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Resumo 

A doença de Alzheimer (DA) é a forma mais comum de demência em todo o mundo e é 

caracterizada pela deterioração das funções cognitivas. A DA é caracterizada pelas placas 

senis e pelos emaranhados neurofibrilares. As placas senis são resultado de acumulações 

extracelulares de compostos na forma anormal da β-amilóide, Aβ42. Os emaranhados 

neurofibrilares são compostos maioritariamente por filamentos helicoidais pareados que 

consistem em proteína Tau hiperfosforilada. A DA progride de forma lenta e tende a 

piorar gradualmente ao longo dos anos, sendo dividida em três fases principais da doença, 

a fase pré-clínica, o défice cognitivo ligeiro (DCL) devido à doença de Alzheimer e a fase 

de demência, dividida em leve, moderada e severa. O diagnóstico inclui exames 

neurológicos completos, avaliação do estado cognitivo, comportamental e funcional e 

estudos laboratoriais e de imagem. As abordagens metabolómicas representam uma 

importante ferramenta para a descoberta de biomarcadores para um diagnóstico precoce 

da DA. Este trabalho tem como objetivo fazer um estudo metabolómico não direcionado 

através de LC-MS/MS em amostras de líquido cefalorraquidiano (LCR) de pacientes com 

DCL de dois subgrupos, β-amilóide negativo e β-amilóide positivo, de forma a fornecer 

dados sobre alterações metabolómicas relacionadas com a patologia da DA. Assim, 40 

amostras de LCR foram analisadas usando a espectrometria de massa e uma análise 

univariada e multivariada foi realizada para identificar as características mais 

interessantes. Destas características, 64 permitiram uma melhor separação entre os dois 

grupos. Considerando as características mais interessantes, foi possível identificar 34 

delas. Uma análise mais abrangente foi realizada, e verificou-se que o metabolismo da 

tirosina, a biossíntese das hormonas esteroides e o metabolismo da cisteína e da metionina 

foram as vias identificadas como alteradas nas amostras de LCR. Os metabolitos 3,4-

dihidroxi-L-fenilalanina e 19-oxoandrost-4-eno-3,17-diona encontraram-se aumentados 

no LCR do grupo Aβ negativo, enquanto o metabolito 5'-metiltioadenosina estava 

aumentado no grupo Aβ positivo. A característica identificada como 5'-metiltioadenosina 

teve o melhor poder discriminatório entre os dois grupos. No caso dos péptidos, nenhum 

deles apresentava um bom poder discriminatório. Neste trabalho, identificaram-se as 

características mais interessantes que podem fornecer informações sobre a fisiopatologia 

da doença e podem ser utilizadas para diagnóstico. No futuro, estas identificações devem 

ser validadas e uma comparação com o histórico clínico do paciente deve ser considerado 

de forma a esclarecer esses resultados. 
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Abstract 

Alzheimer's disease (AD) is the most common form of dementia worldwide and is 

characterized by the deterioration of cognitive functions. AD is characterized by senile 

plaques and neurofibrillary tangles. Senile plaques result from extracellular 

accumulations of compounds in the abnormal form of β-amyloid, Aβ42. Neurofibrillary 

tangles mostly comprise paired helical filaments consisting of hyperphosphorylated Tau 

protein. AD progresses slowly and tends to worsen gradually over the years, being 

divided into three main stages of the disease, the preclinical stage, mild cognitive 

impairment (MCI) due to AD and the dementia stage, divided into mild, moderate and 

severe. However, patients in the MCI stage may not progress to the dementia stage. 

Diagnosis includes complete neurological examinations, assessment of cognitive, 

behavioral, and functional status, and laboratory and imaging studies. Metabolomic 

approaches represent an important tool for the discovery of biomarkers for an early 

diagnosis of AD. This work aims to carry out an untargeted metabolomic study through 

LC-MS/MS in samples of cerebrospinal fluid (CSF) from patients with MCI of two 

subgroups, negative β-amyloid and positive β-amyloid, in order to provide data on 

alterations in the metabolome related to AD pathology. Thus, 40 CSF samples were 

analyzed using mass spectrometry and a univariate and multivariate analysis was 

performed to identify the most interesting features. Of these, about 64 allowed a better 

separation between the two groups. Considering the most interesting features, it was 

possible to identify 34 of them. A more comprehensive analysis was performed, and it 

was found that tyrosine metabolism, steroid hormone biosynthesis, and cysteine and 

methionine metabolism were the pathways identified as altered in CSF samples. The 3,4-

dihydroxy-L-phenylalanine and 19-oxoandrost-4-ene-3,17-dione metabolites were 

increased in the CSF of the Aβ negative group, while the 5'-methylthioadenosine 

metabolite was increased in the Aβ positive group. The feature identified as 5'-

methylthioadenosine had the best discriminatory capacity between the two groups. In the 

case of peptides, none of them had good differentiating ability. In this work, we identified 

the most interesting features that can provide information about the pathophysiology of 

the disease and can be used for diagnosis. In the future, these identifications should be 

validated, and a comparison with the patient's clinical history should be considered in 

order to clarify these results. 
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1 – Introduction 

1.1 – Alzheimer's disease 

Alzheimer's disease (AD) is a progressive neurological disorder where the brain 

shrinks, brain atrophy occurs, leading to the death of brain cells [1]. According to Centers 

for Disease and Healthy Aging, AD leads to memory loss by affecting an individual's 

ability to carry out daily activities, for example the ability to carry on a conversation [2]. 

This disease is called Alzheimer's disease because in 1906, Dr. Alois Alzheimer, 

a German psychiatrist, found some changes in the brain tissue of a woman who had died 

of an unusual mental illness, where her symptoms included memory loss, language 

problems and unpredictable behavior. After she died, Dr. Alois examined her brain, and 

he found many abnormal clumps (now called amyloid plaques) and tangles of fibers (now 

called neurofibrillary tangles or Tau protein) [3]. 

According to data provided by Alzheimer's Disease International, in 2019, there 

were more than 55 million people in the world living with AD. This number is predicted 

to double every 20 years, reaching 78 million people in 2030 and 139 million in 2050 

(Figure 1), with most of this increase occurring in developing countries [4]. 

 

Figure 1 – Dementia statistics around the world: estimated growth in number of people with 

dementia between 2019 and 2050, adapted from Alzheimer's Disease International [4]. 

Currently, around 60% of people with dementia live in low- and middle-income 

countries, but by 2050 this will increase to 71% [4]. According to the Organization for 

Economic Co-operation and Development (OECD) report “Health at a Glance 2017”, 
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Portugal is the fourth country in the OECD with the most cases of dementia, with about 

19,9 cases per 1000 inhabitants, which is higher than the average [5]. 

According to data from the Dementia in Europe Yearbook 2019, in 2018 Portugal 

had about 193,516 cases of AD, which corresponds to a percentage of 1.88% of the 

general population. However, it is predicted that in 2050 there will be a doubling of these, 

reaching 346,905 cases, which is equivalent to 3.82% of the general population [6] 

(Figure 2 and 3). 

 

Figure 2 – Dementia statistics in Portugal: the number of people with dementia in Portugal from 

2018 to 2050, adapted from Dementia in Europe Yearbook 2019 [6]. 

 

Despite a small decrease in the Portuguese population over the years, it is expected 

that by 2050, the number of people with dementia in Portugal will double. One of the 

most important aspects for this change seems to be the significant increase in the number 

of people over 70 years old and, in particular, the age group over 85 years old, which will 

double between 2018 and 2050 [6]. 

 Nowadays, it is very important and relevant to carry out studies on AD in order to 

improve the diagnosis of the disease and, consequently, the treatments applied.  

 

Figure 3 – Dementia statistics in Portugal in percentage: the number of people with dementia in 

Portugal as % of the total population from 2018 to 2050, adapted from Dementia in Europe Yearbook 

2019 [6]. 
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1.1.1 – Alzheimer's etiology 

In both developed and developing countries, Alzheimer's disease has a huge 

impact on individuals. 

During the clinical manifestation of dementia disorders, there are some risk factors such 

as vascular disorders (smoking, high blood pressure, obesity in middle age, diabetes and 

cerebrovascular lesions) and some psychosocial factors (high schooling, active social 

activity, physical exercise and mentally stimulating activity) [7]. 

However, two of the most widely accepted risk factors for developing AD are age 

and genetic factors. Thus, there are three main steps [8] for an individual to progress from 

normal cognitive function to a condition in which the full range of clinical symptoms is 

expressed: an initial injury, a chronic neuroinflammatory response and a change in 

behavior. 

Despite this, the issue of advanced age is one of the risk factors with the greatest 

impact on cognitive decline and AD. The probability of an individual developing AD 

increases by about 3% in individuals aged around 65 years and by about 30% at 85 years 

of age. Although the incidence of AD under 65 years is less certain, there are studies that 

suggest that this age group is responsible for about 3% of AD cases [9].  

As age advances, certain changes occur in the brain that damage neurons and 

affect other types of brain cells, contributing to the development of Alzheimer's disease. 

Some of these changes include: atrophy of certain parts of the brain, inflammation, 

vascular damage, production of free radicals, and even reduced energy production inside 

cells [10]. 

Although a large proportion of individuals with AD manifest the same symptoms 

(memory loss, confusion, problems with daily tasks), this pathology can be divided into 

two types, depending on age and genetic factors, including early-onset Alzheimer's 

(EOAD) and late-onset Alzheimer's (LOAD). EOAD usually affects individuals aged 

between 40 and 50 years, representing only 5% of AD cases. However, LOAD affects 

people over the age of 65 and accounts for the majority of cases (> 95%) [11]. 

Late-onset Alzheimer's disease is quite complex as it results from a combination 

of environmental and genetic influences. The only well-established genetic risk factor for 

AD is the presence of the epsilon4 (ε4) allele on apolipoprotein E (ApoE). It is important 
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to note that a single ε4 allele increases the risk of AD 2 to 3 times, and in homozygotes 

the risk increases up to 12 times [12]. ApoE is the main apolipoprotein in the brain and is 

extremely important in cholesterol homeostasis. 

One of the mechanisms that leads researchers to think that ApoE is involved in 

the pathogenesis of AD is related to its ability to bind β-amyloid (Aβ), eventually 

converting A-beta from monomeric and non-toxic forms into oligomers and fibrils. This 

is visible through the presence of ApoE in senile plaques and intracellular neurofibrillary 

tangles (NFTs) [12].  

In genetic terms, AD is related to familial cases with mendelian inheritance and is 

defined by rare mutations in one of the three main genes, which are amyloid precursor 

protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2). However, PSEN1 is the 

most common cause of FAD. 

APP is a type I membrane protein with a large extracellular domain and a short 

cytoplasmic region. Thus, there are two cleavage moments that are required to release Aβ 

from APP, one in the extracellular domain (through a β-secretase cleavage) and another 

in the transmembrane region (through a γ-secretase cleavage). However, a large part of 

the mutations affects the activity of secretases, causing an increase in the production of 

an amyloidogenic alloform of the Aβ peptide, Aβ42. This becomes toxic to neurons and 

can cause Aβ deposition in vessel walls [13]. 

Thus, although there are no known concrete causes of AD, it is essential to study 

the risk factors associated with the disease and who has a greater capacity to develop it, 

in order to prevent this dementia [13]. 

1.2 – Clinical characteristics of Alzheimer's Disease 

Alzheimer’s disease is the most frequent cause of dementia, with a median 

survival duration of between 5 and 8 years after clinical diagnosis [14].  

However, during the progression of AD, brain changes that are imperceptible to the 

patient occur, causing memory problems and, eventually, physical disability. This is 

called AD continuum progression. [15]. 

In this continuum, three major phases are present: pre-clinical AD, mild cognitive 

impairment (MCI) due to Alzheimer's disease and dementia due to Alzheimer's disease, 

also called Alzheimer's dementia, being divided into mild, moderate and severe dementia 

[15]. 
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The AD continuum is known to start with pre-clinical Alzheimer's disease (when 

there are no symptoms) and end with severe Alzheimer's dementia (when there are critical 

symptoms). However, the length of time that occur on each part of the continuum varies, 

being influenced by age, genetics, biological sex, and other factors [15]. 

1.2.1 – Preclinical Alzheimer's disease 

At this stage individuals, despite not developing symptoms such as memory loss, 

have some measurable brain changes that indicate the first signs of AD (biomarkers). 

Some of these biomarkers include abnormal levels of β-amyloid, as shown in positron 

emission tomography (PET) and cerebrospinal fluid (CSF) analysis, various alterations 

in Tau protein in CSF and plasma, and even decreased glucose metabolism [15]. 

1.2.2 – Mild cognitive impairment due to Alzheimer’s disease (MCI due to AD) 

At this point, patients with MCI due to AD have biomarkers that demonstrate 

brain changes, such as memory, language and thinking problems, not interfering with the 

individual's ability to perform daily activities. About 15% of MCI due to AD patients 

develop dementia after 2 years. However, some individuals with MCI due to AD can 

return to normal cognition or do not experience further cognitive decline [15]. 

1.2.3 – Dementia due to Alzheimer's disease (AD) 

 In this phase, there are symptoms that impair the patient's daily tasks, such as 

problems with memory, language, thinking or behavior. There are several types of 

symptoms that change over time, and these reflect the degree of damage to neurons in 

different parts of the brain. As mentioned before, this stage can be divided into mild, 

moderate and severe dementia [15]: 

• mild Alzheimer’s dementia: at this stage patients are able to live mostly 

independently but will likely need assistance with some activities to maximize 

independence and stay safe. Handling money and paying bills can be especially 

challenging, and they may need more time to complete common daily tasks. 

• moderate Alzheimer’s dementia: this phase is the longest and where individuals 

experience more memory and language problems. They are more likely to be 

confused and have more difficulty completing tasks such as bathing and dressing. 

People may experience personality and behavior changes and also begin to have 

trouble recognizing loved ones. 
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• severe Alzheimer’s dementia: in this case the ability of individuals to 

communicate verbally is very low. Due to damage to the areas of the brain 

involved in movement, individuals become bedridden. Being bedridden makes 

them vulnerable to physical complications including blood clots, skin infections 

and sepsis, which triggers inflammation throughout the body that can result in 

organ failure. 

1.3 – Pathology of Alzheimer's Disease 

A study in the literature [16] tells us that there are two genetically distinct types 

of AD, namely: 

• familial Alzheimer’s Disease (FAD): which is usually characterized by clinical 

onset before age 60 years and Mendelian inheritance (represents <1% of AD 

cases). 

• sporadic Alzheimer’s Disease (SAD): which usually has clinical onset after age 

60 years and does not exhibit a consistent pattern of inheritance. 

According to Julia TCW and Alison M. Goate [16], AD is characterized 

neuropathologically by neuronal cell loss, extracellular neuritic plaques composed of β-

amyloid (Aβ plaques), and intracellular neurofibrillary tangles composed of 

hyperphosphorylated Tau protein (NFTs). 

A study carried out by Sneham Tiwari and collaborators [17] says that Aβ plaques 

begin their development in the basal, temporal, and orbitofrontal neocortex regions of the 

brain and, at a later stage, progress throughout the neocortex, hippocampus, amygdala, 

diencephalon, and basal ganglia. In more critical situations, these plaques are visible 

throughout the midbrain, lower brainstem and cerebellar cortex, and their concentration 

will cause the formation of NFTs, which are found in the locus coeruleus and in the 

transentorhinal and entorhinal areas of the brain. 

It is important to note that there are two main types of Aβ polymers (Aβ40 and 

Aβ42), and these have a direct role in plaque formation and induced neurotoxicity. The 

polymer Aβ40 is abundant and less neurotoxic than Aβ42, which is less abundant and 

severely neurotoxic.  

When Aβ40/Aβ42 aggregation occurs, ion channels are blocked, calcium homeostasis is 

altered, mitochondrial oxidative stress increases, and energy metabolism and glucose 
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regulation decrease, which contributes to the deterioration of neuronal health and 

consequently to neuronal cell death [17].  

Still in relation to the Aβ plaques, these are protected from the processing of the 

β-amyloid precursor protein (APP). APPs are proteolytically cleaved by two distinct 

pathways [16].  

In the non-amyloidogenic processing pathway, APP is cleaved within the Aβ 

domain by α-secretase, with the formation of a large soluble ectodomain (sAPPα) and a 

C-terminal membrane-associated fragment of 83 residues (C83). Subsequent cleavage of 

C83 by γ-secretase leads to the formation of P3 and the intracellular APP domain (AICD) 

[13, 18] 

In the amyloidogenic pathway, APP is cleaved at the N-terminus of the Aβ domain 

by β-secretase or BACE, a membrane-bound protease, resulting in the generation of a 

soluble ectodomain (sAPPβ) and a 99-residue, retained in the C-terminal membrane 

fragment (C99). Subsequently, γ-secretase, a membrane-embedded complex with 

presenilin as a catalytic component, cleaves C99 to release Aβ and AICD peptides (Figure 

4). As the γ-secretase cleavage site is promiscuous, it generates Aβ peptides with different 

C-terminals, including Aβ1-40 (Aβ40), Aβ1-42 (Aβ42) and other smaller species [13, 18]. 

 

Figure 4 – Proteolytic processing of amyloid precursor protein: proteolytic processing of APP 

within the non-amyloidogenic and amyloidogenic pathways, adapted from Isabelle Sumner et al [19]. 

Regarding NFTs, they are abnormal accumulations of a protein called Tau that 

accumulates inside neurons [20]. Under physiological conditions, Tau protein is a highly 

soluble and natively unfolded protein that interacts with tubulin and promotes its 
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assembly into microtubules, facilitating the stabilization of its structure, facilitating the 

transport of nutrients and molecules from the cell body to the axon and dendrites [20, 21]. 

However, in AD abnormal chemical changes occur that cause Tau to separate from 

microtubules and join other Tau molecules, forming threads that will join to form tangles 

inside neurons. These tangles block the neuron's transport system, which impairs synaptic 

communication between neurons (Figure 5) [21]. 

According to some studies in the literature [21-23], there is evidence that indicates 

additional functions for Tau. One is the fact that tau phosphorylation allows neurons to 

escape acute apoptotic death by stabilizing ß-catenin. In addition, Tau plays an essential 

role in balancing microtubule-dependent axonal transport of organelles and biomolecules, 

modulating kinesin-driven anterograde transport and dynein-driven retrograde transport. 

However, AD is clinically characterized by macroscopic and microscopic changes 

in the brain. 

Some of the macroscopic features affect locations involved in thinking and memory 

function, causing changes in the cerebral cortex (causing a strong reduction in volume) 

and even an increase in the ventricle [24]. 

The microscopic changes that are most frequently found in AD include alterations in 

senile plaque, neurofibrillary tangles, neuronal loss and also synaptic alteration [24]. 

These changes caused in the brains of Alzheimer's patients are very important for 

a later diagnosis. 

 

Figure 5 – Formation of neurofibrillary tangles (NFTs): Tau proteins self-assemble to form paired 

loosely interwoven helical filaments (PHF) and tightly wound straight filaments (SF), forming NFTs, 

adapted from C. Jie et al [25]. 
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1.4 – Alzheimer's diagnosis 

Accurate diagnosis of dementia is essential to provide appropriate treatment and 

patient counseling, however distinguishing dementia from delirium can be difficult.  

Dementia can be grouped into two categories, these being dementia with no 

prominent motor signs and dementia with prominent motor signs. In this case, this work 

studies AD that is included in dementias without prominent motor signs [26]. Diagnostic 

steps include clinical history, neuropsychological tests, mental status assessment, as well 

as laboratory and imaging studies. According to a study in the literature [26] genetic tests 

can still be performed, but their use is controversial and raises complex ethical issues. 

In 2011, the National Institute on Aging and Alzheimer’s Association (NIA-AA) 

formed a set of diagnostic guidelines for the pre-clinical, symptomatic (MCI) or clinical 

(dementia) phases of AD [27]. 

Briefly in the pre-clinical phase, some brain changes occur, including the accumulation 

of β-amyloid and other changes in nerve cells, however no clinical symptoms are evident 

[28]. 

In a phase of MCI some problems are visible in terms of thinking and memory, not 

completely interfering with the independence of patients and patients with MCI may or 

may not progress to AD [28]. 

The clinical stage, also called Alzheimer's disease, is the final stage of the disease where 

symptoms of memory loss, difficulties in carrying on a conversation and visual problems 

are notorious, impairing a person's ability to act independently [28]. 

The first step in doing a cognitive assessment involves taking a cognitive 

screening test, such as the Mini-Mental State Examination (MMSE) [29]. However, there 

are some studies [30-32] that prove that this test has not been suitable for the detection of 

MCI and clinical signs of dementia. For this reason, a new screening test was created 

called The Montreal Cognitive Assessment (MoCA) [33]. 

The MoCA test is a very important screening tool because it has a high ability to 

discriminate between normal cognitive function, MCI and early-onset dementia. This test 

can be performed between 10 and 15 minutes and has a great advantage, which is the 

sensitivity in the detection of MCI (about 90%) and mild AD (about 100%) [34]. 
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Some studies in the literature [35-37] have evaluated the ability of cognitive 

screening between MoCA and MMSE for the detection of dementia, concluding that the 

MoCA test is more useful in relation to the MMSE. 

On the other hand, other studies [38, 39] indicate that the MoCA is not superior to the 

MMSE when evaluating patients with MCI.  

This means that there is no consensus among researchers on which tool is most 

useful for detecting a decline in cognitive function. Nevertheless, when making a 

diagnosis of AD, it is always important to consider potential risk factors, such as age, sex, 

educational and occupational level, psychological well-being, physical exercise, social 

engagement, diet and history of chronic diseases [40]. 

