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Abstract

Medical prescription in hospital environment, also known as internal prescrip-
tion, consists of a periodic task in which doctors should visit the patient, re-
assess them, re-evaluate the current therapy, and, when necessary, add, remove,
or change some components. The doctor should repeat this task typically daily
for all the hospitalized patients under his/her responsibility. In the reality of the
health units that use MedicineOne’s software, the M1, each patient visit is accom-
panied by a nursing trolley that includes, among other things, a laptop computer.
This computer serves both for information acquisition and for manual insertion
of new information on M1. This manual insertion of data into M1 consumes ex-
cessive time, contributing to the overload of doctors. With that, the time allocated
to healthcare tasks is reduced, overwork makes doctors more susceptible to fail-
ure, and as a consequence, the quality of care is likely to be lower.

This project focuses on developing a support system to optimize the inter-
nal prescription process. This solution uses both Automatic Speech Recognition
and Natural Language Processing – namely entity recognition and relationship
extraction – technologies so that doctors can replace the manual insertion of in-
formation on M1 by dictating the same information to their phone in natural lan-
guage. For that, the system includes a mobile application for iOS, in which the
doctors record their dictation. Through transcription, interpretation, and process-
ing of the medical dictation, the system should identify the relevant information,
process it, and return it structured to the user. By its turn, the user can edit that
information and, when satisfied with the result, can simulate its sending to M1,
updating the patient’s current therapy. When it is inappropriate to dictate the
prescription, the doctor can enter it textually into the application, being that text
interpreted and processed in the same way.

Testing was done during the development of the system. In these, a perfor-
mance of 88.02% was achieved with the system’s Automatic Speech Recognition
component and the Natural Language Processing component achieved 86.33%
performance for entity recognition and 83.60% for relationship detection. Besides
that, the tests verified both the task’s success when done using the developed
system and the reduction in the time required to do it.

Keywords

Internal prescription; Automatic Speech Recognition; Natural Language Process-
ing; Mobile application; iOS; Amazon Web Services; Microsoft Azure; Swift; Por-
tuguese; Portugal.
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Resumo

A prescrição médica em ambiente hospitalar, também conhecida como prescrição
interna, consiste numa tarefa periódica na qual os médicos devem visitar o pa-
ciente, reavaliá-lo, reavaliar a terapêutica actual e, quando necessário, acrescen-
tar, retirar ou alterar algum componente da mesma. Esta tarefa deve ser repetida
tipicamente diariamente para todos os pacientes em contexto de internamento
pelos quais o médico é responsável. Na realidade das unidades de saúde que
utilizam o software do MedicineOne, o M1, a visita a cada um dos pacientes é
acompanhada por um carrinho de enfermagem que inclui, entre outros, um com-
putador portátil. Este computador serve tanto para a obtenção de informação
como para a inserção manual de nova informação no M1. Esta inserção manual
da informação no M1 consome tempo excessivo, contribuindo para a sobrecarga
dos médicos. Com isto, o tempo destinado às tarefas de saúde é reduzido, o
excesso de trabalho torna os médicos mais susceptíveis a falhas e, como conse-
quência, a qualidade dos cuidados de saúde é susceptível de ser inferior.

Para optimizar o processo de prescrição interna, este projecto centra-se no
desenvolvimento de um sistema de apoio à tarefa. Esta solução recorre a tecnolo-
gias de Reconhecimento Automático de Fala e de Processamento de Linguagem
Natural – nomeadamente reconhecimento de entidades e extração de relações –
para que os médicos possam substituir a inserção manual de informação no M1
pelo ditado em linguagem natural da mesma informação para o seu telemóvel.
Para tal, o sistema inclui uma aplicação móvel para iOS, na qual é gravado o di-
tado do médico. Através da transcrição, interpretação e processamento do ditado
médico, o sistema deve identificar a informação relevante no mesmo, processá-la
e devolvê-la estruturada ao utilizador. Por sua vez, o utilizador pode editar essa
informação e, quando satisfeito com o resultado, pode simular o seu envio para
M1, actualizando a terapêutica actual do doente. Quando não for adequado ditar
a prescrição, o médico pode introduzi-la textualmente na aplicação, sendo esse
texto interpretado e processado da mesma forma.

Durante o desenvolvimento do sistema foram efectuados testes. Nestes, uma
performance de 88,02% foi obtida com a componente de Reconhecimento Au-
tomático de Fala do sistema, tendo a componente de Processamento de Linguagem
Natural obtido uma performance de 86,33% para o reconhecimento de entidades
e de 83,60% para a deteção de relações. Além disto, os testes verificaram quer
o sucesso da tarefa quando efetuada com recurso ao sistema quer a redução do
tempo necessário para a sua realização.

Palavras-Chave

Prescrição interna; Reconhecimento Automático de Fala; Processamento de Lin-
guagem Natural; Aplicação móvel; iOS; Amazon Web Services; Microsoft Azure;
Swift; Português; Portugal.
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Chapter 1

Introduction

The current document presents the work developed in MedicineOne, Life Sci-
ences Computing, S.A., in the scope of the curricular unit Dissertation / Intern-
ship in Intelligent Systems of the second year of the Master in Informatics Engi-
neering of the Department of Informatics Engineering of the Faculty of Sciences
and Technology of the University of Coimbra.

In this chapter, first, the driving force behind this project, the motivation for its
realization is presented. Then, the achieved objectives and the strategy followed
are illustrated. Also, the contributions are described, and finally, the structure of
this document is presented.

1.1 Motivation

The process of medical prescription in hospital environment, also called internal
prescription, requires the doctor to visit each of the inpatients for whom they are
responsible, reassess their condition, reassess their current therapy, and, finally,
adapt it by adding, removing or changing any of its components when necessary.
Typically repeated daily, the visit to each patient is accompanied by a nursing cart
which provides the doctor with a laptop computer. There, the doctor can access
the patient’s information and enter any new information, such as desired changes
in therapy. However, the information insertion into the system is totally manual
and, consequently, time-consuming.

The optimization of this task is associated with the reduction of the time al-
located to it, allowing its reallocation to health tasks, the relief of the doctors’
overload, and, consequently, the provision of better health care.

1.2 Goals

Prescription using natural language dictation consists of an action of typically less
than one-minute duration. In turn, manually entering the information into M1 is
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much more time-consuming. Therefore, the goals of the present work correspond
to the following:

• Development of a system capable of transcribing a dictated medical pre-
scription

• Development of a system capable of processing a prescription text identify-
ing relevant information on it

• Development of a mobile application for iOS that allows the final user, i.e.,
the doctor, to access the system

• Optimization of the internal prescription task, minimizing the time allo-
cated to it

To achieve these objectives, the strategy adopted corresponded to the work-
flow:

• Study of the state of the art at the level of:

– Internal prescription in the health units that make use of M1
– Artificial Intelligence (AI), Computational Linguistics (CL) and medi-

cal prescription
– ASR and Natural Language Processing (NLP)
– Cloud provider, Scrum methodology, and User Interface

• Test of the ASR and NLP solutions

• Solution proposal, implementation, and testing

1.3 Contributions

With this work, several contributions were achieved:

• A positive and impactful contribution in terms of the state of the art of med-
ical prescription both in European Portuguese and other languages

• An evolution in the European Portuguese, for which this type of system
does not exist

• The identification of gaps, for example, at the level of tools available for
European Portuguese, signaling the need for investment and development
of resources for it

• The speeding up of the task of internal prescription, making available a
pocket system that intends to complete the task more straightforward and
less time-consuming

• The relief of the overloaded workload of doctors, improving, in the big pic-
ture, the quality of care in the health unit that makes use of the developed
solution
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1.4 Document structure

This document is divided into eigth chapters: Introduction, Internal prescrip-
tion, Text Processing Pipeline, Software Development Methodology, Competitors
analysis, Approach, The System, and Conclusion and Future Work.

The current chapter frames the work developed by presenting the scope of the
work, that is, the motivation and objectives of its realization. It also explains the
strategy followed and the contributions achieved with the project’s development.
Finally, it is responsible for presenting the structure of this document.

Chapter 2 (Internal prescription) provides a theoretical background and overview
of the state of the art of internal prescription in Portugal, namely in the context of
the health units that use M1. Besides that, it gives a theoretical background of AI
and CL and presents their usage for medical prescription optimization.

Chapter 3 (Text Processing Pipeline) provides an introduction of ASR and
NLP technologies, exploring their leading solutions.

Chapter 4 (Software Development Methodology) introduces the cloud provider,
the cloud services, the work methodology, and the mobile application develop-
ment design pattern.

Chapter 5 (Competitors analysis) presents the experiments done for the selec-
tion of both the ASR solution and the NLP solution used. In addition to the flow
followed in each test, the results obtained, their analysis, and the conclusions
drawn are presented.

Chapter 6 (Approach) recapitulates the problem definition, introducing the
architecture and context of the developed solution in its sequence. In addition, it
offers a brief comparison between this solution and the state of the art. Finally,
the solution’s components are explored individually, being their development
presented.

Chapter 7 (The System) presents the system in operation, illustrating its use
cases.

Finally, chapter 8 (Conclusion and Future Work) summarises the work pre-
sented in this document and gives a final reflection on it. Also, it shows the future
work that should be done out of the scope of the internship.
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Internal prescription

This chapter provides a theoretical background and overview of the state of the
art of internal prescription in Portugal, namely in the context of the health units
that use M1. Besides that, it gives a theoretical background of Artificial Intelli-
gence (AI) and Computational Linguistics (CL) and presents their usage for med-
ical prescription optimization.

First, theoretical concepts related to internal prescription and its state of the
art for European Portuguese are presented. Then, the fundamental concepts asso-
ciated with AI and CL are presented, followed by state of the art regarding their
application to medical prescription.

2.1 Introduction

When a patient is admitted for hospitalization, the doctor should determine the
therapy that should be followed. Then, if the hospitalization lasts long enough,
that therapy should be reviewed periodically, typically daily. For that, the doctor
should visit the patient, re-evaluate them and their response to the actual therapy,
re-evaluate the current therapy, and, when necessary, change it. This process, il-
lustrated in Figure 2.1, is called internal prescription, and the doctors must repeat
it for all the patients under their responsibility. The actual therapy can be changed
by adding - prescribe -, removing - suspend - or changing - change - any compo-
nent of it. These modifications have associated additional information presented
in Table 2.1.

Figure 2.1: Ilustration of the internal prescription process [pressfoto] [pre, a]
[pre, b] [pre, 2022].
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Action Additional information

Prescribe

Active principle
Route of administration

Dosage
Frequency
Beginning

Ending
Suspend Active principle

Change

Active principle
New route of administration

New dosage
New frequency
New beginning

New ending

Table 2.1: Structured actions for medical prescription and their additional
information.

Changes must be reflected in the patient’s process whenever therapy is changed;
for that, the doctor must update it.

2.2 Internal prescription in Portuguese health units

In the reality of the health units that use M1, the doctor’s visit to the patient is ac-
companied by a nursing cart that, among others, includes a laptop computer with
M1 on it. The doctor uses this computer to get all the needed information about
the patient and its therapy, giving the context required for a safe prescription. Be-
sides that, it allows the doctor to insert new data into the system, including new
prescription actions. There, the introduction of International Non-proprietary
Name (INN) is done following the process:

• Open M1

• Open hospitalization module

• Open desired patient’s process

• Open therapeutic tab

• Select the add button

• Search the INN in a search bar

• Select the desired INN from the list returned

• Select the select button
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• Select the desired type of medication packaging from a list with the avail-
able for the selected INN and similar INN

• Select the prescribe button, which opens a posology window

• Definition of the posology by selecting an existing one, defining a new one
by free-text, or defining a new one by editable fields filling. The posology
includes the pharmaceutical form, the route, the frequency, and the dura-
tion of the medication. In this window, some additional information can be
inserted

• Select the button add to recipe

• Repetition of the process for each INN that should be on the final prescrip-
tion

• Select the button issue followed by authentication

This time-consuming task takes up much of the doctors’ valuable time and
contributes to their overload. If, on the one hand, excessive time consumption
prevents greater allocation of time to medical care, contributing to overloading
doctors makes them more susceptible to failure. With this, the lack of task opti-
mization contributes, in the big picture, to sub-optimal medical care.

To our knowledge, there is yet to be a solution for internal prescription opti-
mization in Portugal.

2.3 Artificial Intelligence and Computational Linguis-
tics in medical prescription

This section introduces fundamental concepts related to AI and CL and presents
the state of the art regarding their use in the medical prescription process.

2.3.1 Introduction

AI is a branch of computer science aimed at automating intelligent behavior. The
definition of intelligence is widely explored, and there are countless ways to de-
fine it. A compact way to define intelligence is the junction of perceiving, an-
alyzing, and reacting. The basic materials in this area include data structures,
techniques for representing knowledge, algorithms for applying knowledge and
language, and the programming techniques needed to implement all of the above
[?].

Several questions must be asked to have an idea of intelligence, for example,
"What is the mechanism for representing knowledge in living cells?". The goal of
AI is, in part, to answer these questions by using the tools that AI provides. These
tools are related to the fact that AI provides not only the medium but also the
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testbed for theories of intelligence that can be expressed in computer programs.
Through their execution, these programs can be both tested and verified [?].

In turn, CL corresponds to the study of computer systems for the under-
standing and generation of natural language being linguistics constituted by two
branches: CL and Theoretical Linguistics (TL). It focuses on applying quantitative
and statistical methods to understand how humans model language and compu-
tational approaches to answering linguistic questions. Its concept is commonly
used interchangeably with the concept of Natural Language Processing (NLP),
although the difference relates to the underlying motivation.

As far as CL is concerned, this branch focuses on developing algorithms ca-
pable of handling a good range of natural language as input. On the other hand,
the branch concerning TL focuses mainly on the aspect of linguistic performance
called grammatical competence, the way people accept sentences as sentences
that do or do not correctly follow the grammar. Still, there is a concern with uni-
versal language, that is, with finding the grammatical principles that apply to all
natural languages.

CL can refer to both written and spoken natural language, the former being
a symbolic representation of spoken or sign language. The processing of the for-
mer is typically called text analysis, and that of the latter is called speech analysis.
CL focuses on studying natural language analysis and language generation and
can be further divided into two domains: sentence analysis and discourse and
dialogue structure. Much more is currently known about processing individual
sentences than determining discourse structure. However, this requires a prereq-
uisite, such as analyzing the meaning of individual sentences. Sentence analysis,
whose primary goal is to determine the meaning of a sentence, can be further
divided into syntactic analysis and semantic analysis. Achieving the primary
purpose of this analysis depends on translating the natural language input into
a simple semantic language like formal logic or a database command language.
Most systems have, as their first phase, syntax analysis.

At last, it should be noted that CL concerns an interdisciplinary field of theo-
retical and applied science that combines multiple areas such as linguistics, psy-
chology, neuroscience, philosophy, computer science, and mathematics [Chowd-
hary, 2020a] [Kamath et al., 2019a].

2.3.2 State of the art

Although they are widely used in several markets and, within them, for different
purposes, to the best of our knowledge, AI and CL are not yet used to support
medical prescription in European Portuguese. However, several works are al-
ready underway on the medical side for other languages. In this section, four
studies are addressed, being relative to Indian and French realities. Those studies
refer to the ones presented in [Shaikh et al., 2021], [Kocabiyikoglu et al., 2019] and
[Kocabiyikoglu et al., 2020], [Dhokley et al., 2021], and [Mahatpure et al., 2019].
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Language support

Of the four previously mentioned studies, three were developed in India and
focused on Indian English [Shaikh et al., 2021] [Dhokley et al., 2021] [Mahatpure
et al., 2019]. The remaining one was developed in France and focuses on French
[Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020].

Studies motivation and objectives

In [Mahatpure et al., 2019], the authors present the Indian reality. According to
it, the patient record addition and retrieval using Electronic Health Record Sys-
tem (EHR) systems consumes 49% of the doctor’s time. In addition, handwritten
documents are still the gold standard in the country, forcing the insertion into
the system of much information regarding different patients in short periods. An
identifier is used to drive this information insertion, being the task susceptible to
errors. By the time of the study, these questions were not widely considered by
the systems in the market that, according to [Shaikh et al., 2021], are typically fo-
cused on symptom-based prescribing, diagnosis-based prescribing or scanning,
supervision, and analysis of handwritten prescriptions approach.

In turn, in [Kocabiyikoglu et al., 2019] and [Kocabiyikoglu et al., 2020] the
authors present the French reality. There, the Prescription Management Systems
(PMS) are used, but according to the authors, these systems entail a major disad-
vantage. It corresponds to the need for manual insertion of information into the
system by the doctor, which reduces the time dedicated to medical care.

With that, the goals enumerated through the multiple studies include:

• Mediation of purely digitally-based medical prescription process [Shaikh
et al., 2021]

• Eradication of the problem of the significant number of deaths in India due
to errors in interpreting handwritten prescriptions [Shaikh et al., 2021]

• Complement of the current portable medical services conveyance system
[Shaikh et al., 2021]

• Reduction of the time spent on accessing [Shaikh et al., 2021], making [Ko-
cabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020], or accessing and mak-
ing [Mahatpure et al., 2019] medical prescription records

• Support medical prescription process in French in a hospital environment
[Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

• Avoid manual information insertion into systems [Kocabiyikoglu et al., 2019]
[Kocabiyikoglu et al., 2020], and handwritten or typed prescriptions [Dhok-
ley et al., 2021], that reduces the healthcare-dedicated time

• Enable the optimization of medical prescription [Mahatpure et al., 2019]
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The proposed systems

To meet the previously mentioned objectives, all the state of the art studies in-
clude the development of a mobile application to allow the interaction of the doc-
tor with the developed system. In addition, the system developed at [Mahatpure
et al., 2019] can also be accessed using a web application. Any of these solutions
are based on speech recognition technologies, and the type of input common to
all solutions is dictation. At this level, the solution developed in [Kocabiyikoglu
et al., 2019] [Kocabiyikoglu et al., 2020] is distinguished from the others by the
fact that it also allows the input of information by the doctor in free-text. Also,
there is another level of divergence between the various projects. This concerns
the fact that, unlike the other systems, the system developed in [Kocabiyikoglu
et al., 2019] [Kocabiyikoglu et al., 2020] does not exist in isolation but rather me-
diates the insertion of information into a PMS. Finally, except [Shaikh et al., 2021],
all state of the art systems make use of solutions of NLP in addition to solutions
of Automatic Speech Recognition (ASR). The system developed in [Mahatpure
et al., 2019] also uses blockchain technology for information storage. Of these
systems, only the one developed in [Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020] does not present the processed information in tabular format to its
user, presenting it in the form of a dialog.

Focusing on each system individually and starting with the system purposed
in [Shaikh et al., 2021], the developed solution is partly based on voice com-
mands. Those must be used either to initiate the prescription dictation or to
request that this final one be issued. These voice commands are detected by sev-
eral online and offline speech recognition APIs combined using a Random Forest
model. Furthermore, this system can automatically learn and improve its perfor-
mance based on experience without being explicitly programmed. According to
the authors, their solution model should be trained over Indian names, and even
when the model is below a given threshold of certainty for a given word, it must
highlight that same word for the user to validate. It should be compatible with
INN names since it should use speech recognition APIs for medical domains,
having the advantage of being associated with a medicine database provided by
the government of India. This system has four components and seven technolo-
gies, highlighting the use of Google STT API, Dragon Natural Speaking, Sphinx4,
and Kaldi for processing the dictation.

The system presented in [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al.,
2020], in turn, works in a dialogue basis between the interface and the user, being
the dialogue initiated by the user. According to the authors, a dialogue system is
composed of ASR, Spoken Language Understanding (SLU), Dialog State Tracking
(DST), dialogue policy, Natural Language Generation (NLG) and Text-to-Speech
(TTS) components, being the ASR and Natural Language Understanding (NLU)
components already explored by the authors. The authors make dialogue mod-
eling using interactive learning, a Machine Learning (ML) technique in which
humans are involved in ML model building [Varangaonkar, 2018]. The proposed
system corresponds to a modular one where each model is independent and fol-
lowed by another, enabling the adaptation and training of each one individually.
Although this sequential processing powers the error propagation, the authors
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use multiple validations to mitigate it. Also, the results obtained with the system
made the authors assume the necessity of improvement associated with their sys-
tem, namely at the NLU component level. Besides that, the authors show concern
about keeping confidentiality, integrity, and conformity.

The system developed in [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al.,
2020], in turn, uses a toolset named Rasa X as its ASR component. This toolset
provides a simple web interface that allows the NLU, dialogue scenarios, and do-
main definition changing using only a web interface. For the NLU component, on
the other hand, the authors explored four models compared to a baseline model
also developed by the authors. Those models were chosen because of the state
of the art analyzed by the authors, from which it is possible to draw the vari-
ous approaches followed in this type of problem: rule-based, based on machine
learning classifiers, based on Conditional Random Fields (CRF) models, based
on Deep Learning (DL) and based on speech processing. Whit that, the tested
models corresponded to the following:

• RASA, that follows the CRF and Machine Learning classifier-based approaches,
having a linear chain CRF, a lookup table, and, separately, a linear SVM
based on pre-trained word embeddings

• Tri-CRF, that follows the CRF approach

• Att-RN, that follows the DL approach, having an initial embedding layer
consisting of 128 neurons, followed by a bi-directional LSTM encoder and
decoder, each one with 128 neurons

• Seq2Sqeq, that follows the DL approach, having a recurrent encoder-decoder
architecture with attention that makes use of a single bi-directional LSTM
encoder and decoder layer with 128-sized encoder, decoder, and embed-
dings layer

• Baseline, that follows the rule-based approach

Since Tri-CRF had the best F-measure in the authors’ testing, they identified it as
the best model among the tested ones. When applying the class weights, how-
ever, it can be seen that the RASA model is less affected than the other models.
The former, not so data dependent, manages to be less affected by a problem that
significantly affects data-driven approaches, such as the DL approach.

In addition, the system developed in [Dhokley et al., 2021] corresponds to a
task-based dialogue system that uses Stack-Propagation and has three compo-
nents: an encoder and two decoders.

• Encoder: corresponds to a self-attentive encoder composed of a BiLSTM
with attention mechanism. It is shared between intent detection and slot-
filling tasks, being its output passed to the second decoder.

• First decoder: a unidirectional LSTM. It is used for intent detection for each
of the tokens, being the intent of the input utterance calculated taking into
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account the intent of each token on it. Similar to the previous one, its output
is passed to the second decoder, and it can have one of two values: prescrip-
tive or non-prescriptive.

• Second decoder: a unidirectional LSTM. This decoder is used for slot-filling,
being considered by the authors 22 different slot labels.

Focusing only on the development of a model for the structuration of information
on a tabular format, this study does not focus on the ASR component, being that
indicated by the authors as future work.

Finally, the study conducted in [Mahatpure et al., 2019] proposes a system
that needs the inclusion of keywords anticipating the information of interest. For
example, the prescribed medication should be preceded by the keyword medi-
cation or medicine. The authors also assume that a prescription comprises four
basic and two optional components. The first corresponds to the patient’s name,
age, symptoms, and medicines with dosage, while the second corresponds to
laboratory tests and notes. This solution is associated with patient identification
throw a QR code that, being read by the medical staff, can map to the first two
basic components of the prescription. With that, the system focuses on the other
basic and optional components. This system is composed of five modules, being
relevant to highlight the:

• Python Django REST APIs, responsible for the NLP component of the sys-
tem

• React-Native Mobile Application, that facilitates the use of the system by its
users, and can be used by:

– Doctors, that can register a patient, identify a patient and create e-
prescriptions. This application provides an interface for ASR and NLP
to fill in all the details of a prescription form.

– Patients, that can access their prescriptions.

• React JS Web Application, which also allows access to the system by the
user. It allows the user to:

– List participants and prescriptions according to user’s permissions

– Register new participants

– Create prescriptions with ASR and NLP

It should also be noted that this solution uses Google’s Speech Recognition API
for ASR since, according to the authors, it is the most suitable option because of
its support for Indian English.

Systems’ features

With regard to the functionalities of the systems explicitly expressed by their au-
thors, these include:
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• Store patient-related information [Shaikh et al., 2021]

• Store information regarding the patient’s present and past prescriptions
[Shaikh et al., 2021]

• Generate alerts if the prescription includes INNs that interact adversely
[Shaikh et al., 2021] [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

• Generate alerts if the prescription includes INNs that react adversely with
INNs from other prescriptions [Shaikh et al., 2021] [Kocabiyikoglu et al.,
2019] [Kocabiyikoglu et al., 2020]

• Generate alerts in case of a lack of stock of INNs in the pharmacy [Ko-
cabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

• Communicate with the PMS to verify if the prescription can trigger adverse
reactions according to the patient’s history [Kocabiyikoglu et al., 2019] [Ko-
cabiyikoglu et al., 2020]

• Reduce the time spent in producing a prescription [Shaikh et al., 2021]

• Update the prescription in real-time through requests made by the dialogue-
based system to its user so it follows the e-prescribing regulations [Ko-
cabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

• Inclusion of other relevant information on the system, like health unit poli-
cies regarding available medication and best practices [Kocabiyikoglu et al.,
2019] [Kocabiyikoglu et al., 2020]

• Be able to be used on personal devices, facilitating the identification process
[Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

Systems-mediated prescription

Each state of the art solution has a different associated workflow, being them
detailed for [Shaikh et al., 2021] and [Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020] .

In [Shaikh et al., 2021], the generation of the prescription and the subsequent
acquisition of the INNs in the pharmacy can be done through the workflow:

1. Evaluation and diagnosis of the patient by the doctor

2. Activation of the system with a simple voice command

3. Dictation of the prescription by the doctor, including symptoms, medica-
tion, notes, and others

4. Processing of the dictation by the system by the transcription of the dicta-
tion followed by string comparison to filling the fields of the prescription

13



Chapter 2

5. Presentation of the processed information in tabular form, with the name,
age, gender, symptoms, diagnosis, medication, and notes associated with
the patient

6. Doctor’s validation of the information processed by the system

7. Doctor asks for the prescription to be issued using a simple voice command

8. Generation of a prescription automatically signed by the doctor, available
in digital format or printed, in the cases the patient does not have a smart-
phone

9. Obtaining the patient’s ID or reading the prescription directly from the pa-
tient’s cell phone or paper – in emergency cases only – by the pharmacist

10. If necessary, send the prescription to the doctor by the pharmacist for con-
firmation or request a review

By turn, in [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020], the Natu-
ral Language interface proposed allows medical prescription following the work-
flow:

1. The doctor initiates the dialogue with the system

2. The doctor dictates or writes a free-text prescription

3. The system interprets the prescription for the extraction of information of
interest

4. The result of this interpretation is returned to the doctor

5. Request for information by the system, which is optional and occurs only if
something is not according to the standard

6. Request by the system for doctor’s validation of the final proposal prescrip-
tion

7. The doctor validates the processed information

8. The prescription is filled in the PMS without the intervention of the doctor

9. The PMS validates the prescription and issues it

In this system, the initial utterance of the doctor should be understood, dis-
ambiguated, and completed through a goal-oriented dialogue. The final proposal
prescription is presented to the doctor for validation when all the information is
filled in.
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Prescription filling methodology

The four studies analyzed rely on string comparison [Shaikh et al., 2021], slot-
filling [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020] [Dhokley et al.,
2021], and keyword search [Mahatpure et al., 2019] to fill the prescription’s infor-
mation.

In [Shaikh et al., 2021], the authors organize the transcribed text in strings,
comparing them with other strings already in the system database. This compar-
ison allows the assignment of the new strings to their respective fields.

In turn, in [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020] the authors
base the data extraction on slot-filling, a two-phase approach. First, the state-
ment’s intention, which reflects its user’s intention, is identified. Then the most
important elements of that statement are identified, being these elements called
slots. These slots relate to the entities and relationships of interest for the task
associated with the statement in which they are found. The authors consider the
types of intentions Medical Prescription and None and 39 slot labels. They con-
sider the introduction of intent recognition relevant so the system can deal with
scenarios that capture instructions that do not concern prescriptions. Similarly,
in [Dhokley et al., 2021] the authors base the prescription filling process on slot-
filling and intent recognition.

Finally, in [Mahatpure et al., 2019] the authors resort to the identification of
keywords and extraction of the information associated with them. For that, the
processing follows the workflow:

1. Stop-words and unnecessary words removal

2. Lowercase of the resultant text

3. Symptom and Symptoms keywords search
In all the keywords search, when the keyword is found, it is removed from
the sentence, and the sentence is split in the keyword’s position, resulting
in two new segments. The keywords are searched by order, and the others
are not searched when a keyword is found.

4. Medication, Medications, Medicine and Medicines keywords search
If this search is insufficient, a regex condition is used to search for the key-
word.

5. Symptoms extraction
This extraction can follow one of two ways based on medication identifica-
tion:

• If a medication was found, a search for symptoms is done in the seg-
ment of the sentence relative to them. This search is based on a list with
1111 symptoms, and the result of it is a list of the symptoms present in
the segment.
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• Otherwise, lab test, lab tests, test, tests, note and notes keywords search
is done. With that, two segments are generated again, and from the
first, a list of symptoms is equally extracted.

6. Once the medication was identified, a lab test, lab tests, test, tests, note,
notes keywords search is done. In the first segment, a name keyword search
is done. Then, a string array is created with two elements containing the
information in each of the two segments.

7. Medicines extraction
The previously created array is traversed, and a dose and dosage keywords
search is done. The first element of the array is searched on a cached list of
medicines details retrieved from Healthos API, and if not found, a request
is sent to Healthos API, being the best match returned. This array is then
associated with the prescription object.

8. If no symptoms or medication are found, a lab test, lab tests, test, tests, note,
notes keywords search is done.

9. If lab test or lab tests is found, a note and notes keyword search is done. If
found, the first segment of the sentence is assigned to the lab tests of the
prescription object and the second to the notes.

10. If, otherwise, note or notes is found, the segment is assigned to the notes
attribute of the prescription object.

Advantages of the systems

Throughout their studies, some authors highlight advantages associated with
their systems including:

Level Advantage

Cost

In [Shaikh et al., 2021] only open-source solutions are
used. In turn, the technologies used in [Mahatpure

et al., 2019] are mostly open-source. This brings benefits
to the systems that are, then, cost-less

Portability

The systems are focused on portable devices, bringing
benefits in terms of ease of use, portability, time-saving,
and mobility, allowing the prescription at the point of

care

Single dictation

In [Shaikh et al., 2021] and [Mahatpure et al., 2019], a
single dictation is needed to fill all fields of the

prescription to be issued, allowing the reduction of time
spent in the process. It is reduced concerning both

manual prescriptions and solutions in which the fields
to be filled are dictated one by one
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Security

In [Shaikh et al., 2021], medical records are stored
following Health Insurance Portability and

Accountability Act (HIPAA), which is a US federal law
that requires national standards to be created to protect

against disclosure of sensitive patient health
information without patient consent or knowledge [for

Disease Control and Prevention]

Information
The storage of present and past prescriptions in [Shaikh
et al., 2021] allows the doctor to make a more informed

choice when issuing a new prescription

Faster
identification

Since the users use their devices to access the state of the
art systems, the identification is faster than made with

standard login

No learning

The system in [Kocabiyikoglu et al., 2019]
[Kocabiyikoglu et al., 2020] was designed so the users
do not have to learn new knowledge to be able to deal

with it

Versatility
The system in [Mahatpure et al., 2019] can be accessed
with a mobile application and a web application, being

in both cases accessible through a smartphone

Table 2.2: Advantages associated with the state of the art solutions.

Difficulties of the studies

Some of the authors also point out some difficulties faced in their systems’ devel-
opment. Those difficulties include:

• Indian language has variants by region, which extends to medicine names
[Shaikh et al., 2021]

• Some NLP models, including the best ones, get confused about the name
of the INNs and the name of the trademarks of the INN in question [Ko-
cabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

• There are great difficulties in the identification of the temporal expressions
that relate to the duration of the prescription [Kocabiyikoglu et al., 2019]
[Kocabiyikoglu et al., 2020]

• Increasing the size of the prescriptions degrades the performance of the
models [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

• The INNs’ names are ambiguous [Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020]

• The models must have difficulties identifying names they never faced be-
fore [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]
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• The prescriptions data is scarce. It is a reality for English and gets worse in
the remaining languages [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al.,
2020]. Because of it, the authors of [Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020] needed to create a dataset that included:

1. Prescriptions extracted from a book where there were realistic prescrip-
tions

2. Artificial prescriptions generated based on a grammar to solve the paucity
of data, and the class imbalance

3. Statements not related to prescriptions, corresponding to the type of
intent None

• There are few projects concerning the ASR of dictated prescriptions for
medical prescription support [Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020]. The authors of [Kocabiyikoglu et al., 2019] [Kocabiyikoglu et al.,
2020] mention a single study on this aspect, called FreePharma™, with no
technical details. However, it is indicated that this solution should be able
to extract medical prescriptions from speeches captured using PDAs.

• The privacy, ethic, and effectiveness of a solution for health purposes [Ko-
cabiyikoglu et al., 2019] [Kocabiyikoglu et al., 2020]

Results and metrics

The evaluation of some systems was made by its authors and resulted in the
evaluation metrics illustrated in table 2.3.

Metric Value
Slot labeling F1 [Shaikh et al., 2021] 96.00%

Intent recognition accuracy [Shaikh et al., 2021] 99.00%
ASR Word Error Rate (WER) for doctors [Kocabiyikoglu et al.,

2019] [Kocabiyikoglu et al., 2020] 3.40%

ASR WER for naive users [Kocabiyikoglu et al., 2019]
[Kocabiyikoglu et al., 2020] 17.35%

NLU F-measure for doctors [Kocabiyikoglu et al., 2019]
[Kocabiyikoglu et al., 2020] 75.00%

NLU F-measure for naive users [Kocabiyikoglu et al., 2019]
[Kocabiyikoglu et al., 2020] 43.00%

Slot labeling F1 [Dhokley et al., 2021] 91.00%
Intent recognition accuracy [Dhokley et al., 2021] 10.00%

Table 2.3: Evaluation metrics of the state of the art systems.

Besides the previous evaluation metrics, the authors of [Kocabiyikoglu et al.,
2019] [Kocabiyikoglu et al., 2020] also pointed some conclusions from the tests.
The tests were made in a zero-noise environment with doctors and naive user,
and the conclusions drawn include:
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• The dialogue was quickly interrupted by the system with a "drug not found"
response

• The system had difficulties in recognizing the frequency and duration at the
NLU level

• When the medication was correctly associated, then the prescription pro-
cess took 20 to 30 seconds, which is truly reasonable when compared with
the manual prescription process

• The system performed better with doctors because of the difference in lan-
guage used

• The task rate success, that is, the ratio of validated prescriptions, was equal
to 45% for doctors and 16.6% for naive users

According to the authors of [Dhokley et al., 2021], the values previously pre-
sented were achieved with a low quantity of data. The authors are confident that,
with more data, the values could be improved to 96.00% for the F1 score for slot
labeling and 99.00% accuracy for intent recognition.

Although the authors of [Mahatpure et al., 2019] do not provide evaluation
metrics of their system, a test comparing the time needed for prescribing using
their system and the conventional EHR systems was done. This test conferred
that the manual insertion of information into the EHR systems is slower than the
prescription mediated by ASR and NLP, namely as the complexity and size of the
prescription increase.

Relevant studies

The authors of [Dhokley et al., 2021] also present some interesting studies conclu-
sions, including:

• Handwritten prescriptions, besides typically offering difficulties in inter-
preting their text, have much missing information.

• There are errors related to INN interactions in many prescriptions.

• The dictation of a prescription is faster than handwriting or typing, being
five times faster than typing and almost two times faster than writing.

• The patient’s visit time is about 22% – about three minutes and a half –
occupied by the writing of the prescription, on average. Besides that, more
5% of the time is also used in tasks related to the prescription, namely in
clarifying and providing guidelines associated with the same.
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2.4 Conclusion

There is no evidence of any systems dedicated to optimizing the internal pre-
scription process for European Portuguese at the time of this study. In the de-
velopment of such systems for other languages, it can be seen that the trend is
towards portable systems based on ASR. The filling of prescription information
tends to be done using different approaches, with mostly good values being ob-
tained. Evidence of the relevance of this type of system is also presented, namely
by minimizing the time allocated to the task they are associated with. Thus, the
state of the art presented allows not only to have a perception of existing sys-
tems and approaches followed but also to internalize the high added value they
symbolize.
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Text Processing Pipeline

The present chapter introduces Automatic Speech Recognition (ASR) and Natural
Language Processing (NLP) technologies, exploring their leading solutions.

First, the concept of ASR is introduced, and its leading solutions are presented
and analyzed. Then, the concept of NLP is introduced, and its leading solutions
are equally introduced and analyzed.

3.1 Introduction

The developed system intended to replace the manual insertion of information
into M1 by its dictation, processing, and sending to M1. With that, it needed ASR
and NLP capabilities. The following sections introduce the concepts associated
with the technologies, also presenting their leading solutions. With that, suitable
solutions for this project were selected.

3.2 Speech-to-Text

This section first presents the fundamental concepts of ASR. Then, the most rel-
evant solutions in this area, i.e., the solutions corresponding to the state of the
art, are presented. A brief analysis of these solutions and a comparison between
them is offered, aiming at selecting the solutions likely to be used in the present
work. Each platform is analyzed in terms of its description, services, functional-
ities, support for European Portuguese, price charged, and limits applied to the
input data.

3.2.1 Introduction

ASR corresponds to the NLP task responsible for the computational transcription
of spoken language in real-time. Although it has been at the forefront of studying
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human-computer interfaces since the 1950s, its importance has increased more
recently with the advent of Artificial Intelligence (AI) personal assistants such
as Siri, Alexa, or Cortana. This task aims to transcribe speech at a human level
(almost 100%). However, until 2019 it was only possible to approximate 95%, and
the conditions needed to be perfect. The evolution of ASR allows, nowadays, to
recognize speech in several conditions, such as noise, diction, and tone. These
conditions are still a problem for computers because they cannot deal with them
[Kamath et al., 2019b].

