an instance of the MySQL
database used by Sakai LMS after a complete startup because the goal of the
project is to study database portability in Sakai, rather than to translate the whole
application’s database.

The only evidence that this database was a correct replication of the original
MySQL database, was the fact that both databases had the same number of ta-
bles and constraints, 328 and 2845, respectively. But if we got the end result of the

31

Chapter 4

implementation to match this expected database schema and, on top of that, start
the Sakai LMS, this could add to the set of proofs that jOOQ can be a very useful
database converter.

4.1.1 What will be compared exactly?

We will compare the jOOQ database and the implementation schemas’ tables and
constraints.

To combine all existing constraints in the database into a single table, we created
a SQL statement that joins information from tables in the non-public schemas in
Postgres (information_schema and pg_catalog). Each row of this constraint ta-
ble contains information on the constraint’s name, type, table, column, condition
(for the check and not null constraints cases), and the referenced column (for the
foreign key constraints).

This way it’s possible to know what tables and constraints are present in the
jOOQ-generated database, that weren’t created in the implementation’s database.

4.2 The Postgres Translation Component

The PTC is the main object of this thesis implementation. This component is more
active in its startup and when is required to provide a translation for a MySQL or
Oracle query.

The Translations Hashmap

To avoid multiple connections to retrieve the translation for a pre-existent query
in the Translations Database, PTC contains a Translations Hashmap (TH) that is
loaded in one go with all the approved translations and their original queries. For
the remainder of the Sakai run, the TH is the entity that provides the translations
for known queries in the project.

4.2.1 Startup

At any Sakai startup, the PTC will retrieve the queries and their translations (if
approved), from the Translations Database, and store them into the TH that will
be used during runtime.

When a PTC instance is created, it requires two parameters, the SQL dialect used
by the SQL service and a boolean value that informs if the current Sakai run
intends to use a default TH or the dynamic one in the Translations Database.

If the developer doesn’t want to use a default TH, the PTC will create the connec-
tion to the Translations Database (this database must have been created by the

32

Implementation

developer before starting the Sakai LMS), create the translations table if it doesn’t
exist, and read the translations table to insert the approved translations in the TH.

4.2.2 Translation Process

All the SQL queries that go through the SQL service, will be looked up in the
PTC’s TH, in order to obtain a translation.

In case there is any SQL statement that is not in the TH, jOOQ will translate it to
be used in the current run, and register a new row in the Translation Database
table for the original dialect.

For example, if the MySQL service is being used, and a new query is not recog-
nized by the TH, the PTC will execute, in the Translations Database, the query:

INSERT INTO MySQL_translations (mysql_query, jooq_translation, approved)
VALUES (’original_mysql_query’, ’translated_postgres_query’, ’NOT TESTED’)
ON CONFLICT DO NOTHING

The translations table (in this case MySQL_translations) has a unique index in the
original query column (mysql_query), which doesn’t allow the insertion of rows
with a query that already exists in the table.

It is also important to say that, this new jOOQ-translation won’t be used in the
TH of the next Sakai LMS run unless it’s approved. A translation is approved
when the developer edits the translations table in the Translation Database, and
changes the "approved" column to something other than ’NOT TESTED’.

Finally, even if the jOOQ fails to translate, the translations table will receive the
jOOQ error in the column of the jOOQ translation:

’original_mysql_query’, ’jooq_error’, ’NOT TESTED’

But the original query will be executed in the current run, and hopefully, it can
be successful.

Figure 4.1 is a representation of what the translation process in PTC looks like.

4.3 Starting Sakai with a Postgres database

Having created the necessary software elements for the execution of this work,
we can now choose one of the Sakai SQL service dialects, MySQL or Oracle, to
translate to Postgres. And now it can start the recursive process that aims to make
Sakai able to run Postgres.

33

Chapter 4

Figure 4.1: Translation Process

4.3.1 Compare dialects for a starting point

The Sakai LMS user can choose one of two dialects to run the Sakai LMS, these are
MySQL and Oracle. For reasons of time efficiency, it was decided that the project
goal should be achieved by focusing on translating only one of these dialects to
Postgres.

To get to a decision, we would have to compare jOOQ’s performance on each of
the dialects. So we’d start Sakai LMS with each of the two SQL services, translate
every query, and execute every translation in a Postgres database. From those
executions, we get the number of successful queries, the number of tables created,
and the number of constraints created (Table 4.1).

Oracle MySQL

Successful
translations

83 in 91 107 in 116

Tables created 264 271

Constraints created 2205 2154

Table 4.1: Performance of jOOQ in Oracle and MySQL

Just because jOOQ received more queries for translation from the SQL service,
doesn’t prove that jOOQ actually performs better on MySQL queries than Or-

34

Implementation

acle queries. So to determine the difference in jOOQ performance between the
two dialects, we can use the values of successful translations in a z-test for two
independent samples.