These tests are useful for monitoring the evolution of cognitive impairment and 

also for evaluating the effectiveness of anti-dementia drugs or other intervention 

strategies. The MoCA is useful for mild stages of cognitive impairment (including MCI 

and mild AD dementia), with sensitivity values of 81% and specificity of 77% for 

detection, while the MMSE assessment is superior for more advanced stages [41]. 

1.4.1 – Neuroimaging 

As previously mentioned it is important that there are pathological markers to be 

able to make an early diagnosis [42]. One of the most interesting markers is 

neuroimaging.  

This makes it possible to obtain time-sensitive information, even before the onset 

of the cascade of neurodegenerative processes, allowing the classification of patients in 

different stages of the disease. According to Table 1, several imaging methods are 

currently used to delineate the characteristics of AD-related groups, including magnetic 

resonance imaging (MRI), positron emission tomography (PET), functional near-infrared 

spectroscopy (fNIRS), functional magnetic resonance imaging (fMRI) and 

electroencephalography (EEG) [43]. 
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Table 1 – Imaging methods that are used to delineate the characteristics of AD-related 

groups, including (MRI), (PET), (fNIRS), (fMRI) and (EEG). 

 

 

 

1.4.1.1 – Magnetic resonance imaging (MRI) 

One of the most used imaging techniques to visualize the internal organs of the 

body and the anatomy of the brain is MRI.  

This technique uses strong magnets and low-energy radiofrequency signals to 

gather information from atomic nuclei inside the body (Figure 6). One atom that is present 

in all organic compounds is hydrogen (H), so it is well suited for imaging because of its 

abundance in the human body [44]. 

 

Figure 6 – Magnetic resonance imaging (MRI): when an individual is exposed to a strong external 

magnetic field, the hydrogen nuclei align parallel or anti-parallel to the external magnetic field. Without 

a magnetic field, the magnetic moments of the nuclei are randomly distributed, and the net magnetization 

factor is zero, adapted from JunHyun Kim et al [43]. 

Imaging method Principle Main findings 

Structural MRI MR with hydrogen 
Cerebral atrophy, 

ventricular enlargement 

FDG-PET 
Radioluminescence of FDG, 

amyloid, tau … 

Reduced cerebral 

glucose metabolism 

fMRI MR for hemodynamics 
Hyper- and hypo-activation in 

the task-related regions 

fNIRS NIR light for hemodynamics Reduction in HbO concentration 

EEG Electrical signal of brain 

Altered functional connectivity 

pattern, slowing, decrease in 

complexity, alterations in 

microstate 
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To obtain a signal, patients need to be exposed to a pulse of radiofrequency energy 

(resonance frequency), allowing the protons in the H nucleus to reach a high-energy state 

causing structural changes such as dendritic and neuronal losses in the brain. MRI cannot 

clearly detect H nucleus inside the atrophied regions, so it is possible to evaluate disease 

progression [43].  

MRI makes it possible to quantitatively measure the morphological changes that 

occur in the brain structure. On MRI it is possible to see that the first spots of atrophy 

typically occur in the entorhinal cortex in the medial temporal lobe, followed by the 

hippocampus and adjacent structures [44]. However, not only volumetric reductions 

occur throughout the brain or in the hippocampal area.  

There are other changes that can be quantitatively measured by MRI such as 

cortical thickness or ventricular enlargement in correlation with the accumulation of 

senile plaques and cortical neurofibrillary tangles [45]. Thus, the ability to quantitatively 

measure all these changes allows for an increase in methodological development in the 

prediction and classification of AD [46]. 

1.4.1.2 – Positron emission tomography (PET) 

Regarding positron emission (PET), this technique measures metabolic changes 

through the use of different radioactive tracers, depending on the intended target. PET 

imaging is a coincident detection of gamma rays that are released during positron 

annihilation moments to biological molecules such as glucose, peptides and proteins [47].  

18F-fluorodeoxyglucose (FDG) PET performs better than structural MRI in 

predicting conversion to AD and is therefore more useful for early diagnosis. The 

neurodegeneration biomarker detected by FDG-PET in patients with dementia is brain 

hypometabolism [48] with changes in FDG uptake in AD patients that correlate with 

cognitive decline. AD patients show a much greater decline in glucose metabolism and 

further reductions over 1 year compared to healthy controls.  

Figure 7 shows the significant deviations in cortical metabolism in AD patients 

compared to healthy controls. 



 

13 

 

 

Figure 7 – FDG-PET imaging: 3D surface projection of 18F-FDG PET findings in AD (top row) and 

a statistical comparison with a healthy control population; green or yellow shows high deviation and 

black or blue shows no or low deviation (bottom row), adapted from JunHyun Kim et al [43]. 

 
1.4.1.3 – Functional magnetic resonance imaging (fMRI) 

Regarding functional magnetic resonance imaging (fMRI) methods, they allow 

the visualization of neural activation indirectly, detecting changes in the hemodynamics 

of cerebral vessels.  

This response is a widely used method to confirm activation in brain regions 

depending on the blood oxygenation level (BOLD) based on the paramagnetic properties 

of deoxyhemoglobin in the blood and intact neurovascular coupling [49]. The increase in 

oxygen consumption in the brain follows a wave of neuronal activity that is associated 

with an increase in cerebral blood flow (CBF) and blood volume (CBV) to the activated 

area. Oxygenated blood flow in the activated regions of the cortex increases the MRI 

signal and is then recorded on fMRI (Figure 8).  

Therefore, fMRI images investigate the correlation between the BOLD signal and 

brain regions comparing the cognitive condition with a control condition [50]. So, fMRI 

techniques can monitor AD-related brain dysfunction. 

 

Figure 8 – Functional magnetic resonance imaging (fMRI): elevated oxygen consumption in the 

brain is associated with increased cerebral blood flow (CBF) and blood volume (CBV), resulting in an 

amplified MRI signal. Deoxygenated blood exhibits low magnetic susceptibility, causing decay of the 

MRI, which can be captured by fMRI to effectively track and monitor brain dysfunction associated AD, 

adapted from JunHyun Kim et al [43]. 
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1.4.1.4 – Functional near-infrared spectroscopy (fNIRS) 

Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical imaging 

technique that monitors blood vessel hemodynamics, like fMRI, using light from the NIR 

window (700-900 nm).  

As NIR light is less scattered and absorbed by a few biological chromophores, it 

easily passes through biological tissues reaching the cranium, eventually being absorbed 

by oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) with different absorption spectra 

[51].  

Changes in oxygenation-deoxygenation states are calculated by the amount of light 

transmitted through the tissue (Figure 9) using the modified Beer-Lambert law. The sum 

reflects the total blood volume during brain activity. As more blood flows to activated 

brain regions, NIRS can be used to detect neural dysfunction when brain shrinkage occurs 

through neurodegeneration [52].  

Synchronization of fNIRS signals is reduced in individuals with mild AD compared to 

normal aging controls, with loss of regularity inside the brain network with disease 

progression [53].  

It can be concluded that fNIRS is a new modality that has some benefits, for 

example it is not an invasive method, and it is safe and relatively low-cost. 

 

Figure 9 – Functional near-infrared spectroscopy (fNIRS): the changes between oxygenated and 

deoxygenated states are determined by measuring the amount of light that passes through the tissue. This 

is done using a modified version of the Lambert-Beer Law and the combined measurements indicate the 

total volume of blood present during brain activity. By observing changes in blood flow to activated 

brain areas, NIRS can be used to identify neural dysfunction caused by brain shrinkage due to 

neurodegeneration, adapted from JunHyun Kim et al [43]. 

 



 

15 

 

1.4.1.5 – Electroencephalography (EEG) 

The electroencephalography (EEG) technique allows recording of the joint 

electrical activity created by the brain between millions of active neurons using electrodes 

on the surface of the scalp or intracranially (Figure 10).  

In this way, it appears that EEG activity reflects the more or less synchronous 

activation of a large population of neurons, more precisely, their postsynaptic activity. 

This means that if a population of neurons is spatially aligned and has synchronous 

activity, the resulting superimposed electric field will be detected by electrodes on the 

scalp surface [54]. 

This technique allows the measured electrical activity to show the functional 

changes that occur in the cerebral cortex, and which abnormalities in this activity can be 

used to detect the functional deficits caused by neurodegeneration in AD. 

 

Figure 10 – Electroencephalography (EEG): EEG records the collective electrical activity generated 

by millions of active neurons in the brain, using electrodes placed either on the surface of the scalp or 

intracranially. The EEG activity reflects the level of synchronous activation among a substantial 

population of neurons, along with their postsynaptic activity, adapted from JunHyun Kim et al [43]. 

An easy way to record the EEG signal in AD patients is in the resting state, as it 

avoids any discomfort in the patient or the possibilities of not being able to complete the 

necessary tasks. The most common effects include a gradual loss of complexity, 

connectivity changes, and changes in microstate complexity [55].  

The EEG technique allows diagnosing AD through several frequencies, allowing  

to discriminate healthy people from AD patients as it can seen in Table 2 [56]. 
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Table 2 – Frequencies of the EEG technique that allow diagnosing Alzheimer’s. 

disease. 

 

Range Band Detect 

0.1 – 4 Hz delta thalamus region and cortex 

4 – 8 Hz teta cognition, behavior and memory 

in the hippocampus 

8 – 12 Hz alfa thalamus region 

12 – 30 Hz beta motor cortex and anxious 

thinking 

30 – 100 Hz gama premotor, parietal and temporal 

cortical regions 

This EEG technique is useful. One of the great advantages is that it provides neural 

information on a millisecond time scale. However, it has some disadvantages, the main 

one being related to the distance between the electrodes and the real source of neuronal 

activity, creating a low-pass filtering in the source signal, and limiting the resolution, 

making it more difficult to accurately describe the neuronal processes [57].  

In conclusion, although the EEG method provides information on possible 

spatiotemporal distribution patterns of disease progression, subtle EEG abnormalities are 

difficult to detect in the early stages of AD and are not distinct from markers of other 

neurodegenerative diseases. 

1.5 – Cerebrospinal fluid (CSF) biomarkers 

The cerebrospinal fluid (CSF) biomarkers consists of a concentration of Aβ1-42 

and Tau, total Tau (t-Tau) and phosphorylated Tau (p-Tau), which facilitates the 

identification of patients with MCI at different risk levels of progression to AD [58-60].  

According to a study in the literature [61], when a combination of a decrease in 

Aβ concentrations in the CSF and an increase in Tau proteins (t-Tau and p-Tau) occurs, 

it is possible to discriminate patients with AD of controls with a sensitivity and specificity 

of more than 85%.  

However, the combination of these three biomarkers (Aβ1-42, t-Tau and p-Tau) is 

especially sensitive and specific for identifying AD patients among those with subjective 

memory complaints (defined as people who come to the clinic concerned about their 

memory function but there is no sign of memory decline). The predictive value of these 

biomarkers in identifying patients who will progress to AD among a group of patients at 
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the MCI stage is also quite good, with sensitivity ranging from 81 - 95% and specificity 

ranging from 72 - 95% [62-64]. 

A study in the literature [65] carried out in cognitively normal individuals showed 

that altered baseline levels of Aβ1-42 and p-Tau preceded the onset of clinical symptoms 

of MCI or dementia. This means that the altered levels of biomarkers in the CSF appear 

to reflect the long pre-clinical AD period, during which preclinical pathological changes 

occur in the brains of AD patients. 

Thus, according to a study in the literature [66], the dementia phase is characterized by 

the presence of reduced levels of  Aβ1-42 and increased levels of t-Tau and p-Tau (Figure 

11). 

These biomarkers help to differentiate AD from important differential diagnoses 

such as depression and Parkinson's disease, with p-Tau levels also providing substantial 

assistance in differentiating from other dementias such as frontotemporal lobar dementia 

and Lewy body dementia [67]. 

 

Figure 11 – Cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease: decreased levels of 

Aβ plaques and increased levels of Tau protein (p-Tau and t-Tau) help distinguish Alzheimer's disease 

from other diagnoses, adapted from Tatiana Barichello et al [66]. 

Aβ1-42 aggregation sometimes occurs in senile plaques, causing levels of this 

peptide in AD patients to drop. On the other hand, there are other biomarkers that can 

explain the increased presence of Aβ in patients, for example BACE1 [68].  

According to a study carried out by Lan Li and his collaborators [68], the BACE1 

protein, under pathological conditions, cuts APP at a specific point so that the neurotoxic 

Aβ42 is released extracellularly. One of the first pathological changes in AD occurs when 

there is an abnormal expression or function of BACE1, so it can serve as a biomarker in 
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early AD. On the other hand, the concentration of Tau protein in CSF is related to the 

intensity of neuronal degeneration, while the concentration of p-Tau reflects the 

pathogenesis of NFTs. One of the alternatives to this protein is the measurement of the α-

synuclein protein because it induces hyperphosphorylation and aggregation of Tau 

proteins [69]. 

It is important to mention that cerebrospinal fluid is considered the most suitable 

biological fluid for the study of neurodegenerative diseases. CSF is produced in the 

central nervous system (CNS), in balance with the brain and spinal cord. In normal adults, 

the volume of fluid is between 125 and 150 mL and its main function is to provide and 

maintain a suitable chemical environment for neural tissue. The biochemical composition 

of CSF provides information on the normal or pathological states of brain metabolism, 

which is very similar to that of ultrafiltered blood plasma containing metabolites that the 

CNS secretes [69].  

CSF collection is an invasive procedure performed by lumbar puncture, where an 

atraumatic spinal needle is usually inserted between the 3rd and 4th lumbar vertebrae 

(Figure 12) and at least 12 mL of fluid is withdrawn. The first 1-2 mL is for basic CSF 

assessment (protein, cell count, erythrocytes) and the last 10 mL for the biobank [69]. 

 

Figure 12 – Lumbar puncture: the patient lies in a hunched position on a table and a needle is inserted 

into the lower part of the spine to remove the cerebrospinal fluid, adapted from Julia Dixon et al [70]. 

One of the most likely diagnoses of AD includes evidence of memory decline, 

deficits in at least one other cognitive domain and progressive worsening of cognitive 

functions. However, it is important to investigate new biomarkers for the differential 

diagnosis between the different subtypes of dementia and a more accurate diagnosis to 

manage it effectively. 

The use of cerebrospinal fluid (CSF) biomarkers is shown to facilitate risk 

identification of patients with MCI at different risk levels of progression to AD [71].  
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1.5.1 – Mild Cognitive Impairment vs Mild Cognitive Impairment due to AD 

According to the literature [72], the mild cognitive impairment (MCI) phase is 

classified as a cognitive disorder greater than expected for an individual's age and 

education level.  

Although the first symptoms of memory loss and language problems begin to appear at 

this stage, these do not interfere with the individual’s daily activities. 

Despite this, some individuals in the cognitive impairment phase remain stable or even 

return to normal over time. However, more than half of patients in the MCI phase progress 

to the dementia phase within 5 years [72]. 

The stage of mild cognitive impairment due to Alzheimer's disease (MCI due to 

AD), according to the literature [73], is the pre-dementia stage, where symptoms begin to 

have more impact on the individual's daily life, however it may not interfere with their 

ability to carry out their day to day tasks.  

About 15% of individuals who are in the MCI due to AD stage progress to dementia after 

2 years and about one third develop dementia due to Alzheimer's disease inside 5 years 

[15, 73]. 

In this way, it is necessary that there are studies that focus on the alterations that 

occur between these two phases, MCI and MCI due to AD. Although the symptoms 

presented by the patients are similar, there are some differences.  

Patients in the MCI phase have fewer memory problems and are able to relate more easily 

to other individuals, thus leading a more independent life compared to patients in the MCI 

due to AD phase. One of the main differences between these two phases is the levels of 

biomarkers in CSF. Patients in the MCI due to AD phase have reduced levels of Aβ 

plaques and increased levels of Tau protein (p-Tau and t-Tau) compared to patients   in 

the MCI phase [66]. 

1.6 – Alzheimer's non-pharmacological and pharmacological therapeutics 

The management of AD can become quite complex as it requires a 

multidisciplinary approach, involving a range of clinicians as a specialist doctor 

(neurologist, psychiatrist, geriatrician), a general practitioner, nurses and other health 

professionals (social worker, therapist, psychologist).  

For this reason, it is important that treatments target cognitive and functional 

symptoms. Thus, the treatment is divided into two therapeutic approaches: 
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pharmacological and non-pharmacological. The goal is to help people maintain mental 

function, manage behavioral symptoms, and delay disease symptoms [74]. 

1.6.1 – Alzheimer's non-pharmacological therapeutics 

The main objective of non-pharmacological intervention, also called behavioral 

intervention, is to improve or maintain the individual's cognitive function.  

In this way, patients can continue to perform activities of daily living or address the 

behavioral symptoms that often accompany memory impairment (such as depression, 

wandering, sleep, agitation or aggression).  

One of the most relevant approaches is cognitive training, mainly used in the early 

stages of AD. This approach consists of targeted stimulation of brain functions with a 

focus on multiple cognitive abilities in order to prevent cognitive decline, promoting self-

sufficiency in activities of daily living and a better quality of life [75]. 

1.6.2 – Alzheimer's pharmacological therapeutics 

The main objective of the pharmacological intervention is to delay the progression 

of neurocognitive and physical decline symptoms. Currently, there are two classes of 

drugs widely used for the treatment of AD, such as acetylcholinesterase inhibitors 

(AChEI) (donepezil, galantamine and rivastigmine) and memantine, an antagonist of the 

N-methyl-D-aspartate (NMDA) receptor [76]. 

AChEl are widely used for the treatment of mild to moderate AD. Cholinesterase 

inhibitors reversibly bind to cholinesterase (the enzyme responsible for the degradation 

of acetylcholine within the synaptic cleft). As one of the main causes of AD is the 

reduction of acetylcholine (ACh) synthesis, it is important that there is a therapeutic 

method that increases cholinergic levels in the brain, inhibiting acetylcholinesterase 

(AChE) increasing cholinergic transmission between neurons [77]. 

For this, it is necessary to choose which AchEl to use, taking into account the ease 

of use, tolerability, cost and preference of the doctor and patient. The toxicity of AchEl 

is dose-related, however this decreases over time or with dose reduction. Thus some 

adverse effects are associated with the use of AchEls such as nausea, vomiting and 

diarrhea [78]. 

When dealing with patients with moderate to severe AD or those who are 

intolerant to AChEl, the use of memantine is recommended. This is an NMDA receptor 
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antagonist that is able to normalize the glutamatergic system and reduce glutamate-

induced neuronal degradation, since glutamate is the main excitatory neurotransmitter in 

the brain [76]. Glutamate activates the NMDA receptor and directs calcium ions to the 

postsynaptic neuron, causing synaptic plasticity, and making learning and memory 

processes of a higher order [79]. 

However, intracellular calcium accumulation sometimes occurs, the release of 

intracellular enzymes, mitochondrial damage and also brain cell damage and death occur. 

This happens when glutamate transport becomes immobilized during pathological 

conditions causing extracellular glutamate to accumulate, causing the NMDA receptor to 

open uncontrolled [79]. The use of memantine has some adverse effects such as 

gastrointestinal disturbances, confusion, dizziness, drowsiness, headache and agitation. 

Its administration is still contraindicated in individuals with a history of seizures [76]. 

1.6.3 – Combination therapy for Alzheimer's disease 

The search for combination therapies for AD has been very important, since there 

is a disappointing history regarding the development of effective treatments.  

It is important to note that combination therapy, as the name implies, results in the 

combination of memantine with any of the AChEl, but according to a study by Taro Kishi 

and his colleagues [79] there is a subgroup that shows greater improvement in cognitive 

function, which is donepezil. 

A study by Pierre Tariot and his colleagues [80] showed that combination therapy 

is quite advantageous. They designed a clinical trial using 404 patients, over 50 years old, 

with moderate to severe AD (who were taking donepezil) from 37 different US centers. 

All these patients were chosen according to the criteria of the National Institute of 

Neurological and Communication Disorders and Stroke-Alzheimer Disease and Related 

Disorders Association (NINCDS-ADRDA). During the beginning and end of weeks 4, 8, 

12, 18 and 24 all functional, cognitive and global outcomes were collected. At the end of 

24 weeks, the combination of memantine and donepezil was found to be effective                         

(P<0.001), allowing the investigators to conclude that memantine is associated with an 

improvement in cognitive function. 

Another study by Susanne Hartmann and Hans Möbius [81] showed that the use 

of memantine with donepezil for the treatment of AD patients was effective. This study 
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lasted 24 weeks and donepezil was administered at stable doses (5 - 10 mg/day) together 

with memantine (20 mg/day). Over the weeks cognitive function improved significantly 

(P< 0.001). 

New drugs have been developed that help to reduce the accumulation of Aβ 

plaques, since their aggregation initiates a set of events that lead to AD. One of the drugs 

used in anti-amyloid therapy is aducanumab, and when administered at an early stage of 

the disease, it manages to limit cognitive decline. This drug is a human monoclonal 

antibody that interacts with Aβ plaque aggregates, including soluble oligomers and 

insoluble fibrils, eliminating Aβ plaques. In this way, researchers found that patients 

treated with aducanumab significantly improved their cognitive abilities [82].  

However, there are patients with typical neuropsychological and clinical features of AD 

who do not have amyloid biomarkers, raising doubts as to whether the Aβ pathway is a 

pathological moment in AD development or is just a physiological response to neuronal 

damage [83]. 

Thus, discovering biomarkers that allow the diagnosis and therapeutic 

intervention of AD is extremely important. Currently some drugs can delay symptoms, 

however the existing treatments do not have the ability to stop the progression of the 

disease. This makes it essential in the future to develop multi-targeted inhibitors (which 

include anti-amyloid and anti-tau effects, anti-neuroinflammatory and neuroprotective 

effects, and neurotransmitter modifications) to treat this disease. 

