
Francisco José Brilhante Fernandes

GENERATIVE MODELING FOR AUTOMATED
TYPE DESIGN

July 2023

Dissertation in the context of the Master in Informatics Engineering, specialization
in Intelligent Systems, supervised by Prof. João Nuno Gonçalves Costa Cavaleiro

Correia and Daniel Filipe Santos Lopes and presented to the Department of
Informatics Engineering of the Faculty of Sciences and Technology of the

University of Coimbra.

Francisco José Brilhante Fernandes

GENERATIVE MODELING FOR AUTOMATED
TYPE DESIGN

July 2023

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, supervised by Prof. João Nuno

Gonçalves Costa Cavaleiro Correia and Daniel Filipe Santos Lopes and
presented to the Department of Informatics Engineering of the Faculty of

Sciences and Technology of the University of Coimbra.

Francisco José Brilhante Fernandes

MODELOS GENERATIVOS PARA
AUTOMATIZAÇÃO DE DESIGN

TIPOGRÁFICO

Julho 2023

Dissertação no âmbito do Mestrado em Engenharia Informática,
especialização em Sistemas Inteligentes, orientada pelo Professor Doutor João

Nuno Gonçalves Costa Cavaleiro Correia e Daniel Filipe Santos Lopes e
apresentada ao Departamento de Engenharia Informática da Faculdade de

Ciências e Tecnologia da Universidade de Coimbra.

Acknowledgements

I would like to express my gratitude to all the individuals who directly or indi-
rectly contributed to the journey I have embarked on this year, which now culmi-
nates in the completion of this dissertation. Without your support and messages
of confidence, it would not have been possible to reach this point.

I am deeply grateful to my advisors, Prof. João Nuno Gonçalves Costa Cavaleiro
Correia and Daniel Filipe Santos Lopes, for their invaluable knowledge and wise
guidance. Their vision, expertise, and unwavering support have played a crucial
role in transforming this project into a reality. Additionally, I extend my thanks to
Prof. Catarina Silva and Prof. Bernardete Ribeiro for introducing me to the world
of scientific research and for instilling in me a belief in my own capabilities.

I would also like to express my appreciation to the Centre for Informatics and
Systems of the University of Coimbra for welcoming me to a conducive work-
ing environment and also providing the necessary infrastructure to facilitate the
completion of this work.

Last but certainly not least, I extend my heartfelt thanks to my friends and fam-
ily. I am grateful to my family for teaching me the immeasurable value of per-
severance required to climb all the vital steps and for instilling confidence in the
decisions I have made throughout this past year.

Francisco José Brilhante Fernandes

vii

Abstract

Typography design is often a time-consuming process that requires skill, exper-
tise, and experience. To hasten this process, machine learning techniques have
been explored to automatically build entire typographical fonts based on a few
manually designed glyph samples. However, such existing systems are still not
practical to aid the creation of functional fonts as their outputs are either in raster
formats or too noisy, therefore requiring considerable manual post-edition. In this
dissertation, we explore a combined approach using deep generative techniques
such as Generative Adversarial Networks and Diffusion Models to generate fonts
in scalable vector graphic formats, allowing for greater flexibility and control in
the design process. Moreover, we put forth innovative contributions to existing
generative systems, yielding significant quantitative improvements. We propose
a new attention-based loss function that aims to better guide the learning pro-
cess of font generation models. Such improvements are followed by the study
of optimal input selection in multi-shot scenarios. We also devise one of the first
diffusion networks specialized in glyph generation, which successfully tackles
much of the visual defects inherent to previous raster methods. These contribu-
tions are embedded in a web application that allows users to generate complete
fonts that closely match the style and features of the provided glyph samples,
offering a tool for type designers and practitioners to create custom typefaces.

Keywords

Typography, Fonts, Automatic Glyph Generation, Generative Models, Generative
Adversarial Networks, Autoencoder, Style Transfer, Diffusion Model

ix

Resumo

O desenho tipográfico é frequentemente um processo moroso que requer com-
petência, perícia e experiência. Para acelerar este processo foram já exploradas
técnicas de aprendizagem de máquina para gerar fontes tipográficas comple-
tas baseadas num conjunto pequeno de amostras de glifos desenhados manual-
mente. Contudo, tais sistemas ainda não são práticos para ajudar à criação de
fontes funcionais, uma vez que os seus resultados ou estão em formatos rasteri-
zados, ou contêm demasiado ruído, exigindo por isso um grande esforço de pós-
edição manual. Nesta dissertação, exploramos uma abordagem combinatória
que utiliza técnicas generativas profundas, como Redes Adversárias Generati-
vas e Modelos de Difusão para gerar fontes em formatos vetoriais, permitindo
uma maior flexibilidade e controlo no processo de design. Para além disso, con-
tribuímos com modificações inovadoras a sistemas generativos já existentes, pro-
duzindo melhorias quantitativas significativas. Estas modificações incluem no-
vas funções de perda baseadas em atenção, que visam orientar melhor o processo
de aprendizagem de modelos de geração de fontes. Estas melhorias são seguidas
de um estudo da seleção de exemplos iniciais ótimos em cenários de múltiplas en-
tradas. Também criámos uma das primeiras redes de difusão especializadas na
geração de glifos, que resolve com sucesso muitos dos defeitos visuais inerentes
aos métodos anteriores de rasterização. Estes contributos estão englobados numa
aplicação online que permite aos utilizadores gerar tipos de letra completos que
se aproximam do estilo e das características das amostras de glifos fornecidas,
oferecendo uma ferramenta para que designers e profissionais do sector possam
criar tipos de letra personalizados.

Palavras-Chave

Fontes, Modelos Generativos, Geração Automática de Glifos, Redes Adversárias
Generativas, Auto-codificadores, Tipografia, Transferência de Estilo, Modelo de
Difusão

xi

Contents

List of Figures xvii

List of Tables xxi

1 Introduction 1
1.1 Contributions . 3
1.2 Document Outline . 3

2 State of the Art 5
2.1 Type Terminology . 5
2.2 Generative Models . 7
2.3 Font Generation Through Modern

Generative Approaches . 11

3 Approach 21
3.1 Glyph Network . 22
3.2 Diff-Font . 23
3.3 Datasets . 25
3.4 Evaluation Metrics . 26

4 Experiments and Results 27
4.1 Glyph Network Analysis and Attention Based Loss 27
4.2 Multi-shot Experiments . 34
4.3 Diffusion Model Approach . 37

5 Web Application 43

6 Methodology and Scheduling 49

7 Conclusion 51

References 53

Appendix A ECAI 2023 Paper Submission 61

Appendix B Artificial Fonts 69

xiii

Acronyms

CNN Convolutional Neural Network. 1

DCGAN Deep Convolutional Generative Adversarial Network. 8, 14, 18

EOS End of Sequence. 10, 16

ETA Estimated Time of Arrival. 44

FID Fréchet Inception Distance. 11

GAN Generative Adversarial Network. xvii, 1, 7, 8, 9, 12, 13, 14, 15, 17, 18, 21, 22

LSGAN Least Squares GAN. 22

LSTM Long Short-Term Memory Network. 9, 10, 11, 16, 17, 19

MAE Mean Absolute Error. 11, 22

MSE Mean Squared Error. 11

NLP Natural Language Processing. 9, 10, 15

OTF Open Type Font. 6, 7

PEGAN Pyramid Embedded Generative Adversarial Network. xvii, 13, 14, 15

RNN Recurrent Neural Network. 9, 10, 15

SOS Start of Sequence. 16

SVG Scalable Vector Graphics. 2, 3, 6, 16

TTF True Type Font. 6, 7

VAE Variational Autoencoder. 9, 16, 17

xv

List of Figures

1.1 Glyphs generated by Ȧdea (left) next to user-edited versions (right).
Figure originally from Lopes et al. [9]. 2

2.1 Type terminology, by Cheng [2]. 6
2.2 GAN Architecture, from Vint et al. [15]. 8
2.3 Typical LSTM module expanded. The cell state of the previous

block is modified by the output of several layers. In turn, these
layers take into account the current and previous inputs fed to the
network. 9

2.4 Overview of the generator from Xie et al. [35]. The latent vectors
are easily accessible and the class of the output is only restricted by
the content images seen during training. 13

2.5 Result samples from Xie et al. [35]. The network attempts to apply
the styles seen on the left side to other characters. 13

2.6 Generated samples using the PEGAN method from Sun et al. [7]
compared to ground truth references. 14

2.7 Samples generated with Glyph Network [5]. This model was trained
on a dataset of 10k fonts of unique designs, which resulted in gen-
erally reliable results, although some imperfections and noise are
noticeable. 15

2.8 Progressive translation of complex input images to vector repre-
sentations using the LIVE framework [42]. The number of allowed
vector paths is progressively increased from left to right until vi-
sual similarity is achieved. 16

2.9 Reconstruction examples by Aoki and Aizawa [43]. Although the
generated samples do not contain any path collisions or defects,
they lack rounded edges and show limited variation in type pa-
rameters if boldness is excluded. 17

2.10 Manipulation of latent font representations done in the SVG-VAE
project [36]. Although each latent space vector is generally multi-
dimensional, it can be projected to the 2D space for human read-
ability and be further manipulated by exploring neighboring values. 17

2.11 Visual outputs provided by He et al. [31] that show the ability of
their Diff-Font model to improve on previous state-of-the-art models. 18

3.1 Overview of the proposed system comprised by the main genera-
tive model, capable of outputting raster images with realistic orna-
ments, and a secondary component responsible for the translation
of such outputs to the vector domain. 21

xvii

3.2 Architecture of Glyph Network. The generator receives some glyphs
of the desired font and tries to generate the remaining ones by pre-
serving the style. Discriminator 1 is tasked with discerning be-
tween real and fake samples while discriminator 2 does the same
on whole stacks. 23

3.3 Diff-Font overview, taken from He et al. [31]. 24
3.4 Visualization of diffusion and reverse processes. β essentially in-

dicates the amount of noise to be added to the original image. As
the timestep increases, β increases in a linear fashion. 24

3.5 Train samples from Capitals64 dataset. 25
3.6 Train samples from the dataset compiled by Parente et al. [52]. . . . 26

4.1 Letter ranking with the original loss setup based on FID (top) and
MSE (bottom). 29

4.2 Examples of masks used for the computation of the L1 loss term.
Original glyphs (1st column), default font with minimal ornaments
(2nd column), the mask computed using the pixel-wise difference
between glyphs of original and default font (3rd column) and mask
obtained with the Zhang-Suen thinning algorithm (4th column). . . 30

4.3 Letter ranking with the L1attention loss setup based on FID (top) and
MSE (bottom). 31

4.4 Letter ranking with the original loss setup based on FID (top) and
MSE (bottom). 32

4.5 Examples of GlyphNet outputs given the subset (D,G,H,O,S,R) as
input for test samples. Each row is composed of the target font at
the top with inputs annotated in red, followed by the generated
outputs. Some undesirable artifacts found on inferred glyphs are
marked in blue squares. 33

4.6 Performance evolution over increasingly larger input sizes. For
each size, 15 distinct random seeds were used for network initial-
ization. Better quality is indicated by lower MSE and FID, as well
as higher SSIM values. 35

4.7 Visual examples drawn from the input subset size experiment where
increasingly bigger input subsets were given to the Glyph Net-
work. The target of each font is found in the top row while outputs
of models with varying input sizes are presented in subsequent
rows. Inputs are annotated in red. 36

4.8 Difference in SSIM values achieved by GlyphNet and Diffusion
Model. The higher the SSIM, the closer are the artificial fonts to
the original ones. 38

4.9 Glyph Interpolation using the proposed diffusion model. 39
4.10 Comparison of outputs produced by the diffusion model and Glyph-

Net given the subset (D,G,H,O,S,R) as input for test samples. Each
row is composed of the target font at the top with inputs annotated
in red, followed by the generated outputs. 41

5.1 Initial mockups of the web application in its default state (top) and
when users upload their design inputs (bottom). 44

xviii

List of Figures

5.2 Examples of fonts generated using our sequential approach. The
model uses the inputs provided by the user to capture the style
and generate the remaining glyphs. These glyphs can then be con-
verted to vectorized representations using off-the-shelf libraries. . . 45

5.3 Final version of the web application. 47

6.1 Schedule followed during the 1st Semester (September to January). 49
6.2 Initial Gantt chart outlining the work planned for the 2nd Semester

(February to June). 50
6.3 Actual schedule followed during the 2nd Semester. 50

xix

List of Tables

4.1 Hyper-parameter values used during training in all experiments
with Glyph Network. 28

4.2 Glyph Network performance metrics per subset for the 15 different
random seed runs with L1attention. 34

4.3 Effect of training data size on Glyph Network performance accord-
ing to FID, MSE and SSIM . 36

4.4 Hyper-parameter values used during the training of the diffusion
model. 37

4.5 Time and memory required to train each approach using the setups
of tables 4.1 and 4.4. The inference time refers to the time required
to generate a single font with 26 characters. 39

xxi

Chapter 1

Introduction

Historically, the manual design of new typographical fonts has proven to require
a great deal of effort, even for skilled professionals [1]. Depending on the pur-
pose and concept of the project, type designers need to define adequate styling
features, such as width, height, weight, kerning, leading, and whether or not to
use serifs or other adornments, among others. Moreover and even more complex
is the process of designing congruent glyphs for all letters, numbers, and other
symbols that compose the target writing system [2]. Designing and refining fonts
often can take weeks or months after years of expertise. For instance, even for
creating geometric fonts, minute optical adjustments are often needed. Therefore,
due to the lack of time and resources, creating tailor-made fonts is many times not
feasible in lower-budget design projects. And even with the availability of a large
number of font families to end-users, editing minute details or ornaments might
still be necessary in many design projects, e.g. in creating new brands, as these
must be unique and distinctive.

For the past few decades, researchers have tried to tackle the aforementioned
problems using computer techniques to automatically generate congruent fonts.
Early research focused on statistical and pipelined approaches consisting of the
decomposition and assembly of existing glyphs into skeletons, outlines, and parts
with different levels of importance [3, 4]. While such approaches may suit more
conventional fonts, i.e. designed according to more strict rules/topology, these
cannot contemplate more unconventional typography, using unusual decorative
elements or more experimental topology. Besides, such approaches have the
shortcoming of being constrained and dependent on initial annotated data.

Meanwhile, the sharp rise in popularity of deep neural architectures in recent
years has brought paradigm shifts to many fields of Computer Science. CNNs
and GANs, in particular, have proven to be powerful architectures in pattern
recognition problems and imaging domains. For example, these architectures
can receive as input large quantities of glyph images and infer the styles and
parameters that distinguish different fonts. As a consequence, they are capable
of outputting visual results that are more believable than the ones produced by
shallow solutions. However, the images produced by CNN models often come
with perceptible degrees of noise and contour imperfections. Even in state-of-
the-art work, this is a visible concern [5–7].