Considering the null hypothesis to be H0 : "jOOQ shows the same performance
for both dialects at a significance level of 0.05", and the sample sizes and pro-
portions for the experiment, the number of queries and successful translations,
respectively, the value of z is -0.2686, making the value of p 0.78716. The result
is not significant at p < 0.05, so there is no evidence that jOOQ generates more
successful translations from one dialect to another.

When we look at the number of tables and constraints created, it’s important to
say that most Sakai tables are created from Hibernate, instead of SQL queries gen-
erated from jOOQ. However, comparing both results with the expected database
results (328 tables and 2845 constraints), it’s pretty eye clear that the jOOQ per-
formance doesn’t differ much in the generation of tables and constraints.

Since there are no major differences in the jOOQ performance in the conversion
of each dialect to Postgres, it was decided to proceed with the implementation
with the MySQL SQL service, as a consequence of:

1. The approach’s business constraint in 3.1.2, of prioritizing open-source tech-
nologies. There’s greater support in the Sakai and open-source communities
for MySQL than for Oracle, and the jOOQ open-source version works with
MySQL, while Oracle is only supported by the paid versions.

2. The number of total original queries processed, meaning that the Sakai
startup got further with a translated MySQL service than with a translated
Oracle service. Although jOOQ performance isn’t affected by the original
dialect, it shows that Sakai acts differently from one dialect to another.

3. The fact that the jOOQ-generated Postgres database originated from MySQL

4.3.2 Improve the translations table

After choosing a dialect to translate, the evolution of the translations table started.

Starting with an empty Translations Database, the PTC creates, in its first startup,
an empty translations table. In each Sakai run, the PTC will load into its TH the
approved translations in the translations table and register new queries, found
during that Sakai run, and their jOOQ translations into the translations table.

This process has the objective to supplement the translations table, to not only
have a more complete default TH in PTC that doesn’t need to connect to a database
but also to understand the impact of each iteration of the translations table evo-
lution in the transition to a successful Sakai startup.

It only took 6 iterations until there were no more MySQL queries to be discov-
ered or translations to be corrected, so it wasn’t possible to add new tables or
constraints in this approach.

35

Chapter 4

Figure 4.2: Evolution of the translations table in the number of translated queries

Figure 4.3: Evolution of the translations table in the number of corrected transla-
tions from the previous iteration

Figures 4.2 and 4.3 show the number of translations contained in each iteration
of the evolution of the translations table, and how many of them were corrected
right before that iteration. Figures 4.4 and 4.5 also show the impact of the evolu-
tion of the translations table in the creation of Sakai tables and constraints.

Figure 4.6 links the iteration of the evolution of the translations table with the
output screen that appeared after a Sakai startup with that state of the translations
table. A value of 0 means that such iterations couldn’t even start Sakai. With a
value of 1, that iteration led to the screen in figure 4.7. The last iterations could
show the proper Sakai screen, 4.8

36

Implementation

Figure 4.4: Impact of the translations table on the number of tables in the Sakai
database

Figure 4.5: Impact of the translations table on the number of constraints in the
Sakai database

37

Chapter 4

Figure 4.6: Startup screens after Sakai used each iteration of the translations tables

Figure 4.7: Screen 1 - screen after starting up Sakai in the third iteration of the
translations table

Figure 4.8: Screen 2 - screen after running Sakai in the fourth, fifth, and sixth
iteration of the translations table

38

Implementation

4.4 Implementation result

At the end of the improvement of the translations table, there were still tables,
and consequently constraints, that weren’t created in comparison with the jOOQ-
generated database. These tables had no apparent influence on Sakai’s startup
with Postgres but were still inserted into the database to help realize if jOOQ’s
database replication in 4.1 was viable or not.

Those 20 missing tables and their constraints were created using the respective
jOOQ ddl queries and after this manual insertion, we could verify the same
number of tables and constraints, in both jOOQ-generated and implementation
databases.

Could this mean that the manual validation failed at some point in the evolution
of the translations table, which led to missing tables? No, because there was no
query in the translations table that mentioned any of these tables. This tells us
that the missing tables are created in some other part of the Sakai LMS that isn’t
the Sakai LMS kernel. After some research, the definitions of these tables were
found in .sql files scattered across the Sakai LMS source code.

39

Chapter 5

Methodology and planning

This chapter describes the workflow of the first and second semesters. To enhance
our organization and gain a clearer understanding of the tasks at hand, we opted
to generate a Gantt chart illustrating the key assignments and their corresponding
durations for this project’s second semester.