3.2.2 Main Speech-to-Text Tools

According to [Iancu, 2019], there are five leading providers of ASR services: Google,
Apple, Microsoft, Amazon, and IBM. For the first four, the authors highlight the
assistants they provided, and the interest lies in the technology on which they are
based. Although Apple has promising technologies at the base of its assistant,
Siri, it does not provide a service where these technologies can be used, losing its
interest in the project. Besides these services, there are two sets of tools that can
be used in Python and that, according to [Kamath et al., 2019d], are two of the
most popular resources for ASR: Sphinx and Kaldi. Also, besides the previous
solutions, a more recent solution, competitive with state of the art ASR systems
in long-form transcription, is called Whisper [Radford et al.]. In addition to these
solutions, there are also those native to Android and iOS.

Each solution is explored in the next sections, being a first comparative anal-
ysis between the relevant solutions presented in Tables 3.1 to 3.8. Table 3.1 com-
pares the tools at the level of European Portuguese support.

Tool Has support
Amazon Transcribe Yes

Amazon Transcribe Medical No
Microsoft Azure Cognitive Services for Speech Yes

IBM Watson Speech to Text No
Google Cloud Speech-to-Text Yes

Whisper Yes
iOS Speech Yes

Android Speech Yes

Table 3.1: Comparison of the various ASR tools. (I)

By its turn, Tables 3.2 to 3.6 compare the solutions at the level of supported
features for European Portuguese.

Tool Digit
Transcription

Language
Detection

Amazon Transcribe
Microsoft Azure Cognitive Services for Speech x x

Google Cloud Speech-to-Text x
Whisper x x
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iOS Speech x
Android Speech x

Table 3.2: Comparison of the various ASR tools. (II-I)

Tool Customized
Recognition

Speech
Translation

Amazon Transcribe x
Microsoft Azure Cognitive Services for Speech x x

Google Cloud Speech-to-Text x
Whisper x x

iOS Speech
Android Speech

Table 3.3: Comparison of the various ASR tools. (II-II)

Tool
Spoken

Punctuation
Detection

Word-level
Confidence
Translation

Amazon Transcribe
Microsoft Azure Cognitive Services for Speech

Google Cloud Speech-to-Text x x
Whisper

iOS Speech
Android Speech

Table 3.4: Comparison of the various ASR tools. (II-III)

Tool Segmentation Silences
Detection

Amazon Transcribe
Microsoft Azure Cognitive Services for Speech

Google Cloud Speech-to-Text
Whisper x

iOS Speech x
Android Speech x

Table 3.5: Comparison of the various ASR tools. (II-IV)

Tool Time-stamps
Prediction

Content
Filtering

Amazon Transcribe
Microsoft Azure Cognitive Services for Speech

Google Cloud Speech-to-Text x
Whisper x

iOS Speech
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Android Speech

Table 3.6: Comparison of the various ASR tools. (II-V)

Also, Table 3.7 compares the solutions at the level of input data limit.

Tool Input data limit

Amazon
Transcribe

Audio file length Up to 4 hours
Audio file Up to 2 GB

Size of a custom vocabulary Up to 50 KB
Length of a custom vocabulary phrase Up to 256 characters

Minimum audio file duration 500 milliseconds

Microsoft
Azure

Cognitive
Services for

Speech

Batch
transcription

Max audio input file size 1 GB
Max input blob size 2.5 GB

Max blob container size 5 GB
Max number of blobs per

container 10000

Max number of files per
transcription request* 1000

Model
costumization

Max number of speech
datasets 500

Max acoustic dataset file
size for data import 2 GB

Max language dataset file
size for data import 1.5 GB

Max pronunciation
dataset file size for data

import
1 MB

Max text size when using
the text parameter in the

creation of a new template
500 KB

Google Cloud
Speech-to-Text

Synchronous component Audio up to 1 minute

Asynchronous component Audio up to 480
minutes (4 hours)

Whisper Does not have
iOS Speech Does not have

Android
Speech Does not have

Table 3.7: Comparison of the various ASR tools. (III)
* When using multiple content URLs as input.

Finally, Table 3.8 compares the solutions at the level of their costs.

Tool Price

Amazon Transcribe

First 250,000 minutes/month 0.02400 $/minute
Next 750,000 minutes/month 0.01500 $/minute

Next 4,000,000 minutes/month 0.01020 $/minute
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More than 5,000,000 minutes/month 0.00780 $/minute

Microsoft Azure
Cognitive Services

for Speech

Free (F0) - Standard 5 hours free/month

Free (F0) - Custom 5 hours free/month
1 model free/month

Pay as You Go - Standard €1.001/audio hour

Pay as You Go - Custom €1.401/hour
€0.0538/model/hour

Google Cloud
Speech-to-Text

0-60 minutes/month Free
Over 60 and up to 1 Million

minutes/month $0.006/15 seconds

Whisper 0
iOS Speech 0

Android Speech 0

Table 3.8: Comparison of the various ASR tools. (IV)
/hour means per audio hour

/model/hour means per model per hour

Since the aim of this project is internal prescription dictation transcription, the
most relevant features of these systems should be speech and digits transcription.
The masking of sensitive information, not an indispensable component, could be
an added value for the solution that makes it available.

Amazon Transcribe

Amazon Transcribe is an ASR service that uses Machine Learning (ML) models
to convert audio to text. This service can be used standalone or to add Speech-to-
Text (STT) transcription capabilities to any application and offers several features,
illustrated in Table 3.9.

Feature
Language identification in single-language audio
Language identification in multi-language audio

Channel identification
Job queueing

Speaker diarization
Transcribing digits

Custom language models
Custom vocabularies

Tagging
Identifying personally identifiable information

Redacting transcripts
Vocabulary filtering

Subtitles

Table 3.9: Features provided by Amazon Transcribe.

This service allows users to transcribe multimedia content in real-time or by
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previously uploading media files into an Amazon S3 service container [Ama-
zon Web Services, 2022c], being transcribed next [Amazon Web Services, 2022g].
Also, it supports European Portuguese, offering the functionalities illustrated in
Table 3.10 for the language [Amazon Web Services, 2022d] [Amazon Web Ser-
vices, 2022b] [Amazon Web Services, 2022a].

Feature Description
Data input The data input can be passed in batch.

Custom
vocabularies

Used to improve the accuracy of the transcription of specific
words - usually domain-specific words - by providing hints.
For European Portuguese, it can be used with acronyms and

in batches.

Call
Analytics

Designed for call center’s audios, this functionality is used
to get insight into customer-agent interaction. For European

Portuguese, it can be used in post-call mode, that is, after
the interaction finishes and its recording is loaded into S3.

Table 3.10: Features provided by Amazon Transcribe for European Portuguese.

This service does not support the transcription of digits in European Por-
tuguese, the transcription of speech in real-time, and redaction. Redaction al-
lows masking or removing sensitive content from transcripts in the form of Per-
sonally Identifying Information (PII). Its absence is not a significant drawback,
but making it available would be an added value [Amazon Web Services, 2022f].
Although this service allows the use of acronyms in personalized vocabularies,
these feature is not particularly relevant in the present work since it is not a recur-
rent practice to use acronyms to mention the information intended to be collected
from the discourse of interest. Since the work does not focus on customer-agent
interactions, call analytics is also not interesting in this context.

The functionality provided by this service for European Portuguese is avail-
able for batch transcription only. The potential use of this service in the present
work should involve asynchronous requests to the API where one and only one
file corresponding to one medical dictation should be sent each time. Although
this does not impede its usage, real-time processing is preferable.

Information on monetary costs associated with this service is available for
three European countries: London, Frankfurt, and Ireland. Prices in these three
countries are very similar and are defined by level, with each level relating to
a given number of minutes of audio transcribed per month. The difference be-
tween the three locations is that Ireland has one more level than the others. This
service then presents four price levels for Europe and, considering the prices for
the standard batch transcription, the costs shown in Table 3.11 are charged [Ama-
zon Web Services, 2022e].

Tier Volume (minutes/month) Price (USD/minute)
1 First 250.000 0.02400
2 Next 750.000 0.01500
3 Next 4.000.000 0.01020
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4 More than 5.000.000 0.00780

Table 3.11: Standard batch transcription pricing for Amazon Transcribe.

For batch processing and considering the features provided by the service
for European Portuguese, Amazon Transcribe imposes the data input limits pre-
sented in Table 3.12 [Amazon Web Services, h].

Description Quota
Audio file length Up to 4 hours

Audio file size Up to 2 GB
Size of a custom vocabulary Up to 50 KB

Length of a custom vocabulary phrase Up to 256 characters
Minimum audio file duration 500 milliseconds

Table 3.12: Data limits for the Amazon Transcribe features provided for
European Portuguese.

Finally, no information is publicly disclosed regarding the model on which
this service is based and the data used to train it.

Amazon Transcribe Medical

Like the previous service, Amazon Transcribe Medical is provided by Amazon
Web Services (AWS). It is an ASR service designed for medical-related speech
transcription, such as doctor notes or doctor-patient conversations. This service
can be used for real-time multimedia transcription or transcription of previously
uploaded files in batch mode. Regarding security, it operates under a shared re-
sponsibility model where AWS protects the infrastructure that manages the ser-
vice, and the service user is responsible for managing their data.

Despite being a service specifically targeted at the medical field and similar
to Amazon Transcribe in terms of the functionalities made available, this service
has the disadvantage in this work of only supporting speeches in the English
language [Amazon Web Servoces, 2022]. The users of the solution developed in
the current project should speak European Portuguese, so this service was not
considered for comparison with the others.

Besides that, regarding the model used by Amazon Transcribe Medical and
the data used to train it, no information is publicly disclosed similar to Amazon
Transcribe.

Microsoft Azure Cognitive Services for Speech

Microsoft Azure Cognitive Services for Speech is a service provided by Microsoft
that can transcribe audio into text – ASR –, convert text into human-synthesized
speech – Text-to-Speech (TTS) –, translate speech, identify the languages in a
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given speech, recognize speakers in a speech, assess speech pronunciation and
recognize the user’s intentions from the transcribed speech. Among other usage
scenarios of this service, the dictation in Office 365 can be highlighted.

The functionality of transcribing audio into text is called Speech. It can tran-
scribe audio in real-time and asynchronously, and the audio to be transcribed
can have multiple sources, including microphones, audio files, and Microsoft’s
object storage solution for the cloud, blob storage. This service provides several
features, presented in Table 3.13 [mic, 2022h].

Feature
Speaker diarization

Get readable transcripts with automatic formatting and punctuation
Custom speech models

Speech translation
Language Identification

Speaker recognition
Pronunciation assessment

Intent recognition
Custom base vocabularies

Table 3.13: Microsoft Azure Cognitive Services for Speech features (all but
Text-to-speech).

Speech can be used either in the cloud or locally, and local use may bring the
service closer to user data for compliance, security, or other operational reasons.
Government entities and their partners use this service through its deployment
in sovereign clouds. An example is the Azure Government cloud that makes this
service available to US government entities and their partners.

This service can also be integrated into applications using Speech Studio. This
is a set of tools based on the User Interface (UI) to build and incorporate Speech
functionalities into applications. Speech Studio allows projects to be created ac-
cording to a code-free approach, with reference then being made in the applica-
tion to the resources created in it using the Speech SDK, Speech CLI, and REST
APIs. The Speech SDK is available in various programming languages and on all
platforms. By its turn, Speech CLI is a command-line tool that allows the Speech
service to be used without developing code, having most of the features of the
Speech SDK and some advanced features and simplified customizations. Also,
REST APIs are used mainly in cases where the Speech SDK cannot or should not
be used [mic, 2022h].

This service provides support for European Portuguese and, for the language,
it provides the features presented in Table 3.14 [mic, 2022g] [mic, 2022c].

Feature Description

Translate audio Translate speech in one language to another or speech in
one language to text in another one.
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Language
identification Identifies the language in which the speech is.

Customized speech
recognition

Customize templates for the specific user use case’s
domain by providing the template with plain text or

pronunciation data. For European Portuguese, it can be
used with plain text and pronunciation.

Table 3.14: Features provided by Microsoft Azure for Speech to Text service for
European Portuguese.

None of the functionalities previously presented are of particular interest. The
audio is recorded in European Portuguese and must be transcribed, so the trans-
lation is unnecessary. On the other hand, the language of the audio can be passed
to the system, avoiding the need for language identification. In its turn, speech
recognition customization requires data and time. Because of the data scarcity, it
is irrelevant in this context. With that, only the default transcription is of interest
in this project. Although Microsoft Azure does not say that Speech can tran-
scribe digits in European Portuguese, its demo application [mic, 2022b] enables
it to demonstrate that it can do it. This feature is a significant advantage since it
allows the direct transcription of digits, removing the need for post-processing
to convert string numbers to digits. Similarly to Amazon Transcribe, the Speech
solution does not provide sensitive information filtering.

Attending to the prices charged for this service, it can be understood that Eu-
rope is divided into Northern Europe and Western Europe, being the prices in
both regions similar. These prices are divided into three modes: the Free mode
(F0), the Pay as You Go mode: pay only for what you use, and the Commitment
Tiers mode. The latter is similar to the Pay as You Go modality but offers dis-
counts. To access this modality, it is necessary to submit an online application
to evaluate it for a future possible selection. For this reason, this last modality
was not considered for price comparison purposes [mic, 2022a]. If we look at Eu-
rope, in the Free and Pay as You Go plans, in the Speech to Text category, and in
the functionalities made available for European Portuguese, the prices charged
correspond to those shown in the Table 3.15 [mic, 2022e].

Modality Feature Price

Free (F0)
Standard 5 audio hours free/month

Custom 5 audio hours free/month
Endpoint hosting: 1 model free/month

Pay as You Go
Standard €1.001/audio hour

Custom €1.401/audio hour
Endpoint hosting: €0.0538/model/hour

Table 3.15: Microsoft Azure Cognitive Services for Speech pricing.

In this project, the intent is to transcribe audio as it is recorded. This solution
provides real-time transcription, which enables audio transcription as it is recog-
nized from a microphone or file. Then, this is an advantage of the current service

29



Chapter 3

[mic, 2022f].

Therefore, the limits for data input associated with real-time transcription are
presented in Tables 3.16 and 3.17 [mic, 2022d]. The limits associated with the Free
plan are not adjustable, but, in turn, the ones regarding the Standard plan are.

Description Quota
Concurrent request limit - base model endpoint 1

Concurrent request limit - custom endpoint 1

Table 3.16: Microsoft Azure data limits for Speech-to-text service, for Free (F0)
plan in real-time transcription.

Description Quota
Concurrent request limit - base model endpoint 100 (default value)

Concurrent request limit - custom endpoint 100 (default value)

Table 3.17: Microsoft Azure data limits for Speech-to-text service, for Standard
(S0) plan in real-time transcription.

Regarding the customization of models, the limits presented in Tables 3.18
and 3.19 are imposed [mic, 2022d].

Description Quota
REST API limit 300 requests per minute

Max number of speech datasets 2
Max acoustic dataset file size for data import 2 GB
Max language dataset file size for data import 200 MB

Max pronunciation dataset file size for data import 1 KB
Max text size when using the text parameter in the

creation of a new template 200 KB

Table 3.18: Microsoft Azure data limits for Speech-to-text service, for Free (F0)
plan for model customization.

Description Quota
REST API limit 300 requests per minute

Max number of speech datasets 500
Max acoustic dataset file size for data import 2 GB
Max language dataset file size for data import 1.5 GB

Max pronunciation dataset file size for data import 1 MB
Max text size when using the text parameter in the

creation of a new template 500 KB

Table 3.19: Microsoft Azure data limits for Speech-to-text service, for Standard
(S0) plan for model customization.

Finally, no information regarding this solution’s model and the data used to
train it is publicly disclosed.
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IBM Watson Speech to Text

IBM Watson Speech to Text is an IBM Watson service that provides speech tran-
scription capabilities to applications. It uses ML to combine knowledge of gram-
mar, language structure, and the composition of audio and speech signals to
make accurate transcriptions of the human voice. The transcription is contin-
ually updated and enhanced as more speech is received by the service, which
provides APIs and can be used in various cases, such as dictating messages and
notes. It enables customers across a range of industries, including customers in
the healthcare industry, to develop cloud-native applications for a diversity of
uses [IBM, a].

As reported by Speech to Text, only Brazilian Portuguese is encompassed
[IBM, 2022d]. This fact represents a significant disadvantage for the present ser-
vice since it should not be able to be used for audio transcription in European
Portuguese or, at least, not with the desired quality, given the significant discrep-
ancy in phonemes, namely. This service was not, therefore, considered for the
development of this project.

No information is publicly available regarding the model and the training
data used by IBM in the present solution.

Google Cloud Speech-to-Text

Speech-to-Text is a service provided by Google Cloud that allows audio tran-
scription and has three main methods for performing speech recognition: syn-
chronous, asynchronous, and real-time recognition. In synchronous speech recog-
nition, audio data is sent to the Speech-to-Text API, which performs speech recog-
nition on the data transmitted and returns the results when all audio processing
is completed. In asynchronous recognition, data is also sent to the Speech-to-
Text API, but a long-running operation is triggered in this case, allowing the user
to poll periodically to obtain recognition results. Finally, the real-time recogni-
tion option performs recognition on audio data provided within a bi-directional
Google Remote Procedure Call (gRPC) stream. For example, this type of recogni-
tion is used in real-time audio transcription captured by a microphone [Cloud, a]
[Cloud, 2022a].

This service provides several features, presented in Table 3.20 [Cloud, c].

Feature
Global vocabulary

Streaming speech recognition
Speech adaptation

Speech-to-Text On-Prem
Multichannel recognition

Noise robustness
Domain-specific models

Content filtering
Transcription evaluation
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Automatic punctuation (beta version)
Speaker diarization (beta version)

Table 3.20: Google Cloud Speech-to-Text features.

This service supports European Portuguese, offering four templates for the
language: command and search, standard, latest long, and latest short. Besides
these templates, Speech-to-Text offers other templates for other languages, such
as medical dictation and medical conversation templates. The medical dictation
template is used for transcribing notes dictated by medical professionals, while
the medical conversation template is used for transcribing conversations between
a health professional and a patient. These models would be of interest in the
present work but are unavailable for European Portuguese, preventing their use.
Table 3.21 illustrates the usage of the four available templates for European Por-
tuguese [Cloud, 2022a] [Cloud, 2022b].

Template Usage

Command and
search

Useful in cases where the audios to be transcribed are
shorter, for example, audios relating to voice commands

or voice search

Latest Long More appropriate for long-form content, such as
spontaneous conversations

Latest Short
Appropriate for short utterances, a few seconds long,

and is a useful model in capturing voice commands or
other one-time directed speech use cases

Default
Should be used in cases where the audio that is to be
transcribed does not fit into any of the other available

models

Table 3.21: Description of the templates provided by Google Cloud
Speech-to-Text service for European Portuguese.

Since the speeches to be transcribed tend to be long, as they do not correspond
to a single voice command, the models applicable in the present work correspond
to the default model and the latest long model. For European Portuguese, the
functionalities provided by these models are presented in Tables 3.22 and 3.23
[Cloud, 2022b] [Cloud, 2022d] [Cloud, 2022e] [Cloud, 2022f].

Feature Description
Boost Customized word recognition

Profanity filter Filtering out profane words in the final text, being them
represented by their first letter and asterisks

Spoken
punctuation

Detection of spoken punctuation in the speech, which is
converted to the respective punctuation in the transcription

Table 3.22: Default model features for European Portuguese.
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Feature Description

Word-level
confidence

Adding a confidence level to transcribed words (in addition
to the confidence level associated with the total

transcription)

Profanity filter Filtering out profane words in the final text, being them
represented by their first letter and asterisks

Spoken
punctuation

Detection of spoken punctuation in the speech, which is
converted to the respective punctuation in the transcription

Table 3.23: Latest long model features for European Portuguese.

By testing the Speech-to-Text service in its demo [Cloud, b], it can be seen
that it can transcribe digits in a speech in European Portuguese. As previously
mentioned, this is a feature of high interest for the current project, given the need
to identify complementary information regarding numbers. The profane word
filtering is irrelevant since the presence of profane words in medical dictations is
not expected. Once again, no sensitive data filtering is available.

The prices charged for this service vary according to whether or not the op-
tion of logging data is used. This option is related to the supply of data to the
service so that it can successively improve its results and has associated discounts
[Cloud, 2022c]. Although this program could be appealing due to the discounts
provided, working with medical data that may contain sensitive information re-
moves the use of such a program from the hypothesis. Therefore, focusing on
speech recognition without data logging, and in the models of interest in this
project, the prices charged are presented in Table 3.24 [Cloud, d].

Minutes/month Price
0-60 Free

Over 60 up to 1 Million $0.006 for each 15 seconds

Table 3.24: Google Cloud Speech-to-Text pricing.

Regarding data input limits, the system imposes the ones presented in Table
3.25 [Cloud, 2022a].

Description Quota
Max audio input file size for the

synchronous recognition component 1 minute in duration

Max audio input file size for the
asynchronous recognition component

480 minutes (4 hours) in
duration

Table 3.25: Google Cloud data limits for Speech-to-Text service.

Finally, no information is publicly available regarding the model and training
data used by Google in the present solution.
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CMUSphinx

CMUSphinx is a toolkit that is among the most popular open-source toolkits
for ASR. It was developed by Carnegie Mellon University, focusing on appli-
cation production and development [Kamath et al., 2019d] and provides several
tools that can be used to build applications involving speech. Currently, it offers
two components: Pocketsphinx and Sphinxtrain. Pocketsphinx corresponds to
a lightweight speech recognition library written in C, while Sphinxtrain corre-
sponds to acoustic model training tools. This set of tools is still under develop-
ment, and much needs to be added. Examples are the absence of sense extraction
and the absence of post-processing of the decoding result. This solution currently
imposes the development of a post-processing system by the user so the decoding
result is converted to natural language [CMUSphinx, e] [CMUSphinx, a]. Using
CMUSphinx, it is necessary to develop the language model for the domain the
user is working in, a post-processing system, an adaptation system, and a user
identification system [CMUSphinx, f].

As this toolkit provides the option of developing language models, it will al-
ways be possible to use it for European Portuguese by training a new model,
which requires data and time availability. The training of language models is
done using Pocketsphinx, and this model is responsible for defining which se-
quences of words are likely to be detected. This model can have one of the
types keyword lists, grammars, statistical language models, and phonetic lan-
guage models. The first allows a list of keywords to be specified to search for
in speech. In the second, a grammar describes a straightforward type of com-
mand and control language and allows possible inputs to be specified with great
precision. Statistical language models, in turn, describe more complex language
and contain probabilities of words and word combinations. The model type de-
termines the capabilities and performance properties, which vary between the
various types. It is possible to choose the model best suited to the use case and
switch between modes at runtime [CMUSphinx, d]. In addition to linguistic mod-
els, acoustic models refer to models trained with recourse to data corresponding
to audio files. These can be used in any language and trained from scratch or
adapted from existing models [CMUSphinx, b].

Pocketsphinx allows the user to read Pulse-Code Modulation (PCM) audio
from a standard 16-bit input channel or one or more files and then attempt to
recognize speech on it using standard acoustic and linguistic models [Huggins-
Daines and Solovets, 2022a]. At no point in the documentation is it said that this
set of tools could perform speaker recognition or other functionalities present
in the previous services. However, it is possible to perform segmentation and
diarization using external tools. Segmentation refers to the division of audio
into manageable and distinct homogeneous audio parts, while diarization cor-
responds to the identification of unique speakers in a given audio file. It can be
done by combining LIUM tools with CMUSphinx [CMUSphinx, c]. Apart from
these, no other functionality is mentioned.

CMUSphinx provides templates for Brazilian Portuguese only [CMU, 2019].
The fact that no pre-trained model is available for European Portuguese is a dis-
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advantage since it is impossible to leverage knowledge from pre-existing mod-
els, which tends to lead to higher performance models, namely when the original
model was trained on a large dataset. This implies the need to spend time and
have data to develop the whole model from scratch. Besides the tendency to cre-
ate models with lower performance, there is also a significant investment in their
development. The need to develop a complementary system is also a significant
disadvantage of the system. Since one of the current project’s goals is the time to
market, and since the scarcity of data will result in a low performance model, this
solution loses its interest in the context.

Besides that, CMUSphinx is free, and no limits regarding input data are men-
tioned for this set of tools. An analysis of the architecture of its underlying models
is made in appendix A.

Kaldi

Kaldi is a speech recognition toolkit that has been developed in C++ and is in-
tended for use by researchers in the field. Like the previous toolkit, it is one of
the most popular open-source speech recognition toolkits [Kamath et al., 2019d]
[Kaldi, a]. Kaldi makes a wide range of tools available to its users, allowing
them to do grouping and calculate errors, among others [Kaldi, c]. Observing
this solution’s models, it is possible to build speech recognition, speaker iden-
tification, speech activity detection, and speaker diarization systems [Kaldi, b].
However, there is no mention in the documentation of models available in Eu-
ropean Portuguese. Still, since Kaldi is a set of tools that allows the user to de-
velop his models, it is perfectly possible to build and train any of the systems
previously mentioned for the language. The developable system with the most
significant interest in the context of this project concerns the speech recognition
system. Similarly to the previous set of tools, however, leveraging knowledge
from pre-designed models is impossible, and the model building has potentially
high costs in terms of time and computational resources. Still, the possibility of
identifying and filtering sensitive information is also not mentioned.

This service is free, and no reference is made to limitations in the input data
size. Similarly to CMUSphinx, and due to the non-availability of pre-trained
models in European Portuguese, Kaldi was not considered for future compar-
isons. Regarding its components architecture, an analysis is made in B.

Whisper

Whisper is an ASR solution made available by OpenAI in September 2022. It was
trained on 680.000 hours of supervised multilingual and multitasking data col-
lected from the web, being usable in 96 languages. This solution is open-source
at the models and inference code levels, being developed to serve as a basis for
developing applications of interest and for further research on robust speech pro-
cessing. Its architecture consists of a simple end-to-end approach implemented
as an encoder-decoder Transformer, and its generalized training, not adjusted to
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specific cases, makes it not the best model in particular use cases. However, there
is the possibility to adapt it to specific use cases [Gandhi, 2022]. Besides that,
in general use cases, this solution has shown satisfactory results [Radford et al.,
2022].

This solution offers five sizes of templates for multilingual tasks and four
English-only versions. The different models are associated with different coun-
terparts of speed and accuracy, presented in Table 3.26 [whi, 2022].

Model Numer of
parameters

English
version

Multilingual
version

Required
VRAM

Relative
speed

Tiny 39 million tiny.en tiny 1GB 32x
Base 74 million base.en base 1GB 16x
Samll 244 million small.en small 2GB 6x

Medium 769 million medium.en medium 5GB 2x
Large 1550 million - large 10GB 1x

Table 3.26: Whisper models provided and respective specifications.

Although the main speech recognition is the central task of ASR systems, other
tasks of interest must be added to these systems. Whisper adds them sequentially
in a single pipeline, being those features illustrated in Table 3.27 [Radford et al.].

Feature Description

Detection of spoken
language

The model predicts the language of the speech and
assigns the unique token associated with it, which

comes from the VoxLingua model107.

Detection of unspoken
segments (silences)

The system is trained to predict a specific token
indicative of the absence of speech in the audio
segment in question when this absence occurs.

Transcription and
translation of speech

It is possible to add a token to the text transcription
that indicates whether the task to be performed
should correspond to a transcription and/or a

translation of the speech
Prediction of
timestamps

It is possible to add a token that determines whether
or not timestamps should be included

Table 3.27: Whisper’s pipeline features.

Of the functionalities provided by this solution, only speech recognition is of
genuine interest in the context of this project. Once again, no masking of sen-
sitive data is available, which, not being a disadvantage, would be an added
value for the system which would make it available. Although it is not said
by the authors, by using the system, it can be seen that it can transcribe digits
too. In terms of protection, encryption techniques are used by the system for
data transmitted between the endpoint and the server to which it is making re-
quests. This data transmission is the riskiest component regarding data security,
being Whisper concerned with that. Regarding the customization of the model in
use, it is already possible to adjust the models provided by Whisper by training
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them on specific datasets of the area in which they should be applied. Whisper
is trained on a vast amount of labeled data, which allows it to train directly on
the supervised speech recognition task and to learn a STT mapping from these
labeled data. Due to this fact, Whisper requires little additional tuning to pro-
duce a performing ASR model [Gandhi, 2022]. The possibility of adjusting the
models already developed to the medical area could be a positive aspect of the
context in question. However, this possibility depends on time and computa-
tional resources and the existence of datasets with labeled data corresponding to
audio-transcribed pairs. This model adjustment work is much smaller than that
of the open-source solutions previously presented, but the scarcity of data also
makes the fine-tuning unusable in this context.

As seen in [Radford et al.], European Portuguese is included in the multilin-
gual Whisper models. Observing Tables 10, 11, and 13 of the paper, it is possible
to understand that not only it is possible to apply all the potentialities of the mul-
tilingual models to the language, but also that the Word Error Rate (WER) for it is
quite satisfactory for the tests made by the authors since it tends to be in average
or below the WER of the other languages.

Besides that, this solution is entirely free, and no limits are mentioned for the
input data. Finally, the architecture of its model’s architecture is provided in D.

iOS Speech

iOS Speech concerns a system provided by Apple that allows speech structure to
do spoken word recognition in recorded or live audio. This system can be used,
for example, to recognize verbal commands or to handle text dictation, making
available an object to each language it supports. That object is responsible for
allowing speech recognition in the language. A device has speech recognition
available for some languages, but the framework is still dependent on Apple’s
servers for speech recognition 1.

The idea of using a native speech recognition system would be to use the po-
tentialities made available by the mobile phone. By only allowing access to the
microphone within the final application and then applying the native system, it
would be possible to do this speech transcription transparently without develop-
ing and integrating a speech recognition functionality. However, this is a static
engine in that it cannot be adapted to use cases, and the result obtained using it
is directly dependent on its knowledge of the specific terms of the domain. Be-
sides that, this service presents a positive point in the context of this project which
corresponds to the fact that it is possible to transcribe numbers in European Por-
tuguese, as it could be tested using an Apple device.

For the context in which the final application is to be used, i.e., in health units
in Portugal where cell phones tend to be in European Portuguese, this service
should be available in the language. As the aim is to transcribe the medical
speeches at the moment they are dictated so that the doctor can confirm what
has been transcribed, this system could be used to transcribe live audio.

1https://developer.apple.com/documentation/speech
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Since this system uses free functionalities intrinsic to the mobile device, in-
tegrating them into the final application should not cost extra. Also, no limits
imposed on the system’s input data are presented for this system. Finally, no
information is publicly available regarding the model and training data used by
iOS Speech.

Android Speech

Android Speech is a namespace for a rich set of APIs that developers can use to
enable a device to understand speech. This is provided by Google and allows
both STT transcription and TTS conversion. This service has limitations associ-
ated with the hardware that uses it, and it is unlikely that a device will success-
fully interpret everything spoken to it in all available languages [And, 2021].

Similarly to the engine previously presented, the idea of using a native speech
recognition system would be to make use of the potentialities made available by
the mobile phone. Like the previous one, this service has the added value of
allowing the transcription of dictated digits in European Portuguese, which can
be tested on any Android device.

European Portuguese should also be available in this service, considering the
context in which the final application is used, similar to the previous service.
Also, Android Speech can be used to transcribe the audio in real-time within the
application itself 2.

Since this system also uses free functionalities intrinsic to the mobile device, its
integration into the final application should not cost extra. Besides, no limits are
presented at the input data level for the present system. Despite its advantages,
this system can not be considered for an iOS mobile application development,
losing its interest in the context of the current project. Finally, no information is
publicly available regarding the model and the training data used by Google in
Android Speech.

Conclusion

From the first comparative analysis made at the level of European Portuguese
support, it was already possible to exclude the following:

• Amazon Transcribe Medical, that only supports English

• IBM Watson Speech to Text, that only supports Brazilian Portuguese

This is a crucial question of the project since the final users of the developed
system should be European Portuguese speakers.

Regarding the most important features of these systems, all the solutions tran-
scribe speech, but not all transcribe digits in European Portuguese, and none pro-

2https://www.android.com/accessibility/live-transcribe/
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vides sensitive information filtering. Although the transcription of digits is rele-
vant, more than its absence is needed to rule out any solution since the conversion
of the string numbers to digits can be done with post-processing. However, solu-
tions capable of transcribing digits should be preferred.

Based on the analysis and comparison made for the various ASR solutions,
the solutions selected for testing correspond to those listed in Table 3.28.

NLP Tool
Amazon Transcribe

Microsoft Azure Cognitive Services for Speech
Google Cloud Speech-to-Text

Whisper
iOS Speech

Table 3.28: ASR solutions to be tested in experiments section.

3.3 Natural Language Processing

This section first presents the fundamental concepts of NLP and then delivers
the most relevant solutions in this area, i.e., the solutions corresponding to its
state of the art. A brief analysis of these solutions and a comparison between
them is offered, aiming at selecting the solutions likely to be used in the present
work. Each platform is analyzed in terms of its description, services, and/or
functionalities, the support offered for European Portuguese, the price charged,
and the limits applied to the input data.

3.3.1 Introduction

NLP corresponds to an area that deals with human communication, encompass-
ing several approaches that aim to help machines perceive, interpret, and gener-
ate human language. These approaches are sometimes outlined as Natural Lan-
guage Understanding (NLU) and Natural Language Generation (NLG) methods.
According to [Chowdhary, 2020b], NLP is the subject of Computational Linguis-
tics (CL), previously presented in this document, and it is a theory-driven field,
an academic research domain that is technology-driven and encompasses several
computational techniques to deal with human languages, namely to represent
and automatically analyze those languages. But this automatic analysis of hu-
man languages requires that the machines have a fairly deep knowledge of them
which makes machines not yet capable of understanding natural language and
imposes considerable challenges in the development of programs for NLU for
multiple reasons:

• Natural languages are typically large and complex, which leads to an enor-
mous number of possible sentences in each language
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• The natural languages are ambiguous since a single word can change its
meaning according to the sentence where it appears, and some sentences
can have multiple meanings according to the context

The human brain works in quite complex ways. It can represent each problem
and the necessary knowledge in several ways, successively finding new methods
to solve a given problem upon the failure of the previously designed methods.
For computers to understand humans, it should be necessary to equip them with
the appropriate knowledge. However, the most suitable representation structure
for a given purpose is unknown even to humans, who, as stated earlier, formu-
late various reasonings for the same problem until they arrive at the winning
approach, i.e., the approach that provides the answer to the problem. There-
fore, a uniform way of representing knowledge should not be sought. Instead,
it is necessary to use different representations depending on the difficulty of the
problem in question, and additional knowledge about the situation should be re-
quired to find its solution. Although the human language’s enormous richness
and complexity cannot be underestimated, there is an increasing need for algo-
rithms capable of understanding this language. The existence of NLP aims to fill
this gap.

NLP can be divided into two types of methods: traditional and modern. In
traditional methods, the approach is based on linguistics, built on a language’s
basic semantic and syntactic elements, like Part-of-Speech (POS). On the other
hand, modern deep learning approaches can bypass the need for intermediate
elements present in traditional methods and can learn their hierarchical repre-
sentations for generalized tasks [Kamath et al., 2019c].

NLP focus on multiple areas – like machine translation, Information Retrieval
(IR), i.e., question answering, text summarization, topic modeling, and opinion
mining – and its applications are countless, such as the classification of text into
categories according to its content, the automatic translation of texts, their au-
tomatic summarization, the extraction of information from them, the possibility
of generating question-answering systems, and the acquisition of knowledge in
text. In several applications of NLP, it is common to have a first pre-processing
phase in which program modules are used on the documents. These program
modules include text zoners, segmenters, filters, tokenizers, lexical analyzers,
disambiguators – in which both POS and semantic taggers are included – and
stemmers [Chowdhary, 2020b].

3.3.2 Main Natural Language Processing Tools

According to [Koneru et al., 2018], the five main NLP cloud service providers in
the market are AWS, Salesforce, IBM, Microsoft Azure, and Google Cloud Plat-
form. In the present study, four of these platforms are considered, plus two
Python libraries that, according to [Kamath et al., 2019d], are two of the most
popular toolkits for NLP. The NLP services studied correspond to those provided
by Amazon, IBM, Microsoft, and Google, and the Python libraries to spaCy and
NLTK. Their study is detailed below. The choice of these four particular cloud
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service providers is because they are successively mentioned in the literature as
the best service providers in the area of interest.

Since the analysis of the transcribed text is intended to identify, on the one
hand, the entities of interest contained therein and, on the other hand, the rela-
tionship between them, like the association of an administration frequency to a
specific active principle, these should be the two most relevant features in the
context of this project. Still, in the medical area, information filtering may be
relevant, but this feature should not be of extreme importance, given the under-
lying tendency not to include sensitive patient information in the dictation of the
prescription.

Each solution is explored in the following sections, being a first comparative
analysis between the relevant solutions presented in Tables 3.29 to 3.37. Table
3.29 compares the solutions at the level of European Portuguese support.

Tool Has support
Amazon Comprehend Yes

Amazon Comprehend Medical No
Google Cloud Natural Language API Yes*

Microsoft Azure Cognitive Service for Language Yes
IBM Watson Natural Language Understanding Yes

spaCy Yes

Table 3.29: Comparison of the various NLP tools. (I)
*Except at the Healthcare Natural Language API level.

By its turn, Tables 3.30 and 3.31 compare each service’s features available for
European Portuguese. NER denotes Named Entity Recognition (NER), and PHI
denotes Protected Health Information (PHI).

Tool NER Custom
NER

Amazon Comprehend x x
Amazon Comprehend Medical x*

Google Cloud Natural Language API x x
Microsoft Azure Cognitive Service for Language x x
IBM Watson Natural Language Understanding x x

spaCy x x

Table 3.30: Comparison of the several NLP tools (II-I)
*For English text only.