1.7 – The potential of metabolomics as a tool for diagnosis 

Metabolomics is a scientific study that is based on the identification and 

quantification of a set of metabolites (metabolome) that are produced or altered by an 

organism [84].  

The human metabolome contains about 2,000 – 40,000 metabolites, which are small 

molecules (<2,000 Da) resulting from the end products of various biological pathways 

and processes [85, 86]. In this way, the metabolomics approach has opened new 

diagnostic possibilities regarding neuropsychiatric disorders, as this approach has the 

ability to map early biochemical changes in the disease. Thus it is possible to develop 

new biomarkers that indicate pathological abnormalities before the development of 

clinical symptoms [87]. 
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The diverse interactions between the tens of thousands of molecules result in very 

complex biological processes and functions. For this reason, omics data analysis methods 

(metabolome, genome, proteome and transcriptome) provide information about cellular 

processes in several areas, such as plant biology, animal science, toxicology, molecular 

epidemiology and complex diseases.  

The inclusion of different omics profiles (Figure 13) allows the collection of more 

comprehensive information about biological systems and molecular processes [88]. 

 

Figure 13 – The “omics cascade” in systems biology: this cascade is defined by different steps, 

starting from the genome, transcriptome, proteomics and the final step is metabolomics, adapted from 

Kamil Jurowski et al [89]. 

Omics approaches are essential tools and when applied and used, they allow 

understanding an organism's biology and  their response to genetic perturbations and 

environmental stimulus [89]. 

According to the literature [90] metabolomics is seen as a “direct functional 

reading of the physiological state of an organism”, since the metabolites transmit signals 

about the genetic structure and the environment. Raoul J. Bino and his collaborators [91] 

also mention that metabolomics emerged from a genomic methodology that makes it 

possible to understand the complexity of molecular interactions in biological systems. 

Nowadays, metabolomics is applied in several biological studies, since the 

biochemical response of an organism to a disturbance is characterized by the differential 

accumulation of individual metabolites [90]. The main objective of metabolomics is to 
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define the interactions of metabolites quantitatively and qualitatively in biological 

networks. 

When profiling the metabolome, either targeted or untargeted methods are used 

[92]. 

Regarding targeted methods, these focus on the exact quantification of a certain set of 

metabolites in biological samples. Generally, the set of metabolites is predetermined 

either by the scientific question in question or by the size of the library available in the 

software [92]. 

In relation to untargeted methods, they measure and compare the largest possible number 

of signals in each set of samples, assigning these signals to specific IDs of the metabolites 

through metabolomic databases. However, despite good progress in the construction of 

these databases, there is a significant part of the detected signals that are not identified, 

due to the absence of their spectra in the metabolomic databases. Untargeted approaches 

are extremely useful in identifying unknown metabolites, especially when they are the 

biomarkers of a study [92].  

Untargeted metabolomics studies provide insights into fundamental biological processes, 

as they reveal not only that several metabolites are still uncharacterized in terms of 

structure and function, but also that many of these uncharacterized metabolites undergo 

changes as a function of health and disease [92]. 

Usually, untargeted metabolomics studies are hypothesis generators and not 

hypothesis-driven. However, it is essential to build a workflow to maximize the number 

of metabolites detected and their quantitative reproducibility (Figure 14). 

 

Figure 14 – Workflow of an untargeted metabolomics analysis by LC-MS: this workflow a 

workflow maximizes the number of metabolites detected and their quantitative reproducibility. 
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Is necessary to use several analytical techniques in metabolomic studies, because 

the metabolome is quite complex, and the metabolites have a wide range of 

physicochemical properties.  

The most common analytical techniques are spectroscopic, which includes nuclear 

magnetic resonance (NMR) and spectrometric, which includes mass spectrometry (MS) 

coupled with separation techniques (liquid chromatography (LC), gas chromatography 

(GC), supercritical fluid (SFC)) [93].  

However mass spectrometry is chosen in most metabolomics studies, because it 

has high sensitivity and a wide range of covered metabolites. Thus MS in conjunction 

with a separation technique becomes an essential tool for metabolomic studies [94]. 

1.8 – Application of metabolomics in Alzheimer's disease 

There are currently many individuals with Alzheimer's disease and, as noted 

earlier in this work, the number of cases is expected to increase over the next few years 

as the population ages.  

The pathophysiology of AD is believed to begin several years before the onset of clinical 

symptoms. Although several biomarkers and imaging techniques are available to 

diagnose AD, a definitive diagnosis requires a post-mortem examination of brain tissue 

[95]. Thus, developing effective biomarkers for an early diagnosis is very important. 

Metabolomics is a new approach that aims to improve sensitivity and specificity 

in the early diagnosis of AD patients. This approach uses multiple platforms to measure 

the levels of small molecule metabolites in biological samples [95]. As mentioned earlier, 

these approaches are based on targeted and untargeted analyzes of the CSF using mass 

spectrometry techniques. These analyzes make it possible to verify the changes that occur 

in the metabolic pathways of AD patients, including disturbances in methionine 

metabolism, the tricarboxylic acid (TCA) cycle and lipid metabolism [94]. 

 A study by Eugenia Trushina and collaborators [96] compared individuals with 

MCI and AD, finding that the number of affected pathways in the CSF increased by 50% 

in patients in the dementia phase. This is because the number of altered pathways 

increases with disease severity.  

On the other hand, in patients with MCI, the number of affected pathways was higher in 

plasma, as this fluid reflects changes that occur in organs other than the brain. Some 

changes can occur in the methionine cycle in CSF, and these are associated with 



26 

 

cardiovascular diseases, vascular dementia, mild cognitive decline and Alzheimer's 

disease [97].  

One of the most important points to understand the mechanisms behind AD is the 

methionine cycle, because this is essential for cognitive function. One of the main 

products of the methionine cycle, of the synthesis of nucleic acids and proteins and of the 

biosynthetic reactions of brain metabolites is S-adenosylmethionine (SAM), which when 

demethylated forms S-adenosylhomocysteine (SAH).  

Normally, when comparing individuals with AD and MCI with healthy individuals, what 

is observed are low concentrations of SAM levels and high concentrations of SAH levels 

[97]. Sometimes there is a change in the balance of SAM and SAH and these moments 

record memory loss and cognitive decline in older populations.  

However, there are other metabolites that are also at high levels in patients with AD and 

MCI, such as choline, methionine and serine [97, 98]. 

One of the metabolites that acts as a precursor to the neurotransmitter 

acetylcholine is choline. Choline is involved in betaine and methionine metabolism and 

in phospholipid biosynthesis, and when it is in normal concentrations it represents good 

neurotransmitter activity and good metabolism in the brain and CNS. However, higher 

amounts of choline in AD patients represent neurodegeneration and the breakdown of 

choline-rich synaptic membranes [97]. 

Amino acids are very important in the immune response, neurotransmitter 

function and protein synthesis. However, some patients with MCI and AD undergo some 

changes in amino acid metabolism. A study by Clara Ibáñez and colleagues [99] showed 

that several amino acids (valine, serine, histidine and arginine) showed different patterns. 

Valine and serine showed an increase in the CSF of individuals with AD, the amino acid 

histidine decreased in individuals with MCI and AD, and arginine showed a small 

decrease in the CSF of individuals with AD.  

However, a study by Yuki Nagata and colleagues [100] showed that there was a 

reduction in CSF serine levels in AD patients, concluding that serine has a 

neuroprotective role for the enzyme phosphatidylserine synthase (PSS). This enzyme 

forms phosphatidylserine through the incorporation of serine into phosphatidylcholine 
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and phosphatidylethanolamine. The application of PSS indicates an improvement in the 

cognitive measures of individuals with AD [100]. 

 Tryptophan is also an amino acid of great interest. Tryptophan is a precursor to 

the synthesis of serotonin, melatonin and niacin. In AD patients, tryptophan levels are 

reduced, resulting in reduced serotonin synthesis [101]. Changes in the balance of 

tryptophan metabolism sometimes occur, and these are related to common features of 

neurodegenerative disorders.  

A study by D. Fekkes and colleagues [101] showed that tryptophan, quinolinic 

acid (QUIN) and kynurenic acid (KYN) had reduced levels in subjects with preclinical 

AD. The latter two results from tryptophan degradation and are associated with 

neuroinflammation. However, while QUIN has a neurotoxic role and is present in high 

amounts in AD patients, KYN has a protective role and is present in smaller amounts 

[102]. Kynurenic acid acts as an endogenous competitive agonist of the NMDA receptor, 

reducing its effects. This is because in Alzheimer's disease there is an overstimulation of 

the NMDA receptor, which can cause neuronal death by excitotoxicity [102].  

In this way, it is possible to believe that both tryptophan and its metabolism 

products (QUIN and KYN) can be potential biomarkers for early AD diagnosis and a 

focus for new therapeutic interventions. 

As previously mentioned, some disturbances at the tricarboxylic acid (TCA) cycle 

level also occur in patients with AD. It is important to note that the TCA cycle plays an 

important role in gluconeogenesis, lipogenesis and amino acid interconversion. This 

cycle is the main source of energy for cells, thus being the final common pathway for the 

oxidation of proteins, lipids and carbohydrates [87]. The disturbances that occur in the 

TCA cycle in AD patients cause the intermediates of this cycle, when compared to control 

groups, to appear in higher concentrations, both in plasma and CSF.  

A study carried out by Crystal Sang and colleagues [103] confirms that amino 

acids and fatty acids fuel the tricarboxylic acid cycle when there is a decrease in glucose 

levels in individuals with AD. Thus, a decrease in plasma amino acid concentrations is 

related to their use for TCA cycle replacement. Another way to reset the cycle is through 

the oxidation of fatty acids through the production of acetyl coenzyme A (acetyl-CoA).  

Even so, in AD patients it is also possible to verify an accumulation of 

acylcarnitines both in the plasma and in the CSF, which is formed by the association of 
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acylcoenzyme A (acyl-CoA) with carnitine. Carnitine provides energy to cells through 

reactions that transfer long-chain free fatty acids from the cytoplasm to the mitochondria, 

facilitating their oxidation. Accumulation of acylcarnitines in AD patients is related to 

incomplete oxidation of acyl-CoA intermediates leading to a retroconversion to 

acylcarnitine avoiding the toxic effects of their accumulation in mitochondria [104]. 

In AD patients, changes in sphingolipid (SM) levels also occur, which are 

responsible for several processes such as cell division, differentiation and death. The 

degradation of SM is related to several neurodegenerative disorders in the brain, thus 

contributing to Alzheimer's disease. However, there are studies that show that during the 

progression of this disease, SM decrease in both brain tissues and plasma, while others 

suggest that they increase [103].  

A recent study by Therese Koal [105] and colleagues showed that the combination 

of two metabolites (SM (d18:1/18:0) and SM (18:1/18:1)) showed a significant and 

positive association with the pathology of AD. Thus, the researchers concluded that the 

SM metabolite (d18:1/18:0) is a potential biomarker diagnosing AD.  

Despite this, there are other potential biomarkers for diagnosing AD, such as 

uracil and uridine. Uridine is absorbed and phosphorylated in the brain to form 

nucleotides used for the synthesis of DNA and RNA.  

On the one hand, a study in the literature [106] showed that uridine levels 

increased in the CSF of individuals with AD, resulting in a change in the reversible 

conversion of uridine to uracil, through the enzyme uridine phosphorylase. This enzyme 

plays an important role in the detection and initiation of cellular responses to oxidative 

stress. However, uracil levels decreased in AD patients, which is the main substrate of 

the enzyme uracil-DNA-glycosylase (which is an enzyme that regulates oxidative stress). 

This enzyme removes oxidized pyrimidines and is overexpressed under oxidative stress 

as a protective mechanism against neurodegeneration. This shows that decreased uracil 

levels may be related to changes in uracil-DNA-glycosylase function leading to 

neurodegeneration. Even so, uracil acts on the P2X channel in the brain, which controls 

neurotransmission, neuromodulation, cell proliferation, differentiation and death, causing 

any alteration to be associated with several neurodegenerative diseases [106]. 
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On the other hand, study [107] shows that the levels of uridine in the CSF of 

individuals with AD decreased. This decrease may be related to reduction in synaptic 

plasticity and neuronal deficits.  

However, although the results of these two studies [106, 107] are contradictory, 

there is an explanation that makes them plausible, since the effects of nucleosides depend 

on brain region, age and sex. This means nucleosides have different roles depending on 

different brain areas. Thus, it is possible that both uridine and uracil are potential new 

biomarkers for an early diagnosis of AD. 

One of the critical measures of neuronal and synaptic activity is the cerebral 

metabolic rate of glucose (CMRglc). Thus, some studies have shown that all clinical 

symptoms of Alzheimer's disease are related to significant decreases in CMRglc. This 

was visible by PET together with 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) as a tracer 

[108].  

A study in the literature [109] measured glucose levels and the proportions of 

glycolytic amino acids (serine, alanine and glycine), which are representative of brain 

glycolytic function. The results indicated an increase in glucose levels in the brain and a 

decrease in glycolytic flow, associating them with the pathology’s severity and the 

expression of AD symptoms.  

Another study [110] analyzed 122 CSF metabolites from patients with and without 

AD. It was found that only the glycolysis intermediates, dihydroxyacetone phosphate 

(DHAP) and phosphoenolpyruvate (PEP), showed a significant decrease in AD patients. 

Thus, the decreases in the levels of glycolytic metabolites in the CSF of Alzheimer's 

patients translate into inhibition of glycolysis under oxidative stress conditions. 

In conclusion, decreases in glucose levels in brain metabolism are associated with 

the severity of AD pathology, making it essential to study the potential of glycolysis 

metabolites for the diagnosis of AD. 

Therefore, with the identification of all these metabolites, several studies have 

emerged that allow us to understand whether they can improve the classification of the 

cerebrospinal fluid profile of AD pathology [106-110]. Some metabolites such as 

methionine, serine, SAH and choline do not have the ability to improve the CSF profile 

classification [98].   
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However, other glycolysis metabolites, such as the combination of PEP-DHAP and PEP-

2PG, showed the ability to improve the classification of the CSF profile. Even so, none 

of these metabolites can achieve the performance of the already validated metabolites, 

that is, Aβ1-42, p-Tau and t-Tau.   

This topic aimed to show the potential of several metabolites in order to show 

their potential performance compared to CSF amyloid and Tau proteins. In conclusion, 

further studies are needed to identify potential new biomarkers that allow early diagnosis 

of Alzheimer's disease. For this, it is necessary to pay attention to some criteria, such as 

the increase in the number of samples, the increase in age differences and an increase in 

male patient. 
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2 – Impact of the progression of dementia at a forensic level 

Currently, and as mentioned in the previous chapter, there is a rapid increase in 

the elderly population worldwide. In this way, it has been possible to find some 

unexpected problems facing patients with dementia [111]. Thus, it is important to 

understand the impact of dementia at a forensic level, so that it is possible to judge a given 

individual fairly. 

Dementia patients reveal neurocognitive symptoms such as, for example, memory 

impairment, lack of judgment, and language problems, among others [112]. It is known 

that these symptoms can change depending on several factors, including the type of 

dementia, the passage of time, the environment where the individual is, the medications 

administered, and the care provided. That is, all symptoms can favor (whether separately 

or in combination with each other) criminal behavior and actions [112]. 

On the other hand, some of the patients with dementia become more careful and 

introverted people, as they feel their shortcomings. A study present in the literature [112] 

indicates that, in the case of Alzheimer's disease, the reduction of cognitive function 

causes individuals to behave passively, affecting their ability to elaborate and organize a 

certain crime. 

However, a part of the population that suffers from dementia problems shows an 

increase in aggressive behavior compared to the normal population. 

Thus, individuals with dementia who have committed a crime manifest various 

subtype of dementia, as well as stages of progression. These criminal behaviors are 

further divided into violent and non-violent crimes. The first is related to alcohol 

consumption, while the second is related to individuals with dementia who have no 

history of alcohol consumption [111]. 

According to the literature [111], the progression of an individual’s dementia 

status is an important factor in relation to the commission of crimes. 

On the one hand, crimes associated with alcohol consumption occurred earlier in 

dementia, because of cognitive dysfunction, hallucinations and delusions. 

On the other hand, patients who had no history of alcohol consumption committed a crime 

at a more advanced stage, where dementia had progressed considerably and when patients 

had already lost most of their family and socioeconomic support. 



32 

 

According to the literature [112], alcohol is a very common risk factor for violent 

crimes worldwide. This same study analyzed a group of people with dementia, to increase 

the understanding of risk factors for crime in people with dementia. 

Thus, although the investigators excluded patients with alcohol consumption at the time 

of the forensic psychiatric examination, approximately 48% of the occurrences indicated 

an alcohol-related diagnosis. 

Still, alcohol dependence decreases cerebral blood flow, leading to deterioration in 

cognitive function, and provoking more violent behavior, whether in individuals with or 

without dementia [111]. 

When faced with a trial of an individual, where the individual is found guilty and 

the verdict is imprisonment, the Swedish court may accept the submission of a forensic 

psychiatric examination if the person in question shows signs of dementia.  

However, this examination must clarify whether the individual was suffering from a 

“severe mental disorder” at the time of the crime and at the time of the examination [112]. 

However, from a forensic perspective, this legal concept of “severe mental 

disorder” is not related to diagnoses, but to effects of disorders, including psychotic 

effects; a state of severe depression with suicidal behavior at the time of the crime; severe 

personality disorder with recurrent episodes of psychotic behavior and reduced 

psychosocial functioning; mental disorder with increased compulsiveness; severe 

dementia, severe brain damage, and severe mental retardation [112]. 

Although the different subtypes of dementia are considered serious by the general 

health system and the population, they may not be considered as serious from a forensic 

point of view.  

This means that if an individual shows a state of severe psychiatric disorder at the time 

of committing a given crime, the verdict may implement forensic psychiatric treatment 

instead of imprisonment [112]. 

It is important to note that forensic psychiatric examinations are carried out by the 

National Council of Legal Medicine, which is carried out by a team of forensic 

psychiatrists and psychologists, forensic social researchers, and also a nursing team. 

The Swedish Code of Judicial Procedure Act [112] allows the court to refuse to prosecute 

an individual if he has committed a crime while in a state of dementia or another serious 

mental disorder. 
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In conclusion, an individual with dementia may misinterpret a given situation, 

acting inappropriately and unfairly. Even so, it is believed that many of the patients who 

cause criminal acts are not fully aware of what they are doing, often not understanding 

what is happening. 

However, it is extremely important to carry out psychiatric examinations accurately and 

fairly, so that all people with dementia are judged according to the relevance of their 

actions, especially when we are dealing with other people's lives. 
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3 – Analytical techniques 

As already mentioned, the study of the metabolome is challenging, as metabolites 

have a wide range of physicochemical properties.  

Because of this, spectroscopic and chromatographic techniques are used to study 

the compounds of interest [113]. However, the choice of the most appropriate technique 

depends on the sample matrix, its concentration, the metabolites properties and even the 

sample amount. 

3.1 – Nuclear magnetic resonance spectroscopy (NMR) 

Nuclear resonance spectroscopy (NMR) is a highly reproducible, non-destructive, 

cost-effective technique. However, it is only used in 30% of metabolomics studies.  

NMR is based on the absorption and re-emission of energy through some atomic 

nuclei, which are influenced by an external magnetic field. This technique can be 

automated, allowing rapid analysis by simultaneously measuring several types of 

metabolites [113]. Furthermore, it also allows the collection of additional structural 

information, such as the presence of chemical functional groups and the spatial 

decomposition of chemical groups in a structure. All this variety of information makes it 

possible to understand biological processes and biochemical pathways [114]. 

Despite this, this technique has a major disadvantage, as its sensitivity is 

significantly lower than mass spectrometry (MS), making NMR unsuitable for analyzing 

low-abundance metabolites [113]. However, NMR is considered a complementary 

technique to LC-MS or GC-MS. 

3.2 – Mass spectrometry (MS) 

Mass spectrometry measures the mass/charge (m/z) ratio of ions in order to 

identify and quantify the molecules present in a given sample, becoming one of the main 

techniques for metabolomics studies.  

Even so, the separation of the analytes is fundamental for complex matrices, such as 

biofluids, because a direct injection into the spectrometer without a chromatographic 

separation makes the analysis of metabolites very fast, with ion suppression and low 

ionization efficiency [113]. 

A mass spectrometer is based on a sample introduction system, an ionization 

source (production of ions resulting from the ionization of sample molecules), a mass 

analyzer (separation of selected ions according to the m/z ratio) and an ion detector 
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(collection of ions and signal formation, where the intensity is related to the number of 

detected ions) (Figure 15). However, both the mass analyzer and the ion detector are 

under high vacuum making it possible to reduce the background noise and allow the 

fragmentation pattern not to be influenced [114].  

Mass spectrometers can perform tandem MS (MS/MS) using multiple mass analyzers. 

This allows ions to be selected to induce their fragmentation, obtaining their structural 

information. 

 

Figure 15 – Mass spectrometry analysis: a mass spectrometer is constituted by an ionization source, 

a mass analyzer and an ion detector, where the mass analyzer and ion detector are under high vacuum, 

reducing the background noise and allowing the fragmentation pattern not to be influenced. 

As previously mentioned, MS is associated with a separation technique that allows 

better detection limits and data quality. These separation techniques include gas 

chromatography (GC) and liquid chromatography (LC). 

One of the most used separation techniques in metabolomics studies is GC-MS. It 

is a robust technique with good separation ability, sensitivity and reproducibility, having 

almost no problems with matrix effects and ion suppression of coeluent compounds 

compared to LC-MS. However, GC-MS can only be applied on low molecular weight 

volatile compounds [113]. 