5.1 First semester

Between October and January, monthly meetings were held with Professor Bruno
Cabral and the internship supervisor, Dr. Charles Severance, to make sure that
the internship was meeting its objectives.

Nevertheless, meetings on an almost weekly basis with the internship supervi-
sor Dr. Charles Severance were fundamental to the development of the thesis
document, as well as to the definition of the whole project.

5.2 Second semester Planning

This semester was expected to continue, just like the previous one, with the reg-
ular meetings with Dr. Charles Severance, as well as the monthly meetings with
Professor Bruno Cabral.

In the second semester’s planning, the project was divided into two major parts.
As figure 5.1 shows, it was expected that the first month and a half of the intern-
ship would set the work for the real purpose of the project, the conversion of the
Sakai LMS’s SQL service, in the following two and a half months.

41

Chapter 5

Figure 5.1: Gantt diagram for the second-semester initial planning

However, as the development setup evolved and the Sakai LMS was modified to
work with jOOQ and Postgres, it started to become clear that the planning for the
semester wasn’t accurate and needed to be adjusted. Therefore, new planning
was defined (figure 5.2), which resulted in a more complete and precise architec-
ture design. This time the main priority would be to optimize the translation pro-
cess, then compare the new software’s performance in both SQL services and ul-
timately finalize the translation process by improving the Translations Hashmap.

42

Methodology and planning

Figure 5.2: Real Gantt diagram of the second semester

43

Chapter 6

Conclusion

This chapter delivers a concise overview of the primary contributions and dis-
coveries made in this work. It also provides some investigation that can be done
to extend the work from this thesis.

6.1 Contributions and findings

This thesis work contributed to the progress in the challenge of inserting the Post-
greSQL dialect into SakaiLMS:

• Sakai LMS can now start up with a PostgreSQL database, using a MySQL
SQL service that gets translated to Postgres.

• The proposal of an architecture that can build the base for a translations
server that enables Sakai LMS to be fully compatible with Postgres and,
thanks to the way jOOQ’s SQL translator works, other relational databases,
without modifying the SQL service.

In addition to that, this work also allowed us to conclude that jOOQ’s SQL trans-
lator works for most translations, but not always. So it’s necessary to modify
any jOOQ SQL translator layer to cope with the errors it throws. As we could
conclude, manual edition and approval of unsuccessful translations are enough.

Another conclusion taken was that the SQL service in Sakai isn’t the only entity
responsible for executing SQL statements in Sakai. This turned out to be a lim-
itation in the work’s results because the proposed architecture wasn’t expecting
that behavior from Sakai. This doesn’t reflect a faulty construction of the project
architecture but the gathering of inaccurate information on the Sakai LMS’s data
control.

45

Chapter 6

6.2 Future work

Concerning future work, we consider that there are other experimentations that
can be done in this domain:

• Explore the translation of the SQL queries that don’t pass throw the SQL
service, by translating their .sql files or redirecting such queries to the Post-
gres Translations Component.

• Try to translate the Oracle SQL service to Postgres. To get a more concise
decision on the jOOQ difference in performance between these two dialects,
in the Sakai LMS context.

46

References

[1] What is open source? - www.opensource.com/resources/
what-open-source.

[2] Open-Source Software Benefits - What to Know - www.heavybit.com/
library/article/open-source-software-benefits-advantages.

[3] Apereo Foundation - www.apereo.org.

[4] Sakai LMS - www.sakailms.org.

[5] How To Find Your Way Through the Differ-
ent Types of SQL - www.towardsdatascience.com/
how-to-find-your-way-through-the-different-types-of-sql-26e3d3c20aab.

[6] PostgreSQL vs. MySQL: A 360-degree Comparison [Syntax, Per-
formance, Scalability and Features] - www.enterprisedb.com/blog/
postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features.

[7] 1.6.3 How MySQL Deals with Constraints - https://dev.mysql.com/doc/
refman/8.0/en/constraints.html.

[8] 13.1.20.6 CHECK Constraints - https://dev.mysql.com/doc/refman/8.0/
en/create-table-check-constraints.html.

[9] 5.4. Constraints - https://www.postgresql.org/docs/current/
ddl-constraints.html.

[10] Porting from Oracle PL/SQL - https://www.postgresql.org/docs/
current/plpgsql-porting.html.

[11] Data Definition Language (DDL) Statements - https://docs.oracle.
com/en/database/oracle/oracle-database/21/cncpt/sql.html#
GUID-C25B548B-363A-4FE5-B4EE-784502BAAD08.

