
 

 

 
 
 
 

 
 
 
 
 
 

Pedro Tiago dos Santos Marques 
 
 
 
 

OPTIMIZATION OF APPROVAL TIME IN 
WEB UI TESTS 

 
 
 
 
 
 

Dissertation in the context of the Master in Informatics Engineering, specialization in 
Software Engineering, advised by Professor Vasco Pereira and Eng. Emanuel Teixeira 

and presented to the Department of Informatics Engineering of the Faculty of 
Sciences and Technology of the University of Coimbra. 

 
 
 

July of 2023 





DEPARTMENT OF INFORMATICS ENGINEERING

Pedro Tiago dos Santos Marques

Optimization of approval time in
Web UI tests

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Vasco Pereira and Eng.
Emanuel Teixeira and presented to the Department of Informatics Engineering

of the Faculty of Sciences and Technology of the University of Coimbra.

July 2023





DEPARTAMENTO DE ENGENHARIA INFORMÁTICA

Pedro Tiago dos Santos Marques

Optimização do tempo de
aprovação em testes Web UI

Dissertação no âmbito do Mestrado em Engenharia Informática, especialização
em Engenharia de Software, orientada pelo Professor Doutor Vasco Pereira e

Eng. Emanuel Teixeira e apresentada ao Departamento de Engenharia
Informática da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Julho 2023





Acknowledgements

I want to express my sincere gratitude to my Dissertation advisors, Prof. Vasco
Pereira and Eng. Emanuel Teixeira, for their guidance and support, and without
whom this work would not be possible. Their invaluable suggestions, expertise,
and perseverance were crucial to the accomplishment of this Dissertation.

To Stratio Automotive, where I got to know amazing talented people and for
providing me with excellent work conditions and resources.

I would also like to thank all my friends and colleagues from DEI, especially
Francisco Bugalho, Diogo Filipe, Nuno Silva, José Reis, José Gomes, Bruno Gan-
dres, Henrique Teixeira (and so many more!), for all the fun memories, advice
and support!

And to my family, for their unconditional support. For the everlasting encour-
agement every day by my mother and father. A special thank you to my brother
Miguel Marques, for always being there when I needed and for pushing me to be
better.

vii





Abstract

As software progresses at an outstanding pace, the need for efficient and reli-
able user experiences while using a variety of software applications grows even
stronger. Component testing and end-to-end (E2E) testing are two crucial types
of testing that are used to guarantee the reliability and quality of software sys-
tems. E2E testing simulates the end-user experience and traverses the system
from start to finish to ensure the correctness of the functionalities according to
the requirements. Component testing aims to isolate components or modules of
the system individually and make sure they are working as intended.

This Dissertation explores the quality process at Stratio Automotive and pro-
poses various improvements through automated testing in order to shorten the
approval time of Web UI tests for the Foresight Platform, which is a predictive
maintenance dashboard the company develops. A study is conducted to extend
the current state of art regarding testing tools for automation and functional test-
ing. Moreover, a detailed examination is performed to understand not only the
potential of each automation driver but also as a development tool that easily
integrates into the CI pipeline of Stratio Automotive. The presented work con-
tributes with changes to the validation process of the product, rendering the au-
tomated tests a necessity to launch new versions of the product continuously. To
that end, we identify three situations where the company spends too many re-
sources performing manual Web UI tests and propose significant changes within
the current quality process to include different technologies.

The obtained results show considerate improvements of up to ten times faster
approval times for Web UI tests. Regarding the Foresight Platform, the present
work achieves code coverage for components of 83.69% and test coverage of 98%
of all functionalities. Finally, a test report is included with the defects prevented
and identified by the employed testing strategies.

Keywords

End-to-End Testing, Component Testing, Quality.

ix





Resumo

À medida que software progride a um ritmo significativo, surge a necessidade
de experiências eficientes e aprazíveis aquando da utilização de diferentes apli-
cações. Testes de componente e end-to-end (E2E) são dois tipos cruciais de testagem
que são utilizados para garantir confiabilidade e qualidade de sistemas de soft-
ware. Testes E2E simulam a experiência do utilizador final ao percorrer o sistema
do início ao fim, para garantir bom funcionamento do mesmo. Testes de com-
ponente, por outro lado, têm como objetivo isolar componentes ou módulos do
sistema de maneira individual, garantindo que são executados como pretendido.

Esta Dissertação explora o processo de qualidade da Stratio Automotive e propõe
várias melhorias através da automatização de testes. O principal objetivo é re-
duzir o tempo de aprovação de testes Web UI do Foresight Platform, que é uma
dashboard de manutenção preditiva que a empresa desenvolve. É realizado um es-
tudo para estender o estado da arte para ferramentas de automatização de testes
e testes funcionais. Efetua-se também uma análise detalhada que compreende o
potencial de cada ferramenta de testes e como se pode integrar na pipeline CI da
Stratio Automotive. O presente trabalho contribui com alterações ao processo de
validação do produto, tornando a etapa de testes automatizados uma obrigação
para lançar novas versões do produto continuamente. Para esse fim, são identifi-
cadas três situações onde a empresa gasta demasiados recursos a realizar testes à
Web UI manualmente, onde propomos alterações significativas ao atual processo
de qualidade da empresa.

Os resultados obtidos apresentam melhorias notáveis, com tempos de aprovação
até dez vezes mais rápidos para testes Web UI. Relativamente à Foresight Plat-
form, o presente trabalho alcança cobertura de código de 83.69% e cobertura de
testes de 98% para todas as funcionalidades. Finalmente, um relatório de testes
é incluído com os defeitos prevenidos e identificados através das estratégias de
teste utilizadas.

Palavras-Chave

Testes End-to-End, Testes de componente, Qualidade.

xi





Contents

1 Introduction 1
1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Work Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Risk Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5.1 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.3 Overcoming Project Risks . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background Information 11
2.1 Software Development Life Cycle . . . . . . . . . . . . . . . . . . . . . 11
2.2 Process Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Work Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Test Driven Development . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Behavior Driven Development . . . . . . . . . . . . . . . . . . 14

2.3 Software Testing Overview . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Determining Testing Impact . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Types of Software Faults . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 White Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Black Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Gray Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.2 Drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Testing Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.1 Four Levels of Testing . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.2 Order of Execution and Testing Quantity . . . . . . . . . . . . 22
2.7.3 When to Level Up . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.8 Component Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8.2 Motivation to use Component Tests . . . . . . . . . . . . . . . 23
2.8.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiii



2.8.4 Data Mocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 End-to-End Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9.1 POM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9.2 Smoke Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9.3 Best Practices to develop Web Automation Tests . . . . . . . 26

2.10 CI/CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10.1 CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.10.2 CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10.3 GitLab CI/CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 State of Art 31
3.1 Component Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Cypress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Playwright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Karma & Jasmine with TestBed . . . . . . . . . . . . . . . . . . 35
3.1.4 Storybook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.5 Summary Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 End-to-End Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Cypress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Selenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Playwright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.4 TestCafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.5 Puppeteer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.6 WebDriverIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.7 Katalon Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.8 Summary Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.9 Auxiliary Software . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Proposed Solution 51
4.1 Stratio Foresight Platform . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Repositories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.1.2 Target Features for E2E Testing . . . . . . . . . . . . . . . . . . 53

4.2 Quality Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Paradigm Before Proposed Changes . . . . . . . . . . . . . . . 56
4.2.2 Solution Purpose and Changes . . . . . . . . . . . . . . . . . . 57

4.3 POC for Component Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 POC Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Component Tests Implementation . . . . . . . . . . . . . . . . . . . . . 61
4.4.1 Storybook Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Achieved Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Integration in the CI Pipeline . . . . . . . . . . . . . . . . . . . . 66
4.4.4 Component Tests Parallelism . . . . . . . . . . . . . . . . . . . 66
4.4.5 Influence on the Development Team . . . . . . . . . . . . . . . 68

4.5 POC for End-to-End Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Investigation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Development Phase . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.3 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



Contents

4.5.4 POC Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 End-to-End Tests Implementation . . . . . . . . . . . . . . . . . . . . . 72

4.6.1 E2E Testing vs. Smoke Testing Criteria . . . . . . . . . . . . . 74
4.6.2 Playwright Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.3 Integration in the CI Pipeline . . . . . . . . . . . . . . . . . . . . 78
4.6.4 E2E Tests Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.6.5 Influence on the Product Team . . . . . . . . . . . . . . . . . . . 81

4.7 Continuous Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.7.1 Integration in the CI/CD Pipeline . . . . . . . . . . . . . . . . 82
4.7.2 Coordination with Development and Product Teams . . . . 83

4.8 Overall Impact of the Proposed Solution . . . . . . . . . . . . . . . . . 84
4.8.1 Before Automated Testing . . . . . . . . . . . . . . . . . . . . . 84
4.8.2 Defects Prevented or Identified . . . . . . . . . . . . . . . . . . 85
4.8.3 Code Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.8.4 Test Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8.5 Contribution to the Development and Product Teams . . . . 87
4.8.6 Approval Time of Product Iterations . . . . . . . . . . . . . . . 87

5 Conclusion 89
5.1 Dissertation Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix A Information for Component and E2E Testing POC 101
A.1 Component Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.2 E2E Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Appendix B Information Regarding Component Tests 105
B.1 Test Cases for Component Testing . . . . . . . . . . . . . . . . . . . . . 105
B.2 Front-end Commons Tests Parallelism Data . . . . . . . . . . . . . . . 128

Appendix C Information Regarding E2E Tests 129
C.1 Test Cases for E2E Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 129
C.2 Stratio-Web Tests Parallelism Data . . . . . . . . . . . . . . . . . . . . . 157
C.3 Approval Metrics without Automated Tests . . . . . . . . . . . . . . . 158

xv





Acronyms

API Application Programming Interface.

BDD Behavior Driven Development.

CD Continuous Delivery/Deployment.

CI Continuous Integration.

CSS Cascading Style Sheets.

DOM Document Object Model.

E2E End-to-End.

HTML Hypertext Markup Language.

PO Product Owner.

POC Proof of Concept.

POM Page Object Model.

QA Quality Assurance.

TDD Test Driven Development.

UAT User Acceptance Test.

UI User Interface.

Web UI Web User Interface.

xvii





List of Figures

1.1 Schematic representation of the workflow of component and E2E
testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Work plan for the first semester. . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Initial work plan for the second semester. . . . . . . . . . . . . . . . . 6
1.4 Actual work plan for the second semester. . . . . . . . . . . . . . . . . 7

2.1 Schematic representation of the Software Development Life Cycle. 12
2.2 Schematic representation of the Kanban board. . . . . . . . . . . . . . 13
2.3 Schematic representation of the TDD approach. . . . . . . . . . . . . 14
2.4 Schematic representation of the white box testing technique [16]. . 17
2.5 Schematic representation of the white box testing procedure. . . . . 17
2.6 Schematic representation of the black box testing technique [16]. . . 18
2.7 Schematic representation of the black box testing procedure. . . . . 19
2.8 Schematic representation of the gray box testing technique [16]. . . 20
2.9 Schematic representation of the Testing Pyramid. . . . . . . . . . . . 21
2.10 Schematic representation of the Component Test Strategy Workflow. 23
2.11 Schematic representation of the Page Object Model design pattern. 25
2.12 Schematic representation of the CI/CD workflow. . . . . . . . . . . . 28
2.13 Schematic representation of the CI/CD method with GitLab [7]. . . 29

3.1 Summary board of the software testing tools for component testing. 37
3.2 Summary board of the software testing tools for E2E testing. . . . . 48
3.3 Demonstration of Selectors Hub tool. . . . . . . . . . . . . . . . . . . . 49

4.1 Example of the user interface of Stratio Foresight Platform [60]. . . 52
4.2 Schematic representation of the GitLab CI/CD pipeline of the Front-

end Commons repository. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Schematic representation of the GitLab CI/CD pipeline of the Stratio-

Web repository. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Schematic representation of the course of bug fix approval life cycle. 56
4.5 Schematic representation of the user story approval life cycle. . . . 57
4.6 Schematic representation of the proposed change for the course of

bug fix approval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.7 Schematic representation of the proposed change for the user story

approval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8 Storybook UI rendering the Alert Modal component. . . . . . . . . . 63
4.9 Storybook UI stating the Alert Modal arguments. . . . . . . . . . . . 63
4.10 Storybook UI stating the Alert Modal interactions. . . . . . . . . . . . 64

xix



4.11 Schematic representation of the GitLab CI/CD pipeline of the Front-
end Commons repository after performing component tests. . . . . 66

4.12 Execution time of Storybook Test Runner with different maximum
workers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.13 Average Execution time of Storybook Test Runner with different
maximum workers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.14 Storybook UI stating design violations in the Value Selector Com-
ponent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.15 Operation Metrics component from the Fleet Condition function-
ality [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16 Form component from the Service Plans functionality [5]. . . . . . . 75
4.17 File structure of the test suite in Stratio-Web repository. . . . . . . . . 76
4.18 File structure of the Test Scripts directory. . . . . . . . . . . . . . . . . 77
4.19 Schematic representation of the GitLab CI/CD pipeline of the Stratio-

Web repository after performing E2E tests. . . . . . . . . . . . . . . . . 78
4.20 Execution time of Playwright Test Runner with different worker-

s/shards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.21 Average execution time of Playwright Test Runner with different

workers/shards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.22 Schematic representation of the proposed TDD approach with E2E

tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.23 Schematic representation of the pipeline operating with the pro-

posed TDD approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.24 Schematic representation of the pipeline operating without TDD. . 83

xx



List of Tables

1.1 Probability scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Impact scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Risk #1 - Steep learning curve for new technologies. . . . . . . . . . . 8
1.4 Risk #2 - Stratio Automotive’s platforms are temporarily unavailable. 9
1.5 Risk #3 - There are no viable tools to perform component or E2E

tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Risk #4 - Not enough time to retrieve adequate metrics to validate

the proposed solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Properties studied for each component testing tool explored. . . . . 31
3.2 Properties studied for each component testing tool explored (Cont.). 32
3.3 Properties studied for each E2E testing tool explored. . . . . . . . . . 38
3.4 Properties studied for each E2E testing tool explored (Cont.). . . . . 39

4.1 Stratio Foresight Platform features. . . . . . . . . . . . . . . . . . . . . 54
4.2 Stratio Foresight Platform features (cont.). . . . . . . . . . . . . . . . . 55
4.3 Description of the scale for Setup Complexity. . . . . . . . . . . . . . 60
4.4 Description of the scale for Development Cost. . . . . . . . . . . . . . 60
4.5 Description of the scale for Documentation Quality. . . . . . . . . . . 60
4.6 General details regarding the POC for Component Testing. . . . . . 61
4.7 General details regarding the selected components for testing. . . . 62
4.8 Percentage of lines covered of all components. . . . . . . . . . . . . . 65
4.9 Storybook Test Runner Parallelism Statistics. . . . . . . . . . . . . . . 67
4.10 Description of the scale for Development Cost. . . . . . . . . . . . . . 70
4.11 Description of the scale for Documentation Quality. . . . . . . . . . . 71
4.12 Description of the scale for Execution Time. . . . . . . . . . . . . . . . 71
4.13 General details regarding the POC for E2E Testing. . . . . . . . . . . 72
4.14 Stratio Foresight Platform Coverage of E2E tests . . . . . . . . . . . . 73
4.15 Stratio Foresight Platform Coverage of E2E tests (Cont.) . . . . . . . 74
4.16 Playwright Test Runner Parallelism Statistics . . . . . . . . . . . . . . 80
4.17 Summary of approval time for the proposed TDD approach. . . . . 84
4.18 Approval time metrics before performing automated testing. . . . . 85
4.19 Summary of identified defects through E2E tests. . . . . . . . . . . . 86
4.20 Summary of manual approval time metrics against automated Web

UI tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1 Test case POC-CT-1 - Assert Alert-Modal Component. . . . . . . . . 102
A.2 Test case POC-CT-2 - Assert Sub-Menu Component. . . . . . . . . . . 102
A.3 Test case POC-CT-3 - Assert Sub-Menu Component. . . . . . . . . . . 103

xxi



A.4 Test case 1 - Mark Occurence as Read. . . . . . . . . . . . . . . . . . . . 104
A.5 Test case 2 - Mark Service Plan as Done. . . . . . . . . . . . . . . . . . 104

B.1 Test case CT-1.0 - Alert-Modal Component. . . . . . . . . . . . . . . . 105
B.2 Test case CT-1.1 - Alert-Modal Component. . . . . . . . . . . . . . . . 106
B.3 Test case CT-1.2 - Alert-Modal Component. . . . . . . . . . . . . . . . 106
B.4 Test case CT-1.3 - Alert-Modal Component. . . . . . . . . . . . . . . . 107
B.5 Test case CT-2.0 - Sub-Menu Component. . . . . . . . . . . . . . . . . 108
B.6 Test case CT-2.1 - Sub-Menu Component. . . . . . . . . . . . . . . . . 108
B.7 Test case CT-2.2 - Sub-Menu Component. . . . . . . . . . . . . . . . . 109
B.8 Test case CT-2.3 - Sub-Menu Component. . . . . . . . . . . . . . . . . 109
B.9 Test case CT-3.0 - Table Component. . . . . . . . . . . . . . . . . . . . . 110
B.10 Test case CT-3.1 - Table Component. . . . . . . . . . . . . . . . . . . . . 110
B.11 Test case CT-3.2 - Table Component. . . . . . . . . . . . . . . . . . . . . 111
B.12 Test case CT-4.0 - Drawer Component. . . . . . . . . . . . . . . . . . . 112
B.13 Test case CT-4.1 - Drawer Component. . . . . . . . . . . . . . . . . . . 112
B.14 Test case CT-5.0 - Layout Component. . . . . . . . . . . . . . . . . . . . 113
B.15 Test case CT-5.1 - Layout Component. . . . . . . . . . . . . . . . . . . . 113
B.16 Test case CT-6.0 - Quick Search Component. . . . . . . . . . . . . . . . 114
B.17 Test case CT-6.1 - Quick Search Component. . . . . . . . . . . . . . . . 114
B.18 Test case CT-7.0 - Columns Selector Component. . . . . . . . . . . . . 115
B.19 Test case CT-7.1 - Columns Selector Component. . . . . . . . . . . . . 115
B.20 Test case CT-8.0 - Value Selector Component. . . . . . . . . . . . . . . 116
B.21 Test case CT-8.1 - Value Selector Component. . . . . . . . . . . . . . . 116
B.22 Test case CT-8.2 - Value Selector Component. . . . . . . . . . . . . . . 117
B.23 Test case CT-8.3 - Value Selector Component. . . . . . . . . . . . . . . 117
B.24 Test case CT-9.0 - Label Highlight Box Component. . . . . . . . . . . 118
B.25 Test case CT-10.0 - Label Component. . . . . . . . . . . . . . . . . . . . 119
B.26 Test case CT-10.1 - Label Component. . . . . . . . . . . . . . . . . . . . 119
B.27 Test case CT-11.0 - Operation Status Component. . . . . . . . . . . . . 120
B.28 Test case CT-12.0 - Lists Resume Component. . . . . . . . . . . . . . . 121
B.29 Test case CT-12.1 - Lists Resume Component. . . . . . . . . . . . . . . 121
B.30 Test case CT-13.0 - Breadcrumbs Component. . . . . . . . . . . . . . . 122
B.31 Test case CT-13.1 - Breadcrumbs Component. . . . . . . . . . . . . . . 122
B.32 Test case CT-14.0 - Page Header Component. . . . . . . . . . . . . . . 123
B.33 Test case CT-14.1 - Page Header Component. . . . . . . . . . . . . . . 123
B.34 Test case CT-14.2 - Page Header Component. . . . . . . . . . . . . . . 123
B.35 Test case CT-15.0 - Sub-Menu Filters Button Component. . . . . . . . 124
B.36 Test case CT-16.0 - Table Export Button Component. . . . . . . . . . . 125
B.37 Test case CT-16.1 - Table Export Component. . . . . . . . . . . . . . . 125
B.38 Test case CT-17.0 - Table Refresh Button Component. . . . . . . . . . 126
B.39 Test case CT-17.1 - Table Refresh Button Component. . . . . . . . . . 126
B.40 Test case CT-18.0 - Table Row Action Button Component. . . . . . . 127
B.41 Test case CT-18.1 - Table Row Action Button Component. . . . . . . 127
B.42 Component Tests Parallelism Data . . . . . . . . . . . . . . . . . . . . . 128
B.43 Component Tests Parallelism Data (Cont.) . . . . . . . . . . . . . . . . 128

C.1 Test case E2E-1.0 - Login: Authentication. . . . . . . . . . . . . . . . . 129
C.2 Test case E2E-1.1 - Login: Recover Password. . . . . . . . . . . . . . . 130

xxii



List of Tables

C.3 Test case E2E-2.0 - Logout: Log Off. . . . . . . . . . . . . . . . . . . . . 130
C.4 Test case E2E-3.0 - Fleet Condition: Consult Vehicle Details. . . . . . 131
C.5 Test case E2E-3.1 - Fleet Condition: Consult Active Alerts. . . . . . . 131
C.6 Test case E2E-3.2 - Fleet Condition: Consult Active DTCs. . . . . . . 132
C.7 Test case E2E-4.0 - System Indicators: Overview. . . . . . . . . . . . . 132
C.8 Test case E2E-4.1 - System Indicators: Starter Battery. . . . . . . . . . 133
C.9 Test case E2E-4.2 - System Indicators: Brake Pads. . . . . . . . . . . . 133
C.10 Test case E2E-4.3 - System Indicators: Available Engine Torque. . . 134
C.11 Test case E2E-4.4 - System Indicators: Air Leaks. . . . . . . . . . . . . 134
C.12 Test case E2E-4.4 - System Indicators: Battery Pack - EV. . . . . . . . 134
C.13 Test case E2E-4.5 - System Indicators: Potential Fault. . . . . . . . . . 135
C.14 Test case E2E-5.0 - Metrics: Consumption. . . . . . . . . . . . . . . . . 136
C.15 Test case E2E-5.1 - Metrics: Throttle Pedal. . . . . . . . . . . . . . . . . 136
C.16 Test case E2E-5.2 - Metrics: Coolant Temperature. . . . . . . . . . . . 137
C.17 Test case E2E-5.3 - Metrics: EV Charging. . . . . . . . . . . . . . . . . . 137
C.18 Test case E2E-5.4 - Metrics: Operation. . . . . . . . . . . . . . . . . . . 137
C.19 Test case E2E-6.0 - Vehicle Recent Data: Display. . . . . . . . . . . . . 138
C.20 Test case E2E-7.0 - Occurrences: Filtering and Marking as Read. . . 139
C.21 Test case E2E-8.0 - Service Plans: Create service plan, mark it as

done and cleanup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
C.22 Test case E2E-9.0 - Reports: Consult Reports. . . . . . . . . . . . . . . 141
C.23 Test case E2E-10.0 - Maps: Map. . . . . . . . . . . . . . . . . . . . . . . 142
C.24 Test case E2E-10.1 - Maps: Trips. . . . . . . . . . . . . . . . . . . . . . . 143
C.25 Test case E2E-10.2 - Maps: Driver Hours of Service. . . . . . . . . . . 143
C.26 Test case E2E-10.3 - Maps: Geo-referenced Occurrences. . . . . . . . 143
C.27 Test case E2E-10.4 - Maps: Messages. . . . . . . . . . . . . . . . . . . . 144
C.28 Test case E2E-10.5 - Maps: Operational Events. . . . . . . . . . . . . . 144
C.29 Test case E2E-10.6 - Maps: Geo-referenced Alerts. . . . . . . . . . . . 145
C.30 Test case E2E-10.7 - Maps: Shared Vehicle Locations. . . . . . . . . . 146
C.31 Test case E2E-11.0 - Ecodrive: Overview. . . . . . . . . . . . . . . . . . 147
C.32 Test case E2E-11.1 - Ecodrive: Driver Score. . . . . . . . . . . . . . . . 148
C.33 Test case E2E-11.2 - Ecodrive: Vehicle Score. . . . . . . . . . . . . . . . 149
C.34 Test case E2E-11.3 - Ecodrive: Bus Line Score. . . . . . . . . . . . . . . 149
C.35 Test case E2E-11.4 - Ecodrive: Driver Configuration. . . . . . . . . . . 150
C.36 Test case E2E-11.5 - Ecodrive: Groups Management. . . . . . . . . . . 150
C.37 Test case E2E-12.0 - My Settings: General Settings and Measuring

Units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.38 Test case E2E-12.1 - My Settings: Notifications. . . . . . . . . . . . . . 152
C.39 Test case E2E-12.2 - My Settings: Edit Profile. . . . . . . . . . . . . . . 152
C.40 Test case E2E-13.0 - Global Settings: Groups. . . . . . . . . . . . . . . 153
C.41 Test case E2E-13.1 - Global Settings: Idle Time. . . . . . . . . . . . . . 153
C.42 Test case E2E-13.2 - Global Settings: Ignored Trouble Codes/Alerts. 154
C.43 Test case E2E-14.0 - List Users: Disable/Enable User. . . . . . . . . . 155
C.44 Test case E2E-14.1 - List Users: Examine User. . . . . . . . . . . . . . . 156
C.45 E2E Tests Parallelism Data. . . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.46 Approval Metrics from the product team, without automated tests. 158

xxiii





Chapter 1

Introduction

The present document outlines both the theoretical and practical work consum-
mated during the first and second semester of the academic year 2022/2023 and
represents the final Dissertation. The following sections are meant to illustrate
the theme of research, the work plan for the year 2022/2023, goals, objectives,
risks and methodology.

The curricular internship titled "Optimization of approval time in Web UI tests",
hosted by Stratio Automotive, is included in the academic program of the Mas-
ter’s in Informatics Engineering in the Software Engineering branch.

1.1 Context and Motivation

The primary mode of interaction with the digital world is software. It consists on
a set of programs, procedures and routines that instruct a computer to perform a
task [1]. Nevertheless, software is not immune to defects that may constrain its
functionality, compromising quality and the user experience.

Software testing is an important process to develop good projects/systems that
correlate with user needs and expectations. The main objective is to find defects,
which cause the system to migrate from a correct state to an incorrect state, and
fix them before delivering the product. The work developed in this Dissertation
involves only functional Web User Interface (Web UI) software testing, so soft-
ware development and testing will refer to Web UI software unless otherwise
stated.

As an example, users anticipate a smooth experience when browsing the Inter-
net since they expect the website to work flawlessly. To better understand the
need for Web UI testing, let us consider a user accessing the Stratio Foresight Plat-
form, which is a web application offered by Stratio Automotive. After the page
loads the main interface, the user can interact with a range of features within the
front-end without noticing any issues or defects. This ideal scenario is the result
of extensive testing and bug fixes before deploying a stable version to the pro-
duction environment. During development, it is expected that some components

1



Chapter 1

do not work as intended or that the overall experience is flawed, rendering the
importance of having a well defined test strategy for components in place. This
is known as component testing, which mounts components individually and test
them independently from the system. Additionally, another techniques like End-
to-End (E2E) testing may be used to validate the entire system from start to finish
to guarantee proper functioning. By testing all of the components and interac-
tions between them, the development team can be relatively certain that the cur-
rent build is stable, without major defects. The typical workflow of component
and E2E tests is illustrated in Figure 1.1.