Currently, LC-MS has been one of the most used techniques for metabolomics 

studies. Liquid chromatography is a technique that separates different compounds from a 

given sample according to the interactions of the compounds with the mobile and 

stationary phases. The degree of separation of the compounds is related to the affinity of 

each compound with the mobile phase [115].  

LC-MS has several advantages, such as that they operate at lower temperatures 

(allowing the analysis of thermolabile metabolites) and do not require chemical 

derivatization (facilitating the steps of sample preparation and identification of 

metabolites). Even so, it is a technique that allows accurate and precise quantification, as 
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it presents high selectivity and sensitivity. Thus, it allows to perform the characterization 

of compounds with similar retention time, but with different m/z ratio or fragmentation 

patterns [116]. 

High-performance liquid chromatography (HPLC) is an instrumental technique 

based on applying more traditional liquid chromatography to theories and instrumentation 

that were developed for gas chromatography (GC). In HPLC the mobile phase is a solvent 

or a system of solvents that are pumped through the column in a constant flow under high 

pressure. The stationary phase is packed inside a chromatographic column in order to 

maintain high pressure. The main advantage of this technique is its ability to analyze a 

much wider range of components, such as thermally unstable compounds [117]. 

A metabolomic study based on LC-MS presents several sources of ionization, 

however, the most used are matrix-ionization assisted laser desorption/ionization 

(MALDI) and electrospray (ESI) [118, 119]. 

The MALDI ion source has established itself as a key instrument for protein 

sequencing and proteomics research, offering tremendous potential when combined with 

Electrospray Ionization (ESI) technology. This versatile ion source allows for analysis 

under different conditions, either at atmospheric pressure or within a high vacuum 

environment. Notably, in the context of metabolomics research conducted in high 

vacuum, a specific approach known as MALDI imaging has gained prominence. Through 

this technique, researchers are able to acquire spatially resolved information on the 

distribution of metabolites within tissues, thereby enabling a deeper understanding of 

metabolic processes [118].  

The electrospray ionization (ESI) source is used for qualitative and quantitative 

studies of a huge variety of non-volatile and thermally labile inorganic chemical 

compounds. This technique is used to produce ions through an electrospray in which a 

high voltage is applied to a liquid, creating an aerosol [119]. 

The process only starts when an electric field is applied. This electric field causes 

an accumulation of ions in the droplet leaving the capillary. While they travel through the 

space between the needle tip and the cone, the nebulizer gas will initiate the solvent 

evaporation process, causing the drops to decrease in volume. This causes the droplets to 
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reach the point where the surface tension can no longer sustain the charge and the droplet 

will break down to become a single charged molecule (Figure 16).  

This ion formation process is called the ion evaporation method, providing ions with 

relatively low m/z values [118, 119]. 

 

 

Figure 16 – Electrospray (ESI) mechanism: the formation of a charged drop occurs, given the 

applied electric field, decreasing the size of the drop until it reaches the point where it can no longer 

maintain the charge. After that, the drops fragment (Coulomb explosion) causing the division of the 

drops, where each drop corresponds to a single charged molecule. 

Adapted from Shibdas Banerjee et al [120]. 

Different mass analyzers can be used, depending on mass accuracy, dynamic 

range and the ability to perform tandem experiments (MS/MS). Another factor is 

resolution, the higher the resolution, the higher the accuracy of the mass. Two of the most 

widely used mass analyzers include the quadrupole (Q) and the time-of-flight (TOF). 

The quadrupole analyzer (Q) consists of four opposite metal rods, parallel to each 

other. The voltages applied to these rods will affect the trajectory of the ions traveling 

through the centralized flight path between the four rods. For certain direct current (DC) 

and radio frequency (RF) potentials, there are certain ions with a specific m/z ratio that 

pass through the quadrupole filter and the rest are not transmitted [121, 122]. 

One of the most widely used tandem mass spectrometers (MS/MS) is the triple 

quadrupole (QqQ) which consists of two quadrupole mass analyzers (Q1 and Q3) and 

one collision cell (q2). The first quadrupole (Q1) has the function of selecting specific 

ions according to their m/z ratio and the ions that are not of interest are discarded. After 

that, they proceed to the collision cell (q2) which fragments the ions, through 

bombardment with a neutral gas (nitrogen or argon) and after being fragmented they are 
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directed to the third quadrupole (Q3). Through this process, an MS/MS spectrum will be 

produced that allows confirmation of the identity of the analytes [123]. 

The TOF analyzer uses an electric field that accelerates the ions that are formed 

through the same electric potential, measuring the time each ion takes to reach the 

detector. That is, all ions are subjected to the same kinetic energy, traveling the same 

distance at different speeds depending on their m/z values. If the ions have the same 

charge, their kinetic energies will be identical, so the speed of each ion will depend only 

on the mass. This means that the lighter ions reach the detector first, while the heavier 

ones take longer [123]. 

Thus, the time-of-flight quadrupole (Q-TOF) is also applied in MS/MS methods. 

This technique (Q-TOF-MS) combines the benefits of two different mass analyzers by 

utilizing the high fragmentation efficiency of quadrupole technology with the high 

analysis speed and high time-of-flight mass resolution capability (Figure 17) [123]. 

 

 

Figure 17 – Schematic Diagram of the Q-TOF-MS: after ionization of the molecules in the ESI 

source, the molecular ions enter the Q-TOF-MS, starting in Q0 for beam focusing, followed by ion 

selection in Q1, and fragmentation in Q2. The resulting fragments enter the TOF analyzer, allowing the 

detection of all fragments, adapted from Chernushevich et al [123]. 

As previously mentioned, the ions are analyzed according to their m/z ratio and 

as such need to be selected by the mass analyzer. This selection can be made through 

different methods, including data dependent acquisition (DDA) and data independent 

acquisition (DIA), such as SWATH (sequential window acquisition of all theoretical 
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fragment-ion spectra) (Figure 18). However, in metabolomics studies, the use of data 

dependent acquisition is more frequent [124]. 

 

 

Figure 18 – Data-acquisition approaches for mass spectrometry: DDA obtains fragmentation 

spectra only for a selected precursor ion based on predefined criteria. DIA the fragmentation spectrum 

is acquired for all precursor ions regardless of predefined criteria by SWATH, adapted from Santa et al 

[125]. 

In DDA, there is a choice of which ions will be selected, through some predefined 

parameters, including the intensity of signal. Normally, the most intense ions are selected, 

that is, the most abundant. The DDA method uses a narrow m/z window, producing 

MS/MS spectra with little interference, as only selected ions are transferred to the q2 

collision cell to generate product ions. Even so, this method has some limitations, as some 
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important precursor ions may not be selected for fragmentation if they do not meet the 

selection criteria [124, 125]. 

In DIA, all ions within a given m/z are fragmented and analyzed. Mass spectra are 

acquired by fragmenting all ions entering the mass spectrometer at a given time 

(broadband DIA) or by sequentially focusing on a narrow m/z window of precursors, 

fragmenting all those detected within that window. As previously mentioned, SWATH is 

one of the DIA techniques [124]. 

In a SWATH acquisition, the mass specification does not require the initial 

detection of an MS peak to proceed with the MS/MS analysis, so this technique uses a 

wider Q1 isolation window covering the entire scanning range, collecting the MS/MS 

spectra. SWATH technology differs from the traditional quantitative mass spectrometry 

method in that it directly builds the secondary fragment ion chromatograms, giving each 

point on the curve sufficient mass spectrometry evidence, increasing quantitative 

accuracy and reproducibility [124, 125]. 

However, mass spectrometry is a very applied technique for biological samples. 

The choice of liquid chromatography as a separation technique reduces the complexity of 

biological samples, decreasing the effects of the matrix during ionization. In this way, 

using the Q-TOF LC/MS technique is important for the identification of metabolites, 

allowing to obtaining qualitative and quantitative information about them. 

3.3 – Data analysis 

In order to make a more comprehensive detection of metabolites in LC-MS data, 

several data analysis strategies are necessary. Data analysis in metabolomics studies aims 

to convert raw data into biological knowledge.  

However, these datasets need some treatment, as data pre-processing steps can 

affect potential metabolite identifications and their subsequent quantification and 

biological interpretation [126]. As LC-MS data is archived through raw data, it is 

necessary to use extensive data pre-processing steps for some purposes. One of them is 

related to reducing the file size, reducing the complexity of the data, and providing them 

in an adequate format.  

Another purpose is related to the alignment of the data to guarantee a correct 

identification of the metabolites in all analyzed samples [85]. Statistical analysis aims to 
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detect which peaks have significantly altered intensity between the different biological 

groups [126].  

These two steps, data pre-processing and statistical analysis, are very important, 

as the MS measurement contains data that may be related to instrument variations or 

sample heterogeneity, leading to incorrect identification of metabolites. 

3.3.1 – LC-MS data analysis 

As mentioned before, an untargeted metabolomics approach comprehensively 

analyzes all measurable analytes in a given sample, including unknown metabolites. After 

obtaining the raw data, it is necessary to carry out a pre-processing step in order to convert 

the raw LC-MS data into a list of peaks that are easy to interpret and compare between 

different runs.  

Some pre-processing steps must be performed to correct variations in the raw data, 

such as outlier screening, baseline correction, peak detection and alignment, and 

normalization of peak intensities, among others. However, it is not necessary to carry out 

all these steps, but in comparison studies peak detection and alignment are fundamental 

[126].  

Peak detection consists of converting the raw data into a list of features, m/z and 

retention time, with the respective responses, i. e. the peak areas, facilitating the removal 

of noise from the data. Peak detection and alignment can be performed using various 

software, such as SciexOS, MS-DIAL, MarkerViewTM and MZmine. However, in 

addition to these software, internal standards can be used to correct retention times and/or 

normalize the data. All these changes in the LC-MS data are fundamental, as they make 

the data more suitable for future statistical analysis [126]. 

3.3.2 – Statistical analysis 

Statistical analysis is used to extract relevant information about data sets. 

Normally, univariate and multivariate methods are the most used in statistical analysis. 

The first consists of analyzing a single variable in question, requiring prior knowledge of 

the measured variable, while the second consists of analyzing multiple variables. 

However, multivariate analysis simplifies the data into manageable variables, making it 

easier to interpret. This analysis can be supervised or unsupervised. In the first case, there 

is information about the class of the data, while in the second case there is no information 

about the class of the data [126]. 
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Principal Component Analysis (PCA) is the most used unsupervised approach in 

LC-MS metabolomics studies. This analysis consists of reducing the size of the data set 

without significant loss of information, allowing better visualization of the data and the 

determination of patterns between different samples (control vs. disease) [127]. 

On the other hand, the partial least squares-discriminant analysis (PLS-DA) is the most 

used in supervised approaches. This analysis aims to find the metabolic pattern that is 

causing discrimination between two or more study groups [126]. 

Appropriate statistical analysis will extract information from the large data set and 

will allow visualization and interpretation. A multivariate analysis will facilitate the 

determination of specific patterns in a dataset of biological samples, becoming essential 

in studies that compare control vs. diseases or different diseases. 
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4 – Significance of the study 

Alzheimer's disease is a progressive neurological disorder that manifests a 

progressive decline in various cognitive abilities, affecting an individual's behavioral and 

social skills, making it impossible for them to live their daily lives in a “normal” and 

independent way. 

As mentioned in previous topics, amyloid plaques are observed in the brain and 

analyzed in the CSF, making them very important for the diagnosis of AD. Despite this, 

some patients do not have these plaques and have typical features of AD. For this reason, 

it is extremely important to study new biomarkers for the early diagnosis of AD. 

Thus, this work has as main objectives: 

• compare the results obtained through two different software, SciexOS and MS-

DIAL; 

• discover which metabolites differ between patients who are in the MCI phase 

and those who are in the MCI phase due to AD; 

• identify the most significantly altered metabolites; 

• discover potential biomarkers for an early diagnosis of Alzheimer's disease, 

having the ability to overcome the blood-brain barrier so that in the future this 

type of study can be carried out at the blood level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



44 

 

5 – Materials and Methods 

5.1 – Study group 

This study includes 40 patients with mild cognitive impairment aged between 46 

and 80 years old. CSF samples were collected at Centro Hospitalar e Universitário de 

Coimbra (Coimbra, Portugal) under code HUC-43-09 and, more recently, CE-029/2019. 

Of the analyzed CSF samples, 20 were from patients with Aβ negative (control goup) and 

20 from patients with Aβ positive. Their characteristics are summarized in Table 3 and 

detailed information about the study participants can be found in Table A.1.1 of Appendix 

A.1.  

According to Albert et al [73], the Aβ positive group consists of patients who meet 

the high probability criteria for MCI due to AD. The Aβ negative group consists of 

patients with MCI who meet the clinical and cognitive criteria for MCI and the etiology 

of MCI consistent with the AD pathophysiological process but have negative biomarkers 

for Aβ deposition and neuronal injury. 

 

5.2 – Protein precipitation 

After collecting the CSF samples, 200 μL were used for protein precipitation. We 

added 800 μL of methanol to each of the tubes and next the samples were vortexed in an 

IKA™ MS 3 Basic Vortex Mixer and incubated for 1 h at –80˚C. Then, the samples were 

centrifuged for 20 min at 20,000×g at 4˚C in an Eppendorf® Refrigerated centrifuge 

Model 5430R. After that, we transferred the supernatant to new tubes and evaporated in 

an Eppendorf® Concentrator Plus. Finally, we stored the samples at –20˚C until data 

acquisition by LC-MS. 

 

 

 β-amyloid negative (Aβ-) β-amyloid positive (Aβ+) 

n 20 20 

age (years ± SD) 59.6 ± 5.8 63.8 ± 8.5 

female (%) 50 55 

male (%) 50 45 

Table 3 – Characteristics of study participants. 
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5.3 – LC-MS data acquisition  

5.3.1 – Sample preparation 

After evaporating the samples, they were resuspended in 50 μL of a mixture 

containing the mobile phase, a solution of 2% acetonitrile (ACN), 0.1% formic acid (FA) 

and an internal standard penicillin V potassium salt and sulfamethazine-D4. Then, 

samples were sonicated in a Bioblock Scientific Vibracell™ 75041 for 2 min at 40% 

amplitude in 1 second cycles (1 second on, 1 second off). 

 After that, the samples were centrifuged for 10 min at 14,000×g in a MiniSpin Plus™ 

Microcentrifuge and then the supernatant was transferred to HPLC vials. 

Finally, 7 μL of each sample were taken to the HPLC vials in order to create 4 pools (Aβ+ 

female, Aβ+ male, Aβ- female and Aβ- male). 

5.3.2 – Data acquisition 

 The MS analysis was performed on a NanoLC™ 425 system (Eksigent) coupled 

to an ESI DuoSpray™ ion source (Sciex) operated in positive mode and a Triple TOF™ 

6600 System mass spectrometer (Sciex). Metabolite separation occurred on a Triart C18 

1/32" capillary column (12 nm, S-3 µm, 150 x 0.3 mm, YMC) at 5 µL/min, with an 

acetonitrile gradient as described in Table 4. 

Time 

(min) 

Solvent 

A (%) 

Solvent 

B (%) 

0 95 5 

20 50 50 

25 5 95 

30 5 95 

31 95 5 

40 95 5 

Data acquisition was performed in two ways, programmed by the mass 

spectrometer, including data dependent acquisition (DDA) and data independent 

acquisition (DIA-SWATH analysis). 

Table 4 – Acetonitrile gradient used in the LC/MS experiments. The mobile phase B 

consisted of 0.1% in ACN and mobile phase A of 0.1% FA in water. 

 

 
Time (min) Solvent A (%) Solvent B (%) 

0 95 5 

20 50 50 

25 5 95 

30 5 95 

31 95 5 

40 95 5 

 Table 4 – Acetonitrile gradient used in the LC/MS experiments. The mobile phase B 

consisted of 0.1% in ACN and mobile phase A of 0.1% FA in water. 
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For DDA, a full mass spectrum (50-2250 m/z) was obtained with an accumulation 

time of 250 ms, followed by up to 40 MS/MS scans of 40 ms per spectrum. For SWATH 

acquisition, the equipment was configured to scan the full spectrum (50-2250 m/z) for 

250 ms, followed by 73 product ion windows covering the 50-1500 m/z precursor mass 

range. Detailed information about SWATH windows can be found in Appendix A.1 in 

Table A.1.2. 

The SWATH-MS/MS spectra were collected from 50-2250 m/z for 23.3 ms, resulting in 

a cycle time of 2.002 s. Data was acquired using Analyst® TF software (v1.8.1, Sciex). 

5.4 – Data processing and statistical analysis  

After data acquisition by LC-MS, the data obtained were imported into SciexOs 

and MS-DIAL in order to perform peak detection and alignment. 

The detection of peaks occurs in each of the samples and the alignment is done between 

samples in order to decide if two certain characteristics (m/z, RT) found in two samples 

represent the same chemical component or not, that is, if their retention times and m/z 

values are both within the stated tolerances, they are considered the same feature. 

In this way, the set of parameters applied for peak detection, in SciexOs, included 

a minimum retention time of 0 min and a maximum retention time of 35 min. In the case 

of MS-DIAL, for peak detection, a minimum peak height of 1000 amplitude and a mass 

slice width of 0.1 Da were selected. For alignment, the mass tolerance was 0.02 Da and 

the retention time tolerance 0.60 min. 

Relative abundances for each feature were normalized using total area sums in Excel. 

This normalization technique is used to normalize each sample so that the resulting 

normalized samples have the same sum of area calculated using all peaks. 

For a multivariate statistical analysis, we used MetaboAnalyst 5.0, where Partial 

Least Squares Discriminant Analysis (PLS-DA) was used to select the most promising 

features, selecting those with a variable importance in projection (VIP) score above 1.00. 

For the univariate approach, the Mann-Whitney U test performed in GraphPad Prism 9 

was used to determine those that were statistically significant when the p-value was below 

0.05. 

5.5 – Metabolite identification 

The identification of metabolites was performed using four databases, two online, 

including the Human Metabolome Database (HMDB) (https//hmdb.ca/) and METLIN 
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(https//metlin.scripps.edu/) and two libraries incorporated in the software used for data 

analysis, SciexOS and MS-DIAL. The identification was made by comparing the 

experimental mass measurement with the 4 databases within a mass tolerance window of 

30 ppm. 

However, in the HMDB database, the fragmentation data of each feature obtained 

by the DDA were still used to compare with the fragmentation spectrum in the databases 

through some established parameters, including a parent ion tolerance of 0.05 Da, a m/z 

tolerance of 30 ppm and a positive ionization mode. The maximum score corresponds to 

a Fit (%) of 1.00 and RFit (%) of 1.00. The fit score is calculated by comparing the 

percentage of peaks in the library spectrum to the experimental and RFit is the reverse. 

In the case of the MS-DIAL internal library, an online library 

(http://prime.psc.riken.jp/compms/msdial/main.html) was loaded to identify the 

metabolites. In the case of the SciexOS software, the Library Search Algorithm method 

selected in Candidate Search was used. The internal libraries available for all analyzes 

were MSMLS™ (Mass Spectrometry Metabolite Library, IROA Technologies), with 299 

entries, where the threshold for accepting an identification was 0.70 in the library score. 

5.6 – Peptidomics 

The same DDA and SWATH pools from the sample vials used for the 

metabolomics approach were also used for this peptidomics approach. Chromatographic 

separation was performed on a Triart C18 capillary column 1/32" (12 nm, S-3µm, 150 x 

0.3 mm, YMC) at 5 µL/min, with an acetonitrile gradient as seen before in Table 4. 

Two acquisition methods were also acquired, DDA and SWATH, as in the 

metabolomics approach. The process performed for both acquisitions was the same used 

in the metabolomics approach, previously mentioned in subchapter 5.3.2. 

5.6.1 – Peptidomics: identification and quantification 

Regarding the identification of the peptides, this was done using the 

ProteinPilot™ software (v5.0, Sciex). The paragon method parameters were: searched 

the revised Human SwissProt database (downloaded on 30th of January of 2023), no 

cysteine alkylation, no digestion and considering gel-based ID for the special factors. 

Regarding the relative quantification of the peptides, this was performed on each 

sample (files from swath acquisition) using the SWATHTM processing plug-in in 
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PeakViewTM (v2.0.01, Sciex®). Quantitation results were obtained for peptides with less 

than 1% FDR and for the sum of up to 5 fragments/peptide. The abundance of each 

peptide was normalized by the total sum of the areas obtained in the metabolomic 

analysis. 
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6 – Results 

The participants included in this study were aged between 46 and 80 years, 

including 20 participants from the Aβ negative group and another 20 from the Aβ positive 

group. The Aβ negative group included 10 females and 10 males and the Aβ positive 

group included 11 females and 9 males. The Aβ negative group has an average age of 

59.6 years, while the Aβ positive group has an average age of 63.8, being considered the 

oldest group. There are no significant differences between the two groups (Figure 19).  

When dividing the participants according to sex and diagnostic group, the Aβ positive 

male group is the oldest with a mean age of 61.5, and the youngest is the Aβ negative 

female group with a mean age of 57.6 years (Figure 20). 

 

Figure 19 – Study participants by age according to the condition: data represents the mean ± SD 

regarding the age of the study participants. It represents the distribution, by age, of the 40 study 

participants divided into two groups according to the Aβ condition. The mean age corresponds to the 

dark-thickened line near the middle in the box plot. Significance (Student's two-tailed t-test) not 

significant (ns) between two groups Aβ- (blue) and Aβ+ (purple). 
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Figure 20 – Study participants by age according to the condition and sex: data represents the 

mean ± SD regarding the age of the study participants. It represents the 

distribution, by age, of the 40 study participants divided into four groups according to the Aβ condition  

and sex (Aβ negative female (blue), Aβ negative male (purple), Aβ positive female (pink), and Aβ  

positive male (green)). The mean age corresponds to the dark thickened line near the middle in the box 

plot, drawn vertically. Significance (One-way ANOVA) not significant (ns) between groups. 