1

Chapter 1

Furthermore, as fonts are typically represented via vector formats (so they can
be scaled arbitrarily) and many of these models generate raster images, naturally,
their outputs are not ideal for type designers to work with, as the glyphs will need
to be converted into vector graphics before designers can properly refine them
and program final fonts. Besides, there has been some work towards the creation
of typefaces using vector formats such as Scalable Vector Graphics (SVG), which,
again, seem to only work reasonably well for conventional typefaces, lacking in
the generation of congruent typefaces when more divergent and experimental
visual glyphs are given as an input. A good example of that is Ȧdea [8], a system
that employs a genetic algorithm to generate innovative individual glyph designs
(see Figure 1.1). As referred by the authors, although Ȧdea is able to generate
distinctive glyphs, human designers are still left responsible for manually post-
editing the outputs and creating all the remaining glyphs for a potential new
font. Hence, we believe deep neural architectures, evolutionary systems such as
Ȧdea and human designers can complement each other to ease the creation of
innovative font designs.

Figure 1.1: Glyphs generated by Ȧdea (left) next to user-edited versions (right).
Figure originally from Lopes et al. [9].

In that sense, this dissertation focuses on the exploration and study of generative
models for generating complete fonts (more specifically, sets of multiple Roman
letters) out of one or a few input glyphs. Furthermore, we provide contributions
to the current state-of-the-art and propose an approach that can be integrated
into existing designing workflows by being able to generate congruent fonts in
a scalable vector format out of less conventional input glyphs such as the ones
generated by Ȧdea. Given what has been stated, the main objectives of this dis-
sertation are summarised as follows:

1. Review the state-of-the-art of generative models that deliver complete fonts
out of one or a few input glyphs;

2. Collect relevant datasets that can be used in the training and validation of
models with varied architectures;

2

Introduction

3. Develop a system, supported by generative models, capable of producing
fonts, in an SVG-like format, with style and design choices assimilated from
glyph input references;

4. Analyse the performance of the developed generative system and compare
it to other state-of-the-art solutions for font generation.

1.1 Contributions

The work done in the scope of this project led to the following contributions:

• Comprehensive review of the state-of-the-art in font generation through
generative approaches;

• Replication and implementation of generative methods based on state-of-
the-art methods and techniques;

• Identification of the strengths and shortcomings of the implemented models
as well as the test of additional enhancements/modifications;

• Proposal of adequate performance metrics and execution of in-depth quan-
titative testing;

• Proposal of a combined approach to tackle the suggested goals for this
project;

• Development of a web application that demonstrates and highlights the ap-
plicability of the approach devised in this dissertation.

1.2 Document Outline

In this first chapter, we introduced the glyph generation problem and highlighted
its challenges. Additionally, we contextualized the project of this dissertation
with preceding works and outlined its main objectives and requirements.

Chapter 2 briefly introduces type design and summarizes key concepts in ma-
chine learning required to understand the state-of-the-art in the automatic gener-
ation of typographical fonts.

In Chapter 3 we propose a novel approach to tackle the referred problem along-
side the proper rationale behind it. Furthermore, the necessary tools to mate-
rialize our approach, which include models, data, and validation metrics, are
introduced in this section as well.

Chapter 4 encapsulates all the experiments conducted with the models devel-
oped throughout the second semester and introduces our contributions to the
font generation task.

3

Chapter 1

In Chapter 5 we present a web application designed to showcase our approach
and the potential for its real-world usage.

Chapter 6 describes the methodology and schedule followed in this dissertation.
Lastly, we conclude with a sum up of the work done and pinpoint future efforts
in Chapter 7.

4

Chapter 2

State of the Art

In this chapter, some key concepts in typography and type design will be intro-
duced to establish a foundation for understanding subsequent discussions about
the quality and type of outputs produced by generative models responsible for
constructing new glyphs and even complete fonts.

After that, a set of model architectures and existing techniques are briefly ex-
plained and the relevancy of each one for the research field of this dissertation
is further discussed in section 2.2. These are complex models, frameworks, and
techniques often used in state-of-the-art approaches for glyph generation hence
the inclusion of an introductory section.

Finally, in Section 2.3, a comprehensive review of the current state-of-the-art ap-
proaches for glyph generation is presented alongside some discussion about the
comparative strengths and shortcomings of each method.

2.1 Type Terminology

In the typography field, the term "font" refers to a single set of characters instanti-
ated from a typeface in a given style (e.g. bold, regular, light, etc) while "typeface"
denotes a font family: a collection of fonts closely related to each other, typically,
designed simultaneously by the same authors [2].

Commercial fonts are typically crafted by experts, referred to as type designers,
who are able to manipulate a multitude of glyph variables in order to meet their
customer’s needs. Although type design is simultaneously an art form and a
complex research field on its own, according to Cheng [2], the following can be
considered the main variables that help distinguish different font families (please
note the terms may slightly vary from author to author [1, 10]):

• Serifs and terminals: terminals occur at the end of character strokes and
may be followed by smaller, perpendicular strokes called serifs. A font
making use of serifs is called a serif font;

• x-height: the height of lower cased letters;

5

Chapter 2

• Weight: the "thickness" or boldness of a character;

• Spacing/kerning: the space between individual characters. While spacing
determines the overall length between words in a text block, kerning specif-
ically adjusts the distance between certain letter pairs, like av, to create a
more natural appearance. Kerning is integral to the font identity, whereas
spacing can be adjusted in software by the writer as desired;

• Contrast: ratio between vertical and horizontal stroke thickness.

While there are many other styling attributes that contribute to font uniqueness
(e.g. the ones visible in Figure 2.1), the aforementioned aspects may suffice in
helping readers to grasp the employed terminology and the visual differences in
glyph quality presented in the imagery of Chapters 2 and 4.

Figure 2.1: Type terminology, by Cheng [2].

Besides identity and styling, fonts must be designed to be used and presented
in a multitude of media. Therefore, modern fonts are typically recorded in vec-
tor formats. Unlike raster images that are defined by matrices of predefined di-
mensions, vectorized objects can be scaled to fit any screen or print size without
suffering any loss of information while maintaining compact file sizes. The True
Type Font (TTF) and Open Type Font (OTF) are two examples of popular formats
for representing fonts in Operating Systems and software applications.

Scalable Vector Graphics (SVG) is an XML-based vector image format developed
by the World Wide Web Consortium that became an open standard for 2D graph-
ics representation [11]. Using SVG, designs can be represented by an ordered

6

State of the Art

sequence of paths (points, lines and bézier curves) and/or composed of primi-
tive shapes such as points, lines and polygons. This is also a popular format for
designing fonts as the designs can be easily turned into final font files such as TTF
or OTF.

2.2 Generative Models

Generative models are often defined as models that capture the joint probability
p(x, y) of a set of original samples X with labels Y in order to create new, unob-
served ones following that distribution [12]. Unlike discriminative models that
attempt to draw boundaries in the data space to learn the posterior distribution
p(y|x), generative models tackle more difficult tasks in capturing more informa-
tion about the training data. There is a multitude of architectures that follow
this broad definition, including the following that will be explored in more detail
in this section to better contextualize current state-of-the-art systems mentioned
later on:

• Generative Adversarial Network (GAN) models

• Variational Autoencoders

• Auto-regressive models

• Diffusion Models

Generative Neural Networks (GANs) [13, 14] are a subset of neural networks
designed to generate new data following the underlying distribution of training
samples.

A GAN is traditionally composed of two networks: generator and discrimina-
tor (see Figure 2.2). The first module attempts to generate new artificial samples
based on an existing dataset while the discriminator’s responsibility is to discern
between real and generated samples fed to it. The loss of the generator depends
on its capability to fool its counterpart, therefore, enabling unsupervised learn-
ing.

D(x) denotes the output probability, computed by the discriminator, that x came
from the training set rather than created by the Generator. D(x) should be high
when x comes from the original data and low otherwise. Meanwhile, G(z) repre-
sents the output sample of the generator given a latent vector z as input. D(G(z))
is the probability of generator output coming from the real-world distribution.
During training, both the generator and discriminator follow a min-max game
with function V(D, G):

min
G

max
D

V(D, G) = Ex∽pdata(x)[log D(x)] + Ez∽pz(z)[log 1 − D(G(z))] (2.1)

where G and D minimize and maximize this loss function, respectively.

7

Chapter 2

Figure 2.2: GAN Architecture, from Vint et al. [15].

GANs found notoriety in image generation problems by incorporating deep learn-
ing architectures and convolutional layers in both generator and discriminator
[16]. To this end, Deep Convolutional GANs (DCGANs) were initially introduced
in 2016 by Radford et al. [16].

DCGANs are particularly useful if one considers the font generation problem
as being part of the broader image generation field of research. Although such
networks are harder to train due to increased depth, multiple research projects
were able to create credible typefaces by giving the label of the desired glyph
and vectors of high-level features, such as boldness, contrast, and use of serifs, as
input to these network models [5–7, 17]. This approach surpasses other methods
by allowing the decoupling between two distinct phases:

1. Feature Extraction - phase in which features with lower dimensionality and/or
humanly interpretable are extracted from a few user-made glyphs;

2. Typeface Generation - GAN-supported system attempts to generate the re-
maining characters taking into account the output of phase one.

Other than generating new samples following underlying probability distribu-
tions, certain generative models can also be used to translate glyph inputs to la-
tent spaces with fewer dimensions, effectively fulfilling the goal of the first stage
(i.e. Feature Extraction). Such is the case of autoencoders and variational autoen-
coders . Autoencoder networks [18] are used to map input data to a latent space
in an unsupervised manner and are composed of two components: the encoder,
which consists of a series of layers with decreasing number of nodes, and the de-
coder, which mirrors the encoder and attempts to generate the initial input based
on the features outputted by the first component.

During training, the parameters of the autoencoder are updated by the recon-
struction error measured between the original data and the data generated from
the latent representation created by the encoder. In general, autoencoders find

8

State of the Art

new representations of the initial data and are mainly used in dimensionality re-
duction, feature extraction, image denoising and image generation tasks.

Variational Autoencoders differ from the initial autoencoder model by ensuring
the encoder network maps the initial input to a continuous latent space fit for
generative purposes [19, 20]. The loss function of VAEs shelters the initial re-
construction error and an additional regularization term responsible for ensuring
that any point sampled from the latent space leads to a meaningful output by the
decoder.

Although VAEs may not be ideal for image generation tasks as standalone mod-
els [21], they can be powerful tools capable of encoding images into latent spaces
with fewer dimensions that can be manipulated by users and fed to other gener-
ative approaches such as GANs and Transformers. These smaller representations
can correspond to a subset of crucial type parameters that define the design of a
font family.

While GANs and Autoencoders have been successful in generating high-quality
raster images, more recent approaches to glyph generation problems using recur-
rent neural networks have started to emerge. These models are now starting to
be used to meet the requirements of technical users in demanding outputs that
can be further manipulated and fine-tuned to their liking.

Long short-term memory networks (LSTMs) are a type of Recurrent Neural Net-
works (RNNs) introduced by Hochreiter and Schmidhuber [22] and designed to
deal with the issues of long-term dependencies in standard RNNs. Most mod-
ern variants [23, 24] are composed of cell blocks arranged in series that compute
an output (ht) based on the input at time t (Xt) and the state of the previous cell
(Ct−1). At each cell block, the previous cell state is altered — information is both
added and deleted — based on multiple learnable layers, enabling the whole net-
work to learn long-term dependencies between input samples (see Figure 2.3).

Figure 2.3: Typical LSTM module expanded. The cell state of the previous block
is modified by the output of several layers. In turn, these layers take into account
the current and previous inputs fed to the network.

LSTMs are widely used in Natural Language Processing (NLP) tasks, speech
recognition, and ECG signal analysis where data is typically represented through

9

Chapter 2

discrete time series — every input sample is highly dependent on previous data.
The font generation problem can take advantage of LSTMs and other RNNs by
shifting from an image generation task to the generation of SVG sequences com-
posed by a defined set of primitive commands such as moveTo, lineTo, cubicBezier
and EOS. Doing that, the advantages of using convolutional layers to easily ex-
tract imaging patterns and font styles would be traded by the ability of LSTMs
to output vectorized representations that are scalable and much more useful for
designers to refine.

In recent years, LSTMs have begun to be replaced by Transformers, which have
shown to be more robust in the majority of NLP tasks. The Transformer was
originally introduced by Vaswani et al. [25] and since then has quickly been es-
tablished as the leading architecture for sequence-to-sequence tasks in the NLP
domain such as translation, summarization, question-answering, speech recogni-
tion, etc.

Transformers outperform traditional recurrent networks by arranging themselves
in encoder-decoder-like architectures, similar to autoencoders, and by incorpo-
rating the concept of self-attention, where each element of a given text sequence
holds an importance scalar to every other token in that sequence. The self-attention
mechanism present in several of its layers effectively allows for global dependen-
cies to be captured, unlike RNNs which are limited to localized relationships. In
contrast to RNNs, both during training and inference, transformers take as input
all the sequence tokens at once and the training procedure allows for the par-
allelization of the decoder optimization. Currently, two of the most prominent
transformer implementations are BERT [26] and GPT [27].

Lastly, novel approaches to image generation have begun to emerge through
the use of diffusion models that outperform prior techniques [28–31]. Such ap-
proaches make use of the same neural architectures employed in GAN genera-
tors, CNNs, and autoencoders but are fundamentally different in terms of their
objective function. These models are trained to predict and eliminate artificially
added noise in training samples. Consequently, they can generate new images
from pure Gaussian noise using conditional variables such as target class and
style. During the training phase, each sample undergoes a diffusion process in
which conditional Gaussian noise is introduced to each pixel. The noise sched-
uler determines the extent of noise added using the following formula:

q(xt|xt−1) = N(xt;
√

1 − βtxt−1, βt I) (2.2)

where xt−1 represents the original sample while xt is that same sample with a
certain level of additional noise. The value of βt controls the magnitude of noise,
usually linearly sampled from the interval [0.0001, 0.02] over T = 1000 steps. A
higher timestep t corresponds to a larger βt, resulting in more noise. This formula
can be iteratively applied to obtain the noisiest version x1000 of the original im-
age x0. As the training progresses, the network, typically instantiated by a UNet
[32], learns the reverse process by predicting the added noise, which can then be
subtracted to approximate the original sample as xt−1 ≈ xt − ϵ0. During testing,
this backward/diffusion process is repeated for T = 1000 timesteps to generate

10

State of the Art

x̄0, commencing with Gaussian noise fed into the network alongside some condi-
tional embeddings.

To evaluate and compare the performance of various generative models, several
metrics are readily available, one of which is the Fréchet Inception Distance (FID)
[33]. The goal of generative models is not merely to replicate the original in-
puts precisely, and hence, FID was specifically devised to measure the similarity
between the distributions of real and generated image sets. Lower FID values
translate to better image quality on generated outputs. It measures the distance
between the activations calculated using one of the final layers of the Inception
Model [34] of real and fake data. These activations are assumed to follow multi-
variate Gaussian distributions (mR, CR) and (mG, CG), respectively, and the FID
value is calculated as the Fréchet distance between the means and covariances of
these two distributions:

FID(G, R) = d2((mG, CG), (mR, CR)))

= ||mG − mR||2 + Tr(CG + CR)− 2
√

CG ∗ CR
(2.3)

Since FID operates on image representations, the glyph outputs of LSTMs and
Transformers, typically expressed through sequences of SVG instructions, need
to be translated to raster forms in an intermediate step before submission for
evaluation. Other possible metrics for comparing real and artificial font images
include Mean Squared Error (MSE) and Mean Absolute Error (MAE), which di-
rectly compute the differences between individual pixel values and output the
corresponding mean across each image pair. SSIM is a metric commonly used as
well for performance comparison in image generation tasks. In SSIM, luminance,
contrast, and structure values are computed for two images and then combined
according to weights α, β, γ:

SSIM(G, R) = l(R, G)α + c(R, G)β + s(R, G)γ (2.4)

In contrast to FID, the Structural Similarity Index (SSIM) scores are presented on
a scale of -1 to 1, with a value of 1 indicating complete similitude between the
two images being compared.