Figure 1.1: Schematic representation of the workflow of component and E2E test-
ing.

Currently, multiple tools such as Cypress [2] and Playwright [3] exist to simulate
user’s behaviors through Web UI testing, since they aim to mimic the actions of
potential users on a specific website to detect defects. Also, there are tools like
Storybook [4] to individually test the components that compose a page, granting
a more granular and individual approach to Web UI testing.

Stratio Automotive [5] offers a predictive vehicle fleet maintenance platform with
the main objective of preventing breakdowns, reducing costs, and eliminating

2



Introduction

downtime. The company combines data processing at scale with sophisticated
machine learning algorithms to prevent breakdowns in vehicle fleets. This mar-
ket is huge given that, in order to maintain transport efficiency, undesired anoma-
lies cannot occur.

Additionally, Stratio Automotive owns and develops a Web UI solution for its
customers. A big chunk of the continuous development involves guaranteeing
that the produced software achieves maximum quality and a smooth experience
for all users, without defects. This Dissertation will present a solution that re-
duces the approval time of Web UI tests for Stratio Automotive. In other words,
through automated testing, the goal is to lessen the time it takes to launch a new
product iteration to the clients. To achieve this goal, it is necessary to analyse
and understand the current Continuous Integration (CI) approach and quality
process of the company and propose changes.

At the present, the quality process of Stratio Automotive has the opportunity to
evolve and automate many operations that are currently done manually on the
Web UI platform. In order to approve a new version of the software for deploy-
ment, the product team has to manually validate the whole Web UI platform.
This process can take up to four hours depending on how detailed and extensive
the analysis is, which can dramatically increase the approval time of new ver-
sions. Additionally, the validation of new functionalities and bug approvals are
done by hand. All this time starts to add up and, for each release, the product
team spends many hours validating the changes made by the software depart-
ment.

To tackle this process, the adoption of Kanban [6] as an agile methodology will be
put into practice in order to visualise workload and limit work in process. After
attaining continuous improvement, it is important to evaluate the current qual-
ity process and understand where it is possible to integrate new changes. The
first evolution with immediate impact is the creation of a battery of E2E tests that
cover the functionalities manually validated by the product team of the Web UI
platform before each deployment. The other natural improvement is to associate
component tests and a new E2E test for each new functionality or bug fix devel-
oped during each sprint. This advancement guarantees that the developer can
receive feedback instantly and correct bugs earlier. Regarding the current CI ap-
proach, Stratio Automotive’s development team uses GitLab CI [7] to test, build,
and deploy new versions of their product. This forms the basis to implement
automated testing methodologies.

1.2 Objectives

The main objective is to optimize the approval time of Web UI tests by transform-
ing the quality process at Stratio Automotive. The main effort consists of intro-
ducing changes to aspects that are currently delaying testing times through the
integration of different tools and the composition of different types of tests. This
improvement not only reduces conflicts like excessive back and forth messages
between the product and development team, but also proposes a new mindset,

3



Chapter 1

testing software, and a different acceptance process. To accomplish the proposed
solution, the main objectives of this Dissertation are as follows:

1. Study the theoretical background of the quality assurance paradigm with
main focus in component and E2E testing;

2. Research various tools to achieve the testing methodologies mentioned in
point 1;

3. Study the CI/CD approach and quality assurance model of Stratio Auto-
motive regarding the approval process in Web UI tests;

4. Conduct a Proof of Concept (POC) to select the most adequate tool for com-
ponent testing and another POC for E2E testing;

5. Implement front-end tests using both component and E2E testing method-
ologies in the Stratio Automotive’s ecosystem;

6. Integrate the testing tools within the CI pipeline of Stratio Automotive to
enable automated testing;

7. Transform the quality assurance process of Stratio Automotive;

8. Measure the impact of each change through testing/code coverage, defects
prevented/identified and approval time.

1.3 Methodology

An agile methodology was used in the proposed solution. More specifically, Kan-
ban (section 2.2.1), which was compatible with the workflow of the Engineer-
ing Operations team of Stratio Automotive, integrated by the Quality Assurance
(QA) members.

During the development lifecycle, the Kanban board principles [6] were prac-
ticed, with various tasks assigned to the backlog. While planning, specific tasks
were designated (represented by a card) for the To Do column. When the devel-
oper begins the task, they move the associated card to the In Progress column
until the assignment is finished and submitted for approval to the QA tech lead.

In spite of working independently, two meetings were scheduled throughout the
week with the Engineering Operations team during the development of the POC:

1. Weekly Status: every Wednesday, the intern would get the chance to inter-
polate their progress, what they pretend to accomplish and eventual diffi-
culties;

2. Planning/Refinement: every Friday, the intern repeats the process from the
weekly status meeting and appoints a new task (from the backlog) to per-
form during the next week if applicable.

4



Introduction

1.4 Work Plan

The work plan for the first semester was focused on studying and analysing var-
ious aspects regarding quality in software. The main activities performed were
the following:

• Understand testing levels;

• Study automation for front-end;

• Researching the state of art for front-end automation testing tools;

• POC for E2E testing with three relevant tools;

• Write Dissertation document.

The work plan for the first semester can be seen in Figure 1.2 and there were no
deviations from the intended work.

Figure 1.2: Work plan for the first semester.

The work carried out during the second semester focused on the practical com-
ponent. The initial version of the work plan is illustrated in Figure 1.3, with the
main focus on the development of component and E2E tests, including only Git-
Lab CI integration within the latter.

5



Chapter 1

Figure 1.3: Initial work plan for the second semester.

After the intermediate presentation, the previous strategies were revised and the
work plan was refactored. Before implementing the tests, it was necessary to
conduct a more profound analysis of the quality assurance process of Stratio Au-
tomotive and the Foresight Platform, which was the main testing target. Addi-
tionally, both component and E2E testing will be implemented within the GitLab
CI pipeline to enable automated testing, and a Test Driven Development (TDD)
approach will be proposed. Finally, the time taken to retrieve metrics will be
taken into consideration.

The main planned activities accomplished are as follows:

• Analyse the current quality assurance Process of Stratio Automotive and
propose changes through automated testing;

• POC for component testing with two relevant tools;

• Compose component tests;

• Implement smoke tests;

• Compose E2E tests;

• Integrate both testing tools on the GitLab CI pipeline to enable automated
testing;

• Explore a TDD approach with E2E tests;

• Retrieve metrics to measure the impact of the internship before and after
the testing implementations;

• Write Dissertation document.

The work plan for the second semester can be seen in Figure 1.4.

6



Introduction

Figure 1.4: Actual work plan for the second semester.

1.5 Risk Management

In this section, all the foreseen causes of an unsuccessful internship are listed and
examined, including the success criteria, risk analysis and mitigation plans.

Risk management is a crucial step that will not be overlooked, since it represents
the process of detecting, assessing, tracking and reporting risks. Note that a risk
is defined as an event or condition that could possibly cause a negative impact
on the goals of a project it occurs [8]. The risk management strategy enables
proactive risk management, impact reduction and plan handling.

1.5.1 Success Criteria

The success of this project depicts the point of view of both the intern and Stratio
Automotive. The crucial conditions for success must be completed during the
internship, within the expected time frame. These key conditions are as follows:

• Enable testing automation that reduces by half the manual testing and ap-
proval time of the Web UI platform;

• Reach target test coverage of 90% of the Stratio Foresight Platform features
through E2E testing;

• Reach target code coverage of 75% for components through component test-
ing;

• Integration of the selected tools for component and E2E tests in the GitLab
CI pipeline to automate the Web UI tests.

7



Chapter 1

1.5.2 Risk analysis

Before displaying the respective risks, it is important to define the likelihood of it
occurring (Table 1.1) and the overall impact of a risk (Table 1.2).

Table 1.1: Probability scale.

Scale Probability
Low Low chance of occurrence.
Medium Medium chance of occurrence.
High High chance of occurrence.

Table 1.2: Impact scale.

Scale Impact
Low Little to no impact to the work plan or development.
Medium Considerate impact to the work plan or development.
High Potential to immensely impact the work plan or development.

Risk Identification

Below, the identified risks are stated (Table 1.3, Table 1.4, Table 1.5 and Table 1.6).

Table 1.3: Risk #1 - Steep learning curve for new technologies.

ID R1
Statement The learning curve for unfamiliar technologies is steep.
Probability Medium
Impact High
Consequences Certain issues might take longer to resolve than anticipated.
Actions CP-1 Contingency Plan - Steep learning curve for new tech-

nologies: Admit more time and effort to overcome hardships.
Reach out for advice among the advisors and other Stratio
Automotive workers who already have experience with these
technologies.

8



Introduction

Table 1.4: Risk #2 - Stratio Automotive’s platforms are temporarily unavailable.

ID R2
Statement The platforms that the intern is going to test are temporarily

unavailable for E2E testing.
Probability Medium
Impact High
Consequences Impossibility of carrying out E2E testing on the appropriate

platforms, delaying the work plan.
Actions CP-2 Contingency Plan - Stratio Automotive’s platforms are

temporarily unavailable: Coordinate efforts with the soft-
ware department and understand if there are any time peri-
ods where the platform is going to be down.

Table 1.5: Risk #3 - There are no viable tools to perform component or E2E tests.

ID R3
Statement During research, not finding any compatible tool to carry the

pretended testing.
Probability Low
Impact High
Consequences Impossibility of carrying out testing due to unavailable work

methods.
Actions CP-3 Contingency Plan - There are no viable tools to per-

form component or E2E tests: Use the studied tool that comes
the closest to the intended work and coordinate with advisors
better alternatives to manage the work plan.

Table 1.6: Risk #4 - Not enough time to retrieve adequate metrics to validate the
proposed solution.

ID R4
Statement Not having enough time to retrieve all necessary metrics to

fully validate the proposed solution.
Probability High
Impact Medium
Consequences Certain conclusions may not be entirely confident or defini-

tive.
Actions CP-4 Contingency Plan - Not enough time to retrieve ade-

quate metrics to validate the proposed solution: Utilize the
retrieved data to validate the proposed solution and measure
its impact as much as possible. Discuss the collected measure-
ments and extrapolate adequate conclusions.

9



Chapter 1

1.5.3 Overcoming Project Risks

During development, some of the identified risks emerged throughout the project.
An evaluation of the risks encountered follows:

• R2 - Stratio Automotive’s platforms are temporarily unavailable: a prob-
lem in the databases ended up disabling the Stratio Foresight Platform for a
week. This issue delayed the retrieval of parallelism metrics for E2E tests for
a few days, prompting the intern to anticipate the proposed TDD approach
while the platform was unavailable;

• R4 - Not enough time to retrieve adequate metrics to validate the pro-
posed solution: the measured metrics for this dissertation comprise three
months for component tests and nearly two months for E2E tests. Never-
theless, section 4.8 includes a deep analysis of the achieved results with as
few extrapolations as possible.

1.6 Dissertation Outline

Considering the main objectives described in Section 1.2, this Dissertation is or-
ganised as follows:

• Chapter 1 (corresponds to this chapter) states the context and motivates the
objectives for this Dissertation;

• Chapter 2 presents the core details to understand Software Testing;

• Chapter 3 delineates the state of art for the most popular solutions used on
Web UI testing, including component testing and E2E testing;

• Chapter 4 details the proposed solution for the quality process at Stratio
Automotive, the POC’s for component and E2E tests and the metrics con-
templating the impact of the proposed solution;

• Chapter 5 contains remarks about the work carried out in the internship as
well as the plans for the future improvement of the solution.

10



Chapter 2

Background Information

In this chapter, some concepts and introductory topics will be explored in order
to establish an important foundation for the next chapters of this document. This
includes key aspects regarding software development, including its life cycle and
work methodologies. Afterwards, an overview regarding the definition of soft-
ware testing, white box, black box and gray box testing will be stated. Then, the
four testing levels of the Testing Pyramid will be presented, focusing on compo-
nent and End-to-End (E2E) testing, followed by a description of CI/CD.

2.1 Software Development Life Cycle

The software development life cycle is the process that a software goes through
from its conception until its retirement. There are multiple different stages [9],
represented in Figure 2.1.

1. Planning Stage: involves requirement analysis after meeting with the cus-
tomer or owner of the software system. The main outcomes of this phase
include quality assurance, risk identification and feasibility report;

2. Defining Stage: consists of the process of defining the key goals of the sys-
tem according to the requirements from the involved stakeholders, leading
to the software requirement specification document. One important aspect
from this stage is the definition of use cases that represent a written descrip-
tion of actions performed by end-users. In other words, they describe the
system behavior by capturing an intention/contract between stakeholders;

3. Designing Stage: focuses on the establishment of the software stack to per-
form the product, as well as the system’s architecture. The main objective is
to set how the solution will work with the quality attributes and the func-
tional requirements of the system;

4. Building Stage: where the software engineering team is responsible for im-
plementing the system. In this stage it is possible to utilise Agile method-
ologies, like Kanban;

11



Chapter 2

5. Testing Stage: the software is thoroughly tested to ensure verification and
validation. Note the importance of the use cases from the strategy phase, as
they allow the conceptualization of test cases [10]. The latter corresponds to
a set of actions that represent scenarios to be asserted against the software’s
intended functionalities and behavior. The result of these test cases is also
an indication of where the undesirable behavior is located;

6. Deployment Stage: the sixth stage ensures the software is available in the
production environment. All users have the opportunity to acquire the
product;

7. Maintenance Stage: naturally, software is susceptible to changes that evolve
its functionalities and user experience. During this stage, the development
team fixes bugs or adds new features to adapt the product to the constantly
evolving market.

Figure 2.1: Schematic representation of the Software Development Life Cycle.

2.2 Process Management

In this section, crucial aspects regarding software development will be explored
since it is important to ensure that the proposed software is concluded without
many deviations. Process management seeks to provide a thorough understand-
ing of the development and its significance in the software development business.

2.2.1 Work Methodologies

During this internship, Kanban will be used as an Agile methodology. This is
based in the Agile Manifesto [11] which is a set of values and principles that
enables teams to deliver software increments quicker. They achieve this rhythm
of work by producing small, consumable chunks rather than a large project. Note
that requirements, plans and results are assessed continuously so teams have a
flexible and adaptive planning process that allows for changes and adjustments
to be made during the development process.

Kanban

Kanban is an Agile work management system which allows the team to monitor
their work through a set of principles [6]:

12



Background Information

• Easy work visualization: usage of cards to represent tasks in a Kanban
board (Figure 2.2) with three columns:

– Requested: contains "To Do" tasks, yet to start;

– In Progress: contains tasks that are being executed;

– Done: contains concluded tasks.

• Limit work in progress: main emphasis on finishing work, minimizing
multitasking, and preventing shifting the team’s focus to other problems
before finishing the current one;

• Maximize efficiency: to prevent bottlenecks, Kanban is a pull-based sys-
tem to guarantee the team only starts to work on a different problem when
resources are available to do so;

• Explicit process policies: the work process must be well specified in order
to improve the team’s organization;

• Feedback loops: it is possible to identify weak practices and enhance the
work process by regularly evaluating the board.

Figure 2.2: Schematic representation of the Kanban board.

2.2.2 Test Driven Development

Test Driven Development (TDD) inverts the usual flow of development and test-
ing, since test cases are developed first in order to validate what the code will do.
Rather than fitting a test to validate segments of the code, it is expected to imple-
ment code changes until it complies with the test case [12]. Figure 2.3 illustrates
the typical workflow of the TDD approach. First, a new feature is requested, fol-
lowed by test composition which will fail due to no code being developed. The
feature is then implemented through the minimum amount of code until the unit

13



Chapter 2

test succeeds. Finally, the newly implemented code is refactored to improve read-
ability, reduce complexity, and guarantee maintainability. After each refactor, it
is important to execute all the preceding unit tests to ensure no bugs have been
introduced (regression testing).

Figure 2.3: Schematic representation of the TDD approach.

2.2.3 Behavior Driven Development

Behavior Driven Development (BDD) may be used to complement TDD in order
to broaden the development process for all the involved stakeholders. In the
context of this Dissertation, it would be the quality assurance, development and
product teams. This approach would improve the quality of tests since they are
projected from an end-user perspective through a set of user stories and scenario
templates. The latter is expressed by a syntax called "Given-When-Then" [13]:

• Given: provides the context;

• When: specifies events that occur;

• Then: represents the expected outcome.

In the other hand, user stories are expressed through the following structure:

As a [Role], I want a [Feature], so that [Benefit].

2.3 Software Testing Overview

Software testing is a broad theme with countless concepts to define the best strate-
gies to develop software with the best possible quality. It is relevant to distinguish
static from dynamic approaches:

14



Background Information

• Static Approach: encourages the tester to improve the code without execut-
ing it, through software reviews. This technique aims to identify possible
defects early in the development phase. The cost of doing these kind of re-
views is normally high since it is relevant to analyse big chunks of code at a
time [14];

• Dynamic Approach: through this technique, the software is executed and
the code is put under various conditions to pinpoint defects and/or issues.
Dynamic testing gathers white box and black box methodologies to test the
code [14]. Note that during this document, we will be focusing on this
testing paradigm with main attention in Web User Interface (Web UI)
testing.

Dynamic testing is frequently combined with static testing to create a thorough
and comprehensive testing strategy for ensuring the quality and reliability of soft-
ware systems.

2.3.1 Determining Testing Impact

There are various approaches to measure the impact of tests. In section 4.8, we
will analyse various metrics to assess the overall impact of the proposed solution.

The test coverage, which is a measurement of how much a software is being
exercised by a test suite, is a crucial factor. This criterion assists the team to un-
derstand what areas of the code are being tested, while measuring the total in
percentage. Note that the better the test coverage, the greater the quality of the
software system, in spite of the increased efforts to manage a larger test suite.

Another important measurement is code coverage, which assesses various indi-
cators including the percentage of lines of code, statements, branches, and func-
tions that are successfully executed by tests.

Furthermore, evaluating the number of defects prevented/identified through
the implemented battery of tests is also a good indicator.

Before retrieving statistics, it is important to quantify approval times and code/test
coverage ahead of performing new testing techniques. This would allow us to ac-
curately compare the impact of the newly implemented tests.

2.3.2 Types of Software Faults

For more complex projects, it is important to distinguish different types of bugs/de-
fects. In the interest of acting accordingly through the identification of different
software bugs, it is an important part of the software development process to
understand how they can be solved or tolerated.

The first type is Bohrbugs and they are the most straightforward to find during
testing because they cause failure deterministically. A fault tolerance mechanism

15



Chapter 2

introduces design diversity and redundancy in the system to provide different
sets of conditions to avoid this kind of failures [15].

The second type is Mandelbugs which are uncertain to cause failures under the
same set of testing conditions. Due to their inconsistency, they are very difficult
to disclose and it is complicated to describe a cause of failure. Retrying and using
checkpoint strategies in the code to retain valid system states is a recommended
fault tolerance mechanism [15].

The third most frequent type are aging-related bugs. Like the name indicates,
they are activated after long periods of system run-time and are difficult to find
during testing since they necessitate a lengthy execution time of the system. Log-
ically, a fault tolerance mechanism would be to implement rejuvenation, that is,
to periodically stop the software in order to refresh its state and remove any ac-
cumulated faults or failures [15].

2.3.3 Regression Testing

After integrating new code into an existing project, it is common to introduce
problems into older features or add new defects. Regression tests aim to retest
older code (not the one that was recently integrated) to ensure it is still working
as expected and no bugs were introduced. Rerunning the existing component
tests and E2E tests is sufficient to regression test the system, ensuring that new
modifications integrated in a system did not negatively affect the overall work-
flow of the product.

2.4 White Box Testing

This testing technique requires the tester to have full knowledge and access of
the code and internal workings to be tested. To design test cases, the tester dis-
closes the product’s structure and behavior with full knowledge of the internal
system in mind. For example, this includes the definition of specific code paths
to execute and inspect distinct functionalities.

White box testing is generally applied to systems to assert their internal logic and
functionalities which can be seen in Figure 2.4. Since this methodology requires
the tester to access the source code of the system, it is pertinent to test features
that are difficult to access through the user interface. Some advantages of this
testing methodology include [16]:

• Tests are deep and thorough, with the main goal of maximizing the tester’s
effort;

• Better code optimization as well as identification of security features;

• Ease of communication between developers and testers, since both parties
thoroughly understand the system.

16



Background Information

Figure 2.4: Schematic representation of the white box testing technique [16].

2.4.1 Procedure

Before undertaking white box testing [17], the tester must go through a prepara-
tion phase to become familiar with the development languages and tools. After
understanding the product’s characteristics, they scrutinise the source code and
inspect the internal system in order to better understand the internal workings
of the target application.

After studying the project, the tester focuses on the creation and execution of the
test cases. Note that the tester should only carry on to this phase after a thorough
understanding of the system. The next step is the documentation of test cases
and their execution to assess the software system for defects and bugs.

The last phase corresponds to the documentation, where the tester registers a
detailed description of the whole activity as well as a rundown of the tasks ad-
dressed.

The typical workflow to perform white box testing can be seen in Figure 2.5.

Figure 2.5: Schematic representation of the white box testing procedure.

17



Chapter 2

2.4.2 Drawbacks

Implementing white box testing methodologies has the drawback of necessitating
a strong knowledge of the internal system and a careful investigation of the
source code. Generally, this process is not immediate and requires a considerate
amount of time and resources to attain. Additionally, there may be test scenarios
that are not realistic since they do not represent code paths that will be triggered
by actual end-users. Finally, for very complex software systems, there will be
untested paths since it is unfeasible to test all possibilities [17].

2.5 Black Box Testing

Black box testing requires the tester to only know the input and the expected
output [18]. Thus, due to the "darkness" over the code, which should not be
analysed in this testing methodology, the tester must understand the envisioned
operation of the system from a user’s perspective. To create test cases, the tester
studies the requirements of the software and defines high level tests, for instance,
simulating end-user actions through the user interface.

Figure 2.6: Schematic representation of the black box testing technique [16].

This testing methodology’s core point is the functional requirements of the soft-
ware, highlighted by Figure 2.6, since it tests the implemented features to validate
if they are working as expected. Some advantages of this testing methodology in-
clude [16]:

• With low code tools, testers do not require extensive technical knowledge;

• Smaller preparation phase than white box testing. It is not required to study
the source code and internals about the system to be tested;

• It is more efficient for large code segments, as the tester does not need to
scrutinize the code;

• Rapid test case development.

18



Background Information

2.5.1 Procedure

The workflow to perform black box testing is similar to the the methodology de-
scribed in the previous section. The main difference is in the preparation phase,
where the tester does not need to understand the project’s stack or the source
code. Instead, they carefully analyse the behavior of the system as well as the
requirements.

The typical workflow to perform black box testing can be seen in Figure 2.7.

Figure 2.7: Schematic representation of the black box testing procedure.

2.5.2 Drawbacks

Black box testing methodologies may select only a restricted number of test sce-
narios, leading to limited coverage. Since this technique is broader in terms of
amount of functionalities possible to test at each time, test cases may be difficult
to design, time consuming and resource intensive. In fact, if the tester is unfa-
miliar with the inner workings of the software, it is possible that they will not be
able to spot errors brought on by defects with the code or data structures [16].

2.6 Gray Box Testing

This testing methodology represents a combination of white box and black box
testing, with the main objective of straightening out gaps from the previous tech-
niques. The tester has some knowledge of the internal working structure, illus-
trated by Figure 2.8. For example, they may recognise components of the appli-
cation to be tested but not how they interact [19].

If performing either white box testing or black box testing is neither practical nor
viable, gray box testing is frequently performed. For instance, when the software
is too vast or complex to test at a low level, or when the tester does not have
full access to the source code, gray box testing is often a relevant option. Some
advantages of this testing methodology include [16]:

• Instead of relying on source code, the tester focuses on interface definition
and functional specification;

19



Chapter 2

• The tests are developed from the user’s perspective rather than the de-
signer’s;

• Includes benefits of both white box and black box testing.

Figure 2.8: Schematic representation of the gray box testing technique [16].

2.6.1 Procedure

Akin to white box and black box testing, it is necessary to prepare before creating
test cases, executing and analysing them. The tester must understand the inter-
nal system they have access to and then combine the test case creation process
of both methodologies of testing [19].

2.6.2 Drawbacks

Given the restricted access to the source code, it might be challenging to achieve
the declared test coverage, since some program paths may remain untested. Be-
cause the tester does not have access to the entire source code, this method is
typically less effective in finding bugs than white box testing. Additionally,
gray box testing might not represent an end-user behavior since the tester still
has some knowledge of the internal system (contrary to black box testing) [16].

2.7 Testing Pyramid

In software testing, it is very important to define and comprehend all levels of
testing. A Testing Pyramid [20] is an excellent tool for listing and describing the
different testing levels, and the following steps can be found here:

1. Unit Tests (Level 1): being a unit the smallest piece of code that can be
logically isolated in a system, unit tests aim to verify that each unit can
function correctly when isolated from the rest of the code;

20



Background Information

2. Component/Module Tests (Level 2): generally speaking, any software is
made up of a number of components or modules, such as distinct classes,
subprograms, and subroutines. To test the items in this category, white box
testing is typically used;

3. Integration Tests (Level 3): these tests integrate several units from unit
tests, combining them, and testing everything as a whole, typically black
box testing;

4. E2E Tests (Level 4): at this level, it is assured that the application’s user
interface or Application Programming Interface (API) functions properly;

5. Acceptance Tests (Level 5): manual or automated method of testing, where
a system is tested for acceptability. The main goal is to assess whether a
specification’s requirements are fulfilled.

Figure 2.9: Schematic representation of the Testing Pyramid.

It should be taken into account that the Testing Pyramid is mainly used to sepa-
rate different types of tests and make sure that there are no hidden bugs or issues
in the software. This raises the question of whether there is a specific order of the
tests the team should follow or what the quantity of testing for each level should
be. Firstly, it is crucial to comprehend the reasoning behind the pyramid’s four
levels before delving into the preceding statements. The full model of the Testing
Pyramid is represented in Figure 2.9.

2.7.1 Four Levels of Testing

The Testing Pyramid is composed of four testing levels, all of which can be au-
tomated. To execute automated tests in projects, the pyramid represents the key

21



Chapter 2

to doing so since each layer represents a different level of testing with the sole
purpose of covering as much as possible. The representation used aims to divide
tests in an unambiguous way and achieve Continuous Delivery and Deployment.

2.7.2 Order of Execution and Testing Quantity

The Testing Pyramid delineates the foundation for an automated test suite. To
achieve that, each level gets less and less granular and the execution time slows
down. The rule of thumb is to write tests with varying granularity, and the more
high-level you get, the fewer tests you should have.

Execution should be done in level order. For instance, testing a specific module
or component without first running unit tests is ineffective.