Regarding the data obtained by SciexOS, all data were processed according to the 

parameters described in the previous chapter, and a total of 7956 features were obtained 

and normalized through the sum of the total area in an Excel spreadsheet. In this way, the 

number of detected peaks was reduced to 1863 features considering only those that were 

present in all samples. Thus, the 1863 features were used to perform a principal 

component analysis (PCA) applying the Pareto scale method (Figure 21), where the 

values centered on the mean are divided by the square root of the standard deviation. 
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Figure 21 – PCA from SciexOS data: principal component analysis (PCA) scores for Aβ negative 

(red) and Aβ positive (green) groups using the 1863 features and the Pareto scaling performed using 

MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 95% CI of the data. 

This PCA scores graph shows the separation between the two groups in the first 

principal component (PC1), observing an overlap of some Aβ negative samples with Aβ 

positive ones, accounting for 22.6% of the data variance. 

The second principal component (PC2) explains 16.5% of the data variance and 

there is a separation according to the age of the participants included in this study. In the 

Aβ negative group, we see the formation of three subgroups considering the age and sex 

of the participants (female samples aged between 59 and 61 years; female samples aged 

between 50 and 59 years; and male samples aged between 46 and 57) and the same effect 

is not observed in the Aβ positive group. In this case, nine Aβ negative samples (two 

women and seven men) showed a different behavior from the other samples of the same 

group. 

Regarding the data obtained by MS-DIAL, once again, all data were processed 

according to the parameters described in the previous chapter and a total of 2811 features 

were obtained and normalized through the sum of the total area in an Excel spreadsheet. 

The number of detected peaks was reduced to 2461 features considering only those that 

were present in all samples and then a PCA was performed applying the Pareto scale 

method (Figure 22). 
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Figure 22 – PCA from MS-DIAL data: principal component analysis (PCA) scores for Aβ negative 

(red) and Aβ positive (green) groups using the 2461 features and the Pareto scaling performed using 

MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 95% CI of the data. 

In the PC1 it is observed, as in the data obtained by SciexOS, an overlap of some 

Aβ negative samples with Aβ positive ones, accounting for 14.7% of the data variance. 

PC2 explains 14.3% of the data variance and indicates a separation according to the age 

of the participants included in this study. As in the previous data, in the Aβ negative group 

there is the formation of three subgroups considering the age and sex of the participants 

(female samples aged between 59 and 61 years; female samples aged between 50 and 59 

years; and male samples aged between 46 and 57) and the same effect is not seen in the 

Aβ positive group. In this case, eight Aβ negative samples (two women and six men) 

showed a different behavior from the other samples in the same group, showing a similar 

pattern to the samples from the Aβ positive group. 

Then, a partial least squares discriminant analysis (PLS-DA) (supervised analysis) 

was performed under the same conditions as the PCA in order to improve the separation 

of the two groups. 

In the data obtained by SciexOS, the PLS-DA analysis indicates a better 

separation in relation to the PCA graph, despite not showing a complete separation, where 

PC1 explains only 21.9% of the variability and PC2 6.8% (Figure 23).  
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This PLS-DA score plot had a correlation coefficient (R2) of 0.46 and a cross-validation 

correlation coefficient (Q2) of 0.26. However, this PLS-DA plot indicates that the two 

groups have different metabolic characteristics that allow their separation. 

 

Figure 23 – PLS-DA analysis from SciexOS data: partial least-squares-discriminant (PLS-DA) 

scores for Aβ negative (red) and Aβ positive (green) groups using the 1863 features and the Pareto 

scaling performed using MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 

95% CI of the data. 

Regarding the MS-DIAL, the PLS-DA analysis indicates a better separation in 

relation to the PCA plot, but a complete separation is not verified, where PC1 explains 

only 13.9% of the variability and PC2 4% (Figure 24).  

The PLS-DA score chart had a correlation coefficient (R2) of 0.50 and a cross-validation 

correlation coefficient (Q2) of 0.19. However, as with the SciexOS data, this PLS-DA 

analysis indicates that the two groups have some different metabolic characteristics 

allowing their separation. 
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Figure 24 – PLS-DA from MS-DIAL data: partial least-squares-discriminant (PLS-DA) scores for 

Aβ negative (red) and Aβ positive (green) groups using the 2461 features and the Pareto scaling 

performed using MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 95% CI 

of the data. 

After that, an analysis was performed using only the features that had a p-value 

below 0.05 and a VIP score above 1.00.  

In the case of SciexOS, the PCA graph was made using the Pareto scale method, 

where 144 statistically different features were used (Figure 25). It was verified that the 

results obtained in this PCA analysis showed a better separation in relation to the PCA 

that used the initial features.  

The results of this PCA analysis showed better separation compared to the PCA that used 

the 1863 features (Figure 23). The PCA also showed that the variance explained by PC1 

increased to 72.1%. 

In the data obtained by MS-DIAL, 137 statistically different features were used 

(Figure 25). Once again, it was verified that the results obtained in this PCA analysis 

showed a better separation in relation to the PCA that used the initial 2461 features and 

the variance explained by PC1 increased to 70.9%. 
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Figure 25 – PCA from SciexOS (A) and MS-DIAL (B) data: principal component analysis (PCA) 

scores for Aβ negative (red) and Aβ positive (green) groups using the features that were statistically 

different considering a P<0.05 and a VIP>1.00 and the Pareto scaling performed using MetaboAnalyst 

5.0. Each point reflects one individual, and ellipses represent 95% CI of the data. (A) SciexOs data that 

used 144 features statistically different and (B) MS-DIAL data that used 137 features statistically 

different. 

Then, a sample-sample correlation analysis was carried out between the two 

groups (Aβ negative and Aβ positive) through an analysis of Sperman's correlation 

coefficient in MetaboAnalyst 5.0 in two different ways, first without clustering and then 

with hierarchical clustering. In this way, it was possible to identify samples that did not 

correlate with samples from the same group. Spearman's correlation coefficient reveals a 

value between -1 and 1, with the value -1 indicating a perfect negative association 

between classifications and the value 1 indicating a perfect association of classifications. 

This coefficient is indicated in the graph through a degree of color intensity. 

In both cases (data obtained by SciexOS and by MS-DIAL), in the correlation 

heatmap without hierarchical clustering, it is verified that in the Aβ negative group there 

are two female samples (S11_F_neg and S24_F_neg) and six male samples (S31_M_neg, 

S32_M_neg, S33_M_neg , S34_M_neg, S35_M_neg and S36_M_neg) that do not show 

the same standard correlation compared to the other samples of the Aβ negative group. 

These eight samples had already shown a different behavior from the remaining samples 
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of the same group, in the PCA made with the number of initial features. However, in the 

Aβ positive group, all samples have a similar correlation with each other (Figure 26). 
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Figure 26 – Correlation heatmap from SciexOS (A) and MS-DIAL (B) data: correlation 

heatmap showing the Spearman correlation coefficient analysis of the pairwise comparison between 

samples. Each colored cell on the map indicates the correlation coefficient, with the scale code shown 

in the top right corner (red for positive correlations and blue for negative correlations). 

B 
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In the correlation heatmap with hierarchical clustering, in both cases, the presence 

of two main groups is observed, one with most of the samples from the Aβ negative group 

and another with all the samples from the Aβ positive group plus the eight samples from 

the Aβ negative group (S11_F_neg, S24_F_neg, S31_M_neg, S32_M_neg, S33_M_neg, 

S34_M_neg, S35_M_neg and S36_M_neg). 

In the hierarchical cluster analysis, we can also observe the formation of 

subgroups within the two main clusters. In the case of SciexOS, in the first main cluster, 

there is a cluster for male samples and a cluster for female samples together with only 

one male sample from the Aβ negative group. In the second main cluster there is no 

separation by sex, one cluster consists of two samples from the Aβ negative group and 

the other by twenty-seven samples from both groups and both sexes (Figure 27). 

 

Figure 27 –  Correlation heatmap with hierarchical clustering from SciexOS data: correlation 

heatmap showing the Spearman correlation coefficient analysis of the pairwise comparison between 

samples. Samples order was determined by hierarchical clustering. Each colored cell on the map 

indicates the correlation coefficient, with the scale code shown in the top right corner (red for positive 

correlations and blue for negative correlations). 
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Regarding the data obtained by MS-DIAL, in the first main cluster, there is a 

cluster for male samples and a cluster for female samples of the Aβ negative group. In 

the second main cluster there is also no separation by sex, with a cluster consisting of 

twenty-one samples from both groups and another cluster of eight samples from both 

groups (Figure 28). 

 

Figure 28 –  Correlation heatmap with hierarchical clustering from MS-DIAL data: 

correlation heatmap showing the Spearman correlation coefficient analysis of the pairwise comparison 

between samples. Samples order was determined by hierarchical clustering. Each colored cell on the 

map indicates the correlation coefficient, with the scale code shown in the top right corner (red for 

positive correlations and blue for negative correlations). 

A hierarchical cluster analysis was also carried out between the samples of the 

two groups and the statistically different features.  

In the correlation heatmap, in relation to the data obtained by SciexOS, the 

presence of two main groups of samples was verified and correlated with these two main 

groups; there are two main groups of metabolites associated with them. As seen in Figure 

29, most metabolites are more expressed in the Aβ negative condition compared to the 

Aβ positive condition plus the eight samples from the Aβ negative group (S11_F_neg, 
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S24_F_neg, S31_M_neg, S32_M_neg, S33_M_neg, S34_M_neg, S35_M_neg and 

S36_M_neg). 

 

Figure 29 – Heatmap with hierarchical clustering from SciexOS data: heatmap with hierarchical 

clustering analysis by Euclidian distance using Ward's method generated from the 144 significantly 

different features between the two groups. The columns represent the individual samples, and the rows 

indicate differentiating metabolites. On top of the heatmap, Aβ negative samples correspond to the red 

squares and Aβ positive samples to the green squares. The dendrogram for samples is shown on top of 

the heatmap and the metabolite dendrogram is on the left side of the heatmap. Each colored cell on the 

map indicates each feature's relative abundance, with the scale code shown in the top right corner (red 

for higher abundances and blue for lower abundances). 

In the first main cluster, which includes samples from the Aβ positive and Aβ 

negative groups, we can observe the existence of four groups: the first with samples 

S31_M_neg, S56_M_pos, S41_F_pos and S55_M_pos; the second with samples 

S38_F_pos, S39_F_pos, S40_F_pos, S52_M_pos, M53_M_pos and M54_M_pos; the 

third with S46_F_pos, S42_F_pos, S47_F_pos and S60_M_pos; and the fourth with 

S59_M_pos, S48_F_pos, S57_M_pod, S43_F_pos, S44_F_pos, S45_F_pos, 

S56_2_M_pos, S33_M_neg, S32_M_ne, S11_F_neg, S34_M_neg, S36_M_neg, 

S24_F_neg, S35_M_neg and S58_M_neg.  
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In the second main cluster, which corresponds to the Aβ negative group, there are two 

different clusters, one includes only two female samples and the other is divided into male 

and female samples. 

In the correlation heatmap, regarding the MS-DIAL data, the presence of two 

main groups of samples was again verified (Figure 30). It is also verified in this case that 

most of the metabolites are more expressed in the Aβ negative group compared to the 

samples of the Aβ positive group together with eight samples of the Aβ negative group 

(S11_F_neg, S24_F_neg, S31_M_neg, S32_M_neg, S33_M_neg, S34_M_neg, 

S35_M_neg and S36_M_neg).  

 

Figure 30 – Heatmap with hierarchical clustering from MS-DIAL data: heatmap with 

hierarchical clustering analysis by Euclidian distance using Ward's method generated from the 137 

significantly different features between the two groups. The columns represent the individual samples, 

and the rows indicate differentiating metabolites. On top of the heatmap, Aβ negative samples 

correspond to the red squares and Aβ positive samples to the green squares. The dendrogram for samples 

is shown on top of the heatmap and the metabolite dendrogram is on the left side of the heatmap. Each 

colored cell on the map indicates each feature's relative abundance, with the scale code shown in the top 

right corner (red for higher abundances and blue for lower abundances). 
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In the first main cluster, which includes samples from the Aβ positive and Aβ 

negative groups, we can observe the existence of four groups: the first with samples 

S33_M_neg, S32_M_neg, S34_M_neg, S36_M_neg, S11_F_neg and S24_F_neg; the 

second with samples S46_F_pos, S43_F_pos and S60_M_pos; the third with S38_F_pos, 

S47_F_pos, S52_M_pos, S54_M_pos, S39_F_pos and S53_M_pos; and the fourth with 

S42_F_pos, S59_M_pos, S58_M_pos, S48_F_pos, S56_M_pos, S57_M_pos, 

S44_F_pos, S45_F_pos, S56_2_M_pos, S41_F_pos, S31_M_neg, S55_M_pos, 

S35_M_neg and S40_F_pos.  

In the second main cluster, which corresponds to the Aβ negative group, there are two 

different clusters, one includes only two female samples and the other is divided into male 

and female samples, these being the same samples from the analysis made by SciexOS. 

The fold change (FC) values describe how much a metabolite varies between two 

groups. A variance value of 1.5 means a 50% increase between the two groups and a 

value of 0.67 means there is a 50% decrease. 

In the data obtained from SciexOS, of the 144 features significantly different 

between the two groups, 11 increased significantly (change greater than 1.5) and 94 

significantly decreased (change less than 0.67) in the Aβ positive group. In the case of 

MS-DIAL, of the 137 features significantly different between the two groups, 17 

significantly increased and 84 significantly decreased in the Aβ positive group. 

Using logarithm to base 2 allows an easier interpretation of the graph, where 

significantly increased features will have a positive value and significantly decreased 

features will have a negative value.  

In the case of SciexOS analysis, features with 2-fold increase are displayed on 

axis 1, and in this case, there are four features (216.10_3.52, 796.33_24.14, 851.39_24.94, 

and 851.38_24.98) that have a 2-fold or more increase in the Aβ positive group.  

In the case of MS-DIAL there are five features also with a 2-fold increase (216.10_3.577, 

851.39_24.991, 251.01_23.023, 767.21_6.545 and 744.76163_14.52) (Figure 31). 
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Figure 31 – FC values from SciexOS (A) and MS-DIAL (B) data: the graph demonstrates the 

log2 fold change (Aβ + vs. Aβ -) of the means for all the significant features. The red color shows the 

features significantly increased with a fold change higher than 1.5, and the blue color shows the features 

significantly down with a fold change lower than 0.67. 

(A) SciexOs data that used 144 features statistically different and (B) MS-DIAL data that used 137 

features statistically different. 

Until now, the analysis carried out on the CSF samples was performed considering 

two groups related to β-amyloid, where the analysis revealed a tendency to separate the 

two groups considering the sex of the study participants. To better understand this 

difference between sexes, a new PCA and PLS-DA analysis was made using the 

statistically different features and the Pareto scale method considering four groups: Aβ 

negative female, Aβ negative male, Aβ positive female and Aβ positive male. 

In both analysis (data obtained by SciexOS and by MS-DIAL), the PCA plot 

shows a tendency to separate Aβ negative from Aβ positive samples and, in addition, a 

separation between the two sexes can be observed in the Aβ negative condition (Figure 

32). On the other hand, in the Aβ positive group, there is an overlap between the two 

sexes. Samples S11_F_neg, S24_F_neg, S31_M_neg, S32_M_neg, S33_M_neg, 

A 

 
A 

B 

 
A 



 

63 

 

S34_M_neg, S35_M_neg and S36_M_neg are samples from the Aβ negative group that 

show a different behavior from those of the same group, as already verified in the previous 

analysis.  

 

Figure 32 – PCA from SciexOS (A) and MS-DIAL (B) data: principal component analysis (PCA) 

scores for Aβ negative female (red),  Aβ negative male (green), Aβ positive female (purple) and Aβ 

positive male (blue) groups using the features that were statistically different considering a P<0.05 and 

a VIP>1.00 and the Pareto scaling performed using MetaboAnalyst 5.0. Each point reflects one 

individual, and ellipses represent 95% CI of the data. (A) SciexOs data that used 144 features statistically 

different and (B) MS-DIAL data that used 137 features statistically different. 

A better separation of the four groups was obtained in the PLS-DA analysis 

(Figure 33). However, samples S11_F_neg, S24_F_neg, S31_M_neg, S32_M_neg, 

S33_M_neg, S34_M_neg, S35_M_neg and S36_M_neg are the reason why there 

continues to be an overlap of the four groups.  

In both graphs of the multivariate analysis, the two sexes of the Aβ positive condition did 

not have any significant difference.  

From this analysis of the four groups, it is possible to conclude that there is a 

difference between the sexes, mainly in the Aβ negative condition. 
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Figure 33 – PLS-DA from SciexOS (A) and MS-DIAL (B) data: partial least-squares-

discriminant (PLS-DA) scores for Aβ negative female (red),  Aβ negative male (green), Aβ positive 

female (purple) and Aβ positive male (blue) groups using the features that were statistically different 

considering a P<0.05 and a VIP>1.00 and the Pareto scaling performed using MetaboAnalyst 5.0. Each 

point reflects one individual, and ellipses represent 95% CI of the data. (A) SciexOs data that used 144 

features statistically different and (B) MS-DIAL data that used 137 features statistically different. 

During this analysis, as we can see in Figures 28 and 29 there are features (features 

are presented according to their mass-to-charge ratio and retention time (m/z/RT)) that 

indicate that there are metabolites that differ between the two conditions. However, in 

both cases (data obtained by SciexOS and by MS-DIAL), it is observed that the feature 

P1266 (226.1804/20.28) and the feature P0736 (226.1835/20.28), respectively, have a 

very high VIP value compared to the remaining features, which leads us to believe that 

these metabolites allow differentiation only between sexes in the Aβ negative condition 

(Figure 34). 

A 

 
A 
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Figure 34 – Top 15 features with the highest VIP scores in SciexOS (A) and MS-DIAL (B) 

data: features that have the highest variable importance in projection (VIP) value in an analysis made 

with the inicial features. (A) SciexOs data that used 1863 features statistically different and (B) MS-

DIAL data that used 2461 features statistically different. 

 

Since features P1266 (226.1804/20.28) and P0736 (226.1835/20.28) have very 

similar m/z values and retention time, we chose to perform the analysis only for the data 

obtained by SciexOS and perform the analysis again, without the features correlated to 

feature P1266 (226.1804/20.28), establishing a cut-off value of 0.75, to visualize again 

the correlation between the samples and the metabolites, in order to be able to verify 

which metabolites allow to differentiate the two conditions. 

As mentioned before, we excluded all features correlated with feature P1266. So, 

for further analysis we have 1734 features to perform a PCA applying the Pareto scale 

method, where values centered on the mean are divided by the square root of the standard 

deviation. 

In PC1 it was observed a total overlap of Aβ negative samples with Aβ positive 

ones, being responsible for 20.7% of the data variance (Figure 35). However, in this case, 

subgroups are not formed in the Aβ negative condition, as had happened in the initial 

analysis. 
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Figure 35 – PCA from data without feature P1266: principal component analysis (PCA) scores for 

Aβ negative (red) and Aβ positive (green) groups using the 1734 features and the Pareto scaling 

performed using MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 95% CI 

of the data. 

Then, a PLS-DA analysis was carried out, under the same conditions as the PCA, 

to improve the separation of the two groups. In this PLS-DA analysis it is possible to 

observe a better separation in relation to the PCA, although a complete separation is not 

verified, where PC1 explains only 11% of the variability and PC2 10.9% (Figure 36).  

The PLS-DA score plot had a correlation coefficient (R2) of 0.96 and a cross-validation 

correlation coefficient (Q2) of 0.42. However, as in the previous analysis, it is possible 

to verify that the two groups have some different metabolic characteristics that allow 

separation. 
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Figure 36 – PLS-DA analysis from data without feature P1266: partial least-squares-discriminant 

(PLS-DA) scores for Aβ negative (red) and Aβ positive (green) groups using the 1734 features and the 

Pareto scaling performed using MetaboAnalyst 5.0. Each point reflects one individual, and ellipses 

represent 95% CI of the data. 

 

Then, a heatmap was made with features with a p-value below 0.05 (Figure 37) 

and another with features that have a VIP score above 1.00 (Figure 38). This was done to 

select the features that showed which metabolites differed between the Aβ negative 

condition and the Aβ positive conditions. 

From this analysis, it was verified that the heatmap referring to features that have 

a p-value below 0.05, showed a better separation of the metabolites that allow to 

distinguish both groups. For this reason, it was decided to select the features that were 

present in the first cluster of metabolites to carry out a receiver operational characteristic 

(ROC) analysis; to characterize the predictive value of these metabolites, using 

MetaboAnalyst 5.0, to discover potential biomarkers. 
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Figure 37 – Heatmap with hierarchical clustering from data with P<0.05: heatmap with 

hierarchical clustering analysis by Euclidian distance using Ward's method generated from the 263 

significantly different features between the two groups. 

Figure 38 – Heatmap with hierarchical clustering from data with VIP >1.00: heatmap with 

hierarchical clustering analysis by Euclidian distance using Ward's method generated from the 133 

significantly different features between the two groups. 
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In this way, 62 features were selected for a ROC analysis. However, as we were 

facing a large number of features, it was decided to use only those with a VIP score above 

1.00, so we were using 20 features for further analysis.  