2.3 Font Generation Through Modern
Generative Approaches

Automatic font generation is a long-studied problem with a wide range of solu-
tions being proposed throughout the years. One of the earliest systems created
by Suveeranont and Igarashi [3] allowed users to compute a new design by pro-
viding a single glyph reference in what can be considered the first one-shot ap-
proach. In this system, a small database of template fonts was compiled where
each glyph is represented by the skeleton and outline, thus capturing their struc-
tural topology. When the user provides a given glyph with stylistic choices to
be reproduced in the remaining characters, these topology features need to be

11

Chapter 2

drawn by the user so that the system can fetch a unique combination of examples
found in the database that when blended together match the user input. After
finding a proper match, the topology is equally blended for the reaming glyphs,
thus creating a new font. The main fallbacks of this approach are the reliance
on the annotated dataset with topological information, hence why the original
database contains only 32 examples, and the incapability to generate novel de-
signs since the outputs are a combination of a very small set of already existing
fonts. The model is not flexible enough to accommodate stylized/ornamented
fonts which contain wildly different topological elements not found in any other
design. Even the authors question its efficacy in covering two distinct lowercase
variations of the same letter (e.g. a vs a).

Another classical approach can be found in the rule-based application developed
by Cunha [4]. After users provided some initial glyph designs, this application
was capable of assembling the remaining glyphs by employing a set of rules
based on a pre-established relationship scheme between lowercase Roman letters.
Not only the users had to provide multiple vectorized glyphs, but they also had
to manually identify specific typography components for each provided glyph
through the selection of SVG control points. These components, such as stems,
descenders, and loops, were then reused in the automatic generation of the char-
acters that were not initially provided by users according to the pre-established
rules (e.g. the lowercase m can be obtained through the assembly of shoulder
and stem from lowercase n). In spite of the generation process behaving in a very
predictable way, this system was limited by the initial set of fixed rules, making
it unreliable in situations where such instructions were not applicable. Further-
more, users were required to have prior typography knowledge in order to prop-
erly annotate inputs. While this requirement is acceptable in systems conceived
to assist type designers in the early design stages, it becomes unattainable when
targeting the general public.

In the opposite sense, the Ȧdea system developed by Lopes et al. [8] was able
to generate an unlimited supply of innovative glyph designs through the imple-
mentation of an evolutionary algorithm. In this system, a population of designs
for a single Roman Character is evolved until the user obtains a satisfactory out-
come. Each individual is encoded by an SVG path consisting of Line and Move To
instructions limited to a 100x100 pixel canvas and initialized either by a random
Google Fonts typeface or a random SVG sequence. Given the stochastic nature of
the generation process, the system was able to achieve stylized glyphs composed
of unconventional shapes. However, users are unable to control the design pro-
cess and are limited to choosing the final output from the evolved population.
Another significant drawback of this approach is its limitation to evolving a sin-
gle character at a time. Therefore, if users want to incorporate the system’s design
into their work, they must manually design the remaining characters themselves.

Xie et al. [35] were able to successfully generate rasterized Chinese characters
and thus achieving low FID and MSE scores in unseen samples. Their GAN-
based system requires a content image, containing the target character, and a style
image carrying an unrelated glyph with distinct design features and desired style
(see Figure 2.4). These inputs are then encoded to latent vectors and fed to the

12

State of the Art

generative network that transfers the desired style into the first character.

Figure 2.4: Overview of the generator from Xie et al. [35]. The latent vectors
are easily accessible and the class of the output is only restricted by the content
images seen during training.

Figure 2.5: Result samples from Xie et al. [35]. The network attempts to apply the
styles seen on the left side to other characters.

The inclusion of the content encoder in the final generator architecture appears to
be redundant given that other related approaches rely on decoders conditioned
on the output glyph labels, which effectively enforces the generation of images
in those desired classes [5, 36]. Nonetheless, the employment of style transfer
techniques is an advantage over other solutions because, instead of solely rely-
ing on abstract/latent information such as style or label encodings, the model is
guided by image references in the generation of the output. According to Figure
2.5, this method is able to generate very clean Chinese glyphs with an identical
style to the ones given as reference. To corroborate the robustness of this method
is the fact that the neural network employed here was incorporated in posterior
state-of-the-art models such as He et al. [31].

In their work, Sun et al. [7] integrated an encoder-decoder network into the gen-
erator of their GAN framework for creating Chinese fonts. The proposed frame-
work, known as PEGAN, aims to generate multiple styles for a given Chinese

13

Chapter 2

glyph by utilizing an encoder-decoder module inspired by the U-Net [32] archi-
tecture. Each encoding layer takes both the activation of the preceding layer and
the downsampled source image as input (via the refinement connection). The de-
coding layers receive the output of the preceding layer along with the encoding
of the mirrored encoding layer (via the skip connection). The results obtained
from this approach exhibit slight improvements compared to the zi2zi method,
effectively addressing the reported stroke completion issues present in zi2zi. The
zi2zi method developed by Tian [6] is a competing approach for generating Chi-
nese calligraphy that employs the GAN architecture and is able to manipulate la-
tent style vectors as well. The primary distinction between these two approaches
lies in their generator architecture and loss implementation.

Figure 2.6: Generated samples using the PEGAN method from Sun et al. [7]
compared to ground truth references.

This approach shows that minor improvements made to already well-established
architectures can, in fact, enhance the results in targeted research domains and
proposes the use of accuracy values computed with an independent classifica-
tion model as a possible quantitative metric in font generation tasks. However,
the paper’s visual results are relatively limited in quantity and may not possess
the same visual impact as other works, such as Azadi et al. [5], particularly re-
garding the complexity of ornaments (see Figure 2.6). Nevertheless, the gener-
ated glyphs showcase in the original paper systematically exhibit well-defined
edges and clear variations in boldness, contrast, and stroke endings.

Out of all the solutions that rely on raster images as final outputs, Azadi et al.
[5] achieved the most promising results with their Glyph Network by incorpo-
rating up to six ResNet layer blocks in its DCGAN generator and using stacks of
multiple pre-made glyphs as input to generate the remaining characters.

As seen in Figure 2.7, this model excels at reconstructing complex details such
as terminals, serifs, and outline patterns present in the initially observed subset
of characters and translating them to the unseen ones in a coherent manner (e.g.
the ornaments in the H crossbar are preserved in B and C glyphs). Although it is
out of our project’s scope, the authors also employed a second network capable
of filling the results of the first network with color gradients and removing noise

14

State of the Art

Figure 2.7: Samples generated with Glyph Network [5]. This model was trained
on a dataset of 10k fonts of unique designs, which resulted in generally reliable
results, although some imperfections and noise are noticeable.

artifacts to improve the quality of the outputs even further.

A significant limitation of this method is the requirement to obtain multiple pre-
designed characters to achieve satisfactory results. In the original paper, the au-
thors used 6 images per font as an input to achieve the quality depicted in Figure
2.7. Our replication results exposed in Chapter 4 confirm a significant perfor-
mance decrease when fewer initial characters are provided to the model. Another
disadvantage of this work over other approaches [7, 35] is its incapacity to create
lowercase glyphs, i.e. can only generate the 26 capitalized western letters and
requires major architectural changes if one desires to expand this subset.

Although deep convolutional networks, such as the Glyph Network [5], PEGAN
[7] and others [6, 35], are capable of producing artificial typefaces with complex
ornaments and features, the majority of the implementations are plagued by out-
puts of low resolution with perceptible stroke imperfections. These images alone
are not ideal to be used as final fonts given that they do not scale well to higher di-
mensions and lack the rigorous quality demanded by type designers. Much more
post-processing and manual work would be required before arriving at designs
with satisfactory quality.

To overcome the limitations of raster-based models, there is already research in
image-to-vector translation techniques [37–42]. One notorious work is the LIVE
framework developed by Ma et al. [42] that is capable of translating images of
any domain such as Emojis, handwritten characters, and clipart images to vector
representations controlled through a number of bézier paths pre-defined by end-
users (see Figure 2.8). Since this framework is model-free, it is not constrained to
specific training datasets and can be used in a variety of applications, including
the translation of raster fonts generated by the GAN models previously men-
tioned in this section.

Besides GAN-based approaches, the alternative paradigm in font generation re-
sides in applying knowledge acquired in the Natural Language Processing (NLP)
domain by using RNNs and Transformers to process and generate sequences of

15

Chapter 2

Figure 2.8: Progressive translation of complex input images to vector represen-
tations using the LIVE framework [42]. The number of allowed vector paths is
progressively increased from left to right until visual similarity is achieved.

SVG-like commands representing individual characters.

Aoki and Aizawa [43] developed a Transformer for generating Chinese charac-
ters that attains consistently better results when compared to other parallel ap-
proaches [44]. In this architecture, the encoder extracts feature vectors from a
style reference while the decoder is given those vectors along with a content
reference to output the final glyph vector consisting of a sequence of the SVG
commands MoveTo, LineTo, Cubic Bézier Curve, Close Path, <SOS> and <EOS>.
While this implementation can be used for western alphabets, it is limited to the
generation of stroke outlines and is incapable of filling the glyphs with textures
like the ones seen in Figure 2.7.

When compared to raster approaches, where noise found in individual pixels
does not have a perceptible impact on the overall model performance, this sys-
tem requires much more technical control and pre-processing over the samples
given to it. Fonts in SVG format can typically be composed of long, complex
sequences of instructions that need to be simplified alongside the normalization
of each command argument while still ensuring the initial glyph structure is not
lost.

To the best of our knowledge, the contributions of Lopes et al. [36] are to date
the largest in typography generation tasks. By coupling a convolutional varia-
tional autoencoder with a network of stacked LSTMs, the authors were able to
create a system that not only produces customizable glyph vectors but that also
is interpretable and explainable as in no other approach reviewed.

By training the VAE with a large-scale dataset of 14M font characters, it was possi-
ble to learn the latent representation of any glyph, which can be manipulated and
exploited to alter the stylized glyph output in a nuanced and controlled manner,
as seen in Figure 2.10. Furthermore, the usage of the autoencoder network allows
the partitioning of the font generation problem into two smaller tasks. Unlike in

16

State of the Art

Figure 2.9: Reconstruction examples by Aoki and Aizawa [43]. Although the gen-
erated samples do not contain any path collisions or defects, they lack rounded
edges and show limited variation in type parameters if boldness is excluded.

previous methods, the LSTM network is not simultaneously responsible for the
identification of key features in source glyphs and the generation of new ones
based on those features, leaving the first duty for the VAE.

Figure 2.10: Manipulation of latent font representations done in the SVG-VAE
project [36]. Although each latent space vector is generally multidimensional, it
can be projected to the 2D space for human readability and be further manipu-
lated by exploring neighboring values.

One limitation of the dataset used in this project is that it only includes web-
oriented fonts that do not have highly decorative styles like the dataset in Azadi
et al. [5]. These fonts only vary in basic features like boldness, tilt, and serifs.
Thus, it remains uncertain how well the model presented by Lopes et al. can
handle more intricate glyphs.

Aside from systems designed to output vector representations, much of the noise
artifact issues inherent to GAN models seem to be surpassed in recently devel-
oped diffusion networks such as He et al. [31]. Although diffusion networks
specialized in glyph generation are yet scarce, such paradigm has proven its abil-
ity to achieve comparable performance scores and effectively addresses problems
related to stroke imperfection and edge jitteriness that were prevalent in earlier

17

Chapter 2

Figure 2.11: Visual outputs provided by He et al. [31] that show the ability of
their Diff-Font model to improve on previous state-of-the-art models.

GAN methods. Some of these improvements are evident in the visual results
shown in Figure 2.11. Sections 3.2 and 4.3 provide a comprehensive analysis of
the Diff-Font model, developed by [45].

Summary

To summarize, a diverse range of generative methods has been utilized for font
and glyph generation. Each method presents its strengths and drawbacks given
that each one is specialized in a specific writing system, output format, or the type
and number of inputs required to function properly. While classical approaches
that exploit glyph typology rules are computationally less complex than deep
generative models, they struggle to complement the design of a wider variety of
fonts and often require user-annotated data [3, 4].

A large majority of modern approaches rely on the Deep Convolutional Gen-
erative Adversarial Network (DCGAN) architecture [16] to allow non-technical
users to generate complex designs based on a single or a small set of input glyphs,
often with very minimal effort [5–7, 35, 46–49]. The main drawbacks of this
paradigm are the image noise and imperfections that plague the generated out-

18

State of the Art

puts and the fact that these approaches are only capable of outputting raster
representations. These outputs need to be corrected and translated to vector-
ized representations later on, leading to unexpected burdens imposed on users.
Furthermore, the majority of these works target Eastern writing systems such as
Japanese and Chinese and do not disclose achieved performance results through
the measurement of quantitative metrics, leaving the potential for its applicability
to Western glyphs unknown.

The alternative paradigm relies on LSTMs and Transformers to generate vector-
ized fonts [36, 43, 44], eliminating prior noise issues altogether. These approaches
are often more complex and required larger quantities of pre-processed to achieve
satisfactory results, which is systematically not provided by the original authors
in order to properly replicate results. Recent advancements in the development
of Vision Transformers [50, 51] and Diffusion Models [28–30] also begin to sur-
pass GAN-based approaches in broader imaging domains but their application
in font generation is yet reduced [31].

Another observed trend in font generation systems is the adoption of encoder-
decoder architectures that enables better user interpretability of outputs in ma-
chine learning models [35, 36, 48, 50, 52]. The usage of Autoencoders and Vari-
ational Autoencoder structures allows the extraction of style from input glyphs
and posterior representation in 1D vectors that map human-readable type param-
eters such as boldness and contrast. This is an advantage over other approaches,
given that it allows users to slightly modify their designs mid-generation process
in an easy way.

19

Chapter 3

Approach

As previously mentioned, the goal of this project is to devise a system capable of
generating stylized fonts based on as few input glyphs as possible. Besides, the
output of the system is desired to be easily editable by type designers such that
the time spent fine-tuning the output must be significantly lower than the time
required to design each glyph from start to finish. Furthermore, we aim to make
the system available online through a user interface for it to be as accessible as
possible to type designers and practitioners with no coding expertise.

Given the lack of open-source datasets containing vectorized Roman glyphs and
the abundance of research in the image generation domain, as reported in Sec-
tion 2, we opted to partition the original problem into two smaller tasks: give
the primary focus on generating complex glyphs with state-of-the-art generative
approaches in the raster domain and subsequently transforming those artifacts in
vectorized representations using general-purpose systems such as the LIVE sys-
tem [42]. An outline of our approach to the glyph generation problem is outlined
in Figure 3.1.