[12] Chapter 5. Data Definition - https://www.postgresql.org/docs/current/
ddl.html.

[13] Working with Postgres Audit Triggers - https://www.enterprisedb.com/
postgres-tutorials/working-postgres-audit-triggers.

[14] Data Manipulation Language (DML) Statements - https://docs.
oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#
GUID-90EA5D9B-76F2-4916-9F7E-CF0D8AA1A09D.

47

www.opensource.com/resources/what-open-source
www.opensource.com/resources/what-open-source
www.heavybit.com/library/article/open-source-software-benefits-advantages
www.heavybit.com/library/article/open-source-software-benefits-advantages
www.apereo.org
www.sakailms.org
www.towardsdatascience.com/how-to-find-your-way-through-the-different-types-of-sql-26e3d3c20aab
www.towardsdatascience.com/how-to-find-your-way-through-the-different-types-of-sql-26e3d3c20aab
www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
www.enterprisedb.com/blog/postgresql-vs-mysql-360-degree-comparison-syntax-performance-scalability-and-features
https://dev.mysql.com/doc/refman/8.0/en/constraints.html
https://dev.mysql.com/doc/refman/8.0/en/constraints.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-check-constraints.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-check-constraints.html
https://www.postgresql.org/docs/current/ddl-constraints.html
https://www.postgresql.org/docs/current/ddl-constraints.html
https://www.postgresql.org/docs/current/plpgsql-porting.html
https://www.postgresql.org/docs/current/plpgsql-porting.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#GUID-C25B548B-363A-4FE5-B4EE-784502BAAD08
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#GUID-C25B548B-363A-4FE5-B4EE-784502BAAD08
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#GUID-C25B548B-363A-4FE5-B4EE-784502BAAD08
https://www.postgresql.org/docs/current/ddl.html
https://www.postgresql.org/docs/current/ddl.html
https://www.enterprisedb.com/postgres-tutorials/working-postgres-audit-triggers
https://www.enterprisedb.com/postgres-tutorials/working-postgres-audit-triggers
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#GUID-90EA5D9B-76F2-4916-9F7E-CF0D8AA1A09D
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#GUID-90EA5D9B-76F2-4916-9F7E-CF0D8AA1A09D
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/sql.html#GUID-90EA5D9B-76F2-4916-9F7E-CF0D8AA1A09D

Appendix

[15] Chapter 6. Data Manipulation - https://www.postgresql.org/docs/
current/dml.html.

[16] MERGE - https://www.postgresql.org/docs/current/sql-merge.html.

[17] LOCK - https://www.postgresql.org/docs/current/sql-lock.html.

[18] Types of Integrity Constraints - https://docs.oracle.com/en/
database/oracle/oracle-database/21/cncpt/data-integrity.html#
GUID-1C9665AD-A444-4AFB-984F-6385FCBEA64E.

[19] Data Loader - www.dbload.com.

[20] MySQL Migration Toolkit - https://downloads.mysql.com/docs/
migration-toolkit-en.pdf.

[21] ora2pg - www.ora2pg.darold.net.

[22] EDB Migration Portal - www.enterprisedb.com/docs/static/
9c9c01a9056ac239b4dedae97f56132e/migration_portal_v4_
documentation.pdf.

[23] Ispirer SQLWays Toolkit - www.sqlways.com.

[24] jOOQ Code Generation - www.jooq.org/doc/latest/manual/
code-generation/.

[25] jOOQ Generating DDL from objects - www.jooq.org/doc/latest/manual/
sql-building/ddl-statements/generating-ddl/.

[26] jOOQ SQL Parser API - www.jooq.org/doc/latest/manual/sql-building/
sql-parser/sql-parser-api/.

[27] jOOQ DSL API - www.jooq.org/doc/latest/manual/sql-building/
dsl-api/.

[28] jOOQ Model API - www.jooq.org/doc/latest/manual/sql-building/
model-api/.

[29] SQL translator - www.jooq.org/doc/latest/manual/sql-building/
sql-parser/sql-parser-translator/.

[30] Java Persistence API (JPA) - www.ibm.com/docs/en/was-liberty/nd?topic=
overview-java-persistence-api-jpa.

[31] jOOQ vs Hibernate - https://blog.jooq.org/
jooq-vs-hibernate-when-to-choose-which/.

[32] jOOQ Simple CRUD - www.jooq.org/doc/latest/manual/sql-execution/
crud-with-updatablerecords/simple-crud/.

[33] Java Persistence Query Language - https://docs.oracle.com/html/
E13946_01/ejb3_langref.html.