In a ROC curve graph, the x-axis indicates the false positive rate (specificity 1), 

and the y-axis indicates the true positive rate (sensitivity), generating the area under the 

ROC curve (AUC). AUC is a measure of the accuracy of a diagnostic test, where a value 

of 1 indicates that the classifier is able to perfectly distinguish between the two groups, a 

value greater than 0.9 indicates excellent discrimination, a value greater than 0.8 is good 

discrimination, a value greater than 0.7 is a moderate test, a value between 0.51 and 0.69 

is a bad test, and a value of 0.5 shows no discrimination between the two groups [128]. 

In Figure 39 it is possible to observe the combination of metabolites using logistic 

regression analysis to improve prediction. The ROC curves created are based on the cross-

validation performance of multivariate algorithms using the Linear SVM classifier 

(support vector machine).  

In these ROC curves the ideal is to see a true positive rate of 1, meaning that all “disease” 

groups are considered positive, and a false positive rate of 0, meaning that none of the 

“disease” samples were considered controls.  

Therefore, an AUC value of 1 or close to this value will be considered the best curve. In 

this analysis of multivariate ROC curves, the best one used 7 features (Figure 40).  

However, it is possible to verify that all models presented an AUC value greater 

than 0.87, which is why they are good models for discriminating the two groups in studies. 
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Figure 39 – ROC curves of the significantly different features: multivariate Receiver Operating 

Characteristic (ROC) curves, considering 2, 3, 5, 7, 10, and 20 features. A Linear Support Vector 

Machines (SVM) classification method and SVM built-in feature classification method were used in this 

analysis. 

 

 

Figure 40 – Features contributions to the model's classification accuracy: features were ranked 

by their contributions to the model's classification accuracy that uses 7 variables. 

 

Thus, from this analysis, these 7 features were manually quantified, which are 

present in Figure 41, and a statistical analysis of them was also carried out. 
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Figure 41 – Boxplots of statistically different features: boxplots of statistically different features, 

in the control group (blue) and disease group (purple). The plots show the relative abundance of each 

sample, the median, the minimum and the maximum of each group. 

By observing these boxplots, we can verify that all features are statistically 

different. It can be seen that all features have a higher average in the control group (Aβ 

negative) than in the disease group (Aβ positive), this means that these metabolites are 

increased in the samples from the Aβ negative group, as we already had seen in the 

heatmap represented in Figure 37. 

After that, the univariate and multivariate ROC curves were made again, with all 

newly quantified features. Feature 478.3647/22.68 was the one that presented the best 

AUC, 0.96, in the univariate analysis, as we can see in Figure 42. 
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Figure 42 – ROC curve of the feature with the best AUC: univariate receiver operating 

characteristic (ROC) curve of the feature with the best AUC, 478.3647/22.68. 

Then, a multivariate analysis of these 7 features was carried out, as shown in 

Figure 43. We can see that the multivariate ROC curves showed that the features 

543.2859/20.24, 284.3300/25.99, 478.3647/22.68, 419.2367/24.60 and 420.2402/24.56 

were the best to characterize the differences between the Aβ negative group and the Aβ 

positive group. The AUC of this curve was 0.967, which is considered a curve with 

excellent discrimination. 

Figure 43 – ROC curve and the 5 features of the model with the best AUC value: the best 

multivariate Receiver Operating Characteristic (ROC) curve (left), 5 feature model, and the features 

referent to the model (right). A Linear Support Vector Machines (SVM) classification method and SVM 

built-in feature classification method were used to perform this analysis. 
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Regarding the identification of metabolites, 28 features were not identified, 7 

features obtained more than one match, 26 features have a match in only one database 

and 1 feature obtained the same match in all databases. 

Feature 298.0980/7.84 was the only that obtained the same correspondence in all 

databases used in this work and was identified as 5'-methylthioadenosine. The detailed 

results of the correspondences for each feature considering only the experimental 

mass/charge of the precursor are provided in supplementary Tables A.2.1 to A.2.4 of 

Appendix A.2. In Figure 44, it is possible to compare the acquired spectrum with the 

spectrum present in the SciexOS internal library for the feature 298.0980/7.84. 

 

Figure 44 – Mass spectrum obtained for the feature 298.0980/7.84: comparison of the 

experimental spectrum of the feature 298.0980/7.84 and the spectrum from the SciexOS internal library 

of the matched metabolite. The experimental MS/MS spectrum (blue stripes) is shown on top, and the 

library MS/MS spectrum (grey stripes) is shown underneath. 

As previously mentioned, there were 7 features (161.0985/24.00, 253.1402/23.83, 

313.2325/26.82, 317.1707/24.84, 357.2580/26.82, 467.3562/26. 75 and 489.3351_26.89) 

representing different matches in the databases. However, the HMDB online database 

and the MS-DIAL software database were those that presented a greater number of 

identified metabolites, leading to the belief that there may be a lack of information on 

MS/MS spectra of some metabolites in the METLIN and SciexOS databases. 
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For example, (9Z,12E)-15,16-dihydroxyoctadeca-9,12-dienoic acid was 

correlated with the feature 313.2325/26.82 in the MS-DIAL software database, but in the 

METLIN database this feature was identified as fruticosonine. When searching for the 

metabolite (9Z,12E)-15,16-dihydroxyoctadeca-9,12-dienoic acid in the METLIN 

database, there is no information on the MS/MS spectrum of this metabolite.  

However, all incompatibilities are described in supplementary Table A.2.5 of 

Appendix A.2, where all identified metabolites are described, as well as the associated 

pathways. 

Then, a pathway analysis of the features identified was performed in 

Metaboanalyst 5.0. For this analysis, the names of the compounds obtained in the 

databases and the hypergeometric test and the relative-betweenness centrality were used, 

to identify the most relevant pathways (Figure 45 and Table A.2.6 of Appendix A.2). 

 

Figure 45 – Pathway analysis results for features identified: pathway analysis results for the 

features identified in the CSF of Aβ negative and Aβ positive groups. The x-axis represents the pathway 

impact, and the y-axis is the log of the p-value obtained from the pathway enrichment analysis. The 

node’s color and size are based on its p-value and pathway impact values, respectively, where the 

pathways are represented: cysteine and methionine metabolism (red), tyrosine metabolism (orange) and 

the steroid hormones biosynthesis (yellow). The most significantly changed pathways are characterized 

by a high log(p) and a high impact value. 
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In this graph, the x-axis represents the pathway impact, and the y-axis is the 

logarithm of the p-value obtained from the pathway enrichment analysis. The node color 

and size are based on its p-value and path impact values, respectively. 

The most significantly altered pathways are characterized by a high log(p) value 

and a high impact value (top right region), as in the case of tyrosine metabolism, with a 

pathway impact of 0.11085 and a p-value of 0.079157, where the metabolite 3,4-

dihydroxy-L-phenylalanine (210.1443/14.70) was the only identified metabolite enriched 

in this pathway. 

In the case of steroid hormone biosynthesis, the corresponding feature was 

301.1770/25.68, which was identified as 19-oxoandrost-4-ene-3,17-dione, with a 

pathway impact value of 0.04229 and a p-value of 0.15575.  

Finally, the metabolism of cysteine and methionine was the pathway with the least 

impact, with a value of 0.020809 and a p-value of 0.06256, being enriched with the 

metabolite 5'-methylthioadenosine (298.0980/7.84). 

The metabolites 3,4-dihydroxy-L-phenylalanine and 19-oxoandrost-4-ene-3,17-

dione were increased in the CSF of the Aβ negative group (Figure 46) and as previously 

mentioned, they come from tyrosine metabolism and steroid hormone biosynthesis, 

respectively. 

The metabolite 3,4-dihydroxy-L-phenylalanine, also known as L-DOPA, is a 

neurotransmitter dopamine precursor produced by the action of the enzyme tyrosine 

hydroxylase on the amino acid tyrosine. According to the literature [129] Alzheimer's 

disease is characterized by the aggregation of peptide A that leads to the development of 

amyloid plaque formation, followed by neurodegenerative alterations. In this way, the 

metabolite L-DOPA and dopamine can dissolve the A-peptide fibrils and also inhibit the 

formation of protein tangles. According to the literature, the administration of L-DOPA 

in patients with AD improves their learning and, consequently, their memory status. 

However, a study carried out by Oliver Ambrée and his collaborators [130] showed that 

dopamine levels, in TgCRND8 mice, were reduced in the hippocampus of mice with 

Alzheimer's. This reduction may be associated with a progression of the pathology that 

primarily affects the hippocampus and neocortex. However, it was not possible to find 

studies on L-DOPA levels in the CSF of patients with Alzheimer's disease. 
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Regarding the metabolite 19-oxoandrost-4-ene-3,17-dione, this was also found to 

be reduced in the Aβ positive group, being related to the biosynthesis of steroid hormones. 

According to the literature [131], alterations that occur in the intestinal microbiota (GMB) 

contribute to the development of neurodegenerative diseases, such as AD. In Alzheimer's 

patients, there is a decrease in the diversity of the microbiota; for this reason, alterations 

in the intestinal microbiota can be used for the early detection of Alzheimer’s disease.  

In a study by Jianxiong Xi and colleagues [131], Alzheimer's patients showed changes in 

their fecal metabolome compared to the control group and also showed changes in the 

metabolic pathway of steroid hormone biosynthesis, suggesting that the GMB mechanism 

causes the development of AD. Thus, in this study, the 19-oxoandrost-4-ene-3,17-dione 

metabolite decreased in AD patients compared to the control group and was shown to be 

involved in estrogen biosynthesis. This plays a fundamental role in the preservation of 

neurons and in the repair of neurons damaged by Alzheimer’s disease, being used more 

by healthy individuals than by Alzheimer's patients. Therefore, the decrease in the 19-

oxoandrost-4-ene-3,17-dione metabolite may influence AD pathology by estrogen 

downregulation. 

On the other hand, the 5'-methylthioadenosine (MTA) metabolite was increased 

in the Aβ negative group (Figure 46). This metabolite is produced through                                       

S-adenosylmethionine in the metabolism of cysteine and methionine [132]. According to 

the literature, MTA has regulatory functions such as gene expression, proliferation, 

differentiation, apoptosis and also acts as a metabolic intermediary in the methionine 

cycle [133]. A study in the literature [107] demonstrated that patients in the MCI phase 

had increased levels of MTA in the CSF compared to patients who were in the MCI due 

to AD phase, as happened in this study. 
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Figure 46 – Boxplot of features identified: boxplots representing three metabolites identified in the 

CSF of Aβ negative (blue) and Aβ positive (purple) groups. The plots show the relative abundance of 

each sample, the median, the minimum and the maximum of each group. The level of significant (Mann-

Whitney two-tailed test) is represented by *: *P<0.05 and **P<0.01. 

Then, ROC curve analysis was performed again for these 3 metabolites, to 

characterize the predictive value of these metabolites using MetaboAnalyst 5.0.  

As previously mentioned, the x-axis indicates the false positive rate and the y-axis 

indicates the true positive rate, generating the area under the ROC curve (AUC) [128]. 

Figure 47 shows the ROC curves for these 3 identified metabolites, and the AUC 

values vary between 0.685 and 0.768. Thus, the 3,4-dihydroxy-L-phenylalanine 

metabolite was the one that presented the lowest AUC value (0.685) and 5'-

methylthioadenosine presented the highest AUC value (0.768), being considered the 

metabolite with the best discriminatory power for distinguish between Aβ negative and 

Aβ positive groups. As its value is relatively close to 0.8, we can consider that this 

metabolite when used in diagnosis, 90% of the time a positive result will be correctly 

identified and 80% of the time a negative result will be correctly identified. 
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After that, a PCA analysis was performed again with the 62 statistically different 

features, considering four groups Aβ negative female, Aβ negative male, Aβ positive 

female and Aβ positive male, in order to verify if there is a separation of the two groups, 

considering the sex of the individuals. 

The PCA graph shows a tendency to separate the Aβ negative samples from the 

Aβ positive samples and, in addition, a separation between the two sexes can be observed 

in the Aβ negative condition (Figure 48). On the other hand, in the Aβ positive group, 

there is an overlap between the two sexes. 

3,4-dihydroxy-L-phenylalanine 

(210.1443/14.70) 

19-oxoandrost-4-ene-3,17-dione 

(301.1770/25.68) 

5’-methylthioadenosine 

(298.0980/7.84) 

Figure 47 – ROC curve of features identified: receiver operator characteristic (ROC) curve 

analysis of the 3 features identified between Aβ negative and Aβ positive groups using MetaboAnalyst 

5.0. 
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Figure 48 – PCA with 62 statistically different features: principal component analysis (PCA) 

scores for Aβ negative feminine (red), Aβ negative masculine, (green), Aβ positive feminine (purple) 

and Aβ positive masculine (blue) groups using the 62 features and the Pareto scaling performed using 

MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 95% CI of the data. 

Subsequently, a peptidomic analysis was conducted to identify the peptides 

present in the CSF of the individuals included in this study. Peptidomics enables the 

examination of endogenous fragments present in each sample, facilitating the 

identification of potential biomarkers in various diseases. 

From the search in the ProteinPilot software, 37 different peptides were found, of 

which 33 were quantified. Of those quantified, 5 belonged to the neurosecretory protein 

VGF (VGF), 7 to proSAAS (PCS1N), 5 to fibrinogen alpha chain (FIBA), 3 to fibrinogen 

beta chain (FIBB), 2 to osteopontin (OSTP), 1 to neuroendocrine protein (7B2 ), 1 to 

apolipoprotein E (ApoE), 1 to brevican core protein (PGCB), 2 to cystatin-C (CYTC), 1 

to BRD4-interacting chromatin-remodeling complex-associated protein (BRICA), 1 to 

kinesin-like protein KIF26B (KI26B), 1 to calsyntenin-1 (CSTN1), 2 to chromogranin-A 

(CMGA) and 1 to integral membrane protein 2B (ITM2B) (Table A.2.7 of Appendix 

A.2). 

Then, a PCA analysis was performed with all peptides (Figure 49). It can be 

observed that the samples from the metabolomics analysis that appeared outside the 

confidence interval of the respective group do not show this trend in this peptidomics 
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analysis. In this analysis, the groups appear to be completely overlapping, with no sign 

of a tendency to separate through multivariate analysis. 

 

Figure 49 – PCA with all quantified peptides: principal component analysis (PCA) scores for Aβ 

negative (red) and Aβ positive (green) groups using all quantified peptides, normalized with total area 

sums, performed in MetaboAnalyst 5.0. Each point reflects one individual, and ellipses represent 95% 

CI of the data. 

Since few peptides were quantified, further PCA analyzes with additional 

filtration were not performed. However, we proceeded to analyze the data in a univariate 

way, using the Mann-Whitney test. Statistically significant peptides were represented in 

boxplots, in Figure 50. 

From the observation of the boxplots, it is possible to verify that almost all 

peptides are down regulated in the control group (patients who were in the MCI phase, 

Aβ negative group) compared to the group of patients who were in the disease phase 

(MCI due to AD, Aβ positive group). Only the FIBA peptide shows a contrary tendency.  

The PCS1N (AADHDVGSELPPEGVLGALLR), OSTP (RISHELDSASSEVN), PGCB 

(ALHPEEDPEGRQGRLLG) and CSTN1 (FVDLSGHNLANPHPFAVVPSTAT) 

peptides were those that showed the highest statistical significance, with a p-value below 

0.01. 

The PCS1N peptide was the one with the most identified peptides and the one 

with the most statistically different peptides. In this case, the peptides 
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DHDVGSELPPEGVLGA and AADHDVGSELPPEGVLGALLR are related to each 

other with only a difference of 5 amino acids, which may be related to some enzymatic 

activity that occurred in the body of the participants in the study. The proSAAS protein 

is encoded by the PCSK1N gene and is classified as a specialized secretory protein 

expressed mainly in neural tissues. This protein functions as an anti-amyloid chaperone 

in AD and is known to play a role in cerebral proteostasis, being found in neurofibrillary 

tangles and neuritic plaques in patients with Alzheimer's disease [134]. 

The protein osteopontin (OSTP) can be produced by immune cells found in the 

brain, contributing to inflammation and being associated with neurological diseases. In 

the literature, there is a study carried out in the brain of mice modified to develop 

Alzheimer's disease, where the production of osteopontin by microglia in the brain was 

tracked. This study found that only a small subset of microglia in the brain produced 

osteopontin and all belonged to the CD11c+ microglia, with only a few producing the 

potentially toxic protein. It was further found that the amount of osteopontin in the mice's 

brains had doubled or tripled as AD progressed. This study also compared the brain 

tissues of patients with normal cognitive function and patients with Alzheimer's disease, 

showing that patients with Alzheimer's had an average of three times more osteopontin 

than healthy individuals. This tendency is verified in the boxplot associated with the 

OSTP protein (Figure 50), where a higher concentration of this protein is verified in the 

Aβ positive group [135]. 

According to a study in the literature [136], the levels of calsyntenin-1 protein 

(CSTN1) are reduced in the CSF of patients who are in an early stage of Alzheimer's 

disease. These reduced levels of the protein may reflect the reduced synaptic density in 

these individuals, as they already show signs of cerebral amyloidosis. This effect is often 

confused with generalized neurodegeneration in more advanced stages of the disease. 

The protein brevican core protein (PGCB) also showed statistical difference, 

making it an interesting protein to study, however, there is not much information in the 

literature that correlates it with Alzheimer's disease. 
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Figure 50 – Boxplot of all the peptides statistically different: boxplot of all the peptides 

statistically different in Aβ negative (blue) and Aβ positive (purple) group. The plots show the relative 

abundance of each sample, the median, the minimum and the maximum of each group. The peptides are 

from proteins: proSAAS (PCS1N); osteopontin (OSTP); brevican core protein (PGCB); cystatin-C 

(CYTC); calsyntenin-1 (CSTN1) and fibrinogen alpha chain (FIBA). The level of significant is 

represented by *: * P≤ 0.05; ** P≤ 0.01. 

Using this data, we performed a univariate ROC analysis. However, none of the 

AUCs were above 0.80 and therefore none of these peptides could be used to distinguish 

between Aβ negative and Aβ positive groups (Supplementary Figure 1 of Appendix A.2). 
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7 – Conclusion  

The main objective of this work was to carry out a non-targeted metabolomics 

analysis using LC-MS, in CSF samples from β-amyloid positive and β-amyloid negative 

patients, so that it would be possible to differentiate these two groups by identifying 

significantly altered metabolites. 

For this purpose, 40 samples were used (20 β-amyloid positive samples and 20 β-

amyloid negative samples), where the ages varied between 46 and 80 years without 

statistically significant differences between the groups. 

Through LC-MS, 7956 features were detected in the SciexOS software and 2811 

features in the MS-DIAL software, and then we selected the features that were present in 

all samples, 1863 features (in the case of SciexOS) and 2461 features (in the case of MS-

DIAL). In this way, the univariate and multivariate analysis allowed highlighting 144 

(SciexOS) and 137 (MS-DIAL) features, to better separate the two groups. In the analysis 

of the features with more statistical significance, 8 samples from the Aβ negative group 

did not show the same correlation pattern as the other samples from the same group, 

showing that they were more similar to the samples from the Aβ positive group. These 8 

samples could be in a state of progression from Aβ negative to Aβ positive condition at 

the time of diagnosis and showed similarities with the samples from the Aβ positive 

group, considering the detected metabolites. For this reason, it would be important to 

confirm with clinicians whether these patients have progressed from an MCI condition to 

an MCI due to AD.  

In the hierarchical grouping analysis, it was also observed, in the Aβ negative 

condition, the formation of a group for female samples and another group for male 

samples, leading to the belief that there were metabolites that differed between sexes in 

this group. 

After this analysis, we found that some features only allowed us to differentiate 

the sexes present in the Aβ negative condition, as they had a high VIP value overcoming 

the other features. With this, the features were analyzed, excluding those that were 

correlated with the feature 226.1804/20.28, thus leaving 62 features, in order to be able 

to verify the differences between the two groups. In this case, it was verified that, contrary 

to the previous analysis, all samples were grouped in the respective group, allowing us to 
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conclude that the two groups have some different metabolic characteristics allowing this 

separation. 

Regarding the identification of metabolites, 34 features were identified. However, 

feature 298.0980/7.84 was the only one that obtained the same match in all databases 

(HMDB, METLIN, MS-DIAL and SciexOS), being identified as                                                          

5'-methyltheoadenosine, increasing the confidence in this identification.  

Of these 34 identified features, there were 7 features that presented different matches. 

This may be related to the databases lacking information on MS/MS spectra or low-

quality spectral results. To obtain a validated identification for these 34 features, it would 

be necessary to have a resuspended reference standard in the CSF and analyze it under 

conditions identical to our experimental analysis. 

After identifying the features, we carried out pathway analysis, to verify which 

would be the pathways with the greatest impact in this study.  

It was found that the most significantly altered pathway was that of tyrosine metabolism, 

where the metabolite 3,4-dihydroxy-L-phenylalanine (210.1443/14.70) was found to be 

enriched, being increased in the CSF of the Aβ negative group.  

The metabolite 19-oxoandrost-4-ene-3,17-dione (301.1770/25.68) was found to be 

enriched in the steroid hormone biosynthesis pathway and was also increased in the CSF 

of the Aβ negative group.  

The 5'-methyltheoadenosine (298.0980/7.84) metabolite was found to be enriched in 

cysteine and methionine metabolism, which was the least impacting pathway, and unlike 

the other metabolites, it was increased in the Aβ positive group. In the literature, there are 

already studies showing that the metabolites 19-oxoandrost-4-ene-3,17-dione and 5'-

methyltheoadenosine have an impact on Alzheimer's disease. 