Tool Relationship
detection

PII or PHI
detection

Amazon Comprehend
Amazon Comprehend Medical x* x*

Google Cloud Natural Language API x*
Microsoft Azure Cognitive Service for Language x x
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IBM Watson Natural Language Understanding x
spaCy

Table 3.31: Comparison of the several NLP tools (II-II)
*For English text only.

In Tables 3.32 to 3.35, a comparison is made at the level of the prices charged
by each solution.

Tool Price

Amazon
Comprehend

Feature Up to 10
million u

10 to 50
million u

Over 50
million u

Entity Recognition 0.0001 US$ 0.00005 US$ 0.000025 US$
Asynchronous NER 0.0005 US$/u
Synchronous NER 0.0005 US$/UI/second

Model training 3 US$/hour training
Model management 0.50 US$/month

Amazon
Comprehend

Medical

API Free Tier Up to 1M u 1M to 2M u Over 2M u
NERe

85.000 u

$0.01/u $0.005/u $0.001/u
PHI $0.0014/u $0.0005/u $0.00025/u

ICD10CM $0.0005/u $0.0005/u $0.00025/u
SNOMED CT $0.0075/u $0.00375/u $0.00075/u

RxNorm $0.00025/u $0.00025/u $0.00025/u

Table 3.32: Comparison of the various NLP tools. (III-I)
u means unit or units

Tool Price

Google Cloud
Natural

Language API

Feature 0 – 5K 5K – 1M 1M – 5M 5M– 20M
u/month

Entity Analysis Free $1.00 $0.50 $0.25

First 50.000 u/month/
project

Next 950.000 up to
1.000.000 u/month/

project
Entity extraction

(AutoML)
$86/1.000 units/human

labeler
$60/1.000 units/human

labeler
Google Cloud

Healthcare
Natural

Language API

Feature 0 – 5K 5K – 1M 1M – 5M 5M– 20M
u/month

Entity analysis $0.10 text records/month

Table 3.33: Comparison of the various NLP tools. (III-II)
u means unit or units

Tool Price
Microsoft

Azure
Cognitive
Service for
Language -

Free instance

Features Inferencing* Training Model endpoint
hosting
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NER,
including PII 5.000 text

records free
per month

-

Custom NER Up to 1
hour free

Up to 1 model
free

Microsoft
Azure

Cognitive
Service for
Language -
Standard
instance

NER,
including PII

0.0M-0.5M: €0.9618

-0.5M-2.5M: €0.7214
2.5M-10.0M: €0.2886

10.0M+: €0.2405

Custom NER €4.809 €2.886/
hour

€0.481/ model/
month

Text
Analytics for

Health**

0M-0.005M*** – Free

-0.005M-0.5M***: €26
0.5M-2.5M***: €16

2.5M+***: €11

Table 3.34: Comparison of the various NLP tools. (III-III)
*(Per 1,000 text records)

**(available in containers)
*** text records

Tool Price

IBM Watson
Natural

Language
Understanding

Usage Lite Standard
1-250K items/month First 30K Free 0.003$/ item

250K-5M items/month – 0.001$/ item
5M+ items/month – 0.0002$/ item

Custom entities and
relations model trained

with WKS
(USD/model/month)

one free custom
model 800$

Custom classification
model

(USD/model/month)
1 free custom model 25$

spaCy 0

Table 3.35: Comparison of the various NLP tools. (III-IV)
u means unit or units

Finally, Tables 3.36 and 3.37 present a comparison of the solutions at the level
of input data limits.

Tool Input data limit

Amazon
Comprehend

Character encoding UTF-8
Maximum document size 100 KB

Custom analysis
- API

Maximum size UTF-8 text documents 10 KB
Maximum size PDF documents 10 MB
Maximum size word documents 10 MB

Maximum size image files 10 MB
Maximum size textract output files 1 MB
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Custom analysis
- Console

Maximum size UTF-8 text documents 10 KB
Maximum size PDF documents 5 MB
Maximum size word documents 5 MB

Maximum size image files 5 MB

Table 3.36: Comparison of the various NLP tools. (IV-I)

Tool Input data limit

Amazon
Comprehend

Medical

Character encoding UTF-8

Maximum
document

size

Entity and PHI detection 20 KB
Inference of ontology to ICD10-CM and

RxNorm 10 KB

Inference of ontology links to
SNOMEDCT 5 KB

Google Cloud
Natural

Language API

AutoML

50 to 100.000 training items
1 to 100 labels per dataset

Names from 1 to 32 characters for labels
Annotated range length from 1 to 100 characters

100 to 100.000 training items per label
Training items up to 128 KB (text format) or 20

MB (PDF format)
Up to 20 MB of items sent for prediction

Natural
Language

API

Up to 1 MB of input text
Input text with up to 100.000 tokens

Input text with up to 5.000 entity names

Microsoft
Azure

Cognitive
Service for
Language

Personalised
recognition
of named
entities

10 to 100.000 input documents
Input documents with 1 to 128.000 characters

1 to 200 types of entities
Entities with 1 to 500 characters

0 to 10 trained models per project
0 to 10 deployments per project

spaCy Does not have

Table 3.37: Comparison of the various NLP tools. (IV-II)

Amazon Comprehend

Amazon Comprehend is an AWS service that uses NLP to develop knowledge
about a document’s content. It uses a pre-trained model to examine and analyze
a document or a set of documents to extract knowledge, being this model con-
tinually trained on a large body of text, so the user does not need to provide any
training data. This service can extract knowledge through the features enunciated
in Table 3.38.

Feature
Entities Recognition

Key phrases Recognition
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Language Recognition
Sentiment Analysis

PII Recognition
Targeted Sentiment Analysis

Syntax Analysis
Custom classification

Custom entity recognition
Document clustering

Table 3.38: Amazon Comprehend features.

The functionality of this service can be used using the Amazon Comprehend
console or the service Application Programming Interface (API)s. It allows the
user to perform real-time analysis for small documents or document sets or initi-
ate asynchronous analysis jobs for large document sets. In addition, this service
offers the possibility to use pre-trained models available there or to train custom
models for document classification and entity recognition, allowing the user to
customize models for specific requirements without requiring in-depth knowl-
edge of developing ML-based NLP solutions. For that, the user can use AutoML
since it allows them to create customized NLP models without requiring their
intervention in the development and using the data the user already has to train
the customized model [Amazon Web Services, g].

Amazon Comprehend supports multiple languages, so it should be noted that
the text analysis features available vary depending on the language in question.
It offers support for European Portuguese and, with this language, it provides
the features presented in Table 3.39 [Amazon Web Services, g] [Amazon Web Ser-
vices, a].

Feature Description
Language

recognition
Determination of the dominant language of a given

document

Entity recognition
Recognition of entities that refer to names of people,

places, items, and locations contained in the
document

Key phrases
extraction

Recognition of the phrases that appear in a given
document and are intrinsically related to the topic of

the document

Sentiment analysis
Determination of the dominant sentiment present in

the document. Sentiments can be divided into
positive, neutral, negative, and mixed

Syntax Analysis Identification of the parts of speech to which each of
the words in a given document refers

Topic modeling
Examination of a corpus of documents and

consequent organization of the documents into
clusters based on similar keywords among them

Custom
classification

Classification of documents into specific,
user-defined categories
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Custom entity
recognition

Identification of specific terms and phrases based on
names

Table 3.39: Amazon Comprehend features provided for Portuguese.

Of the functionalities offered by this service for European Portuguese, only
entity recognition and custom entity recognition are relevant to the context of
this project. The possibility of customization is an added value to this service be-
cause the standard models were insufficient for extracting the entities of interest
in the present work. However, the absence of identification of relations between
the identified entities is a disadvantage of this system since it is one of the most
relevant features to have in the model of this project and one of the most difficult
ones to train a model to do.

The price charged for work that may be done with this service varies from
resource to resource. For the resources of interest in this project, the respective
prices are summarised in Tables 3.40 and 3.41 [Amazon Web Services, f].

Price
Feature Up to 10

million units
10 to 50

million units
Over 50

million units
Entity Recognition 0.0001 USD 0.00005 USD 0.000025 USD

Table 3.40: Amazon Comprehend pricing (I).
1 unit = 100 characters

Feature Price
Asynchronous entity recognition 0.0005 USD/unit
Synchronous entity recognition 0.0005 USD/UI/second

Model training 3 USD/hour training
Model management 0.50 USD/month

Table 3.41: Amazon Comprehend pricing (II).
UI: inference unit

One unit = 100 characters. Minimum of three units per request

In turn, regarding data limits and focusing on the features of interest for this
project and on synchronous jobs, which are suitable for small documents – that
should correspond to the type of document used in this work – in which a call
is made to the API for each document intended to be processed, this service im-
poses the limits present in Table 3.42 [Amazon Web Services, b]. The augmented
manifest files referred in the table correspond to JSON files in which each line
corresponds to a complete JSON object containing both the training document
and the associated labels [Amazon Web Services, e].

Description Quota
Character encoding UTF-8
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Maximum document size 100 KB

Custom
analysis

Maximum size UTF-8 text documents (API) 10 KB
Maximum size UTF-8 text documents (console) 10 KB

Maximum size PDF documents (API) 10 MB
Maximum size PDF documents (console) 5 MB

Maximum size word documents (API) 10 MB
Maximum size word documents (console) 5 MB

Maximum size image files (API) 10 MB
Maximum size image files (console) 5 MB

Maximum size textract output files (API) 1 MB

Plaintext
entity

recognition
– training

Number of entities per model/custom entity
recognizer 1–25

Document size (UTF-8) 1–5.000 B
Number of documents 3–120.000

Document corpus size (all docs in plaintext
combined)

5 KB – 100
MB

Minimum number of annotations per entity 25
Number of items in entity list 1–1 million

Length of individual entry (post-strip) in entry
list 1–5.000

Entity list corpus size (all docs in plaintext
combined)

5 KB – 100
MB

PDF or
Word text

entity
recognition
– training

Number of entities per model/custom entity
recognizer 1–25

Maximum annotation file size (UTF-8 JSON) 5 MB
Number of documents 250–10.000

Document corpus size (all docs in plaintext
combined) 5 KB–1 GB

Minimum number of annotations per entity 100
Augmented

manifest
files entity
recognition
– training

Maximum number of augmented manifest files 5
Maximum number of attribute names for each

augmented manifest file 5

Maximum length of attribute name 63
characters

Table 3.42: Quotas associated with the features of interest provided by Amazon
Comprehend for European Portuguese.

Finally, no information is found in official sources regarding the models/algorithms
and the training data used by this solution. Thus, this information should not be
publicly available and is not exploited.

Amazon Comprehend Medical

Like the previous service, Amazon Comprehend Medical is also provided by
AWS. It can detect and return useful information in unstructured clinical texts
such as clinical notes or test results by using NLP models. Those provide the
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features enumerated in Table 3.43.

Feature Description

Entity
recognition

Identification of textual references to medical information
such as medical conditions, drugs, or protected health

information, or PHI

Entities
linking

Link of the detected entities to standard medical knowledge
bases (for example, RxNorm, which encompasses all the

medicines available in the United States of America)
through ontological links

Table 3.43: Amazon Comprehend Medical features.

This service can only detect medical entities in English-language texts. Still,
this fact should not hinder its use on this project since the initially transcribed
text can be translated and, consequently, Amazon Comprehend Medical can be
used with all its potential, specifically focused on the medical area. It should be
noted, however, that the system’s performance will be affected not only by the
quality of the transcription of the medical discourse but also by the translation of
the transcribed text.

This service works based on confidence scores, which indicate the level of
confidence that the service has in the accuracy of the entities it detects. The inter-
pretation of these scores should be based on a confidence threshold characteristic
of the use case. Cases that require high accuracy should use a higher threshold.
Also, in some cases, the system might need human review and verification of the
results by properly trained human reviewers.

This service values data security by being a HIPAA-eligible service, i.e., it
can be configured to meet HIPAA compliance requirements, which refers to the
United States of America federal law that requires national standards to be cre-
ated to protect against the disclosure, without the consent or knowledge of the
patient, of sensitive patient health information [for Disease Control and Preven-
tion]. Furthermore, all connections to the service containing protected health in-
formation must be encrypted, and by default, they use HTTPS over TLS. Also,
the service does not persistently store its client’s content, so it is unnecessary to
configure at-rest encryption within the service.

Amazon Comprehend Medical can be accessed in three different ways, being
them through the AWS Management Console, the AWS Command Line Inter-
face, or the AWS SDKs. AWS Management Console provides a web interface to
access this service. On the other hand, AWS Command Line Console provides
commands for several AWS services, including Amazon Comprehend Medical,
and is supported on Windows, macOS, and Linux. Finally, AWS SDKs, or soft-
ware development kits, are libraries and sample code for various programming
languages and platforms such as Python, iOS, and Android. These provide a con-
venient way to create programmatic access to the service provided by AWS and
to AWS itself [Amazon Web Services, c].

The functionalities provided by Amazon Comprehend Medical are the exact
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ones that are of interest in the present work, allowing not only the identification
of the desired entities but also the linking of them to standard medical knowledge
bases and, then, the identification of the relations between entities, like a relation
between a International Non-proprietary Name (INN) and its dosage. Also, it
provides security and protection of health data, which, as indicated before, is a
major concern of medical software.

Regarding the price for this service, the same values are specified for both
Ireland and London, being these the only European countries included in the re-
gions. The fee charged varies according to the API used, with a free tier available
for the first month of use of any of the APIs. The information regarding the price
of the service is summarized in Table 3.44.

Price (per unit)
API Free Tier Up to 1M

units
1M to 2M

units
Over 2M

units
NERe 85.000 units (8.5M

characters, or
about 1000 5-page
1700-character per
page documents)

$0.01 $0.005 $0.001
PHI $0.0014 $0.0005 $0.00025

ICD10CM $0.0005 $0.0005 $0.00025
SNOMED CT $0.0075 $0.00375 $0.00075

RxNorm $0.00025 $0.00025 $0.00025

Table 3.44: Amazon Comprehend Medical pricing.
1 unit = 100 characters

In turn, regarding the limits for input data and focusing on synchronous jobs,
which are best suited to make individual requests for each file, Amazon Com-
prehend Medical imposes the limits enumerated in Table 3.45 [Amazon Web Ser-
vices, d].

Description Quota
Character encoding UTF-8

Maximum document size for entity detection and protected
health information detection operations 20 KB

Maximum document size for inference of ontology links to
ICD10-CM and RxNorm 10 KB

Maximum document size for inference of ontology links to
SNOMEDCT 5 KB

Table 3.45: Amazon Comprehend Medical input data limits.

Finally, no information is found in official sources regarding the models/algorithms
and the training data used by this solution. Thus, this information should not be
publicly available and is not exploited.

Google Cloud Natural Language API

Google Cloud Natural Language API is a service provided by Google that uses
ML to provide NLU technologies. This service offers several methods for analyz-
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ing and annotating user text, providing essential information for understanding
the language at each level of analysis it provides. These methods are illustrated
in Table 3.46.

Feature
Syntax analysis
Entity analysis

Custom entity extraction
Sentiment analysis

Custom sentiment analysis
Content classification

Custom content classification
Custom models

Powered by Google’s AutoML models
Spatial structure understanding

Table 3.46: Google Cloud Natural Language API features.

Natural Language API provides three key features: AutoML, Natural Lan-
guage API, and Healthcare Natural Language API. AutoML allows the user to
train its custom ML models, offering the features presented in Table 3.47. This
feature corresponds to an approach where the effort by the user is minimal, there
is no need for code development by the user, and ML expertise is used through
the use of Vertex AI.

Feature
Custom classification

Custom entity extraction
Custom sentiment detection

Table 3.47: AutoML features.

Natural Language API, in turn, provides its user with pre-trained models that
allow the integrations of NLU into their applications. The included functionali-
ties are illustrated in Table 3.48.

Feature
Sentiment analysis

Entity analysis
Entity sentiment analysis

Content classification
Syntactic analysis

Table 3.48: Natural Language API features.

There is also the AutoML Entity Extraction for Healthcare model that allows
the construction of custom knowledge extraction models for healthcare and life
science applications without the need to write any code. It corresponds to a re-
source included within AutoML, namely in its entity analysis functionality.
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By its turn, Healthcare Natural Language API corresponds to the branch of
Natural Language API focused on the medical area and allows real-time analy-
sis of knowledge contained in unstructured medical texts, making it possible to
extract machine-readable medical knowledge [Cloud, i] [Cloud, h]. With Health-
care Natural Language API, the features enumerated in Table 3.49 are provided.
However, this resource does not support documents in European Portuguese.
Similarly to what was said for Amazon Comprehend Medical, the absence of sup-
port for the language does not prevent its use in the present work. However, it
is required to add a translation component to the designed solution. Once again,
the quality of the processing will depend on both the quality of the transcript and
the quality of the translation [Cloud, f] [Cloud, g].

Feature
Extract recognized medical knowledge entities

Extract functional characteristics
Extract relationships between known entities

Extract contextual attributes
Extract mappings of medical knowledge entities into standard

terminologies

Table 3.49: Healthcare Natural Language API features.

Regarding the ability of the resources provided by Google Cloud Natural Lan-
guage API to process documents written in European Portuguese, the features
presented in Table 3.50 are provided [Cloud, e] [Cloud, j] [Cloud, l] [Cloud, k].

Feature Description

A
ut

oM
L

Custom entity
analysis

Identification of entities in the user’s
documents labeling them based on

domain-specific keywords or phrases

N
at

ur
al

La
ng

ua
ge

A
PI

Content classification
Content analysis of the input text, and

return of the content category in which the
content in question fits

Entity analysis

Inspection of the input text to identify
known entities, which may correspond to

proper names or common names.
Information on these entities is returned

Sentiment analysis

Inspection of the input text and
identification of the predominant
emotional opinion, particularly to

determine whether the attitude of the text
author is positive, negative or neutral

Syntactic analysis

Extraction of linguistic information with
the input text being partitioned into a
series of sentences and tokens. A more
detailed analysis is provided in these

tokens
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Table 3.50: Google Cloud Natural Language API features provided for European
Portuguese.

Of the functionalities made available for European Portuguese, only the anal-
ysis and the customized analysis of entities are relevant in this work. This ser-
vice also presents two advantages regarding its resources focused on the medical
area: the Healthcare Natural Language API and the AutoML Entity Extraction
for Healthcare. The former only supports English text, which, as mentioned be-
fore, does not hinder its use but leads to conditioned final performance. Since
the health-focused AutoML is part of AutoML itself, it should be possible to use
it to develop healthcare models that use European Portuguese since this is a lan-
guage supported by AutoML. An advantage of this service is that it can relate
entities between them using the Healthcare Natural Language API component,
one of this project’s most essential features. Still, this feature is not available in
European Portuguese. In this context, the most interesting among the resources
provided by this service should be Healthcare Natural Language API, which has
the disadvantage of depending on a translation but offers the two most signifi-
cant features in this project.

Regarding the price associated with using the functionalities of interest pro-
vided by this service, their use is calculated in units, each corresponding to 1.000
characters. Each document sent to the API corresponds to at least one unit, and
multiple units are considered when they exceed 1.000 characters, one unit per ev-
ery 1.000 characters. The prices charged are shown in Tables 3.51 and 3.52 [Cloud,
o] [Cloud, p].

Price (units/month)Feature 0 – 5K 5K+ – 1M 1M+ – 5M 5M+ – 20M
Entity Analysis Free $1.00 $0.50 $0.25

Table 3.51: Cloud Natural Language pricing.

Feature Price (text records/month)
Entity analysis $0.10

Table 3.52: Healthcare Natural Language API pricing.

As far as AutoML is considered, the price is based on the number of annota-
tion units, and for text data, the values are illustrated in table 3.53 [Cloud, q].

Price (per 1,000 units per human labeler)

Feature Unit First 50,000
units/month/project

Next 950,000 up to
1,000,000

units/month/project
Entity extraction Entity $86 $60

Table 3.53: VertexAI pricing. (AutoML)
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Regarding the AutoML limitations, the service imposes the ones listed in Table
3.54 [Cloud, n]. Since AutoML Entity Extraction for Healthcare corresponds to a
part of AutoML itself, the limits associated with the former correspond to those
associated with the service where it is inserted.

Type of limit Entity extraction
Training items 50 to 100,000

Labels per dataset 1 to 100
Length of label name 1 to 32

Length of annotated span 1 to 100 characters
Training items per label 100 to 100.000

Training item size 128 KB (text); 20MB (PDF)
10 to 300.000 characters (text)

Item sent for prediction 20MB
Items per batch request 10.000

Table 3.54: Google Cloud Natural Language API AutoML limits.

On the other hand, the Natural Language API imposes some limits regarding
input data. Those are enumerated in Table 3.55 [Cloud, m].

Content Quota Value
Text Content 1.000.000 bytes
Token Quota 100.000 tokens

Entity Mentions 5.000 (explicit or in the form of pronouns)

Table 3.55: Google Cloud Natural Language API limits.

Finally, no information is found in official sources regarding the models/algorithms
and the training data used by this solution. Thus, this information should not be
publicly available and is not exploited.

Microsoft Azure Cognitive Service for Language

Microsoft Azure offers, within Cognitive Services, the Language service aimed
at understanding conversations and unstructured text [Microsoft, a]. This cloud-
based service provides NLP capabilities to understand and analyze text. It can
aid the development of applications with a NLP component by using web-based
Language Studio, REST APIs, or client libraries.

The service includes Text Analytics, QnA Maker, and LUIS (Language Under-
standing), with various functionalities that can be pre-configured or customiz-
able. In the first case, the user only sends their data and uses the output of the
service functionalities in their application, not customizing the AI model to be
used by the service. In the second case, the user trains the AI model to adjust it
precisely to their data using the tools provided by the service. It should be noted
that according to [azu, 2022b], LUIS will be withdrawn in 2025, with no new re-
sources being allowed to be created as of April 2023. This second date is before
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the finalization of the current project, removing interest from the present solution.
Also, QnA Maker will be retired in 2025, with a new version of the question and
answering capability already available. This feature is, however, not particularly
relevant in this project where it is not a focus to have a natural conversational
layer [azu, 2021].

This service provides many different functionalities, listed in Table 3.56 [azu,
2022a].

Feature
NER

Personally identifying (PII) and PHI detection
Language detection

Sentiment Analysis and opinion mining
Summarization

Key phrase extraction
Entity linking

Text analytics for Health
Custom text classification

Custom NER
Conversational language understanding

Orchestration workflow
Question answering

Table 3.56: Microsoft Azure Cognitive Service for Language features.

It also offers support for many languages, varying the features offered. This
service supports European Portuguese, and, for the language, the functionalities
listed in 3.57 are available [azu, 2022a].

Feature Description

Custom text classification Development of personalised AI models for
documents classification

Custom NER
Development of customized AI models that

allow them to extract personalized entity
categories

Conversational language
understanding

Development of custom models of natural
language understanding so that it is

possible to predict the general intent of a
given statement and extract important

information from it

Language detection

Detection of the language in which a text is
written. It returns the language code for the

language, variant, dialect, or
regional/cultural language concerned

Key phrase extraction Evaluation and return in list form of the
main concepts in an unstructured text
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NER

Identification of entities in unstructured
texts using predefined categories (for
example, people, places, dates, among

others)

PII detection

Identification, categorization, and redaction
of sensitive information (such as mobile

phone numbers or email addresses) either
in unstructured text documents or in

transcripts of conversations

Sentiment analysis and
opinion mining

Use text extraction to get clues about
positive or negative feelings, which can also

be associated with specific aspects of the
text under analysis

Summarization

Extractive text summarization, that is, the
sentences that collectively represent the

most relevant or important information of
the original content is extracted so that a
summary of documents or transcripts of

conversations can be produced

Table 3.57: Microsoft Azure Cognitive Service for Language features for
European Portuguese.

One of the functionalities that would be of interest in this work is the text
analysis functionality for health. This feature is only available in Brazilian Por-
tuguese, but because of its main interest in the current project, it will be tested
and compared with the other solutions. Text Analytics for Health provides the
features enumerated in Table 3.58 [Azu, 2022].

Feature
Named entity recognition

Relation extraction
Entity linking

Assertion detection

Table 3.58: Features provided by Text Analytics for Health.

From the features provided for European Portuguese, only the NER and cus-
tom NER are interesting in this project. The detection of PII adds value to this
solution, but it’s not a major requisite for this work. Text Analytics for Health is
the main interest of this service in this context since it allows its user to identify
and relate medical entities in unstructured text [Azu, 2022].

Attending to the prices practiced for this service, it may be understood that
Europe is divided into Northern Europe and Western Europe, and the prices in
the two regions are similar, being both considered for the following analysis. For
this service, there are two ways of making resources available: through the Web
or by joining commitment tiers, whose access is limited. The use of the function-
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alities made available by this service based on a commitment tiers plan will not
be considered, given its requirements to be able to request access to it. Consid-
ering only the Web part of this service, two different levels are available: Free
and Standard. If we look at Europe, the Web plans and functionalities of interest
available for European Portuguese and the Text Analytics for Health, the prices
charged correspond to those on Table 3.59 [Microsoft, b].

Features Inferencing* Training
Model

endpoint
hosting

NER, including
PII

0.0M-0.5M – €0.9618

-0.5M-2.5M – €0.7214
2.5M-10.0M – €0.2886

10.0M+ – €0.2405

Custom NER €4.809 €2.886/hour €0.481/model/
month

Text analytics
for health**

0M-0.005M text
records – Included

-

0.005M-0.5M text
records – €26

0.5M-2.5M text
records – €16

2.5M+ text records –
€11

Table 3.59: Microsoft Azure Cognitive Service for Language pricing (Standard
(S) instance).

*Per 1,000 text records
**(available in containers)

Focusing on the functionalities of interest made available for Portuguese of
Portugal and Text Analytics for Health, the limits enumerated in 3.60 are imposed
[azu, 2022c] [aahill, 2023].

Feature Item Lower
Limit Upper Limit

Custom NER

Documents count 10 100.000
Document length in

characters 1 128.000 characters

Count of entity types 1 200
Entity length in

characters 1 500

Count of trained
models per project 0 10

Count of deployments
per project 0 10

Text Analytics
for health

Characters per
document 125.000
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Request size 1MB
Documents per request

(synchronous)
25 (web-based API)

1000 (container)
Documents per request

(asynchronous) 25

NER

Characters per
document

5.120 (synchronous)
125.000*

(asynchronous)

Documents per request 5 (synchronous)
25 (asynchronous)

PII detection

Documents per request
(synchronous) 5

Documents per request
(asynchronous) 25

Table 3.60: Microsoft Azure Cognitive Service for Language data limits.
*across all documents

Finally, no information is found in official sources regarding the models/algorithms
and the training data used by this solution. Thus, this information should not be
publicly available and is not exploited.

IBM Watson Natural Language Understanding

IBM Watson Natural Language Understanding is a service provided by IBM Wat-
son that allows its users to analyze semantic features of text input, including the
features presented in Table 3.61.

Feature
Categories analysis
Concepts analysis
Emotion analysis
Entities analysis

Keywords analysis
Metadata analysis

Relationships analysis
Semantic roles analysis

Sentiment analysis
Syntax analysis

Summarisation analysis (Experimental)

Table 3.61: IBM Watson Natural Language Understanding features.

By sending a request to the API using text, HTML, or a public URL, it is pos-
sible to use one or more of the previously mentioned features [IBM, 2022a]. The
service offers support for many languages, varying the features according to the
considered language. For European Portuguese, the service offers the functional-
ities presented in Table 3.62 [IBM, 2022a] [IBM, 2021] [IBM, 2022c].
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Feature Description Support

Categories
analysis

Categorisation of the input content
according to a 5-level classification

hierarchy
Standard

Concepts
analysis

Identification of high-level concepts
that do not necessarily have to be

referenced directly in the text
Standard

Entity analysis
Identification of various types of entities

mentioned in the text (for example,
people, places, events, among others)

Standard and
Customized

models
Keyword
analysis

Search for relevant words in the
document content Standard

Metadata
analysis

Finding the author, title, and
publication date of a web page passed
to the system through HTML or URL

entries

Standard

Relationships
analysis

Recognition and identification of the
type of relationship between two

entities when they are related

Standard and
Customized

models

Sentiment
analysis

Retrieve information about the
sentiment related to specific target
sentences, the whole document, or

related to detected entities and
keywords (in this semantic feature, it is
required that their option of sentiment

is enabled)

Standard

Syntax analysis Identification of sentences and tokens in
the input text Standard

Classifications
(or tone

analytics)

Language tone detection in the written
text (tone can be sad, frustrated,

satisfied, excited, polite, impolite, and
nice) based on a model of

pre-constructed classifications

Customized
models

Table 3.62: IBM Watson Natural Language Understanding features provided for
European Portuguese.

This service offers the two features that are most relevant for the context of
this project, which is a significant advantage of it.

Regarding the price for commercializing the functionalities of interest for this
project, there are two different price plans: Lite and Standard. Both plans are
described in Table 3.63 [IBM, b] [IBM, c].

Usage Lite Standard ($)
1-250K items/month First 30K Free 0.003/item

250K-5M items/month – 0.001/item
5M+ items/month – 0.0002/item
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Custom entities and relations
model trained with WKS

(USD/model/month)
One free custom model 800

Custom classification model
(USD/model/month) 1 free custom model 25

Table 3.63: IBM Watson Natural Language Understanding pricing.

Besides that, this service also imposes limits associated with the input data,
presented in Table 3.64 [IBM, 2022b].

Description Limit
Maximum input text size 50,000 single-byte or multibyte characters

Table 3.64: IBM Watson Natural Language Understanding data limits.

Finally, no information is found in official sources regarding the models/algorithms
and the training data used by this solution. Thus, this information should not be
publicly available and is not exploited.

spaCy

spaCy is a free, open-source library that allows its user to do advanced NLP in
Python. It was specifically developed for use in the production and development
of applications that process and "understand" large volumes of text, and it can
be used both for the development of systems capable of extracting information
from text written in natural language and for the development of systems for
understanding this language [spa, a].

spaCy provides trained pipelines that can be installed as Python packages,
i.e., these pipelines are a component of the application under development, just
like any other module. These trained pipelines refer to input text processing se-
quences that have already been trained. They typically include a tagger, a lemma-
tizer, an interpreter, and an entity recognizer, continuously processing the input
text and then passing it on to the next pipeline component. The schema of the
pipeline can be seen in Figure 3.1 [spa, c] [spa, d].

Figure 3.1: spaCy trained pipelines’ schema.

spaCy focuses on the fact that it is generally better to use linguistic knowledge
when processing raw text to add helpful information to it and, with this library,
it is possible to input raw text that will be returned in the form of a Doc object,
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which will already have a variety of annotations. This library then offers a variety
of functionalities of interest in NLP, being them enumerated in Table 3.65.

Feature
Part-of-text tagging

Morphology analysis
Lemmatization

Dependency analysis
NER

Entity binding
Tokenization
Join and split

Sentence segmentation
Mappings and exceptions

Vectors and similarity
Language data

Table 3.65: spaCy statistical and rule-based models features.

Within each of these functionalities, several features are also offered [spa, e].
The functionalities previously presented provide statistical models, rule-based
models, or both, the former being strongly dependent on their training phase. In
this phase, the model weights under training for the use case are defined for the
labels specified in the model in question [spa, f].

Other features offered by spaCy correspond to its engines and rule-based com-
ponents that not only allow finding the words and phrases the user wants to find
in the text, as in the previously presented functionalities but also allow access to
the tokens within the document in question and their relations. This allows the
user to easily access and analyze the surrounding tokens, merge the ranges into
single tokens, or even add entries to the named entities, and several engines are
available for this purpose. Those engines are enumerated in Table 3.66.

Feature
Token-based matching

Efficient sentence matching
Dependency matching

Rule-based entity recognition
Rule-based interval matching

Table 3.66: spaCy engines and rule-based components’ features.

These models can be used independently, or statistical models can be com-
bined with rule-based models in various ways, and like statistical methods, rule-
based models each offer a variety of methods [spa, g].

In addition, with spaCy, it is possible to perform several transfer learning and
multi-task learning workflows that can help improve the efficiency or accuracy
of a pipeline. Considering transfer learning, tasks such as word vector tables and
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language model pre-training can be highlighted, bringing raw text knowledge
into a given pipeline and allowing the model in question to have a greater abil-
ity to generalize from the user’s annotated examples. The transformed model or
other contextual embedding model developed by the user could be shared across
the various components of their pipeline, potentially making long pipelines sev-
eral times more efficient. In the context of spaCy, transfer learning always re-
quires at least some annotated examples relating to what is to be predicted [spa,
h].

The models offered by spaCy are based on neural networks, allowing users to
define or change their configuration and include neural networks as sub-layers
of another neural network [spa, i]. This library offers, for European Portuguese,
three distinct packages. All three offer the same capabilities, illustrated in Table
3.67.

Feature Description

Part-of-text
tagging

Phase where the trained pipeline and its statistical
models come into play to allow predictions to be made

concerning the label or tag that best applies to the
context in question

Dependency
analysis
(parser)

Syntactic dependency analysis, sentence boundary
detection and allows iteration over basic nominal

phrases or chunks of text [spa, k]

Lemmatization Reduction of the words in the text being processed to
their root form

NER

Assignment of labels to entities based on a statistical
entity recognition system. Standard trained pipelines

are capable of recognizing a variety of named and
numeric entities, and it is also possible to add new
(user-defined) categories to the entity recognition
system and update the model by providing new

examples

Table 3.67: Features provided by spaCy’s models for European Portuguese.

Entity recognition is done here through prediction requests to the model, which,
being statistical and heavily dependent on the examples they were trained with,
may not work perfectly and must be fine-tuned depending on the use case.

The three offered packages differ because, of the three, one does not provide
support for word vectors, and among the two that offer this support, the differ-
ences translate into the number of keys and unique vectors supported. Besides,
all three packages offer pipelines trained in news and media texts [spa, j] [spa, b].

Among the features provided for European Portuguese, only NER is relevant
in this context. Nevertheless, this solution does not support identifying relations
between recognized entities, which is a disadvantage in this project. The possi-
bility of customization of the detection of entities is an advantage of the solution
since the standard models are insufficient for the goal of the present work.

61



Chapter 3

spaCy is free of charge, and no limits are indicated for the input data for this
library, so it should have no restrictions on the input data size. Finally, regarding
the architecture of the components of the models provided by spaCy for Euro-
pean Portuguese, an analysis is made in E.

NLTK

NLTK is a platform for developing Python programs to work with human lan-
guage data. It is an open-source, free project that provides many usable inter-
faces to over 50 corpora and lexical resources. It also provides a set of text pro-
cessing libraries for classification, tokenization, stemming, tagging, parsing, and
semantic reasoning. It also provides an active discussion forum and wrappers
for industrial-strength NLP libraries [NLT, a]. This platform supports several
language processing tasks, as illustrated in Table 3.68 [Loper et al., 2009].

Language processing task
Accessing corpora
String processing

Collocation discovery
Part-of-speech tagging

Machine learning
Chunking

Parsing
Semantic interpretation

Evaluation metrics
Probability and estimation

Applications
Linguistic fieldwork

Table 3.68: NLTK features.

It is important to note that NLTK allows the recognition of named entities
being done inside chunking, as it can be seen in the examples made available by
the authors of the solution 3.

This platform allows the analysis of text in European Portuguese, and at [NLT,
b], it is possible to see an example where, among other analyses, it is possible to
perform a text search, the representation of text as a list of words, access and read
the corpora, generate a concordance for a given word taking into account a given
context, mark parts of the text, segment sentences, reduce words to their root
form and identify stop words.

With that, NLTK provides one of the desired features: entity recognition. Nev-
ertheless, it does not give pre-trained models. This solution genuinely depends
on big data, time, and computational resources. This makes the time to market a
solution deployed with NLTK above the one expected in the present work. The
intent is to produce a solution to go to the market as fast as possible, with good

3https://www.nltk.org/some-simple-things-you-can-do-with-nltk
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quality. For that reason, and because it can’t be accomplished using NLTK, this
solution was not further explored.

This solution is free, and, like the previous library, no size limits are men-
tioned for the input data, so this platform should not present restrictions at this
level. Finally, regarding the architecture of the components provided by NLTK,
an analysis is provided in E.

Conclusion

Although it is more convenient to use a tool that offers support for European
Portuguese, the fact that they do not support it does not prevent its use. The
translation of the transcribed text should allow the usage of tools that do not
support the language, as the system’s performance depends on both the quality
of the transcribed text and the quality of the translated text.

Besides that, compared to the high price of IBM Watson’s NLP and Google
Cloud’s AutoML services compared with other solutions, these were not consid-
ered for future tests or used in this project.

Finally, based on the analysis and comparison made for the various NLP solu-
tions, the ones tested in the following section correspond to those listed in Table
3.69.

NLP Tool
Amazon Comprehend

Amazon Comprehend Medical
Microsoft Azure Cognitive Service for Language

Google Cloud Natural Language API
spaCy

Table 3.69: Solutions to be tested in preliminary experiments section.

3.4 Conclusion

From the previous study, it was possible to identify both ASR and NLP solu-
tions suitable for the current project. These include Amazon Transcribe, Microsoft
Azure Cognitive Services for Speech, Google Cloud Speech-to-Text, Whisper, and
iOS Speech for ASR, and Amazon Comprehend, Amazon Comprehend Medi-
cal, Microsoft Azure Cognitive Service for Language, Google Cloud Natural Lan-
guage API, and spaCy for NLP, which were tested and compared in chapter 5.
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Software Development Methodology

The present chapter introduces the cloud provider, the cloud services, the work
methodology, and the mobile application development design pattern.

First, the cloud provider is explained, and the cloud services are analyzed.
Then, the work methodology is introduced. Besides that, the most popular design
patterns in mobile application development and a comparative analysis between
them are presented, culminating with the option adopted in the project.

4.1 Introduction

For the development of the system proposed in the current project, it was neces-
sary to have the following:

• A cloud provider, to host the services and data needed

• Cloud services, to deal with the data, hosted services, and user requests

• A work methodology, to organize the work

• A design pattern, for the mobile component development

The following sections illustrate each of these components.