Figure 3.1: Overview of the proposed system comprised by the main generative
model, capable of outputting raster images with realistic ornaments, and a sec-
ondary component responsible for the translation of such outputs to the vector
domain.

Some of the GAN architectures presented in Section 2, which showed the most
promising results and potential for improvements, were replicated, modified,
and subsequently exploited to achieve the results shown in Section 4. The pri-
mary objective of this chapter is to thoroughly analyze the GlyphNet and Diff-
Font models, elucidating their potential in contributing to the goal of this dis-
sertation. Furthermore, it aims to establish a foundational understanding neces-

21

Chapter 3

sary to comprehend the crucial modifications we propose for the loss functions
and inputs of these state-of-the-art techniques. These proposed changes result in
trained models exhibiting enhanced overall performance.

We first summarize how the original Glyph Network operates and establish a
baseline training setup in Section 3.1, followed by Section 3.2 where Diff-Font
[31] is presented. This is a diffusion model used as a guiding architecture for
our own diffusion approach in later stages of experimentation. In Section 3.3, we
provide an overview of the dataset Capitals64, which is utilized in all experiments.
Additionally, we present new data specifically designed for addressing the glyph
generation problem and serving as a benchmark for future approaches. Finally,
Section 3.4 introduces the metrics employed to conduct the quantitative analysis
and comparisons performed on the presented models.

3.1 Glyph Network

The Glyph Network, proposed in Azadi et al. [5], presents a modified version of
the GAN framework that exhibits the capability to produce more complex fonts
when compared to the remaining raster methodologies discussed in Section 2.
The adoption of this network over others was also influenced by its application to
the generation of Roman characters in the original work. Nevertheless, the initial
paper lacks a comprehensive quantitative performance assessment, making it an
ideal choice for replication studies before advancing with modifications to some
of its core architecture components.

The Glyph Network includes three key modifications to the original GAN [14].
Firstly, the input to the generator (G1) consists of a 26-channel font stack, with
each channel corresponding to a unique grayscale glyph in a 64x64 tensor. Some
of these input glyphs are hidden, meaning that their corresponding channels are
filled with null/zero values. The generator’s goal is to reconstruct all 26 channels,
including those that are not included as the input subset.

Secondly, the Glyph Network includes not only a global discriminator (D2) that
determines whether a given stack is fake or real but also a smaller network that
acts as an auxiliary discriminator for each individual glyph. The network com-
putes the probability of each glyph in the stack being fake. These two loss com-
ponents output LSGAN losses that are combined with the L1 Loss during the
backpropagation phase, which leads to the third architectural change to the GAN
framework.

In addition to the typical discriminator loss, the generator optimization process
is also influenced by direct penalization values computed between the generated
output and the ground truth in the form of Mean Absolute Error (MAE) (also
known as L1 norm). The full loss function is defined as follows:

L(G1) = λ1LL1(G1) + LLSGAN(G1, D)

= λ1LL1(G1)

+ Llocal
LSGAN(G1, D1) + Lglobal

LSGAN(G1, D2),

(3.1)

22

Approach

where G1 denotes the generator network, D1 and D2 refer to the local and global
discriminators respectively and λ1 is the weight of the L1 loss component. A
broad illustration of this architecture can be seen in Figure 3.2.

Figure 3.2: Architecture of Glyph Network. The generator receives some glyphs
of the desired font and tries to generate the remaining ones by preserving the
style. Discriminator 1 is tasked with discerning between real and fake samples
while discriminator 2 does the same on whole stacks.

3.2 Diff-Font

Diff-Font is a conditional Diffusion Model developed by He et al. [31] for the
generation of Chinese and Korean characters in 64 × 64 images. It is composed
of two modules: a feature extractor that encodes the feature attributes of a given
character A into a latent space, and the diffusion network which uses feature
attributes of A and the class embeddings of character B to generate the desired
character B from Gaussian noise.

Figure 3.3 demonstrates the incorporation of feature attributes obtained by a pre-
trained style encoder developed for DG-Font in Xie et al. [35] in the proposed
approach. These attributes are concatenated with the class embeddings repre-
senting the target character in a 1D vector of 512 bits. The resulting concate-
nation is then added to the activation values of several layers within the diffu-
sion network. The diffusion network, based on the U-Net architecture, comprises
downsampling ResNet blocks [53] followed by upsampling blocks and follows
the diffusion training process proposed by Ronneberger et al. [32].

During training, multiple glyph images xt with varying degrees of added noise
are fed to the U-Net which in turn predicts the added noise levels based on

23

Chapter 3

Figure 3.3: Diff-Font overview, taken from He et al. [31].

(xt, t, z), leading to a simple MSE loss function between the real ϵ and predicted
noise ϵ0(xt, t, z). While t ∈ [1, 1000] denotes the noise timestep (see Figure 3.4),
z = f (c, s) is the 1D vector containing the class embedding and encoded style
produced by the pre-trained encoder.

Figure 3.4: Visualization of diffusion and reverse processes. β essentially indi-
cates the amount of noise to be added to the original image. As the timestep
increases, β increases in a linear fashion.

At inference time, a glyph with the desired style is given to the style encoder,
producing s, and a 64 × 64 Gaussian noise image x1000 is initialized. The so-
called reverse/denoising process begins by feeding forward x1000 to the diffusion
network alongside the newly produced s, t = 1000, and the desired glyph class c
to which the style will be transferred. The network estimates x999 which is then
fed back to it repeatedly, completing the denoising process in a total of 1000 steps
until a glyph x0 within the desired class and style is achieved.

GlyphNet, unlike the Diff-Font model, has the capability to generate multiple
glyphs simultaneously. In the case of Diff-Font, the process mentioned earlier
must be repeated 26 times in order to generate all the glyphs comprising a par-
ticular font. This limitation can result in slower generation times, as discussed

24

Approach

in more detail in Section 4.3. Additionally, a fundamental distinction lies in the
fact that GlyphNet is regarded as a multi-shot approach, while Diff-Font follows
a one-shot approach where a single glyph is provided to generate the entire font.
In theory, GlyphNet has the ability to combine design elements from multiple in-
put glyphs when conceiving a new font, whereas Diff-Font must extract the style
essence solely from a single input.

3.3 Datasets

In order to train generative models and systematically evaluate the performance
of the proposed approach and the quality of its outputs, a large and varied enough
dataset was required. These requirements led to the use of the Capitals64 dataset
collected by Azadi et al. [5] which includes 12K grayscale raster fonts with vary-
ing serifs, boldness, and textures, each composed of 26 ASCII uppercase letters
framed within 64x64 canvases. The dataset is divided into train, test, and valida-
tion splits in a ratio of 10:1:1. A small data subset is shown in Figure 3.5.

Given that all symbols were fit to the same dimensions, some glyphs (i.e. W,
M, T) found in the original fonts were deformed. Therefore, any model trained
with this dataset is not equipped to learn features such as relative heights and
sidebearings.

Figure 3.5: Train samples from Capitals64 dataset.

Later on, a second dataset was added to the data pool to assess whether training

25

Chapter 3

data size significantly impacted the model performance. This was accomplished
using fonts compiled by Parente et al. [52] from Google Fonts. This is a smaller
dataset composed of 6k fonts but includes much more variation of font styles as
seen in Figure 3.6.

Figure 3.6: Train samples from the dataset compiled by Parente et al. [52].

3.4 Evaluation Metrics

In order to compare the performance of different models across the conducted ex-
periments, FID [33], MSE and SSIM [54] were chosen as quantitative evaluation
metrics. While SSIM is a metric that measures similarities between two images,
according to luminance, contrast, and structure, MSE computes the mean square
errors of pixel values and FID measures the difference between generated and
real images in a distribution-wise manner with the aid of InceptionNet [34] (as
previously studied at the end of Section 2.2). MSE and SSIM are computationally
less complex, while FID offers quantitative evaluation closer to the visual per-
ception of humans [55]. These are some of the metrics commonly employed in
computer vision tasks and, more specifically, the ones used in the evaluation of
current state-of-the-art approaches to font generation [5, 7, 31, 35]. Due to the
stochastic nature of the training process, each model configuration was trained in
up to 15 distinct RNG seeds and the mean values of each metric were computed
on the test data.

26

Chapter 4

Experiments and Results

This chapter showcases the visual results and quantitative analysis performed
on the models discussed in the previous chapter, designed to support our auto-
mated font generation approach. The numerical analysis serves as a benchmark
for comparing the subsequent modifications we propose for these state-of-the-art
generative methods, aiming to enhance the quality of their outputs.

We begin by defining experimental setups and benchmarking the original Glyph
Network in light of multiple quantitative metrics in Section 4.1. This thorough
analysis leads to the identification of some shortcomings in the original model as
well as key insights into how the inputs affect the overall performance. In Sec-
tions 4.1 and 4.2, we propose core changes to the loss function of the network in
order to overcome these weaknesses. These changes are duly tested alongside
further experiments on the network inputs. Finally in Section 4.3, a novel ap-
proach to the generation of Roman characters based on Diff-Font is presented in
hopes of circumventing the downsides of GAN-based approaches altogether.

4.1 Glyph Network Analysis and Attention Based Loss

The original Glyph Network can receive up to 26 arbitrary characters as input to
generate a single given font, meaning that it empowers the user to handpick the
initial seedings that will kickstart the font creation process. Given the absence of
objective analysis in the original paper, we conducted a comprehensive study to
assess the performance of the network when systematically different inputs were
provided. We evaluated the results based on metrics such as MSE, SSIM, and FID
to obtain quantitative measures of its performance.

To account for the inherent variability caused by the stochastic nature of the net-
work initialization and training process, a total of 15 models were trained using
the Capitals64 training data. Each model was trained using only 3 randomly se-
lected input glyphs per font. Subsequently, these trained models underwent 26
separate tests, with each test utilizing a single fixed glyph as input. To ensure
randomness had no impact on the final results, multiple models were trained us-
ing different random number generator (RNG) seeds, specifically ranging from 0

27

Chapter 4

to 14.

Parameter Value
Epochs 300

Batch Size 64
Training Pool 9121 fonts

Validation Pool 1472 fonts
Test Pool 1559 fonts

Learning Rate 0.0002
L1 weight λ1 100

Optimizer Adam
LR Decay Linear in last 100 epochs

Adam Momentum Decay β1 0.5
Leaky ReLu Negative Slope 0.2

Table 4.1: Hyper-parameter values used during training in all experiments with
Glyph Network.

By assessing how each isolated glyph impacted the overall performance of the
network, this experiment enabled the empirical search for the most informative
letters in font generation contexts thus providing valuable insights to users of
such generative systems. It also allowed the establishment of a performance
baseline for future experiments. To accomplish this evaluation we set the hyper-
parameters to the values defined in Table 4.1 throughout all the following exper-
iments.

After the training process, each model was tested on Capitals64 test data and its
performance was evaluated using MSE, SSIM, and FID scores. The quantitative
results were then grouped by input glyph. Results depicted in Figure 4.1 reveal
that, when fed to the network individually, K, R and H contribute the most to the
reconstruction of the original dataset while I, J and T are the least informative.
This trend remained equal across FID, SSIM and MSE metrics. The results are
in line with visual human perception, since, the capital letters I, J, and T often
lack round and diagonal strokes which would make it difficult to guess the ap-
pearance of other glyphs containing such features. The letter ranking experiment
highlights the significant influence of input selection on the quality of results ob-
tained from both one-shot and multi-shot approaches like GlyphNet. However,
it is not sufficient to assess the optimal subset of N > 1 input glyphs. It is theo-
retically possible for the combination of two suboptimal glyphs to contain more
style information than a subset consisting of the best-performing glyphs (namely,
K and H). This concern is subsequently addressed in further experiments.

Even though this generative approach reaches better numerical results when com-
pared to other state-of-the-art systems, the visual outputs often come with defects
that hinder its integration in our final proposed approach. As illustrated in Figure
4.5, the network is capable of capturing the overall style present in the original
data but struggles with highly ornamented fonts. Additionally, it does not accu-
rately recreate intricate details, leading to jagged and noisy outcomes instead of
what would otherwise be straight lines. These shortcomings are evidenced by the

28

Experiments and Results

Figure 4.1: Letter ranking with the original loss setup based on FID (top) and
MSE (bottom).

blue annotations in Figure 4.5, leading to the conception of the following novel
contribution.

To guide the training process to retain the particularities of each target typeface,
the L1 loss component was modified in order to accommodate attention maps
of the same size as the model inputs (26x64x64). For each training example, a
unique weight mask was built in order to attribute more importance to regions
of the input tensor that contained distinctive font features. The final L1 loss com-
ponent of the generator loss function is obtained by applying the dot-product of
the attention maps with both network outputs and respective targets:

L(G1) = λ1LL1(y1 · M, G1(x1) · M), (4.1)

where G1(x1) is the network output given sample x1 with target y1 and M is the
attention map. These three parameters are matrices of size (26x64x64).

We explored the first version of these masks by computing the pixel-wise differ-
ence between a font devoid of ornaments (Code New Roman) and the target font.

29

Chapter 4

In a second version, these were obtained by applying the Zhang-Suen thinning
algorithm [45] to each glyph, in order to bridge the flaws found in some glyph
masks where they were very similar to the default font (i.e. resulting in an unus-
able attention mask). The Zhang-Suen thinning algorithm is an algorithm used
to thin 2d objects found in binary images. When applied to glyphs, this thinning
process leads to a close resemblance of glyph skeletons which can be further pro-
cessed to identify joints and terminals. A few examples of these two processes are
shown in Figure 4.2. In the following experiments, the three loss configurations
will be referred to as L1original, L1attention and L1skeleton, respectively.

Figure 4.2: Examples of masks used for the computation of the L1 loss term.
Original glyphs (1st column), default font with minimal ornaments (2nd column),
the mask computed using the pixel-wise difference between glyphs of original
and default font (3rd column) and mask obtained with the Zhang-Suen thinning
algorithm (4th column).

The previous single glyph experiment was then repeated two more separate times
with the new alternative loss functions L1attention and L1skeleton, leading to the re-
sults shown in Figures 4.3 and 4.4. By repeating the experiment in which a single
glyph is visible at a time, we were able to evaluate the effectiveness of these novel
loss approaches in handling diverse glyph structures. Furthermore, we compared
their performance with the baseline GlyphNet setup, allowing us to assess their
robustness.

The trends observed with the original loss remained equal in the new loss setups
and across all three metrics. Moreover, when the training loss is directly tied to
glyph-specific ornaments, GlyphNet achieves slightly better performance. This
indicates our novel attempt at guiding glyph generation through attention masks
can lead to better quantitative results. Moreover, the performance variance mea-

30

Experiments and Results

Figure 4.3: Letter ranking with the L1attention loss setup based on FID (top) and
MSE (bottom).

sured over multiple models remained equal, specifically for glyphs I, J, and T.