2.7.3 When to Level Up

As discussed earlier, each level has different methodologies, priorities, and tools.
Since a tester should begin at the bottom of the Testing Pyramid, the methodology
ensures that the scope of testing is minimal and units of code are isolated. As the
level of the pyramid increases, the testing granularity escalates and the execution
time decreases, so proper documentation of when to test each level and what is
the "trigger" that moves up level needs to be created.

Note that there are different levels for different scenarios, since each level covers
several scenarios that other levels are not capable of. For instance, to ensure a
system communicates well with a specific database, integration tests are used
(level 3). In other words, each level serves a purpose that lower levels can not
grant.

2.8 Component Testing

Component tests isolate a specific feature that a component implements. To bet-
ter comprehend this kind of testing, the definition of "component" must be ex-
plained. A component represents a logical piece of the system, usually described
as a group of one or more Hypertext Markup Language (HTML) elements (and a
TypeScript class if using Angular [21]) in the context of the front-end.

2.8.1 Definition

Component testing is a form of white box testing performed by the quality as-
surance team. It includes all the testing done on each component of the software
individually and without isolation. Before starting, there should be a minimum
number of components developed and unit tested. The exit criteria demands that
all the tested components work as expected and that there are no critical, high or

22



Background Information

medium severity and priority bugs. It is important to stress the difference be-
tween component and unit testing from a practical point of view [22]. Compo-
nent tests generally mount the component individually and the tester interacts
with it. Unit tests are a white box approach where the tester validates if a small
isolated unit of code works as expected.

As mentioned in section 4.1, the Stratio Foresight Platform, which is the primary
test target, uses the Angular framework. This architecture benefits from this test-
ing practice [23] due to the fact that the platform is composed of very complex
components that lack some form of testing.

2.8.2 Motivation to use Component Tests

One of the main goals of quality assurance is to find as many bugs as possible
and increase the quality of the product during the development phase. More
specifically, component testing provides a broad view regarding the software and
how each component executes the corresponding functionality. The component
test strategy workflow can be seen in Figure 2.10.

Figure 2.10: Schematic representation of the Component Test Strategy Workflow.

Another reason component testing is a prevalent testing technique is because of
the front-end developer’s tendency to increase the flexibility of the User Interface
(UI) they build, as well as the complexity and embedded logic in it. Compo-
nents are interchangeable pieces of a screen that isolate the application business
logic within [24]. The tester must decompose complex user interfaces into smaller
components that should be tested individually.

2.8.3 Procedure

Before starting to test every component in a specific application, the user must
develop a component test strategy and a project testing plan. The first refers to
the methodology chosen, the tactics to approach and which modules to validate,
whereas the latter includes the scope, objective and impact of each test case [25].
After creating these documents, each component must have a testing plan, a test-
ing specification (scenarios that will be tested and their frequency of testing) and
a testing report.

23



Chapter 2

2.8.4 Data Mocking

Since component testing requires the isolation of a component, the task of vali-
dating the embedded logic can become difficult since more complex components
may need input data from other parts of the application (user input, for exam-
ple). One solution to allow more complex scenarios to be tested is to include
forged data to artificially enrich the testing specification. The main advantage of
this technique is the simulation of cases that rarely happen and the increased test
coverage. On the other hand, the tester should be well aware of the application
since they can end up forging impossible data that would never occur during
normal operation of the software.

2.9 End-to-End Testing

This black box testing technique aims to cover the functionalities of the applica-
tion by simulating an actual user. In other words, black box testing is used to
replicate an end-user behavior to validate the system in terms of both data inte-
gration and integrity.

The methodology of this testing type encapsulates the integration within the ap-
plication as well as the external interfaces [26]. The Testing Pyramid classifies E2E
testing as the fourth level of the pyramid, which means that this technique is not
granular, i.e., it is inconceivable to completely isolate elements when performing
this kind of testing.

The main objective of E2E testing is to detect bugs and increase the test cover-
age of the software by analysing the application’s workflow through a series of
steps previously defined to replicate real user’s behaviors. Note that this test-
ing method also validates how "...the application communicates with hardware,
network connectivity, external dependencies, databases, and other applications."
[27].

2.9.1 Page Object Model (POM)

The main purpose of this design pattern is to enhance the maintainability and
reusability of test scripts when writing automated tests for different Page Classes.
These are defined as the class file of a specific web page that encapsulates its
locators and methods. The POM consists of a repository for Web UI elements for
each individual corresponding Page Class, which provides an identification for
all of them [28]. Figure 2.11 exemplifies the strategy:

• Class A contains both the Web UI elements and methods, as well as the test
methods;

• Class B holds all the Web UI elements and methods separately from the
Class C that holds the test methods;

24



Background Information

• Without POM structure, it is not feasible to re-use the Web UI elements
and methods in multiple classes at the same time;

• With a POM based structure, the Web UI elements and methods are defined
in Class B, where it can be re-used in multiple classes.

Figure 2.11: Schematic representation of the Page Object Model design pattern.

POM guarantees better optimization since it is possible to reuse the same code
(Class B) as it is contained in another class apart from the test methods.

2.9.2 Smoke Tests

Before starting E2E tests, it is a good practice to perform smoke testing. This
technique can be considered a build verification test which can be automated to
analyse and ensure that the most important functionalities of the software are
working as expected [29]. Since these kind of tests are rapid and easy to execute,
they guarantee that the product is stable enough to sustain a more complex kind
of testing, like E2E tests.

After the development team delivers a new build of the application, it is logi-
cal to use smoke tests to find more obvious defects and improve the code before
undergoing more exhaustive tests. As it was discussed, a typical smoke test in-
cludes the most critical functionalities of the system and are designed to validate
the basic functionalities of the application. In the case of Stratio Automotive, a
few smoke tests cases are as follows:

• Perform login;

• Visit the main Dashboard;

• Consult a specific vehicle details;

• Consult the active alerts of a vehicle.

25



Chapter 2

2.9.3 Best Practices to develop Web Automation Tests

The process of writing tests for Web Automation is quite simple. However, there
are some principles that should be followed to allow for a better workflow and
steadier development.

Independent Tests

Coupling more than one test together is not good practice. They must always
run independently from one another, i.e., if the test can be executed and pass
without the intervention of others, then it is considered a good test [30]. If the
opposite happens, the code should be refactored and another approach should
be analysed. A good workaround is to combine multiple tests that depend on
each other into one larger test.

Adding Multiple Assertions in a Single Test

A common mistake when writing E2E tests is to create very small tests with a sin-
gle assertion, resembling unit tests [31]. Instead, a better practice is to implement
multiple assertions in a single test:

• It is not necessary to rely on the test’s title to understand where it failed since
it can be observed visually which specific assertion failed when running a
large test with multiple assertions;

• This practice also ensures there are no performance penalties since it is not
needed to reset tests multiple times and there is only one test with multiple
assertions.

Unnecessary Waiting

It is a normal temptation to apply manual wait periods to stand by until an el-
ement is loaded. Many tools like Playwright [32] dictate that it is not necessary
since there are other alternatives:

• Refactoring the code and testing it in another way;

• Using assertions, as they prevent the tool from continuing until an explicit
condition is met.

Design Patterns to Follow

Test specifications should be isolated and programmatically controlled by the ap-
plication’s state. A good practice is to use the POM as a design pattern, which
avoids duplication and improves maintainability, simplifying interactions between

26



Background Information

pages. It creates a repository for Web UI elements for each individual correspond-
ing Page Class.

Correctly Select Elements

Web Automation Tests benefit from using the field data-* in different HTML ele-
ments to provide context to the selectors, allowing them to be isolated from Cas-
cading Style Sheets (CSS) or JavaScript changes. The main objective of using these
kinds of selectors is to guarantee the usage of fields that are resilient to change.

Consider the following example for Cypress [33]. Given that we have the follow-
ing button:

<button
id=" main "
c l a s s =" btn btn − l a r g e "
name=" submission "
r o l e =" button "
data −cy=" submit ">
Submit

</button>

Here are the possible selectors to click that button:

• Never use:

– cy.get(’button’).click() - very generic form of identifying the element.
Does not work in the ocasion of having multiple buttons;

– cy.get(’.btn.btn-large’).click() - this manner is coupled to styling which
implicates that is subject to change.

• Susceptible to problems:

– cy.get(’#main’).click() - coupled to styling or JavaScript event listeners;

– cy.get(’[name="submission"]’).click() - the ’name’ attribute has HTML se-
mantics and might be altered;

– cy.contains(’Submit’).click() - the text content might change.

• Good practices:

– cy.get(’[data-cy="submit"]’).click() - since it uses an unique tag, it is com-
pletely isolated and not susceptible to change.

Testing in Production

By testing in production, we conduct automated tests after the project has been
deployed, meaning that we get to know if there is any problem with the applica-
tion. On the other hand, not all software can be tested in production since there
may be cases where it is impossible to update it in the future.

27



Chapter 2

Account Usage

When developing automated tests, it is important to understand the product and
the most preferable approach to testing it. A good convention is to create a spe-
cific and new testing account, i.e., do not use an existing profile of a real client.

2.10 CI/CD

Standing for “Continuous Integration and Continuous Delivery/Deployment“,
CI/CD is a common technique among interactive development processes. The
main advantages of adopting this method include efficiency, scalability and test-
ing automation.

Component and E2E testing are usually paired with CI/CD pipelines since they
ensure that the entire system works as expected before it is deployed to pro-
duction. When using this technique, a programmer submits their code changes,
which are automatically built, tested and deployed (Figure 2.12). The testing pro-
cess may include component and E2E tests to detect any bugs or issues that may
appear as a repercussion of the introduction of functionalities or changes. Devel-
opers are then notified of eventual bugs, allowing them to identify and fix any
issues to maintain software quality.

Figure 2.12: Schematic representation of the CI/CD workflow.

2.10.1 Continuous Integration (CI)

The main purpose of this method is to merge all code changes from a given repos-
itory into a single project. Every development step is automatically and contin-
uously built and tested (Figure 2.12), allowing the coder to detect and fix errors
quickly, reduce integration problems by merging small changes and enable the
team to work faster and with less apprehension [7].

28



Background Information

2.10.2 Continuous Delivery/Deployment (CD)

With Continuous Delivery, the application is deployed continuously, in spite of
triggering the deployments manually. That is the main difference from Contin-
uous Deployment, where the triggers are automatic [7]. CD ensures all changes
are releasable (Figure 2.12) and lowers the risk of introducing new changes in the
repository.

2.10.3 GitLab CI/CD

Stratio Automotive uses GitLab [7] to adopt the DevOps lifecycle in their devel-
opment workflow. After planning and coding, the team commits their changes to
the GitLab repository, which triggers the projected CI/CD pipeline for the project
(Figure 2.13). Component and E2E testing will fit into CI since it includes auto-
mated tests for each commit, meaning that a developer can validate their code
changes through a battery of automated tests.

Figure 2.13: Schematic representation of the CI/CD method with GitLab [7].

29





Chapter 3

State of Art

In this chapter, a summary of the key properties of different testing tools will
be provided along with the main features and trade-offs of each option. By
analysing the current state of art for both component testing and E2E testing,
a better overview of the most adequate options for future development will be
evident as well as key areas for future research and key trends in the field.

3.1 Component Testing

In this section, component testing tools will be presented. Along the study, differ-
ent characteristics will be analysed to evaluate the state of art of the most relevant
component testing tools available. Note that it is important to study tools that are
compatible with Stratio Automotive’s stack. In this case, some form of support
for the Angular Framework is mandatory. The preceding can be found and ex-
plained in Tables 3.1 and 3.2.

Table 3.1: Properties studied for each component testing tool explored.

Open Source/Free In spite of most tools being open source and free
to use, they can still have additional features that
are locked behind a paywall. It is very important
to study what the tool offers and if there are func-
tionalities that fit into our product.

Browser Support The variety of multiple browser engines to mount
components is an important aspect that should not
be overlooked.

Language Bindings Depending on the tool, the number of supported
languages varies. Typically, JavaScript or Type-
Script are both supported, unless it is a low code
solution.

31



Chapter 3

Table 3.2: Properties studied for each component testing tool explored (Cont.).

Support Documentation Since the programmer leans on support docu-
mentation for further information, this character-
istic can be seen as the core of the testing tool
since it bolsters the performance when installing
or writing tests. The community’s provided doc-
umentation is also an important factor since it di-
rectly impacts the programmer’s experience.

Framework/Library Support Different testing tools are developed with distinct
objectives. It is important that the selected tool is
capable of testing in Angular since that is part of
the stack of Stratio Automotive.

Parallelism Parallel testing is the practice of testing multiple
versions concurrently with the same input to re-
duce the execution time and increase test cover-
age [34]. Naturally, this characteristic is very im-
portant and should be available for most tools.

Code Complexity It is important to analyse the effort of setting up
the adequate testing environment to mount the
pretended components without issues. Besides, it
is also important to study the tool’s potential and
its capabilities to mount components, pass data,
intercept requests and test event handlers.

Key Features Some tools have certain core aspects that distin-
guish them from the competition. Logically, key
features must be presented and studied.

Trade-offs/Disadvantages As well as advantages, some tools present trade-
offs or disadvantages that can invalidate their use
in a specific project.

Following the Testing Pyramid paradigm, component tests are less complex and
more granular than E2E tests. Inducing these characteristics, it is expected for
component tests to be quicker, smaller and easier to maintain.

3.1.1 Cypress

Cypress provides a testable component bench [35] to isolate and test components.
According to the documentation, the test runner is browser-based, admitting ac-
cess styles, API and the isolation of different components. This strategy works
well, allowing to split the application into blocks while testing.

• Open Source/Free: Cypress is free and open source under the MIT license.
However, there is a paywall for using the Cypress dashboard with fewer or
no restrictions. In the beginning of 2022, it launched the beta for component
testing. Since version 11 (August 2022), component testing for Cypress has
been available for general use and is being perfected for each release;

32



State of Art

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Opera;

– Electron;

– Brave.

• Language Bindings: JavaScript/TypeScript;

• Support Documentation: The support documentation for Cypress Com-
ponent Testing is adequate for the functionalities it proposes. The official
source displays tutorials for installation for each supported framework and
how to start component testing. Besides these instructions, it also explains
to the tester how the mount process functions, the available functionalities,
theoretical concepts of the advantages of component testing, as well a col-
lection of YouTube videos in the official channel;

• Framework/Library Support:

– React;

– Vue;

– Svelte;

– Angular.

• Parallelism: Since version 3.1.0, Cypress can execute recorded tests in par-
allel across multiple machines through the Cypress Dashboard;

• Code Complexity: The process of including component tests in a project
is straightforward. After opening the Cypress Dashboard, the Launchpad
will guide the user through the installation process, detecting the available
framework and creating the necessary files for the user to start component
testing;

• Key Features:

– Browser-based Test Runner, granting the user access to the compo-
nent’s functionality, style and appearance. This changes will happen
in real time and it is possible to interact with the component;

– Component tests share all the features of regular Cypress, like paral-
lelization, APIs, plugins and ecosystem.

• Trade-offs/Disadvantages:

– No support for the solid framework.

33



Chapter 3

3.1.2 Playwright

Microsoft Playwright is capable of (experimental) component testing [36] by us-
ing vite to assemble bundle components and serve them. Since component testing
runs on the browser, it is possible to visualize the process during execution.

• Open Source/Free: Playwright is a free and open source option that launched
an experimental way of component testing for various front-end frame-
works;

• Browser Support:

– Google Chrome;
– Mozilla Firefox;
– Microsoft Edge;
– Opera;
– Apple Safari.

• Language Bindings:

– Java;
– Python;
– C#;
– JavaScript;
– TypeScript.

• Support Documentation: The documentation for component testing is very
vague and scarce since it is a recently added feature. However, it indicates
details about the rendering methods for components, how to mount (sim-
ple) components and execute the tests;

• Framework/Library Support:

– React;
– Vue;
– Svelte;
– Solid;
– Angular (non-official support) [37].

• Parallelism: This tool runs tests in parallel, using various worker processes
that run at the same time. Parallelism is a default feature of Playwright
however, tests in a single file run in order in the same worker process. This
feature can be tailored by the programmer;

• Code Complexity: It is trivial to integrate component testing into an exist-
ing React, Vue, Svelte or Solid project using Playwright. It is necessary to
install Playwright Test for components and include style sheets, themes or
code from your application into the page where the component is mounted:
"playwright/index.ts";

34



State of Art

• Key Features:

– Since tests run in Node.js and components are executed in the browser,
they are mounted in isolated testing environments, with real clicks be-
ing triggered and layouts and visual regression being executed;

– Component tests share all the features of regular Playwright like par-
allelization, parameterized tests and trace history.

• Trade-offs/Disadvantages:

– Only possible to import components from TSX/JSX/Component files;

– Not possible to pass variables to the mount method of Playwright.

3.1.3 Karma & Jasmine with TestBed

Jasmine [38] is a framework to test JavaScript/TypeScript code with a clean and
easy to understand syntax. It is usually coupled with Karma [39] which takes care
of executing the tests on multiple real browsers. Along with these tools, TestBed
[40] will be associated, which configures and initializes an environment for both
unit and component testing exclusively to Angular.

• Open Source/Free: All the tools analysed in this section are free and open
source;

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Opera;

– Apple Safari.

• Language Bindings: JavaScript/TypeScript;

• Support Documentation: All the tools present a brief explanation of its
functionalities and how to use them. Since the community frequently uses
this combination to test Angular applications, there is a lot of feedback and
support regarding best practices for using these tools;

• Framework/Library Support: Angular;

• Parallelism: As a result of Karma being responsible for executing the tests
across multiple browsers, there are external plugins to shard tests without
changing their build process. The main purpose of the package ’karma-
parallel’ [41] is to speed up the time it takes to run tests;

• Code Complexity: Since this combo is included in Angular projects by de-
fault, it is unequivocal to setup the testing environment and all the neces-
sary configurations to start testing right away;

35



Chapter 3

• Key Features:

– Already included in Angular projects;

– Low overhead with a simple to read syntax;

– Rapid testing.

• Trade-offs/Disadvantages:

– Mainly used for unit tests only.

3.1.4 Storybook

Storybook [42] provides methods to build, test and visualize UI components in
isolation. Since many front-end frameworks like Angular organize their code into
separate components, it is important to test them individually to assert possible
problems. Storybook allows the user to study their components without data
dependencies or business logic, granting the ability to share the work with other
development teams to validate each component.

• Open Source/Free: Storybook is free and open source;

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Apple Safari.

• Language Bindings: JavaScript/TypeScript;

• Support Documentation: The support documentation for Storybook is fair
since it covers various technical aspects regarding the functionalities this
tool offers as well as a tutorial for setting up Storybook for each supported
front-end framework. The community’s support is also valid by virtue of
the adequate amount of tutorials, videos and repositories that use and ex-
plain Storybook;

• Framework/Library Support:

– React;

– Vue;

– Svelte;

– Angular;

– Web Components;

– Ember.

36



State of Art

• Parallelism: For more complex applications, many components exist, caus-
ing uncertainty about the number of features each story must test. Story-
book composition combines multiple storybooks into one, granting a faster
development experience since it is possible to interact with multiple com-
ponents at once [43];

• Code Complexity: The process of integrating Storybook into an already ex-
isting project with a lot of applications might be challenging since there may
be some migrations to be done. Fortunately, the documentation presents a
tutorial on how to do so and the process for creating stories for each com-
ponent;

• Key Features:

– Each component is rendered in real time, presenting a schematic rep-
resentation of itself;

– It is possible for the user to interact with each rendered component;

– Cypress and Playwright compatibility to automate interaction within
each component.

• Trade-offs/Disadvantages [44]:

– Necessary to maintain the components and the Storybook library;

– Hard to transition into existing projects due to migration work.

3.1.5 Summary Board

The generic information of each investigated tool can be found in the comparative
board illustrated by Figure 3.1.

Figure 3.1: Summary board of the software testing tools for component testing.

37



Chapter 3

3.2 End-to-End Testing

In this section, E2E testing tools will be presented. In addition to the installa-
tion process and brief description, different characteristics that were important to
evaluate and assess were highlighted. The preceding can be found and explained
in Tables 3.3 and 3.4.

Table 3.3: Properties studied for each E2E testing tool explored.

Open Source/Free Even though most tools are open source and free to
use, they can still have additional features that are
locked behind a paywall. Understanding the qual-
ities that are not immediately available has signifi-
cant weight.

Browser Support This property is very important to analyse. Some
software does not support Safari from Apple, for
example, which can be a dealbreaker for some
tools.

Language Bindings Depending on the tool, the number of supported
languages varies. Typically, JavaScript or Type-
Script are both supported, unless it is a low code
solution.

Support Documentation Since the programmer leans on support documen-
tation for further information, this characteristic
can be seen as the core of the testing tool since it
bolsters the performance when installing or writ-
ing tests. The community’s provided documenta-
tion is also an important factor since it directly im-
pacts the programmer’s experience.

CI/CD Integration CI/CD main purpose is to increase quality and de-
velopment speed. In this practice, the chain of de-
velopment and testing proceeds on its own, and
testers notify developers when they identify bugs
that can be rapidly fixed [45]. Continuous test-
ing guarantees that bugs are discovered before any
significant issues develop. Some properties worth
analysing include integration capabilities and the
application type supported.

38



State of Art

Table 3.4: Properties studied for each E2E testing tool explored (Cont.).

Parallelism Parallel testing is the practice of testing multiple
versions concurrently with the same input to re-
duce the execution time and increase test cover-
age [34]. Naturally, this characteristic is very im-
portant and should be available for most tools.

Locators/Selectors When creating Web UI tests, it is crucial to easily
identify the elements of the page since that is the
main way of interacting with them. Evidently, a
good testing tool should provide a mechanism to
quickly find specific elements.

Flakiness Some tests occasionally pass or fail, i.e., they do
not always produce the expected result and are
considered flaky. Different aspects can lead to this
behavior, like issues with code, external factors,
or even the test itself [46]. Some testing tools min-
imize flaky tests.

Key Features Some tools have certain core aspects that distin-
guish them from the competition. Logically, key
features must be presented and studied.

Trade-offs/Disadvantages As well as advantages, some tools present trade-
offs or disadvantages that can invalidate their use
in a specific project.

3.2.1 Cypress

This testing tool provides an open source test runner [47] that can simulate an
end-user in a specific web browser. In other words, it is described as a tool for
reliability testing. The first commit was in 2014, and since then, Cypress has
been on the rise in terms of new features, support, and popularity. One of its key
characteristics is the Cypress Dashboard, a service that ensures access to recorded
test results and various insights into the tests conducted.

• Open Source/Free: Cypress is free and open source under the MIT license.
However, there is a paywall for using the Cypress dashboard with less/no
restrictions;

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Opera;

– Electron;

39



Chapter 3

– Brave.

• Language Bindings: JavaScript/TypeScript;

• Support Documentation: It is simple to find help on the web through com-
munity posts or the official Cypress documentation. They cover technical,
functional, and architectural aspects of the testing tool as well as limitations
and trade-offs;

• CI/CD Integration: It is possible to use Cypress Dashboard with GitLab
CI/CD;

• Parallelism: Since version 3.1.0, Cypress can execute recorded tests in par-
allel across multiple machines through the Cypress Dashboard;

• Locators/Selectors:

– ID;

– Class;

– Tag Name;

– Attribute;

– CSS Selector;

– Document Object Model (DOM) Selector;

– XPath (through a plugin).

• Flakiness: Since Cypress perceives everything that happens in the browser
in a synchronous manner, it identifies all events and knows how long an
element is taking to be drawn/animated and will wait for it to become vis-
ible and enabled. Additionally, Cypress automatically executes the over-
whelming majority of commands inside the browser without network lag
and waits for the application to reach a certain state before continuing. Be-
cause of these features, we reduce flakiness and the same test will produce
the expected results more consistently;

• Key Features:

– A snapshot is saved after each step is done during testing, allowing the
programmer to better understand the root of the problem in case the
test fails;

– Debugging can be done directly from the browser web tools;

– Automatically waits for async events.

• Trade-offs/Disadvantages [48]:

– Cypress is only meant to be used as a testing tool (it is not an all pur-
pose automation tool);

– It is executed inside the browser, meaning it is more difficult to com-
municate with the backend;

40



State of Art

– This tool can not be executed in multiple tabs/browsers since it runs
in the browser;

– Cypress cannot visit two domains of different origins in the same test;

– Must install a plugin to use XPath.

3.2.2 Selenium

This tool covers a webdriver [49] and a low-code option [50] through an IDE. The
project was conceived in 2004 and consists of a suite of test tools for automating
web browsers. The webdriver version simulates an end-user either locally or re-
motely. The IDE is an add-on for Google Chrome, Mozilla Firefox, and Microsoft
Edge that lets users create new tests from scratch and record and replay existing
ones in the browser.

• Open Source/Free: Selenium is an open source and free tool, available for
everyone;

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Opera;

– Apple Safari.

• Language Bindings:

– Java;

– Python;

– C#;

– JavaScript;

– Ruby.

• Support Documentation: Considering the time Selenium Webdriver has
been available to the public, there is a lot of community support and learn-
ing material. Developers can also get a lot of assistance from the official
documentation;

• CI/CD Integration: Selenium Webdriver is capable of CI/CD integration,
for example: using a headless driver;

• Parallelism: This feature is also available on the Selenium Webdriver;

• Locators/Selectors:

– ID;

41



Chapter 3

– Name;

– Locate Element By Name using Filters;

– Link Text;

– CSS Selector;

– DOM Selector;

– XPath.

• Flakiness: Since the Selenium Webdriver protocol is deterministic, it re-
duces the chances of flaky tests occurring. Some factors like lack of syn-
chronization or accidental load testing, can still introduce flakiness in the
test suite;

• Key Features: It is a W3C recommendation [51], meaning it leads to a more
standardized environment and consistent behaviour;

• Trade-offs/Disadvantages: Supports web-based applications only.

3.2.3 Playwright

Playwright [52] is a Node.js library made for browser automation by Microsoft.
It is possible to perform automated E2E testing using this free and open source
tool.

• Open Source/Free: Playwright is a free and open source option that pro-
vides fast and reliable E2E testing for modern web apps;

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Opera;

– Apple Safari.

• Language Bindings:

– Java;

– Python;

– C#;

– JavaScript;

– TypeScript.

• Support Documentation: The official documentation is very complete and
straightforward. The Playwright’s website also references the community
posts both on GitHub and Stackoverflow, which is a great help;

42



State of Art

• CI/CD Integration: This feature is present in Playwright;

• Parallelism: This tool runs tests in parallel, using various worker processes
that run at the same time. Parallelism is a default feature of Playwright
however, tests in a single file run in order in the same worker process. This
feature can be tailored by the programmer;

• Locators/Selectors:

– Text;

– CSS;

– Attribute;

– XPath;

– React (experimental);

– Vue (experimental).

• Flakiness: One of the main properties of Playwright is resilience, which
avoids flaky tests. Some properties that guarantee consistent tests are:

– auto-wait, since it waits for elements to be rendered and ready before
performing actions, erasing the need for artificial waits;

– web-first assertions, where they are created specifically for the dynamic
web and checks are automatically retried until they meet the necessary
conditions to continue;

– tracing, where it is possible to configure the strategy of test retries
and the snapshot of the execution to better understand and eliminate
flakes.