4.2 Cloud provider

For the orchestration of the Natural Language Processing (NLP) service to be
used in this project, a cloud provider was needed, and, according to [Aljamal
et al., 2019], there are four leading cloud providers in the market: Amazon, Mi-
crosoft Azure, Google Cloud, and Oracle. Figure 4.1 corresponds to Table 1 in
[Aljamal et al., 2019] and compares the top cloud providers previously mentioned
from Infrastructure as a Service perspective.
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Figure 4.1: Comparison of leader cloud providers from Infrastructure as a
Service perspective [Aljamal et al., 2019].
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Since this work is in the medical field and considering that a major concern
is data security, one of the most relevant issues in choosing the cloud provider
corresponds to its security. For this reason, both Google and Oracle should not
be considered as hypotheses for this work since they fall short of the other two
solutions regarding security. This table also shows that Amazon is the market
leader and the most recommended cloud provider, and one of its main focuses
is security. Also, it has higher forwarding rates, as pointed out by the authors in
Table 2 [Aljamal et al., 2019]. For this reason, Amazon was the cloud provider
used in the present work.

Amazon Web Services

Amazon Web Services (AWS) is a cloud platform that provides more than 200
fully featured services from data centers globally to its users. It is described as
the cloud provider with more services and features, the largest and most dynamic
community, the most secure, the fastest pace of innovation, and the most proven
operational expertise [aws, e]. In this project, it was useful to encompass the ser-
vices needed for the system to work well, being those services addressed below.

4.2.1 Cloud Services

Since the cloud provider used is AWS, the four primary cloud services for the sys-
tem development corresponded to Amazon API Gateway, AWS Lambda, Ama-
zon DynamoDB, and Amazon Cognito.

AWS Lambda

AWS Lambda is a service provided by Amazon that allows its users to develop
and execute code without needing to provision or manage servers.

All computer resource management is the responsibility of this service, with
the code executed in a high-availability infrastructure. Computer resource man-
agement includes server and operating system maintenance operations, capacity
provisioning, and automatic scaling and recording. When using this service, the
user is only responsible for its code since the service manages a fleet of comput-
ers to offer a balance of several resources, such as memory and Central Processing
Unit (CPU). This resource from AWS executes different operational and adminis-
trative activities by the user, for example, the capacity management, monitoring,
and the log of the users’ lambda functions. This service allows the execution of
code for several types of applications or backend services, being only necessary to
provide the code to be executed in one of the programming languages supported
by the service. Also, it supports several different runtimes, including them in
terms of programming languages, Node.js, Python, Java, .NET Core, .NET, Go,
Ruby, and Custom Runtime [aws, d].

This service does the automatic scheduling, and the functions are executed
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Figure 4.2: Mobile backend usage scenario.

only when it is effectively needed, supporting from a few daily requests to thou-
sands of requests every second. Its use is charged only when there is code in
execution, being still a highly available service.

In cases where it becomes necessary to manage the computer resources to be
used in the project, AWS has other services that satisfy this need. Those ser-
vices refer to Amazon Elastic Compute Cloud (Amazon EC2) and AWS Elastic
Beanstalk1 2.

This service is also suitable for a variety of application scenarios. All that is
required is to run the application code using the Lambda standard runtime envi-
ronment and within the resources provided by Lambda. Such scenarios include
file processing, data stream processing, web applications, IoT, and mobile back-
ends. Among these, we should highlight the last use case, which corresponds to
the case of interest of this work. Figure 4.2 illustrates an example where Amazon
API Gateway, AWS Lambda, and Amazon SNS are used to detect status updates
in a given mobile application. This update should derive an action of sending a
notification to other users of that same application.

Regarding the features provided by this service, a summarization is presented
in Table 4.1 [aws, c].

Feature
Concurrency and scaling controls

Functions defined as container images
Code signing

Lambda extensions
Function blueprints

Database access
File systems access

Table 4.1: Features provided by AWS Lambda.

Amazon API Gateway

This service provided by AWS allows its user to create, publish, maintain, and
monitor the security of APIs (REST, HTTP, and WebSocket) at any scale. With

1https://aws.amazon.com/pt/ec2/
2https://aws.amazon.com/pt/elasticbeanstalk/
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Figure 4.3: Amazon API Gateway architecture.

this service, APIs can be created to access AWS services or other web services
and data stored in the AWS Cloud. The user can also create APIs both for use
in their client applications and to make their APIs available to other application
developers.

This service creates RESTful APIs based on HTTP, which allow stateless com-
munication between client and server and implement standard HTTP methods,
such as the GET and POST methods. On the other hand, it creates WebSocket
APIs that enable stateful, full-duplex communication between client and user –
since they adhere to the WebSocket protocol – and forward incoming messages
considering their content.

In Figure 4.3, the architecture of this service is illustrated. This diagram presents
a serverless application development approach, being the API Gateway respon-
sible for handling the tasks related to the acceptance and processing of simul-
taneous API calls, up to hundreds of thousands of simultaneous calls being sup-
ported. These tasks include traffic management, authorization and access control,
monitoring, and API version management. This service is between the applica-
tion and the content it wants to access. It refers to data, business logic, and back-
end service functionalities, such as the code executed in Lambda AWS. It acts like
a front door for the applications’ access to resources.

Besides that, the features provided by Amazon API Gateway are enumerated
in Table 4.2. Between the flexible authentication mechanisms mentioned in the
table, there are Amazon Cognito user pools, which should be presented next.

Feature
Stateful (WebSocket) and stateless (HTTP and REST) APIs support

Flexible authentication mechanisms
Developer portal for APIs publishing

Canary release deployments for safely rolling out changes
Logging and monitoring of API usage and API changes with CloudTrail
Access logging and execution logging, including the ability to set alarms

with CloudWatch
Ability to use AWS CloudFormation templates to enable API creation

Custom domain names support

69



Chapter 4

Integration with AWS WAF – protection against common web exploits
Integration with AWS X-Ray – performance latencies understanding

and triaging

Table 4.2: Features provided by Amazon API Gateway.

Amazon API Gateway service can be accessed in several different ways. Throw
AWS Management Console, which provides a web interface for the creation and
management of APIs, throw AWS SDKs, API Gateway V1 and V2 APIs, AWS
Command Line Interface and AWS Tools for Windows Powershell.

This service is part of the AWS serverless infrastructure, including Amazon
API Gateway and AWS Lambda. The latter service can enable communication
between an application and publicly available AWS services through the expo-
sure of the Lambda functions using API methods in the Gateway API. To en-
able serverless applications, this service allows simplified proxy integration with
Lambda and HTTP endpoints [aws, a].

Several usage scenarios of the Amazon API Gateway, which enables the gen-
eration of REST APIs, HTTP APIs, and even WebSocket APIS, are highlighted by
AWS 3. As far as WebSocket APIs are concerned, these maintain persistent con-
nections between the client and the server. In the usage scenario of the present
work, there is no need for these types of connections, which is why this type of
API was not chosen. Compared to HTTP APIs, REST APIs encompass more fea-
tures and are more expensive. Since the additional features of REST APIs are not
relevant in the context of this paper, this type of API was not chosen either. With
this, the generated API was then inserted into the HTTP APIs 4.

HTTP APIs can send requests to AWS Lambda functions or any publicly routable
HTTP endpoint. For example, an HTTP API can be created to integrate with a
Lambda function in the backend. When the client calls the API, the API Gateway
then sends the client’s request to the Lambda function. This returns a response
that is then forwarded by the API Gateway back to the client 5.

The HTTP APIs suport OpenID Connect e OAuth 2.0 authorization. OpenID
Connect corresponds to a simple identity layer on top of the OAuth 2.0 protocol
that allows the verification of an end-users entity based on authentication by an
Authorization Server, as well as obtaining basic profile information regarding the
end-user in an interoperable and REST-like manner. This can be used by clients of
all types – including mobile and web-based clients – and allows them to request
and receive information about authenticated sessions and end-users. Optional
features, such as encryption of identity data, are also permitted when it makes
sense for the client to use them 6. OAuth 2.0, on the other hand, considers the
industry-standard protocol for authorization. It focuses on simplicity as far as

3https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-overview-
developer-experience.html

4https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
5https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-overview-

developer-experience.html
6https://openid.net/connect/
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the client developer is regarded, yet provides specific authorization flows for web
and desktop applications, mobile phones, and living room devices [oau, 2020].

These APIs also support cross-origin resource sharing (CORS) and automatic
deployments. CORS corresponds to a browser security feature restricting HTTP
requests initiated from scripts running in the browser. Using this feature allows
requests to be made from a web application hosted in a different domain than the
developed API 7. CORS refers to an HTTP-header-based mechanism that allows a
server to specify sources other than its own from which the browser should allow
loading resources, and these sources may relate to domain, schema, or port. This
mechanism also presents a strategy by which browsers make a "preflight" request
to the server that hosts the cross-origin resource. The purpose of this is to verify
if the server will allow the request in question, and in this preflight request, the
browser sends headers that indicate both the HTTP method and the headers that
will be used in the actual request [Mozilla, 2023].

Regarding the Application Programming Interface (API) testing made, it was
based on Postman, an API platform for building and using APIs. It simplifies
each step of the API lifecycle and the collaborations to create better APIs faster.
This platform offers several layers that relate to 8:

• API repository allows storage, cataloging, and collaboration around all user
APIs on a single central platform. Postman can store and manage all aspects
of APIs, such as specifications, documentation, workflow recipes, test cases,
results, and metrics.

• Tools, responsible for providing a comprehensive set of tools that help the
user accelerate the API lifecycle. It encompasses the design, testing, docu-
mentation, and mocking and the sharing and discovery of the user’s APIs.

• Governance, related to Postman’s complete lifecycle approach to gover-
nance. This approach allows the development of better quality APIs by
enabling the change of development practices by its users. It is also related
to the promotion of collaboration between development teams and API de-
sign teams.

• Workspaces, responsible for helping in the organization of API work and
collaboration both in the user organization and the world. Four types of
workspaces exist: personal, team, partner, and public.

• Integrations, responsible for integrating Postman with the most essential
tools in the user software development pipeline, enabling API-first prac-
tices. Postman is further extensible through the Postman API or open-
source technologies.

Since this study aims to test the developed API, the most relevant component
in this context corresponds to Tools. In this component the following tools are
included 9:

7https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-cors.html
8https://www.postman.com/product/what-is-postman/
9https://www.postman.com/product/tools/
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• API client, this platform’s fundamental tool, allows users to explore, de-
bug and test its APIs. This enables complex API requests to be defined for
different APIs - HTTP, REST, SOAP, GraphQL, and WebSockets.

This component automatically detects response and link language, formats
the text within the body for easy inspection, and supports authentication
protocols such as OAuth 2.0 and AWS Signature.

Through the API client, the user can organize requests into Postman Col-
lections that help manage requests for reuse. The user collections can also
contain JavaScript code to link requests or automate common workflows,
and scripting can be used to visualize the user API responses as charts or
graphs.

• API design, which allows users to design their API specifications using
OpenAPI, RAML, GraphQL or SOAP, these being tools used to describe
APIs [ope, 2022] 10 [Foundation, 2012] 11.

Besides Postman’s schema editor making it easy to work with specification
files of any size and validate user’s specifications with a built-in linting en-
gine, the user can also generate Postman Collections for various stages of
their API lifecycle – for example, for mocks and tests – based on the specifi-
cation file, all in sync.

• API documentation, which provides automatic documentation features. Post-
man supports markdown-enabled and machine-readable documentation through
the Postman Collection format and allows documentation generation through
user OpenAPI files. These documents will automatically contain details of
user requests with code examples in various client languages. Users can
share the documentation with their team or the world using workspaces or
publish it to a dedicated portal.

• API testing allows the user to build and run tests directly in Postman or as
part of the user’s CI/CD pipeline. In the second case, Newman is used as
a Collection Runner that allows the user to run and test a Postman Collec-
tion directly on the command line. Postman can be used to write various
tests, including functional, integration, and regression. In addition, Post-
man’s Node.js-based runtime supports common patterns and libraries that
the user can use for rapid test building.

• Mock servers allow the user to visualize precisely how its API will work
before it is even in production. This component allows mock servers to be
created in Postman to simulate endpoints of the API under development,
and it is also possible to simulate network latency on the mock server by
specifying custom delays for responses.

Because they are hosted in the Postman Cloud, these servers are available
wherever needed, from local to test or staging environments.

10https://raml.org/
11https://www.w3schools.com/xml/xmlsoap.asp
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• Postman also offers a wide range of API monitors that help users keep track
of the health and performance of its APIs, which can run in different geo-
graphic regions and be integrated with alert systems and dashboards pro-
vided by third parties, such as Slack.

Like the previous tool, the monitors are also hosted in the Postman Cloud
to be installed quickly.

• API detection, responsible for capturing requests and cookies from the user’s
browser to Postman to speed up its debugging flow through the Postman
Interceptor – which allows the capture of requests and responses – or the
Postam proxy - which, besides running inside the Postman application, can
be used with HTTP and HTTPS sites.

Amazon Cognito

Amazon Cognito is a service provided by AWS that provides customer authen-
tication, authorization, and user management for their web and mobile appli-
cations. This service allows the customer to provide its user with a login done
directly – with a username and password – or indirectly – using a third party
such as Facebook, Amazon, Google, or even Apple. This service is composed of
two main components corresponding to its features 12:

• User pools, which refer to user directories in Amazon Cognito. These pro-
vide login and user registration options for the customers’ web and mobile
applications. All members of a user pool have a directory profile accessible
from an SDK. User pools provide

– User login and registration services

– A web interface that is both integrated and customizable and is in-
tended for user login

– Social login using Facebook, Google, Amazon, and Apple, and through
identity providers Security Assertion Markup Language (SAML) and
OpenID Connect (OIDC) from the user pool.

– User directory and user profile management

– Security features include multi-factor authentication (MFA), verifica-
tion of compromised credentials, account takeover protection, and phone
and email verification.

– Custom workflows and user migration using AWS Lambda trigger.

• Identity pools, which in turn allow the customer to grant access to other
AWS services to their users, as they can be provided with temporary AWS
credentials to access them. In addition to anonymous guest users being
supported for user authentication for identity pools, identity providers, in-
cluding:

12https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-
cognito.html

73

https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html 
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html 


Chapter 4

– Amazon Cognito user pools

– Social login using Facebook, Google, Amazon login, and Apple login

– OIDC Providers

– SAML identity providers

– Developer authenticated identities

SAML refers to an open standard that allows identity providers to pass autho-
rization credentials to service providers. Put another way, it is possible to use one
set of credentials to log in to many different websites. It uses Extensible Markup
Language (XML)-based transactions for standardized communications between
identity providers and service providers, falling somewhere between authenti-
cating a user’s identity and authorizing that user to use a service [Buckbee, 2022].

Amazon Cognito components can be used either in isolation from each other
or together. However, It should be noted that to store user profile information,
the identity pool has to be integrated with a user pool. This service is also:

• Compatible with:

– SOC 1-3
System and Organization Controls (SOC) refer to a set of service of-
ferings that Certified Professional Accountants (CPAs) can provide in
connection with the system-level controls of a service organization or
the entity-level controls of other organizations 13.

– PCI DSS
The Payment Card Industry Data Security Standard is a global secu-
rity standard designed to improve control over users’ payment card
data, with operational and technical requirements. This standard and
its respective standards are intended to ensure that there is a safe envi-
ronment for entities and users who process data from payment cards,
avoiding fraud 14.

– ISO 27001
ISO 27001 corresponds to the norm that is the International standard
and reference in information security management. Its general prin-
ciple corresponds to the adoption of a set of requirements, processes,
and controls by the organization, aiming at the mitigation and ade-
quate management of its risk 15.

• HIPAA-BAA eligible
AWS, like other cloud service providers, is considered a business associate
under HIPAA regulations. The Business Associate Addendum (BAA) refers
to an AWS contract that is required under HIPAA rules to ensure that AWS
adequately safeguards Protected Health Information (PHI). In addition, this

13https://www.aicpa-cima.com/resources/landing/system-and-organization-controls-soc-
suite-of-services

14https://www.integrity.pt/pt/pci-dss-compliance.html
15https://www.27001.pt/
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contract also aims to clarify and appropriately limit the permissible uses
and disclosures of PHI by AWS, taking into account the relationship be-
tween AWS and its customers as well as the activities or services being per-
formed by the cloud provider 16.

Amazon DynamoDB

Amazon DynamoDB, on the other hand, is a fully managed NoSQL database ser-
vice that offers fast, predictable performance and seamless scalability. With this
service, the user does not have to deal with distributed database administration
tasks. In addition, encryption is offered at rest, eliminating a further operational
burden and the complexity associated with protecting sensitive information [aws,
b].

With DynamoDB, the user can organize its data in database tables, which can
organize and recover any data and serve any request traffic level. The production
capacity of the tables can be increased or decreased without a stop time or asso-
ciated performance degradation. DynamoDB also offers an on-demand backup
capability and allows the creation of complete security copies of users’ tables and
archiving. To protect the users’ tables from accidental writing or elimination,
this service also provides point-in-time recovery, restoring a table to any point in
time in the last 35 days. To help the user reduce storage usage and storage cost,
DynamoDB also allows the automatic deletion of expired items from the table,
avoiding costs associated with irrelevant data. Also, DynamoDB has both high
availability and durability.

With DynamoDB, data and table traffic are automatically spread over multiple
servers to handle the user’s production and storage requirements while maintain-
ing consistent and fast performance. The data is stored in Solid State Disk (SSD)s
and automatically replicated over multiple available zones in AWS Region. Whit
that, a high availability and built-in data durability is provided to the users 17 18.

4.3 Scrum methodology

The current project’s development was based on an agile methodology: Scrum.
This refers to a framework that helps teams work together, encouraging experience-
based learning, self-organization at work, and reflection aimed at continuous
improvement. This methodology was chosen, particularly since the company
adopts this.

Software development teams commonly use Scrum, but its principles and
lessons can be applied to every kind of team. It is commonly thought of as an
agile project management framework, and it describes a set of meetings, tools,

16https://aws.amazon.com/compliance/hipaa-compliance/
17https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
18https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
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and roles that, by working together, help teams to structure and manage their
work.

Starting with Scrum teams, there are three key roles: product owner, scrum
master, and development team.

• The product owner role focuses on understanding the business, the cus-
tomers, and what the market demands. Based on this, they focus on the
engineering team’s work to ensure that the greatest possible value is deliv-
ered to the business.
This role, which a single individual should perform, is associated with the
tasks of building and managing the product backlog, establishing a close
partnership with the business and the team to ensure that everyone under-
stands the various tasks in the backlog, providing clear guidance by high-
lighting which features are to be delivered next, and finally deciding when
the product should be delivered with a predisposition for more frequent
delivery.

• Scrum masters, on the other hand, are responsible for coaching both teams
and product owners and the business while also looking for ways to im-
prove their scrum practice.
A scrum master must be able to deeply understand the work being done
by the team and be able to help the team optimize its transparency and de-
livery flow. This role is also tasked with scheduling the resources needed
for each sprint planning, stand-up, sprint review, and sprint retrospective
(human and logistical).

• Scrum teams are responsible for developing the product or service intended
to be delivered. These teams are typically five to seven members, having
different skills and cross-training each other so the work flows. This team
defines the plan for each sprint, predicting how much work they believe
could be done in the sprint, considering the historical data from the previ-
ous sprints. These teams are typically small, and within the development
team role are testers, designers, User Experience (UX) specialists, operations
engineers, and programmers.

In this methodology, there are also artifacts. Those correspond to relevant
information to help define the product to be developed and the work to create
it. There are three different artifacts related to the three constants on which there
should be a reflection by the team both during sprints and over time: product
backlog, sprint backlog, and increment.

• In this methodology, the product or service intended to be developed is
produced iteratively throw sprints. Those correspond to short periods in
which the team works to make a defined amount of work. Being the key of
this methodology, a well-organized sprint is the key to better products with
fewer difficulties in the development process. With these sprints, the Agile
principle of delivering working software is satisfied. Also, the value of giv-
ing a response to changes instead of only following a plan is respected. The
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concepts of transparency, inspection, and adaptation are associated with
this framework, particularly with this sprint concept [Rehkopf, 2019]. In
each sprint, a valuable increment should be delivered.

• The product backlog corresponds to a prioritized list of the work the devel-
opment team should do, derived from the roadmap and its requirements.
The items are organized in the list from the most important to the least, be-
ing the items pulled from this backlog to the sprint backlog until the maxi-
mum capacity of the team in each sprint is achieved. By its turn, the sprint
backlog deals with the work assigned to the sprint [Radigan, 2019].

• Finally, the increment defines the usable end-product achieved from a sprint.

This methodology also includes several key ceremonies such as the backlog
organization, the sprint planning, the sprint itself, the daily scrum, the sprint
review, and the sprint retrospective [Drumond]:

• The backlog organization corresponds to a product owner’s task. As its
main function is driving the product towards its product vision, continu-
ously dealing with the market and the customer, the product owner should
maintain the product backlog according to the users’ feedback and the de-
velopment team. With that, it should be ensured that the list is always pri-
oritized, clean, and ready for the development team to work on it at any
time.

• Sprint planning, by its turn, corresponds to a meeting involving all the de-
velopment team in which the work that must be performed in the current
sprint, i.e., its scope, should be defined. The scrum master is responsible
for leading the meeting, and the development team decides the goal of the
sprint. With that in mind, the sprint backlog is filled with specific user sto-
ries selected from the product backlog. Besides the agreement of those sto-
ries with the goal of the sprint, they are agreed by the scrum team as being
doable in the current sprint. By the end of the meeting, the scrum members
should know clearly what can be delivered and how.

• Similarly, the daily scrum is also a meeting. This one, however, corresponds
to a really short daily meeting intended to guarantee that every team mem-
ber is in tune with the sprint goals and to define the plan until the next
meeting. In these meetings, the members should present any concern or
blocker to achieving the sprint goal. Finished each sprint, the teams meet
informally to view a demo or to inspect the increment delivered. The items
from the backlog that were done are presented both to the rest of the team
and to stakeholders, aiming at receiving feedback. The product owner de-
cides the release of the increment. This meeting is also used to rework the
product backlog based on the current sprint, being that done by the product
owner. This rework can feed into the next sprint planning meeting.

• Finally, the sprint retrospective consists of the meeting where the team doc-
uments and discusses what worked and what did not in the last sprint,
project, people, relationships, tools, and certain ceremonies. With that, the
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Figure 4.4: MVC components organization.

team should be able to focus on what went well and what needs improve-
ment for the next time.

This methodology was used for the API and mobile application development
in the current project context.

4.4 User Interface

Regarding the architecture adopted for mobile application development, the three
most popular design patterns were analyzed and compared, being them Model-
View-Controller (MVC), Model-View-ViewModel (MVVM), and Model-View-Presenter
(MVP). Each has its components, advantages, disadvantages, and particular use
cases that are more suitable. All three models have two similar components, the
Model and the View. Although, all of them vary in the third component, which
distinguishes them. The first component, the Model, is responsible for storing
and managing the application data in all three design patterns. In turn, the View
component displays the information received from the Model in all design pat-
terns. The third component varies between the design patterns and has different
roles.

Starting with the MVC, the most used and traditional design pattern, the three
components are organized as presented in Figure 4.4. The third component in this
design pattern corresponds to the Controller, the component responsible for the
interactions between the other two (the communication between them), coordi-
nating it. This design pattern is beneficial when the application under develop-
ment requires storage and access of the data in several locations, also requiring
the code to be highly reusable.

In turn, MVVM corresponds to a variation of the previous design pattern, and
its three components are organized as illustrated in Figure 4.5. For this design
pattern, the third component corresponds to the ViewModel, which is responsi-
ble for both the communication between the other components, for user interac-
tions’ handling, and the update of the View component. This is a helpful design
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Figure 4.5: MVVM components organization.

Figure 4.6: MVP components organization.

pattern, namely when the application under development requires a significant
degree of user interaction and frequent updates of the View component based on
the user’s input. Also, it is exceptional when the application requires high data
manipulation and, also, high communication between its components (namely,
the Model and the View).

Finally, the MVP is the newest of the three design patterns, and its three com-
ponents are organized as presented in Figure 4.6. For this design pattern, the
third component corresponds to the Presenter responsible for both user interac-
tions’ handling, View’s update, the application’s logic, and the way the other
two components interact between them. Like the previously presented design
pattern, this one is useful, namely when the application under development re-
quires a significant degree of user interaction and, also, frequent updates of the
View component based on the user’s input, being also a suitable architecture for
the cases in which the application requires many interactions at the level of the
Model and View interactions.

All these design patterns are different, and the decision of the one that is more
suitable for each application development process should be based both on the
requirements of the application and the user interactions, namely, the type the
application has to support. In Table 4.3, each model is associated with its kind of
approach, implementation, the type of application, and user interaction it is more
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suitable for.

Model Approach Implementation Application Interaction

MVC Most basic Simpler Smaller and
simpler Few

MVP More complex More flexible Larger and
more complex More complex

MVVM Most modern More flexible Larger and
more complex Complex

Table 4.3: Comparison between MVC, MVP, and MVVM.

Analyzing the previous table, it can be seen that MVC, despite its more straight-
forward implementation, is unsuitable for the current project since it is more ad-
equate for applications with fewer user interactions.

Comparing the MVP and MVVM design patterns in terms of each one’s ad-
vantages and disadvantages, tables 4.4 and 4.5 are obtained.

MVP MVVM

Easy debugging Developers can work and debug even the most
fundamental lines of code

Code reusability Straightforward unit tests’ writing
Concerns clearly

separated
Faster development

The UI can be modified with no code modifications

Table 4.4: Advantages of MVP and MVVM.

MVP MVVM
Too complex for simple,

straightforward arrangements
May require expensive memory

resources

May have assembly issues
View models and their state may be

difficult to operate (when nested views
and complex interfaces are used)

Table 4.5: Disadvantages of MVP and MVVM.

MVP has the disadvantage of not being able to use it when the arrangement
is simple, which should be the case for the current project, so it should not be
suitable. With that, MVVM was the design pattern for the current project [Shah,
2020].

4.5 Conclusion

In summary, AWS was the cloud provider for the developed system, and the
cloud services referring to Amazon Cognito, AWS Lambda, Amazon API Gate-
way, and Amazon DynamoDB were used. Furthermore, the Scrum work method-

80



Software Development Methodology

ology was adopted, and the development of the mobile component of the system
followed the MVVM design pattern.
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Competitors analysis

The present chapter describes the tests performed to decide the Automatic Speech
Recognition (ASR) and Natural Language Processing (NLP) solutions used in this
project and their results.

First, a context is given about the tests made. Then the approach followed to
test, and the results obtained for each ASR solution are presented. Equally, the
approaches followed to test, and the results obtained with the NLP solutions are
presented. Finally, a brief conclusion is provided.

5.1 Introduction

From the findings in the previous chapter, five ASR solutions were selected for
testing. These solutions are Amazon Transcribe, Microsoft Azure Cognitive Ser-
vices for Speech, Google Cloud Speech-to-Text, Whisper, and iOS Speech. Their
test chose the most suitable solution for this project, corresponding to the solution
integrated into the system.

Also, from the findings in the previous chapter, seven NLP solutions were
selected for testing. These include Amazon Comprehend, Amazon Comprehend
Medical, Google Cloud Natural Language API, Google Cloud Healthcare Natural
Language API, Microsoft Azure Cognitive Service for Language, Microsoft Azure
Text Analytics for Health, and spaCy. In their first test, these solutions were tested
for their ability to recognize International Non-proprietary Name (INN) entities
in isolation. This test was divided into testing the default models and testing
custom models corresponding to adaptations of the default ones. The custom
models were generated and trained in the context of this project.

A second test was performed with the solutions that proved to be the most
suitable for this project in the previous test. These solutions include Amazon
Comprehend, Google Cloud Healthcare Natural Language API, Microsoft Azure
Cognitive Service for Language, and Microsoft Azure Text Analytics for Health.
Those were tested for entity recognition in single-INN prescriptions, now con-
sidering not only INN entities but also the dosage, route of administration, fre-
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Figure 5.1: Flow chart for the test made for ASR solutions evaluation.

quency, start, and end, or duration of treatment.

A final test was performed with the most suitable solution for this project.
Microsoft Azure Text Analytics for Health was tested for identifying the various
entity types in the context of prescriptions with multiple INN.

The following sections present the results obtained in each test and their anal-
ysis.

5.2 Comparison of Automatic Speech Recognition so-
lutions

The study conducted in the previous chapter allowed the identification of five
ASR solutions that were best suited for this project and should therefore be com-
pared. These solutions include Amazon Transcribe, Microsoft Azure Cognitive
Services for Speech, Google Cloud Speech-to-Text, Whisper, and iOS Speech.
Only the default models of these solutions were tested, although some allow
model customization. Still, the lack of data and the impossibility of creating a
considerable amount of it in the context of the project make it impossible to train
them with quality. The flowchart shown in Figure 5.1 was followed to test these
solutions.

For this test, ten single-medication prescriptions were randomly chosen for
recording. These were checked to verify that each entity type covers different
values among the various prescriptions. With this, a dataset of recordings was
generated in which there are 18 different voices. Nine are human voices, and the
remaining nine are computer-generated, generated using the site [Limited]. A
hospital environment noise [war] was added to the previous recordings, giving
rise to a new set of audios. Thus, the final dataset had 360 recordings, 180 without
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noise and 180 with. Four of the nine human voices are female, and five are male,
with a northern accent evident in two male voices. Six of the nine computer-
generated voices are female, and the remaining three are male. With this, each
solution was tested individually.

5.2.1 Amazon Transcribe

Amazon Transcribe is available for European Portuguese only for batch transcrip-
tion, thus requiring the prior loading of audio files into an S3 bucket. Therefore,
the present test required first loading the various audios into an S3 bucket, and
then a Python file was developed and executed to get results from the system.

5.2.2 Microsoft Azure Cognitive Services for Speech

This solution was tested by developing and running a Python script.

5.2.3 Google Cloud Speech-to-Text

Likewise, the current service was tested by developing and running a Python
script.

5.2.4 Whisper

Similarly to the previous service, Whisper was tested by developing and running
a Python script. This solution encompasses the tiny, base, small, medium, and
large multi-language models in order of complexity, and all of them were tested.

5.2.5 iOS Speech

In contrast to the previous solutions, this solution was tested through the devel-
opment and execution of a Swift project.

5.2.6 Results and conclusion

Table 5.1 shows the results obtained with the various solutions tested.

Solution Performance Execution
meantime

Google Cloud Speech-to-Text 69.70% 2.61 seconds
Microsoft Azure Cognitive Services

for Speech 88.02% 3.44 seconds
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Whisper

Tiny model 38.94% 4.47 seconds
Base model 51.22% 5.44 seconds
Small model 57.95% 12.49 seconds

Medium model 69.97% 34.79 seconds
Large model 77.53% 72.26 seconds

iOS Speech 42.46% 3.96 seconds
Amazon Transcribe 65.07% 22.85 seconds

Table 5.1: Results obtained for ASR solutions comparison.

The calculation of the solutions’ performance followed the following logic:

1. A pre-processing was made to standardize the transcripts – for example, to
convert milligrams to mg so all the transcripts conform to the gold standard.

2. For each transcribed prescription, a value was calculated. This value corre-
sponds to a weighted sum of the words and plus signals in the prescription.
The weight associated with those words and plus signals was equaled to
one except for those which were part of a INN entity, for which the weight
applied corresponded to ten.

3. The value associated with each transcription was divided by the value as-
sociated with the corresponding gold standard, calculated with the same
logic.

4. For each solution, the values produced in the previous step were summed
and divided by 360, producing the performance values presented.

The average execution time, in turn, corresponds to the average execution
times obtained by each solution for the various recordings.

Although Google and Microsoft are widely indicated as the market leaders in
ASR, in the present context, there is an apparent discrepancy between their so-
lutions. Analyzing the results, Google’s solution is likely to be more sensitive to
both the speaker’s accent and the audio quality, leading it to be outperformed by
Microsoft’s solution, which proved to be more flexible in these cases. As an ex-
ample, for a male voice with an accent and for noiseless recording of the prescrip-
tion "Tomar Telmisartan 20 mg, vaginal, ao almoço, a começar amanhã e durante
7 dias.", Google’s solution identified "20 miligramas vaginal almoço a começar
amanhã e durante 7 dias" while Microsoft’s solution identified "Tomar telmisar-
tan 20 miligramas vaginal ao almoço a começar amanhã e durante 7 dias.". In
turn, for a female voice where the audio has low quality and for the prescrip-
tion "Fazer Amoxicilina + Ácido clavulânico 500 mg + 125 mg, intravenosa, às
refeições, a começar hoje e até dia 12-01-2023." Google’s solution could not iden-
tify any words while Microsoft’s solution identified "Fazer amoxicilina mais ácido
clavulânico, 500 miligramas, +125 miligramas intravenosa às refeições a começar
Hoje e até dia 12/01/2023."

86



Competitors analysis

Figure 5.2: Flow chart for the tests made for INN entities detection evaluation.

With the results shown, it can be understood that the most suitable ASR so-
lution in the context of the present project corresponds to Microsoft Azure Cog-
nitive Services for Speech. With that, this solution was integrated into the final
application.

5.3 International Non-proprietary Name entities de-
tection

The INN entities are the core of medical prescriptions, and the other entities
should be identified and related to them. Therefore, these entities should be the
most relevant in this project, and the systems’ performance in identifying them
should have a word in the solution choice. For that, the performance of each sys-
tem was evaluated based on its ability to correctly identify the active substances,
i.e., its capability of identifying each INN in the same way they appear in the
Infarmed database and to assign the correct entity type to them.

The conclusions drawn from the previous chapter were that the solutions
corresponding to Amazon Comprehend, Google Cloud Natural Language API,
Google Cloud Healthcare Natural Language API, Microsoft Azure Cognitive Ser-
vice for Language, Microsoft Azure Text Analytics for Health, and spaCy should
be tested and compared to define the most appropriate one for the present work.
To this end, this first test was performed following the procedure illustrated in
Figure 5.2.

Amazon Comprehend, Microsoft Azure Cognitive Service for Language, and
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spaCy needed a training phase to recognize INN entities. Those solutions had
two additional phases compared to those that were not training-dependent. Those
phases refer to generating the training data and the training phase. In the test-
ing phase, the unique values for active substances of Infarmed’s database 1 were
used. A Comma-Separated Value (CSV) file with one INN entity per line was
passed to each solution in this phase, and the results are presented in the follow-
ing sections. Also, the train datasets do not overlay the test dataset.

Since the test dataset only encompasses the INN entities, the system’s perfor-
mance corresponds to its accuracy. Besides the model’s evaluation through its
accuracy, the macro F1 score was also used to consider class imbalance. Finally,
the Translator function from googletrans [Han, 2020] was used when a translation
was necessary.

5.3.1 Default models

The first phase of the test aimed to study the default models provided by each
solution under discussion. The test proceeding and the results are presented in
the following sections.

Amazon Comprehend

To test Amazon Comprehend, its synchronous component – the real-time analysis
– was used, and the API was invoked through a Python script 2. For that, the
following process was done:

1. Installation of the AWS CLI through the command line command msiexec.exe
/i https://awscli.amazonaws.com/AWSCLIV2.msi

2. Verification of the installation with the command aws –version 3

3. Update of the environment variables based on the command provided in
the Amazon Web Services (AWS) private account for command line or pro-
grammatic access

4. Update the credentials file with the values provided by the AWS private
account. For that, the command aws configure was executed, and the fol-
lowing information was specified:

• AWS Access Key ID

• AWS Secret Access Key

• Default region name

• Default output format
1https://www.infarmed.pt/web/infarmed/servicos-on-line/pesquisa-do-medicamento
2https://docs.aws.amazon.com/comprehend/latest/dg/using-api-sync.html
3https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
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5. Installation of the AWS SDK for Python with the execution of the command
pip install boto3

This process enables the usage of Amazon Comprehend and Amazon Com-
prehend Medical, being a distinct function called to invoke each solution.

Although Amazon Comprehend allows its user to recognize entities in the in-
put text, the default model has defined types in which it classifies them. Those
types correspond to COMMERCIAL_ITEM, DATE, EVENT, LOCATION, ORGA-
NIZATION, PERSON, QUANTITY, TITLE, and OTHER 4. It can be seen that none
of these types contemplates medication or similar term. For that reason, the de-
fault model will never be able to identify the INN entities as such, which negates
its interest in this project. Because it cannot detect the INN entities as such, its
performance should be equal to 0%.

Amazon Comprehend Medical

Amazon Comprehend Medical has, opposite to the last service, an entity type
MEDICATION 5, but the service only supports English. Because the initial dataset
is in European Portuguese, it was necessary to translate it before passing it as in-
put to the system. A script was then developed to translate the data, pass it to
the system, and evaluate its performance, being the results obtained presented in
Table 5.2.

Execution time
280.86 seconds
Performance

29.21%
Macro F1
45.22%

Table 5.2: Results obtained for INN entity recognition with Amazon
Comprehend Medical.

Figure 5.3 presents the confusion matrix obtained for this solution. These re-
sults show that Amazon Comprehend Medical fails to detect most of the INN
entities, reducing its interest in this context.

Google Cloud Natural Language API

To use both Google Cloud Natural Language API and Google Cloud Healthcare
Natural Language API, a single command needed to be executed. This command
refers to installing the Python package named google through the command pip
install google.

4https://docs.aws.amazon.com/comprehend/latest/dg/how-entities.html
5https://docs.aws.amazon.com/comprehend-medical/latest/dev/textanalysis-entities.html
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Figure 5.3: Confusion matrix obtained for INN entity recognition with Amazon
Comprehend Medical.

Focusing on Google Cloud Natural Language API, it can recognize various en-
tity types. Those types include UNKNOWN, PERSON, LOCATION, ORGANI-
ZATION, EVENT, WORK_OF_ART, CONSUMER_GOOD, OTHER, PHONE_NUMBER,
ADDRESS, DATE, NUMBER, and PRICE [ent, 2023]. It can then be understood
that none relate to medication or similar. For this reason, this default model
should have 0% performance in recognizing INN entities since it will never as-
sign the respective entity type.