However, comparative results shown in Figure 4.4 (b) between L1attention and
L1skeleton models are not conclusive since performance differences are inconsis-
tent across different input glyphs. For example, given that the capital letter O
does not contain joints or terminals in most typefaces, the attention mask com-
puted using the Zhang-Suen Algorithm is not as effective, hence the decrease in
performance. For that reason, the remaining experiments presented in this dis-
sertation were conducted using the L1attention loss function in place of the original
one.

31

Chapter 4

Figure 4.4: Letter ranking with the original loss setup based on FID (top) and
MSE (bottom).

32

Experiments and Results

Figure 4.5: Examples of GlyphNet outputs given the subset (D,G,H,O,S,R) as in-
put for test samples. Each row is composed of the target font at the top with
inputs annotated in red, followed by the generated outputs. Some undesirable
artifacts found on inferred glyphs are marked in blue squares.

33

Chapter 4

4.2 Multi-shot Experiments

After studying how each individual glyph contributed to font inference, a subset
of the 6 best-performing glyphs (B,D,K,H,N,R) was stacked to compare against a
subset that a typeface designer typically starts the designing process with for a
novel typeface (D,G,H,O,S,R) [56].

In this experiment, 15 different runs for the two groups of 6 letters were collected,
each composed of model instances trained and tested solely on one of the input
subsets. L1attention loss was used while all other setup elements remained un-
altered. The decision to adopt L1attention loss in the following experiments was
based on the increased performance measured against L1original loss. On aver-
age, the new loss function obtained 12.5 FID scores lower than the original one.
The variation in performance observed with L1skeleton was not enough to continue
using it.

Table 4.2: Glyph Network performance metrics per subset for the 15 different
random seed runs with L1attention.

{K, H, B, N, R, D} {H, O, D, S, G, R}

MSE(↓) FID(↓) SSIM(↑) MSE(↓) FID(↓) SSIM(↑)

Mean 0.0611 7.4264 0.7283 0.059 6.5348 0.7372
StD 0.0027 1.5386 0.0117 0.0002 0.0701 0.0007

Despite subset 1 being composed of the most informative letters found from
the first experiment, it showed less precision and lower generative performance
when compared to subset 2, as shown in Table 4.2. The differences in perfor-
mance measured with MSE between these two subsets are statistically signif-
icant according to the Wilcoxon Signed-rank test with a 95% confidence level
(p − value = 0.03125).

The performance of the single glyph experiment significantly improves when the
number of inputs is increased from 1 to 6 and they are constant across all train-
ing fonts, as observed when comparing the evaluation metrics to the previous
multi-shot setup. These results are further reinforced by the preliminary study
conducted in the original paper, which also utilized multiple input glyphs to ob-
tain their visual outputs. Furthermore, since the original Glyph Network model
can accommodate up to 26 input glyphs to generate a given font, it is rather rel-
evant to observe how increasing the number of input glyphs impacts the overall
performance of the model. For that reason, in a third experiment, the network
was trained and tested on increasingly bigger input sizes. Starting with the 3 best
letters found in the Letter Ranking experiment and up to the top 9, the network
was trained using L1attention loss up to 300 epochs. Its performance was measured
with MSE, FID and SSIM metrics. Results computed across all three metrics, de-

34

Experiments and Results

picted in Figure 4.6, indicate the model performance increases in a linear fashion
the more initial examples are given to it.

Figure 4.6: Performance evolution over increasingly larger input sizes. For each
size, 15 distinct random seeds were used for network initialization. Better quality
is indicated by lower MSE and FID, as well as higher SSIM values.

Figure 4.7 visually shows how this experiment was conducted. The first row of
each three depicted fonts is composed of the expected targets while the following
rows are produced by model instances trained on 3 to 9 fixed input glyphs.

Although one might be tempted to increase the input size even further to obtain
fonts with more quality, this strategy clashes with the initial goal of the presented
system to aid typeface designers in the creation process of new fonts. If the user
has already built a sizable collection of examples on its own, using a generative
model to create the remaining characters, which in most cases need to be cleaned
and revised, might be more time-consuming than assembling them by hand.

Figure 4.5 shows a varied sample of fonts generated using the original loss func-
tion and our novel attention-based approach. Even though the proposed tech-
nique rectifies some of the imperfections annotated with blue markers and the
quantitative analysis shows objective improvements, it is still not enough to ob-
tain usable glyphs of the most complex fonts found in our dataset pool (see ex-
amples 4, 9, 11).

In a last attempt to improve the performance of the network, we expanded the
training dataset with fonts from the second dataset presented in section 3.3. To
assess whether or not this increase in training data would affect the output qual-
ity, a combined test pool was assembled by joining both datasets’ test splits. A
group of 15 models was trained and tested on the original dataset, while another
group was subjected to this new data arrangement, leading to the results of Table
4.3. In spite of the 50% increase in training data, overall the performance of Glyph
Network remained unaltered across all metrics.

35

Chapter 4

Figure 4.7: Visual examples drawn from the input subset size experiment where
increasingly bigger input subsets were given to the Glyph Network. The target
of each font is found in the top row while outputs of models with varying input
sizes are presented in subsequent rows. Inputs are annotated in red.

Table 4.3: Effect of training data size on Glyph Network performance according
to FID, MSE and SSIM

Original Dataset Combined Dataset

MSE(↓) FID(↓) SSIM(↑) MSE(↓) FID(↓) SSIM(↑)

Mean 0.0589 6.4835 0.7359 0.0603 7.1457 0.7276
StD 0.0009 0.153 0.0048 0.0007 0.2367 0.0045

36

Experiments and Results

4.3 Diffusion Model Approach

Given that the modifications proposed to the Glyph Network and posterior dataset
augmentation were not enough to completely suppress the noise and imperfec-
tions found in the generated outputs, a new generative approach was designed
based on Diff-Font [31]. This choice was influenced by the observation of re-
cent advancements in diffusion models, which demonstrate the ability to produce
authentic images by considering contextual input. These cutting-edge diffusion
models have positioned themselves at the forefront of state-of-the-art techniques
in visual generative tasks.

The original Diff-Font model is able to generate a given Chinese/Korean char-
acter based on another symbol’s style features, which are extracted using a pre-
trained feature encoder developed in Xie et al. [35]. Here we propose instead the
use of a Glyph Network model trained on the character subset (D,G,H,O,S,R) dur-
ing the previous experiments in place of the former style encoder. Even though
this model struggled to reproduce the most complex fonts, it demonstrated its
capability to identify key style features in the majority of the test dataset, as con-
cluded in the previous sections. Besides, this substitution makes it so that the
Diff-Font inputs are the exact same as the ones in Glyph Network, enabling di-
rect comparisons between these two approaches.

Throughout the training process of this approach, the original hyper-parameters
remained unchanged (see Table 4.4), with the exception of the modification made
to the already discussed style encoder and the number of ResNet blocks [53] em-
ployed in each UNet resolution. The count was reduced from 3 to just 2 due to the
limited video memory available during training using a single RTX 3080ti GPU.

Parameter Value
Batch size 24

Training pool 9121 fonts
Validation pool 1472 fonts

Test pool 1559 fonts
Nº of Res. blocks per resolution 2

Channel multiplier [1,2,3,4]
Attention resolution [40,20,10]

Diffusion steps (max t) 1000
Noise schedule Linear

Training iterations 400k
Learning rate 1e-4

Optimizer Adam w/o weight decay
Loss MSE

Table 4.4: Hyper-parameter values used during the training of the diffusion
model.

Through the training and subsequent testing of this diffusion approach, we achieved
scores of 0.13, 0.52, and 16.5 in MSE, SSIM, and FID metrics, respectively. These

37

Chapter 4

Figure 4.8: Difference in SSIM values achieved by GlyphNet and Diffusion
Model. The higher the SSIM, the closer are the artificial fonts to the original ones.

results indicate that this new approach performs worse than GlyphNet overall
when using the same inputs. This conclusion is also supported by the SSIM his-
togram of Figure 4.8 where GlyphNet achieves scores much closer to 1 while
the diffusion model is less consistent across different fonts. Additionally, visual
examples displayed in Figure 4.10 demonstrate its struggle to capture and re-
produce the styles of ornamental fonts, such as (4), (9), and (11). However, the
approach excels in eliminating the issue of noise and imperfections when gen-
erating simpler fonts like (1), (3), and (7). In these cases, the diffusion model
produces glyphs with perfectly straight lines and well-defined edges, in contrast
to the Glyph Network’s generated glyphs, making it particularly well-suited for
users who later intend to vectorize their generated work. The absence of noise
and irregularities on the glyphs produced by our diffusion approach is even more
noticeable in Figure 4.9. More examples of generated fonts are available in Ap-
pendix B.

The primary drawback of utilizing this approach lies in the substantial inference
time needed to generate a single glyph. Since each generated image undergoes
multiple denoising iterations to produce a single glyph, the time complexity dur-
ing inference for this approach is significantly higher compared to the Glyph Net-
work. Consequently, we were only able to train and test a single model instance
using this approach, as obtaining a small population of trained models would
take several months. The time required to train and test the models covered in
this chapter is showcased in Table 4.5.

On the other hand, as the generation of new glyphs is governed by the style fea-
tures encoded within a 1D float vector, it presents an opportunity for interpolat-
ing between any two distinct fonts. This interpolation allows for the creation of
a new, third font that possesses a customizable degree of resemblance, blending
characteristics from the original parent fonts. Figure 4.9 illustrates two instances

38

Experiments and Results

Model Training Time Inference Time Memory Footprint
Glyph Network 12.1 hours < 0.1 secs 4.95 GB
Diffusion Model 25.4 hours 650 secs 12.3 GB

Table 4.5: Time and memory required to train each approach using the setups of
tables 4.1 and 4.4. The inference time refers to the time required to generate a
single font with 26 characters.

of font interpolation, displaying different levels of blending. Two distinct fonts
were given to the style extractor using the input subset (D,G,H,O,S,R) and then
those styles were linearly interpolated according to a range of blending weights.
The derivatives of this interpolation process were then fed to the UNnet, produc-
ing the outputs shown in Figure 4.9. Since the Glyph Network was not originally
meant to act as a standalone style encoder, the incapability of this system to re-
produce complex styling and subsequently lower output quality can be pointed
to this incompatibility. To enhance the overall smoothness of these interpolations,
an alternative approach could involve employing the training process of a Vari-
ational Autoencoder on the style extractor, rather than relying on a pre-trained
GAN as executed in this project.

Figure 4.9: Glyph Interpolation using the proposed diffusion model.

In summary, Glyph Network continues to outperform our diffusion method in
generating raster fonts from multiple context glyphs, achieving half the MSE
score and double values in FID in identical scenarios. Through multi-shot ex-
periments we found six to be the optimal number of input glyphs to be provided,
balancing an amount that produces better performance values than other state-
of-the-art systems while still maintaining the amount of required work from type
designers relatively small. Although the search space for the best combination of
six letters is rather vast and computationally unattainable, we propose two dis-
tinct subsets that we obtained from studying the most informative glyphs and
adhering to design intuition - (B,D,K,H,N,R) and (D,G,H,O,S,R). Moreover, we
found no evidence that increasing the amount of data available during training
leads to direct benefits in the quantitative performance of our GAN-based model.
Even though we achieved scores of 0.059, 0.7, and 6.5 in MSE, SSIM, and FID,
respectively, by making improvements to core aspects of the Glyph Network sys-
tem, it still displays shortcomings associated with its visual outputs. Stroke and
edge imperfection issues were partially resolved by adopting a completely new

39

Chapter 4

diffusion approach, which outputs overall cleaner glyphs. Furthermore, there re-
mains untapped potential for further experimentation and improvement of the
proposed diffusion network, particularly in terms of refining its architecture and
optimizing hyper-parameters. Additionally, the time required to train and infer
new glyphs using this approach needs to be shortened in order to allow future
experiments to be conducted in a tangible manner.

40

Experiments and Results

Figure 4.10: Comparison of outputs produced by the diffusion model and Glyph-
Net given the subset (D,G,H,O,S,R) as input for test samples. Each row is com-
posed of the target font at the top with inputs annotated in red, followed by the
generated outputs.

41

Chapter 5

Web Application

Having trained and tested multiple generative models capable of producing raster
glyphs and fonts with satisfactory quality, we reached a point where the devel-
opment of a comprehensive software system was viable. This system would em-
body the entire approach outlined in Section 3 and be presented as a web ap-
plication. Its purpose would be to serve as a basic proof-of-concept for future
platforms designed to assist designers and non-technical users in the creation of
innovative typographical fonts. This section details the work conducted in that
regard, commencing with the definition of high-level requirements and initial de-
sign iterations. It concludes with a demonstration of the application in its final
state and an explanation of the choices and modifications implemented.

The primary objectives of this application are to offer a user-friendly method for
creating fresh fonts using a selection of arbitrary glyphs provided by the user,
utilizing the models exhibited in the preceding Section 4. The user will have
control over the generation process, including adjustable settings like the color
scheme of the inputs, the output format (raster or vectorized), and the choice of
model to be utilized. It should also encapsulate all the modules that compass the
initial approach (see Figure 3.1), including the vectorization step carried out by
the LIVE framework [42].

The initial application designs depicted in Figure 5.1 were devoid of color as it
allowed us to focus on the development of core functionality and usability aspects
rather than stylistic choices and also helped to highlight the prototype nature of
the app to the end users. Given the sole purpose of the app and the focus on
delivering a simple generative workflow, it was made the decision early on to
accommodate all functionality in a single webpage divided into three sections:

• Header - where the app identity is succinctly identified and some naviga-
tion options are provided such as the dark theme and localization features;

• Canvas - area that mimics a workstation in the sense that it is where all
the user-made artifacts are sent to after upload and represented via image
cards. This is where the user can preview, remove and correctly label all
inputs;

43

Chapter 5

• Control Panel - section underneath the canvas where all the adjustable set-
tings related to the generation procedure reside alongside the generate but-
ton to be pressed at the end of the configuration process.

Figure 5.1: Initial mockups of the web application in its default state (top) and
when users upload their design inputs (bottom).

When the user clicks on the generate font button, the inputs are uploaded to the
server which in turn generates the font and triggers the download of the file on
the user’s browser. This file is either a single PNG or a Zip containing 26 SVG
files depending on the output format chosen prior.

The first improvement made to the app was the addition of a loading animation
visible while the font is being generated by the app server as well as an Estimated

44

Web Application

Time of Arrival (ETA) indicator in order to clearly transmit that this process re-
quires some time to complete. Other quality-of-life improvements include setting
default values for each control panel option to accelerate the workflow, hiding
the SVG options when PNG is selected, and the addition of a clear description of
what those settings mean as per the explanation given when the LIVE framework
was mentioned in Section 2.

The biggest change made to the initial mockups was the communication to the
user of which glyphs each model expects as initial seedings. Given that each pro-
vided model may be trained in different glyph subsets, it is desired that the user
inputs match them to attain optimal output quality. This communication is made
possible with the appearance of upload cards in the canvas section correspond-
ing to the expected inputs for the model selected at the time. However, the user
is still free to upload any glyph it desires. A short summary of each model is
also shown when users hover the mouse over the model list found in the control
panel.