• Key Features: It has a code generator, where it is possible to record a test
and Playwright will provide the code;

• Trade-offs/Disadvantages: There is no support for legacy versions of Mi-
crosoft Edge and Internet Explorer or mobile devices.

3.2.4 TestCafe

TestCafe [53] runs on Node.js and its main purpose is to provide a simple expe-
rience for the programmer since the installation process is very simple, as is the
programming of tests.

• Open Source/Free: TestCafe is free and open source, distributed under the
MIT license;

• Browser Support:

– Google Chrome (and mobile);

– Microsoft Edge;

43



Chapter 3

– Internet Explorer (11+);
– Mozilla Firefox;
– Opera;
– Apple Safari (and mobile).

• Language Bindings:

– JavaScript;
– TypeScript.

• Support Documentation: The official documentation is vast and complete,
allowing the programmer to grasp the purpose and utility of various func-
tions and technologies of TestCafe;

• CI/CD Integration: TestCafe supports various technologies to achieve CI/CD
integration;

• Parallelism: TestCafe supports parallelism since it can run multiple tests
concurrently;

• Locators/Selectors:

– ID;
– Name;
– CSS Selector;
– DOM Selector;
– XPath.

• Flakiness: TestCafe reduces flakiness by using good code practices. For
example, the smart assertion query mechanism is great, since it is possible
to specify a timeout and guarantee the assertion executes as planned;

• Key Features:

– Clean and concise code, providing a simpler experience for the pro-
grammer;

– Human readable code;
– Capable of using multiple browser windows to test complex interac-

tions.
– Allows testing with connectivity issues by simply feeding sample data

through mock requests to emulate HTTP responses.

• Trade-offs/Disadvantages:

– The browser does not recognize that test cases are being executed, lead-
ing to some errors in edge automation and debugging;

– No control of the browser since TestCafe is incapable of so;
– Events like clicks are simulated, which do not represent a real user ex-

perience. For example, an inactive button would be clickable by Test-
Cafe.

44



State of Art

3.2.5 Puppeteer

Puppeteer [54] is a Node.js library developed by Google with the main objective
of supporting any chromium based browser. This high level API allows the pro-
grammer to manipulate the browser when running tests.

• Open Source/Free: This tool is open source and free;

• Browser Support:

– Google Chrome;

– Microsoft Edge;

– Opera;

– Mozilla Firefox (experimental).

• Language Bindings: JavaScript;

• Support Documentation: The official documentation covers all the func-
tions of Puppeteer;

• CI/CD Integration: It is possible to integrate CI/CD into Puppeteer;

• Parallelism: Puppeteer’s exposure to browser contexts makes it possible to
effectively parallelize test execution;

• Locators/Selectors:

– ID;

– Name;

– CSS Selector;

– DOM Selector;

– XPath.

• Flakiness: One of the main pillars of Puppeteer is stability, since it prevents
flaky tests and memory leaks. The event-driven architecture reduces flaki-
ness a lot, eradicating the need to add artificial sleep commands;

• Key Features:

– Really fast since it has nearly null overhead on an automated page;

– Secure because it operates off-process with respect to Chromium i.e, it
is safe to automate malicious pages.

• Trade-offs/Disadvantages:

– Limited to Chrome, no Firefox support;

– Smaller community support.

45



Chapter 3

3.2.6 WebDriverIO

According to WebDriverIO [55] they represent a “Next-gen browser and mo-
bile automation test framework for Node.js” rich in features for E2E automated
browser testing.

• Open Source/Free: WebDriverIO is open source and free;

• Browser Support:

– Google Chrome;

– Microsoft Edge;

– Internet Explorer;

– Mozilla Firefox;

– Opera

– Apple Safari.

• Language Bindings: JavaScript;

• Support Documentation: Like the majority of browser testing tools, Web-
DriverIO offers a catalog of the functionalities it provides, as well as guides
and other core concepts explained in a concise manner;

• CI/CD Integration: WebDriverIO supports CI/CD integration;

• Parallelism: In the event of having multiple test files, it is possible to run
them concurrently;

• Locators/Selectors:

– ID;

– Link Text;

– Aria roles;

– Name;

– CSS Selector;

– DOM Selector;

– XPath.

• Flakiness: Since WebDriverIO supports implicit timeouts that specify how
long the driver should wait until the supposed element appears, it can avoid
interactions with components that have not loaded or are not available;

• Key Features:

– WebDriverIO is extendable since it is really simple to add helper func-
tions or other existing commands;

– Compatibility is also a key feature because this tool can be executed on
the WebDriver Protocol for true cross-browser testing.

46



State of Art

• Trade-offs/Disadvantages:

– More effort to set up a browser driver;

– Slower than most testing tools.

3.2.7 Katalon Studio

Katalon Studio [56] is a low code option that can be used for automated E2E
testing.

• Open Source/Free: Katalon Studio is not open source. Additionally, it offers
various paid plans to unlock different functionalities;

• Browser Support:

– Google Chrome;

– Mozilla Firefox;

– Microsoft Edge;

– Internet Explorer;

– Apple Safari;

– Opera.

• Language Bindings: Since Katalon Studio is a low code option, there is no
programming involved;

• Support Documentation: The official documentation is vast and easy to un-
derstand. Since Katalon Studio is a low code option, lots of study material
is in the form of videos;

• CI/CD Integration: Katalon Studio provides automation testing guarantee-
ing CI/CD integration;

• Parallelism: It is possible to manage test suites in Katalon Studio and acti-
vate parallel mode to execute tests concurrently;

• Locators/Selectors:

– Simple locators: id, name, class, tag, link text and attribute;

– Advanced locators by combining the simple locators above: XPath and
CSS;

– Using functions in XPath: contains, sibling and ancestor.

• Flakiness: Katalon Studio understands the existence of flaky test cases and
monitors their flakiness. Additionally, it makes it possible to study their
origins to help the tester debug them.

• Key Features:

47



Chapter 3

– Low code, meaning the tester is not required to have coding skills;

– Very high level tool.

• Trade-offs/Disadvantages:

– It is not open source;

– Existence of a paywall for important features.

3.2.8 Summary Board

The generic information of each investigated tool can be found in the comparative
board illustrated by Figure 3.2.

Figure 3.2: Summary board of the software testing tools for E2E testing.

48



State of Art

3.2.9 Auxiliary Software

This subsection focuses on enumerating different tools that enhance the perfor-
mance of the programmer implementing E2E testing.

CodeceptJS

This framework integrates with different helpers (Playwright, WebDriverIO, Pup-
peteer and TestCafe) where each test is written like a linear scenario with a special
BDD style syntax [57]. Since it integrates with multiple testing tools, it can inform
the programmer about which driver to choose for a specific restriction. For ex-
ample, if one of the requisites is cross-browser support, then Selenium would be
a great choice.

Selectors Hub

This tool is an extension available for Chrome [58], Firefox, Edge, Opera, Brave,
Safari, Chromium and Tor, consisting of a free and next-gen XPath and CSS selec-
tor. To use it, the tester must install the extension and inspect the page elements.
Then, identify the XPath of a specific element, as shown in Figure 3.3.

Figure 3.3: Demonstration of Selectors Hub tool.

TestCase Studio

Like Selector’s Hub, this software is a browser extension available for Chrome
[59], Firefox, Edge, Opera, Brave, Safari, Chromium and Tor. TestCase Studio’s
main feature is a recorder where it is possible to simulate user actions and gen-
erate XPath, CSS Selector and automation code for the recorded steps. Along
with the test case, it also records a screenshot, which helps the programmer to
memorize each step.

49





Chapter 4

Proposed Solution

In this chapter, every step that led to the current solution regarding component
and E2E tests will be outlined. This approach was created by carefully analysing
the state of art, as well as the particular requirements and limitations of the cur-
rent quality process at Stratio Automotive. It is important to firstly analyse the
Stratio Foresight Platform, followed by the quality assurance process of the com-
pany in order to identify the weak points and tackle them with a solution.

A Proof of Concept (POC) for both types of tests was implemented and assessed
to confirm the viability of the suggested approach. Following that, a test suite
for component and E2E tests was developed and implemented in the GitLab CI
pipeline where various metrics were retrieved to measure the impact of the pro-
posed solution.

4.1 Stratio Foresight Platform

The Stratio Foresight Platform (Figure 4.1) is the point of interaction between
fleet managers and their automotive fleet. This web application allows its users
to monitor the state of their vehicles through various metrics and properties, as
well as the performance of their drivers.

Studying the platform thoroughly is crucial to understand its testing needs and
potential corner cases. An example is a scenario where it is necessary to have
multiple tabs open to perform a specific functionality.

The following sub-sections breakdown the platform into target test repositories
and present features.

51



Chapter 4

Figure 4.1: Example of the user interface of Stratio Foresight Platform [60].

4.1.1 Repositories

Stratio Automotive uses GitLab as a management platform for version control.
While the Stratio Foresight Platform consists of multiple repositories, it is pri-
marily composed of two key repositories that encapsulate the platform and its
components.

Front-end Commons

The Front-end Commons repository contains all Angular components of the Stra-
tio Foresight Platform. Naturally, all component tests will be performed within
this repository. Before developing tests and implementing them in the pipeline,
it is crucial to study its source code, since component tests are a white box testing
approach. Then, it is important to understand how Storybook can be integrated
into the repository and where to include its test runner in the GitLab CI pipeline.
Figure 4.2 depicts the CI/CD pipeline of the repository.

Figure 4.2: Schematic representation of the GitLab CI/CD pipeline of the Front-
end Commons repository.

52



Proposed Solution

Stratio-Web

The Stratio-Web repository contains all the necessary code to build and deploy
the Stratio Foresight Platform. All smoke tests and E2E tests will be developed
within this repository, and executed against a deployed version of the Stratio
Foresight Platform in the staging environment. Figure 4.3 depicts the CI/CD
pipeline of the repository.

Figure 4.3: Schematic representation of the GitLab CI/CD pipeline of the Stratio-
Web repository.

A brief rundown of the different stages are as follows:

• Build: installation of all dependencies, followed by the build of the project;

• Test: before the internship, only unit testing is done on both repositories;

• Quality: full code analysis regarding its format, style and quality with
Sonar Cloud [61] to deliver clean and concise code consistently;

• Security: different scans to detect security breaches in code;

• Release: deployment process.

Both pipelines are extremely similar, with the Release stage being the main dif-
ference. In fact, the deployment process of each repository is different, due to
Front-end Commons only containing the components that are used in Stratio-
Web. Most of the changes that will be introduced will be included in the Test
stage, with component tests in the Front-end Commons repository and E2E tests
in the Stratio-Web repository.

4.1.2 Target Features for E2E Testing

Before listing all the target features for E2E tests, it is important to clarify that
there are different types of users, with different privileges:

1. Normal User: the average end-user of the Stratio Foresight Platform;

2. Master User: similar to the normal user, with access to features that the
normal user does not have;

3. Super Master User: end-user with maximum privileges, limited to the Stra-
tio Automotive development team.

53



Chapter 4

The target test features of the Stratio Foresight Platform are enumerated in Tables
4.1 and 4.2, with the Super Master User exclusive features marked as yellow.

Table 4.1: Stratio Foresight Platform features.

Stratio Foresight Platform
Functionality Feature Description

Authentication Authenticate in the Stratio Foresight
PlatformLogin Recover Password Ask for a new password

Logout Log Off Perform logout
Dashboard Edit Panels Possibility of adding new panels or re-

ordering them
Consult Vehicle De-
tails

Examine details of a specific vehicle

Consult Active
Alerts

Examine the active alerts of a specific ve-
hicleFleet Condition

Consult Active
DTCs

Examine the active DTCs of a specific ve-
hicle

Overview Examine various cards regarding system
indicators statistics

Starter Battery Examine starter battery of all vehicles
Brake Pads Examine brake pads of all vehicles
Available Engine
Torque

Examine engine torque of all vehicles

Air Leaks Examine air leaks of all vehicles
Battery Pack - EV Examine battery pack of all EV vehicles

System Indicators

Potential Fault Submit form w/ potential faults of vehi-
cles

Throttle Pedal Examine throttle pedal usage of all vehi-
cles

Coolant Tempera-
ture

Examine coolant temperature of all vehi-
cles

Consumption Examine consumption of internal com-
bustion, hybrids and electrics

EV Charging Examine EV charging of all vehicles
Metrics

Operation Examine operation mode of all vehicles
Vehicle Recent
Data

Vehicle Data Dis-
play

Search for a specific vehicle and consult
its data

Filtering Filter from existing occurrencesOccurrences Mark as Read Mark a specific occurrence as read
Create Service Plan Fill a form to create a new service plan
Mark Service Plan
as Read

Examine and mark a specific service
plan as readService Plans

Cleanup of Service
Plan

Examine and delete a specific service
plan

Reports Consult Reports Examine reports

54



Proposed Solution

Table 4.2: Stratio Foresight Platform features (cont.).

Functionality Feature Description
Authentication Authenticate in the Stratio Foresight

Platform
Map Interact with Google Maps widget and

search drivers/vehicles
Trips Examine existing trips of various vehi-

cles
Driver Hours of Ser-
vice

Examine driver’s hours of services

Geo-referenced Oc-
currences

Examine geo-referenced occurrences
with the possibility of marking them as
read

Messages Search existing messages and create new
ones

Operational Events Examine operational events
Geo-referenced
Alerts

Search existing geo-referenced alerts
and create new ones

Maps

Shared Vehicle Lo-
cations

Search existing shared vehicle locations
and create new ones

Overview Examine various cards regarding driv-
ing statistics and how ecological are they
style of driving

Driver Score Examine driver scores of all drivers
Vehicle Score Examine vehicle scores of all vehicles

(no need to validate export pdf)
Bus Line Score Examine bus line scores of all bus lines
Driver Configura-
tion

Examine driver’s configurations of all
drivers

Ecodrive

Groups Manage-
ment

Search groups and create new ones

General Settings Select different languages and time
zones

Measurement Units Select different measurement units for
distance, temperature and pressure

Notifications Examine the notifications optionsMy Settings

Edit Profile Examine edit profile form
Groups Creation of new groups
Idle Time Examine idle time by vehicle typeGlobal Settings
Ignored Trouble
codes / Alerts

Examine the list of ignored trouble codes
and alerts

Disable User Disable a specific user
Enable User Enable a specific userList Users
Examine User Examine a specific user

55



Chapter 4

4.2 Quality Process

Before presenting the different types of testing executed, it is important to under-
stand the current quality process at Stratio Automotive and study the most frail
aspects within.

The main goal is to identify weaknesses and propose changes that will enhance
the approval time of new iterations of the product, while also ensuring greater
levels of quality.

4.2.1 Paradigm Before Proposed Changes

It is possible to categorize different procedures in the quality process at Stratio
Automotive. During a development sprint, the Product Owner (PO) is respon-
sible to manually validate bug fixes, new functionalities and to perform smoke
tests on the whole platform before deploying it to the production environment.
Bug fixes and new features will only be deployed simultaneously at the end of
the sprint, even if it they were approved at the beginning.

Bug Fix Approval

This course commences through the identification of a defect in the platform. If
one of the clients reports a bug to the team, the person responsible for the report
will create a new ticket for the product team to validate its existence. Then, the
PO tries to reproduce the defect in their system. If the bug is reproducible, the
PO forwards it to the architecture or development team, according to its nature.
After the defect is corrected, the PO validates it again and marks it as solved. The
bug fix will then be available in the next deployment of the product. Figure 4.4
illustrates the course of the bug fix approval life cycle, from its creation until it is
solved.

Figure 4.4: Schematic representation of the course of bug fix approval life cycle.

User Story Approval

In every sprint, a set of new features is settled through user stories. After the
functionality is developed, the PO is responsible for approving and manually
validating it to guarantee there are no bugs. Figure 4.5 represents the life cycle

56



Proposed Solution

of a typical user story approval course: the course initiates with a developer fin-
ishing a functionality and submitting it for approval through a new ticket. Then,
the PO manually validates it and marks it as done or sends it back for further
development if bugs are found.

Figure 4.5: Schematic representation of the user story approval life cycle.

Full Product Validation

Right before the end of a sprint, the PO is responsible to manually validate the
Stratio Foresight Platform before deployment. They have a set of test cases that
are performed on the platform to ensure all the most important and crucial fea-
tures are working as expected and the newly implemented changes have not in-
troduced new defects or issues. Consequently, this course of validation takes up
to four hours and quickly escalates if new bugs are found.

4.2.2 Solution Purpose and Changes

The efforts presented in this Dissertation will allow for changes in the product
validation method so that automated testing becomes a necessity. The main ob-
jective is to launch bug fixes and user stories automatically into the production
environment without validation from the PO. Furthermore, the addition of E2E
tests will also reduce the involvement of the PO in the full product validation
while also providing instant feedback on new changes made by the develop-
ment team. In other words, the present work aims to deploy the product through
continuous deployment.

Currently, the company gathers all new functionalities and bug fixes and then
deploys them at the same time. With the automated tests, it would be possible to
iteratively send them to the production environment, reducing delays between
the development team and the product team.

The most frail points in the current quality process at Stratio Automotive are the
manual validations that the product team is responsible for. The main objective is
to reduce most of the manual validation the PO needs to do for each ticket until
the process is completely automated.

This strategy would diminish the effort needed by PO’s to constantly validate
the product and reduce back-and-forth tickets with the development team. On

57



Chapter 4

the other hand, the development team is prone to receiving instant feedback re-
garding their changes, which may prevent or identify bugs earlier, since most of
the bugs would be caught during the automated testing in the CI/CD pipeline.

Bug Fix Approval

Figure 4.4 highlights that the PO is responsible for asserting the existence of the
bug and redirecting it to the appropriate team for fixing. Furthermore, it is possi-
ble to optimize the correction of the defect with automated tests.

Figure 4.6 illustrates that a test case for the bug fix should also be developed
while the appropriate team corrects it. The changes are then validated through
automated tests, and the bug fix is continuously deployed into the live produc-
tion environment. Therefore, the fix is delivered to end-users thoroughly tested
and without delays.

Figure 4.6: Schematic representation of the proposed change for the course of bug
fix approval.

User Story Approval

Figure 4.5 features the manual validation of the PO for each user story of the
current sprint. The proposed change includes the development of the test case
along with the new feature. Then, the functionality is automatically tested and
continuously deployed. Figure 4.7 illustrates the proposed user story approval
life cycle.

Figure 4.7: Schematic representation of the proposed change for the user story
approval.

58



Proposed Solution

Full Product Validation

Since the PO is responsible for manually validating the Stratio Foresight Platform
before deployment, the logical strategy would be to create various test cases that
cover most of the important functionalities to reduce the amount of time the PO
spends validating the software. This approach is suitable for Stratio Automotive’s
current workflow since it will allow continuous integration through automated
testing and continuous deployment of the product.

Increasing Coverage

Since the software team only has a set of unit tests ready, it is important to in-
crease the coverage through another type of testing. Following the Testing Pyra-
mid, it is logical to perform component tests, since they represent the next level of
testing. By increasing the coverage with these techniques, it is possible to prevent
bugs early on in development, reducing the cost and effort of fixing them. Ad-
ditionally, team confidence increases due to already testing critical features and
resolving potential defects.

4.3 POC for Component Tests

Since the aim repository to conduct component tests used Nx1 with Angular, it
was pertinent to choose testing tools available in the official Nx packages2. Cy-
press [2] and Storybook [4] were then selected from the state of art to integrate
the monorepo development environment and showcase the generic capabilities
of each one.

The main focus was to select the most pertinent that could aid in development
and increase testing coverage of the Angular components. During this section,
various key points like development cost and documentation quality will be high-
lighted, with the experimental conditions and test cases defined in Appendix A.1.

4.3.1 Tools

As previously declared, Cypress and Storybook were compared in order to select
the most fitting tool to Stratio Automotive’s component library.

The main key points made in the presentation of the POC for component tests are
as follows:

1. Setup Complexity: setting up Cypress and Storybook for component tests
can be complex for specific frameworks. Since the intended repository used

1https://nx.dev/
2https://nx.dev/packages

59

https://nx.dev/
https://nx.dev/packages


Chapter 4

Nx with Angular for developing the components, a strategic approach was
used to integrate both testing tools, where they were installed through the
official Nx packages. These consist of a set of tools and utilities that inte-
grated either Cypress or Storybook to the Nx monorepo development envi-
ronment. Table 4.3 represents the complexity of integrating the testin tools
into the monorepo development workflow;

Table 4.3: Description of the scale for Setup Complexity.

Scale Setup Complexity
☀☆☆☆☆ More than 8 hours
☀☀☆☆☆ 6 to 8 hours
☀☀☀☆☆ 4 to 6 hours
☀☀☀☀☆ 2 to 4 hours
☀☀☀☀☀ Less than 2 hour

2. Development cost: what tool was the most dispendious to develop both
in time and effort. While Cypress provided a component workbench to
build and test multiple components, Storybook used stories, which capture
the rendered state of a Web UI component. Table 4.4 describes the effort
needed to program the test cases;

Table 4.4: Description of the scale for Development Cost.

Scale Development Cost
☀☆☆☆☆ More than 4 hours
☀☀☆☆☆ 3 to 4 hours
☀☀☀☆☆ 2 to 3 hours
☀☀☀☀☆ 1 to 2 hours
☀☀☀☀☀ Less than 1 hours

3. Documentation: weighted how much each tool’s documentation helped
during the preparation of the test cases, both in terms of coding conventions
and generic issues that arose. Table 4.5 describes the quality of each tool’s
documentation;

Table 4.5: Description of the scale for Documentation Quality.

Scale Documentation Quality
☀☆☆☆☆ No official documentation.
☀☀☆☆☆ Frail documentation with only basic examples.
☀☀☀☆☆ Difficult to find the solution to eventual problems.
☀☀☀☀☆ Covers most of the frequent issues and theoretical elements.
☀☀☀☀☀ Complete documentation with examples and technical aspects.

4. Development process: brief description of the advantages and difficulties
of each testing tool.

60



Proposed Solution

Cypress

Even though the main focus of this tool is E2E testing, Cypress also offers an
alternative to mount components and test the logic within. It provides a compo-
nent workbench to build and test multiple components, while offering the strong
selectors and assertions available from the main API. Additionally, it offers spies
to validate changes within the component and intersect requests.

Storybook

This front-end workshop allows assembling Web UI components and pages in
isolation. The main key point about this tool is the large library of different add-
ons with various functionalities. It uses stories, which capture the rendered state
of the component and simulates user interactions through the interactions add-
on [62]. It also includes a test runner [63] that turns all stories into executable
tests, capable of running in the CI pipeline and reporting their test coverage.

4.3.2 POC Closure

A meeting with the front-end team was conducted to present a comparison be-
tween each tool and decide which was the most appropriate to perform compo-
nent tests. At the end of the presentation and discussion, Storybook was chosen
as the preferred tool since it also displayed advantages not only for component
testing but also as a form of documentation for each component and accessibility
analysis. The generic information for each investigated tool can be found in Table
4.6.

Table 4.6: General details regarding the POC for Component Testing.

Cypress Storybook
Setup Complexity ☀☀☆☆☆ ☀☀☀☆☆

Development Cost ☀☀☀☆☆ ☀☀☀☀☆

Documentation Quality ☀☀☆☆☆ ☀☀☀☀☆

4.4 Component Tests Implementation

After selecting Storybook [4] as the preferred tool to perform component tests, a
list of all web components was created. Each one was categorized with a specific
priority according to its importance, how frequently it was used in the Stratio
Foresight Platform and the coverage impact (coverage-based approach). Table 4.7
describes each one of the selected components, along with the respective priority.

61



Chapter 4

Table 4.7: General details regarding the selected components for testing.

Name Priority Description
Alert Modal High Represents a pop-up window with a

message, buttons and an icon
Sub-Menu High Displays a lateral menu with sub-

options and an embedded filter
Table High Data is shown in a tabular manner and

users can interact with it
Drawer High Provides a sliding panel with additional

information
Layout High Represents a side bar with various op-

tions and a logout button
Quick Search Medium Provides a text area for users to type

data
Columns Selector Medium Small drop down with options regard-

ing which columns to display in a table
Value Selector Medium Displays a selector where users can se-

lect one or more options from a pred-
ifined list of values

Label Highlight Box Medium Highlights key information through a
border to emphasise it

Label Medium Represents text that identifies a specific
property or information

Operation Status Medium Represents a small animation indicating
if the system is active or not

Lists Resume Medium Displays a tooltip with a predefined list
of items

Breadcrumbs Low Shows a trail of links to assist users
whilst navigating

Page Header Low Similar to Breadcrumbs, with a reference
to return to the home page

Sub-Menu Filters Button Low Button regarding the sub-menu filters
Table Export Button Low Button regarding the table export report

functionality
Table Refresh Button Low Button to refresh contents of the table
Table Row Action Button Low Button to interact with a specific row of

the table

4.4.1 Storybook Setup

As it was mentioned previously, the Front-end Commons repository (section 4.1.1)
served as the conducted target to perform component tests. To install Storybook,
it was important to integrate the pertinent package [64] into the monorepo. After
following the installation steps, a set of basic stories (rendered state of a compo-
nent) was created for each one of the components in the repository. Then, the

62



Proposed Solution

configuration of the arguments for each component was made to ensure they
were being correctly rendered. Figure 4.8 represents the Alert Modal component
built and rendered in isolation by the Storybook UI, where the icon and all text
labels were manually chosen to tailor the specific test needs (Figure 4.9).

Figure 4.8: Storybook UI rendering the Alert Modal component.

Figure 4.9: Storybook UI stating the Alert Modal arguments.

In this stage of component testing, the Storybook UI allows components to be
rendered and manually tested, since it is possible to edit the controls (Figure 4.9)
and validate changes in real time within the component. Note that each compo-
nent consists of a set of different stories, where each one incorporates a different
set of controls and interactions for the component. In other words, a story is a
self-contained, isolated instance of a component with a previously defined set
of input parameters.

63



Chapter 4

However, this form of component testing was not enough to validate all the func-
tionalities of the component, given that some form of interaction to simulate an
end-user using the component was crucial. Storybook offers an interactions add-
on [62], which enables the development of play functions to integrate a specific
story. A play function is a block of code to be executed after the story renders,
enabling interactions within the component to trigger scenarios only possible
through user intervention. The installation process of this add-on was straight-
forward, since it was only necessary to add the interactions package, the Testing
Library3 for locators and the Jest4 add-on for assertions to the monorepo. Fig-
ure 4.10 illustrates the Storybook UI stating the interactions in the Alert Modal
component from the play function.

Figure 4.10: Storybook UI stating the Alert Modal interactions.

After having all the stories and play functions developed, it was necessary to
find a way to automate the testing process and execute them with a coverage
report. Storybook offers another add-on named Test Runner [63], powered by
Jest and Playwright, which converts all the stories and play functions within into
executable tests on different browser engines (Chromium, Firefox and Webkit).