48

https://www.postgresql.org/docs/current/dml.html
https://www.postgresql.org/docs/current/dml.html
https://www.postgresql.org/docs/current/sql-merge.html
https://www.postgresql.org/docs/current/sql-lock.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html#GUID-1C9665AD-A444-4AFB-984F-6385FCBEA64E
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html#GUID-1C9665AD-A444-4AFB-984F-6385FCBEA64E
https://docs.oracle.com/en/database/oracle/oracle-database/21/cncpt/data-integrity.html#GUID-1C9665AD-A444-4AFB-984F-6385FCBEA64E
www.dbload.com
https://downloads.mysql.com/docs/migration-toolkit-en.pdf
https://downloads.mysql.com/docs/migration-toolkit-en.pdf
www.ora2pg.darold.net
www.enterprisedb.com/docs/static/9c9c01a9056ac239b4dedae97f56132e/migration_portal_v4_documentation.pdf
www.enterprisedb.com/docs/static/9c9c01a9056ac239b4dedae97f56132e/migration_portal_v4_documentation.pdf
www.enterprisedb.com/docs/static/9c9c01a9056ac239b4dedae97f56132e/migration_portal_v4_documentation.pdf
www.sqlways.com
www.jooq.org/doc/latest/manual/code-generation/
www.jooq.org/doc/latest/manual/code-generation/
www.jooq.org/doc/latest/manual/sql-building/ddl-statements/generating-ddl/
www.jooq.org/doc/latest/manual/sql-building/ddl-statements/generating-ddl/
www.jooq.org/doc/latest/manual/sql-building/sql-parser/sql-parser-api/
www.jooq.org/doc/latest/manual/sql-building/sql-parser/sql-parser-api/
www.jooq.org/doc/latest/manual/sql-building/dsl-api/
www.jooq.org/doc/latest/manual/sql-building/dsl-api/
www.jooq.org/doc/latest/manual/sql-building/model-api/
www.jooq.org/doc/latest/manual/sql-building/model-api/
www.jooq.org/doc/latest/manual/sql-building/sql-parser/sql-parser-translator/
www.jooq.org/doc/latest/manual/sql-building/sql-parser/sql-parser-translator/
www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa
www.ibm.com/docs/en/was-liberty/nd?topic=overview-java-persistence-api-jpa
https://blog.jooq.org/jooq-vs-hibernate-when-to-choose-which/
https://blog.jooq.org/jooq-vs-hibernate-when-to-choose-which/
www.jooq.org/doc/latest/manual/sql-execution/crud-with-updatablerecords/simple-crud/
www.jooq.org/doc/latest/manual/sql-execution/crud-with-updatablerecords/simple-crud/
https://docs.oracle.com/html/E13946_01/ejb3_langref.html
https://docs.oracle.com/html/E13946_01/ejb3_langref.html

Appendices

49

Appendix A

jOOQ conversion test: Oracle to
Postgres

51

Appendix A

Figure
A

.1:R
esultofjO

O
Q

translations
ofO

racle
queries

to
Postgres

52

Appendix B

jOOQ conversion test: MySQL to
Postgres

53

Chapter 6

Figure
B.1:R

esultofjO
O

Q
translations

ofM
ySQ

L
queries

to
Postgres

54

	Introduction
	Problem Statement
	Main objectives and approach
	Results of the thesis
	Outline

	Background concepts and State of the Art
	Open-source
	Apereo Foundation and Sakai LMS
	Sakai LMS architecture
	Using the Sakai LMS

	SQL diversification
	PostgreSQL vs MySQL
	PostgreSQL vs Oracle

	Schema conversion tools
	Data Loader
	MySQL migration toolkit
	Ora2pg
	EDB Postgres Migration Portal
	Ispirer SQLWays Toolkit

	jOOQ
	Code generation
	DDL generation from objects
	SQL Parser API

	Is jOOQ an ORM?
	JPA
	jOOQ vs JPA
	jOOQ is not the typical ORM

	Approach
	Architectural drivers
	Functional Requirements
	Technical/Business constraints

	Experiments
	jOOQ
	Postgres connection
	Sakai SQL service integration with jOOQ and Postgres

	Architecture design
	First architecture design iteration
	Second architecture design iteration

	Implementation
	Defining parameters for a final comparison
	What will be compared exactly?

	The Postgres Translation Component
	Startup
	Translation Process

	Starting Sakai with a Postgres database
	Compare dialects for a starting point
	Improve the translations table

	Implementation result

	Methodology and planning
	First semester
	Second semester Planning

	Conclusion
	Contributions and findings
	Future work

	Appendix jOOQ conversion test: Oracle to Postgres
	Appendix jOOQ conversion test: MySQL to Postgres