The analysis of the ROC curves performed on these 3 identified metabolites, 

showed that the feature 298.0980/7.84, identified as 5'-methylthioadenosine, was the one 

that presented the best discriminatory power with an AUC value of 0.768. However, it 

would be important to verify and confirm the identification of this feature, considering a 

larger number of samples better to assess the discriminatory power between the two 

groups. It would also be important to compare this feature with established AD 

biomarkers, to assess whether this metabolite adds value to existing diagnostic tools. 
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When the analysis was carried out considering the four groups (Aβ negative 

female, Aβ negative male, Aβ positive female and Aβ positive male) it was possible to 

verify that there are differences between sexes in the Aβ negative group; however the 

same does not occur in the Aβ positive condition. The differences observed between sexes 

in the Aβ negative group may be related to other factors, such as other pharmacological 

therapies, since some hypertensive drugs have been identified. Since, in an untargeted 

metabolomics analysis, all types of metabolites are detected, it is necessary to take into 

account all the information about the clinical history of the patients, to be easier to exclude 

the identified metabolites that are unrelated to the Alzheimer's disease. 

Regarding the peptidomics analysis, it was found that the samples did not show 

the same behavior compared to the metabolomics analysis, and in the peptidomics 

analysis both groups completely overlapped.  

However, 7 peptides were quantified and almost all peptides were increased in the CSF 

of patients in the Aβ negative condition, with the exception of the FIBA peptide, which 

was increased in the Aβ positive group, possibly being involved in the pathophysiology 

of AD. However, when analyzing the ROC curves, it was found that no peptide had an 

AUC value greater than 0.8, concluding that none of them would be a potential biomarker 

for AD. 

In conclusion, this untargeted metabolomics analysis on CSF samples from MCI 

patients and MCI due to AD patients allowed the detection of 62 statistically significant 

features and the identification of 34. The identification of the 5'-methyltheoadenosine 

metabolite that is increased in the Aβ negative group, as already found in the literature, 

suggests that this metabolite and its respective pathway may be associated with the 

pathophysiology of AD and can be used as a potential biomarker for early identification 

of Alzheimer's disease. 
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APPENDIX 

A.1 – Material and Methods 

 

 

 

109522 64 M Aβ + S57_M_pos 

Lab ID Age Sex Group Abbreviation 

106008 50 F Aβ - S05_F_neg 

110203 54 F Aβ - S06_F_neg 

108382 55 F Aβ - S07_F_neg 

104968 58 F Aβ - S08_F_neg 

107018 59 F Aβ - S09_F_neg 

109456 59 F Aβ - S10_F_neg 

108259 60 F Aβ - S11_F_neg 

109500 60 F Aβ - S12_F_neg 

106389 60 F Aβ - S13_F_neg 

106628 61 F Aβ - S24_F_neg 

110073 46 M Aβ - S27_M_neg 

107080 57 M Aβ - S28_M_neg 

107461 57 M Aβ - S29_M_neg 

103293 60 M Aβ - S30_M_neg 

106583 62 M Aβ - S31_M_neg 

104251 63 M Aβ - S32_M_neg 

102434 64 M Aβ - S33_M_neg 

102721 68 M Aβ - S34_M_neg 

107282 68 M Aβ - S35_M_neg 

102037 70 M Aβ - S36_M_neg 

103698 49 F Aβ + S38_F_pos 

107702 54 F Aβ + S39_F_pos 

108726 55 F Aβ + S40_F_pos 

106022 57 F Aβ + S41_F_pos 

105728 60 F Aβ + S42_F_pos 

100855 65 F Aβ + S43_F_pos 

106746 68 F Aβ + S44_F_pos 

103423 70 F Aβ + S45_F_pos 

100112 71 F Aβ + S46_F_pos 

100596 71 F Aβ + S47_F_pos 

101960 71 F Aβ + S48_F_pos 

104726 54 M Aβ + S52_M_pos 

105438 55 M Aβ + S53_M_pos 

105080 58 M Aβ + S54_M_pos 

109901 62 M Aβ + S55_M_pos 

109089 64 M Aβ + S56_M_pos 

Table A.1.1 – Detailed information about the study participants. 
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103176 69 M Aβ + S58_M_pos 

102357 78 M Aβ + S59_M_pos 

107362 80 M Aβ + S60_M_pos 

 

 
Start Mass (Da) Stop Mass (Da) 

SWATH Exp 1 50 70 

SWATH Exp 2 69 90 

SWATH Exp 3 89 110 

SWATH Exp 4 109 130 

SWATH Exp 5 129 150 

SWATH Exp 6 149 170 

SWATH Exp 7 169 190 

SWATH Exp 8 189 210 

SWATH Exp 9 209 230 

SWATH Exp 10 229 250 

SWATH Exp 11 249 270 

SWATH Exp 12 269 290 

SWATH Exp 13 289 310 

SWATH Exp 14 309 330 

SWATH Exp 15 329 350 

SWATH Exp 16 349 370 

SWATH Exp 17 369 390 

SWATH Exp 18 389 410 

SWATH Exp 19 409 430 

SWATH Exp 20 429 450 

SWATH Exp 21 449 470 

SWATH Exp 22 469 490 

SWATH Exp 23 489 510 

SWATH Exp 24 509 530 

SWATH Exp 25 529 550 

SWATH Exp 26 549 570 

SWATH Exp 27 569 590 

SWATH Exp 28 589 610 

SWATH Exp 29 609 630 

SWATH Exp 30 629 650 

SWATH Exp 31 649 670 

SWATH Exp 32 669 690 

SWATH Exp 33 689 710 

SWATH Exp 34 709 730 

 

Table A.1.2 – Window distribution for SWATH method. 
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SWATH Exp 35 729 750 

SWATH Exp 36 749 770 

SWATH Exp 37 769 790 

SWATH Exp 38 789 810 

SWATH Exp 39 809 830 

SWATH Exp 40 829 850 

SWATH Exp 41 849 870 

SWATH Exp 42 869 890 

SWATH Exp 43 889 910 

SWATH Exp 44 909 930 

SWATH Exp 45 929 950 

SWATH Exp 46 949 970 

SWATH Exp 47 969 990 

SWATH Exp 48 989 1010 

SWATH Exp 49 1009 1030 

SWATH Exp 50 1029 1050 

SWATH Exp 51 1049 1070 

SWATH Exp 52 1069 1090 

SWATH Exp 53 1089 1110 

SWATH Exp 54 1109 1130 

SWATH Exp 55 1129 1150 

SWATH Exp 56 1149 1170 

SWATH Exp 57 1169 1190 

SWATH Exp 58 1189 1210 

SWATH Exp 59 1209 1230 

SWATH Exp 60 1229 1250 

SWATH Exp 61 1249 1270 

SWATH Exp 62 1269 1290 

SWATH Exp 63 1289 1310 

SWATH Exp 64 1309 1330 

SWATH Exp 65 1329 1350 

SWATH Exp 66 1349 1370 

SWATH Exp 67 1369 1390 

SWATH Exp 68 1389 1410 

SWATH Exp 69 1409 1430 

SWATH Exp 70 1429 1450 

SWATH Exp 71 1449 1470 

SWATH Exp 72 1469 1490 

SWATH Exp 73 1489 1500 
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A.2 – Results and discussion 

 
 

 

m/z 
Retention 

Time (RT) 
HMDB ID matches 

Monoisotopic 

Mass 
Adduct 

Delta 

(ppm) 

158.1527 22.33 
HMDB0257395; HMDB0253703; 

HMDB0245344 
157.1467 M+H 8 

161.0213 5.68 No results for this query mass − − − 

161.0985 24.00 

HMDB0246567 160.0900 

M+H 

8 

HMDB0032426; HMDB0031572 160.0922 6 

HMDB0038790; HMDB0031567; 

HMDB0035207 
160.0888 15 

197.0781 14.29 No results for this query mass − − − 

210.1443 14.70 
HMDB0254752; HMDB0246283; 

HMDB0248857; HMDB0245501 
209.1416 M+H 22 

244.2234 23.24 No results for this query mass − − − 

247.0907 19.68 

HMDB0247212 224.1085 

M+Na 

28 

HMDB0246998 224.1022 3 

HMDB0340720; HMDB0340719; 

HMDB0340718; HMDB0340717; 

HMDB0340716; HMDB0340715; 

HMDB0032552; HMDB0036203; 

HMDB0030703; HMDB0032663; 

HMDB0040629; HMDB0030680; 

HMDB0040890 

224.1049 14 

HMDB0041008 224.1062 19 

HMDB0030379 224.0950 26 

251.1603 24.94 

HMDB0251058 250.1470 

M+H 

24 

HMDB0243865 250.1603 29 

HMDB0240642; HMDB0304066; 

HMDB0255460; HMDB0061839; 

HMDB0302702; HMDB0030917; 

HMDB0035148; HMDB0037529; 

HMDB0039635; HMDB0035760; 

HMDB0036036; HMDB0039644; 

HMDB0036563; HMDB0035798; 

250.1569 15 

Table A.2.1 – List of matches for each of the 62 statistically different features in the 

HMDB database based on mass/charge of the precursors only. 
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HMDB0035117; HMDB0035137; 

HMDB0035358; HMDB0302605; 

HMDB0039156; HMDB0040754; 

HMDB0036550; HMDB0031901; 

HMDB0037559; HMDB0036664; 

HMDB0034721; HMDB0036037; 

HMDB0037064; HMDB0301855; 

HMDB0015371 

253.1402 23.83 

HMDB0340846; HMDB0340845; 

HMDB0340844; HMDB0340843; 

HMDB0340842; HMDB0340841; 

HMDB0340840; HMDB0340839; 

HMDB0059661; HMDB0036047; 

HMDB0033197 

252.1362 M+H 13 

264.1908 24.32 

HMDB0260305; HMDB0259401; 

HMDB0244949; HMDB0013892; 

HMDB0015646; HMDB0029567; 

HMDB0014339 

263.1885 M+H 19 

266.1702 16.79 

HMDB0251062 265.1597 

M+H 

12 

HMDB0061122; HMDB0015520 265.1678 18 

HMDB0015689; HMDB0014514 265.1579 19 

266.1786 17.32 No results for this query mass − − − 

273.1660 16.79 No results for this query mass − − − 

273.1687 13.83 

HMDB0241062; HMDB0241060; 

HMDB0241057; HMDB0241059; 

HMDB0241063; HMDB0241061; 

HMDB0241056; HMDB0340797; 

HMDB0340796; HMDB0340795; 

HMDB0340794; HMDB0340793 

331.2358 M+H 3 

277.1053 14.98 

HMDB0254414; HMDB0244962 276.0899 

M+H 

29 

HMDB0028818; HMDB0250751; 

HMDB0042036; HMDB0011737 
276.0958 8 

HMDB0304112; HMDB0304054 276.1042 22 

HMDB0030145; HMDB0030791; 

HMDB0035814; HMDB0030287; 

HMDB0041520 

276.0998 6 

HMDB0249010; HMDB0253452 276.0939 15 
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281.1696 25.71 

HMDB0247442 280.1576 

M+H 

17 

HMDB0340908; HMDB0340907; 

HMDB0340906; HMDB0340905; 

HMDB0340904; HMDB0242339; 

HMDB0030148; HMDB0041229; 

HMDB0036979; HMDB0040755 

280.1675 18 

284.33 25.99 No results for this query mass − − − 

295.1891 27.80 

HMDB0251767; HMDB0040646; 

HMDB0035754; HMDB0035722; 

HMDB0034779; HMDB0005783 

294.1831 
M+H 

4 

HMDB0033432; HMDB0030282 294.1732 29 

298.098 7.84 

HMDB0304350; HMDB0258835; 

HMDB0254957 
297.0961 

M+H 

18 

HMDB0037297 297.0849 20 

HMDB0257557; HMDB0001173 297.0896 4 

301.177 25.68 

HMDB0260292 300.1620 

M+H 

26 

HMDB0258027 300.1725 9 

HMDB0254504 300.1660 12 

HMDB0249556 300.1626 23 

HMDB0248401; HMDB0256730; 

HMDB0304035; HMDB0060088; 

HMDB0038684; HMDB0039569; 

HMDB0011195; HMDB0006772; 

HMDB0006768; HMDB0000010; 

HMDB0015031 

300.1725 9 

313.2325 26.82 

HMDB0242602; HMDB0340915; 

HMDB0340914; HMDB0062281; 

HMDB0304442; HMDB0062434; 

HMDB0062637; HMDB0040900; 

HMDB0010221; HMDB0010208; 

HMDB0010201; HMDB0006940; 

HMDB0004706; HMDB0003871 

312.2301 
M+H 

15 

HMDB0302976 312.2312 19 

317.1707 24.84 

HMDB0256709 316.1688 

M+H 

17 

HMDB0252371 316.1587 15 

HMDB0247634; HMDB0303451; 

HMDB0029566 
316.1675 13 

HMDB0249442; HMDB0014517 316.1569 21 
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317.1715 24.00 

HMDB0256709 316.1688 

M+H 

14 

HMDB0252371 316.1587 17 

HMDB0247634; HMDB0303451; 

HMDB0029566 
316.1675 10 

HMDB0249442; HMDB0014517 316.1569 23 

335.2769 26.82 No results for this query mass − − − 

341.1913 24.42 

HMDB0257041; HMDB0253577; 

HMDB0249355; HMDB0245907; 

HMDB0040799; HMDB0001091 

340.1787 

M+H 

16 

HMDB0252882 340.1859 6 

HMDB0244346 340.1886 13 

HMDB0014876 340.1899 17 

351.1541 24.35 

HMDB0258286 350.1531 

M+H 

18 

HMDB0251232 350.1518 14 

HMDB0249307 350.1379 25 

HMDB0256819; HMDB0032003 350.1552 24 

357.258 26.82 

HMDB0341190 356.2424 

M+H 

23 

HMDB0259370; HMDB0041882 356.2464 12 

HMDB0244518; HMDB0245719; 

HMDB0302208; HMDB0004239; 

HMDB0002689; HMDB0002685 

356.2563 16 

378.1209 20.21 No results for this query mass − − − 

379.1469 25.57 

HMDB0341149 378.1362 

M+H 

9 

HMDB0035037; HMDB0029304; 

HMDB0301749; HMDB0039137 
378.1315 22 

HMDB0030656; HMDB0040350 378.1467 19 

387.1765 25.15 

HMDB0258919; HMDB0256720 386.1630 

M+H 

16 

HMDB0255928 386.1754 16 

HMDB0249294 386.1664 7 

HMDB0303928; HMDB0303467; 

HMDB0030810; HMDB0035404; 

HMDB0035405 

386.1729 10 

387.1775 24.46 

HMDB0258919; HMDB0256720 386.1630 

M+H 

19 

HMDB0255928 386.1754 13 

HMDB0249294 386.1664 10 

HMDB0303928; HMDB0303467; 

HMDB0030810; HMDB0035404; 

HMDB0035405 

386.1729 7 
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391.1501 26.09 

HMDB0257135 390.1400 

M+H 

7 

HMDB0251865 390.1387 11 

HMDB0250075 390.1492 16 

HMDB0304725; HMDB0242527; 

HMDB0030564; HMDB0031422; 

HMDB0030565; HMDB0036294 

390.1315 29 

HMDB0247827 390.1526 25 

HMDB0035876 390.1467 10 

HMDB0037260 390.1526 25 

397.2529 24.42 
HMDB0259404 396.2438 

M+H 
5 

HMDB0249570 396.2413 11 

401.2856 26.09 No results for this query mass − − − 

410.1617 24.56 

HMDB0257957; HMDB0015108 409.1489 

M+H 

13 

HMDB0256532 409.1557 3 

HMDB0259210 409.1665 29 

HMDB0061159 409.1656 27 

HMDB0060470; HMDB0060454; 

HMDB0303673 
409.1584 10 

HMDB0059662; HMDB0011596 409.1597 13 

419.2367 24.6 
HMDB0256094 418.2369 

M+H 
18 

HMDB0253027 418.2329 8 

420.2402 24.56 
HMDB0254922; HMDB0248012 419.2209 

M+H 
29 

HMDB0247141 419.242 22 

461.2836 26.93 

HMDB0297030; HMDB0297029; 

HMDB0297028; HMDB0297027; 

HMDB0297022; HMDB0297021; 

HMDB0297020; HMDB0297019; 

HMDB0297018; HMDB0297017; 

HMDB0297016; HMDB0297015; 

HMDB0297014; HMDB0297013; 

HMDB0297012; HMDB0297011; 

HMDB0297010; HMDB0297009; 

HMDB0297008; HMDB0297007; 

HMDB0256357; HMDB0038352; 

HMDB0030909 

460.2825 
M+H 

13 

HMDB0254731 460.2699 14 

467.3562 26.75 
HMDB0002972; HMDB0245416 466.3447 

M+H 
9 

HMDB0012082 466.3536 10 
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477.3616 23.03 

HMDB0247191 476.3443 

M+H 

21 

HMDB0030271 476.3614 15 

HMDB0034079; HMDB0039443 476.3502 9 

478.3647 22.68 

HMDB0032879 460.3341 

M+NH4 

7 

HMDB0303309 460.3400 19 

HMDB0038500; HMDB0038501; 

HMDB0032690 
460.3189 25 

481.3194 18.47 HMDB0253340; HMDB0013267 229.1678 2M + Na 11 

489.3351 26.89 
HMDB0255626 489.3279 

M 
15 

HMDB0242438; HMDB0242406 489.3454 21 

491.3411 26.89 HMDB0039090 490.3447 M+H 22 

505.3092 26.89 
HMDB0013021 504.2948 

M+H 
14 

HMDB0033709 504.3087 13 

507.1326 24.80 
HMDB0254498 506.1177 

M+H 
15 

HMDB0259909 506.1213 8 

511.3784 26.75 No results for this query mass − − − 

512.3825 26.75 No results for this query mass − − − 

533.3639 26.86 No results for this query mass − − − 

535.3661 26.89 

HMDB0297130; HMDB0297128; 

HMDB0297129: HMDB0297127 
534.3556 

M+H 
6 

HMDB0035899 534.3709 23 

536.2870 20.24 HMDB0259747; HMDB0240271 535.2795 M+H 0 

541.2894 20.28 No results for this query mass − − − 

543.2859 20.24 No results for this query mass − − − 

549.3352 26.86 No results for this query mass − − − 

555.4047 26.72 

HMDB0297254; HMDB0297253; 

HMDB0297252; HMDB0297251; 

HMDB0297250; HMDB0297249; 

HMDB0297248; HMDB0297247; 

HMDB0297126; HMDB0297125: 

HMDB0297124; HMDB0297123; 

HMDB0294496; HMDB0294495; 

HMDB0294494; HMDB0294493 

554.3819 M+H 28 

578.3958 26.82 No results for this query mass − − − 

599.4132 26.72 No results for this query mass − − − 

599.4284 26.72 
HMDB0294484; HMDB0294483; 

HMDB0294482; HMDB0294481; 
598.4081 M+H 22 
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HMDB0294464; HMDB0294463; 

HMDB0294462; HMDB0294461 

HMDB0260191; HMDB0039139; 

HMDB0039594 
598.4233 4 

HMDB0030100 598.4386 29 

643.4563 26.69 No results for this query mass − − − 

701.3865 14.25 

HMDB0267486; HMDB0267485; 

HMDB0266866; HMDB0266865; 

HMDB0262921; HMDB0262920 

700.3951 M+H 23 

795. 3352 25.22 No results for this query mass − − − 

805.404 24.46 
HMDB0274840; HMDB0274839 804.419 

M+H 
28 

HMDB0034945; HMDB0034949 804.378 23 

 

 

 

 

 

 

m/z 

Retetion 

Time 

(RT) 

METLIN ID matches 
Monoisotopic 

Mass 
Adduct 

Delta 

(ppm) 

158.1527 22.33 No results for this query mass − − − 

161.0213 5.68 346616 160.0095 [M+H]+ 27 

161.0985 24.00 No results for this query mass − − − 

197.0781 14.29 488670 196.0653 [M+H]+ 27 

210.1443 14.70 464755 209.1328 [M+H]+ 19 

244.2234 23.24 267513 243.2198 [M+H]+ − 

247.0907 19.68 No results for this query mass − − − 

251.1603 24.94 485265 250.1463 [M+H]+ 26 

253.1402 23.83 273346 252.1263 [M+H]+ 26 

264.1908 24.32 No results for this query mass − − − 

266.1702 16.79 445689 265.1551 [M+H]+ 29 

266.1786 17.32 964257 265.1642 [M+H]+ 26 

273.166 16.79 273847 272.1525 [M+H]+ 22 

273.1687 13.83 267750 272.1541 [M+H]+ 26 

277.1053 14.98 No results for this query mass − − − 

281.1696 25.71 No results for this query mass − − − 

284.33 25.99 43833 283.3239 [M+H]+ 4 

295.1891 24.80 No results for this query mass − − − 

298.098 7.84 3425 297.0896 [M+H]+ 3 

Table A.2.2 – List of matches for each of the 62 statistically different features in the 

METLIN database based on mass/charge of the precursors only. 
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301.177 25.68 41865 300.1725 [M+H]+ 9 