Overall, the final application remained faithful to the initial mockups with slight
improvements in its usability as showcased in the screenshots of Figure 5.3. The
UI was fully developed with React and hosted through NextJS while the back-
end is supported by a Django server written in Python. When users upload their
designs and attempt to generate a new font, the React page initiates an API re-
quest to the backend, which proceeds to fetch the desired pre-trained model and
generates the outputs that are then sent back in response to the users’ browsers.
An example of the outputs that users can obtain with the application is shown in
Figure 5.2.

Figure 5.2: Examples of fonts generated using our sequential approach. The
model uses the inputs provided by the user to capture the style and generate
the remaining glyphs. These glyphs can then be converted to vectorized repre-
sentations using off-the-shelf libraries.

By adopting this approach, we have successfully achieved our objective of show-
casing our contributions to non-technical users via a user-friendly web interface

45

Chapter 5

that enables the swift generation of new fonts within minutes. Moving forward,
future development efforts may involve further exploration and optimization of
this application to ensure proper scalability for medium to large user bases. Ad-
ditionally, there is potential to introduce new features, such as font interpolation
as discussed in Section 4.3. Moreover, alternative mediums could be explored,
including the development of plugins for popular Adobe products (e.g. Photo-
shop, Illustrator) and native OS applications that would operate entirely on local
machines. These expansions would broaden the reach and versatility of our font
generation framework.

46

Web Application

Figure 5.3: Final version of the web application.

47

Chapter 6

Methodology and Scheduling

Because of the project’s investigative nature, we opted for the Waterfall model
[57] to carry out all the activities. This approach involved executing each major
task in a sequential manner, including initial research, SOTA replication, model
development, and testing. By following this methodology, we ensured that each
task was initiated only after the completion or significant progress of its preced-
ing counterparts.

Throughout the initial semester, the primary focus was on conducting an exten-
sive survey of the prevailing font generation techniques. Additionally, we ex-
plored a wide range of image generation methods that had not yet been applied
to address the specific problem at hand as well as potential data sources to be
used during future experiments. The initial survey allowed us to pick a few can-
didate methods that would later compose our own generative approach. This
research method is reflected in the schedule outlined in Figure 6.1, which speci-
fies the individual tasks performed during the first semester of the project.

Figure 6.1: Schedule followed during the 1st Semester (September to January).

The initially proposed approach contemplated the development of two parallel
models - one based on the Glyph Network and another based on SVG-VAE [36],
which aimed at producing fonts entirely in vector format. To accommodate the
research and experimentation with these two competing models, an initial sched-
ule was outlined, resulting in the Gantt chart presented in Figure 6.1.

Due to a lack of publicly available datasets and reproducibility issues encoun-

49

Chapter 6

Figure 6.2: Initial Gantt chart outlining the work planned for the 2nd Semester
(February to June).

tered during replication efforts, the SVG-VAE model was dropped in favor of a
novel diffusion approach that had not yet been published at the time of the initial
SOTA survey. This change is also in line with the findings produced with the
Glyph Network, as described in Section 4.3, and recent research conducted in the
image generation domain. Furthermore, the depth and extent of experiments car-
ried out with the Glyph Network exceeded initial expectations, resulting in the
second semester’s schedule being predominantly dedicated to the development
of this particular model. These experiments resulted in a collection of contribu-
tions presented in our paper submission to the 6th European Conference on Arti-
ficial Intelligence (ECAI 2023) entitled "Improving Glyph Network Performance
through Attention Loss Function and Input Selection: A Quantitative Analysis",
which can be found in Appendix A.

Lastly, the project’s contributions to the initial problem have paved the way for
the creation of a web application, showcased in Section 5, which demonstrates
the practical use cases of our complete approach. This supplementary task was
integrated into the final weeks of the project, as illustrated in Figure 6.3. Overall
all the work was conducted without too much friction and within all initially es-
tablished deadlines, even though, for instance, it heavily relied on the availability
of open-source code and data.

Figure 6.3: Actual schedule followed during the 2nd Semester.

50

Chapter 7

Conclusion

Designing typographic fonts has proven to be often a complex and time-consuming
process, which is an issue that many times restricts the creative possibilities of de-
signers during the creation processes.

With this dissertation, we aimed to contribute by studying and proposing a com-
putational system to hasten the type design process. More specifically, we in-
tended to develop a system that can take one or a few manually designed glyphs
as input and automatically generates a whole congruent font, in-style with the
input glyphs.

To achieve that, in this dissertation, we began our studies by contextualizing and
exposing the problem of font generation and explaining the intricate challenges
that follow it when considering the use of generative models as solutions. Af-
ter that, a comprehensive analysis of the state-of-the-art was presented alongside
theoretical explanations of the complex generative models that support each ref-
erenced work.

After assessing the strengths and shortcomings of the most prominent state-of-
the-art solutions, we propose a unified approach that tackles the issues of font
generation and posterior vectorization in separate pipeline stages. By adopting
this strategy we were able to conduct an in-depth study of the performance of
the Glyph Network and evaluate its behavior when different glyph inputs are
provided to it. Furthermore, this study allowed us to modify core characteristics
such as the loss function, thus, improving the performance of the Glyph Network
even further in the raster domain. In the end, the main contributions are a loss
function that provides better results than the state-of-the-art approach, a selec-
tion of the best glyphs to produce cohesive fonts and a systematic analysis of
the experiments that led to these contributions. The code for the approaches and
experiments to generate the results of this dissertation is readily available 1.

After conducting a series of multi-shot experiments, we determined that provid-
ing six input glyphs yields optimal results. This balance allows for improved per-
formance compared to other advanced systems, while still keeping the workload
for type designers relatively manageable. Although the search space for find-

1https://github.com/FranciscoBrilhante/master-thesis

51

Chapter 7

ing the best combination of six letters is vast and computationally challenging,
we proposed two distinct subsets based on our analysis of the most informative
glyphs and through design intuition: (B, D, K, H, N, R) and (D, G, H, O, S, R). Ad-
ditionally, our findings indicate that increasing the amount of available training
data does not directly benefit the quantitative performance of our GAN-based
model. In one-shot scenarios, our enhancements to Glyph Network resulted in
a positive average decrease of 12.5 in the FID score and a 0.5 decrease in MSE
values. Using the subset (D, G, H, O, S, R), this network achieved scores of 0.059,
0.7, and 6.5 in MSE, SSIM, and FID metrics, respectively.

Not fully satisfied with the visual outcomes attained through the previous ap-
proach, we have developed a novel method for producing Roman letters. Our
method draws inspiration from the diffusion model proposed in Diff-Font, mark-
ing the first utilization of this technique in this particular task. In specific scenar-
ios, our approach yielded comparable results to previous techniques, while also
exhibiting the potential to surpass them in terms of overall visual quality per-
ceived across the datasets covered in this dissertation. Using the same subset (D,
G, H, O, S, R) and data employed in the previous approach, the diffusion model
achieved scores of 0.13, 0.52, and 16.5 in MSE, SSIM, and FID metrics, respec-
tively.

Having obtained models capable of generating a wide variety of designs, we then
designed and developed a web application that could showcase key use cases
of our proposed approach to the general public as well as employ the above-
mentioned innovations in real scenarios. This application also serves the purpose
of demonstrating the use of the Live framework in the vectorization stage of our
approach, thus attaining the global objective of employing generative systems in
vector font creation.

To achieve enhanced performance scores, future work is foreseen in refining the
architecture and training process of the proposed diffusion network. More specif-
ically, improvements to the style-extracting process could bring the capability of
latent space exploration closer to other approaches specialized in that task while
attaining better visual results overall. Additionally, it is important to note that
this dissertation did not encompass the generation of letters and glyphs from
other writing systems. This limitation arose from the absence of publicly avail-
able datasets in those domains and the time constraints that hindered data col-
lection efforts. However, in the future, the acquisition of extensive collections of
copyright-free fonts could facilitate the improvement of existing models and the
development of novel ones. Furthermore, the significance of modern generative
techniques for font design lies not only in their conception but also in their suc-
cessful integration into existing software with real-world applications. Therefore,
addressing challenges related to scalability, explainability, and ethics becomes a
pressing matter to be tackled in forthcoming research.

52

References

[1] E. Lupton, Thinking with Type. Princeton Architectural Press, 2010.

[2] K. Cheng, Designing Type. Laurence King, 2006.

[3] R. Suveeranont and T. Igarashi, “Example-based automatic font generation,”
in Smart Graphics (R. Taylor, P. Boulanger, A. Krüger, and P. Olivier, eds.),
(Berlin, Heidelberg), pp. 127–138, Springer Berlin Heidelberg, 2010.

[4] J. Cunha, Dissertação sobre relações anatómicas entre caracteres de um tipo de letra.
Master thesis, Universidade de Coimbra, September 2013.

[5] S. Azadi, M. Fisher, V. Kim, Z. Wang, E. Shechtman, and T. Darrell, “Multi-
content gan for few-shot font style transfer,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 7564–7573, 2018.

[6] Y. Tian, “Master chinese calligraphy with connditional adversarial net-
work.” https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html, 2017.
[Accessed 22-Jun-2023].

[7] D. Sun, Q. Zhang, and J. Yang, “Pyramid embedded generative adversarial
network for automated font generation,” in 2018 24th International Conference
on Pattern Recognition (ICPR), (Los Alamitos, CA, USA), pp. 976–981, IEEE
Computer Society, aug 2018.

[8] D. Lopes, J. a. Correia, and P. Machado, “Adea - evolving glyphs for aiding
creativity in typeface design,” in Proceedings of the 2020 Genetic and Evolution-
ary Computation Conference Companion, GECCO ’20, (New York, NY, USA),
p. 97–98, Association for Computing Machinery, 2020.

[9] D. Lopes, J. N. Correia, and P. Machado, “Adea – evolving glyphs for aiding
creativity in graphic design "" cdv lab,” 2022.

[10] R. Bringhurst, The Elements of Typographic Style. Elements of Typographic
Style, Hartley & Marks, Publishers, 2005.

[11] W. S. W. Group, “Scalable vector graphics (svg).” https://www.w3.org/
Graphics/SVG/, 1999.

[12] A. Ng and M. Jordan, “On discriminative vs. generative classifiers: A com-
parison of logistic regression and naive bayes,” in Advances in Neural Infor-
mation Processing Systems (T. Dietterich, S. Becker, and Z. Ghahramani, eds.),
vol. 14, MIT Press, 2001.

53

https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html
https://www.w3.org/Graphics/SVG/
https://www.w3.org/Graphics/SVG/

Chapter 7

[13] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” 2014.
cite arxiv:1411.1784.

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in
Neural Information Processing Systems (Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K. Weinberger, eds.), vol. 27, Curran Associates, Inc., 2014.

[15] D. Vint, M. Anderson, Y. Yang, C. Ilioudis, G. Di Caterina, and C. Clemente,
“Automatic target recognition in low resolution foliage penetrating sar using
cnns and gans,” Remote Sensing, vol. 13, Feb. 2021.

[16] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” in 4th Interna-
tional Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.),
2016.

[17] N. Campbell and J. Kautz, “Learning a manifold of fonts,” ACM Transactions
on Computer Systems, vol. 33, pp. 1–11, July 2014.

[18] M. A. Kramer, “Nonlinear principal component analysis using autoassocia-
tive neural networks,” AIChE Journal, vol. 37, no. 2, pp. 233–243, 1991.

[19] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in 2nd
International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings, 2014.

[20] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation
and approximate inference in deep generative models,” in Proceedings of the
31st International Conference on Machine Learning (E. P. Xing and T. Jebara,
eds.), vol. 32 of Proceedings of Machine Learning Research, (Bejing, China),
pp. 1278–1286, PMLR, 22–24 Jun 2014.

[21] V. Kovenko and I. Bogach, “A comprehensive study of autoencoders’ appli-
cations related to images,” in IT&I Workshops, 2020.

[22] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[23] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using rnn encoder-decoder for statis-
tical machine translation,” 06 2014.

[24] K. Yao, T. Cohn, K. Vylomova, K. Duh, and C. Dyer, “Depth-gated recurrent
neural networks,” 08 2015.

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural
Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran As-
sociates, Inc., 2017.

54

References

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” ArXiv,
vol. abs/1810.04805, 2019.

[27] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models
are few-shot learners,” in Advances in Neural Information Processing Systems
(H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33,
pp. 1877–1901, Curran Associates, Inc., 2020.

[28] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
arXiv preprint arxiv:2006.11239, 2020.

[29] P. Dhariwal and A. Q. Nichol, “Diffusion models beat GANs on image syn-
thesis,” in Advances in Neural Information Processing Systems (A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, eds.), 2021.

[30] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10674–
10685, 2021.

[31] H. He, X. Chen, C. Wang, J. Liu, B. Du, D. Tao, and Y. Qiao, “Diff-font: Dif-
fusion model for robust one-shot font generation,” 12 2022.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2015 (N. Navab, J. Hornegger, W. M. Wells,
and A. F. Frangi, eds.), (Cham), pp. 234–241, Springer International Publish-
ing, 2015.

[33] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans
trained by a two time-scale update rule converge to a local nash equilib-
rium,” in NIPS, 2017.

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (Los
Alamitos, CA, USA), pp. 1–9, IEEE Computer Society, jun 2015.

[35] Y. Xie, X. Chen, L. Sun, and Y. Lu, “Dg-font: Deformable generative net-
works for unsupervised font generation,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA),
pp. 5126–5136, IEEE Computer Society, jun 2021.

[36] R. G. Lopes, D. Ha, D. Eck, and J. Shlens, “A learned representation for
scalable vector graphics,” in Deep Generative Models for Highly Structured
Data, ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019,
OpenReview.net, 2019.

55

Chapter 7

[37] A. Carlier, M. Danelljan, A. Alahi, and R. Timofte, “Deepsvg: A hierarchical
generative network for vector graphics animation,” 2020.

[38] V. Egiazarian, O. Voynov, A. Artemov, D. Volkhonskiy, A. Safin, M. Takta-
sheva, D. Zorin, and E. Burnaev, “Deep vectorization of technical drawings,”
in Computer Vision – ECCV 2020, (Cham), pp. 582–598, Springer International
Publishing, 2020.

[39] T.-M. Li, M. Lukáč, G. Micha"̈el, and J. Ragan-Kelley, “Differentiable vector
graphics rasterization for editing and learning,” ACM Trans. Graph. (Proc.
SIGGRAPH Asia), vol. 39, no. 6, pp. 193:1–193:15, 2020.

[40] P. Reddy, M. Gharbi, M. Lukac, and N. J. Mitra, “Im2vec: Synthesizing vec-
tor graphics without vector supervision,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), (Los Alamitos, CA, USA),
pp. 7338–7347, IEEE Computer Society, jun 2021.

[41] G. Xie, X. Sun, X. Tong, and D. Nowrouzezahrai, “Hierarchical diffusion
curves for accurate automatic image vectorization,” ACM Trans. Graph.,
vol. 33, nov 2014.

[42] X. Ma, Y. Zhou, X. Xu, B. Sun, V. Filev, N. Orlov, Y. Fu, and H. Shi, “To-
wards layer-wise image vectorization,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2022.