Google Cloud Healthcare Natural Language API

Unlike the previous service, Google Cloud Healthcare Natural Language API can
extract medication information from text. It maps the text to a set of predefined
medical knowledge categories, these categories being ANATOMICAL_STRUCTURE,
BF_RESULT, BM_RESULT, BM_UNIT, BM_VALUE, BODY_FUNCTION, BODY_MEASUREMENT,
LABORATORY_DATA, LAB_RESULT, LAB_UNIT, LAB_VALUE, MEDICAL_DEVICE,
MEDICINE, MED_DOSE, MED_DURATION, MED_FORM, MED_FREQUENCY,
MED_ROUTE, MED_STATUS, MED_STRENGTH, MED_TOTALDOSE, MED_UNIT,
PROBLEM, PROCEDURE_RESULT, PROCEDURE, PROC_METHOD, SEVERITY,
and SUBSTANCE_ABUSE [hea, 2023]. Among these, it is relevant to highlight the
categories MEDICINE, MED_DOSE, MED_DURATION, MED_FORM, MED_FREQUENCY,
MED_ROUTE, MED_STATUS, MED_STRENGTH, MED_TOTALDOSE, and MED_UNIT,
since they are the ones that are intrinsically related to the identification of INN
and related entities.

To test the performance of this system, a script was then developed and exe-
cuted, and the results are presented in Table 5.3. Because it only supports docu-
ments in English, the input data was translated before being passed to the system.
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Figure 5.4: Confusion matrix obtained for INN entity recognition with Google
Cloud Healthcare Natural Language API.

Execution time
810.16 seconds
Performance

56.96%
Macro F1
72.58%

Table 5.3: Results obtained for INN entity recognition with Google Cloud
Healthcare Natural Language API for entities in English.

The system has a performance of about 57%, being its confusion matrix illus-
trated in Figure 5.4. The results show that the system can recognize more than
half of the INN entities, remaining interesting for further study.

Microsoft Azure Cognitive Service for Language

To use Microsoft Azure Cognitive Service for Language and Microsoft Azure Text
Analytics for Health, it was necessary to install a Python package. For that, the
command pip install azure-ai-textanalytics==5.2.0 was executed [jboback, 2023].

The current language service supports several types of entities for entity recog-
nition being them Person, PersonType, Location, Organization, Event, Product,
Skill, Address, PhoneNumber, Email, URL, IP, DateTime, and Quantity [azu,
2022d]. As can be seen, those types do not include medication or similar, so this
service should have a performance equal to 0%.
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Figure 5.5: Confusion matrix obtained for INN entity recognition with Microsoft
Azure Text Analytics for Health for entities in European Portuguese.

Microsoft Azure Text Analytics for Health

In opposite to the previous service, Text Analytics for Health can recognize medical-
related entities like Anatomy, Demographics, Examinations, External Influence,
General attributes, Genomics, Healthcare, Medical condition, Medication, Social,
and Treatment [azu, 2023]. Therefore, a script was developed to determine the
performance of this system, and the results are presented in Table 5.4.

Execution time
6599.94 seconds

Perfomance
51.88%

Macro F1
68.32%

Table 5.4: Results obtained for INN entity recognition with Microsoft Azure Text
Analytics for Health for entities in European Portuguese.

Figure 5.5 presents the confusion matrix obtained. With these results, it can
be seen that this system can also recognize more than half of the entities. How-
ever, this service is not available for European Portuguese but only for Brazilian
Portuguese. Because of that, it was also tested in English, and the results are
presented in Table 5.5.

Execution time
6582.50 seconds

Perfomance
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63.09%
Macro F1
77.37%

Table 5.5: Results obtained for INN entity recognition with Microsoft Azure
Cognitive Service for Language - Text Analytics for Health for entities in English.

Figure 5.6 illustrates the confusion matrix obtained with the last test. The
results show that the system performs better in English, recognizing more INN
entities in the language. Also, these results show the interest of the solution in
the current project, which continued for further tests.

spaCy

To test spaCy, it was necessary to install it. To do so, the instructions in 6 were
used, namely the following commands:

• pip install -U pip setuptools wheel

• pip install -U spacy

• python -m spacy download pt_core_news_sm

• python -m spacy download pt_core_news_md

• python -m spacy download pt_core_news_lg

These commands correspond to the choice of Windows as the operating sys-
tem, x86 as the platform, pip as the package manager, CPU as hardware, and
Portuguese for trained pipelines. spaCy provides three models for European Por-
tuguese, and all of them were downloaded for tests.

Those three models have four different named entity types that they can rec-
ognize: ORG, LOC, PER e MISC [K] [Hien.Ha, 2021]. With that, the provided
models for the language should not be able to recognize the entities of interest
in this project. So, the default models have no interest in this project and should
have a performance equal to 0%.

Conclusion

The results obtained with the several solutions are summarized in tables 5.6 and
5.7.

Performance

6https://spacy.io/usage
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Amazon Comprehend 00.00%
Google Cloud Natural Language API 00.00%

Microsoft Azure Cognitive Service for Language 00.00%
Microsoft Azure Text Analytics for Health 51.88%

spaCy 00.00%

Table 5.6: Default models performance in the INN recognition for entities in
European Portuguese.

Performance
Amazon Comprehend Medical 29.21%

Google Cloud Healthcare Natural Language API 56.96%
Microsoft Azure Text Analytics for Health 63.09%

Table 5.7: Default models performance in the INN recognition for entities in
English.

From the previous tests, the models studied have more difficulty identifying
INN entities that correspond to compound names or have multiple substances.
It can be understood that the results obtained in this phase could be better since
the maximum performance achieved is lower than 64%. This revealed the need
to fine-tune the default models to adjust them to the needs of this project.

With the results shown, it can be understood that the most suitable default
model in the context of this project corresponds to Microsoft Azure Text Analytics
for Health. Google Cloud Healthcare Natural Language API is the second better
model, being faster than the first.

5.3.2 Customized models

Because of the poor results obtained with the default models, it needed cus-
tomization to achieve better results. The customized models were then tested
being the test proceeding, and the results obtained presented in the following
sections.

Amazon Comprehend

Amazon Comprehend entity recognition can be customized in two ways: with
an entity list or with annotations. The two input type entail different effort and
complexity, also leading to different results in terms of performance. Annotations
are more expensive to make but lead to better results, while entity list is simpler
to make, but the results can be worse. Looking at the cases in which Amazon
advises using one or the other type of input, it can be understood that the most
suitable for this project is entity list since there is already a list of the entities
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Figure 5.6: Confusion matrix obtained for INN entity recognition with Microsoft
Azure Text Analytics for Health for entities in English.

intended to be recognized, the list is complete, and this is a project of first-time
user 7.

Focusing on the model training using an entity list, it was necessary to pro-
vide two files: the list of entities intended to be recognized along with their cor-
responding entity types and a set of unannotated documents where the entities
appear. The entity list should be a UTF-8 encoding CSV file with two columns for
(1) Text, that corresponds to the text of an entry example and should be exactly
like it appears in the accompanying document corpus, and (2) Type, that refers
to the customized entity type, defined by the user. Each model can be trained for
up to 25 entity types, and a minimum of 200 entity mentions per entity type is
required, so it is possible to train the model for custom entity recognition 8. So,
the test of the customized model was divided into six phases:

• Generation of the CSV file

• Generation of the prescriptions dataset

• Loading of the documents into an S3 bucket

• Train of the customized model for MEDICATION entity recognition

• Endpoint creation

7https://docs.aws.amazon.com/comprehend/latest/dg/prep-training-data-cer.html
8https://docs.aws.amazon.com/comprehend/latest/dg/cer-entity-list.html
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• Test of the model and evaluation of the results

The first step was generating the CSV file with the multiple INN available
in the Infarmed database and the respective entity type associated with them,
MEDICATION. Then, the prescriptions dataset was generated. This generation
was needed due to the scarcity of this kind of data, namely for non-English lan-
guages, as stated by the authors of [Kocabiyikoglu et al., 2019]. To this end, a
Python script was executed. This script iterated over different values for the verb
used for prescription, the INN to administrate, the dosage, the administration
route, the frequency of administration, the beginning and the ending or duration
of the administration. The different values used can be seen in Table 5.8. Also,
this service limits the training dataset length to a maximum of 200.000 lines.

Component Value

Verbs Prescrever
Iniciar

INN 1222 unique values contained in Infarmed database

Dosage

20 ml
40 mg + 10 mg

40 mg + 10 mg + 10 mg
250 mg + 3 mg + 10 mg + 36 mg

0.5 mg/ml + 0.6 mg/ml

Route

Oral
Via intravenosa

Anal
Via vaginal
Subcutânea

Via intramuscular

Frequency

de 2 em 2 horas
1 vez por dia
2 vezes ao dia
Às refeições

Ao jantar
Ao almoço e ao jantar

Em jejum

Beginning A começar hoje
A começar a 01-11-2024

Ending E sem fim definido.
E até dia 23-12-2024.

Duration E durante 7 dias.

Table 5.8: Different values used for each prescription component for the
prescriptions dataset generation process.

Following the example present in 9, a recognizer was trained to detect entities
of type MEDICATION. The programming language used was Python.

9https://docs.aws.amazon.com/comprehend/latest/dg/get-started-cer.html
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Figure 5.7: Confusion matrix obtained for INN entity recognition with Amazon
Comprehend.

The test phase was based on the guidelines to make a real-time entity detec-
tion analysis and encompassed the creation of an endpoint and then the test of the
model itself 10. The number of inference units to be used in the endpoint creation
represents the throughput, corresponding each inference unit to 100 characters
per second, being its number limited between one and ten. For the present test,
three inference units were used 11. After the endpoint creation, the developed
script for the test was executed, and the results obtained are presented in Table
5.9.

Execution time
221.00 seconds
Performance

85.68%
Macro F1
92.29%

Table 5.9: Results obtained for INN entity recognition with Amazon
Comprehend customized model.

The confusion matrix obtained is presented in Figure 5.7. These results show
a big improvement from the results obtained with the previous models, being the
present model able to identify almost all of the INN entities present in the test
dataset. With that, the model was considered for further study.

10https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer-real-time-api.html
11https://docs.aws.amazon.com/comprehend/latest/dg/detecting-cer-real-time.html
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Amazon Comprehend Medical

Despite the poor results obtained with the Amazon Comprehend Medical default
model, no further studies could be done with the service since it is not customiz-
able. Therefore, no tests were made on the level of this service in this section.

Google Cloud Natural Language API

Similarly to the previous service, Google Cloud Natural Language API is also not
customizable. For this reason, it lost all interest in the context of the present work,
and no testing was done.

Google Cloud Healthcare Natural Language API

This solution is also not customizable, so there is no way to fine-tune it. That said,
there is no space to improve the results obtained with its default model.

Microsoft Azure Cognitive Service for Language

Microsoft Azure Cognitive Service for Language allows the creation of custom
models for Named Entity Recognition (NER). To develop one of these models,
Microsoft’s tutorial was followed [aahill et al., 2023]. With that, the model gener-
ation followed the flow:

1. Creation of a new resource for Custom text classification and Custom NER
from the Azure portal

2. Generation and labeling of the training data

3. Uploading of the training data and labels file to the blob container

4. Creation of a custom NER project

5. Model training

6. Model deployment

7. Model test

Regarding the training data generation and labeling, it considered the fact that
Microsoft Azure imposes:
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• A limit of 100.000 documents used to train the model

• A limit of 128.000 characters per document

• That all documents are text files

• A limit of 15 MB for the labels JSON file

A training dataset with 100 prescriptions per INN entity was generated, con-
sidering the same data generation procedure as Amazon Comprehend. The 122.200
resultant prescriptions were divided into 111 documents, each containing pre-
scriptions related to different INN entities. Also, the JSON file with the model’s
specifications – namely, the entity types it must recognize and the language – and
the annotations associated with each document, identifying the location of the
entities of interest and their label, was generated. The data labeling was done
using a Python script, which returned the JSON needed.

With the data generated, it was uploaded to the blob storage. After that, a
training job was started considering 111 documents for training and one for test-
ing, corresponding to the test dataset. The results presented in Table 5.10 were
achieved.

Execution time
9203.41 seconds

Performance
100.00%
Macro F1
100.00%

Table 5.10: Results obtained for INN entity recognition with Amazon
Comprehend customized model.

Figure 5.8 presents the confusion matrix obtained. These results show the
ability of the system to correctly identify all the INN entities as it, being, as the
previous model, a huge improvement when compared with the non-customized
models. This system was then further studied.

Microsoft Azure Text Analytics for Health

Regarding Text Analytics for Health, as with Amazon Comprehend Medical and
Google Cloud solutions, the customization of the base model is not allowed. For
this reason, no testing of this solution was done in this section.

spaCy

Like Amazon Comprehend and Microsoft Azure Cognitive Service for Language,
spaCy requires training data to fine-tune its base models. This training data refers
to a set of prescriptions with annotations that should identify, besides others,
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Figure 5.8: Confusion matrix obtained for INN entity recognition with Microsoft
Azure Cognitive Service for Language.

the entities in the prescription and its entity type. With that, to fine-tune the
models provided by spaCy for European Portuguese, it should then be necessary
to follow the following steps:

• Generation of the training data

• Training the model using the data previously generated

• Test the model and evaluate its results

A dataset was generated using the data generation procedure adopted by
Amazon Comprehend. Following the tutorial in [Jaiswal, 2019], a TSV file was
created based on the previous dataset. The TSV file included, in each line, a non-
INN text with the associated tag 0 or an INN with the associated tag MEDICA-
TION. This TSV file was converted into a JSON file that, in turn, was converted
into the final format required by spaCy for its training data. Having said that, and
having the training data ready to be used, the three default models for European
Portuguese were trained and tested. Also, all the tutorial scripts were adapted to
be aligned with this project’s objectives.

The models have four adjustable parameters, so multiple combinations were
tested. Those parameters include the number of prescriptions per entity in the
training dataset, the number of iterations, the dropout rate, and the batch size
used.

The first models were trained based on a dataset with 100 prescriptions per
INN entity and a batch size of 1000, being tested with multiple dropout rates for
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a variable number of iterations. The results are shown in Table 5.11 and Table
5.12. The values marked with an correspond to the converged tests and should
not be executed with more iterations.

Dropout rateModel Iterations 10% 30% 50% 70% 90%
sm 50 4.05* 5.56 6.20 5.75 5.33

100 3.70* 3.56* 4.47 4.39
150 3.82 3.40
200 3.78 3.66
250 3.39

md 50 4.12* 5.43* 6.26 5.63 5.07
100 4.60* 5.15 5.04 4.35
150 4.21* 4.11 4.04
200 3.76

lg 50 4.16* 4.18 6.82 4.89 5.37
100 4.96* 3.98 3.58 3.84
150 4.40 3.98 5.30
200 3.97*

Table 5.11: Execution time in seconds obtained for different dropout rates with
the three spaCy’s pipelines available for European Portuguese.

Dropout rateModel Iterations 10% 30% 50% 70% 90%
sm 50 24.14%* 24.30% 21.85% 23.08% 23.24%

100 22.42%* 15.30%* 24.14% 24.30%
150 22.50% 24.30%
200 23.16% 24.30%
250 24.14%

md 50 24.80%* 24.14%* 24.88% 24.88% 24.88%
100 20.62%* 24.88% 24.88% 24.88%
150 24.96%* 24.96% 24.88%
200 24.88%

lg 50 22.59%* 23.00% 23.00% 23.00% 23.00%
100 22.59%* 23.00% 23.00% 23.00%
150 22.91% 23.00% 23.00%
200 23.00%*

Table 5.12: Entities detection performance obtained for different dropout rates
with the three spaCy’s pipelines available for European Portuguese.

Tables 5.11 and 5.12 make it possible to understand that none of the models
converged for 70% and 90% of dropout. They were not further tested because a
pattern of losses - namely oscillations on them - and performance was detected,
indicating that the models should not be able to converge with those dropout
rates. It should be noted that only the results about performance in entity de-
tection were presented because all the experiments have zero performance for
relationship extraction since that functionality is not provided by spaCy.
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From this first phase of tests, it could be noted that the best combination of
parameters for each model should correspond to the following:

• sm model: 50 iterations with a dropout of 30%.

• md model: 150 iterations with a dropout of 50%.

• lg model: 50 iterations with a dropout of 30%.

Those combinations of parameters were then used to make tests with a batch
of different sizes, being the results presented in tables 5.13 and 5.14.

Batch sizeModel 500 1000 1500 2000 2500
sm 3.83 5.56 4.27 3.46*
md 3.65* 4.21 3.59* 4.01* 4.22*
lg 3.63* 4.18 3.80* 3.73

Table 5.13: Execution time in seconds obtained for different batch sizes with the
three spaCy’s pipelines available for European Portuguese.

Batch sizeModel 500 1000 1500 2000 2500
sm 12.03% 24.30% 14.08% 24.22%*
md 24.80%* 24.96% 24.88%* 25.04%* 24.88%*
lg 22.59%* 23.00% 19.72%* 22.67%

Table 5.14: Entities detection performance obtained for different batch sizes with
the three spaCy’s pipelines available for European Portuguese.

From the previous study, it can be concluded that the combination of param-
eters that achieves better results corresponds to the following:

• sm model: 50 iterations with a dropout of 30% and 1000 elements per batch.

• md model: 150 iterations with a dropout of 50% and 2000 elements per
batch.

• lg model: 50 iterations with a dropout of 30% and 1000 elements per batch.

With that, a last set of tests were made to improve the models’ performance.
This test focused on the number of prescriptions per entity present in the training
dataset that, by now, has been equal to 100 in all the cases. A dataset with 50,
150, and 200 prescriptions per entity was then used for the present test, and the
results are shown in tables 5.15 and 5.16.

Prescriptions per entityModel 50 100 150 200
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sm 4.98* 5.56 3.97* 3.67*
md 4.56* 3.52 3.75* 3.58*
lg 5.28* 4.18 4.35* 5.74*

Table 5.15: Entities detection performance obtained for different batch sizes with
the three spaCy’s pipelines available for European Portuguese.

Prescriptions per entityModel 50 100 150 200
sm 23.00%* 24.30% 22.59%* 23.40%*
md 24.80%* 24.88% 24.63%* 22.42%*
lg 22.01%* 23.00% 23.24%* 23.00%*

Table 5.16: Entities detection performance obtained for different batch sizes with
the three spaCy’s pipelines available for European Portuguese.

From these tests, it can be seen that spaCy can not overcome 25% of perfor-
mance. This value is meager, so this solution was not further considered for the
final solution for this project. This performance value could be caused by the
fact that some of the INN entities are too long and, on the other hand, by the fact
that simple entities like Amoxicillin or Clavulanic Acid appear in multi-substance
INN entities, what could make the recognizer work harder. As said by spaCy au-
thors, those conditions mean that the entity recognition component provided by
them is not a good fit for the problem, justifying the bad results 12.

By way of example, figures 5.9, 5.10, and 5.11 illustrate the confusion matrices
obtained along the tests. It can be seen that all of the models perform poorly,
failing to recognize the majority of the INN entities.

Conclusion

The summarization of the results obtained with the several customized solutions
is presented in Table 5.17, being the spaCy value equal to the highest performance
achieved with the system.

Performance
Amazon Comprehend 85.68%

Microsoft Azure Cognitive Service for Language 100.00%
spaCy 25.04%

Table 5.17: Customized models performance in the INN recognition.

The results obtained with Amazon Comprehend and Microsoft Azure Cog-
nitive Service for Language were better than the ones obtained with the default

12https://spacy.io/api/entityrecognizer
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Figure 5.9: Confusion matrix obtained for INN entity recognition with spaCy sm
model.

Figure 5.10: Confusion matrix obtained for INN entity recognition with spaCy
md model.
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Figure 5.11: Confusion matrix obtained for INN entity recognition with spaCy lg
model.

models. Nevertheless, identifying relationships between the entities is also rele-
vant in this context. It is also relevant to see that Amazon Comprehend achieves
much better results using fewer data and taking less training time than spaCy.
Also, Microsoft Azure Cognitive Service for Language tends to be slower than the
other solutions – it takes 9203.41 seconds in the testing phase, while the second
slower takes 6599.94 seconds and corresponds to Microsoft Azure Text Analytics
for Health default model.

With the results shown, the most suitable customized model in the context
of this project corresponds to Microsoft Azure Cognitive Service for Language.
Amazon Comprehend corresponds to the second better model and is faster than
the better.

5.4 Entity recognition and relationship extraction in
prescriptions

Because the relationship detection feature is also interesting in the current project,
the performance of the previously determined most suitable solutions was also
evaluated. The results obtained in 5.3.1 make it possible to understand that,
among the default models explored, the one provided by Microsoft Azure is
the most suitable in this context. From the results presented in 5.3.2, it can be
concluded that the most suitable customized solution corresponds to Microsoft
Azure Cognitive Service for Language customized model. Those solutions were
compared at the level of prescriptions analysis for entity and relationship detec-
tion. Although Google Cloud Healthcare Natural Language API performs worse
than Microsoft Azure Text Analytics for Health, it is much faster. Equally, Ama-
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Figure 5.12: Flow chart for the tests made for INN entities and relations
detection evaluation.

zon Comprehend’s customized model is worse but faster than Microsoft Azure
Cognitive Service for Language customized model. For this reason, these solu-
tions were also tested in this phase. To test the solutions, the testing procedure
illustrated in Figure 5.12 was followed.

For each of the systems under study, the performance, the accuracy, and the
macro F1-measure were calculated. Each system has two performance measures:
entity recognition performance and relationship detection performance. The first
one is based on the ability of the system to identify the entities correctly and
assign them the correct type. The second one examines the ability of the system to
identify the relations correctly and assign them the correct label. Also, the macro
F1 score was considered because there is a class imbalance since the negative
cases surpass the positives for each entity type.

5.4.1 Dataset generation

To accomplish the present test phase, a test dataset was developed considering
50 unique combinations of the values presented in Table 5.18. The test dataset
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generated is illustrated in F.

Component Value

Verbs

Prescrever
Iniciar
Fazer
Tomar

INN 1222 unique values contained in Infarmed database

Dosage Values associated with each INN entity in Infarmed
database

Route

Via oral
Via intravenosa

Via anal
Via vaginal

Via subcutânea
Via intramuscular

Oral
Intravenosa

Anal
Vaginal

Subcutânea
Intramuscular

Frequency

1 vez por dia
1 vez ao dia

2 vezes por dia
2 vezes ao dia
3 vezes por dia
3 vezes ao dia
4 vezes por dia
4 vezes ao dia
Às refeições
Ao almoço
Ao jantar

Ao almoço e ao jantar
Ao deitar
Em jejum

Beginning

A começar amanhã
A começar hoje

A começar depois de amanhã
A começar a 03-01-2023

Ending E sem fim definido.
E até dia 12-01-2023.

Duration E durante 7 dias.
E durante 3 tomas.

Table 5.18: Different values used for each prescription component for the test
dataset generation process.
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This dataset thus encompasses prescriptions with one INN entity each and
five related entities, resulting in five relationships by prescription. With that, it
includes 300 entities and 250 relationships to be identified by each solution. The
entities considered refer to:

• INN

• Dosage

• Route

• Frequency

• Beginning

• Ending or duration

On the other hand, the relationships include:

• Dosage of the medication

• Route of administration

• Frequency of administration

• Time of the treatment, that includes beginning, ending, and duration

It should be highlighted that none of the prescriptions of this dataset appear
in any of the training datasets presented in the following sections. Also, the test
dataset was used with all the solutions under study.

5.4.2 Amazon Comprehend

An Amazon Comprehend trained model can only detect the type of entities it is
trained on 13. For that reason, it was necessary to train a new model for the recog-
nition of all the entities involved in the present study. This test followed the same
process previously presented for Amazon Comprehend, again with 160 prescrip-
tions per INN entity in the training dataset. Once again, the generated endpoint
encompassed three inference units to ensure that at least one prescription was
processed per second.

The results obtained with this solution are presented in Table 5.19.

Execution time
15.99 seconds

Entities
Performance 86.00%

13https://docs.aws.amazon.com/comprehend/latest/dg/training-recognizers.html
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Global accuracy 73.97%
Global macro F1 80.75%

Negative entities accuracy 73.97%
Negative entities F1 61.35%

Beginning entities accuracy 93.80%
Beginning entities F1 70.00%

Dosage entities accuracy 99.59%
Dosage entities F1 98.04%

Duration entities accuracy 99.17%
Duration entities F1 90.91%

Ending entities accuracy 100.00%
Ending entities F1 100.00%

Frequency entities accuracy 100.00%
Frequency entities F1 100.00%

Medication entities accuracy 88.84%
Medication entities F1 57.81%
Route entities accuracy 92.56%

Route entities F1 67.86%
Relationships

Performance 00.00%
Global accuracy 48.35%
Global macro F1 13.04%

Negative relations accuracy 48.35%
Negative relations F1 65.18%

Dosage of medication relations accuracy 89.67%
Dosage of medication relations F1 00.00%

Frequency of medication relations accuracy 89.67%
Frequency of medication relations F1 00.00%

Route of medication relations accuracy 89.67%
Route of medication relations F1 00.00%

Time of medication relations accuracy 79.34%
Time of medication relations F1 00.00%

Table 5.19: Results obtained for entity recognition and relationship detection in
prescriptions with Amazon Comprehend.

In figures 5.13, 5.14, and in appendix G, the confusion matrices obtained both
for entity recognition and relationship detection are presented. Once again, it
shows the ability of the system to accurately identify the entities of interest and
its inability to identify relationships between them. The results obtained with this
service are really good both for execution time and entity recognition. The sys-
tem is pretty fast and achieves 86% of performance, being the model still improv-
able through training and post-processing. Although, it requires a permanently
available endpoint to make requests to the trained model. These endpoints are
expensive – for example, the endpoint used in this test cost 5.40$ per hour – and
the service is not used permanently. With that, many costs are associated with
periods in which the service is not being used, and the monthly fee becomes
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Figure 5.13: Confusion matrix obtained for entity recognition with Amazon
Comprehend.

enormous. With that and the fact that the present solution does not support rela-
tionship detection, its cost does not justify its usage. So, the service is no longer
particularly interesting for the current work and was not considered for the final
solution.

5.4.3 Google Cloud Healthcare Natural Language API

This solution, capable of recognizing INN entities and related entities except for
dates - beginning, ending, and duration - was tested through the execution of a
script, and the results obtained are presented in Table 5.20.

Execution time
35.87 seconds

Entities
Performance 50.00%

Global accuracy 45.29%
Global macro F1 29.51%

Negative entities accuracy 45.29%
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Negative entities F1 39.84%
Beginning entities accuracy 90.94%

Beginning entities F1 00.00%
Dosage entities accuracy 90.94%

Dosage entities F1 00.00%
Duration entities accuracy 97.83%

Duration entities F1 62.50%
Ending entities accuracy 94.93 %

Ending entities F1 00.00%
Frequency entities accuracy 99.09%

Frequency entities F1 94.74%
Medication entities accuracy 97.46%

Medication entities F1 86.54%
Route entities accuracy 100.00%

Route entities F1 100.00%
Relationships

Performance 38.00%
Global accuracy 71.92%
Global macro F1 56.07%

Negative relations accuracy 71.92%
Negative relations F1 79.58%

Dosage of medication relations accuracy 90.94%
Dosage of medication relations F1 00.00%

Frequency of medication relations accuracy 98.37%
Frequency of medication relations F1 90.11%

Route of medication relations accuracy 99.28%
Route of medication relations F1 95.83%

Time of medication relations accuracy 83.33%
Time of medication relations F1 14.81%

Table 5.20: Results obtained for INN entity recognition in prescriptions with
Google Cloud Healthcare Natural Language API.

In figures 5.15, 5.16, and in appendix G, the confusion matrices obtained in
this test are presented. While Table 5.20 only includes the entities of interest in
the current project, these matrices also encompass other entities identified by the
system. The results are poor, as the system cannot identify many entities or rela-
tions.

In some cases, the system cannot recognize INN entities that include multi-
ple active principles as a single entity. Also, the dosage is always divided into
strength and unit. Besides that, some entities are identified, but the wrong type
is assigned to them. With that, post-processing should be done to achieve better
results. With the post-processing of the results obtained with this solution, the
maximum performances for entity recognition and relationship detection obtain-
able are the ones shown in Table 5.21.
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Figure 5.14: Confusion matrix obtained for relationship detection with Amazon
Comprehend.
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Figure 5.15: Confusion matrix obtained for entity recognition with Google
Cloud Healthcare Natural Language API.
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Figure 5.16: Confusion matrix obtained for relationship detection with Google
Cloud Healthcare Natural Language API.
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Performance - Entities
82.67%

Performance - Relationships
77.20%

Table 5.21: Results that could be obtained for entity recognition and relationship
detection in prescriptions with Google Cloud Healthcare Natural Language API

after post-processing.

When applied to the system, the post-processing produces the values pre-
sented in 5.22.

Execution time
272.28 seconds

Entities
Performance 82.67%

Global accuracy 76.61%
Global macro F1 71.31%

Negative entities accuracy 76.61%
Negative entities F1 67.07%

Beginning entities accuracy 83.26%
Beginning entities F1 22.00%

Dosage entities accuracy 98.71%
Dosage entities F1 94.00%

Duration entities accuracy 100.00%
Duration entities F1 100.00%

Ending entities accuracy 95.28%
Ending entities F1 60.71%

Frequency entities accuracy 100.00%
Frequency entities F1 100.00%

Medication entities accuracy 99.57%
Medication entities F1 98.00%
Route entities accuracy 100.00%

Route entities F1 100.00%
Relationships

Performance 77.20%
Global accuracy 76.39%
Global macro F1 82.99%

Negative relations accuracy 76.39%
Negative relations F1 74.77%

Dosage of medication relations accuracy 98.50%
Dosage of medication relations F1 92.93%

Frequency of medication relations accuracy 99.79%
Frequency of medication relations F1 98.99%

Route of medication relations accuracy 99.79%
Route of medication relations F1 98.99%
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Figure 5.17: Confusion matrix obtained for entity recognition with Google
Cloud Healthcare Natural Language API with post-processing.

Time of medication relations accuracy 78.33%
Time of medication relations F1 49.25%

Table 5.22: Results obtained for INN entity recognition in prescriptions with
Google Cloud Healthcare Natural Language API with post-processing.

Figures 5.17, 5.18, and appendix G illustrate the confusion matrices obtained
for the results with post-processing.

5.4.4 Microsoft Azure Cognitive Service for Language

A new model was trained following the same workflow as before to test the
present solution. This time, and because of the limit of 15 MB labels JSON file
imposed by the system, 15 prescriptions per INN entities were used, resulting
in 15 documents. Those documents were used to train the model, being the test
dataset used in this test passed to the trained model in the testing phase. The
results shown in Table 5.23 were achieved with that.

Execution time
273.05 seconds

116



Competitors analysis

Entities
Performance 92.00%

Global accuracy 83.37%
Global macro F1 83.26%

Negative entities accuracy 83.37%
Negative entities F1 72.73%

Beginning entities accuracy 98.23%
Beginning entities F1 92.31%

Dosage entities accuracy 99.33%
Dosage entities F1 97.09%

Duration entities accuracy 95.57%
Duration entities F1 54.55%

Ending entities accuracy 96.45%
Ending entities F1 76.47%

Frequency entities accuracy 98.45%
Frequency entities F1 93.33%

Medication entities accuracy 95.34%
Medication entities F1 79.61%
Route entities accuracy 100.00%

Route entities F1 100.00%
Relationships

Performance 00.00%
Global accuracy 44.57%
Global macro F1 12.33%

Negative relations accuracy 44.57%
Negative relations F1 61.66%

Dosage of medication relations accuracy 88.91%
Dosage of medication relations F1 00.00%

Frequency of medication relations accuracy 88.91%
Frequency of medication relations F1 00.00%

Route of medication relations accuracy 88.91%
Route of medication relations F1 00.00%

Time of medication relations accuracy 77.83%
Time of medication relations F1 00.00%

Table 5.23: Results obtained for INN entity recognition in prescriptions with
Microsoft Azure Text Analytics for Health.

Figures 5.19, 5.20, and appendix G illustrate the confusion matrices obtained
for this test. It can be seen that, although the system has truly good results in
entity recognition, achieving a performance of 92.00%, it does not provide rela-
tionship detection.
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Figure 5.18: Confusion matrix obtained for relationship detection with Google
Cloud Healthcare Natural Language API with post-processing.
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Figure 5.19: Confusion matrix obtained for entity recognition with Microsoft
Azure Cognitive Service for Language.
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Figure 5.20: Confusion matrix obtained for relationship detection with Microsoft
Azure Cognitive Service for Language.
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5.4.5 Microsoft Azure Text Analytics for Health

The present solution was tested through a Python script, and the results obtained
are presented in Table 5.24.

Execution time
272.28 seconds

Entities
Performance 57.67%

Global accuracy 51.70%
Global macro F1 34.16%

Negative entities accuracy 51.70%
Negative entities F1 43.96%

Beginning entities accuracy 90.53%
Beginning entities F1 00.00%

Dosage entities accuracy 90.53%
Dosage entities F1 59.68%

Duration entities accuracy 95.83%
Duration entities F1 00.00%

Ending entities accuracy 94.70%
Ending entities F1 00.00%

Frequency entities accuracy 98.67%
Frequency entities F1 92.47%

Medication entities accuracy 95.83%
Medication entities F1 79.63%
Route entities accuracy 100.00%

Route entities F1 100.00%
Relationships

Performance 46.80%
Global accuracy 67.80%
Global macro F1 62.23%

Negative relations accuracy 67.80%
Negative relations F1 73.93%

Dosage of medication relations accuracy 90.53%
Dosage of medication relations F1 59.68%

Frequency of medication relations accuracy 97.54%
Frequency of medication relations F1 85.06%

Route of medication relations accuracy 98.67%
Route of medication relations F1 92.47%

Time of medication relations accuracy 81.06%
Time of medication relations F1 00.00%

Table 5.24: Results obtained for INN entity recognition in prescriptions with
Microsoft Azure Text Analytics for Health.

Figures 5.21, 5.22, and appendix G illustrate the confusion matrices obtained
for this test. In opposition to Table 5.24, these figures include all the entity types
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Figure 5.21: Confusion matrix obtained for entity recognition with Microsoft
Azure Text Analytics for Health.

identified by the system. Once again, the results are poor, as the system can
recognize only about 60% of the entities and 50% of the relations.

This solution can not identify most of the compound INN entities’ names and
compound dosages as a single entity. Besides that, some entities are recognized
but associated with the wrong type. With that, a post-processing cloud be done
to achieve better results. With the post-processing of the results obtained with
this solution, the maximum performances for entity recognition and relationship
detection obtainable are the ones shown in Table 5.25.

Performance - Entities
91.00%

Performance - Relationships
89.20%

Table 5.25: Results obtained for INN entity recognition in prescriptions with
Microsoft Azure Text Analytics for Health, after post-processing.

When applied to the system, the post-processing produces the values pre-
sented in 5.26.

Execution time
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272.28 seconds
Entities

Performance 86.33%
Global accuracy 81.41%
Global macro F1 81.99%

Negative entities accuracy 81.41%
Negative entities F1 70.92%

Beginning entities accuracy 93.20%
Beginning entities F1 70.00%

Dosage entities accuracy 98.64%
Dosage entities F1 94.00%

Duration entities accuracy 100.00%
Duration entities F1 100.00%

Ending entities accuracy 90.47%
Ending entities F1 25.00%

Frequency entities accuracy 99.09%
Frequency entities F1 96.00%

Medication entities accuracy 100.00%
Medication entities F1 100.00%
Route entities accuracy 100.00%

Route entities F1 100.00%
Relationships

Performance 83.60%
Global accuracy 81.41%
Global macro F1 86.51%

Negative relations accuracy 81.41%
Negative relations F1 78.53%

Dosage of medication relations accuracy 98.64%
Dosage of medication relations F1 94.00%

Frequency of medication relations accuracy 99.10%
Frequency of medication relations F1 96.00%

Route of medication relations accuracy 100.00%
Route of medication relations F1 100.00%

Time of medication relations accuracy 83.67%
Time of medication relations F1 64.00%

Table 5.26: Results obtained for INN entity recognition in prescriptions with
Microsoft Azure Text Analytics for Health with post-processing.

Figures 5.23, 5.24, and appendix G illustrate the confusion matrices obtained
for this test.

5.4.6 Conclusion

Table 5.27 summarizes the results obtained in these tests.
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Figure 5.22: Confusion matrix obtained for relationship detection with Microsoft
Azure Text Analytics for Health.
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Figure 5.23: Confusion matrix obtained for entity recognition with Microsoft
Azure Text Analytics for Health with post-processing.
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Figure 5.24: Confusion matrix obtained for relationship detection with Microsoft
Azure Text Analytics for Health with post-processing.
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Performance -
Entities

Performance -
Relationships

Amazon Comprehend 86.00% 00.00%
Google Cloud Healthcare Natural Language API 50.00% 38.00%
Microsoft Azure Cognitive Service for Language 92.00% 00.00%

Microsoft Azure Text Analytics for Health 57.67% 46.80%

Table 5.27: Models performance for entities recognition and relationship
extraction in prescriptions.