To obtain testing coverage, Storybook also provides a coverage add-on [65]. How-
ever, since the repository we are working on uses Angular configured with Web-
pack, it is required additional configuration to enable code instrumentation i. e.
the ability to modify source code in order to collect information about its run
time. Storybook points to a foreign repository to enable code instrumentation in
an Angular project configured with Webpack [66].

After Storybook was thoroughly configured, a collection of test cases was written
for each component to cover all of its functionalities. Appendix B.1, includes all
the test cases for component testing.

3https://testing-library.com/
4https://storybook.js.org/addons/@storybook/addon-jest

64

https://testing-library.com/
https://storybook.js.org/addons/@storybook/addon-jest


Proposed Solution

4.4.2 Achieved Coverage

During this sub-section, various metrics regarding the testing coverage for com-
ponent tests will be presented. There are three different testing periods:

1. Before adding interactions add-on and performing the POC: the test run-
ner only verifies whether the component was rendered without errors;

2. After POC: includes the test cases presented during the POC, refering to
Tables A.1, A.2 and A.3;

3. After performing all the test cases: includes coverage for all test cases (Ap-
pendix B.1) developed for the components selected from Table 4.7.

Storybook Test Runner can use the generated testing data to create LCOV [67]
reports, which create an HTML page with data regarding the percentage of lines,
functions and branches that were executed during testing. Table 4.8 summarizes
the percentage of lines covered in different testing periods.

Table 4.8: Percentage of lines covered of all components.

Covered Lines (%)Name Priority Before
Interactions

After POC After all
test cases

All Components N/A 50.36 54.18 83.69
Alert-Modal High 78.94 84.21 94.73
Sub-Menu High 42.55 68.00 78.00
Table High 50.27 54.70 69.18
Drawer High 84.61 84.61 100
Layout High 87.50 87.50 87.50
Quick Search Medium 73.07 73.07 96.15
Columns Selector Medium 53.84 53.84 92.30
Value Selector Medium 53.57 53.57 88.46
Label Highlight Box Medium 100 100 100
Label Medium 43.47 43.47 100
Operation Status Medium 100 100 100
Lists Resume Medium 73.91 73.91 95.65
Breadcrumbs Low 100 100 100
Page Header Low 88.23 88.23 93.33
Sub-Menu Filters Button Low 100 100 100
Table Export Button Low 83.33 83.33 100
Table Refresh Button Low 75.00 75.00 100
Table Row Action Button Low 60.00 60.00 100

Note that some components, like the Sub-Menu Filters Button, already had per-
fect coverage without any interactions. This means that the rendering of the com-
ponent itself in different browser engines covers all the lines of the source code.

65



Chapter 4

Additionally, it is crucial to clarify that the component tests allow for style asser-
tions and confirmation of animations within the component.

4.4.3 Integration in the CI Pipeline

To introduce the automation of component tests in the existing GitLab CI pipeline
(Figure 4.2), a new job named component-tests was created to be executed dur-
ing the Test stage. Storybook Test Runner can use the generated testing data to
create reports through LCOV [67], which is a tool able to provide insights of the
covered code of the component tests. The reports can be directly fed to Sonar
Cloud through the automated tests performed in the CI pipeline, depicted in Fig-
ure 4.11. The main advantage of this integration was the ability to run visual
regression tests on Storybook components and assess code coverage for the com-
ponents being produced, as well as providing a coverage report to Sonar Cloud5.

Figure 4.11: Schematic representation of the GitLab CI/CD pipeline of the Front-
end Commons repository after performing component tests.

4.4.4 Component Tests Parallelism

Storybook Test Runner is able to use parallelism in component testing to reduce
the time it takes to execute test suites. The main objective is to reduce testing time
by selecting the optimal number of maximum workers. Appendix B.2 contains
the raw data and computer specifications used to conduct this study.

In order to study how efficiently Storybook Test Runner manages to run com-
ponent tests concurrently, the test suite composed for all the components was
executed within the GitLab pipelines, varying the number of maximum workers
from one to eight, with ten repetitions of each execution. It is important to note
that the CI pipeline used by Stratio Automotive has the GitLab workers hosted
locally (within the company’s server), meaning that it is not optimal to use as
many Storybook workers as possible. Figure 4.12 represents the execution time
of Storybook Test Runner with a different amount of maximum workers.

5https://docs.sonarcloud.io/

66

https://docs.sonarcloud.io/


Proposed Solution

Figure 4.12: Execution time of Storybook Test Runner with different maximum
workers.

A brief analysis states that beyond six workers, the execution time is nearly equal
to an unspecified amount of workers, meaning that the execution time of Story-
book Test Runner does not benefit significantly from an increase in more than
seven workers. Table 4.9 represents different metrics, including the best, worst
and average execution times, as well as the standard deviation.

Table 4.9: Storybook Test Runner Parallelism Statistics.

Parallelism Statistics (seconds)Max Workers Best Execution Worst
Execution

Average
Execution

Standard
Deviation

1 160.281 196.381 175.399 13.305
2 86.885 107.897 93.617 6.542
3 68.197 80.676 73.393 4.239
4 54.245 70.250 60.520 5.280
5 47.762 66.769 53.305 6.184
6 41.877 75.772 50.597 10.446
7 39.809 48.897 43.146 3.341
8 38.513 47.318 43.445 3.508
Unspecified 37.495 46.158 43.661 2.651

To better understand the parallelism statistics, Figure 4.13 displays a chart for a
more complete analysis regarding the execution time and maximum workers.

67



Chapter 4

Figure 4.13: Average Execution time of Storybook Test Runner with different
maximum workers.

A few considerations include:

• It is not worth it to go beyond seven workers, since the performance gains
are not significant;

• When the component-tests job is being executed, it is not ideal to have all
the resources of that GitLab worker allocated to the Storybook Test Runner,
since more intensive jobs might be running in the same worker;

• The standard deviation is quite large until six workers (between 11.747 and
4.086 seconds), meaning that the execution time varies significantly. The
lowest standard deviation occurs when there is an unspecified amount of
workers;

• The R-squared is 0.641, meaning the number of workers used has a moder-
ate impact in execution time.

After analysing the data and considering the execution time, it was decided to
maintain an unspecified amount of workers when executing the test suite in Sto-
rybook Test Runner. This approach allows reasonable execution times and does
not bottleneck the local GitLab runners.

4.4.5 Influence on the Development Team

Even though Storybook proved to be an excellent tool to perform component
tests, it also assists the development of Angular components and enhances the
programming experience of the front-end development team. To help the pro-
grammer creating easy to use components, the accessibility add-on [68] was in-
cluded in the project. The main goal is to make the UI as accessible as possible,

68



Proposed Solution

alerting the programmer of possible adjustments to enhance the components of
the Stratio Foresight Plataform. Figure 4.14 illustrates the accessibility add-on
stating design violations in the Value Selector Component.

Figure 4.14: Storybook UI stating design violations in the Value Selector Compo-
nent.

Another remark is the ability to develop component tests and immediately vali-
date applied changes visually on the Storybook UI instead of performing a new
release/deployment every time, which is time consuming.

4.5 POC for End-to-End Tests

The POC for E2E tests created for Stratio Automotive consists of two phases. The
first aims to present all the testing tools for E2E automation from a theoretical
point of view. The second intends to use three automation testing tools to execute
Web UI testing in the Stratio Foresight Platform.

4.5.1 Investigation Phase

Before collecting the use cases with the product team for the POC, various tools
were selected to conduct a brief study and present a state of art for Web UI testing.
Among the covered topics, the following were highlighted:

• Research Initiatives: certain appliances, like the Testing Pyramid, were re-
vealed to be excellent starting points since they showcased all the testing
levels and delineated the importance, granularity and execution time of
each level;

• State of Art: eight options were studied and presented to the teams;

69



Chapter 4

• Relevant Options: following the advantages and disadvantages of each
state of the art option, three options were selected to cover use cases yet
to be defined. The testing tools were: Cypress, Playwright and Puppeteer.

Alongside the theoretical information, a Cypress demo was displayed, showcas-
ing the generic possibilities of using an automation tool for E2E testing as well as
the current advantages and disadvantages of this technology.

4.5.2 Development Phase

The main objective of this phase aims to use three automation testing tools to
execute Web UI testing in the Stratio Foresight Platform which is a control panel
used by fleet managers. Inside this web application, the manager can monitor
their vehicle, create planning services and control notifications. The experimental
conditions and test cases are defined in Appendix A.2.

4.5.3 Tools

As was stated in the first phase of this POC, three different automated testing
tools were selected for this project: Cypress, Playwright, and Puppeteer. Among
the topics discussed, a theoretical explanation of each tool was given as well as
a description of the test cases and a demo showcasing each tool. During the
presentation, a code analysis was conducted before executing the E2E tests.

The main key points made in the second version of the presentation of the POC
are as follows:

1. Development Cost: what tool was the most dispendious to develop both in
time and effort. This is a difficult area to quantify because the development
of test cases using the first tool comprises solution and logic. After pro-
gramming the test cases with Cypress, the development with Playwright
and Puppetter is straightforward since it only requires syntax changes of
the code previously created. Table 4.10 describes the effort needed to set up
the testing environment, understand the framework and program the test
cases;

Table 4.10: Description of the scale for Development Cost.

Scale Development Cost
☀☆☆☆☆ More than 8 hours
☀☀☆☆☆ 6 to 8 hours
☀☀☀☆☆ 4 to 6 hours
☀☀☀☀☆ 2 to 4 hours
☀☀☀☀☀ Less than 2 hours

70



Proposed Solution

2. Documentation: weighted how much each tool’s documentation helped
during the preparation of the test cases, both in terms of coding conventions
and generic issues that arose. Table 4.11 describes the quality of each tool’s
documentation;

Table 4.11: Description of the scale for Documentation Quality.

Scale Documentation Quality
☀☆☆☆☆ No official documentation.
☀☀☆☆☆ Frail documentation with only basic examples.
☀☀☀☆☆ Difficult to find the solution to eventual problems.
☀☀☀☀☆ Covers most of the frequent issues and theoretical elements.
☀☀☀☀☀ Complete documentation with examples and technical aspects.

3. Result Analysis: benchmarks of time taken to execute the tests without par-
allelism (available for all tools) and with parallelism (Playwright exclusive
since it was needed to set up a CI pipeline for the other tools). Table 4.12
describes the expected time for both tests;

Table 4.12: Description of the scale for Execution Time.

Average Execution Time (t) (seconds)
Scale TC1 (UC1) TC2 (UC2+UC3)
☀☆☆☆☆ t > 13 t >19
☀☀☆☆☆ 11 < t < 13 17 < t < 19
☀☀☀☆☆ 9 < t < 11 15 < t <17
☀☀☀☀☆ 7 < t < 9 13 < t < 15
☀☀☀☀☀ t < 7 t < 13

4. Component Testing Basics: Cypress and Playwright exclusive.

4.5.4 POC Closure

After presenting various theoretical aspects regarding E2E automation for front-
end, the present teams (Product, Internal Tooling, Software) engaged in a discus-
sion to decide which tool was most adequate for the project. At the end of the
dialogue, we collectively choose Playwright as the preferred tool since it did
not display any disadvantages to the pretended work and it also granted the ad-
vantage of having multiple pages (or tabs) open, where Cypress can not open
more than once at a time. The generic information of each investigated tool can
be found in Table 4.13.

71



Chapter 4

Table 4.13: General details regarding the POC for E2E Testing.

Cypress Playwright Puppeteer
Development Effort ☀☀☀☀☆ ☀☀☀☀☆ ☀☀☀☆☆

Documentation ☀☀☀☀☆ ☀☀☀☀☆ ☀☀☀☆☆

Execution Time ☀☀☆☆☆ ☀☀☀☀☀ ☀☀☀☆☆

Component Testing Available Available Not Available

4.6 End-to-End Tests Implementation

After concluding and presenting the POC for E2E tests, a meeting with the prod-
uct team was scheduled to gather insights about the Stratio Foresight Platform
and write appropriate test cases for full product validation. Tables 4.14 and 4.15
summarize the covered features of the platform.

According to the information provided in Table 4.14, it has been confirmed by
the product team that the Dashboard functionality will receive an overhaul and
is set to be heavily modified, hence the status "No".

A specific feature can either be covered by:

• Smoke Tests: software testing process to validate if a specific functionality
is stable, consisting of non-complex assertions and fewer interactions. If
the build is stable, it is advisable to proceed towards more comprehensive
software testing (User Acceptance Test (UAT) validation through E2E tests);

• E2E Tests: contains a battery of tests to simulate end-user behaviour on a
specific functionality of the Stratio Foresight Platform. The primary objec-
tive of this form of validation is to guarantee that all parts of the system
work together seamlessly within a real-world scenario.

Features marked in yellow are exclusive to super master users (section 4.1.2)
and blue features correspond to server-sided reserved features which should
be treated separately when multiple tests are running concurrently (in parallel).
For instance, if the platform’s language is switched in general settings, certain
locators may become obsolete in other tests.

All test cases can be consulted in Appendix C.1.

72



Proposed Solution

Table 4.14: Stratio Foresight Platform Coverage of E2E tests

Stratio Foresight Platform
Functionality Feature Covered

Authentication Yes (E2E Tests)Login Recover Password Yes (E2E Tests)
Logout Log Off Yes (E2E Tests)
Dashboard Edit Panels No

Consult Vehicle Details Yes (Smoke Tests)
Consult Active Alerts Yes (Smoke Tests)Fleet Condition
Consult Active DTCs Yes (Smoke Tests)
Overview Yes (Smoke Tests)
Starter Battery Yes (Smoke Tests)
Brake Pads Yes (Smoke Tests)
Available Engine Torque Yes (Smoke Tests)
Air Leaks (Beta) Yes (Smoke Tests)
Battery Pack - EV Yes (Smoke Tests)

System Indicators

Potential Fault Yes (E2E Tests)
Throttle Pedal Yes (Smoke Tests)
Coolant Temperature Yes (Smoke Tests)
Consumption Yes (Smoke Tests)
EV Charging Yes (Smoke Tests)

Metrics

Operation Yes (Smoke Tests)
Vehicle Recent Data Vehicle Data Display Yes (E2E Tests)

Map Yes (E2E Tests)
Trips Yes (Smoke Tests)
Driver Hours of Service Yes (Smoke Tests)
Geo-referenced Occurrences Yes (Smoke Tests)
Messages Yes (E2E Tests)
Operational Events Yes (Smoke Tests)
Geo-referenced Alerts Yes (E2E Tests)

Maps

Shared Vehicle Locations Yes (E2E Tests)
Filtering Yes (E2E Tests)Occurrences Mark as Read Yes (E2E Tests)
Create Service Plan Yes (E2E Tests)
Mark Service Plan as Read Yes (E2E Tests)Service Plans
Cleanup of Service Plan Yes (E2E Tests)
Overview Yes (Smoke Tests)
Driver Score Yes (E2E Tests)
Vehicle Score Yes (E2E Tests)
Bus Line Score Yes (Smoke Tests)
Driver Configuration Yes (Smoke Tests)

Ecodrive

Groups Management Yes (E2E Tests)
Reports Consult Reports Yes (Smoke Tests)

73



Chapter 4

Table 4.15: Stratio Foresight Platform Coverage of E2E tests (Cont.)

Functionality Feature Covered
General Settings Yes (E2E)
Measurement Units Yes (E2E)
Notifications Yes (Smoke Tests)My Settings

Edit Profile Yes (Smoke Tests)
Groups Yes (E2E Tests)
Idle Time Yes (Smoke Tests)Global Settings
Ignored Trouble codes / Alerts Yes (Smoke Tests)
Disable User Yes (E2E Tests)
Enable User Yes (E2E Tests)List Users
Examine User Yes (Smoke Tests)

4.6.1 E2E Testing vs. Smoke Testing Criteria

Even though both kinds of tests serve different purposes in the upcoming test
suite, it is important to explain what criteria were used to decide if a specific
feature should be covered by smoke or E2E tests. Different features require a
different level of interaction to be engaged by the end-user, hence the importance
of classifying the tests (Tables 4.14 and 4.15) into different types.

Generally, smoke tests include more lightweight features, where the end-user
only needs to log in and access a page with fewer ways of interaction. Looking
at an example regarding the Fleet Condition functionality, more specifically in
the consult vehicle details feature (Test Case C.4), mostly text assertions are per-
formed, and the end-user only needs to browse the vehicle details page. Figure
4.15 depicts the Operation Metrics of the referred page, where only metrics are
displayed.

Figure 4.15: Operation Metrics component from the Fleet Condition functionality
[5].

Alternatively, E2E tests include the most complex features of the Stratio Foresight
Platform, where the end-user needs to perform a lot of steps to engage in differ-
ent procedures. A possible example would be the Service Plans functionality,
regarding the service plan creation feature (Test Case C.21), where the end-user

74



Proposed Solution

must complete a three-step form. Figure 4.16 depicts one of the form components.

Figure 4.16: Form component from the Service Plans functionality [5].

4.6.2 Playwright Setup

The installation process of the automation framework [69] into the Stratio Web
repository (4.1.1) was straightforward. After configuring TypeScript as the pre-
ferred language and specifying the target test folder, the next step involved set-
ting up the Playwright configuration file [70]. The most relevant properties in-
clude:

• Test timeouts: since smoke and E2E tests are less granular than component
tests, a timeout of one minute was specified for each test, to grant enough
time to be executed;

• Parallelism: the ability to run tests concurrently in the Playwright test-
runner was set to active, since it allows for faster execution, early detection
of issues and better scalability;

• Number of retries: there is always the possibility of some assertion failing
during testing. The number of test retries was set to two, to allow a test
case to repeat in case of any flaky behavior being found. Additionally, the
test trace of failing tests is stored to capture the step-by-step instructions of
occurring errors;

• Reporter type: an HTML report was set to ensure an easy inquiry while
validating test results;

• Which browsers to use: similarly to component tests, the three most com-
mon browser engines were set: chromium, firefox, and webkit.

After thoroughly configuring Playwright, a directory structure was decided, to
keep a tidy work environment. Figure 4.17 depicts the chosen file arrangement:

• Assertions: includes one directory per functionality, populated with the
assertions of each test case;

75



Chapter 4

• Test Fixtures: contains one file per functionality, consisting of additional
information per test case. For example, sample data of a specific vehicle to
validate;

• Test Pages: in order to implement a POM approach (section 2.9.1), this di-
rectory consists of one folder per functionality, populated with the HTML
locators and various methods of each test case;

• Test Suite: comprises directories organized by functionality and smoke
tests, populated with test case specifications. Additionally, it includes a
directory of scripts to execute all tests either locally or in the GitLab CI
pipeline.

Figure 4.17: File structure of the test suite in Stratio-Web repository.

76



Proposed Solution

After defining a pertinent file structure, different categories were created to seg-
regate tests, imposing the necessity of creating shell scripts to distribute the test
cases across different testing phases:

• Vault Auth Shell Script: most test cases require login credentials to be ex-
ecuted. Since this information is sensitive and should not be displayed in
plain text in the "Test Fixtures" directory, we used Hashicorp Vault [71] as
a secret management solution in order to ensure a centralized platform for
storing, managing, and accessing sensitive data. This shell script securely
accesses Stratio Automotive’s Vault and gets the necessary sample data to
execute Stratio-Web tests;

• Smoke Tests Shell Script: this shell script executes all smoke tests, exclud-
ing those reserved for the super master user. Tables 4.14 and 4.15 indicate
which are the smoke tests;

• UAT Validation Shell Script: this shell script executes all E2E test cases,
excluding the super master and server-sided exclusive. Tables 4.14 and 4.15
indicate which are the E2E tests;

• Server-sided Validation Shell Script: this shell script executes all server-
sided exclusive test cases. Tables 4.14 and 4.15 indicate which are server-
sided exclusive features (marked as blue);

• Security Validation Shell Script: this shell script executes all super master
user exclusive test cases. Tables 4.14 and 4.15 indicate which are the super
master exclusive features (marked as yellow).

Figure 4.18 illustrates the file structure of the "Test Scripts" directory.

Figure 4.18: File structure of the Test Scripts directory.

77



Chapter 4

4.6.3 Integration in the CI Pipeline

In order to establish the automation of all the smoke and E2E tests in the existing
GitLab CI pipeline (Figure 4.3), a new job named e2e-tests was created to be ex-
ecuted during the Test stage. Similarly to the "Test Scripts" directory, the job was
split into different stages that followed a specific execution order. Additionally, a
project was included in the pipeline that allowed the environment to access Vault
secrets, in order to securely retrieve sensitive data (authentication credentials).
The e2e-tests job is partitioned into the following:

• e2e-smoke-tests: stage responsible for the execution of smoke tests;

• e2e-uat-validation: stage in charge of the execution of E2E tests, excluding
the super master and server-sided exclusive;

• e2e-server-sided-validation: stage accountable for the execution of server-
sided tests;

• e2e-security-validation: stage tasked with the execution of super master
user exclusive tests.

Figure 4.19 illustrates the applied changes to the GitLab pipeline, along with ac-
cess to Vault secrets. It is important to note that the jobs follow a specific execu-
tion order, where the smoke tests are performed before all others, to ensure that
all functionalities are operational and more complex testing can be followed.

Figure 4.19: Schematic representation of the GitLab CI/CD pipeline of the Stratio-
Web repository after performing E2E tests.

78



Proposed Solution

4.6.4 E2E Tests Parallelism

Playwright test runner is able to perform parallel testing in order to reduce the
time needed to execute test suites. In this sub-section, a brief study regarding
the optimal number of workers for the developed test suite will be disclosed.
Appendix C.2 contains all the raw data used to conduct this study.

To carry out this research, it is important to combine the parallelism setting of
the GitLab CI runner since Playwright allows sharding between multiple jobs
through the parallel keyword [72]. It should be highlighted that two properties
will be studied during this research:

• Playwright Workers: points out to the Playwright configuration file, where
it is possible to define the parallel execution capability provided by the
Playwright test runner;

• GitLab Sharding: refers to a feature provided by the GitLab CI pipeline
that divides a job into numerous shards to concurrently execute multiple
tasks across different resources.

Figure 4.20 represents the execution time of the Playwright test runner with a
range of one to three shards and one to four playwright workers:

Figure 4.20: Execution time of Playwright Test Runner with different worker-
s/shards.

It is worth mentioning that GitLab sharding significantly enhances performance,
particularly when there are fewer Playwright workers involved. Table 4.16 rep-
resents different metrics, including the best, worst and average execution times,
as well as the standard deviation.

79



Chapter 4

Table 4.16: Playwright Test Runner Parallelism Statistics

Parallelism Statistics (seconds)GitLab Jobs Workers Best
Execution

Worst
Execution

Average
Execution
Time

Standard
Deviation

1 1,819.0 1,943.0 1,896.8 49.1
2 1,162.0 1,305.0 1,224.4 54.1
3 1,017.0 1,092.0 1,055.8 31.71

4 888.0 973.0 937.8 32.3
1 1,093.0 1,180.0 1,139.6 35.6
2 816.0 903.0 868.4 31.9
3 821.0 845.0 832.4 10.92

4 740.0 794.0 764.2 19.7
1 922.0 985.0 948.2 25.6
2 719.0 777.0 753.6 22.5
3 716.0 766.0 738.8 22.13

4 700.0 781.0 730.8 32.7

To ease the analysis of the parallelism statistics, Figure 4.21 displays a chart com-
paring the average execution time of the Playwright test runner with the number
of workers.

Figure 4.21: Average execution time of Playwright Test Runner with different
workers/shards.

Similarly to the component tests pipeline, the CI pipeline used by Stratio Auto-
motive has the GitLab workers within the company’s server, denoting the fact
that they are hosted locally and E2E testing should not bottleneck the system.
Certain aspects to be aware of include:

• If the number of Playwright workers is prioritized and we use four, then

80



Proposed Solution

the amount of GitLab CI parallel jobs does not have a significant impact
beyond two;

• If the number of GitLab CI workers is prioritized and we use three, then
the amount of Playwright workers does not have a significant impact be-
yond two;

• Some tests may produce flaky behavior. This conveys that the platform
may not be stable, a nondeterministic error occurred or a timeout may have
appeared, which means that there is some discrepancy in testing time. This
points to the fact that the standard deviation is generally larger than twenty
seconds.

After a thorough analysis of the parallelism data regarding E2E tests, it was de-
cided to take advantage of multiple Playwright workers and GitLab CI jobs and
use two of each.

4.6.5 Influence on the Product Team

As it was previously mentioned, the PO is responsible for manually validating
the Stratio Foresight Platform (section 4.2.2), which means they are responsible
for individually rectifying all the functionalities of Tables 4.1 and 4.2. The devel-
oped test suite would enable them to focus on validating more specific features,
introducing test redundancy, in order to increase test confidence.

4.7 Continuous Testing

After creating a test suite for the validation of the Stratio Foresight Platform, the
intern worked together with the development team during three sprints (fifteen
days each) to promote and support them for better testing principles. To evolve
the process regarding the approval of new user stories or bug fixes, an adaptation
of a TDD approach was employed. Typically, a TDD strategy uses unit tests [73],
however, a new procedure regarding automated E2E tests will be proposed.

As mentioned in section 2.2.2, the TDD strategy inverts the flow of development,
where tests are composed first. Figure 4.22 breaks down the proposed approach
in the following key points:

1. The path commences with a request, either a user story or a bug fix;

2. A new E2E test is developed for that request, which will fail due to no code
being developed;

3. The request is developed using the minimum amount of code necessary to
make the test pass;

81



Chapter 4

4. The code is subsequently refactored to improve readability, reduce com-
plexity, and ensure maintainable and efficient code. Then, the full battery
of E2E tests must be executed, in order to perform regression testing and
ensure no bugs have been introduced with recent changes.

Figure 4.22: Schematic representation of the proposed TDD approach with E2E
tests.

4.7.1 Integration in the CI/CD Pipeline

To incorporate the proposed TDD approach within the CI/CD pipeline, we fo-
cused on a workflow that could represent the routine presented in Figure 4.22.
In practical terms, both the Quality Assurance (QA) and development team must
coordinate efforts to take advantage of automated testing.

Figure 4.23 represents how the continuous integration (CI) flow was adjusted in
order to validate bug fixes and user stories.

The sequence of steps is as follows:

1. The QA and development team create a new branch for the proposed changes;

2. The QA team creates the appropriate test cases and the development team
plans their changes;

3. The QA team develops E2E tests for the bug fix or user story and merges
the automated tests into the main branch;

4. Before finishing implementation, the development team rebases their branch
with the newly created automated tests and try to deploy changes:

(a) If the automated test fails, then the bug fix or user story is not ready
and refactor is needed;

(b) If the test succeeds, the changes are validated and the deploy is merged.

82



Proposed Solution

Figure 4.23: Schematic representation of the pipeline operating with the proposed
TDD approach.

This approach was practiced between the intern and the development team with
examples for bug fixing and user stories. Figure 4.24 depicts the pipeline without
the proposed TDD strategy.

Figure 4.24: Schematic representation of the pipeline operating without TDD.