[43] H. Aoki and K. Aizawa, “Svg vector font generation for chinese characters
with transformer,” in 2022 IEEE International Conference on Image Processing
(ICIP), pp. 646–650, 2022.

[44] Y. Wang and Z. Lian, “Deepvecfont: Synthesizing high-quality vector fonts
via dual-modality learning,” ACM Transactions on Graphics, vol. 40, no. 6,
2021.

[45] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Commun. ACM, vol. 27, p. 236–239, mar 1984.

[46] H. Hayashi, K. Abe, and S. Uchida, “Glyphgan: Style-consistent font gener-
ation based on generative adversarial networks,” Knowledge-Based Systems,
vol. 186, p. 104927, 08 2019.

[47] A. KumarBhunia, A. KumarBhunia, P. Banerjee, A. Konwer, A. Bhowmick,
P. P. Roy, and U. Pal, “Word level font-to-font image translation using convo-
lutional recurrent generative adversarial networks,” International Conference
on Pattern Recognition, Aug 2018.

[48] P. Lyu, X. Bai, C. Yao, Z. Zhu, T. Huang, and W. Liu, “Auto-encoder guided
gan for chinese calligraphy synthesis,” in 2017 14th IAPR International Con-
ference on Document Analysis and Recognition (ICDAR), (Los Alamitos, CA,
USA), pp. 1095–1100, IEEE Computer Society, nov 2017.

[49] S. Baluja, “Learning typographic style,” ArXiv, vol. abs/1603.04000, 2016.

56

References

[50] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, “An image is worth 16x16 words: Transformers for image recog-
nition at scale,” in International Conference on Learning Representations, 2021.

[51] Y. Jiang, S. Chang, and Z. Wang, “Transgan: Two pure transformers can
make one strong gan, and that can scale up,” Advances in Neural Information
Processing Systems, vol. 34, 2021.

[52] J. Parente, L. Gonçalo, T. Martins, J. M. Cunha, J. Bicker, and P. Machado,
“Using autoencoders to generate skeleton-based typography,” in Artificial
Intelligence in Music, Sound, Art and Design (C. Johnson, N. Rodríguez-
Fernández, and S. M. Rebelo, eds.), (Cham), pp. 228–243, Springer Nature
Switzerland, 2023.

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

[54] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE Transactions on Image Pro-
cessing, vol. 13, no. 4, pp. 600–612, 2004.

[55] A. Borji, “Pros and cons of gan evaluation measures,” Computer Vision and
Image Understanding, vol. 179, pp. 41–65, 2019.

[56] L. S. WIRED, “Two legends dish on how to design a typeface,” 2013.

[57] W. W. Royce, “Managing the development of large software systems: Con-
cepts and techniques,” in Proceedings of the 9th International Conference on Soft-
ware Engineering, ICSE ’87, (Washington, DC, USA), p. 328–338, IEEE Com-
puter Society Press, 1987.

57

Appendices

59

Appendix A

ECAI 2023 Paper Submission

The following paper was written within the scope of this dissertation and was
submitted to the 6th European Conference on Artificial Intelligence (ECAI 2023).

61

Improving Glyph Network Performance through
Attention Loss Function and Input Selection: A

Quantitative Analysis
First Authora;*, Second Authorb and Third Authorb

aShort Affiliation of First Author
bShort Affiliation of Second Author and Third Author

ORCiD ID: First Author https://orcid.org/....-....-....-...., Second Author https://orcid.org/....-....-....-....,
Third Author https://orcid.org/....-....-....-....

Abstract.
Typography is one of the most impacting tools of graphic design

since it is essential to communicate information effectively and cre-
ate visually distinctive compositions. However, designing typefaces
is often a time-consuming process that requires extensive experience
and is therefore not always possible on projects with low budgets
or of short duration. Recent developments in computer vision have
made possible the development of robust generative models, such as
Glyph Network, which is capable of inferring font style solely based
on a small set of glyphs. This paper presents an approach to improve
the state-of-the-art machine learning models to generate fonts from
a small set of given glyphs. To do that, we improved the loss func-
tion of the original GlyphNet and determined the most informative
input glyphs by applying weight masks to guide the training process
according to characteristic details found on input glyphs. Further-
more, results reveal that an informed selection of the initial input
subset leads to higher quality in outputs, and type designers’ intu-
ition regarding this choice is well supported by our ML-driven exper-
iments. These findings compound to promising results above the cur-
rent state-of-the-art and may be further extended with larger datasets
as seen in other generative tasks.

1 Introduction

Historically, the manual design of new typographical fonts has
proven to require a great deal of effort, even for skilled profession-
als [15]. Depending on the purpose and concept of the project, type
designers need to define adequate styling features, such as width,
height, weight, kerning, leading, and whether or not to use serifs or
other adornments, among others. Moreover and even more complex
is the process of designing congruent glyphs for all letters, numbers
and other symbols that compose the target writing system [5]. For in-
stance, designing and refining fonts often can take weeks or months
after years of expertise, and even for creating geometric fonts, minute
optical adjustments are often needed. Therefore, due to the lack of
time and resources, creating tailor-made fonts is often not feasible
in lower-budget design projects. And even with the availability of a
large number of font families to end-users, editing minute details or

∗ Corresponding Author. Email: somename@university.edu.

ornaments might still be a necessity in many design projects, e.g. in
the creation of new brands, as these must be unique and distinctive.

While early research tackled the problem of glyph generation
through pipelined approaches that would analyze skeleton features
and assemble new glyphs based on matched examples [19, 4, 10],
recent developments in computer vision made possible the develop-
ment of robust generative models, from GANs and Variational Au-
toencoders to Diffusion Models and Visual Transformers, that are
capable of producing new, realistic-looking fonts [6, 14, 2, 24, 7, 12].

One such recent model is the Glyph Network developed by Azadi
et al. [2], based on the conditional GAN architecture [11], which
produces new glyphs in the same style as those entered by the users.
Alongside the proposal for a new dataset of medium size for bench-
marking typography generation systems, the original paper outlines
the capability of GlyphNet to infer whole typefaces based on a few
samples provided as input. However, It falls short of presenting ob-
jective, quantitative results for the performance of such a model,
based on well-established metrics in the imaging domain.

Our Contributions. In this paper, we perform an extensive anal-
ysis of the Glyph Network output quality using multiple quantita-
tive measurements and show how its performance can be improved
by modifying the original loss function and selecting the most in-
formative glyphs to use as input examples. The outline of the pa-
per goes as follows. We start by summarizing the historical back-
ground of ML-based font generation systems in Section 2 and doing
an overview of the network behind the originally proposed Glyph
Network in Section 3. Conducted experiments and key conclusions
are covered in sections 4 and 5, respectively. Code available at
anonymous.4open.science/r/inproving-glyphnet-E78D.

2 Related Work
For the past few decades, many approaches have been proposed to
tackle the font generation problem, where initial developments relied
on the expertise of researchers to design glyph assembly processes
based on skeleton and proportion features [20, 19, 4, 10]. While such
approaches may suit more conventional fonts, i.e. designed accord-
ing to more strict rules/topology, these cannot contemplate more un-
conventional typography, using unusual decorative elements or more

experimental topology. Besides, such approaches have the shortcom-
ing of being constrained and dependent on initial annotated data.

Meanwhile, the recent sharp rise in the popularity of deep neural
architectures has brought paradigm shifts to many fields of Computer
Science alongside significant improvements. CNNs and GANs, in
particular, have proven to be powerful tools in pattern recognition
problems and imaging domains. For example, these architectures can
receive as input large quantities of glyph images and infer the styles
and parameters that distinguish different fonts. As a consequence,
they are capable of generating visual results that are more believable
than the ones produced by shallow solutions [6, 2, 24, 7, 12]. Since
typefaces are 2D objects that may be categorized based on factors
like boldness, serifs or slope, most of the current solutions rely on
encoder-decoder architectures to extract key latent features out of a
single glyph to sample the remaining glyphs of the given font-family
[14, 18, 16, 17].

However, the raster images produced by these models often come
with perceptible degrees of noise and contour imperfections. Even
in state-of-the-art work, this is a visible concern requiring manual
tweaking and conversion to vector formats that properly scale to any
necessary size before shipping the generated artifacts as standalone,
final products.

Besides, there has been some work towards creating models for
generating typefaces in scalable vector formats such as SVG. These
are typically supported by either LSTMS [14, 21] or Transformers [1]
and rely on annotated datasets of primitive shape and path sequences
(e.g. moveTo, lineTo, cubicBezier, among others). These solutions are
able to provide clean, scalable visuals for simple typefaces; however,
their ability to replicate more complex and divergent typefaces re-
mains unproven.

More recent developments include the appearance of Visual Trans-
formers [12] and Diffusion Models [7] that outpace prior approaches
with respect to visual output quality. The downsides of these models
reside in the computational power demanded during training when
tailored models to specific tasks are desired (i.e. font generation) and
the large-scale datasets required to achieve results comparable to for-
mer deep convolutional models.

3 Methods
We propose key changes to the loss function and inputs of the state-
of-the-art Glyph Network [2] in order to obtain trained models with
better overall performance. We first summarize how the original
GlyphNet operates and establish a baseline training setup in Section
3.1, followed by Sections 3.2 and 3.3 where new approaches to the
training process are proposed and an overview of the dataset used
across all experiments is made, respectively. Section 3.4 introduces
the metrics employed to conduct the quantitative analysis and com-
parisons performed on the presented models.

3.1 Glyph Network

The Glyph Network is a Deep Convolutional GAN developed by
Azadi et. al. [2] that is capable of generating all uppercase letters of a
given font, for the Roman alphabet, based solely on a small subset of
input glyphs. Its generator G1 is based on the image transformation
network introduced by Johnson et. al. [13] and includes six ResNet
blocks [8]. Figure 1 shows a broad illustration of this architecture.

Both inputs and outputs of the model consist of 26-channel font
stacks, with each channel corresponding to a unique grayscale glyph
in a 64x64 tensor. Some input glyphs are hidden, meaning that their

corresponding channels are filled with null/zero values. The genera-
tor’s goal is to reconstruct all 26 channels, including those that are
not included as the input subset.

During backpropagation, 3 different loss components are taken
into account: the LSGAN loss produced by the local discriminator
D1, computed on individual glyphs of each stack; the LSGAN loss
from global discriminator D2, computed on whole stacks at a time
and the L1 loss, directly computed between the generated outputs of
G1 and ground truth fonts. The full loss function is defined as fol-
lows:

L(G1) = λ1LL1(G1) + LLSGAN (G1, D)

= λ1LL1(G1)

+ Llocal
LSGAN (G1, D1) + Lglobal

LSGAN (G1, D2),

(1)

where G1 denotes the generator network, D1 and D2 refer to the local
and global discriminators respectively and λ1 is the weight of the L1
loss component.

During all the experiments outlined in Section 4, the hyperparam-
eters of the Glyph Network and training optimizers were set to the
values used by the original authors, as shown in Table 1. Due to com-
putational constraints and in order to accommodate multiple initial-
ization seeds, the number of training epochs was cut to half, from
600 to 300, except for the generation of the visuals of Figure 7.

Table 1. Hyperparameter values used during training in all experiments
with Glyph Network.

Parameter Value

Epochs 600
Batch Size 64

Training Pool 9121 fonts
Validation Pool 1472 fonts

Test Pool 1559 fonts
Learning Rate 0.0002
L1 weight λ1 100

Optimizer Adam
LR Decay Linear in last 100 epochs

Adam Momentum Decay β1 0.5
Leaky ReLu Negative Slope 0.2

3.2 Attention based Loss

During early efforts to replicate the original model configuration, it
was noted that it struggled to reproduce serifs and strokes of unusual
typefaces, resulting in jagged, blurry glyph edges. These shortcom-
ings are evidenced by the blue annotations in Figure 7. To guide the
training process to retain the particularities of each target typeface,
the L1 loss component was modified in order to accommodate at-
tention maps of the same size as the model inputs (26x64x64). For
each training example, a unique weight mask was built in order to at-
tribute more importance to regions of the input tensor that contained
distinctive font features. The final L1 loss component of the generator
loss function is obtained by applying the dot-product of the attention
maps with both network outputs and respective targets:

L(G1) = λ1LL1(y1 ·M,G1(x1) ·M), (2)

where G1(x1) is the network output given sample x1 with target y1
and M is the attention map. These three parameters are matrices of
size (26x64x64).

Figure 1. Glyph Network overview, retrieved from Azadi et. al. [2].

We explored the first version of these masks by computing the
pixel-wise difference between a font devoid of ornaments (Code New
Roman) and the target font. In a second version, these were obtained
by applying the Zhang-Suen thinning algorithm [25] to each glyph,
in order to bridge the flaws found in some glyph masks where they
were very similar to the default font (i.e. resulting in an unusable at-
tention mask). The Zhang-Suen thinning algorithm is an algorithm
used to thin 2d objects found in binary images. When applied to
glyphs, this thinning process leads to a close resemblance of glyph
skeletons which can be further processed to identify joints and ter-
minals. A few examples of these two processes are shown in Figure
2. In the Section 4, the three loss configurations will be referred to as
L1original, L1attention and L1skeleton, respectively.

Figure 2. Examples of masks used for the computation of the L1 loss term.
Original glyphs (1st column), default font with minimal ornaments (2nd

column), the mask computed using the pixel-wise difference between glyphs
of original and default font (3rd column) and mask obtained with the

Zhang-Suen thinning algorithm (4th column)

3.3 Dataset

In order to achieve comparable quantitative results, the dataset used
in all experiments was the Capitals64 dataset collected by Azadi et
al. [2]. This dataset includes 12K grayscale raster fonts with vary-
ing serifs, boldness, and textures, each composed of 26 ASCII up-
percase letters framed within 64x64 canvases. The dataset is divided
into train, test, and validation splits in a ratio of 10:1:1. A small data
subset is shown in Figure 3.

Given that all symbols were fit to the same dimensions, some
glyphs (i.e. W, M, T) found in the original fonts were deformed.
Therefore, any model trained with this dataset is not equipped to
learn features such as relative heights and sidebearings.

Figure 3. Train samples from Capitals64 dataset.

3.4 Evaluation Metrics

In order to compare the performance of different models across the
conducted experiments, FID [9], MSE and SSIM [22] were chosen
as quantitative evaluation metrics. While SSIM is a metric used to
measure the similarity between two images, according to luminance,

contrast and structure, MSE computes the mean square errors of pixel
values and FID measures the difference between generated and real
images in a distribution-wise manner with the aid of InceptionNet.
MSE and SSIM are computationally less complex, while FID offers
quantitative evaluation closer to the visual perception of humans [9,
3]. These are some of the metrics commonly employed in computer
vision tasks and, more specifically, the ones used in the evaluation
of current state-of-the-art approaches to font generation [18, 24, 2,
7]. Due to the stochastic nature of the training process, each model
configuration was trained in up to 15 distinct RNG seeds and the
mean values of each metric were computed on the test data.