As said before, Amazon Comprehend has become too expensive compared to
the other solutions because of its endpoint costs. Considering the performances
achieved and the maximum performances achievable by the other solution with
post-processing, Microsoft Azure Text Analytics for Health outperforms Google
Cloud Healthcare Natural Language API in the previous tests. Comparing the
two solutions of Microsoft Azure, it can be seen that Microsoft Azure Cognitive
Service for Language has a higher performance in entity recognition. Analyzing
the results, it could be understood that date translation errors and the inability
of the system to identify open-ended as an ending of a prescription justify this
difference. With that, translator and post-processing levels could be adjusted to
achieve better performance values. Also, observing the macro F1 scores obtained
for both models, it can be seen that the values are pretty close – 83.26% for Mi-
crosoft Azure Cognitive Service for Language and 81.36% for Microsoft Azure
Text Analytics for Health. In addition, Microsoft Azure Text Analytics for Health
has higher accuracy and macro F1 scores for INN entity recognition. With that,
the performance difference becomes insignificant when Microsoft Azure Text An-
alytics for Health includes the two most essential features, with truly good re-
sults. With that, Microsoft Azure Text Analytics for Health should be the most
suitable solution for the present work. It was then submitted to a last test re-
garding the detection and correct relation of entities in the context of multi-INN
prescriptions, that is, prescriptions including several INN, each with their respec-
tive related entities.

5.5 Entity recognition and relationship extraction in
multi-medication prescriptions

Defined that the most suitable solution for the present context corresponds to
Microsoft Azure Text Analytics for Health, it was important to guarantee that
this solution performs well in the context of multi-INN prescriptions. To do so,
the present test followed the workflow:

1. Prescriptions dataset generation with each prescription including more than
one INN entity and respective entities related to them. This dataset was
generated by the aggregation of the 50 prescriptions used in the test dataset
of the previous test in groups of three and one group of two. This way, the
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results in a single-INN prescription and multi-INN prescription contexts
could be compared.

2. Test of the system with the generated dataset as input.

3. Collection of the results obtained.

4. Post-processing development and application to the results.

5. Analysis of the results and performances’ calculation.

Table 5.28 presents the results obtained with this test.

Execution time
101.76378980005393 seconds

Performance - Entities
86.33%

Performance - Relationships
83.60%

Table 5.28: Results obtained for INN entity recognition in multi-medication
prescriptions with Microsoft Azure Text Analytics for Health.

From this test, it was possible to realize that even when prescriptions with
several sentences are passed, each one related to the prescription of a INN en-
tity, the system can identify both the entities and the relationships between them.
This is notable because the performance is maintained from the previous test to
the current one, that is, the change of context does not degrade the system per-
formance. Furthermore, the values obtained are both above 80%, which is very
good. Moreover, the values for accuracies and F1 scores, as well as the confu-
sion matrices obtained, coincide with those of the test presented for single-glsinn
prescriptions.

5.6 Conclusion

In conclusion, the previous experiments conclude that the most suitable ASR and
NLP solutions for this project correspond to Microsoft Azure Cognitive Services
for Speech and Microsoft Azure Text Analytics for Health, respectively. Those
were the solution used in the development of the system, which is detailed in the
next chapter.
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Approach

The current chapter recapitulates the problem definition, introducing the archi-
tecture and context of the developed solution in its sequence. In addition, it offers
a brief comparison between this solution and the state of the art. Finally, the solu-
tion’s components are explored individually, being their development presented.

First, the context of the problem is revisited, and the solutions’ architecture
and context are explored. Then, a brief comparison of the present solution with
the state of the art studied is offered. After, the Application Programming In-
terface (API) component of the solution is presented, and its development is de-
scribed. Following it, the mobile application component is analyzed, and its de-
velopment is detailed.

6.1 Problem definition and solution architecture

The task of internal prescription, performed periodically by doctors for each pa-
tient for whom they are responsible, allocates excessive time, namely in the infor-
mation entering into M1. This task contributes to the doctor’s overload, making
them more susceptible to failure and reducing the time dedicated to healthcare
tasks, culminating in sub-optimal medical care.

The optimization of this task allows the minimization of the time required for
its execution, allowing the reallocation of time to the provision of healthcare. Fo-
cused on this, the main goal of this project is the development of a system acces-
sible through a mobile application for iOS that, using Automatic Speech Recog-
nition (ASR) and Natural Language Processing (NLP), allows the optimization of
the task by replacing the manual entering of information into M1 by the dictation
in natural language. Even though the solution is focused on ASR-based prescrip-
tion, it also allows the prescription entered in free-text to be sensitive to the cases
in which the doctor is unable or unwilling to dictate it.

To realize this solution, the architecture followed is illustrated in Figure 6.1.
This figure shows the organization between the mobile application, the API re-
sponsible for the communication between the mobile application and the cloud,
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Figure 6.1: Architecture of the developed solution [aws, 2022] [Halfpoint, 2018].

Figure 6.2: Components diagram of the solution to be developed [aws, f]
[Microsoft, 2023].

and the cloud itself.

In turn, Figure 6.2 encompasses a component diagram illustrating the com-
ponents used to develop the solution. In this architecture, the doctor must enter
their prescription by dictation or free-text in the mobile application. When dic-
tated, the selected ASR service transcribes it. The text transcribed or entered by
the user is then sent to the API that, by invoking a lambda function, should allow
the invocation of the selected NLP service. After that, the result of the processing
performed by the NLP service based on entity recognition and relationship de-
tection is returned to the application. In addition, the mobile application should
be able to make data requests to the API that, by communicating with a different
lambda function, should allow the return to the application of data contained in
DynamoDB tables.

The system aims that after it interprets the prescription, it is presented to the
doctor in the form of structured orders so that they can confirm the success of the
interpretation or, on the other hand, change any erroneous information resulting
from the processing done.

Figure 6.3 illustrates an example of a multi-International Non-proprietary Name
(INN) prescription. The notes illustrate the processing the system should do at
the entity detection level on it. In addition to the processing presented in the
figure, the system should also allow the detection of relationships between the
detected entities. Table 6.1 exemplifies the processing that the system should do
at this level.

Entity Entity Relation
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Omeprazol

20 mg Dosage
via oral Route of administration

12 em 12 horas Frequency
7 dias Duration

Sinvastatina +
Ezetimiba

40 mg + 10 mg Dosage
via vaginal Route of administration

4 em 4 horas Frequency
5 tomas Duration

Atorvastatina +
Perindopril +
Amlodipina

40 mg + 10 mg + 10 mg Dosage
via anal Route of administration

1 vez por dia Frequency
até dia 7 de março Ending

Paracetamol +
Bromofeniramina +

Cafeína + Ácido
Ascórbico

250 mg + 3 mg + 10 mg
+ 36 mg Dosage

via intramuscular Route of administration
em SOS Frequency

Xilometazolina +
Brometo de ipratrópio

0.5 mg/ml + 0.6 mg/ml Dosage
1 unidade por dia Frequency

via intravenosa Route of administration
do dia 23 de Dezembro Beginning

até ao dia 27 de
Dezembro Ending

Table 6.1: Example of relationships detection on multi-medication prescription.

This example shows the seven distinct types of entities that the system must
recognize. These relate to the INN, the dose, the route of administration, the
frequency, the beginning, the ending, and the duration. The doctor frequently
omits the beginning of the prescription, and when it occurs, the system can assign
a default value. This default value corresponds to the day the prescription is
done since it is also the current practice adopted for M1. Similarly, in the absence
of a specification of an ending or duration, the system understands that this is
indefinite until further action by the doctor to cease the medication in question,
being assigned the value open-ended to the entity.

It should be noted that the system can fail the processing in multiple ways,
namely:

• The transcription can contain errors

• The transcription can miss one or more entities

• The processing may not be capable of identifying an entity

• The processing may identify an entity wrongly

– In terms of writing

– In terms of the entity type

131



Chapter 6

Figure 6.3: Example of entity detection on multi-medication prescription.

When the transcription fails, the user can edit the transcription or, if preferred,
re-record and re-transcribe it. If the processing incorrectly identifies something,
the user can edit the information until it reaches its intention.

As important as the prescription itself, the patient’s evaluation is relevant and
must be registered. This information may justify the choices made by the doctor
and keep a history of the patient’s health condition. Although, its registration is
not contemplated in the current system. This happens because:

• The current system should not be a new, isolated system. It should be an
extension of M1 and should be integrated into Handy.

• Handy is already available, allowing the registration of the previously men-
tioned information.

Handy, in turn, is a mobile application that corresponds to an extension of
M1. It is intended to allow the user to perform on the cell phone the tasks it is
more well prepared than the computer. A pairing should be made between the
mobile application and the user’s M1 for the user to use it. After that, the M1 has
some fields in which the user can call the mobile application, being a different
screen displayed by the application according to the request made by M1. With
that, this application has no navigation associated with it, being controlled by
M1. Between the functionalities provided by Handy, there are:

• Dictation of information transcribed into text fields on M1, not including
prescription information.

• Image capture directly connected with M1.

• Display a patient’s information by selecting it in M1.
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(a) (b) (c) (d)

(e)

Figure 6.4: Handy’s screens [m1, 2023].

Figure 6.4 illustrates Handy and the previously cited functionalities. In 6.4a,
Handy’s presentation and request for pairing with M1 are shown. In turn, 6.4b
illustrates a case in which the doctor dictated some information about a patient,
and the transcribed text is returned. Subfigure 6.4c presents the camera function-
ality, where the doctor can take pictures that will automatically be sent to M1.
Also, 6.4d shows the screen responsible for the displaying of patient’s informa-
tion, and, finally, 6.4e illustrates the confirmation message displayed by handy
after the submission of a text to M1.

The integration of the system developed in this project with Handy, which is
included in the integration task with M1, is out of the scope of this internship.

6.2 Comparison with the state of the art of medical
prescription

Tables 6.2 to 6.12 summarize and compare the state of the art of medical pre-
scription with the present work. This comparison focuses on the type of solution
developed, the type of input accepted by the system, the information it stores,
if it generates alerts or not, if there is doctor’s validation and sending to other
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systems, the authentication, the ASR component used, the NLP component used,
the method used to fill the prescription, the common advantages and the usage of
open-source solutions. In these tables, ID 1 refers to the study [Shaikh et al., 2021],
2 to [Kocabiyikoglu et al., 2019] and [Kocabiyikoglu et al., 2020], 3 to [Dhokley
et al., 2021], 4 to [Mahatpure et al., 2019] and 5 to the present study.

ApplicationID Mobile Web
1 x
2 x
3 x
4 x x
5 x

Table 6.2: Comparison of the state of the art with the current work. (I)

InputID Dicate Free-text
1 x
2 x x
3 x
4 x
5 x x

Table 6.3: Comparison of the state of the art with the current work. (II)

Stored informationID Patient data Prescriptions
1 x x
2
3
4 x x
5

Table 6.4: Comparison of the state of the art with the current work. (III)

ID Alerts
1 Yes
2 Yes
3 No
4 No
5 No

Table 6.5: Comparison of the state of the art with the current work. (IV)

ID Doctor’s validation
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1 First and only
2 Followed by sending to Prescription Management Systems (PMS)
3 First and only
4 First and only
5 Followed by sending to M1

Table 6.6: Comparison of the state of the art with the current work. (V)

ID Authentication
1

Faster because of personal device’s usage
2
3
4
5

Table 6.7: Comparison of the state of the art with the current work. (VI)

ASR componentID One solution Several solutions
1 x
2 x
3 Unkown
4 x
5 x

Table 6.8: Comparison of the state of the art with the current work. (VII)

ID NLP component
1 None
2 Developed from scratch
3 Intent recognition
4 Developed from scratch
5 Cloud service

Table 6.9: Comparison of the state of the art with the current work. (VIII)

ID Prescription filling
1 String comparison
2 Slot-filling
3 Slot-filling
4 Keywords search
5 Entities detection and relationship extraction

Table 6.10: Comparison of the state of the art with the current work. (IX)
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ID Advantages
1

Portability and time saving
2
3
4
5

Table 6.11: Comparison of the state of the art with the current work. (X)

ID Open-source solutions
1 Partially
2 Yes
3 Yes
4 Partially
5 No

Table 6.12: Comparison of the state of the art with the current work. (XI)

Besides that, all the projects diverge from the present one in terms of language
since none of it targets European Portuguese. Also, they all converge in that all
the projects are at least partially focused on time-saving.

The storage of information and the generation of alarms, for example, when
adverse interactions exist between INNs, correspond to functionalities conferred
to the developed system by M1, then associated with the integration with it. With
that, although this first version does not include them, the marketable version
will. Besides that, the authentication included in the system is illustrative since
the final version should have authentication conferred by M1.

6.3 API

To add NLP capabilities and get resources to the mobile application, it was nec-
essary to create an API to enable communication between the application itself
and the cloud services. Here the cloud provider and cloud services used, the
programming language, and the tools used are revisited, being the development
associated with the API detailed.

6.3.1 Cloud Provider

The cloud provider used corresponds to the one introduced in the previous chap-
ter: Amazon Web Services (AWS). The services used, introduced in the last chap-
ter, correspond to Amazon API Gateway, AWS Lambda, Amazon DynamoDB,
and Amazon Cognito.
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6.3.2 Programming Language

Since the AWS Lambda functions can be developed in Python, and since Python
is the most convenient programming language from the point of view of famil-
iarity, all the functions developed in this project were written in the language.

6.3.3 Tools

Regarding the tools used in the company, particularly in the development team,
where this work is included:

• Work management tool: Jira

• IDE: VS Code or Visual Studio

• API testing tool: Postman

6.3.4 Development

Regarding the API development, both the API itself and the services associated
with it are presented in the following sections.

Amazon DynamoDB

In the context of this work, it was only necessary to use a database for storing the
default values to be loaded into the application. These include the lists of possible
values for the INN, the administration route, and the administration frequency.
For this reason, three tables were created in DynamoDB, one for the INNs, one
for the routes, and another for the frequencies. Their creation followed the flow:

1. Access to DynamoDB console

2. Dashboard access

3. Selection of the "Create table" option

4. Edition of the table name and partition key

5. Table creation

6. Changing of the capacity mode to on-demand

7. Development of a Python script for adding the items to the table. This script
invokes commands from the AWS CLI, illustrated at [Amazon Web Ser-
vices, 2023b].

Once created, the tables were accessed via an AWS Lambda, presented in the
next section.
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AWS Lambda

As for the actual development of the required Lambda functions, the instructions
provided by AWS for generating a Lambda function using Python were taken
into account [Amazon Web Services, 2023a]. With this, this generation entailed
the following steps of interest:

1. Access to Lambda console

2. Selection of the "Create function" option

3. Entering of the required parameters:

• The function’s name

• The runtime to be used

• The architecture to be followed

4. Selection of the "Create function" option

Contrary to what is indicated by AWS, proceeding with the role creation was
unnecessary since the service automatically generates it. The previous process
allowed the generation of the lambda functions to which were then added the
codes that they should execute when triggered.

Regarding the code of the Lambda responsible for accessing the tables in Ama-
zon DynamoDB, the scan example in [Wilinski, 2020] was followed. This lambda
function was tested through an event correspondent to a JSON that only included
the table’s name intended to load. This event invoked the lambda function, and
a success code, i.e., code 200, along with the table content, proved the operation’s
success.

Regarding the AWS Lambda that both invokes Microsoft Azure Text Analyt-
ics for Health and processes its result, the code follows the example in [jboback,
2023]. This code uses different Python modules, not all available in the environ-
ment provided by AWS. This is the case, among others, of pandas, googletrans,
and azure. The modules that, by default, are not available in Lambda functions
require that a layer related to them is added to the Lambda function in which
they are needed. The layers provided by AWS already include AWSSDKPandas-
Python39, version 4, which is the layer that encompasses the pandas module.
This module can be directly added to the lambda function, which can already
use it. In contrast, AWS does not provide layers for googletrans and azure, so it
was necessary to generate custom layers for these modules, including the mod-
ules they depend on. Two folders were used for each module, being them inside
Python’s site-packages folder on the local machine. These folders include the one
with the module’s name and the one that starts with the module’s name and ends
with dist-info. These were stored in a new folder that was then compressed. That
said, and already in the AWS Lambda layers tab, each of the layers was generated
through the following steps [Uncomplicated, 2021]:

1. Selection of the "Create layer" option
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2. Definition of the layer name

3. Loading of the compressed folder referring to the desired module and de-
pendencies

4. Selection of the architectures the layer should be compatible with

5. Selection of runtimes the layer should be compatible with

6. Creation of the layer

Changing the timeout in the lambda function settings was necessary for this
second function. It is set to be equal to three seconds by default, which generates
timeouts in this context. This lambda function was then tested using a prescrip-
tion for a single INN entity, and an event was used. A JSON was generated
with the key prescription and the value of a prescription, being then added to the
event. This event was then used to invoke the function, and the return of a 200
code, along with the processed data, proved the operation’s success.

API

For the HTTP API creation the following steps were followed 1:

1. Access to the API Gateway console

2. Selection of the "Create" option

3. Selection of the "Compile" option in the HTTP API box

4. Selection of the "Lambda" option in the Integrations dropdown box

5. Selection of prescriptions_Azure_EN from the Lambda function name drop-
down list

6. Selection of version 2.0 from the dropdown box

7. Assignment of the name prescriptions_Azure_EN_API to the HTTP API

8. Confirmation of automatically defined routes. The method used in this API
route has been defined as POST

9. Confirmation of the stages, leaving $default as the name of the stage

10. Selection of the Create option

11. Addition of a new route for the get_from_DynamoDB Lambda function
with the method ANY

1https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started.html
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The API stage refers to a logical reference to a state in the lifecycle of the devel-
oped API, identified by the API ID and the stage name 2. In turn, when it comes to
controlling and managing HTTP API accesses, the API Gateway supports several
mechanisms 3:

• Lambda authorizers, which use Lambda functions to manage API accesses.
When a call is made to the API by a user, the API Gateway invokes the
Lambda function, developed by the client, and its response is used to infer
whether the user should be granted access to the API they want to access 4.

• JWT authorizers, which use JSON web token (JWT)s – part of the OIDC and
OAuth tools – to restrict access to APIs. Setting up such an authorizer for
an API route implies that when a request is made to the API, the API Gate-
way validates the JWTs that the user submits along with the API requests.
Requests are accepted or rejected according to the validation of the token
and optionally according to the scopes on it. If scopes are configured for a
route, the token must include at least one of the route’s scopes 5.

• Standard AWS IAM roles and policies, which provide flexible and robust
access controls. These can define who can create and manage client APIs
and who can invoke them. With this mechanism, users must sign their re-
quests with AWS credentials, considering Signature Version 4. That said,
the API will only be invoked if the user has permission to do so 6.

Because it involves signing API requests with AWS credentials, the last mech-
anism presented is out of this project’s scope. Also, for simplicity reasons, be-
tween the Lambda authorizer and the JWT authorizer, the JWT authorizer was
chosen. Also, Amazon Cognito user pools were used as an authentication mech-
anism, which is responsible for the return of tokens for the authenticated user.
These tokens allow the user to access the services invoked by the lambda func-
tions.

For testing the developed API, HTTP requests were generated, and Postman
was used for the API invocation. Since it has an associated JWT authorizer,
adding a user to the user pool generated and associated with the API authorizer
was first necessary. This user was assigned a temporary password, which was
changed using the set_new_password_challenge() function provided by Python’s
pycognito module [Vizeli, 2023a]. Then, the user was authenticated using the
AWSSRP() and authenticate_user() functions [Vizeli, 2023b] 7. This authentica-

2https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-basic-
concept.html

3https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-access-
control.html

4https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-lambda-
authorizer.html

5https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-jwt-
authorizer.html

6https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-access-
control-iam.html

7https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/cognito-
idp/client/admininitiateauth.html
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tion allows access, among other things, to the access token, which was used in
this case as the value of the request’s Authorization header, intended to grant ac-
cess to the API. Although, in theory, Postman allows both OAuth 2.0 and JWT
Bearer authorization, these mechanisms do not work correctly, at least in the con-
text of this API.

The API invokes two different lambda functions based on which route is in-
voked. Both of the routes require authentication, and both of the functions trigger
distinct errors. With this test phase, it should be verified if:

• The access to the API is achieved exclusively by authorized users.

• The errors contemplated in the code are triggered correctly.

Beginning with the route that concerns the invocation of the function respon-
sible for the retrieval of the Amazon DynamoDB tables’ information, three errors
could be raised from the code:

• Invalid structure.

• Read from table failed.

• No data.

These arise when a request that does not conform with the required by the
function is passed, when the read from the database can not be done because
there is no table with the name provided or the service is not available, and when
the read of the table returns no data, respectively. Since the tables are populated,
these tests should not raise the third error.

The tests performed are presented in Table 6.13, and all the results conform to
the expected ones, proving the proper functioning of the API’s route. The tests
correspond to HTTP requests invoking the GET method with the header content
presented in each test and with or without the usage of an authorized user to
access the API, as expressed by the column Authorized user.

ID Authorized
user

Valid
request Request’s header Result

1 x x table_name: Routes Routes list
2 x x table_name: Frequencies Frequencies list
3 x table_name: Routes Unauthorized
4 x table_name: Frequencies Unauthorized
5 x Empty request Invalid structure.
6 x table_name: Read from Table failed.
7 x tablename: Routes Invalid structure.
8 x table_name: Table Read from Table failed.

Table 6.13: Results obtained by making several requests to the developed API.

Regarding the lambda function that invokes the NLP service and processes its
result, three distinct errors can be triggered from the code:
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• Invalid structure.

• Azure’s service is not responding.

• There’s no data to process.

These arise from passing a request without the needed content, the unavail-
ability of the NLP service in use, and the non-identification of entities in the pro-
cessed text resulting in an empty dataset for post-processing, respectively. Since
the second type of error is associated with the availability of a service provided
by a third party, it is impossible to test for its occurrence, and only the other types
of errors are tested.

The tests presented in Table 6.14 were executed, having all of them the ex-
pected result and, therefore, attesting to the proper functioning of the API’s route.
In this table, the test prescription is "Prescrever Paracetamol 1000 mg, via oral, ao
almoço, a começar hoje e durante 3 doses" and also, it should be noted that the
lambda function is triggered by an event that should have a key prescription, to
which a string value should be associated. The tests correspond to HTTP requests
invoking the POST method with the body content presented in each test and with
or without the usage of an authorized user to access the API, as expressed by the
column Authorized user.

ID Authorized
user

Valid
request Request’s body Result

1 x x Test prescription Correct processing
2 x Test prescription Unauthorized
3 x Empty request Invalid structure.
4 x {} Invalid structure.
5 x "prescription": "" Invalid structure.
6 x "medication": "Paracetamol" Invalid structure.
7 x "prescription": "em" There’s no data to process.

Table 6.14: Results obtained by making several requests to the developed API.

Amazon Cognito

The user pools from Amazon Cognito were used as the authentication mecha-
nism for the HTTP API. To do this, the following process was followed, based on
[Rajamani et al., 2022]:

1. Creation of the user pool in the Amazon Cognito Console

2. Protection of the HTTP API by adding a JWT authorizer based on the pre-
vious user pool

First, the following steps were followed to create the user pool:
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1. Access the Amazon Cognito console and selection of the "Create user pool"
option

2. Selection of the user pool as a provider only

3. Definition of email login only

4. Definition of password policy with Cognito Standards mode

5. Definition of optional multi-factor authentication with MFA method au-
thenticating applications

6. Enable account recovery with the delivery method for account recovery
messages set to email only

7. Disable self-registration

8. Enable permission for Cognito to send messages for verification and confir-
mation automatically

9. Definition of the attributes to be verified as send email message, verify email
address

10. Definition of maintenance of original attribute value when an update is
pending and definition of active attribute values when an update is pend-
ing, like email address

11. Definition of email as a mandatory attribute

12. Configuration of the sending of emails with Cognito with an email FROM
no-reply@verificationemail.com and without a REPLY-TO email

13. Assignment of the name prescriptions_Azure_EN_user_pool to the user pool

14. Disable the use of the Cognito hosted user interface

15. Setting the application client as a public client

16. Assignment of the name prescriptions_app to the application

17. Selection of the option not to generate a client secret

18. Review and creation of the user pool

Next, the generated user pool was added to the HTTP API throw the work-
flow:

1. Access to the HTTP API

2. Access to the Develop section, to the point related to Authorization

3. Edition of the selection of JWT as the authorizer type

4. Assignment of the name prescriptions_Azure_EN_authorizer
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5. Definition of the identity string as $request.header.Authorization

6. Definition of the issuer URL based on https://cognito-idp.us-east-1.amazonaws.com/
<your_userpool_id>

7. Addition of the prescriptions_app client ID (Cognito) in the box for the pub-
lic

8. Creation of the authorizer and appending to the routes

6.4 Mobile application

The final goal of this internship was to have a system accessible through a mobile
application that can deal with natural language to optimize internal prescription.
To realize this application, a requirements survey was done to understand the
market needs. Based on these requirements, the mockups of the solution were de-
veloped, being both the requirements and the mockups presented in the follow-
ing subsections. Besides that, the user interface architecture, the programming
language, and the tools are presented. Finally, the mobile application develop-
ment is detailed.

6.4.1 Requirements

To meet the needs of the market for which the solution developed in this project is
intended, a requirements survey was conducted. These requirements should be
divided into functional and non-functional requirements, the former being listed
in Table 6.15.

As I want So that

A doctor to have access to the patient’s
current therapy

I understand the adjustments I
should make to it

A doctor
to be able to decide whether to
prescribe by voice or by writing

on my cell phone

I can adapt the way I prescribe
to the situation I am in

A doctor to be able to re-record my
prescription

it is possible to correct a
prescription if I make a mistake

in my dictation

A doctor to see the transcript of my
prescription in real-time

I can check the system’s
interpretation

A doctor to check the final transcript of
my prescription

I can validate it before
submitting it for processing

A doctor

to be able to textually edit the
transcript of my prescription

before it is submitted for
processing

I can correct any errors that
may occur in transcription
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A doctor

to be able to check the
information processed by the
system before submitting the

result to M1

I can validate it

A doctor
to be able to change the

information resulting from the
processing done by the system

I can correct any errors arising
from the same

A doctor to be able to send the processed
information to M1 it is presented in M1

Table 6.15: Functional requirements of the developed solution.

In turn, the non-functional requirements considered in the context of this
project correspond to availability, reliability, security, performance, usability, main-
tainability, and dependability:

• Availability:

– Availability refers to the system’s ability to be available when its users
request. It relates to the expected uptime and the expected downtime,
its value being given by the expression Expecteduptime

Expecteduptime+Expecteddowntime . In
turn, the downtime is related to the failure and the recovery time.

– In the context of this project, the availability of the application is related
to both the availability of the server it runs on and the systems it uses,
i.e., Amazon Cognito, Microsoft Azure Cognitive Services for Speech,
Microsoft Azure Text Analytics for Health, Amazon DynamoDB, AWS
Lambda, and Amazon API Gateway.
The development of the solution should ensure that its availability is
as close to one as possible, and the use of backup systems may be con-
sidered to ensure higher availability of the system as a whole.

• Reliability:

– In turn, reliability corresponds to the system’s ability to perform its
functions under the given conditions during a given period and is
given as a probability.

– This requirement is also intrinsically related to the system server and
the system’s solutions. The solution under development should have
reliability as close as possible to 100%, and this should be evaluated by
performing a set of tests simulating several scenarios of system use.

• Security:

– Security, on the other hand, comprises three properties relating to con-
fidentiality, integrity, and availability. Confidentiality relates to the ab-
sence of unauthorized disclosure of information, while integrity relates
to the absence of improper system alteration. This requirement relates
to malicious or intentional actions against the system, and systems can
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be compromised when there is a vulnerability, and an attack exploits
that vulnerability.

– The system must handle three types of confidential information: its
users’ credentials, the tokens granting access to its resources, and the
access keys to Microsoft Azure services. Credentials are managed ex-
ternally by Amazon Cognito, so this service should assure their con-
fidentiality. In turn, the application should use tokens directly, and
security mechanisms like tokens’ periodic refresh should be used to
reinforce their confidentiality. In addition to the periodic regeneration
of tokens, brute force tests should be performed to ensure this informa-
tion is not accessed improperly. Also, access keys to Microsoft Azure
services should be available locally and in the cloud. Once their con-
fidentiality is assured in the cloud, brute force tests should also guar-
antee their confidentiality in the application. Finally, to ensure the in-
tegrity of the system, tests should be made to verify the possible exis-
tence of vulnerabilities in it.

• Performance:

– As far as performance is concerned, this is related to the system’s op-
eration speed and is measured using two metrics: response time and
throughput. The response time defines how quickly the system reacts
to user input, while the throughput establishes the number of opera-
tions the system can perform in a given period.

– Both the response time of the application and its throughput are related
to the server on which the system is running and the solutions it uses,
in particular, the number of simultaneous accesses to them. To deter-
mine the system’s performance, tests should be made of its operation
under different conditions.

• Scalability:

– Associated with performance, scalability defines the system’s ability
to deal with an increasing amount of work or its capacity to expand to
accommodate this growth.

– The system must be scalable since it will work with multiple clients
that include various doctors and, so, multiple users. Being guaran-
teed concerning third-party solutions that the system uses, scalability
should be measured at its associated server level to understand how it
handles the increased workload.

• Usability:

– On the other hand, usability corresponds to the ease of use and learn-
ing of the system and is composed of several attributes: learnability,
efficiency, memorability, errors, and satisfaction. Learnability refers to
the ease with which a user can accomplish basic tasks for the first time.
Efficiency, on the other hand, defines how quickly users perform tasks
after they have learned the system. Memorability, in turn, defines how
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easily a user regains proficiency in the system when they return to it
after a period without using it. Also, errors concern both the quantity
and severity of errors made by users and the ease with which they re-
cover. Finally, satisfaction determines how enjoyable it is to use the
system.

– The application should be designed to maximize usability. Through
a set of methods, the system should convey ease of use to everyone,
even to some with less technological knowledge. To evaluate the com-
ponents of usability, it should be necessary to use tests with end users.

• Maintainability:

– Maintainability determines the ease with which the system can be changed
to respond to various situations, such as correcting defects, installing
updates, and adding new features resulting from new requirements.

– The development of the system should take into account its maintain-
ability. It should follow methodologies and be designed and docu-
mented to simplify its change for anyone qualified.

• Dependability:

– Finally, dependability is about providing a reliable service to avoid un-
acceptably frequent or severe failures. This requirement involves sev-
eral attributes that relate to availability, reliability, safety, confidential-
ity, integrity, and maintainability. Of these, only safety was not pre-
sented, which refers to the absence of catastrophic consequences for
the user or the environment.

– The development of the solution should aim to provide a reliable ser-
vice that is as infallible as possible. Since the system is intended to
act as an extension of M1, its failure should not jeopardize its asso-
ciated task. Although more slowly, internal prescription can also be
executed using the M1 or, if it fails, manually. In this way, no catas-
trophic consequences should be associated with the system’s failure,
such as inadequate health care provision.

6.4.2 Solution mockups

With the previously defined requirements, the mockups for the mobile applica-
tion were designed. Figure 6.5 illustrates the mockups designed by the company.

Based on both the mockups developed by the company and the solution’s
requirements, the mockups present in Figure 6.6 were designed.

The application’s first screen is the 6.6a. Here the user should be able to au-
thenticate using Amazon Cognito to access the resources provided by the appli-
cation. After successful authentication, the screen 6.6b is presented to the user,
where they have access to the patient’s current therapy and a therapy manage-
ment section. The user can prescribe there by inserting its prescription in free-text
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(a) (b) (c) (d)

Figure 6.5: MedicineOne’s mockups for the solution.

on the editable text field or through natural language by clicking the microphone
button. When clicked, this button is replaced by the stop button illustrated in
Figure 6.6c, which should allow the user to finish recording the prescription. The
transcribed text should appear in the "Gerir terapêutica" section as the prescrip-
tion is recorded, and this text can also be edited after the recording is finished.
In addition, this screen allows re-recording and re-transcribing of the recording,
with the icon of the record button being replaced by the one in 6.6d. When
clicked, this button should generate the 6.6e popup, which, by informing the
user that they will lose their current prescription, aims to confirm the intention
to re-record the dictated prescription. This screen also displays a forward button,
which should be responsible for the transition to the 6.6g. During this transition,
the information contained in the prescription text should be processed, and the
6.6f popup will be shown until this processing is finished. After this, the user is
redirected to the 6.6g screen, where the processing result is presented in a struc-
tured way. Suppose the user is satisfied with the result obtained. In that case,
they should activate the toggle associated with the actions they want to include
in the prescription and then use the "Confirmar" button to send the information to
M1. Otherwise, the user should be able to click on the information that they want
to edit, and the screen 6.6i, 6.6j, 6.6k, 6.6l, 6.6m and 6.6n will be displayed if the
user wants to edit the INN, the dosage, the route of administration, the frequency,
the beginning or the ending, respectively. The INN, the route of administration,
and the frequency should be editable by selecting the desired option from the list
of possible values, and the desired value can be searched using a search bar. As
for the dosage should not be possible to edit its units, but the user can edit the
numbers by an editable field. Finally, the start and end dates should be editable
by selecting the desired dates in a calendar. That said, and returning to the 6.6g
screen, the user can submit their prescription to the M1.
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(a) (b) (c)

(d) (e) (f)

(g)
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(h) (i) (j)

(k) (l) (m)

(n)

Figure 6.6: Solution’s mockups.
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6.4.3 User Interface Architecture

As stated in the previous chapter, the architecture followed corresponded to Model-
View-ViewModel (MVVM) since it is the most suitable for the current project.

6.4.4 Programming Language

Since the mobile application was intended to be developed for iOS, the program-
ming language used was Swift, a programming language for, among others, iOS.
This programming language is modern, designed for safety, fast, powerful, and
open-source [Swi].

6.4.5 Tools

Regarding the tools used in the company, particularly in the development team,
where this work is included:

• Work management tool: Jira

• IDE: Xcode

6.4.6 Development

That said, the mobile application was developed. Since the adopted design pat-
tern concerns the MVVM, each screen of the application was developed indepen-
dently, having its own ViewModel and, when necessary, its Model. Thus, the
application development was divided between the Login, PrescriptionOrRecord-
ing, Processed, and Changes screens. Each screen is associated with a folder con-
taining, for the Changes screen, the View, the ViewModel, and the Model; for the
other screens, only the View and its particular ViewModel. Also, each screen is
associated with its development in terms of the graphical interface and its func-
tionalities.

The Login screen, shown in Figure 6.7, allows the user to authenticate in the
application. To send an authentication request to the server, the user must fill
out both the field related to the email and the field associated with the password,
being also possible for the user to verify the password. A request is sent to Ama-
zon Cognito by clicking the login button so the user can sign in. This request is
based on Swift’s AWSMobileClientXCF package, based on the example shown
at [wor, 2022]. A successful login is first associated with collecting the tokens as-
signed to this user and then passing to the next screen, the PrescriptionOrRecord-
ing screen. After the first login, the user will not have to repeat the process for
about six months, being directly directed to the PrescriptionOrRecording screen.
This is because the system automatically renews their access tokens as long as
their refresh token is valid.
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(a) (b) (c) (d)

Figure 6.7: Login screen.

The PrescriptionOrRecording screen, shown in Figure 6.8, was implemented
as described in subsection 6.4.2. By pressing the record button, the user trig-
gers the real-time transcription of Microsoft Azure Cognitive Services for Speech,
which allows their dictation to be transcribed and appear on the screen while the
doctor speaks. This required downloading and manually adding the Microsoft-
CognitiveServicesSpeech package for Swift to the project, as indicated at [eric
urban et al., 2022b]. For real-time recognition the recognizeFromMic example in
[eric urban et al., 2022a] was followed. In turn, by clicking the follow button, the
user triggers the processing of the prescription text, which is done by invoking
the developed API, which in turn invokes the lambda function responsible for
gathering Microsoft Azure Text Analytics for Health. While this processing oc-
curs, the popup in the subfigure 6.8e is presented, which disappears when the
processing stops, giving way to the Processed screen. The current therapy shown
on the PrescriptionOrRecording screen has a default value, being information
added or removed as the doctor prescribes. Also, it is relevant to highlight that
when the therapeutic management order corresponds to changing the current
therapeutic, this should be done by the cessation of that INN in the actual ther-
apeutic, followed by its new prescription. This is done to conform with what is
done in M1. This current therapy is only illustrative since the adequacy of the
current therapy with each patient should be part of the integration with M1 and,
so, not included in the scope of this internship.

The Processed screen, illustrated in Figure 6.9, was also implemented as stated
in subsection 6.4.2, with some additional popups and an additional text field pre-
senting the prescription made by the user so they always have context on it. Users
can use the "Confirmar" button to simulate the prescription submission to M1
when satisfied with their final prescription. If the user does not select any ac-
tion to include in the prescription, i.e., if they do not activate any toggle, the
popup illustrated in 6.9b is displayed. This popup allows the user to return to
the PrescriptionOrRecording screen if the "Ok" button is clicked and to dismiss
the popup if the "Cancelar" button is clicked. If the user selects to suspend a INN
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(a) (b) (c) (d)

(e)

Figure 6.8: PrescriptionOrRecording screen.
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(a) (b) (c) (d)

(e) (f)

Figure 6.9: Processed screen.

not contemplated in the current therapy, then the popup 6.9e is present. If the
user tries to prescribe an INN already present in the current therapy, then the
popup 6.9f is shown. Finally, if the user sends a valid prescription, the popup
6.9d is delivered. This popup allows the user to return to the PrescriptionOr-
Recording screen by tapping the "Nova prescrição" button. Note that the sending
to M1 is only a simulation since the integration is not covered in the context of
this internship. Besides that, it should be highlighted that the system chooses
between a suspension or a prescription according to the verb used. A suspen-
sion is assumed if the verb corresponds to Suspender, Parar, Terminar, or Cessar.
Otherwise, a prescription is assumed. The verbs used correspond to the most
commonly used by doctors.

Finally, the Changes screen, illustrated in Figure 6.10, was implemented as
introduced in subsection 6.4.2, with the addition of a "Cancelar" button to undo
the changes.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.10: Changes screen.
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The System

The present chapter presents the system in action, illustrating its use cases. First,
a framework regarding its usage scenarios is given. Then, examples of these use
cases are presented.

7.1 Introduction

The system developed can be used for three therapy management actions: pre-
scribing, suspending, and changing. As said in the previous chapters, changing
corresponds to a sequence in which a prescribing follows a suspension. Also, us-
ing this system can encompass one or more International Non-proprietary Name
(INN) in each prescription, and the prescription’s information can be partially
or fully complete. The following sections illustrate the application workflow in
multiple use cases and the times consumed in each.