The main objective was to clear the manual validation performed by the PO and
replace that interaction with tailored E2E tests for that specific bug fix or user
story. To enforce this practice, the intern engaged in a weekly technical planning
meeting to identify features or bugs that would benefit from the TDD workflow.

4.7.2 Coordination with Development and Product Teams

To assess the proposed TDD approach, the intern presented the strategy to the
development and product teams in order to measure its benefits. Table 4.17 rep-
resents a total of two bug fixes and two user stories that were tested with this
approach. Before merging the changes, an E2E test was used to validate the ne-
cessity of further refactoring. A total of five executions for task with two GitLab
jobs and Playwright workers were executed:

83



Chapter 4

Table 4.17: Summary of approval time for the proposed TDD approach.

Type Tasks Average Execution
Time (seconds)

Vehicle Details: Disabling a device is duplicating
Operation metrics data 118.8

Bug
Fixes Maps: Operational Events - Idle Consumption

with wrong units 98.6

Ecodrive: Bus Lines - Apply filters across details 113.4User
Stories Vehicle Details: Navigate to Maps through

selected vehicle 101.2

A few considerations follow:

• The approval time of a bug fix or user story depends on its complexity, such
as the amount of pages navigated or the extent of the feature. Nevertheless,
the time required for both types of approvals should generally be within the
range of two to three minutes;

• Since the team is currently working on component revamps, it was difficult
to find adequate bug fixes and user stories to validate. The ones presented
in the previous table correspond to already deployed features and prove
that the proposed TDD approach can be used to validate bug fixes and user
stories. Due to that limitation, it was impossible to analyse the number of
prevented defects and required refactors.

4.8 Overall Impact of the Proposed Solution

In this section, various metrics will be presented to quantify the impact of the
proposed solution and better understand if the modifications to the quality pro-
cess and the addition of a new battery of tests were significant. In this case, the
most relevant to tackle are the defects identified, test coverage, team feedback
and the approval time of new Web UI versions of the product.

4.8.1 Before Automated Testing

To correctly measure the impact of the proposed solution, the intern accompanied
the product team during two development sprints (fifteen days each) in order to
retrieve approval metrics of the time spent evaluating user stories, bug fixes and
the Stratio Foresight Platform through manual web UI tests. In this context, "user
stories" refer to newly developed features by the software team, while the latter
corresponds to the manual validation of the whole product before deployment.
Table 4.18 presents a summary of the metrics collected for different types of ap-
provals. The second column, labeled "Average Bugs Found", indicates the aver-
age number of bugs discovered per approval type. For example, for every five

84



Proposed Solution

user story approvals, one bug is identified and the task must be refactored and
analysed by the PO again. The full study data can be found in Appendix C.3.

Table 4.18: Approval time metrics before performing automated testing.

Approval Type Average Bugs Found Average Validation Time (min)
User Story 0.2 11.2

Bug Fix 0.4 18.9
Full Product 1.0 132.5

Key components to emphasize include:

• The "Validation Time" property only counts towards the time the PO opened
the user story, bug fix or product and performed the validation process. It
does not include the time spent updating tickets or writing status messages
to the development teams;

• On average, it is faster to approve user stories than bug fixes due to the
latter requiring thorough validation of the affected feature and its related
functionalities. The PO ends up performing regression testing (section 2.3.3)
manually;

• Usually, the present bugs in the Stratio Foresight Platform are non-deterministic
(referred to as mandelbugs, as mentioned in section 2.3.2) which can give
the developers the false impression of being wrongfully fixed. As a result,
these bugs tend to reappear more frequently in bug fix approvals, causing
them to have a superior count regarding average bugs found when com-
pared to user story approvals;

• The full product validation is a convoluted process where the PO takes
more than two hours to validate the Stratio Foresight Platform, finding
one bug on average.

4.8.2 Defects Prevented or Identified

Monitoring the number of bugs found during testing is a challenging process
since the product itself only had unit tests that were thoroughly settled. How-
ever, it is still possible to conclude a testing report regarding the bugs found with
the new testing techniques.

Component Testing

Since component testing occurs alongside development, it plays a vital role in
preventing bugs instead of identifying them. An analysis of Stratio Automotive’s
GitLab pipeline identifies the following situations:

85



Chapter 4

• During a three month period, there were seven instances where the component-
tests job failed in the pipeline (in a total of forty five executions). However,
after a refactoring process, the pipeline was successfully executed, indicat-
ing preemptive defect mitigation;

• The developed component tests prevented defects in four components (Drawer,
Alert-Modal, Label and Lists-Resume) across five merge requests.

E2E Testing

The battery of E2E tests proved to be an adequate tool to identify defects in the
Stratio Foresight Platform. Table 4.19 represents a summary of the identified bugs
in the Stratio Foresight Platform within a two month period.

Table 4.19: Summary of identified defects through E2E tests.

Stratio Foresight Platform
Functionality Feature Defects

Fleet Condition Consult Vehicle Details - The Operation Metrics card
was wrongfully duplicated
upon vehicle location de-
activation.

Service Plans Cleanup of Service Plan - After clicking the ’X’ button to
delete a service plan, a pop-up
to confirm appears. However,
the ’cancel’ text was not render-
ing in the correct button.

Ecodrive Driver Score - "Export Report" button did not
generate a report.

General Settings - After switching the language
from ’English’ a few translation
errors were identified.My Settings Measurement Units - After switching the pressure
unit from ’bar’ to ’psi’, the tables
from the ’Air Leaks’ feature in
the ’System Indicator’ function-
ality did not switch from ’bar’ to
’psi’.

4.8.3 Code Coverage

This metric measures the percentage of code that is executed by tests. Since the
only existing form of testing before this internship was unit testing, we had zero
coverage regarding component testing.

As explained in section 4.4.3, the Storybook Test-Runner can use the generated
testing data to create reports of the percentage of lines covered by automated

86



Proposed Solution

tests. Table 4.8 from section 4.4.2 presents a summary of the code coverage gained
from component testing with an achieved coverage of 83.69% throughout all
components, exceeding the target coverage for components of 75% of the suc-
cess criteria.

4.8.4 Test Coverage

The test coverage metric specifies the range to which the functionality and re-
quirements of a system are covered by tests. Tables 4.14 and 4.15 from section
4.6 present which functionalities and features were covered. It is important to
note that every functionality was addressed with the exception of the Dashboard
functionality which will receive an overhaul soon and it is not justified to develop
an E2E test. Out of fifty different features, a total of forty nine (98%) were cov-
ered through E2E testing strategies, surpassing the target coverage of 90% of the
Stratio Foresight Platform features from the success criteria.

4.8.5 Contribution to the Development and Product Teams

Given that the quality process within the product and development teams have
undergone changes, it is important to understand their point of view regarding
the new practices. Humans are typically resistant to change and it is important
to ensure that the proposed solution actually improves their workflow and does
not hinder their performance. The primary aspects consist of the following:

• One presentation was conducted for each POC, covering both component
and E2E tests, aiming to demonstrate the capabilities of these testing tech-
niques;

• After implementing the battery of component tests, the intern supported
the development team refactoring multiple components as well as how to
update the tests;

• A training session was provided for the development and product team re-
garding automated E2E tests and how they are integrated in the CI pipeline;

• Integration of different automated testing tools for component and E2E tests
in the GitLab CI pipeline, in order to meet the success criteria.

4.8.6 Approval Time of Product Iterations

It is possible to compare the average time that a PO took to manually validate
the entire product before approving it for the staging environment and correlate
it with the time the full battery of E2E tests developed takes. Since there is no hu-
man interaction to execute the composed tests and the full process is automated
through the CI/CD pipeline, it is possible to conclude that the product team does

87



Chapter 4

not need to spend large amounts of time validating new functionalities, bug fixes
or the product itself, since all the processes have been automated.

Since a rough estimate of the average time per evaluation before the automated
tests has been calculated in section 4.8.1, it is possible to predict the amount of
time spent approving user stories, bug fixes and validating the Stratio Foresight
Platform per sprint (fifteen days). To calculate these estimates, the total number of
user stories and bugs were collected from the last twenty four sprints, considering
that only one analysis from the PO was enough to validate each instance. Table
4.20 contains a comparison between the average time spent per sprint manually
approving and with automated Web UI tests:

Table 4.20: Summary of manual approval time metrics against automated Web
UI tests.

Average Time p/ Sprint (min)Approval
Type

Average Instances
p/ Sprint Manually

Approving
With Automated Tests

(2 GitLab Jobs and Playwright Workers)

User Story 4 44.8 7.2
Bug Fix 7 132.3 12.5
Full Product 1 132.5 14.5

Time management is a major consideration in each sprint. Implementing auto-
mated Web UI tests instead of manual approvals could save the PO team up to
five hours and ten minutes per sprint, which is a considerate amount of time. It
is important to note the following:

• Implementing the proposed TDD approach, the PO would not spend any
time approving either user stories nor bug fixes since automated E2E tests
are being executed within the GitLab pipeline;

• Based on section 4.7.2 and using the average approval times of Table 4.17,
we estimate that the approval time is around six times faster for user stories
and ten times faster for bug fixes with automated E2E tests;

• According to section 4.6.4, the automated E2E test battery takes around
fourteen minutes (with two GitLab jobs and Playwright workers) to per-
form a full product validation which is around nine times faster than a
manual validation, exceeding the success criteria to reduce by half the
manual testing and approval time of the Web UI platform;

• Evidently, it is crucial to understand the amount of time needed to create
an automated test. Section 4.6.2 illustrates the file structure and Playwright
configuration, organized in a modular way to easily create E2E tests. Most
of the time, the locators needed to create a new test are previously defined
and, depending on the feature, it takes less than twenty minutes;

• On the occasion of a feature needing to be tested multiple times, it is pos-
sible to repeat the same corresponding automated test instead of manually
validating the feature multiple times.

88



Chapter 5

Conclusion

This chapter is divided into two sections: the first denotes an overview of the
main topics researched and how the proposed solution impacted the quality as-
surance process of Stratio Automotive through production level component and
E2E tests. The final section includes a small reflection on what could be done in
the future to improve this project.

5.1 Dissertation Remarks

The objective of this Dissertation was to optimize the approval time of Web UI
tests. To that end, we presented a deep analysis of Stratio Automotive’s qual-
ity assurance process, including the most frail points regarding Web UI testing.
A quick examination pointed out that there were instances where slow manual
tests were performed to approve user stories, bug fixes and the Stratio Foresight
Platform.

To broaden Stratio Automotive’s testing standards, two testing paradigms were
introduced from scratch into the company: component testing and E2E testing,
which ensure the quality and reliability of software systems. The Testing Pyra-
mid aided in the identification and study of the two topics, emphasizing their
differences regarding execution time and granularity.

After identifying weak points where the approval time of Web UI tests was sub-
stantial, a complete overhaul was proposed with new techniques to incorporate
both component tests and E2E tests, allowing for test automation. These changes
completely modified the validation process of the product offered by Stratio Au-
tomotive, since it is now possible to increase the quality of testing whilst also en-
suring quicker validation times and less manual testing. To validate the Stratio
Foresight Platform, a battery of component and E2E tests was developed; how-
ever, to approve bug fixes and user stories, an adaptation of a TDD approach was
presented with E2E tests.

In terms of the proposed solution, out of fifty different features, a total of forty
nine (98%) were covered through E2E testing strategies, surpassing the target

89



Chapter 5

coverage of 90% and the intended coverage of 75% for components has been ex-
ceeded with a coverage of 83.69%. On the other hand, the approval time is six
times faster for user stories, ten times quicker for bug fixes, and nine times faster
to perform a full product validation, exceeding the success criteria to reduce by
half the manual testing and approval time of the Web UI platform. Furthermore,
both component and E2E tests have been integrated in the GitLab CI pipeline
in order to automate Web UI tests. The work carried out during this internship
positively impacts the development team since it provides instant feedback dur-
ing the process of merging new code, effectively preventing and identifying bugs
within the repositories of the Stratio Foresight Platform. Regarding the product
team, the changes proposed in the quality assurance process reduce the manual
approval time considerably.

Significant experience was acquired during this internship. There was an oppor-
tunity to work with various teams simultaneously (quality assurance, product
and development teams) in an Agile mindset while understanding various levels
of testing and their importance to developing a quality product. Since compo-
nent tests consist of a white box testing technique, the intern had the opportunity
to study and understand Angular components in order to develop quality tests
in TypeScript. Regarding E2E tests, it was not trivial to create test cases since
it was necessary to examine the software functionalities of the Stratio Foresight
Platform. In relation to both testing paradigms, a deep understanding of browser
automation was crucial, as was test integration within components and the sys-
tem as a whole. Nevertheless, some technical knowledge of DevOps was also
necessary to implement test automation within the GitLab CI pipelines.

5.2 Future Work

Even though a new solution was proposed and the positive impact of its effi-
ciency has been confirmed, it is still crucial to move towards a hybrid between
the proposed TDD and a BDD approach. This fusion has the main objective of
increasing collaboration with the quality assurance, development and product
teams in order to define testable user stories from an end-user perspective. Fur-
thermore, by dismissing manual testing in favor of automation, it would be pos-
sible to enable a continuous deployment scenario where small increments could
be deployed instantly, while being thoroughly tested and exempt from manual
testing.

These changes in the quality process can take up to a year to fully implement in
Stratio Automotive, since it is required to change the habits of various workers
and how they operate on a daily basis. Some considerations on how to speed up
the integration process follow:

• Prepare a lecture to all the involved teams, stating the weak points of the
quality process and what are the solutions to tackle areas that need im-
provement;

• Present attainable goals and objectives, like test and code coverage or tar-

90



Conclusion

get approval times, to be met through the proposed changes in the quality
process;

• Explain the benefits of test automation and how they can improve Stratio
Automotive’s product;

• Implement all the proposed changes and retrieve metrics to prove the effec-
tiveness of the new strategy.

Another interesting remark reflects the creation of a mock environment without
the backend logic. If a local server with these characteristics is created, the de-
veloper will have full control over the responses each component gives (through
mock requests), granting the tester full liberty when testing the software system.

Finally, due to the importance and positive impact of the proposed tests, the next
phase involves expanding the proposed testing techniques to all platforms of
Stratio Automotive.

91





References

[1] The Editors of Encyclopaedia Britannica. "software", 15 May, 2023. https:
//www.britannica.com/technology/software, last accessed 19 June 2023.

[2] Cypress. Test. automate. accelerate. https://www.cypress.io/, last ac-
cessed 15 January 2023.

[3] Playwright. Playwright enables reliable end-to-end testing for modern web
apps. https://playwright.dev/, last accessed 15 January 2023.

[4] Storybook. Build uis without the grunt work. https://storybook.js.org/,
last accessed 15 January 2023.

[5] Stratio Automotive. The world’s #1 predictive fleet maintenance platform.
https://stratioautomotive.com/, last accessed 15 January 2023.

[6] kanbanize. What is kanban? explained for beginners. https://kanbanize.
com/kanban-resources/getting-started/what-is-kanban, last accessed
10 January 2023.

[7] GitLab. Ci/cd concepts. https://docs.gitlab.com/ee/ci/introduction/,
last accessed 7 December 2022.

[8] IBM. What is risk management? https://www.ibm.com/topics/
risk-management, last accessed 10 January 2023.

[9] Shylesh S. A study of software development life cycle process models, June
10, 2017. https://ssrn.com/abstract=2988291, last accessed 15 June 2023.

[10] Kate Brush. Definition - test case, March, 2020. https://www.techtarget.
com/searchsoftwarequality/definition/test-case, last accessed 15 Jan-
uary 2023.

[11] Claire Drumond. Is the agile manifesto still a thing? https://www.
atlassian.com/agile/manifesto, last accessed 15 January 2023.

[12] Ian Sommerville. Software Engineering. Pearson, 9th edition, 2010.

[13] Heba Elshandidy, Sherif Mazen, Ehab Hassanein, and Eman Nasr. Using
behaviour-driven requirements engineering for establishing and managing
agile product lines. International Journal of Advanced Computer Science and
Applications, 12(2), 2021.

93

https://www.britannica.com/technology/software
https://www.britannica.com/technology/software
https://www.cypress.io/
https://playwright.dev/
https://storybook.js.org/
https://stratioautomotive.com/
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://kanbanize.com/kanban-resources/getting-started/what-is-kanban
https://docs.gitlab.com/ee/ci/introduction/
https://www.ibm.com/topics/risk-management
https://www.ibm.com/topics/risk-management
https://ssrn.com/abstract=2988291
https://www.techtarget.com/searchsoftwarequality/definition/test-case
https://www.techtarget.com/searchsoftwarequality/definition/test-case
https://www.atlassian.com/agile/manifesto
https://www.atlassian.com/agile/manifesto


Chapter 5

[14] Thomas Hamilton. Static vs dynamic testing: Difference between them,
June 2023. https://www.guru99.com/static-dynamic-testing.html, last
accessed 17 July 2022.

[15] Henrique Madeira. Software quality and dependability, software testing
overview [powerpoint presentation], February 2022.

[16] Mohd Ehmer Khan and Farmeena Khan. A comparative study of white box,
black box and grey box testing techniques. International Journal of Advanced
Computer Science and Applications, 3(6), 2012. last accessed 29 December 2022.

[17] Thomas Hamilton. White box testing – what is, techniques, example & types,
November 19, 2022. https://www.guru99.com/white-box-testing.html,
last accessed 29 December 2022.

[18] Mohd Khan. Different approaches to black box testing technique for finding
errors. International Journal of Software Engineering & Applications, 2, 10 2011.
last accessed 30 December 2022.

[19] Adam Murray. Gray box testing guide, February 4, 2021. https://www.
mend.io/resources/blog/gray-box-testing/, last accessed 30 December
2022.

[20] Shreya Bose. How to jumpstart a test automation pyra-
mid?, October 28, 2022. https://www.browserstack.com/guide/
testing-pyramid-for-test-automation, last accessed 15 January 2023.

[21] Angular. The web development framework for building the future. https:
//angular.io/, last accessed 15 January 2023.

[22] Thomas Hamilton. What is component testing? techniques, example test
cases, November 2, 2022. https://www.guru99.com/component-testing.
html, last accessed 3 January 2023.

[23] Angular. Basics of testing components, February 28, 2022. https://
angular.io/guide/testing-components-basics, last accessed 3 January
2023.

[24] Componentdriven. Component driven user interfaces. https://www.
componentdriven.org/, last accessed 3 January 2023.

[25] Thomas Hamilton. Test plan vs test strategy – difference be-
tween them, December 31, 2022. https://www.guru99.com/
test-plan-v-s-test-strategy.html, last accessed 3 January 2023.

[26] Thomas Hamilton. What is end-to-end testing? e2e example, October
2022. https://www.guru99.com/end-to-end-testing.html, last accessed 8
December 2022.

[27] Shreya Bose. What is end to end testing?, October 31, 2022. https://www.
browserstack.com/guide/end-to-end-testing, last accessed 8 December
2022.

94

https://www.guru99.com/static-dynamic-testing.html
https://www.guru99.com/white-box-testing.html
https://www.mend.io/resources/blog/gray-box-testing/
https://www.mend.io/resources/blog/gray-box-testing/
https://www.browserstack.com/guide/testing-pyramid-for-test-automation
https://www.browserstack.com/guide/testing-pyramid-for-test-automation
https://angular.io/
https://angular.io/
https://www.guru99.com/component-testing.html
https://www.guru99.com/component-testing.html
https://angular.io/guide/testing-components-basics
https://angular.io/guide/testing-components-basics
https://www.componentdriven.org/
https://www.componentdriven.org/
https://www.guru99.com/test-plan-v-s-test-strategy.html
https://www.guru99.com/test-plan-v-s-test-strategy.html
https://www.guru99.com/end-to-end-testing.html
https://www.browserstack.com/guide/end-to-end-testing
https://www.browserstack.com/guide/end-to-end-testing


References

[28] Krishna Rungta. Page object model (pom) & page fac-
tory in selenium, October 2022. https://www.guru99.com/
page-object-model-pom-page-factory-in-selenium-ultimate-guide.
html, last accessed 7 December 2022.

[29] Alexander S. Gillis. Definition - smoke testing, November, 2022.
https://www.techtarget.com/searchsoftwarequality/definition/
smoke-testing, last accessed 20 February 2023.

[30] Cypress. Having tests rely on the state of previous tests, June,
2023. https://docs.cypress.io/guides/references/best-practices#
Having-Tests-Rely-On-The-State-Of-Previous-Tests, last accessed 29
June 2023.

[31] Cypress. Creating "tiny" tests with a single assertion, June, 2023.
https://docs.cypress.io/guides/references/best-practices#
Creating-Tiny-Tests-With-A-Single-Assertion, last accessed 29 June
2023.

[32] Playwright. Auto-waiting. https://playwright.dev/docs/actionability,
last accessed 11 January 2023.

[33] Cypress. Best practices - selecting elements. https://docs.cypress.io/
guides/references/best-practices#Selecting-Elements, last accessed 7
December 2022.

[34] Thomas Hamilton. What is parallel testing? definition, approach, example,
November 5, 2022. https://www.guru99.com/parallel-testing.html, last
accessed 9 November 2022.

[35] Cypress. Cypress component testing. https://docs.cypress.io/guides/
component-testing/overview, last accessed 3 January 2023.

[36] Playwright. Experimental: components. https://playwright.dev/docs/
test-components, last accessed 3 January 2023.

[37] jscutlery. Playwright component testing for angular (experimen-
tal). https://github.com/jscutlery/devkit/tree/main/packages/
playwright-ct-angular, last accessed 3 January 2023.

[38] Jasmine. Jasmine behavior-driven javascript. https://jasmine.github.io/,
last accessed 3 January 2023.

[39] Karma. Karma - spectacular test runner for javascript. https://
karma-runner.github.io/latest/index.html, last accessed 3 January 2023.

[40] Angular. Testbed. https://angular.io/api/core/testing/TestBed, last
accessed 3 January 2023.

[41] Joel Jeske. karma-parallel. https://github.com/joeljeske/
karma-parallel, last accessed 12 January 2023.

95

https://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
https://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
https://www.guru99.com/page-object-model-pom-page-factory-in-selenium-ultimate-guide.html
https://www.techtarget.com/searchsoftwarequality/definition/smoke-testing
https://www.techtarget.com/searchsoftwarequality/definition/smoke-testing
https://docs.cypress.io/guides/references/best-practices#Having-Tests-Rely-On-The-State-Of-Previous-Tests
https://docs.cypress.io/guides/references/best-practices#Having-Tests-Rely-On-The-State-Of-Previous-Tests
https://docs.cypress.io/guides/references/best-practices#Creating-Tiny-Tests-With-A-Single-Assertion
https://docs.cypress.io/guides/references/best-practices#Creating-Tiny-Tests-With-A-Single-Assertion
https://playwright.dev/docs/actionability
https://docs.cypress.io/guides/references/best-practices#Selecting-Elements
https://docs.cypress.io/guides/references/best-practices#Selecting-Elements
https://www.guru99.com/parallel-testing.html
https://docs.cypress.io/guides/component-testing/overview
https://docs.cypress.io/guides/component-testing/overview
https://playwright.dev/docs/test-components
https://playwright.dev/docs/test-components
https://github.com/jscutlery/devkit/tree/main/packages/playwright-ct-angular
https://github.com/jscutlery/devkit/tree/main/packages/playwright-ct-angular
https://jasmine.github.io/
https://karma-runner.github.io/latest/index.html
https://karma-runner.github.io/latest/index.html
https://angular.io/api/core/testing/TestBed
https://github.com/joeljeske/karma-parallel
https://github.com/joeljeske/karma-parallel


Chapter 5

[42] Storybook. Introduction to storybook for angular. https://storybook.
js.org/docs/angular/get-started/introduction, last accessed 3 January
2023.

[43] Dominic Nguyen. Introduction to storybook for angular, June 24, 2020.
https://www.chromatic.com/blog/storybook-composition/, last accessed
3 January 2023.

[44] Ben Anas. Quick overview: Storybook with re-
act, June 4, 2021. https://medium.com/edonec/
quick-overview-storybook-with-react-439e1ccce5a7, last accessed
3 January 2023.

[45] Maria Homann. Continuous testing in ci/cd: What, why and how. https:
//www.leapwork.com/blog/ci-cd-continuous-testing-what-why-how#
what-is-continuous-testing, last accessed 9 November 2022.

[46] Eric Avidon. Definition flaky test, May 2019. https://www.techtarget.com/
whatis/definition/flaky-test, last accessed 9 November 2022.

[47] Cypress. Writing your first e2e test. https://docs.cypress.io/
guides/end-to-end-testing/writing-your-first-end-to-end-test, last
accessed 3 January 2023.

[48] Cypress. Trade-offs. https://docs.cypress.io/guides/references/
trade-offs, last accessed 3 January 2023.

[49] Selenium. Webdriver, December 7, 2021. https://www.selenium.dev/
documentation/webdriver/, last accessed 3 January 2023.

[50] Selenium. Selenium ide. https://www.selenium.dev/selenium-ide/, last
accessed 3 January 2023.

[51] W3C. Webdriver - w3c recommendation, June 5, 2018. https://www.w3.
org/TR/webdriver1/, last accessed 15 January 2023.

[52] Playwright. Installation. https://playwright.dev/docs/intro, last ac-
cessed 3 January 2023.

[53] TestCafe. Getting started. https://testcafe.io/documentation/402635/
getting-started, last accessed 3 January 2023.

[54] Puppeteer. Getting started. https://pptr.dev/, last accessed 3 January
2023.

[55] WebdriverIO. Getting started. https://webdriver.io/docs/
gettingstarted, last accessed 3 January 2023.

[56] Katalon. Katalon studio. https://katalon.com/katalon-studio, last ac-
cessed 3 January 2023.

[57] CodeceptJS. Codeceptjs - getting started, July 2022. https://codecept.io/
basics/, last accessed 9 November 2022.

96

https://storybook.js.org/docs/angular/get-started/introduction
https://storybook.js.org/docs/angular/get-started/introduction
https://www.chromatic.com/blog/storybook-composition/
https://medium.com/edonec/quick-overview-storybook-with-react-439e1ccce5a7
https://medium.com/edonec/quick-overview-storybook-with-react-439e1ccce5a7
https://www.leapwork.com/blog/ci-cd-continuous-testing-what-why-how#what-is-continuous-testing
https://www.leapwork.com/blog/ci-cd-continuous-testing-what-why-how#what-is-continuous-testing
https://www.leapwork.com/blog/ci-cd-continuous-testing-what-why-how#what-is-continuous-testing
https://www.techtarget.com/whatis/definition/flaky-test
https://www.techtarget.com/whatis/definition/flaky-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/end-to-end-testing/writing-your-first-end-to-end-test
https://docs.cypress.io/guides/references/trade-offs
https://docs.cypress.io/guides/references/trade-offs
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/selenium-ide/
https://www.w3.org/TR/webdriver1/
https://www.w3.org/TR/webdriver1/
https://playwright.dev/docs/intro
https://testcafe.io/documentation/402635/getting-started
https://testcafe.io/documentation/402635/getting-started
https://pptr.dev/
https://webdriver.io/docs/gettingstarted
https://webdriver.io/docs/gettingstarted
https://katalon.com/katalon-studio
https://codecept.io/basics/
https://codecept.io/basics/


References

[58] selectorshub.com. Selectorshub, November 2022. https:
//chrome.google.com/webstore/detail/selectorshub/
ndgimibanhlabgdgjcpbbndiehljcpfh, last accessed 9 November 2022.