4 Experiments and Results
In this section, a set composed of three experiments and subsequent
analysis is presented, followed by an inspection of some represen-
tative visual artifacts and an overall review of the achieved results.
Each experiment is accompanied by a complete quantitative analysis
starting with Section 4.1 where three distinct approaches to the loss
function are evaluated. In Section 4.2, we evaluate two distinct sub-
sets, one with the best ranking glyphs as input to the model and the
other is a subset typically defined by designers in the early stage of
font creation. Finally, in Section 4.3, we study the impact of the size
of the input subset based on the best-ranked subset from the previous
experiment. All conducted experiments with stochastic nature were
repeated 15 times with different random seeds. The following exper-
iments were conducted on a single NVIDIA RTX 3080 Ti graphics
card.

4.1 Letter Ranking

The three distinct L1 losses define three setups, L1original,
L1attention and L1skeleton, which were analyzed by training the
network with each one separately, feeding 3 randomly selected
glyphs as input for each training sample. Subsequently, each result-
ing model was tested 26 separate times, in which only 1 glyph at a
time was visible for the entire test pool. This experiment enabled the
empirical search for the most informative letters in font generation
contexts while simultaneously allowing the performance comparison
between the three L1 loss configurations.

Results depicted in Figure 4 reveal that, when fed to the network
individually, K, R and B contribute the most to the reconstruction of
the original dataset while I, J and T are the least informative. This
trend remained equal in all three loss setups and across both FID
and MSE metrics. Moreover, when the training loss is directly tied to
glyph-specific ornaments, GlyphNet achieves slightly better perfor-
mance and the variance observed across both input letters and train-
ing seeds is decreased.

However, comparative results shown in Figure 4 (d) between
L1attention and L1skeleton models are not conclusive since per-
formance differences are inconsistent across different input glyphs.
For example, given that the capital letter O does not contain joints
or terminals in most typefaces, the attention mask computed using
the Zhang-Suen Algorithm is not as effective, hence the decrease in
performance. For that reason, the experiments that follow were con-
ducted using the L1attention loss function.

4.2 ML vs Designers on Input Subset Choice

After studying how each individual glyph contributed to font infer-
ence, a subset of the 6 best-performing glyphs (B,D,K,H,N,R) was

(a)

(b)

(c)

(d)

Figure 4. Letter Ranking with the L1attention model setup according to
FID (↓), MSE (↓) in (a) and (b) respectively. Performance difference

between different loss setups in (c) and (d).

stacked to compare against a subset that a typeface designer typically
starts the designing process with for a novel typeface (D,G,H,O,S,R)
[23].

In this experiment, 15 different runs for the two groups of 6 letters
were collected, each composed of models trained and tested solely
on one of the input subsets. L1attention loss was used while all other
setup elements remained unaltered.

Despite subset 1 being composed of the most informative letters
found from the first experiment, it showed less precision across dif-
ferent training seeds and lower generative performance when com-

pared to subset 2, as shown in Table 2. The differences in perfor-
mance measured with MSE between these two subsets are statisti-
cally significant according to the Wilcoxon Signed-rank test with a
95% confidence level (p− value = 0.03125).

Table 2. Glyph Network performance metrics per subset for the 15
different random seed runs with L1attention.

{K,H,B,N,R,D} {H,O,D, S,G,R}

MSE(↓) FID(↓) SSIM(↑) MSE(↓) FID(↓) SSIM(↑)

Mean 0.0611 7.4264 0.7283 0.059 6.5348 0.7372
StD 0.0027 1.5386 0.0117 0.0002 0.0701 0.0007

4.3 Input Subset Size

Since the original Glyph Network model can accommodate up to 26
input glyphs to generate a given font, it is rather relevant to observe
how increasing the number of input glyphs impacts the overall per-
formance of the model.

Figure 5. Performance evolution over increasingly larger input sizes. For
each size, 15 distinct random seeds were used for network initialization.

For that reason, the network was trained and tested on increasingly
bigger input sizes. Starting with the 3 best letters found in the Let-
ter Ranking experiment and up to the top 9, the network was trained
using L1attention loss up to 300 epochs. Its performance was mea-
sured with MSE, FID and SSIM metrics. Results computed across all
three metrics, depicted in Figure 5, indicate the model performance
increases in a linear fashion the more initial examples are given to it.

Although one might be tempted to increase the input size even fur-
ther to obtain fonts with more quality, this strategy clashes with the
initial goal of the presented system to aid typeface designers in the
creation process of new fonts. If the user has already built a sizable
collection of examples on its own, using a generative model to cre-
ate the remaining characters, which in most cases need to be cleaned
and revised, might be more time-consuming than assembling them
by hand.

Finally, Figure 7 presents some output examples from a model
trained over 600 epochs with L1attention loss and with the best
input subset from Section 4.2 (D,G,H,O,S,R). As shown in Figure
7 by the best results produced with GlyphNet, the newly proposed
L1attention approach also achieves better visuals in regard to orna-
ment reconstruction. This is especially evident when comparing the

Figure 6. Visual examples drawn from the input subset size experiment
where increasingly bigger input subsets were given to the Glyph Network.

The target of each font is found in the top row while outputs of models with
varying input sizes are presented in subsequent rows. Inputs are annotated in

red.

glyphs generated with the original loss function, marked in blue, in
which even simple strokes appear faded (see examples 1, 7 and 11
of Figure 7). These improvements, however, are not observed in the
entirety of the test set (see example 9).

Overall, the Glyph Network excels at recreating fonts with thin,
straight strokes, devoid of serifs and other ornaments. Furthermore, it
is capable of identifying various degrees of boldness and italicization
present in the inputs while capturing the general texture and style
decisions of more complex typefaces to a certain degree.

5 Conclusions and Future Work
Typography is one of the most challenging tasks for designers, and
in recent years, many automatic systems have been developed to aid
the design of complete fonts based on a desired style. Amongst these
approaches is included the Glyph Network model, which is one of the
best machine learning algorithms in producing the most convincing
results yet with as few input glyphs as possible. However, there are
limitations when ornamented fonts are to be reconstructed; fonts with
the original Glyph Network model approach tend to be incomplete
on the ornaments and details. Moreover, there is an interest in the
challenge of selecting the minimum input subset size of glyphs as
input in order to generate the whole font while capturing the style
and ornamentation of the target font.

In this paper, we improved the current state-of-the-art in font gen-
eration by modifying the existing Glyph Network loss function and
carefully selecting its inputs during inference according to our thor-
ough, objective analysis supported with multiple evaluation metrics.
We systematically conducted experiments to evaluate the impact of
each input Glyph and subsets composed of the best-evaluated ones
and designers-picked ones. Furthermore, we also studied the impact
of each glyph in the model and how the input subset size of glyphs
impacts the performance metrics. In the end, the main contributions

Figure 7. Examples of GlyphNet outputs given the subset (D,G,H,O,S,R) as input for test samples. Each row is composed of the target font at the top with
inputs annotated in red, followed by the generated outputs. Some undesirable artifacts found on inferred glyphs are marked in blue squares.

are a loss function that provides better results than the state-of-the-
art approach, a selection of the best glyphs to produce cohesive fonts
and the systematic analysis of the experiments that led to these con-
tributions. The code for the approaches and experiments to generate
the results of this paper is provided and available.

First, we established a baseline model and engineered two distinct
attention mechanisms to compute the generator loss function: one
based on pixel-wise operations, the L1attention, and another sup-
ported by glyph skeletons obtained using a thinning algorithm, the
L1skeleton. We then conducted three experiments: a one-letter in-
put ranking evaluation, a comparison of best ranking glyphs subset
from the first experiment with a preset of select glyphs that designers
start with when designing a novel typeface and; a systematic com-
parison of the impact of the input subset size in the model. In the
letter ranking experiment, we showed that the L1attention loss led to
a significant increase in all glyphs when compared to the L1baseline,
the state-of-the-art approach, in the FID metric, on average a total
of 12.5 points decrease in the FID metric (lower is better). Although
L1skeleton might bring slightly more stable and better results for
most glyphs, it struggled in the ones where skeleton features were
not as obvious to compute. The experiments conducted with multiple
input glyphs served to optimize even further the performance of the
Glyph Network while still maintaining a relatively low number of ini-
tial subset glyphs required to generate each font. These experiments
also offered interesting insights into the potential performance ben-
efits of incorporating human design intuition into machine learning
systems. By studying how each individual glyph impacts the quality
of the synthesized fonts, this analysis is expected to offer key valu-
able insights for future research on font generation systems. We con-
clude that the proposed Attention Loss for the Glyph Network is a
viable and suitable solution for generating new and realistic-looking
glyphs. Some of the fonts would require some pre-processing, but
with the attained results, we are accelerating the design process of
typeface artists by providing a general view of their creations in the
very early stages of the process.

For future work, we plan on expanding the attention model to learn
to detect the ornaments, i.e. learn the masks used for the L1attention

loss. We aim to expand to datasets with more ornamented Glyphs,
in this study we compared our approach with the state-of-the-art ap-
proach and used the same datasets for fair comparison. Furthermore,
we plan on testing all combinations of available subsets of glyphs
that yielded better results as well the subset used by designers.

References

[1] Haruka Aoki and Kiyoharu Aizawa, ‘Svg vector font generation for
chinese characters with transformer’, (06 2022).

[2] Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli
Shechtman, and Trevor Darrell, ‘Multi-content gan for few-shot font
style transfer’, in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, volume 11, p. 13, (2018).

[3] Ali Borji, ‘Pros and cons of gan evaluation measures’, Computer Vision
and Image Understanding, 179, 41–65, (2019).

[4] NDF Campbell and J Kautz, ‘Learning a manifold of fonts’, ACM
TRANSACTIONS ON GRAPHICS, 33, (07 2014).

[5] K. Cheng, Designing Type, Laurence King, 2006.
[6] Hideaki Hayashi, Kohtaro Abe, and Seiichi Uchida, ‘Glyphgan: Style-

consistent font generation based on generative adversarial networks’,
Knowledge-Based Systems, 186, 104927, (2019).

[7] Haibin He, Xinyuan Chen, Chaoyue Wang, Juhua Liu, Bo Du, Dacheng
Tao, and Yu Qiao. Diff-font: Diffusion model for robust one-shot font
generation, 12 2022.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, ‘Deep resid-
ual learning for image recognition’, pp. 770–778, (06 2016).

[9] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard
Nessler, and Sepp Hochreiter, ‘Gans trained by a two time-scale update
rule converge to a local nash equilibrium’, in Advances in Neural Infor-
mation Processing Systems, eds., I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, volume 30.
Curran Associates, Inc., (2017).

[10] Phan Huy, Hongbo Fu, and Antoni Chan, ‘Flexyfont: Learning transfer-
ring rules for flexible typeface synthesis’, Computer Graphics Forum,
34, (10 2015).

[11] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei Efros, ‘Image-
to-image translation with conditional adversarial networks’, pp. 5967–
5976, (07 2017).

[12] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two trans-
formers can make one strong gan, 02 2021.

[13] Justin Johnson, Alexandre Alahi, and Li Fei-Fei, ‘Perceptual losses
for real-time style transfer and super-resolution’, in Computer Vision
– ECCV 2016, eds., Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, pp. 694–711, Cham, (2016). Springer International Publish-
ing.

[14] Rapha Gontijo Lopes, David Ha, Douglas Eck, and Jon Shlens, ‘A
learned representation of scalable vector graphics’, (2019).

[15] E. Lupton, Thinking with Type, Princeton Architectural Press, 2010.
[16] Pengyuan Lyu, Xiang Bai, Cong Yao, Zhen Zhu, Tengteng Huang, and

Wenyu Liu, ‘Auto-encoder guided gan for chinese calligraphy synthe-
sis’, 2017 14th IAPR International Conference on Document Analysis
and Recognition (ICDAR), 01, 1095–1100, (2017).

[17] Jéssica Parente, Luís Gonçalo, Tiago Martins, João Miguel Cunha,
João Bicker, and Penousal Machado, ‘Using autoencoders to generate
skeleton-based typography’, in (to be published in) Artificial Intelli-
gence in Music, Sound, Art and Design – 12th International Confer-
ence, EvoMUSART 2023, Held as Part of EvoStar 2023, Brno, Czech
Republic, April 12-14, 2023, Proceedings, eds., Colin Johnson, Nereida
Rodríguez-Fernández, and Sérgio M. Rebelo. Springer, (2023).

[18] Donghui Sun, Qing Zhang, and Jun Yang, ‘Pyramid embedded gener-
ative adversarial network for automated font generation’, pp. 976–981,
(08 2018).

[19] Rapee Suveeranont and Takeo Igarashi, ‘Example-based automatic font
generation’, in Smart Graphics, eds., Robyn Taylor, Pierre Boulanger,
Antonio Krüger, and Patrick Olivier, pp. 127–138, Berlin, Heidelberg,
(2010). Springer Berlin Heidelberg.

[20] Rapee Suveeranont and Takeo Igarashi, ‘Example-based automatic font
generation’, in Smart Graphics, eds., Robyn Taylor, Pierre Boulanger,
Antonio Krüger, and Patrick Olivier, pp. 127–138, Berlin, Heidelberg,
(2010). Springer Berlin Heidelberg.

[21] Yizhi Wang and Zhouhui Lian, ‘Deepvecfont: Synthesizing high-
quality vector fonts via dual-modality learning’, ACM Trans. Graph.,
40(6), (dec 2021).

[22] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, ‘Image
quality assessment: from error visibility to structural similarity’, IEEE
Transactions on Image Processing, 13(4), 600–612, (2004).

[23] Liz Stinson WIRED. Two legends dish on how to design a typeface,
2013.

[24] Yangchen Xie, Xinyuan Chen, Li sun, and Yue lu, ‘Dg-font: De-
formable generative networks for unsupervised font generation’, in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, (2021).

[25] T. Y. Zhang and C. Y. Suen, ‘A fast parallel algorithm for thinning dig-
ital patterns’, Commun. ACM, 27(3), 236–239, (mar 1984).

Appendix B

Artificial Fonts

Below is an extended sample of generated fonts using both the diffusion model
and GlyphNet addressed in this dissertation. For each font, the first row contains
the original font with annotated inputs in red, followed by the output produced
by GlyphNet with L1attention loss, and the last row presents the glyphs generated
using the diffusion model. The original fonts belong to the Capitals64 test pool.

69

Appendix B

70

Artificial Fonts

71

Appendix B

72

Artificial Fonts

73

Appendix B

74

Artificial Fonts

75

Appendix B

76

Artificial Fonts

77

Appendix B

78

Artificial Fonts

79

Appendix B

80

Artificial Fonts

81

Appendix B

82

Artificial Fonts

83

Appendix B

84

Artificial Fonts

85

Appendix B

86

Artificial Fonts

87

Appendix B

88

Artificial Fonts

89

Chapter 7

90

	List of Figures
	List of Tables
	Introduction
	Contributions
	Document Outline

	State of the Art
	Type Terminology
	Generative Models
	Font Generation Through ModernGenerative Approaches

	Approach
	Glyph Network
	Diff-Font
	Datasets
	Evaluation Metrics

	Experiments and Results
	Glyph Network Analysis and Attention Based Loss
	Multi-shot Experiments
	Diffusion Model Approach

	Web Application
	Methodology and Scheduling
	Conclusion
	References
	Appendix ECAI 2023 Paper Submission
	Appendix Artificial Fonts