313.2325 26.82 67501 312.2202 [M+H]+ 16 

317.1707 24.84 527031 316.1549 [M+H]+ 26 

317.1715 24.00 2856 316.1569 [M+H]+ 23 

335.2769 26.82 No results for this query mass − − − 

341.1913 24.42 2234 340.1787 [M+H]+ 15 

351.1541 24.35 72303 350.1413 [M+H]+ 15 

357.258 26.82 − − − − 

378.1209 20.21 No results for this query mass 356.2501 [M+H]+ − 

379.1469 25.57 67733 378.1315 [M+H]+ 21 

387.1765 25.15 68834 386.1632 [M+H]+ 15 

387.1775 24.46 68834 386.1632 [M+H]+ 18 

391.1501 26.09 53240 − − − 

397.2529 24.42 36160 396.2512 [M+H]+ 13 

401.2856 26.93 907894 400.2686 [M+H]+ 24 

410.1617 24.56 
66912 409.1584 [M+H]+ 9 

302656 409.1426 [M+H]+ 28 

419.2367 24.60 No results for this query mass − − − 

420.2402 24.56 267275 419.2209 [M+H]+ 28 

461.2836 26.93 
433700 460.2625 [M+H]+ 29 

41882 460.2825 [M+H]+ 13 

467.3562 26.75 
42409 466.3447 [M+H]+ 8 

3030 466.3447 [M+H]+ 8 

477.3616 23.03 634222 476.3403 [M+H]+ 29 

478.3647 22.68 No results for this query mass − − − 

481.3194 18.47 No results for this query mass − − − 

489.3351 26.89 No results for this query mass − − − 

491.3411 26.89 
367039 490.3195 [M+H]+ 29 

68419 490.3308 [M+H]+ 6 

505.3092 26.89 741838 504.2891 [M+H]+ 25 

507.1326 24.80 512868 506.1129 [M+H]+ 24 

511.3784 26.75 346153 510.3669 [M+H]+ 8 

512.3825 26.75 739540 511.3621 [M+H]+ 25 

533.3639 26.86 951964 532.3472 [M+H]+ 17 

535.3661 26.89 634086 534.343 [M+H]+ 29 

536.287 20.24 129233 535.2642 [M+H]+ 28 

541.2894 20.28 42027 540.2674 [M+H]+ 27 

543.2859 20.24 No results for this query mass − − − 

549.3352 26.86 No results for this query mass − − − 

555.4047 26.72 300126 554.3971 [M+H]+ 0 

578.3958 26.82 No results for this query mass − − − 

599.4132 26.72 No results for this query mass − − − 
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599.4284 26.72 898775 598.4085 [M+H]+ 21 

643.4563 26.69 264170 642.4541 [M+H]+ 7 

701.3865 14.25 No results for this query mass − − − 

795.3352 25.22 718426 794.3445 [M+H]+ 20 

805.404 24.46 No results for this query mass − − − 

 

 

 

m/z 

Retetion 

Time 

(RT) 

MS-DIAL ID matches Adduct 

158.1527 22.33 No results for this query mass [M+H]+ 

161.0213 5.68 Salicyclic acid [M+H]+ 

161.0985 24.00 L-alanyl-L-alanine [M+H]+ 

197.0781 14.29 SUBERATE [M+H]+ 

210.1443 14.70 No results for this query mass [M+H]+ 

244.2234 23.24 No results for this query mass [M+H]+ 

247.0907 19.68 No results for this query mass [M+Na]+ 

251.1603 24.94 Normianserin [M+H]+ 

253.1402 23.83 
(8aR,12S,12aR)-12-hydroxy-4-methyl-4,5,6,7,8,8a,12,12a-

octahydro-1H-3-benzoxecine-2,9-dione 
[M+H]+ 

264.1908 24.32 Dendrobine [M+Na]+ 

266.1702 16.79 No results for this query mass [M+H]+ 

266.1786 17.32 
7-methyl-3-methylidene-6-(3-oxobutyl)-4,7,8,8a-tetrahydro-

3aH-cyclohepta[b]furan-2-one 
[M+H]+ 

273.166 16.79 
(E)-5-hydroxy-3-isobutyl-6-(3-methylbenzylidene)-1,6-

dihydropyrazin-2(3H)-one 
[M+H]+ 

273.1687 13.83 1,3-bis(4,4-dimethyl-4,5-dihydrooxazol-2-yl)benzene [M+H]+ 

277.1053 14.98 Phomalone [M+H]+ 

281.1696 25.71 No results for this query mass [M+H]+ 

284.33 25.99 9,10-alpha-Epoxy-eremanthin [M+H]+ 

295.1891 24.80 [6]-Gingerol [M+H]+ 

298.098 7.84 5'-S-Methylthioadenosine [M+H]+ 

301.177 25.68 No results for this query mass [M+H]+ 

313.2325 26.82 (9Z,12E)-15,16-dihydroxyoctadeca-9,12-dienoic acid [M+H]+ 

317.1707 24.84 (S)-[6]gingerol [M+H]+ 

317.1715 24.00 

NCGC00380965-01_C19H24O4_11a-Hydroxy-4,4,9-

trimethyl-9-vinyl-1,2,3,4,9,10,11,11a-

octahydrodibenzo[c,e]oxepine-5,7-dione 

[M+H]+ 

335.2769 26.82 No results for this query mass [M+H]+ 

341.1913 24.42 No results for this query mass [M+H]+ 

351.1541 24.35 No results for this query mass [M+H]+ 

357.258 26.82 
Chenodeoxycholic acid; CE0; RUDATBOHQWOJDD-

BSWAIDMHSA-N 
[M+H]+ 

Table A.2.3 – List of matches for each of the 62 statistically different features in the 

MS-DIAL database. 
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378.1209 20.21 3,4-dihydro-papaveraldine [M+H]+ 

379.1469 25.57 No results for this query mass [M+H]+ 

387.1765 25.15 No results for this query mass [M+H]+ 

387.1775 24.46 No results for this query mass [M+H]+ 

391.1501 26.09 No results for this query mass [M+H]+ 

397.2529 24.42 Ginkgolic Acid C17-1 [M+H]+ 

401.2856 26.93 NCGC00385238-01_C25H36O4_ [M+H]+ 

410.1617 24.56 No results for this query mass [M+H]+ 

419.2367 24.60 
4-[(2R,3R)-3-[(3,4-dimethoxyphenyl)methyl]-4-methoxy-2-

(methoxymethyl)butyl]-1,2-dimethoxybenzene 
[M+H]+ 

420.2402 24.56 No results for this query mass [M+H]+ 

461.2836 26.93 MMV676602 [M+H]+ 

467.3562 26.75 

(6R)-3-hydroxy-2-methyl-6-

((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-

10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-

17-yl)heptanoic acid" 

[M+H]+ 

477.3616 23.03 No results for this query mass [M+H]+ 

478.3647 22.68 No results for this query mass [M+NH4]+ 

481.3194 18.47 No results for this query mass [2M+Na]+ 

489.3351 26.89 

(E)-(3S,10R,13R)-10,13-dimethyl-17-(6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-

cyclopenta[a]phenanthren-3-yl 3-chlorobut-2-enoate 

[M]+ 

491.3411 26.89 No results for this query mass [M+H]+ 

505.3092 26.89 Polyporenic acid C [M+H]+ 

507.1326 24.80 No results for this query mass [M+H]+ 

511.3784 26.75 Dehydroeburicoic acid monoacetate [M+H]+ 

512.3825 26.75 No results for this query mass [M+H]+ 

533.3639 26.86 Alisol A,24-acetate [M+H]+ 

535.3661 26.89 No results for this query mass [M+H]+ 

536.287 20.24 No results for this query mass [M+H]+ 

541.2894 20.28 

NCGC00385727-01_C31H40O8_(1R,5R,6R,13R,14R,16S)-6-

(3-Furyl)-16-(2-methoxy-2-oxoethyl)-1,5,15,15-tetramethyl-

8,17-dioxo-7-oxatetracyclo[11.3.1.0~2,11~.0~5,10~]heptadec-

10-en-14-yl 2-methylpropanoate 

[M+H]+ 

543.2859 20.24 

(3S,4S,5R)-4-[(2R,3R)-2,3-dihydroxy-3-

[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-trihydroxy-10,13-

dimethyl-6-oxo-2,3,4,5,9,11,12,15,16,17-decahydro-1H-

cyclopenta[a]phenanthren-17-yl]butyl]-3,5-dimethyloxolan-2-

one 

[M]+ 

549.3352 26.86 Dehydropachymic acid [M+K]+ 

555.4047 26.72 No results for this query mass [M+H]+ 

578.3958 26.82 No results for this query mass [M+H]+ 

599.4132 26.72 No results for this query mass [M+NH4]+ 

599.4284 26.72 No results for this query mass [M+H]+ 

643.4563 26.69 No results for this query mass [M+H]+ 

701.3865 14.25 Cimiracemoside D [M+H]+ 

795.3352 25.22 No results for this query mass [M+H]+ 
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805.404 24.46 No results for this query mass [M+H]+ 

m/z 
Retetion Time 

(RT) 
SciexOS ID matches Adduct 

158.1527 22.33 No results for this query mass [M+H]+ 

161.0213 5.68 No results for this query mass [M+H]+ 

161.0985 24.00 No results for this query mass [M+H]+ 

197.0781 14.29 No results for this query mass [M+H]+ 

210.1443 14.70 No results for this query mass [M+H]+ 

244.2234 23.24 No results for this query mass [M+H]+ 

247.0907 19.68 
GAMMA,GAMMA-DIMETHYLALLYL 

PYROPHOSPHATE 
[M+Na]+ 

251.1603 24.94 No results for this query mass [M+H]+ 

253.1402 23.83 No results for this query mass [M+H]+ 

264.1908 24.32 No results for this query mass [M+Na]+ 

266.1702 16.79 No results for this query mass [M+H]+ 

266.1786 17.32 No results for this query mass [M+H]+ 

273.166 16.79 No results for this query mass [M+H]+ 

273.1687 13.83 No results for this query mass [M+H]+ 

277.1053 14.98 No results for this query mass [M+H]+ 

281.1696 25.71 No results for this query mass [M+H]+ 

284.33 25.99 No results for this query mass [M+H]+ 

295.1891 24.80 No results for this query mass [M+H]+ 

298.098 7.84 METHYLTHIOADENOSINE [M+H]+ 

301.177 25.68 No results for this query mass [M+H]+ 

313.2325 26.82 No results for this query mass [M+H]+ 

317.1707 24.84 No results for this query mass [M+H]+ 

317.1715 24.00 No results for this query mass [M+H]+ 

335.2769 26.82 No results for this query mass [M+H]+ 

341.1913 24.42 No results for this query mass [M+H]+ 

351.1541 24.35 No results for this query mass [M+H]+ 

357.258 26.82 No results for this query mass [M+H]+ 

378.1209 20.21 No results for this query mass [M+H]+ 

Table A.2.4 – List of matches for each of the 62 statistically different features in the 

SciexOS database. 
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379.1469 25.57 No results for this query mass [M+H]+ 

387.1765 25.15 No results for this query mass [M+H]+ 

387.1775 24.46 No results for this query mass [M+H]+ 

391.1501 26.09 No results for this query mass [M+H]+ 

397.2529 24.42 No results for this query mass [M+H]+ 

401.2856 26.93 No results for this query mass [M+H]+ 

410.1617 24.56 No results for this query mass [M+H]+ 

419.2367 24.60 No results for this query mass [M+H]+ 

420.2402 24.56 No results for this query mass [M+H]+ 

461.2836 26.93 No results for this query mass [M+H]+ 

467.3562 26.75 No results for this query mass [M+H]+ 

477.3616 23.03 No results for this query mass [M+H]+ 

478.3647 22.68 No results for this query mass [M+NH4]+ 

481.3194 18.47 No results for this query mass [2M+Na]+ 

489.3351 26.89 CITICOLINE [M]+ 

491.3411 26.89 No results for this query mass [M+H]+ 

505.3092 26.89 No results for this query mass [M+H]+ 

507.1326 24.80 No results for this query mass [M+H]+ 

511.3784 26.75 No results for this query mass [M+H]+ 

512.3825 26.75 No results for this query mass [M+H]+ 

533.3639 26.86 No results for this query mass [M+H]+ 

535.3661 26.89 No results for this query mass [M+H]+ 

536.287 20.24 No results for this query mass [M+H]+ 

541.2894 20.28 No results for this query mass [M+H]+ 

543.2859 20.24 No results for this query mass [M]+ 

549.3352 26.86 No results for this query mass [M+K]+ 

555.4047 26.72 No results for this query mass [M+H]+ 

578.3958 26.82 No results for this query mass [M+H]+ 

599.4132 26.72 No results for this query mass [M+NH4]+ 

599.4284 26.72 No results for this query mass [M+H]+ 

643.4563 26.69 No results for this query mass [M+H]+ 

701.3865 14.25 No results for this query mass [M+H]+ 

795.3352 25.22 No results for this query mass [M+H]+ 

805.404 24.46 No results for this query mass [M+H]+ 
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m/z 

Retetion 

Time 

(RT) 

Compound Pathway 

161.0213 5.68 Salicyclic acid − 

161.0985 24.00 
Multiple matches ((±)-2,2'-Iminobispropanoic 

acid or Salicyclic acid) 
− 

197.0781 14.29 Suberate − 

210.1443 14.70 L-Dopa Tyrosine metabolism 

251.1603 24.94 Normianserin − 

253.1402 23.83 

Multiple matches (Triamterene or 

(8aR,12S,12aR)-12-hydroxy-4-methyl-

4,5,6,7,8,8a,12,12a-octahydro-1H-3-

benzoxecine-2,9-dione) 

− 

266.1786 17.32 

7-methyl-3-methylidene-6-(3-oxobutyl)-

4,7,8,8a-tetrahydro-3aH-cyclohepta[b]furan-2-

one 

− 

273.1660 16.79 

(E)-5-hydroxy-3-isobutyl-6-(3-

methylbenzylidene)-1,6-dihydropyrazin-2(3H)-

one 

− 

273.1687 13.83 
1,3-bis(4,4-dimethyl-4,5-dihydrooxazol-2-

yl)benzene 
− 

277.1053 14.98 Phomalone − 

281.1696 25.71 Phentolamine − 

284.3300 25.99 9,10-alpha-Epoxy-eremanthin − 

295.1891 24.80 Esmolol − 

298.0980 7.84 5'-Methylthioadenosine 
Cysteine and methionine 

metabolism 

301.1770 25.68 19-oxoandrost-4-ene-3,17-dione 
Steroid hormone 

biosynthesis 

313.2325 26.82 
Multiple matches (Fruticosonine or (9Z,12E)-

15,16-dihydroxyoctadeca-9,12-dienoic acid) 
− 

317.1707 24.84 Multiple matches (Piplartine or (S)-gingerol) − 

317.1715 24.00 

NCGC00380965-01_C19H24O4_11a-Hydroxy-

4,4,9-trimethyl-9-vinyl-1,2,3,4,9,10,11,11a-

octahydrodibenzo[c,e]oxepine-5,7-dione 

− 

341.1913 24.42 3-Hydroxyquinine − 

357.2580 26.82 
Multiple matches (PGD2-d4 or 

Chenodeoxycholic acid) 
− 

378.1209 20.21 3,4-dihydro-papaveraldine − 

Table A.2.5 – List of features identified with a maximum score in HMDB, METLIN, 

MS-DIAL and SciexOS. 
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397.2529 24.42 Ginkgolic Acid C17-1 − 

401.2856 26.93 NCGC00385238-01_C25H36O4_ − 

419.2367 24.60 

4-[(2R,3R)-3-[(3,4-dimethoxyphenyl)methyl]-4-

methoxy-2-(methoxymethyl)butyl]-1,2-

dimethoxybenzene 

− 

461.2836 26.93 MMV676602 − 

467.3562 26.75 

Multiple matches (2,3-epoxyphylloquinone or 

(6R)-3-hydroxy-2-methyl-6-

((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-

3,7,12-trihydroxy-10,13-

dimethylhexadecahydro-1H-

cyclopenta[a]phenanthren-17-yl)heptanoic acid") 

− 

489.3351 26.89 

Multiple matches ((E)-(3S,10R,13R)-10,13-

dimethyl-17-(6-methylheptan-2-yl)-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-

tetradecahydro-1H-cyclopenta[a]phenanthren-3-

yl 3-chlorobut-2-enoate or citicoline) 

− 

505.3092 26.89 Polyporenic acid C − 

511.3784 26.75 Dehydroeburicoic acid monoacetate − 

533.3639 26.86 Alisol A,24-acetate − 

541.2894 20.28 

NCGC00385727-

01_C31H40O8_(1R,5R,6R,13R,14R,16S)-6-(3-

Furyl)-16-(2-methoxy-2-oxoethyl)-1,5,15,15-

tetramethyl-8,17-dioxo-7-

oxatetracyclo[11.3.1.0~2,11~.0~5,10~]heptadec-

10-en-14-yl 2-methylpropanoate 

− 

543.2859 20.24 

(3S,4S,5R)-4-[(2R,3R)-2,3-dihydroxy-3-

[(2S,3R,5R,10R,13R,14S,17S)-2,3,14-

trihydroxy-10,13-dimethyl-6-oxo-

2,3,4,5,9,11,12,15,16,17-decahydro-1H-

cyclopenta[a]phenanthren-17-yl]butyl]-3,5-

dimethyloxolan-2-one 

− 

549.3352 26.86 Dehydropachymic acid − 

701.3865 14.25 Cimiracemoside D − 
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Protein Peptide m/z RT 

sp|O15240|VGF_HUMAN 
APPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSA

PEVRGA 
659.505 9.2445 

sp|O15240|VGF_HUMAN 
APPGRPEAQPPPLSSEHKEPVAGDAVPGPKDGSA

PEV 
734.372 9.8850 

sp|O15240|VGF_HUMAN NAPPEPVPPPRAAPAPTHV 639.011 10.033 

sp|O15240|VGF_HUMAN APPEPVPPPR 528.795 8.5135 

sp|O15240|VGF_HUMAN ERAPLPPPAPS 566.311 9.8097 

sp|Q9UHG2|PCS1N_HUMAN DHDVGSELPPEGVLGA 796.383 12.951 

sp|Q9UHG2|PCS1N_HUMAN AADHDVGSELPPEGVLGALLR 706.039 15.857 

sp|Q9UHG2|PCS1N_HUMAN DHDVGSELPPEGVLGALLRV 691.704 17.671 

sp|Q9UHG2|PCS1N_HUMAN SPPLAETGAPR 548.293 8.7322 

sp|Q9UHG2|PCS1N_HUMAN ADHDVGSELPPEGVLGA 831.902 11.786 

sp|Q9UHG2|PCS1N_HUMAN DHDVGSELPPEGVLGALLR 658.681 16.283 

sp|P02671|FIBA_HUMAN SGEGDFLAEGGGVR 675.817 10.901 

sp|P02671|FIBA_HUMAN EGDFLAEGGGVR 603.791 10.071 

sp|P02675|FIBB_HUMAN [PGQ]-QGVNDNEE[NaX]GFFSA 709.777 14.116 

sp|P02675|FIBB_HUMAN [PGQ]-QGVNDNEEGFFSA 698.786 14.112 

sp|P10451|OSTP_HUMAN RISHELDSASSEVN 515.249 7.5818 

Pathway name p-value Impact Metabolites included in the pathway 

Cysteine and methionine 

metabolism  

0.06256 0.02089 
5'-methylthioadenosine 

(298.0980/7.84) 

Tyrosine metabolism  0.079157 0.11085 
3,4-dihydroxy-L-phenylalanine 

(210.1443/14.70) 

Steroid hormone 

biosynthesis 

0.15575 0.04229 
19-oxoandrost-4-ene-3,17-dione 

(301.1770/25.68) 

Table A.2.6 – List of the features identified in the CSF sample of the Aβ negative and 

Aβ positive groups belonging to the significant pathways from the Pathway 

Enrichment analysis performed in the MetaboAnalyst 5.0. 

Table A.2.7 – List of the peptides quantified in the CSF samples of the Aβ negative 

and Aβ positive groups. 

https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/PathResultView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/PathResultView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/PathResultView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/PathResultView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/Secure/pathway/PathResultView.xhtml
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sp|P05408|7B2_HUMAN SVNPYLQGQRLDNVVAKKSVPHFSDEDKDPE 703.154 10.646 

sp|P02649|APOE_HUMAN KVEQAVETEPEPELR-[-1R] 799.401 10.851 

sp|Q96GW7|PGCB_HUMAN ALHPEEDPEGRQGRLLG 625.322 9.7000 

sp|P01034|CYTC_HUMAN VSPAAGSSPGKPPR 436.573 6.4420 

sp|P01034|CYTC_HUMAN VSPAAGSSP[Oxi]GKPPR 441.905 5.5581 

sp|Q9NZM4|BICRA_HUMAN PRPPPPPPP 476.274 8.3755 

sp|Q2KJY2|KI26B_HUMAN HQAKVSLQMATS 650.837 26.108 

sp|O94985-2|CSTN1_HUMAN FVDLSGHNLANPHPFAVVPSTAT 797.741 13.583 

sp|P10645|CMGA_HUMAN 
HSGFEDELSEVLENQSSQAELKEAVEEPSSKDVM

E 
977.448 13.664 

sp|Q9Y287|ITM2B_HUMAN FENKFAVET 542.769 10.678 

sp|Q9UHG2|PCS1N_HUMAN AADHDVGSELPPEGVLGA 867.420 13.741 

sp|P02671|FIBA_HUMAN ADSGEGDFLAEGGGVR 768.849 11.826 

sp|P02671|FIBA_HUMAN DSGEGDFLAEGGGVR 733.331 13.425 

sp|P02671|FIBA_HUMAN KPVPDLVPGNFK 655.877 11.884 

sp|P02675|FIBB_HUMAN [PGQ]-QGVNDNEEGFFSAR 776.836 12.699 

sp|P10451|OSTP_HUMAN 
AQDLNAPSDWDSRGKDSYETSQLDDQSAETHSH

KQS 
673.133 10.118 

sp|P10645|CMGA_HUMAN 
HSGFEDELSEVLENQSSQAELKEAVEEPSSKDVM

[Oxi]E 
981.446 13.329 
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Supplementary Figure 1 – ROC curve of peptides: receiver operator characteristic (ROC) curve 

analysis of peptides between Aβ negative and Aβ positive groups using MetaboAnalyst 5.0. 