[59] selectorshub.com. Testcase studio, November 2022. https:
//chrome.google.com/webstore/detail/testcase-studio/
loopjjegnlccnhgfehekecpanpmielcj, last accessed 9 November 2022.

[60] Paulo Homem. Plataforma de gestão remota da stratio duplica o número
de utilizadores desde o início da crise, May, 2020. https://posvenda.pt/
plataforma-de-gestao-remota-da-stratio-duplica-o-numero-de-utilizadores-desde-o-inicio-da-crise/,
last accessed 27 April 2023.

[61] Sonar. As a service. sonarcloud., May, 2023. https://www.sonarsource.
com/products/sonarcloud/, last accessed 4 May 2023.

[62] Storybook. Interactions, March, 2023. https://storybook.js.org/addons/
@storybook/addon-interactions, last accessed 23 March 2023.

[63] Storybook. Test runner, March, 2023. https://storybook.js.org/addons/
@storybook/test-runner, last accessed 23 March 2023.

[64] Nrwl. @nrwl/storybook, March, 2023. https://nx.dev/packages/
storybook, last accessed 23 March 2023.

[65] Storybook. Story coverage, February, 2023. https://storybook.js.org/
addons/@storybook/addon-coverage, last accessed 23 March 2023.

[66] Yann Braga. Storybook coverage recipes - angular, January, 2023. https:
//github.com/yannbf/storybook-coverage-recipes/tree/main/angular,
last accessed 23 March 2023.

[67] Linux Test Project. Lcov (version 1.14), October 10, 2022. https://github.
com/linux-test-project/lcov, last accessed 4 May 2023.

[68] Storybook. Accessibility, March, 2023. https://storybook.js.org/addons/
@storybook/addon-a11y, last accessed 23 March 2023.

[69] Playwright. Installation, 2023. https://playwright.dev/docs/intro#
installing-playwright, last accessed 18 May 2023.

[70] Playwright. Test configuration, 2023. https://playwright.dev/docs/
test-configuration, last accessed 18 May 2023.

[71] HashiCorp. Manage secrets & protect sensitive data with vault, 2023. https:
//www.vaultproject.io/, last accessed 17 May 2023.

[72] Playwright. Gitlab ci - sharding, 2023. https://playwright.dev/docs/ci#
sharding-1, last accessed 17 May 2023.

[73] Grant Steinfeld. 5 steps of test-driven development, February, 2020. https:
//developer.ibm.com/articles/5-steps-of-test-driven-development/,
last accessed 25 March 2023.

97

https://chrome.google.com/webstore/detail/selectorshub/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/selectorshub/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/selectorshub/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/testcase-studio/loopjjegnlccnhgfehekecpanpmielcj
https://chrome.google.com/webstore/detail/testcase-studio/loopjjegnlccnhgfehekecpanpmielcj
https://chrome.google.com/webstore/detail/testcase-studio/loopjjegnlccnhgfehekecpanpmielcj
https://posvenda.pt/plataforma-de-gestao-remota-da-stratio-duplica-o-numero-de-utilizadores-desde-o-inicio-da-crise/
https://posvenda.pt/plataforma-de-gestao-remota-da-stratio-duplica-o-numero-de-utilizadores-desde-o-inicio-da-crise/
https://www.sonarsource.com/products/sonarcloud/
https://www.sonarsource.com/products/sonarcloud/
https://storybook.js.org/addons/@storybook/addon-interactions
https://storybook.js.org/addons/@storybook/addon-interactions
https://storybook.js.org/addons/@storybook/test-runner
https://storybook.js.org/addons/@storybook/test-runner
https://nx.dev/packages/storybook
https://nx.dev/packages/storybook
https://storybook.js.org/addons/@storybook/addon-coverage
https://storybook.js.org/addons/@storybook/addon-coverage
https://github.com/yannbf/storybook-coverage-recipes/tree/main/angular
https://github.com/yannbf/storybook-coverage-recipes/tree/main/angular
https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov
https://storybook.js.org/addons/@storybook/addon-a11y
https://storybook.js.org/addons/@storybook/addon-a11y
https://playwright.dev/docs/intro#installing-playwright
https://playwright.dev/docs/intro#installing-playwright
https://playwright.dev/docs/test-configuration
https://playwright.dev/docs/test-configuration
https://www.vaultproject.io/
https://www.vaultproject.io/
https://playwright.dev/docs/ci#sharding-1
https://playwright.dev/docs/ci#sharding-1
https://developer.ibm.com/articles/5-steps-of-test-driven-development/
https://developer.ibm.com/articles/5-steps-of-test-driven-development/




Appendices

99





Appendix A

Information for Component and E2E
Testing POC

In Appendix A, the detailed test cases applied in the POC for the component and
E2E automated tests are described, as are the experimental conditions.

A.1 Component Tests

Details regarding the experimental conditions and test cases of the component
testing POC.

Experimental Conditions

During the component testing POC, the following technologies were used:

Software

• Cypress 11.2.0;

• Storybook 6.5.9;

• Windows 11 Pro 21H2.

Hardware

• CPU: Intel Core i7-8550;

• RAM Memory: SDRAM DDR4-2400 32 GB (16 GB x 2);

• Storage: SSD 512 GB PCIe Gen 3x4 NVMe TLC.

101



Appendix A

Test Cases

Table A.1: Test case POC-CT-1 - Assert Alert-Modal Component.

ID POC-CT-1
Description The test runner must assert a range of properties from the

Alert-Modal Component.
Prerequisites N/A.
Steps

1. Mount the Alert-Modal component;

2. Assert ’Confirm’ button text and style;

3. Assert ’Cancel’ button text and style;

4. Click the ’Confirm’ button;

5. Click on the ’Cancel’ button.

Expected Results All assertions are correctly validated.

Table A.2: Test case POC-CT-2 - Assert Sub-Menu Component.

ID POC-CT-2
Description The test runner must assert a range of properties from the

Sub-Menu Component.
Prerequisites N/A.
Steps

1. Mount the Sub-Menu component;

2. Click the ‘Filter’ button;

3. Assert ‘Clear’ button text and style;

4. Assert ‘Filter’ title text and style;

5. Click on the ‘Menu’ button.

Expected Results All assertions are correctly validated.

102



Information for Component and E2E Testing POC

Table A.3: Test case POC-CT-3 - Assert Sub-Menu Component.

ID POC-CT-3
Description The test runner must assert a range of properties from the

Table Component.
Prerequisites N/A.
Steps

1. Mount the Table component;

2. Assert Table Component has 3 columns: id, title and
ct;

3. Click ‘Columns’ button;

4. Disable ‘title’ column by clicking in the respective
checkbox;

5. Assert Table Component has 2 columns: id and ct.

Expected Results All assertions are correctly validated.

A.2 E2E Tests

Details regarding the experimental conditions and test cases of the E2E testing
POC.

Experimental Conditions

During the E2E POC, the following technologies were used:

Software

• Cypress 10.7.0;

• Playwright 1.25.1;

• Puppeteer 17.1.1;

• Windows 11 Pro 21H2.

Hardware

• CPU: Intel Core i7-8550;

• RAM Memory: SDRAM DDR4-2400 32 GB (16 GB x 2);

• Storage: SSD 512 GB PCIe Gen 3x4 NVMe TLC.

103



Appendix A

Test Cases

Table A.4: Test case 1 - Mark Occurence as Read.

ID 1
Description The user is able to consult the occurrences and mark the

ones pretended as read.
Prerequisites User is logged in.
Steps

1. Click on the ’Occurrences’ tab;

2. Click the checkbox of the pretended occurrence;

3. Click on the ’Mark as Read’ button.

Expected Results Occurrence is no longer marked as bold (if applicable) and
it is presented a new pop-up stating the number of occur-
rences marked as read.

Table A.5: Test case 2 - Mark Service Plan as Done.

ID 2
Description The user is able to consult the service plans and mark the

ones pretended as done.
Prerequisites User is logged in.
Steps

1. Click on the ’Service Plan’ tab;

2. Click on ’Service Plans’ option;

3. Click on ’Create’ button;

4. Complete the form with relevant information;

5. Click on ’Create’ button;

6. Click on the ’Service Plan’ tab.

7. Click on the created service;

8. Click on the ’Mark Service as Done’ button;

9. Repeat step 8.

Expected Results Service plan is marked as done and it is presented a new
pop-up stating that the service occurrence was registered.

104



Appendix B

Information Regarding Component
Tests

Appendix B includes information regarding component tests, including all the
test cases, coverage information and parallelism data for Storybook Test Runner.

B.1 Test Cases for Component Testing

The documentation of the test cases for the component tests performed in the
Front-end Commons Repository are as follows:

Alert Modal

Table B.1: Test case CT-1.0 - Alert-Modal Component.

ID CT-1.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { icon: ’stra-icon-exclamation-triangle’,

title: ’Title’, visible: true,
body: ’Description example’, isLoading: false,
cancelText: ”, confirmText: ”, confirmingText: ”,
isConfirmEnabled: true,
type: ColorScheme.danger }

Steps

1. Mount the Alert-Modal component;

Expected Results The component is mounted without errors.

105



Appendix B

Table B.2: Test case CT-1.1 - Alert-Modal Component.

ID CT-1.1
Description The test runner must be able to click the ’Confirm’ and

’Cancel’ button.
Prerequisites N/A
Test Data Same as Test Case B.1 (CT-1.0) with the following

differences: {
cancelText: ’Cancel’,
confirmText: ’Confirm’ }

Steps

1. Mount the Alert-Modal component;

2. Assert ’Confirm’ button text and style;

3. Assert ’Cancel’ button text and style;

4. Click the ’Confirm’ button;

5. Click on the ’Cancel’ button.

Expected Results All assertions are correctly validated.

Table B.3: Test case CT-1.2 - Alert-Modal Component.

ID CT-1.2
Description The test runner must be able to click the ’Confirming’ and

’Cancel’ button.
Prerequisites N/A
Test Data Same as Test Case B.1 (CT-1.0) with the following

differences: {
cancelText: ’Cancel’,
confirmText: ’Confirming’,
isLoading: true }

Steps

1. Mount the Alert-Modal component;

2. Assert ’Confirming’ button text and style;

3. Assert ’Cancel’ button text and style;

4. Assert ’Confirming’ button is disabled;

5. Click on the ’Cancel’ button.

Expected Results All assertions are correctly validated.

106



Information Regarding Component Tests

Table B.4: Test case CT-1.3 - Alert-Modal Component.

ID CT-1.3
Description The test runner must be able to assert the ’Confirm’ button

is not visible.
Prerequisites N/A
Test Data Same as Test Case B.1 (CT-1.0) with the following

differences: {
confirmText: ’Confirm’,
cancelText: ’Cancel’,
visible: true,
isLoading: true,
isConfirmEnabled: false,
type: ColorScheme.default }

Steps

1. Mount the Alert-Modal component;

2. Assert ’Cancel’ button text and style;

3. Assert ’Confirm’ button is invisible.

Expected Results All assertions are correctly validated.

107



Appendix B

Sub-Menu

Table B.5: Test case CT-2.0 - Sub-Menu Component.

ID CT-2.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { appTitle: ”,

featureTitle: ”,
isLoading: false,
isFilterEnable: true,
isFilterActive: false,
items: undefined,
isFiltering: false }

Steps

1. Mount the Sub-Menu component;

Expected Results The component is mounted without errors.

Table B.6: Test case CT-2.1 - Sub-Menu Component.

ID CT-2.1
Description The test runner must be able to navigate to the filter menu.
Prerequisites N/A
Test Data Same as Test Case B.5 (CT-2.0) with the following

differences: {
appTitle: ’CT: Filter’,
featureTitle: ’Component Test Filter’,
isFilterActive: true, }

Steps

1. Mount the Sub-Menu component;

2. Click the ‘Filter’ button;

3. Assert ‘Clear’ button text and style;

4. Assert ‘Filter’ title text and style;

5. Click on the ‘Menu’ button.

Expected Results All assertions are correctly validated while navigating the
sub-menu component.

108



Information Regarding Component Tests

Table B.7: Test case CT-2.2 - Sub-Menu Component.

ID CT-2.2
Description The test runner must be able to render Sub-Menu in filter-

ing mode.
Prerequisites N/A
Test Data Same as Test Case B.5 (CT-2.0) with the following

differences: {
appTitle: ’CT: Filtering’,
featureTitle: ’Component Test Filtering’,
isFilterActive: true,
isLoading: true,
isFiltering: true,
items: null }

Steps

1. Mount the Sub-Menu component in filtering mode.

Expected Results The component is mounted without errors.

Table B.8: Test case CT-2.3 - Sub-Menu Component.

ID CT-2.3
Description The test runner must be able to render Sub-Menu with Fil-

ters disabled.
Prerequisites N/A
Test Data Same as Test Case B.5 (CT-2.0) with the following

differences: {
appTitle: ’CT: No Filter’,
featureTitle: ’Component Test No Filter’,
isFilterEnable: false,
items: null,
originalIsCollapsed: true }

Steps

1. Mount the Sub-Menu component with Filters dis-
abled.

Expected Results The component is mounted without errors.

109



Appendix B

Table

Table B.9: Test case CT-3.0 - Table Component.

ID CT-3.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data Default properties with custom ’tableHeaders’
Steps

1. Mount the Table component;

Expected Results The component is mounted without errors.

Table B.10: Test case CT-3.1 - Table Component.

ID CT-3.1
Description The test runner must be able to disable a column and assert

it.
Prerequisites N/A
Test Data Same as Test Case B.9 (CT-3.0)
Steps

1. Mount the Table component;

2. Assert Table Component has 3 columns: ’id’, ’title’
and ’ct’;

3. Click ’Columns’ button;

4. Disable ’title’ column by clicking in the respective
checkbox;

5. Assert Table Component has 2 columns: id and ct.

Expected Results All assertions are correctly validated with one column dis-
abled.

110



Information Regarding Component Tests

Table B.11: Test case CT-3.2 - Table Component.

ID CT-3.2
Description The test runner must be able to interact with all buttons.
Prerequisites N/A
Test Data Same as Test Case B.9 (CT-3.0)
Steps

1. Mount the Table component;

2. Assert style of columns selector button, ’refresh’ but-
ton and ’download’ button;

3. Clicks columns selector button, ’refresh’ button;

4. Navigates between pages and asserts rows changes;

5. Clicks ’download’ button and asserts options.

Expected Results All assertions are correctly validated.

111



Appendix B

Drawer

Table B.12: Test case CT-4.0 - Drawer Component.

ID CT-4.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { isVisible: false,

isClosable: false,
displayNavigation: false,
enablePreviousNavigation: false,
enableNextNavigation: false,
footerTemplate: null,
drawerOffset: 0,
title: ’Drawer’ }

Steps

1. Mount the Drawer component;

Expected Results The component is mounted without errors.

Table B.13: Test case CT-4.1 - Drawer Component.

ID CT-4.1
Description The test runner must be able to interact with all buttons.
Prerequisites N/A
Test Data Same as Test Case B.12 (CT-4.0) with the following

differences: {
isVisible: true,
isClosable: true,
displayNavigation: true,
enablePreviousNavigation: true,
enableNextNavigation: true,
title: ’Visible’ }

Steps

1. Mount the Drawer component;

2. Assert close, previous and post buttons style;

3. Clicks close, previous and post buttons;

4. Awaits animation to finish and asserts changes.

Expected Results All assertions are correctly validated as the buttons present
different styles depending on the interaction.

112



Information Regarding Component Tests

Layout

Table B.14: Test case CT-5.0 - Layout Component.

ID CT-5.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { sidebarItems: [{ url: ’https://stratioautomotive.com/’,

iconCssClass: ’stra-icon-alarm’,
iconLabel: ’icon label’,
name: stratioAutomotive,
isActive: true},
{ url: ’https://careers.stratioautomotive.com/’,
iconCssClass: ’stra-icon-driver’,
iconLabel: ’icon label’,
name: stratioCareers,
isActive: false}] }

Steps

1. Mount the Layout component;

Expected Results The component is mounted without errors.

Table B.15: Test case CT-5.1 - Layout Component.

ID CT-5.1
Description The test runner must be able to click the ’Logout’ button.
Prerequisites N/A
Test Data Same as Test Case B.14 (CT-5.0).
Steps

1. Mount the Layout component;

2. Assert ’Logout’ button text and style;

3. Click on the ’Logout’ button.

Expected Results All assertions are correctly validated as the ’Logout’ button
presents different styles depending on the interaction.

113



Appendix B

Quick Search

Table B.16: Test case CT-6.0 - Quick Search Component.

ID CT-6.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { search: undefined,

label: undefined,
placeHolder: undefined,
isTableSideConfig: false,
isFullWidth: false,
withLabel: true,
distinctValues: true }

Steps

1. Mount the Quick Search component;

Expected Results The component is mounted without errors.

Table B.17: Test case CT-6.1 - Quick Search Component.

ID CT-6.1
Description The test runner must be able to search in the text box.
Prerequisites N/A
Test Data Same as Test Case B.16 (CT-6.0) with the following

differences: {
label: searchText,
placeHolder: ’Write here!’ }

Steps

1. Mount the Alert-Modal component;

2. Mount Quick Search component;

3. Assert label with ’Search Test’ value;

4. Assert style of input text box;

5. Type ’CT: search!’ in input and assert text;

6. Click button to clear text from input text box;

7. Assert input text box is empty.

Expected Results All assertions are correctly validated.

114



Information Regarding Component Tests

Columns Selector

Table B.18: Test case CT-7.0 - Columns Selector Component.

ID CT-7.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { tableHeaders: [

{id: ’id’, isVisible: true,
title: ’Component’},
{id: ’id’, isVisible: true,
title: ’Testing’},
{id: ’id’, isVisible: true,
title: ’Stratio Automotive’}] }

Steps

1. Mount the Columns Selector component;

Expected Results The component is mounted without errors.

Table B.19: Test case CT-7.1 - Columns Selector Component.

ID CT-7.1
Description The test runner must be able to select a column from the

drop down.
Prerequisites N/A
Test Data Same as Test Case B.18 (CT-7.0).
Steps

1. Mount Columns Selector component;

2. Assert ’Columns’ button style and click it;

3. Assert options: ’Component’, ’ Testing’ and ’Stratio
Automotive’;

4. Disable ’Testing’ checkbox;

5. Assert only ’Testing’ checkbox is not checked.

Expected Results All assertions are correctly validated as the ’Testing’ check-
box is not checked.

115



Appendix B

Value Selector

Table B.20: Test case CT-8.0 - Value Selector Component.

ID CT-8.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { label: labelText,

placeHolder: ’CT: Value Select’,
allowSearch: true,
selectedValue: null,
values: [{key: ’id’, value: ’Component’ },
{key: ’id2’, value: ’Testing’},
{key: ’id3’, value: ’Stratio Automotive’}] }

Steps

1. Mount the Value Selector component;

Expected Results The component is mounted without errors.

Table B.21: Test case CT-8.1 - Value Selector Component.

ID CT-8.1
Description The test runner must be able to select a value from the drop

down.
Prerequisites N/A
Test Data Same as Test Case B.20 (CT-8.0).
Steps

1. Mount Value Selector Component;

2. Assert label and selector style;

3. Type ’Stra’ in input selector and press ’Enter’;

4. Validates the selected option is ’Stratio Automotive’.

Expected Results All assertions are correctly validated and the component
filled the text box with ’Stratio Automotive’.

116



Information Regarding Component Tests

Table B.22: Test case CT-8.2 - Value Selector Component.

ID CT-8.2
Description The test runner must be able to render the component with

the selector disabled.
Prerequisites N/A
Test Data Same as Test Case B.20 (CT-8.0) with the following

differences: {
isDisabled: true, }

Steps

1. Mount the Value Selector component.

Expected Results The component is mounted without errors.

Table B.23: Test case CT-8.3 - Value Selector Component.

ID CT-8.3
Description The test runner must be able to select multiple options at

the same time.
Prerequisites N/A
Test Data Same as Test Case B.20 (CT-8.0) with the following

differences: {
selectMode: ’multiple’, }

Steps

1. Mount the Value Selector component;

2. Assert text box style;

3. Type ’Co’ and press ’Enter’;

4. Type ’Te’ and press ’Enter’;

5. Assert ’Component’ and ’Testing’ values are selected.

Expected Results All assertions are correctly validated with multiple values
selected.

117



Appendix B

Label Highlight Box

Table B.24: Test case CT-9.0 - Label Highlight Box Component.

ID CT-9.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { label: ’Highligh text’,

labelColor: ”,
highlightElement: ’label’,
leftAlign: false,
title: ’Title’,
tooltipText: ’Tooltip’ }

Steps

1. Mount the Label Highlight Box component;

Expected Results The component is mounted without errors.

118



Information Regarding Component Tests

Label

Table B.25: Test case CT-10.0 - Label Component.

ID CT-10.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { title: ’Label’,

width: 150,
modifier: ColorScheme.
(danger|default|primary|success|info|warning),
tooltipTitle: ’Label Tooltip’,
tooltipPosition: ’label’,
iconClass: ’stra-icon-exclamation-triangle’,
type: ’label’ }

Steps

1. Mount the Label component;

Expected Results The component is mounted without errors.

Table B.26: Test case CT-10.1 - Label Component.

ID CT-10.1
Description The test runner must be able to click the label button.
Prerequisites N/A
Test Data Same as Test Case B.25 (CT-10.0).
Steps

1. Mount the Label component;

2. Assert ’icon’ button style;

3. Click button ’icon’.

Expected Results All assertions are correctly validated.

119



Appendix B

Operation Status

Table B.27: Test case CT-11.0 - Operation Status Component.

ID CT-11.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { isOperating: false,

withLabel: true,
lastOperationDate: new Date() }

Steps

1. Mount the Operation Status component;

Expected Results The component is mounted without errors.

120



Information Regarding Component Tests

Lists Resume

Table B.28: Test case CT-12.0 - Lists Resume Component.

ID CT-1.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { listsResumeTitle: ’CT: Lists Resume’,

tooltipLabel: ’ToolTip’,
list: [’Stratio’, ’Automotive’, ’Frontend’, ’Commons’],
fontWeight: ’bold’,
itemsToShow: 0 }

Steps

1. Mount the Lists Resume component;

Expected Results The component is mounted without errors.

Table B.29: Test case CT-12.1 - Lists Resume Component.

ID CT-1.1
Description The test runner must be able to interact with the tool tip.
Prerequisites N/A
Test Data Same as Test Case B.28 (CT-12.0) with the following

differences: {
itemsToShow: 5 }

Steps

1. Mount Lists Resume Component;

2. Click ’ToolTip’ button;

3. Assert Label through list property ([’Stratio’, ’Auto-
motive’, ’Frontend’, ’Commons’]).

Expected Results All assertions are correctly validated as a Label appears
with the defined ’list’ property from the Test Data.

121



Appendix B

Breadcrumbs

Table B.30: Test case CT-13.0 - Breadcrumbs Component.

ID CT-13.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data N/A
Steps

1. Mount the Breadcrumbs component;

Expected Results The component is mounted without errors.

Table B.31: Test case CT-13.1 - Breadcrumbs Component.

ID CT-13.1
Description The test runner must be able to click the ’home’ button.
Prerequisites N/A
Test Data N/A
Steps

1. Mount Breadcrumbs Component;

2. Assert content by inspecting the word ’page’;

3. Click ’home’ link.

Expected Results All assertions are correctly validated.

122



Information Regarding Component Tests

Page Header

Table B.32: Test case CT-14.0 - Page Header Component.

ID CT-14.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { showBreadcrumbs: true,

additionalInfo: undefined }
Steps

1. Mount the Page Header component;

Expected Results The component is mounted without errors.

Table B.33: Test case CT-14.1 - Page Header Component.

ID CT-14.1
Description The test runner must be able to click the ’Confirm’ and

’Cancel’ button.
Prerequisites N/A
Test Data Same as Test Case B.32 (CT-14.0) with the following

differences: {
additionalInfo: ’Stra. Breadcrumbs’ }

Steps

1. Mount Page Header Component;

2. Assert ’additionalInfo’ property content;

3. Click ’home’ link;"

Expected Results All assertions are correctly validated.

Table B.34: Test case CT-14.2 - Page Header Component.

ID CT-14.2
Description The test runner must be able to correctly render the compo-

nent without extra content.
Prerequisites N/A
Test Data { showBreadcrumbs: false,

additionalInfo: null }
Steps

1. Mount Page Header Component.

Expected Results The component is mounted without errors.

123



Appendix B

Sub-Menu Filters Button

Table B.35: Test case CT-15.0 - Sub-Menu Filters Button Component.

ID CT-15.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { isFiltersOpen: false,

isFiltersActive: false,
counter: 0 }

Steps

1. Mount the Sub-Menu Filters Button component;

Expected Results The component is mounted without errors.

124



Information Regarding Component Tests

Table Export Button

Table B.36: Test case CT-16.0 - Table Export Button Component.

ID CT-16.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { isLoading: (false|true) }
Steps

1. Mount the Table Export Button component;

Expected Results The component is mounted without errors.

Table B.37: Test case CT-16.1 - Table Export Component.

ID CT-16.1
Description The test runner must be able to interact with the button.
Prerequisites N/A
Test Data Same as Test Case B.36 (CT-16.0).
Steps

1. Mount Table Export Button Component;

2. Assert ’download’ button style;

3. Click ’download’ button;

4. Assert ’download’ button style.

Expected Results All assertions are correctly validated, as the button presents
different styles depending on the interaction.

125



Appendix B

Table Refresh Button

Table B.38: Test case CT-17.0 - Table Refresh Button Component.

ID CT-17.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data N/A
Steps

1. Mount the Table Refresh Button component;

Expected Results The component is mounted without errors.

Table B.39: Test case CT-17.1 - Table Refresh Button Component.

ID CT-17.1
Description The test runner must be able to interact with the button.
Prerequisites N/A
Test Data N/A
Steps

1. Mount Table Refresh Button Component;

2. Assert ’refresh’ button style;

3. Click ’refresh’ button;

4. Assert ’refresh’ button style.

Expected Results All assertions are correctly validated, as the button presents
different styles depending on the interaction.

126



Information Regarding Component Tests

Table Row Action Button

Table B.40: Test case CT-18.0 - Table Row Action Button Component.

ID CT-18.0
Description The test runner must be able to correctly render the compo-

nent.
Prerequisites N/A
Test Data { iconTooltipTitle: ’Component Test: Stra. Automotive’,

iconCssClass: ’stra-icon-driver’ }
Steps

1. Mount the Table Row Action Button component;

Expected Results The component is mounted without errors.

Table B.41: Test case CT-18.1 - Table Row Action Button Component.