7.2 Prescription

The prescription order can be used to prescribe one or more INN entities per pre-
scription that can be partial or fully complete. Also, the orders can be dictated or
introduced in free-text. Considering this, Table 7.1 summarizes the prescription
orders made and the time needed, mapping to the illustrative figure for each use
case, present in appendix H.

Prescription Input Time
consumed Figure

Iniciar Paracetamol Free-text 27 seconds H.1
Iniciar Paracetamol Dictation 33 seconds H.2

Iniciar Paracetamol. Fazer Amoxicilina
+ Ácido Clavulânico Free-text 36 seconds H.3

Iniciar Paracetamol. Fazer Amoxicilina
+ Ácido Clavulânico Dictation 25 seconds H.4
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Iniciar Paracetamol 500 mg via oral.
Fazer Amoxicilina + Ácido Clavulânico

875 mg + 125 mg via oral
Free-text 53 seconds H.5

Iniciar Paracetamol 500 mg via oral.
Fazer Amoxicilina + Ácido Clavulânico

875 mg + 125 mg via oral
Dictation 45 seconds H.6

Iniciar Paracetamol 500 mg via oral ao
jantar a começar hoje e durante 3 tomas. Free-text 50 seconds H.7

Iniciar Paracetamol 500 mg via oral ao
jantar a começar hoje e durante 3 tomas. Dictated 32 seconds H.8

Iniciar Paracetamol 500 mg via oral ao
jantar a começar hoje e durante 3 tomas.
Fazer Amoxicilina + Ácido Clavulânico

875 mg + 125 mg via oral de 8 em 8
horas a começar depois de amanhã e até

dia 03/07/2023.

Free-text
1 minute
and 39

seconds
H.9

Iniciar Paracetamol 500 mg via oral ao
jantar a começar hoje e durante 3 tomas.
Fazer Amoxicilina + Ácido Clavulânico

875 mg + 125 mg via oral de 8 em 8
horas a começar depois de amanhã e até

dia 03/07/2023.

Dictated 59 seconds H.10

Table 7.1: Prescription orders and time consumed to do them.

It can be seen through the referred figures that the system needs additional
information to be passed when more than one INN is prescribed so the system
does not interpret the multiple INNs as a single one. The user can prescribe each
INN individually if preferred. Also, the tests illustrated in figures H.8 and H.9
show examples of where editing the system’s transcription is necessary. Besides
that, dictation tends to be successively faster as the complexity and size of the
prescription increases, which is in concordance with what the authors of [Mahat-
pure et al., 2019] state.

The previous tests did not encompass any change in the processed data. For
comparison, the first test with the edition of all the information processed takes 1
minute and 5 seconds instead of the 27 seconds previously obtained.

7.3 Suspension

The suspension order can suspend one or more INN entities and can be dictated
or introduced in free-text. Considering this, Table 7.2 summarizes the suspension
orders made and the time needed, mapping to the illustrative figure for each use
case, presented in appendix H.
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Prescription Input Time
consumed Figure

Suspender Omeprazol. Free-text 24 seconds H.11
Suspender Omeprazol. Dictation 24 seconds H.12

Suspender Omeprazol. Suspender
Diazepam Free-text 30 seconds H.13

Suspender Omeprazol. Suspender
Diazepam Dictation 41 seconds H.14

Suspender Omeprazol via oral.
Suspender Diazepam Free-text 29 seconds H.15

Suspender Omeprazol via oral.
Suspender Diazepam Dictation 44 seconds H.16

Table 7.2: Suspension orders and time consumed to do them.

In the tests illustrated in figures H.14 and H.16, the Automatic Speech Recog-
nition (ASR) solution was unable to identify the supposed dictation correctly.
With that, these tests have a higher consumed time since they required the tran-
scription edition before submission for processing. Also, similar to the prescrip-
tion tests, these tests show the inability of the Natural Language Processing (NLP)
service to distinguish two INN entities as independent when they appear with no
more context. The suspending can be done by passing more information for con-
text or, if preferred, suspending one INN entity at a time.

7.4 Changing

The changing order can be used through the suspension followed by prescrip-
tion of the same INN. Equally, one prescription can include one or more changes,
referring to more than one INN and with partial or fully completed prescription
orders. Also, the orders can be dictated or introduced in free-text. Considering
this, Table 7.3 summarizes the changing orders made and the time needed, map-
ping to the illustrative figure for each use case, presented in appendix H.

Prescription Input Time
consumed Figure

Suspender Omeprazol. Prescrever
Omeprazol 20 mg via oral em jejum a

começar amanhã e durante 7 dias.
Free-text 54 seconds H.17

Suspender Omeprazol. Prescrever
Omeprazol 20 mg via oral em jejum a

começar amanhã e durante 7 dias.
Dictation 30 seconds H.18

Suspender Omeprazol via oral.
Prescrever Omeprazol 20 mg via oral

em jejum a começar amanhã e durante 7
dias.

Free-text 1 minute H.19
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Suspender Omeprazol via oral.
Prescrever Omeprazol 20 mg via oral

em jejum a começar amanhã e durante 7
dias.

Dictation 35 seconds H.20

Table 7.3: Changing orders and time consumed to do them.

Similarly to the previous studies, the system fails when no additional informa-
tion is provided. Although, the tests proved that with little context, the system
is already capable of performing well. If preferred by the user, the change can
also be made with two distinct requests: one for suspension and the other for
prescription.

7.5 Conclusion

The previous sections illustrate the use cases of the developed solution. Besides
that, it reveals that the system not only enables the execution of internal prescrip-
tion but also enables it to be done in a pratic and structured way, consuming low
time. However, tests should still be made on a larger scale and with end users. It
also shows some limitations of the system. These should be addressed by spec-
ifying how users should use the system. Furthermore, they are expected to be
eradicated by improving the technology or adapting the system according to the
results of the final tests.
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Conclusion and Future Work

The current chapter summarises the work presented in this document and gives
a final reflection. Also, it shows the future work that should be done out of the
scope of the internship.

First, the conclusions are presented. Then, the future work is illustrated.

8.1 Conclusion

The current project was developed to optimize internal prescription. This goal
was associated with the need to provide the market with a very comfortable way
for the user to interact with a prescription system, that is, by natural language
dictation. With this, the great challenge was transforming information received
in natural language into fully structured information. The existence of overlap-
ping information compounds this difficulty and is related to the fact that Interna-
tional Non-proprietary Name (INN) entities that can be found in isolation are also
found in compound INNs. A system such as the one developed in the current in-
ternship must distinguish between the two cases and make the correct association
of the complementary information in each.

With that, a voice-based prescription system was developed. To date, and as
far as we know, no similar system exists for European Portuguese. In tests, it
was realized that the Automatic Speech Recognition (ASR) solution to be used
in this system should be among those provided by Google and Microsoft Azure
since they presented higher performance than the others. The discrepancy be-
tween the two solutions, responsible for the decision made, may be due to the
greater difficulty presented by Google’s solution in the tests made when dealing
with poor quality audio or in which the speaker presents an accent. With that, the
Microsoft solution, Microsoft Azure Cognitive Services for Speech, was chosen,
having 88.02% performance on the tests. In turn, the tests made at the level of
the Natural Language Processing (NLP) solution dictated that the one to be inte-
grated into the developed system should be between the two offered by Microsoft
Azure since the performance associated with them was superior to those associ-
ated with the other solutions. Those solutions presented really close entity detec-
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tion performance values and differed by less than 1.50% in the macro F1 achieved.
Beyond this, these solutions differed mainly in the need for post-processing and
in the offer of the relationship detection feature, being that needed and offered
by Microsoft Azure Text Analytics for Health. Since the detection of relationships
is also relevant, no significant time is spent on post-processing, and the metrics
obtained with Microsoft Azure Text Analytics for Health are only slightly lower
than the ones achieved with Microsoft Azure Cognitive Service for Language, the
former was chosen as the solution used in the current project. This solution pre-
sented, through post-processing, a performance of 86.33% for entity recognition
and 83.60% for relation detection during the testing phase. The resultant system
allows for a prescription to be made quickly that, for more straightforward pre-
scriptions, may not even take up a minute of the doctors’ working time. Since
there is no available official information regarding model architectures for none
of the referred solutions, no comparison could be made at this level to understand
the technical reasons for the performance discrepancies.

The developed solution diverged from the state of the art tendencies regard-
ing the prescription filling method. Table 8.1 compares the F1 score obtained by
the state of the art systems and the current one at this level. This table makes it
possible to conclude that the results obtained in the current project at the level of
the NLP component agree with the state of the art, surpassing some of the results
obtained by the state of the art systems.

Study Prescription filling F1
[Shaikh et al., 2021] 96.00%

[Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020] for doctors 75.00%

[Kocabiyikoglu et al., 2019] [Kocabiyikoglu
et al., 2020] for naive users 43.00%

[Dhokley et al., 2021] 91.00%
Current study 86.33%

Table 8.1: Comparison of the results obtained with the state of the art results.

Although the developed system is efficient, it has some limitations associated
with its NLP service. They are surmountable by standardization of the prescrip-
tion form, which makes the system use extremely interesting in the hospital envi-
ronment. Besides that, those limitations are expected to be surpassed as the sys-
tem evolves. It will also be essential to recapitulate that integrating this system
with M1 should give the doctor the necessary and secure framework to perform
internal prescription.

It should be noted that the relationship detection feature was not directly used
by now. Although, this feature remains basilar since it is understood that in the
future, particularly with the improvement of the NLP system, this should be fun-
damental for simplifying the post-processing performed and minimizing the time
consumed in the task.

Finally, the developed system meets the proposed objectives with performances
higher than 85% both in ASR and NLP while still leaving room for improvement.
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8.2 Future work

As stated before, final user tests should be made. With that, insights should be
retrieved, and it should be understood the system improvements needed to be
done. Besides that, the usage of the system should dictate the necessity or absence
of backups systems. Also, a system for information retrieval should be developed
to get information about how the system fails to improve it at the post-processing
level. Finally, at the end of this internship, Microsoft Azure released Custom Text
Analytics for Health [aahill and American-Dipper, 2023]. It should be studied
and tested to determine whether it is advantageous over the default model and
replace it if it is.
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Appendix A

CMUSphinx components’
architecture

Although there’s no documentation regarding the model architecture of the com-
ponents provided by this tool, it can be seen through [Huggins-Daines and Solovets,
2022b] and [Huggins-Daines and Solovets, 2022c], the source code of the solution.
Regarding the models provided by Pocketshpinx, only a US-English model can be
found. Although, as said before, this solution allows the generation of language
models. Without some documentation, which type of models are creaTable with
PocketSphinx cannot be inferred. Sphinxtrain component gives a little documen-
tation inside code files, namely in [Huggins-Daines and Solovets, 2022h] it can be
seen that this component includes distinct Machine Learning (ML) models used
for ASR. Those include:

• Gaussian Mixture Model (GMM)s

Spinxtrain allows its users to train these models throw [Huggins-Daines
and Solovets, 2022d]. For that, the user must have audio data to feed the
model. These models can be used both for speaker identification and for
Vocal Tract Length Normalization (VTLN) which corresponds to the com-
pensation of the spectral variation associated with vocal tract length [Mad-
havi and Patil, 2019].

Gaussian Mixture is a soft clustering algorithm in which the Gaussian Mix-
ture corresponds to a function composed of several Gaussian. For each clus-
ter in the dataset, there is a Gaussian in the function, being the parameters
of these Gaussian optimized using maximum likelihood so it is ensured that
each of them fits all the points that belong to the cluster they represent.

The maximum likelihood estimation method aims to determine the values
of the parameters of a given model, which are selected so that the likelihood
of the process described by the model having produced the observed data
is maximized [Brooks-Bartlett, 2018].

With this kind of model, it is possible to extract a probability of how much
a data point is associated with a cluster, being that calculated throw the
expression present in Figure A.1.
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Figure A.1: GMMs formula.

Here, the π parameter corresponds to a mixing probability that defines how
big the Gaussian k should be, and the function it multiplies to corresponds
to the Gaussian density function, illustrated in Figure A.2. Here, the param-

Figure A.2: Gaussian density function.

eter µ corresponds to the mean, the center of the distribution, and the pa-
rameter ∑ corresponds to the covariance, defining the curve’s width. By its
turn, the D parameter corresponds to the dimensionality of the data points
[Carrasco, 2020].

• Hidden Markov Models

By its turn, the training of Hidden Markov Models falls on [Huggins-Daines
and Solovets, 2022e]. This provides a basic Hidden Markov Model (HMM)
object, providing classes that allow the user to build HMMs based on tri-
phones, i.e., a sequence of three phonemes [tri, 2020], and in the future,
should be done based on sentences too.

These models are widely used to assign a correct label sequence to sequen-
tial data or to access the probability of a given label and data sequence.

These concern finite state machines characterized by three components:

– The set of states that constitute them

– The probability of the transitions from a given initial state to each final
state, which are dependent only on the current state and being time-
invariant

– An output probability matrix, which represents the probability of ob-
serving each symbol or observation in a given state, which is a proba-
bilistic function of the state it is associated with

– The initial state distribution, which defines the probability of starting
in each state

– The output observation alphabet, which concerns the set of symbols
that may be observed as the system output

These models correspond to directed graphs in which the arcs are proba-
bility weighted. These weights correspond to the probability of a transition
between the states that the arc connects. In turn, each vertex emits an output
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symbol when entered, and this symbol is generated non-deterministically.
For this reason, the sequence of output observations does not map directly
to a sequence of states, and this corresponds to the hidden component of
the model 1.

Besides allowing the training of this type of model, Sphinxtrain also enables
the user to adapt acoustic models using maximum-likelihood linear regression
[Huggins-Daines and Solovets, 2022f]. This adaptation includes mean, and vari-
ance adaptation based on Maximum Likelihood Linear Regression (MLLR), as
described in [Gales and Woodland, 1996]. This approach transforms the mean
and the variance of a model by the search for a block diagonal matrix that max-
imizes the likelihood of the adaptation data. Once found, that matrix is multi-
plied by the mean, resulting in a new mean matrix. Regarding the variance, it
is replaced by a diagonal matrix where the non-null values correspond to each
parameter variance.

Besides these models, Sphinxtrain has multiple files related to model evalu-
ation and file reading, writing, editing, or formatting. It also encompasses files
related to feature extraction [Huggins-Daines and Solovets, 2022g].

1https://www.nltk.org/api/nltk.tag.hmm.html
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Kaldi components’ architecture

Kaldi is based on Finite-State Transducer (FST), which corresponds to a finite
automaton in which the state transitions are labeled with the input and the output
symbols. Walking through the transducer, an input symbol sequence is encoded
through a mapping that produces an output symbol sequence [Mohri et al., 2002].
By its turn, a finite state automaton corresponds to the most simple machine for
pattern recognition. It is an abstract machine composed of five elements or tuples.
Those include a set of states, a set of input symbols, the initial state, the set of final
states, and a set of rules to move between states, depending on the applied input
symbol [gee, 2015]. Because of this, any language model that can be represented
as a FST can be used in Kaldi.

This tool provides, primarily tools for feature extraction. Regarding acous-
tic modeling, Kaldi was developed to support only diagonal GMMs and Sub-
space Gaussian Mixture Model (SGMM)s, but also to be easily extensible to new
types of models. The GMMs are supported with diagonal and full covariance
structures, being its parameters the means times the inverse covariance and the
inverse covariance itself. The acoustic model based on this kind of model cor-
responds to a collection of context-dependent HMM states, each associated with
its GMM. The context-dependent question is responsible for dealing with the fact
that the same phoneme can be said differently, depending on the other phonemes
it appears with. With that, the phonemes of the audio under study have HMM
associated with them, being the acoustic features associated with it generated
taking into account the GMM associated with the HMM states of each HMM [Fa-
bien, 2020]. By its turn, the SGMM correspond to a model in which the GMM in
all the HMM states have the same structure but the means and weights associ-
ated with each normal distribution can vary in a subspace of the entire parameter
space, being that controlled. It then differs from the GMM approach in which
each HMM state tends to have its own GMM.

Besides that, Kaldi authors also provide phonetic decision trees whose roots
can be shared among phonemes and their states, allowing questions to be asked.
These questions can be about any phoneme in the context window and the HMM
state. Those trees are learned during the training of the model and help in the
construction of the acoustic features by association with the HMM-GMM and
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with the SGMM [Povey et al., 2011a].

Finally, Kaldi allows both model-space and feature-space adaptation. The first
can be done using MLLR while the second can be done throw Feature-Space Max-
imum Likelihood Linear Regression (fMLLR), also known as Constrained Maxi-
mum Likelihood Linear Regression (CMLLR). This specific type of MLLR consists
of an affine feature transformation in which the features vector is multiplied by a
matrix and a bias is summed 1.

Besides that, speaker normalization is also supported using a linear approx-
imation to VTLN 2, conventional feature-level VTLN 3 or gender normalization
throw exponential transform 4. Also, fMLLR and VTLN can both be used for
speaker adaptive training of acoustic models. Kaldi’s training and decoding al-
gorithms use Weighted Finite State Transducer (WFST)s. Those correspond to a
case of FST in which the transducer also assigns weights to the transitions. Those
weights may be related to the encoding of probabilities, durations, penalities, or
any other cumulative quantity that, accumulating along the path, allows the cal-
culation of the overall weight associated with the mapping of an input sequence
to an output sequence [Mohri et al., 2002] [Povey et al., 2011b].

1https://kaldi-asr.org/doc/transform.html
2https://kaldi-asr.org/doc/transform.htmltransformlvtln
3https://kaldi-asr.org/doc/feat.htmlfeatvtln
4https://kaldi-asr.org/doc/transform.htmltransformet
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Whisper models’ architecture

The model used by Whisper corresponds to a neural network, and its architec-
ture is illustrated in Figure C.1. The input of this system is split into chunks of
30 seconds and converted to a log-Mel spectrogram. This corresponds to a spec-
trogram where the frequencies are converted into the Mel scale that, in its turn,
corresponds to a unit of pitch in which an equal distance in pitch also sounds
equally distant to the listener. It is related to the fact that humans can easily de-
tect differences between lower frequencies than between higher ones, even if the
distance between the frequencies under comparison is equal [Roberts, 2020].

Figure C.1: Whisper’s model architecture.

Only before the conversion to a log-Mel spectrogram the input is fed into a
neural network composed by two layers. Those layers encompass each a one-
dimensional convolutional layer with a GELU activation function. GELU states
for Gaussian Error Linear Units, and its motivation corresponds to the associa-
tion of stochastic regularizers like dropout with non-linearities, that is, activation
functions. While the dropout regularization is responsible for the stochastic mul-
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tiplication of a neuron’s inputs by zero, inactivating them, the ReLU activation
function multiplies each input by a value between zero and one, depending on
the input value. Associating them, the GELU activation makes the multiplication
of each input by a value from zero to one, being this value chosen stochastically
but also taking the input’s value into account [Poulinakis, 2022].

After that, the input sequence is submitted to sinusoidal positional encod-
ing, which corresponds to a model component that gives it a sense of order,
that is, gives the model information about the order of the words in the sentence
[Kazemnejad, 2019]. After that, the input sequence is passed to an encoder block
and, with cross-attention, is passed to the decoder block. In the cross-attention
mechanism, two input sequences are mixed or combined throw a set of oper-
ations illustrated in [Raschka, 2023]. In the case of Whisper’s architecture, the
sequence returned from the encoder block should be combined with the input
sequence obtained with the learned positional encoding obtained from tokens in
multitask training format. The decoder is trained for next-token prediction being
the whole model able to perform tasks like language identification, phrase-level
timestamps, multilingual speech transcription, and translation of non-English
speech to English [Radford et al., 2022].

No information is publicly available regarding the model architecture associ-
ated with each of the models available for multi-language, including European
Portuguese. About the data used to train the models, it is also only known that it
corresponds to 680,000 hours of multilingual and multitask supervised data, and
it was collected from the web.
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spaCy models components’
architecture

The pipelines that spaCy provides for European Portuguese each have eight com-
ponents. These components are the same for all three pipelines and concern the
Tokenizer, Tok2Vec, Morphologizer, DependencyParser, Lemmatizer, SentenceRe-
cognizer, AttributeRuler, and NER. Of these, only SentenceRecognizer is not ac-
tive in the European Portuguese pipelines 1:

• Tokenizer
spaCy provides different models for a variety of languages, all of them hav-
ing in common their initial component: the Tokenizer. This is the compo-
nent responsible for tokenization, corresponding to segmenting the input
text into words, punctuation, and others. In tokenization, a given text is seg-
mented into tokens, corresponding to the denomination given to the mean-
ingful segments of a text. To perform this task, spaCy applies language-
specific rules to the text being processed (which should be a Unicode text)
and produces a Doc object consisting of individual tokens. With this object,
it is possible to iterate over the tokens, being necessary to have up to three
components for its creation: a Vocab instance, a sequence of word strings,
and, optionally, a sequence of spaces booleans. These components allow the
alignment of the tokens in the original string to be maintained. The spaces
booleans or spaces values correspond to a list of boolean values, which in-
dicate whether a space succeeds the token in each position of the word list.
By default, it is assumed that all are 2.

The first step in tokenization concerns splitting the text on spaces characters
(similar to text.split(’ ’)). The tokenizer then processes the text from left to
right, making two checks on each of the strings it looks at:

– If the current substring matches any exception rule;

– If it is possible to separate any suffix, prefix, or infix.

1https://spacy.io/models/pt
2https://spacy.io/usage/linguistic-featurescustom-tokenizer
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If there is a match in any previous checks, the tokenizer applies the rule in
question and then proceeds to iterate over the substrings starting now on
the newly split substrings. With this, spaCy can split complex and nested
tokens. While the punctuation rules are generally general, i.e., the same
for the various languages, the tokenizer exceptions heavily depend on each
language’s specifics. For this reason, each of the languages that spaCy sup-
ports has its subclass, which loads in lists of encoded data and exception
rules 3 4.

With the spaCy Tokenizer, it is possible to:

– Add special case rules to it, that is, rules that only apply to a given field
5

– Create a tokenizer adapted to the user’s needs 6 by specifying:

* A special case dictionary that handles things like contractions, units
of measure, emoticons, and certain abbreviations.

* A prefix_search function to handle preceding punctuation such as
open quotation marks and open parentheses.

* A suffix_search function to deal with following punctuation such
as commas, periods, and closing quotation marks.

* An infix_finditer function to handle non-whitespace separators such
as hyphens.

* An optional boolean function token_match to match strings that
should never be split, which overrides the infix rules.

* An optional boolean function url_match similar to the previous
one, but in this case, prefixes and suffixes are removed before the
match is applied

– Change pre-existing rules in a tokenizer 7

– Use partially annotated text 8

* spaCy assumes, by default, that the input text is raw text, but this
text may be partially annotated. The most common cause of this
partially annotated text concerns pre-existing tokenization. In this
case, if the user has a list of strings, he/she can directly generate a
Doc object and optionally specify a list of spaces booleans, which
should be the same length as the word list.

– Join annotations from different sources that may tokenize differently
from spaCy or apply vectors provided by a pre-trained BERT model to
spaCy tokens 9

* To do this, it is necessary to align the tokenization. For that, spaCy
provides the Alignment object, through which it is possible to do

3https://spacy.io/usage/linguistic-featurestokenization
4https://spacy.io/usage/spacy-101annotations-token
5https://spacy.io/usage/linguistic-featuresspecial-cases
6https://spacy.io/usage/linguistic-featuresnative-tokenizers
7https://spacy.io/usage/linguistic-featuresnative-tokenizer-additions
8https://spacy.io/usage/linguistic-featuresown-annotations
9https://spacy.io/usage/linguistic-featuresaligning-tokenization
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one-to-one mapping of token indexes in both directions and con-
sider indexes where several tokens align to a single one.

* BERT corresponds to a transformer, which refers to one element of
a family of neural network architectures that peer to compute rep-
resentations for document tokens. The representation generated
by these models is dense and context-sensitive 10 11.

The Tokenizer concerns the first component of the pipeline, and it has a dis-
tinct signature from the other parts since it receives a text and returns a Doc
rather than expecting to receive a tokenized Doc like the other components.
It is not replaceable by writing to nlp.pipeline. Instead, it is necessary to
overwrite the current tokenizer (nlp.tokenizer) by replacing it with a cus-
tom function that receives a text and returns a Doc object 12.

Also, the tokenization performed by spaCy is non-destructive,i.e., it is al-
ways possible to reconstruct the original input from the tokenized output.
Furthermore, the tokenization makes use of language-specific rules that
are optimized for compatibility with treebank annotations, corresponding a
treebank to an annotated corpora 13 14 [Prescher et al.].

• Tok2Vec 15 16

After tokenizing the input text, its processing continues with converting
the tokens identified in a vector representation using the Tok2Vec compo-
nent. This layer uses a token conversion model in its vector representa-
tion and defines its results in the Doc.tensor attribute. For its predictions
to be used by its successor components in the pipeline, they must use a
Tok2VecListener layer as the tok2vec subnetwork of their model. When
training, the Tok2Vec component stores its prediction and backpropagation
callback for each batch. With this information, the part allows the tok2vec
subnetworks of its successor components to backpropagate to achieve the
shared weights. By default, the model used in this layer refers to HashEm-
bedCNN. This is made up of two layers, these being an embedding layer
and an encoding layer 17.

The configuration used by default for this model is shown in Figure D.1.

From the values mirrored in the configuration of Figure D.1, it is possible
to understand that the default HashEmbedCNN model does not encompass
pre-trained vectors 18, uses subword features, consists of four convolutional
layers with an input and output width equal to 96, uses hash embedding
Tables with 2000 rows, considers one token for each side to concatenate at
the time of convolutions so the network is sensitive to twelve words at a

10https://spacy.io/usage/embeddings-transformers
11https://spacy.io/usage/embeddings-transformerstransformers
12https://spacy.io/usage/linguistic-featurescustom-tokenizer
13https://spacy.io/usage/linguistic-featurestokenization
14https://spacy.io/usage/linguistic-featuresaligning-tokenization
15https://spacy.io/models/pt
16https://spacy.io/api/tok2vec
17https://spacy.io/api/architecturesHashEmbedCNN
18https://spacy.io/usage/embeddings-transformersstatic-vectors
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Figure D.1: Default configuration of spaCy’s European Portuguese pipeline
Tok2Vec component.

time, and uses three linear functions in the maxout activation function 19,
which then corresponds to the function used by default.

By its turn, the embedding layer used by MultiHashEmbedCNN is gener-
ated using MultiHashEmbed 20. This generates an embedding layer that
separately embeds some lexical attributes using hash embedding, concate-
nates the results obtained, and then passes them through a feed-forward
subnetwork, yielding a mixed representation of the initial token 21.

In turn, the encoding layer used by HashEMbedCNN is generated using
MaxoutWindowEncoder 22. This generates a template consisting of a CNN
and a layer-normalized maxout activation function. This component allows
context encoding using convolutions with maxout activation, a normaliza-
tion layer, and also residual connections 23.

In short, HashEmbedCNN entails two components: an embedding layer
- which generates a vector representation of the tokens - and an encoding
layer - which encodes the context. MultiHashEmbed, in turn, comprises
three stages. The first of these steps corresponds to embedding the at-
tributes with their respective embedding Tables. The second is the concate-
nation of the result obtained in the first step. If static vectors are used, they
are also concatenated at this stage. In the third and last phase, the result of
the second step is passed through a subnetwork, culminating in obtaining
a mixed representation of the initial token using a maxout layer. Finally, the
MaxoutWindowEncoder makes convolutions with maxout activation func-
tion, using layer normalization and residual connections in the network.

• Morphologizer
After converting the tokens to the respective vector representation, process-
ing continues with the Morphologizer component 24. This is a trainable
component and is responsible for predicting morphological features and

19https://thinc.ai/docs/api-layersmaxout
20https://spacy.io/api/tok2vec
21https://spacy.io/api/architecturesMultiHashEmbed
22https://spacy.io/api/tok2vec
23https://spacy.io/api/architecturesMaxoutWindowEncoder
24https://spacy.io/models/pt
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coarse-grained POS tags following the UPOS and FEATS 25 26 Universal
Dependency annotation guidelines 27.

This component requires some parameters and, between them, the model.
It specifies the model to be used in the component for morphological fea-
tures prediction, and by default, Tagger is used. Tagger comprises a tagger
model generated using a token-to-vector component. This model adds a lin-
ear layer with a softmax activation function to predict the scores assigned
to token vectors 28. This layer is build using Thinc’s Softmax_v2 function
[Honnibal et al., 2020] 29.

The default configuration used for the Morphologizer is illustrated in Fig-
ure D.2.

Figure D.2: Default configuration os spaCy’s European Portuguese pipeline
Morphologizer component.

From this configuration, it is possible to understand that the token-to-vector
model used for the tagger model generation concerns, by default, Tok2Vec.
This model has at its base an embedding layer given by the CharacterEm-
bed model 30 and an encoding layer provided by the MaxoutWindowEn-
coder model. The function responsible for generating the Tok2Vec model
receives two parameters concerning embedding and encoding, generating
the token-to-vector layer according to the architecture specified by the val-
ues of these parameters. The embed specifies the embedding subnetwork
to be used. This component is responsible for embedding the tokens into
context-independent word vector representations. Encode, in turn, deter-
mines the encode subnetwork to be used by the model. This component is

25https://universaldependencies.org/docs/format.html
26https://universaldependencies.org/format.htmlmorphological-annotation
27https://spacy.io/api/morphologizer
28https://spacy.io/api/architecturesTagger
29https://thinc.ai/docs/api-layerssoftmaxv2
30https://spacy.io/api/architecturesCharacterEmbed
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responsible for encoding the context into the embedding using an architec-
ture such as a CNN, a BiLSTM, or a transformer.

The encoding layer, in turn, concerns the MaxoutWindowEncoder model.
This coincides with the model used by the pipeline component that pre-
cedes the Morphologizer, Tok2Vec, already discussed.

• Dependency Parser
The third component of the pipelines made available by spaCy for Por-
tuguese concerns the DependencyParser, an element for syntactic depen-
dency parsing 31 32.

Dependency parsing refers to the process of analyzing the grammatical
structure in a sentence and finding both the words that are related and the
type of relationship that exists between them. Each of these relations con-
sists of a head and a dependent, which modifies the head. Furthermore,
each relationship is labeled according to the nature of the dependency be-
tween the head and the dependent, with the labels assigned in Universal
Dependency Relations [Jaiswal, 2021].

The DependencyParser is responsible for this analysis using a transition-
based dependency parser [Zhang and Clark, 2008] component.

The spaCy dependency parser learns sentence segmentation and labeled
dependency parsing together and can optionally learn to join tokens over-
segmented by the tokenizer. This component uses a variant of the non-
monotonic arc-eager transition-system described by [Honnibal and John-
son, 2015] with the addition of a break transition to perform sentence seg-
mentation.

Also, the authors of spaCy use the pseudo-projective dependency transfor-
mation of [Nivre and Nilsson, 2005] to predict non-projective parses.

Finally, the parser used by spaCy is trained using imitation learning objec-
tives. It follows the actions predicted by the current weights and, in each
state, determines which actions are compatible with the optimal parse that
could be achieved from the current state. With this, the weights are updated
to increase the scores given to the set of optimal actions while the scores as-
signed to the remaining actions are reduced. Note that there can be more
than one optimal action for a given state 33.

This model comprises a transition-based parser that can be applied to NER
or dependency parsing, in this case, being applied to dependency parsing.
Transition-based parsing refers to an approach to structured prediction in
which the structure prediction task is mapped to a series of state transi-
tions. The neuronal network state prediction model consists of two or three
subnetworks: the tok2vec, the lower, and the upper. These subnetworks
have the function 34:

31https://spacy.io/models/pt
32https://spacy.io/api/dependencyparser
33https://spacy.io/api/dependencyparser
34https://spacy.io/api/architecturesTransitionBasedParser
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– tok2vec: responsible for mapping each token into a vector representa-
tion, being run once per batch

– lower: responsible for building a feature-specific vector for each pair
(token, feature), also run once per batch. The construction of the state
representation then corresponds to the sum of the component features
and the application of non-linearity

– upper: this is an optional subnetwork and corresponds to a feedfor-
ward network that predicts the scores of the state representation. When
this layer is not used, the output of the previous one is used directly
as action scores. This layer is only recommended for smaller models
since it is computed on the CPU, which becomes a bottleneck in larger
GPU-based models, for which the layer is also less necessary.

In Figure D.3, it can be seen the architecture used, by default, for the compo-
nent of the pipeline related to the Dependency Parser. In this, it is possible
to understand that the model is used for dependency parsing, that no extra
vectors are used to represent the state vectors, that the hidden layer has a
size equal to 64, that two linear functions are used in the maxout activation
function, and also that the upper layer is used. It is also possible to verify
that the tok2vec component used in this model concerns the HashEmbed-
CNN model. This model has already been presented in the Tok2Vec compo-
nent and is characterized by the absence of pre-trained vectors, by the fact
that it is a network whose input and output have a width equal to 96, by
having four convolutional layers, hash embedding Tables with 2000 lines,
one token to be selected for each side during convolution, three linear func-
tions to be used in the maxout activation function, and also by the use of
subword features.

Figure D.3: Default configuration of spaCy’s European Portuguese pipeline
Dependency Parser component.

• Lemmatizer
The Lemmatizer succeeds the Dependency Parser in the Portuguese spaCy
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pipelines 35. These make use of the trainable lemmatizer called EditTreeLem-
matizer.

The EditTreeLemmatizer concerns a trainable component to assign tokens
to their respective base form. This corresponds to the lemma of a token,
that is, the root form of a word, its form without affixes 36 37. This compo-
nent uses a lemmatization model to predict the edit tree that applies to each
token.

The edit trees are the output of a rule-finding algorithm that, given a cor-
pus with lemma annotations, automatically infer the lemmatization rules
responsible for mapping a word into its lemma. These edit trees correspond
to a recursive data structure [De Kok, 2021].

– Inner node: splits the string into prefix, infix, and suffix and returns
the concatenation of the three transforms. The infix refers to substrings
shared by the token and its lemma

– Leaf node: checks whether its input matches a given value s and, if it
does, returns a given value t defined in the node. If the node’s input is
different from s, then the tree in question cannot be used in the token

The model used by spaCy in this component corresponds to the first log-
linear model for morphological analysis and lemmatization that operates at
the token level and can lemmatize unknown forms. This solution consists
of two components: a lemmatization component which makes use of a log-
linear model, and a morphological analysis component which makes use
of MARMOT, a high-order CRF [Müller et al., 2013]. These components
are combined into a tree-structured CRF [Wallach, 2004], and the parameter
estimation of the model as a whole is done using L1 normalized SGD [Roy,
2019] [Tsuruoka et al., 2009] [Müller et al., 2015].

The default configuration of this component can be found in Figure D.4.
Here it is possible to see that the HashEmbedCNN model gives the tok2vec
component of the default model. This model was presented in the presen-
tation of the Tok2Vec component and, in this context, is characterized by
not using pre-trained vectors, having an input and output width equal to
96, having four convolutional layers, using hash embedding Tables with
2000 lines, using one token each side during convolutions, using three lin-
ear functions in the maxout activation function and, finally, making use of
subword features.

• Sentence Recognizer
After the Lemmatizer comes the SentenceRecognizer in the European Por-
tuguese pipelines, in these, however, this component is deactivated 38. The
SentenceRecognizer is the component responsible for performing sentence
segmentation 39 and has a default configuration illustrated in Figure D.5.

35https://spacy.io/models/pt
36https://spacy.io/api/edittreelemmatizer
37https://spacy.io/usage/linguistic-featuresmorphology
38https://spacy.io/models/pt
39https://spacy.io/api/sentencerecognizer
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Figure D.4: Default configuration of spaCy’s European Portuguese pipeline
Lemmatizer component.

From this configuration, it is possible to understand that, as with the Lem-
matizer component, the tok2vec component used in Tagger is given by the
HashEmbedCNN model, already detailed for the Tok2Vec component of
the pipeline.

Figure D.5: Default configuration of spaCy’s European Portuguese pipeline
Sentence Recognizer component.

Further, it can be understood that this component does not use pre-trained
representations of the tokens, uses an input and output width equal to
twelve, has a convolutional layer, uses hash embedding Tables with 2000
rows, considers one token for each side when convoluting, uses two lin-
ear functions in the maxout activation function, and uses subword features,
specifically the prefix, suffix, and shape of the token.

• AttributeRuler
The SentenceRecognizer is followed by the AttributeRuler 40. This compo-
nent allows the definition of token attributes identified by Matcher patterns.
It is typically used to handle exceptions for token attributes and to map

40https://spacy.io/models/pt
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values between attributes, such as mapping fine-grained POS to coarse-
grained POS tags 41.

AtributteRuller uses Matcher patterns to identify tokens and assign them
the provided attributes. If necessary, Matcher patterns can include con-
text around the target token 42. A Matcher is a rule-matching engine that
operates on tokens, similar to regular expressions, to perform rule-based
matching 43.

• Named Entity Recognition (NER)
After the AttributeRuler and as the last component of the pipelines pro-
vided for European Portuguese, comes NER, a transition-based entity recog-
nition component 44 45.

This component identifies spans of non-overlapping labeled tokens, with
several assumptions made by its transition-based algorithm. While these
assumptions are effective in so-called "traditional" named entity recogni-
tion tasks, they may not be a good fit for all kinds of span identification
problems. In particular, it should be noted that the loss function focuses on
optimizing the accuracy of the entire entity.

The transition-based algorithm also assumes that the most decisive infor-
mation about entities is near their initial tokens. If the problem for which
the model is used involves identifying long entities characterized by tokens
in their middle, this component will similarly tend to perform poorly on the
task.

Figure D.6 illustrates the configuration used by default for the present pipeline
component. From this, it can be seen that the TransitionBasedParser model
is used for NER in this component, and no extra tokens are included for
the state representation. Furthermore, a hidden layer with a size of 64 is
used, two linear functions in the maxout layer and the upper layer is also
used. In turn, it is possible to understand that the tok2vec component of
this model is performed by the HashEmbedCNN model, exploited in the
Tok2Vec component of the pipeline.

This component, in this context, makes no use of pre-trained representa-
tions of the tokens, has an input and output width equal to 96, uses four
convolutional layers, has 2000 rows in the hash embed Tables, uses one to-
ken each way when convoluting, uses three linear functions in the maxout
layer, and also makes use of subword features, specifically the affixes and
the token shape.

41https://spacy.io/api/attributeruler
42https://spacy.io/api/attributeruler
43https://spacy.io/usage/rule-based-matchingmatcher
44https://spacy.io/models/pt
45https://spacy.io/api/entityrecognizer
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Figure D.6: Default configuration of spaCy’s European Portuguese pipeline NER
component.

199





Appendix E

NLTK components’ architecture

Focusing on the features of interest of this system, namely in the architecture of
the underlying models:

• Accessing corpora
For the language processing task called accessing corpora, NLTK provides
the corpus module 1.

This module, in turn, provides functions that can be used to read corpus
files in various formats. These can be used to read corpus files distributed
in the NLTK corpus package or to read corpus files that are part of external
corpora. This module then provides NLTK corpus readers, and the com-
plete list of available NLTK corpora can be found at 2 3.

This module comprises 68 separate corpus reader functions, these being
contained in the reader submodule 4. These corpus reader functions are
associated with corpus with different formatting, all of which are presented
at 5.

• String processing
In turn, the language processing task related to string processing is medi-
ated by NLTK using the tokenize and stem modules 6.

The tokenizers are responsible for splitting strings into lists of substrings
and, in the present context, can be used for 7:

– Find the words and punctuation in a string, requiring Punkt sentence
tokenization models 8

This tokenizer splits the original string using an unsupervised algo-
rithm to build a model for abbreviation words, collocations, and words

1https://www.nltk.org/book/ch00.html
2https://www.nltk.org/nltkdata/
3https://www.nltk.org/api/nltk.corpus.htmlmodule-nltk.corpus
4https://www.nltk.org/api/nltk.corpus.reader.html
5https://www.nltk.org/api/nltk.corpus.reader.html
6https://www.nltk.org/book/ch00.html
7https://www.nltk.org/api/nltk.tokenize.htmlmodule-nltk.tokenize
8https://www.nltk.org/api/nltk.tokenize.punkt.html
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that start sentences. This type of models needs training in the tar-
get language before being used on it. Besides that, only a pre-trained
Punkt tokenizer for English is available.

– Split text on whitespace and punctuation, requiring a regular-expression
based tokenizer 9

This tokenizer uses regular expressions to split the string into sub-
strings.

– Operate at the sentence level, which requires a sentence tokenizer 10

The default sentence recognizer corresponds to PunktSentenceTokenizer
11 and uses an unsupervised algorithm to build a model for abbrevia-
tion words, collocations, and words that start sentences. The model is
then used to find the boundaries of sentences.

The stem module, in turn, encompasses interfaces that reduce words to
their stem, removing morphological affixes from them. The stemming al-
gorithms aim at eliminating these affixes, and due to the existence of irreg-
ular words, complicated morphological rules, and part-of-speech and sense
ambiguities, the task of reducing words to their stem is a complex problem.
The standard interface used in this context is StemmerI, corresponding this
to an interface for stemming 12.

This module comprises several stemmers, including:

– ISRI Arabic Stemmer 13

This tokenizer is based on the ISRI Arabic Stemmer, which is based on
Arabic Stemming without root dictionary [Taghva et al.].

– Lancaster Stemmer 14

This corresponds to a word stemmer based on the Lancaster stemming
algorithm, also called the Paice/Husk stemming algorithm [Paice, 1990].

– Porter Stemmer 15

By its turn, this stemmer is based on the algorithm presented in [Porter],
having some optional deviations to it.

– Regexp Stemmer 16

The Regexp Stemmer uses regular expressions to identify morpholog-
ical affixes. Any substring, when matched by regular expressions, is
removed.

– RSLP Stemmer 17

This stemmer for the Portuguese language allows the removal of af-

9https://www.nltk.org/api/nltk.tokenize.regexp.html?highlight=regexpmodule-
nltk.tokenize.regexp

10https://www.nltk.org/api/nltk.tokenize.htmlnltk.tokenize.senttokenize
11https://www.nltk.org/api/nltk.tokenize.PunktSentenceTokenizer.htmlnltk.tokenize.PunktSentenceTokenizer
12https://www.nltk.org/api/nltk.stem.htmlmodule-nltk.stem
13https://www.nltk.org/api/nltk.stem.isri.html
14https://www.nltk.org/api/nltk.stem.lancaster.html
15https://www.nltk.org/api/nltk.stem.porter.html
16https://www.nltk.org/api/nltk.stem.regexp.html
17https://www.nltk.org/api/nltk.stem.rslp.html
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fixes from tokens by following an eight steps rule-based algorithm, the
RSLP algorithm 18.

– Snowball Stemmers 19

This module provides a port for the Snowball stemmer [sno, 2020] de-
veloped by Martin Porter comprising stemmers for Arabic, Danish,
Dutch, English, Finnish, French, German, Hungarian, Italian, Norwe-
gian, Portuguese, Romanian, Russian, Spanish, and Sweeden and the
original Porter Stemmer.

– WordNet Lemmatizer 20

Finally, this lemmatizer makes use of WordNet’s built-in morphy func-
tion 21, which is a corpus reader and Morphy is one of its methods. It
makes use of a combination of inflectional ending rules and exception
lists to reduce a given form to its stem 22.

• Collocation discovery For the language processing task of collocations dis-
covery, NLTK provides the collocations module 23.

This module, in turn, provides the tools for identifying collocations within
the corpora, where collocations refer to words that appear frequently con-
secutively. In addition, these tools can also be used to find other associations
between word occurrences 24 25.

For the discovery of collocations, several steps are necessary:

1. Calculating the frequencies of words and their appearance in the con-
text of other words

2. Filtering, when necessary, so that only useful content terms are re-
tained

3. Scoring of each ngram of words taking into account an association
measure

For that both BigramCollocationFinder and BigramCollocationFinder are
provided 26 27.

• Part-of-Speech (POS) tagging For the task of POS tagging, NLTK provides
the tag module, which provides both classes and interfaces for tagging 28 29.

A tag is a case-sensitive string that specifies any token property, such as
its POS. Tokens with associated tags are encoded as tuples of the type (tag,
token).

18https://www.inf.ufrgs.br/ viviane/rslp/index.htm
19https://www.nltk.org/api/nltk.stem.snowball.html
20https://www.nltk.org/api/nltk.stem.wordnet.html
21https://www.nltk.org/howto/wordnet.html
22https://www.nltk.org/howto/wordnet.htmlmorphy
23https://www.nltk.org/book/ch00.html
24https://www.nltk.org/api/nltk.corpus.htmlmodule-nltk.corpus
25https://www.nltk.org/api/nltk.collocations.htmlmodule-nltk.collocations
26https://www.nltk.org/api/nltk.collocations.BigramCollocationFinder.html
27nltk.org/api/nltk.collocations.TrigramCollocationFinder.html
28https://www.nltk.org/book/ch00.html
29https://www.nltk.org/api/nltk.tag.htmlmodule-nltk.tag
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NLTK provides an "off-the-shelf tagger" for English and a Russian tagger.
The former makes use of the Penn Treebank 30 tag set, while the latter, be-
sides being available by specifying the lang parameter as "rus", makes use
of the Russian National Corpus 31.

In addition, this module encompasses several taggers whose principle of
operation concerns

1. Receiving a list of tokens

2. Assigning a tag to each token in the list

3. Return of the resulting list, which concerns a list of tagged tokens

NLTK provides different taggers. These taggers relate to:

– Brill Tagger 32, to which the Bill Tagger Trainer 33 is associated
This tagger concerns Brill’s transformational rule-based tagger and, be-
ing a Brill tagger acts in two phases 34:

1. In the first, an initial tagger is used to assign an initial tag sequence
to a text

2. In the second, an ordered list of transformational rules is applied
to correct the tags of individual tokens

– CRF Tagger 35

In turn, CRF Tagger concerns a module for POS tagging making use of
CRFSuite, [Okazaki, 2023] which concerns software that corresponds
to an implementation of CRFs for tagging sequential data 36.

– Hidden Markov Model Tagger 37

On the other hand, the hmm module provides both the Hidden Markov
Model Tagger and its trainer, this tagger being based on Hidden Markov
Models. The HMM make use of the Viterbi algorithm to calculate the
optimal path through the graph for a given sequence of word forms
[Kwok, 2019] 38.

– Hunpos Tagger 39

The hunpos module is an interface to the HunPos 40 open-source POS-
tagger, which relies on second-order Markov models [nlp, 2019] 41.

30https://www.nltk.org/api/nltk.tokenize.treebank.html?highlight=penn+treebank
31https://ruscorpora.ru/en/ tagset
32https://www.nltk.org/api/nltk.tag.brill.html
33https://www.nltk.org/api/nltk.tag.brilltrainer.html
34https://www.nltk.org/api/nltk.tag.brill.html
35https://www.nltk.org/api/nltk.tag.crf.html
36https://www.nltk.org/api/nltk.tag.crf.html
37https://www.nltk.org/api/nltk.tag.hmm.html
38https://www.nltk.org/api/nltk.tag.hmm.html
39https://www.nltk.org/api/nltk.tag.hunpos.html
40https://code.google.com/archive/p/hunpos/
41https://www.techtarget.com/whatis/definition/Markov-model
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– Perceptron Tagger 42

This tagger concerns a Greedy Averaged Perceptron - a neural network
- tagger as implemented by Matthew Honnibal [Honnibal, 2013] 43.

– Senna POS tagger, NER tagger, Chunk tagger 44

These taggers are included in the senna module and are based on SENNA,
a software tool that allows making predictions about part-of-speech
tags, chunking, named entity recognition, semantic role labeling, and
also syntactic parsing 45.

– Affix Tagger, Bigram Tagger, Classifier Based POS Tagger, Classifier
Based Tagger, Context Tagger, Default Tagger, Ngram Tagger, Regexp
Tagger, Sequential Backoff Tagger, Trigram Tagger, Unigram Tagger 46

These taggers, in turn, belong to the sequential module and concern
classes used for tagging sentences sequentially, from left to right, all
based on the abstract class SequentialBackoffTagger. These taggers are
trained, so they are able to identify the tag associated with a word
based on some context of the word, of its neighbors, or with no context.

– Stanford NER Tagger, Stanford POS Tagger, Stanford Tagger 47

The stanford module interfaces with the Stanford taggers. These relate
to Stanford NER Tagger [the, 2010], Stanford POS Tagger [Toutanova
et al.], and Stanford Tagger.

Besides that, this module encompasses two interfaces that concern:

– API module 48

This module provides APIs to tag each token in a sentence with sup-
plementary information such as its POS, and two distinct interfaces are
provided:

* FeaturesetTaggerI This tagger needs tokens to be feature sets, be-
ing called features a dictionary that maps from feature names to
feature values, being these features descriptive of the token in ques-
tion. 49

* TaggerI
TaggerI is a processing interface whose task is to assign a tag to
each token in a given list.

– Mapping module 50

This provides an interface to convert POS tags from different treebanks
to the same universal tagset of Petrov, Das, McDonald.

42https://www.nltk.org/api/nltk.tag.perceptron.html
43https://www.programiz.com/dsa/greedy-algorithm
44https://www.nltk.org/api/nltk.tag.senna.html
45https://ronan.collobert.com/senna/
46https://www.nltk.org/api/nltk.tag.sequential.html
47https://www.nltk.org/api/nltk.tag.stanford.html
48https://www.nltk.org/api/nltk.tag.api.html
49https://www.nltk.org/api/nltk.classify.html?highlight=nltk+classifymodule-nltk.classify
50https://www.nltk.org/api/nltk.tag.mapping.html
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• Chunking
For the chunking task, the NLTK provides the chunk 51 method, which, in
turn, offers classes and interfaces for identifying non-overlapping linguis-
tic groups in an unrestricted text, i.e., for performing the chunk parsing or
chunking task. This is responsible for identifying groups called chunks, and
the chunked text is represented as a chunk structure which refers to a shal-
low tree. This chunk structure corresponds to a tree consisting of tokens and
chunks, each of them corresponding to a subtree containing only tokens 52.

The present module defines:

– ChunkParserI, a standard interface for chunking texts
– RegexpChunkParser 53, an implementation of the previous interface

that makes use of regular expressions on tags to chunk a text
– ChunkScore, a utility class for scoring chunk parsers

• Parsing
For the language processing task called Parsing, NLTK provides both the
parse module and the ccg module 54.

The parse module provides classes and interfaces for performing the pars-
ing task. This task is concerned with producing tree structures, also called
parses, representative of the internal structure of a text 55.

A given text may be considered ambiguous either because it can be repre-
sented by more than one tree structure or because it is impossible to deter-
mine its correct parse due to a lack of information, and this module does
not distinguish these forms of ambiguity. It defines:

– A standard interface for text parsing, called ParserI
– A ShiftReduceParser, a simple implementation of the previous inter-

face
– A RecursiveDescentParser, a simple implementation of the previous

interface

In addition, it provides sub-modules designed for specialized kinds of pars-
ing:

– the chart, which defines chart parsing, a kind of parsing that makes
use of dynamic programming aiming at the efficient parsing of texts

– the probabilistic, which defines probabilistic parsing, that associates a
probability to each parse

In turn, the ccg module provides a Combinatory Categorial Grammar for
parsing 56 [Yoshikawa et al., 2018]. A CCG-based parser is used to parse
input premises and hypotheses to obtain their logical formulas.

51https://www.nltk.org/book/ch00.html
52https://www.nltk.org/api/nltk.chunk.htmlmodule-nltk.chunk
53https://www.nltk.org/api/nltk.chunk.regexp.html?highlight=chunkstringnltk.chunk.regexp.ChunkString
54https://www.nltk.org/book/ch00.html
55https://www.nltk.org/api/nltk.parse.htmlmodule-nltk.parse
56https://www.nltk.org/api/nltk.ccg.htmlmodule-nltk.ccg
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• Semantic interpretation Also, regarding the Semantic interpretation task,
the sem and inference modules are provided 57.

The sem module concerns the Semantic Interpretation package and contains
classes for both the representation of semantic structure in first-order logic
formulas and for the evaluation of these same formulas using set-theoretic
models 58. This package consists of two main components that consist of:

– to logic, which provides support for the analysis of First Order Logic
(FOL) expressions

– to evaluate, which in turn enables recursive truth-in-truth determina-
tion in a model for FOL formulas

The inference module, on its turn, is responsible for providing classes and
interfaces for both model building and theorem proving 59:

– Discourse 60, which allows:

* Incremental development of simple discourses

* Check for semantic ambiguity

* Consistency check

* Informativeness check

– Nonmonotonic 61, which provides nonmonotonic reasoning [mon, 2021].

– Resolution 62, which is responsible for the proof of theorems based on
the resolution technique 63.

– Tableau 64, which provides the tools for proving theorems based on the
Tableau [Groeneboer, 1987].

• Evaluation Metrics
NLTK also provides a module on Evaluation Metrics 65. This provides
classes and methods for scoring the processing modules and consists of the
modules 66:

– Agreement 67

This module provides implementations of inter-annotator agreement
coefficients.

57https://www.nltk.org/book/ch00.html
58https://www.nltk.org/api/nltk.sem.htmlmodule-nltk.sem
59https://www.nltk.org/api/nltk.inference.htmlmodule-nltk.inference
60https://www.nltk.org/api/nltk.inference.discourse.html
61https://www.nltk.org/api/nltk.inference.nonmonotonic.html
62https://www.nltk.org/api/nltk.inference.resolution.html
63https://www.javatpoint.com/ai-resolution-in-first-order-logic
64https://www.nltk.org/api/nltk.inference.Tableau.html
65https://www.nltk.org/book/ch00.html
66https://www.nltk.org/api/nltk.metrics.htmlmodule-nltk.metrics
67https://www.nltk.org/api/nltk.metrics.agreement.html
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– Aline module 68

The aline module, in turn, relates to the ALINE algorithm, an algo-
rithm used to align phonetic sequences. This module works as a port
of Grzegorz Kondrak’s ALINE algorithm [Kondrak, 2002], providing
functions for phonetic sequence alignment and similarity analysis.

– Association 69

This module provides scoring functions for a variety of association
measures through generic and abstract implementations in its Bigra-
mAssocMeasures, ContingencyMeasures, NgramAssocMeasures, Quad-
gramAssocMeasures, and TrigramAssocMeasures classes.

– Distance 70

This module allows the calculation of the distance between two items,
which typically concern strings.
The distances included in this module are expressed by the functions:

* binary_distance
Which performs a simple equality test returning 0.0 when the la-
bels are identical and 1.0 when they are different.

* custom_distance

* edit_distance
Which is responsible for calculating the Levenshtein edit-distance
[Gilleland, 2020] between two strings and allows the specification
of the cost associated with substitution edits given the existence of
cases where it makes sense to assign higher penalties to substitu-
tions. Optionally, transposition edits can be used - for example, the
exchange of "ab" for "ba" - not used by default.

* edit_distance_align
This function performs the calculation of the minimum Levenshtein
edit-distance based alignment mapping between two strings, this
alignment being responsible for determining the mapping that min-
imizes the edit distance cost.

* fractional_presence

* interval_distance
This function allows the calculation of Krippendorff’s interval dis-
tance metric, that is, the square of the difference between two la-
bels, which are passed as arguments to the function 71.

* jaccard_distance
This function allows the determination of a distance metric that
compares the similarity of sets 72.

* jaro_similarity
This function calculates the Jaro similarity between two sequences,

68https://www.nltk.org/api/nltk.metrics.aline.html
69https://www.nltk.org/api/nltk.metrics.association.html
70https://www.nltk.org/api/nltk.metrics.distance.html
71https://www.nltk.org/modules/nltk/metrics/distance.htmlintervaldistance
72https://www.nltk.org/modules/nltk/metrics/distance.htmljaccarddistance
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where Jaro distance corresponds to the minimum number of single-
character transpositions necessary to transform a given word into
another.

* jaro_winkler_similarity
This function allows the calculation of the Jaro Winkler distance,
an extension of Jaro similarity.

* masi_distance
Also, the masi_distance function calculates a distance metric which,
in turn, takes partial agreement into account when multiple labels
are assigned.

* presence
Finally, the presence function refers to a high-order function and
is used for testing the presence of a given label, which is passed as
input to the function.

– Scores 73

This module provides several metrics through the functions:

* accuracy

* approxrand

* f_measure

* log_likelihood

* precision

* recall

– Segmentation 74

The present module provides text segmentation metrics that relate to:

* Windowdiff [https://www.facebook.com/taufiQue74, 2021]

* Generalized Hamming Distance [Bookstein et al., 2002]

* Pk text segmentation metric [https://www.facebook.com/taufiQue74,
2021]

– Spearman 75

Finally, the Spearman module provides the tools for comparing ranked
lists, and these tools refer to the functions:

* ranks_from_scores

* ranks_from_sequence

* spearman_correlation

• Probability and estimation
Finally, NLTK also provides features related to probability and estimation

73https://www.nltk.org/api/nltk.metrics.scores.html
74https://www.nltk.org/api/nltk.metrics.segmentation.html
75https://www.nltk.org/api/nltk.metrics.spearman.html
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through the probability module 76. This module, in turn, provides classes
for processing and representing probabilistic information 77:

– FreqDist
This class is used to encode "frequency distributions", which refer to
counting the number of occurrences of each outcome in a given exper-
iment.

– ProbDistI
ProbDistI defines the standard interface for probability distributions.
These are responsible for encoding the probability of each outcome for
an experiment, and there are two types of probability distribution:

* "derived probability distributions". These are created based on fre-
quency distributions and aim to model the probability distribution
underlying the frequency distribution in question.

* "analytic probability distributions These are generated based on
parameters such as variance, for example.

– ConditionalFreqDist and ConditionalProbDistI
With the former referring to a class and the latter to an interface, both
are used to encode conditional distributions. These distributions can
be derived or analytic, and the NLTK only encompasses one imple-
mentation of the ConditionalProbDistI interface, called Conditional-
ProbDist, which corresponds to a derived distribution.

76https://www.nltk.org/book/ch00.html
77https://www.nltk.org/api/nltk.probability.htmlmodule-nltk.probability
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Test dataset with single-INN
prescriptions

Prescription
Fazer Carbonato de cálcio + Colecalciferol 1000 mg + 880 U.I., via

subcutânea, 1 vez por dia, a começar hoje e durante 3 tomas.
Iniciar Memantina 10 mg, anal, ao jantar, a começar depois de amanhã e

sem fim definido.
Iniciar Sildenafil 100 mg, subcutânea, às refeições, a começar amanhã e

até dia 12-01-2023.
Tomar Ceftriaxona 1000 mg/3.5 ml, via oral, ao deitar , a começar hoje e

até dia 12-01-2023.
Prescrever Valsartan 160 mg, via intravenosa, ao almoço e ao jantar, a

começar depois de amanhã e durante 3 tomas.
Fazer Zolpidem 10 mg, anal, ao jantar, a começar hoje e até dia

12-01-2023.
Iniciar Diclofenac 75 mg, intravenosa, ao jantar, a começar hoje e

durante 3 tomas.
Fazer Irbesartan + Hidroclorotiazida 150 mg + 12.5 mg, intramuscular,

ao jantar, a começar a 03-01-2023 e sem fim definido.
Iniciar Lidocaína 700 mg, vaginal, de 8 em 8 horas, a começar depois de

amanhã e sem fim definido.
Iniciar Domperidona 10 mg, via anal, ao almoço, a começar depois de

amanhã e durante 3 tomas.
Prescrever Captopril 25 mg, via intramuscular, em jejum, a começar

depois de amanhã e durante 3 tomas.
Tomar Valsartan + Hidroclorotiazida 160 mg + 12.5 mg, intramuscular, 1

vez por dia, a começar amanhã e sem fim definido.
Tomar Irbesartan 150 mg, via subcutânea, às refeições, a começar hoje e

durante 7 dias.
Tomar Folitropina alfa 75 U.I./0.125 ml, subcutânea, 1 vez por dia, a

começar a 03-01-2023 e sem fim definido.
Tomar Enoxaparina sódica 20 mg/0.2 ml, via intramuscular, 1 vez por

dia, a começar amanhã e até dia 12-01-2023.
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Tomar Rasagilina 1 mg, anal, às refeições, a começar amanhã e até dia
12-01-2023.

Fazer Pravastatina 40 mg, via anal, 1 vez por dia, a começar a 03-01-2023
e sem fim definido.

Iniciar Prasugrel 5 mg, vaginal, ao deitar , a começar depois de amanhã
e durante 7 dias.

Tomar Clopidogrel 75 mg, via vaginal, em jejum, a começar a 03-01-2023
e sem fim definido.

Tomar Citrato de potássio 1080 mg, via vaginal, de 12 em 12 horas, a
começar depois de amanhã e até dia 12-01-2023.

Fazer Beta-histina 16 mg, vaginal, ao almoço, a começar amanhã e até
dia 12-01-2023.

Tomar Apixabano 2.5 mg, intravenosa, ao deitar , a começar hoje e
durante 3 tomas.

Tomar Gabapentina 800 mg, oral, ao deitar , a começar a 03-01-2023 e
durante 3 tomas.

Tomar Sitagliptina 50 mg, oral, ao deitar , a começar depois de amanhã e
durante 7 dias.

Fazer Álcool diclorobenzílico + Amilmetacresol 1.2 mg + 0.6 mg,
intramuscular, 3 vezes por dia, a começar amanhã e durante 7 dias.

Iniciar Pioglitazona 15 mg, via anal, em jejum, a começar a 03-01-2023 e
sem fim definido.

Tomar Candesartan 16 mg, intramuscular, 1 vez por dia, a começar a
03-01-2023 e até dia 12-01-2023.

Tomar Loratadina 10 mg, via anal, ao jantar, a começar hoje e até dia
12-01-2023.

Tomar Fosfomicina 3000 mg, anal, de 12 em 12 horas, a começar hoje e
sem fim definido.

Prescrever Ácido acetilsalicílico 500 mg, intravenosa, 1 vez por dia, a
começar depois de amanhã e sem fim definido.

Prescrever Tramadol 100 mg, anal, 4 vezes ao dia, a começar hoje e
durante 7 dias.

Prescrever Pantoprazol 20 mg, vaginal, em jejum, a começar a
03-01-2023 e sem fim definido.

Tomar Tramadol 100 mg/ml, intravenosa, de 8 em 8 horas, a começar
depois de amanhã e durante 3 tomas.

Fazer Metformina + Dapagliflozina 1000 mg + 5 mg, via intramuscular,
em jejum, a começar amanhã e durante 3 tomas.

Iniciar Amlodipina + Atorvastatina 5 mg + 10 mg, intravenosa, 4 vezes
ao dia, a começar depois de amanhã e durante 7 dias.

Prescrever Perindopril 4 mg, subcutânea, de 12 em 12 horas, a começar
depois de amanhã e durante 3 tomas.

Fazer Pregabalina 300 mg, via intravenosa, ao deitar , a começar amanhã
e durante 7 dias.

Iniciar Alginato de sódio + Bicarbonato de sódio + Carbonato de cálcio
250 mg + 133.5 mg + 80 mg, via intramuscular, de 8 em 8 horas, a

começar a 03-01-2023 e sem fim definido.
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Prescrever Claritromicina 500 mg, anal, 3 vezes por dia, a começar a
03-01-2023 e durante 7 dias.

Fazer Desloratadina 5 mg, via intramuscular, ao deitar , a começar
depois de amanhã e durante 3 tomas.

Fazer Iodeto de tibezónio 5 mg, via anal, 2 vezes ao dia, a começar
depois de amanhã e sem fim definido.

Prescrever Racecadotril 10 mg, via oral, 3 vezes por dia, a começar
depois de amanhã e até dia 12-01-2023.

Fazer Perampanel 0.5 mg/ml, vaginal, ao deitar , a começar a 03-01-2023
e sem fim definido.

Prescrever Tianeptina 12.5 mg, subcutânea, ao almoço e ao jantar, a
começar a 03-01-2023 e sem fim definido.

Tomar Montelucaste 5 mg, anal, de 12 em 12 horas, a começar amanhã e
durante 7 dias.

Iniciar Enalapril 5 mg, via subcutânea, às refeições, a começar hoje e sem
fim definido.

Fazer Rivastigmina 2 mg/ml, intravenosa, ao almoço, a começar a
03-01-2023 e sem fim definido.

Iniciar Mirtazapina 15 mg, via anal, de 12 em 12 horas, a começar
amanhã e até dia 12-01-2023.

Fazer Ivabradina 7.5 mg, intramuscular, 1 vez por dia, a começar
amanhã e durante 3 tomas.

Prescrever Adrenalina 0.15 mg/0.3 ml, via anal, 1 vez por dia, a começar
hoje e durante 7 dias.

Table F.1: Test dataset for the NLP solution’s test with single-INN
prescriptions.
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Confusion matrices

G.1 Amazon Comprehend

Figure G.1: Confusion matrix obtained for negative entity recognition with
Amazon Comprehend.
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Figure G.2: Confusion matrix obtained for negative relation detection with
Amazon Comprehend.

Figure G.3: Confusion matrix obtained for dosage entity recognition with
Amazon Comprehend.
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Confusion matrices

Figure G.4: Confusion matrix obtained for beginning entity recognition with
Amazon Comprehend.

Figure G.5: Confusion matrix obtained for ending entity recognition with
Amazon Comprehend.
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Figure G.6: Confusion matrix obtained for duration entity recognition with
Amazon Comprehend.

Figure G.7: Confusion matrix obtained for time of medication relation detection
with Amazon Comprehend.
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Confusion matrices

Figure G.8: Confusion matrix obtained for frequency entity recognition with
Amazon Comprehend.

Figure G.9: Confusion matrix obtained for frequency of medication relation
detection with Amazon Comprehend.
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Figure G.10: Confusion matrix obtained for medication entity recognition with
Amazon Comprehend.

Figure G.11: Confusion matrix obtained for route entity recognition with
Amazon Comprehend.
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Confusion matrices

Figure G.12: Confusion matrix obtained for route of medication relation
detection with Amazon Comprehend.
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G.2 Google Cloud Healthcare Natural Language
API

Figure G.13: Confusion matrix obtained for negative entities recognition with
Google Cloud Healthcare Natural Language API.

Figure G.14: Confusion matrix obtained for negative relationship detection with
Google Cloud Healthcare Natural Language API.
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Confusion matrices

Figure G.15: Confusion matrix obtained for anatomical structure entities
recognition with Google Cloud Healthcare Natural Language API.

Figure G.16: Confusion matrix obtained for dosage entities recognition with
Google Cloud Healthcare Natural Language API.
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Figure G.17: Confusion matrix obtained for dosage of medication relationship
detection with Google Cloud Healthcare Natural Language API.

Figure G.18: Confusion matrix obtained for beginning entities recognition with
Google Cloud Healthcare Natural Language API.
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Confusion matrices

Figure G.19: Confusion matrix obtained for ending entities recognition with
Google Cloud Healthcare Natural Language API.

Figure G.20: Confusion matrix obtained for duration entities recognition with
Google Cloud Healthcare Natural Language API.
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Figure G.21: Confusion matrix obtained for time of medication relationship
detection with Google Cloud Healthcare Natural Language API.

Figure G.22: Confusion matrix obtained for dose entities recognition with
Google Cloud Healthcare Natural Language API.
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Confusion matrices

Figure G.23: Confusion matrix obtained for frequency entities recognition with
Google Cloud Healthcare Natural Language API.

Figure G.24: Confusion matrix obtained for frequency of medication
relationship detection with Google Cloud Healthcare Natural Language API.
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Figure G.25: Confusion matrix obtained for route entities recognition with
Google Cloud Healthcare Natural Language API.

Figure G.26: Confusion matrix obtained for route of medication relationship
detection with Google Cloud Healthcare Natural Language API.
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Confusion matrices

Figure G.27: Confusion matrix obtained for status of medication entities
recognition with Google Cloud Healthcare Natural Language API.

Figure G.28: Confusion matrix obtained for medication strength entities
recognition with Google Cloud Healthcare Natural Language API.
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Figure G.29: Confusion matrix obtained for medication unit entities recognition
with Google Cloud Healthcare Natural Language API.

Figure G.30: Confusion matrix obtained for medication entities recognition with
Google Cloud Healthcare Natural Language API.
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Confusion matrices

G.2.1 After post-processing

Figure G.31: Confusion matrix obtained for negative entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

Figure G.32: Confusion matrix obtained for negative relationship detection with
Google Cloud Healthcare Natural Language API after post-processing.
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Figure G.33: Confusion matrix obtained for dosage entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

Figure G.34: Confusion matrix obtained for dosage of medication relationship
detection with Google Cloud Healthcare Natural Language API after

post-processing.
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Confusion matrices

Figure G.35: Confusion matrix obtained for beginning entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

Figure G.36: Confusion matrix obtained for ending entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

233



Appendix G

Figure G.37: Confusion matrix obtained for duration entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

Figure G.38: Confusion matrix obtained for time of medication relationship
detection with Google Cloud Healthcare Natural Language API after

post-processing.
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Figure G.39: Confusion matrix obtained for frequency entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

Figure G.40: Confusion matrix obtained for frequency of medication
relationship detection with Google Cloud Healthcare Natural Language API

after post-processing.
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Figure G.41: Confusion matrix obtained for route entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.

Figure G.42: Confusion matrix obtained for route of medication relationship
detection with Google Cloud Healthcare Natural Language API after

post-processing.
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Confusion matrices

Figure G.43: Confusion matrix obtained for medication strength entities
recognition with Google Cloud Healthcare Natural Language API after

post-processing.

Figure G.44: Confusion matrix obtained for medication entities recognition with
Google Cloud Healthcare Natural Language API after post-processing.
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G.3 Microsoft Azure Cognitive Service for Lan-
guage

Figure G.45: Confusion matrix obtained for negative entity recognition with
Microsoft Azure Cognitive Service for Language.

Figure G.46: Confusion matrix obtained for negative relationship detection with
Microsoft Azure Cognitive Service for Language.
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Confusion matrices

Figure G.47: Confusion matrix obtained for dosage entity recognition with
Microsoft Azure Cognitive Service for Language.

Figure G.48: Confusion matrix obtained for dosage of medication relationship
detection with Microsoft Azure Cognitive Service for Language.
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Figure G.49: Confusion matrix obtained for beginning entity recognition with
Microsoft Azure Cognitive Service for Language.

Figure G.50: Confusion matrix obtained for ending entity recognition with
Microsoft Azure Cognitive Service for Language.
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Confusion matrices

Figure G.51: Confusion matrix obtained for duration entity recognition with
Microsoft Azure Cognitive Service for Language.

Figure G.52: Confusion matrix obtained for time of medication relationship
detection with Microsoft Azure Cognitive Service for Language.
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Figure G.53: Confusion matrix obtained for frequency entity recognition with
Microsoft Azure Cognitive Service for Language.

Figure G.54: Confusion matrix obtained for frequency of medication
relationship detection with Microsoft Azure Cognitive Service for Language.
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Figure G.55: Confusion matrix obtained for medication entity recognition with
Microsoft Azure Cognitive Service for Language.

Figure G.56: Confusion matrix obtained for route entity recognition with
Microsoft Azure Cognitive Service for Language.
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Figure G.57: Confusion matrix obtained for route of medication relationship
detection with Microsoft Azure Cognitive Service for Language.
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Confusion matrices

G.4 Microsoft Azure Text Analytics for Health

Figure G.58: Confusion matrix obtained for negative entity recognition with
Microsoft Azure Text Analytics for Health.

Figure G.59: Confusion matrix obtained for negative relationship detection with
Microsoft Azure Text Analytics for Health.
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Figure G.60: Confusion matrix obtained for body structure entity recognition
with Microsoft Azure Text Analytics for Health.

Figure G.61: Confusion matrix obtained for date entity recognition with
Microsoft Azure Text Analytics for Health.
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Confusion matrices

Figure G.62: Confusion matrix obtained for dosage entity recognition with
Microsoft Azure Text Analytics for Health.

Figure G.63: Confusion matrix obtained for dosage of medication relationship
detection with Microsoft Azure Text Analytics for Health.
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Figure G.64: Confusion matrix obtained for beginning entity recognition with
Microsoft Azure Text Analytics for Health.

Figure G.65: Confusion matrix obtained for ending entity recognition with
Microsoft Azure Text Analytics for Health.
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Figure G.66: Caption

Figure G.67: Confusion matrix obtained for duration entity recognition with
Microsoft Azure Text Analytics for Health.

Figure G.68: Confusion matrix obtained for time of medication relationship
detection with Microsoft Azure Text Analytics for Health.
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Figure G.69: Confusion matrix obtained for frequency entity recognition with
Microsoft Azure Text Analytics for Health.

Figure G.70: Confusion matrix obtained for frequency of medication
relationship detection with Microsoft Azure Text Analytics for Health.
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Figure G.71: Confusion matrix obtained for medication entity recognition with
Microsoft Azure Text Analytics for Health.

Figure G.72: Confusion matrix obtained for route entity recognition with
Microsoft Azure Text Analytics for Health.
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Figure G.73: Confusion matrix obtained for route of medication relationship
detection with Microsoft Azure Text Analytics for Health.

Figure G.74: Confusion matrix obtained for time entity recognition with
Microsoft Azure Text Analytics for Health.
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Confusion matrices

G.4.1 After post-processing

Figure G.75: Confusion matrix obtained for negative entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.

Figure G.76: Confusion matrix obtained for negative relationship detection with
Microsoft Azure Text Analytics for Health after post-processing.
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Figure G.77: Confusion matrix obtained for dosage entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.

Figure G.78: Confusion matrix obtained for dosage of medication relationship
detection with Microsoft Azure Text Analytics for Health after post-processing.
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Figure G.79: Confusion matrix obtained for beginning entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.

Figure G.80: Confusion matrix obtained for ending entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.
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Figure G.81: Confusion matrix obtained for duration entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.

Figure G.82: Confusion matrix obtained for time of medication relationship
detection with Microsoft Azure Text Analytics for Health after post-processing.
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Confusion matrices

Figure G.83: Confusion matrix obtained for frequency entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.

Figure G.84: Confusion matrix obtained for frequency of medication relationship
detection with Microsoft Azure Text Analytics for Health after post-processing.
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Figure G.85: Confusion matrix obtained for medication entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.

Figure G.86: Confusion matrix obtained for route entity recognition with
Microsoft Azure Text Analytics for Health after post-processing.
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Confusion matrices

Figure G.87: Confusion matrix obtained for route of medication relationship
detection with Microsoft Azure Text Analytics for Health after post-processing.
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.1: Prescribe use case illustration. (I)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure H.2: Prescribe use case illustration. (II)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.3: Prescribe use case illustration. (III)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure H.4: Prescribe use case illustration. (IV)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure H.5: Prescribe use case illustration. (V)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure H.6: Prescribe use case illustration. (VI)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.7: Prescribe use case illustration. (VII)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure H.8: Prescribe use case illustration. (VIII)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure H.9: Prescribe use case illustration. (IX)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure H.10: Prescribe use case illustration. (X)

270



Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.11: Suspend use case illustration. (I)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure H.12: Suspend use case illustration. (II)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.13: Suspend use case illustration. (III)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure H.14: Suspend use case illustration. (IV)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.15: Suspend use case illustration. (V)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure H.16: Suspend use case illustration. (VI)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.17: Change use case illustration. (I)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure H.18: Change use case illustration. (II)
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Application use cases illustration

(a) (b) (c) (d)

(e) (f) (g)

Figure H.19: Change use case illustration. (III)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure H.20: Change use case illustration. (IV)
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