ID CT-18.1
Description The test runner must be able to interact with the button.
Prerequisites N/A
Test Data Same as Test Case B.40 (CT-18.0).
Steps

1. Mount Table Row Action Button Component;

2. Assert ’icon’ button style;

3. Click ’icon’ button.

Expected Results All assertions are correctly validated, as the button presents
different styles depending on the interaction.

127



Appendix B

B.2 Front-end Commons Tests Parallelism Data

The documentation of the parallelism test data for the component tests performed
in the Front-end Commons Repository are as follows:

Table B.42: Component Tests Parallelism Data

Component Tests Parallelism Data
Max. Workers Execution Time (s)
1 196.381 162.659 168.659 184.233 163.548
2 98.635 107.897 89.529 90.030 93.155
3 68.358 80.676 77.053 68.197 72.636
4 68.077 58.236 62.866 56.885 56.755
5 47.762 49.045 49.634 49.287 51.200
6 54.425 75.772 57.447 52.980 43.276
7 40.472 42.600 40.292 44.215 39.809
8 41.086 38.513 47.318 47.052 44.524
Unspecified 37.495 45.422 46.095 41.978 44.897

Table B.43: Component Tests Parallelism Data (Cont.)

Component Tests Parallelism Data (Cont.)
Max. Workers Execution Time (s)
1 179.573 160.281 173.566 168.851 196.243
2 86.885 93.551 87.128 90.401 98.958
3 76.293 75.667 69.686 75.330 70.034
4 62.430 70.250 54.245 56.635 58.823
5 66.769 48.865 53.929 55.995 60.561
6 42.691 49.556 41.877 44.082 43.864
7 43.430 40.494 42.458 48.795 48.897
8 39.224 47.317 42.824 46.335 40.259
Unspecified 45.281 44.252 42.558 42.478 46.158

High Level Local GitLab runner specifications:

• 8 vCPU;

• 16 GB Ram;

• 500Gb SSD;

• Windows Server 2019 std.

128



Appendix C

Information Regarding E2E Tests

Appendix C includes information regarding E2E tests, including all the test cases,
parallelism data for Playwright Test Runner and approval metrics before auto-
mated tests.

C.1 Test Cases for E2E Testing

The documentation of the test cases for the E2E tests performed in the Stratio-Web
Repository are as follows:

Login

Table C.1: Test case E2E-1.0 - Login: Authentication.

ID E2E-1.0
Description Authenticate in the Stratio Foresight Platform.
Prerequisites N/A
Test Data Any valid user credentials.
Steps

1. Open Stratio Foresight Platform;

2. Fill the username text box;

3. Fill the password text box;

4. Click ’Login’ button;

5. Assert user’s dashboard has been loaded.

Expected Results User is correctly authenticated.

129



Appendix C

Table C.2: Test case E2E-1.1 - Login: Recover Password.

ID E2E-1.1
Description Ask for a new password.
Prerequisites N/A
Test Data N/A
Steps

1. Open Stratio Foresight Platform;

2. Click Recover Password Option;

3. Assert new page to have URL ’/Account/ForgotPass-
word’;

4. Fill recovery email text box;

5. Click ’Recover Password’ button;

6. Assert recovery message and click ’Ok’ button.

Expected Results User is sent an email with the steps to replace their pass-
word.

Logout

Table C.3: Test case E2E-2.0 - Logout: Log Off.

ID E2E-2.0
Description Perform logout.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data N/A
Steps

1. Click the ’Logout’ button;

2. Assert user is redirected to the login page.

Expected Results User is correctly unauthenticated.

130



Information Regarding E2E Tests

Fleet Condition

Table C.4: Test case E2E-3.0 - Fleet Condition: Consult Vehicle Details.

ID E2E-3.0
Description Smoke test to examine details of a specific vehicle.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and a vehicle ID (vehicleNum-

ber).
Steps

1. Redirect page to ’/fleetCondition/vehicleNumber’;

2. Assert vehicle’s cards information:

(a) Name, brand and model;

(b) Databox Connection Status;

(c) Active Alerts;

(d) Active DTC;

(e) Next Services;

(f) System Indicators;

(g) Operation Metrics.

Expected Results All assertions are correctly validated.

Table C.5: Test case E2E-3.1 - Fleet Condition: Consult Active Alerts.

ID E2E-3.1
Description Smoke test to examine the active alerts of a specific vehicle.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and a vehicle ID (vehicleNum-

ber) with active alerts.
Steps

1. Redirect page to ’/fleetCondition/vehicleNumber’;

2. Click ’View Alerts’ text;

3. Assert Pop-up content (list of active alerts);

4. Click ’View all Active ALerts’;

5. Assert new list of current alerts.

Expected Results All assertions are correctly validated.

131



Appendix C

Table C.6: Test case E2E-3.2 - Fleet Condition: Consult Active DTCs.

ID E2E-3.2
Description Smoke test to examine the active DTC of a specific vehicle.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and a vehicle ID (vehicleNum-

ber) with active DTC.
Steps

1. Redirect page to ’/fleetCondition/vehicleNumber’;

2. Click ’View DTCs’ text;

3. Assert Pop-up content (list of active DTC);

4. Click ’View all Active DTC’;

5. Assert new list of current DTC.

Expected Results All assertions are correctly validated.

System Indicators

Table C.7: Test case E2E-4.0 - System Indicators: Overview.

ID E2E-4.0
Description Smoke test to examine various cards regarding system in-

dicators statistics.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/system-indicators’;

2. Assert system indicator’s cards information:

(a) Starter Battery;

(b) Brake Pads (Estimated);

(c) Available Engine Torque;

(d) Air Leaks (Beta);

(e) Electric Vehicles - Battery Pack.

Expected Results All assertions are correctly validated.

132



Information Regarding E2E Tests

Table C.8: Test case E2E-4.1 - System Indicators: Starter Battery.

ID E2E-4.1
Description Smoke test to examine starter battery of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/system-indicators/battery-
indicators’;

2. Asserts table and filter properties;

3. Clicks the first row and asserts:

(a) History;

(b) Battery Data Insight;

(c) Users Feedback.

Expected Results All assertions are correctly validated.

Table C.9: Test case E2E-4.2 - System Indicators: Brake Pads.

ID E2E-4.2
Description Smoke test to examine brake pads of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/system-indicators/brake-pads’;

2. Asserts table and filter properties;

3. Switch from ’Remaining Life’ to ’Current State’ and
assert table changes.

Expected Results All assertions are correctly validated.

133



Appendix C

Table C.10: Test case E2E-4.3 - System Indicators: Available Engine Torque.

ID E2E-4.3
Description Smoke test to examine engine torque of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/system-indicators/engine-torque’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

Table C.11: Test case E2E-4.4 - System Indicators: Air Leaks.

ID E2E-4.4
Description Smoke test to examine air leaks of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/system-indicators/air-leaks’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

Table C.12: Test case E2E-4.4 - System Indicators: Battery Pack - EV.

ID E2E-4.4
Description Smoke test to examine battery pack of all EV vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/system-indicators/ev-battery-
assessment’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

134



Information Regarding E2E Tests

Table C.13: Test case E2E-4.5 - System Indicators: Potential Fault.

ID E2E-4.4
Description Submit form with potential faults of vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and sample data used for com-

pleting the potential fault form.
Steps

1. Navigate to System Indicators - Potential Faults;

2. Asserts table and filter properties;

3. Click ’Report Other Faults’ button;

4. Fill in form with placeholder data;

5. Click ’Submit’ button;

6. Assert confirmation pop-up.

Expected Results A new potential fault is created with the defined place-
holder data, a pop-up confirming its creation is issued, and
the potential fault is available for future consultation.

135



Appendix C

Metrics

Table C.14: Test case E2E-5.0 - Metrics: Consumption.

ID E2E-5.0
Description Smoke test to examine consumption of internal combus-

tion, hybrids and electrics.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/metrics/consumption’;

2. Asserts table and filter properties;

3. Asserts 3 categories:

(a) Internal Combustion;

(b) Hybrid;

(c) Electric.

Expected Results All assertions are correctly validated.

Table C.15: Test case E2E-5.1 - Metrics: Throttle Pedal.

ID E2E-5.1
Description Smoke test to examine throttle pedal usage of all vehicles.
Prerequisites A super master user is signed in to the Stratio Foresight

Platform.
Test Data Valid super master credentials.
Steps

1. Redirect page to ’/metrics/throttle’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

136



Information Regarding E2E Tests

Table C.16: Test case E2E-5.2 - Metrics: Coolant Temperature.

ID E2E-5.2
Description Smoke test to examine coolant temperature of all vehicles.
Prerequisites A super master user is signed in to the Stratio Foresight

Platform.
Test Data Valid super master credentials.
Steps

1. Redirect page to ’/metrics/coolant-temperature’;

2. Asserts table and filter properties;

3. Switch from ’Time’ to ’Percentage’ and assert table
changes.

Expected Results All assertions are correctly validated.

Table C.17: Test case E2E-5.3 - Metrics: EV Charging.

ID E2E-5.3
Description Smoke test to examine EV charging of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/metrics/evCharging’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

Table C.18: Test case E2E-5.4 - Metrics: Operation.

ID E2E-5.4
Description Smoke test to examine operation mode of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/metrics/operation’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

137



Appendix C

Vehicle Recent Data

Table C.19: Test case E2E-6.0 - Vehicle Recent Data: Display.

ID E2E-6.0
Description Search for a specific vehicle and consult its data.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and a vehicle identifier with a

valid date.
Steps

1. Navigate to Vehicle Recent Data;

2. Click ’Historic’ button;

3. Fill text box with the vehicle identifier;

4. Select valid date;

5. Analyze pretended category;

6. Assert generated graphic properties.

Expected Results The generated graphic properties contain appropriate la-
bels for the displayed graphic (x-axis, y-axis, and title).

138



Information Regarding E2E Tests

Occurrences

Table C.20: Test case E2E-7.0 - Occurrences: Filtering and Marking as Read.

ID E2E-7.0
Description Filter from existing occurrences and mark a specific occur-

rence as read.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and sample data for filter prop-

erties.
Steps

1. Navigate to Occurrences;

2. Click ’Filters’ button;

3. Configure filters parameters:

(a) Period;

(b) Vehicle select;

(c) Type;

(d) Severity;

(e) System;

(f) DTC filter toogle;

(g) Aggregate notifications toggle;

4. Click ’Accept’ button;

5. Select filtered occurrence’s checkbox;

6. Click ’Mark as Read’ button;

7. Assert confirmation pop-up;

8. Asserts row is not bold anymore.

Expected Results Occurrence is no longer marked as bold (if applicable) and
it is presented a new pop-up stating the number of occur-
rences marked as read.

139



Appendix C

Service Plans

Table C.21: Test case E2E-8.0 - Service Plans: Create service plan, mark it as done
and cleanup.

ID E2E-8.0
Description Fill a form to create a new service plan, examine and mark

a specific it as done, followed by its deletion.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and sample data for service plan

creation.
Steps

1. Navigate to Service Plans;

2. Click ’Service Plans’ text;

3. Click ’+ Create’ button;

4. Configure three-step form of service plan creation:

(a) Name;

(b) Recurrence;

(c) Description;

(d) Task (Action, Component/Material and Notes);

(e) Vehicle selection;

(f) Click ’Create’ button;

(g) Assert success pop-up.

5. Click ’Next Services’ text;

6. Click newly created service plan;

7. Click ’Mark Service as Done’ button;

8. Click ’Service Plans’ text;

9. Click ’X’ icon in the row of the newly created service
plan;

10. Assert success pop-up.

Expected Results Service plan is marked as done and it is presented a new
pop-up stating that the service occurrence was registered.

140



Information Regarding E2E Tests

Reports

Table C.22: Test case E2E-9.0 - Reports: Consult Reports.

ID E2E-9.0
Description Smoke test to examine reports.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/reports/received-reports’;

2. Asserts table and filter properties.

Expected Results All assertions are correctly validated.

141



Appendix C

Maps

Table C.23: Test case E2E-10.0 - Maps: Map.

ID E2E-10.0
Description Interact with Google Maps widget and search drivers/ve-

hicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and placeholder data for vehicle

and driver properties.
Steps

1. Navigate to Maps - Map;

2. Search through plate number;

3. Click the pretended vehicle;

4. Click ’See More’ text;

5. Assert summary information;

6. Interact with Google Maps widget:

(a) Click eye icon and assert content;

(b) Click routes widget button and assert content;

7. Navigate to Trailers tab;

8. Quick search for a trailer and assert successful in-
quiry;

9. Navigate to Locations tab;

10. Quick search for a location and assert successful in-
quiry;

11. Navigate to Addresses tab;

12. Quick search for an address and assert successful in-
quiry.

Expected Results All assertions are correctly validated in the ’Maps’, ’Trail-
ers’, ’Locations’ and ’Addresses’ tabs.

142



Information Regarding E2E Tests

Table C.24: Test case E2E-10.1 - Maps: Trips.

ID E2E-10.1
Description Smoke test to examine existing trips of various vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/maps/trips’;

2. Asserts table and filtering properties.

Expected Results All assertions are correctly validated.

Table C.25: Test case E2E-10.2 - Maps: Driver Hours of Service.

ID E2E-10.2
Description Smoke test to examine driver’s hours of services.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/maps/driverHoursOfService’;

2. Asserts table and filtering properties.

Expected Results All assertions are correctly validated.

Table C.26: Test case E2E-10.3 - Maps: Geo-referenced Occurrences.

ID E2E-10.3
Description Smoke test to examine geo-referenced occurrences with the

possibility of marking them as read.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/maps/geo-referenced-
occurrences’;

2. Asserts table and filtering properties.

Expected Results All assertions are correctly validated.

143



Appendix C

Table C.27: Test case E2E-10.4 - Maps: Messages.

ID E2E-10.4
Description Search existing messages and create new ones.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and placeholder data for mes-

sage creation properties.
Steps

1. Navigate to Maps - Messages;

2. Click ’+ New Message’ button;

3. Fill Message form:

(a) Send to ’Vehicles’ or ’Drivers’;

(b) Select vehicles;

(c) Fill message field;

(d) Optionally add other locations;

4. Click ’Send’ button;

5. Assert successful pop-up.

Expected Results A new message is created with the placeholder data, a pop-
up confirming its creation is issued, and the message is
available for consultation.

Table C.28: Test case E2E-10.5 - Maps: Operational Events.

ID E2E-10.5
Description Smoke test to examine operational events.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/maps/events/operational’;

2. Asserts table and filtering properties.

Expected Results All assertions are correctly validated.

144



Information Regarding E2E Tests

Table C.29: Test case E2E-10.6 - Maps: Geo-referenced Alerts.

ID E2E-10.6
Description Search existing geo-referenced alerts and create new ones.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and placeholder data for geo-

referenced alerts creation properties.
Steps

1. Navigate to Maps - Geo-referenced Alerts;

2. Click ’+ Create’ button;

3. Fill in three-step form:

(a) Alert Name;

(b) Description;

(c) Event;

(d) Locations;

(e) Vehicles;

(f) Delay;

(g) Alert Expiration;

(h) Trigger Repetition;

(i) External User Emails;

4. Click ’Save’ button;

5. Assert successful pop-up;

6. Quick search for newly created geo-referenced alert;

7. Click row;

8. Assert creation properties;

9. Click delete button;

10. Assert deletion pop-up.

Expected Results A new geo-referenced alert is created with the placeholder
data, a pop-up confirming its creation is issued, and the
geo-referenced alert is available for consultation.

145



Appendix C

Table C.30: Test case E2E-10.7 - Maps: Shared Vehicle Locations.

ID E2E-10.7
Description Search existing shared vehicle locations and create new

ones.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and placeholder data for shared

vehicle locations creation properties.
Steps

1. Navigate to Maps - Shared Vehicle Locations;

2. Click ’+ Create’ button;

3. Fill in creation form:

(a) Vehicle;

(b) Additional information;

(c) Period;

(d) Share Name;

(e) Email;

(f) Language;

(g) Message;

4. Click ’Share’ button;

5. Assert successful pop-up;

6. Quick search for newly created shared vehicle loca-
tion;

7. Click delete button;

8. Assert deletion pop-up.

Expected Results A new shared vehicle location is created with the place-
holder data, a pop-up confirming its creation is issued, and
the shared vehicle location is available for consultation.

146



Information Regarding E2E Tests

Ecodrive

Table C.31: Test case E2E-11.0 - Ecodrive: Overview.

ID E2E-11.0
Description Smoke test to examine various cards regarding driving

statistics and how ecological are they style of driving.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/ecodrive/dashboard’;

2. Asserts dashboard cards content:

(a) Scoring Overview;

(b) Eco Score Efficiency;

(c) Top Drivers;

(d) Consumption;

(e) Consumption by Group;

(f) Top Vehicles;

Expected Results All assertions are correctly validated.

147



Appendix C

Table C.32: Test case E2E-11.1 - Ecodrive: Driver Score.

ID E2E-11.1
Description Examine driver scores of all drivers.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and sample data for a valid

driver.
Steps

1. Navigate to Ecodrive - Driver Score;

2. Assert insights:

(a) Average Global Score;

(b) Metrics;

(c) Average Consumption;

3. Generate xls report and download it;

4. Assert download pop-up;

5. Quick search for driver;

6. Click row and asserts driver’s metrics:

(a) Global Score;

(b) Average Consumption;

(c) Calculated Distance;

(d) Score Graph;

(e) Additional Information;

7. Export PDF with driver’s statistics;

8. Assert download pop-up.

Expected Results All assertions are correctly validated and the appropriate
xls reports are downloaded.

148



Information Regarding E2E Tests

Table C.33: Test case E2E-11.2 - Ecodrive: Vehicle Score.

ID E2E-11.2
Description Examine driver scores of all vehicles.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and sample data for a valid ve-

hicle.
Steps

1. Navigate to Ecodrive - Vehicle Score;

2. Assert insights:

(a) Average Global Score;

(b) Metrics;

(c) Average Consumption;

3. Quick search for vehicle;

4. Click row and asserts vehicle’s metrics:

(a) Global Score;

(b) Average Consumption;

(c) Calculated Distance;

(d) Score Graph;

(e) Additional Information;

Expected Results All assertions are correctly validated.

Table C.34: Test case E2E-11.3 - Ecodrive: Bus Line Score.

ID E2E-11.3
Description Smoke test to examine bus line scores of all bus lines.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/ecodrive/bus-lines-scoring’;

2. Asserts table and filtering properties.

Expected Results All assertions are correctly validated.

149



Appendix C

Table C.35: Test case E2E-11.4 - Ecodrive: Driver Configuration.

ID E2E-11.4
Description Smoke test to examine driver’s configurations of all drivers.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/ecodrive/drivers-configuration’;

2. Asserts table and filtering properties.

Expected Results All assertions are correctly validated.

Table C.36: Test case E2E-11.5 - Ecodrive: Groups Management.

ID E2E-11.5
Description Create Ecodrive groups, search and edit them.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and sample data for the creation

of a valid Ecodrive group.
Steps

1. Navigate to Ecodrive - Groups Management;

2. Click ’+ Create’ button;

3. Fill in creation form:

(a) Group Name;

(b) Drivers Managers;

(c) Drivers;

4. Click ’Save’ button;

5. Assert successful pop-up;

6. Quick search for newly created group;

7. Edit group by adding another driver;

8. Cleanup of newly created group;

9. Assert deletion pop-up.

Expected Results A new Ecodrive group is created with the placeholder data,
a pop-up confirming its creation is issued, and the Ecodrive
group is available to edit/add drivers.

150



Information Regarding E2E Tests

My Settings

Table C.37: Test case E2E-12.0 - My Settings: General Settings and Measuring
Units.

ID E2E-12.0
Description Select different languages and time zones from General Set-

tings and different measurement units for distance, temper-
ature and pressure from Measuring Units.

Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and placeholder data for differ-

ent settings properties.
Steps

1. Navigate to My Settings;

2. Select different language;

3. Select different timezone;

4. Click ’Save’ button and assert success pop-up;

5. Navigate to Dashboard and assert language and time-
zone changes;

6. Navigate to General Settings and reset general set-
tings changes;

7. Click Measuring Units tab;

8. Select different units system;

9. Select different temperature units;

10. Select different pressure system;

11. Click ’Save’ button and assert success pop-up;

12. Navigate to Metrics - Consumption and assert units
system changes;

13. Navigate to Metrics - Coolant Temperature and assert
temperature units changes;

14. Navigate to Vehicle Data and assert pressure system
changes;

15. Navigate to Measuring Units and reset general set-
tings changes.

Expected Results All assertions are correctly validated.

151



Appendix C

Table C.38: Test case E2E-12.1 - My Settings: Notifications.

ID E2E-12.1
Description Smoke test to examine the notifications options.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/ProfileSettings/Notifications’;

2. Assert page properties:

(a) Severity Level;

(b) Email;

(c) SMS;

(d) Pop-up;

(e) Notification checkboxes.

Expected Results All assertions are correctly validated.

Table C.39: Test case E2E-12.2 - My Settings: Edit Profile.

ID E2E-12.1
Description Smoke test to examine edit profile form.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/ProfileSettings/UserDetails’;

2. Assert page properties:

(a) Name;

(b) Email;

(c) Phone number;

(d) Password.

Expected Results All assertions are correctly validated.

152



Information Regarding E2E Tests

Global Settings

Table C.40: Test case E2E-13.0 - Global Settings: Groups.

ID E2E-13.0
Description Creation of new groups.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials and placeholder data for group

creation properties.
Steps

1. Navigate to Global Settings;

2. Click ’+ Add new group’ button;

3. Fill in group name;

4. Click ’Submit’ button;

5. Assert success pop-up;

6. Cleanup of newly created group;

7. Assert success pop-up;

Expected Results A new group is created with the placeholder data, a pop-up
confirming its creation is issued, and the group is available
for edit.

Table C.41: Test case E2E-13.1 - Global Settings: Idle Time.

ID E2E-13.1
Description Smoke test to examine idle time by vehicle type.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/CompanySettings/IdleTime’;

2. Asserts table and maximum idle time by vehicle type.

Expected Results All assertions are correctly validated.

153



Appendix C

Table C.42: Test case E2E-13.2 - Global Settings: Ignored Trouble Codes/Alerts.

ID E2E-13.2
Description Smoke test to examine list of ignored trouble codes and

alerts.
Prerequisites A user is signed in to the Stratio Foresight Platform.
Test Data Any valid user credentials.
Steps

1. Redirect page to ’/CompanySettings/IgnoredFaults’;

2. Asserts Trouble Code table;

3. Switch from ’Trouble code’ to ’Alerts’ and assert table
changes.

Expected Results All assertions are correctly validated.

154



Information Regarding E2E Tests

List Users

Table C.43: Test case E2E-14.0 - List Users: Disable/Enable User.

ID E2E-14.0
Description Disable a user and confirm they can not log in. Then, en-

able the same user and confirm they can log in into Stratio
Foresight Platform.

Prerequisites A super master user is signed in to the Stratio Foresight
Platform with another test-runner open with another user
on standby.

Test Data A valid super user and any other user credentials.
Steps

Super Master User Other User

1. Navigate to ’Account-
Management/ListUsers’;
2. Open pretended user
profile;
3. Disable user;
4. Assert user is inactive;

5. Try to login into the
platform;
6. Assert error message:
’User is inactive’;

7. Enable user;
8. Assert user is active;

9. Try to login into the
platform;
10. Assert that user’s
dashboard is correctly
loaded.

Expected Results The other user is disabled by the super master user from
the Stratio Foresight Platform temporarily.

155



Appendix C

Table C.44: Test case E2E-14.1 - List Users: Examine User.

ID E2E-14.1
Description Smoke test to examine a specific user.
Prerequisites A super master user is signed in to the Stratio Foresight

Platform.
Test Data A valid super master user credentials and sample data of

an existing user.
Steps

1. Redirect page to ’/AccountManagement/ListUsers’;

2. Asserts page properties:

(a) Title;

(b) Email;

(c) Role;

(d) State;

(e) Last login.

3. Click the pretended user;

4. Assert user properties:

(a) Name;

(b) Phone number;

(c) Email;

(d) Notification settings.

Expected Results All assertions are correctly validated.

156



Information Regarding E2E Tests

C.2 Stratio-Web Tests Parallelism Data

The documentation of the parallelism data for the E2E tests performed in the
Stratio-Web Repository are as follows:

Table C.45: E2E Tests Parallelism Data.

E2E Tests Parallelism Data
GitLab Parallel Jobs Playwright Workers Execution Time (s)

1

1 1921 1880 1819 1943 1921
2 1190 1233 1305 1232 1162
3 1092 1076 1029 1017 1065
4 953 927 888 973 948

2

1 1143 1093 1166 1116 1180
2 903 877 875 816 871
3 828 843 821 845 825
4 767 740 764 794 756

3

1 985 960 927 947 922
2 719 746 768 758 777
3 717 716 766 753 742
4 781 740 729 704 700

High Level Local GitLab runner specifications:

• 8 vCPU;

• 16 GB Ram;

• 500Gb SSD;

• Windows Server 2019 std.

157



Chapter 5

C.3 Approval Metrics without Automated Tests

Data retrieved by accompanying the product team during two sprints (fifteen
days each) in order to extrapolate adequate approval metrics.

Table C.46: Approval Metrics from the product team, without automated tests.

ID Complexity Bugs Found Validation Time (min) Type
1 Low 1 12 User Story
2 Low 1 13 Bug Fix
3 High 0 60 UAT Validation
4 Low 1 8 Bug Fix
5 Low 0 17 Bug Fix
6 Low 1 11 Bug Fix
7 Low 0 12 Bug Fix
8 Medium 1 29 Bug Fix
9 Low 0 13 User Story

10 High 0 120 UAT Validation
11 High 0 240 UAT Validation
12 Low 0 14 User Story
13 Low 0 15 User Story
14 Low 0 5 User Story
15 Low 0 11 Bug Fix
16 Low 0 5 Bug Fix
17 Low 1 13 Bug Fix
18 Low 0 5 Bug Fix
19 Low 0 9 Bug Fix
20 Low 0 5 Bug Fix
21 Low 1 5 Bug Fix
22 Low 0 7 Bug Fix
23 Medium 0 120 Bug Fix
24 Low 0 5 Bug Fix
25 High 4 110 UAT Validation
26 Medium 1 60 Bug Fix
27 Low 0 8 User Story
28 Low 0 5 Bug Fix

Complexity Classification

• Low: small validation of an independent feature;

• Medium: complex feature with a high level of integration (dependent on
other functionalities);

• High: maximum integration, reserved for the "UAT Validation" type of ap-
proval.

158


	Introduction
	Context and Motivation
	Objectives
	Methodology
	Work Plan
	Risk Management
	Success Criteria
	Risk analysis
	Overcoming Project Risks

	Dissertation Outline

	Background Information
	Software Development Life Cycle
	Process Management
	Work Methodologies
	Test Driven Development
	Behavior Driven Development

	Software Testing Overview
	Determining Testing Impact
	Types of Software Faults
	Regression Testing

	White Box Testing
	Procedure
	Drawbacks

	Black Box Testing
	Procedure
	Drawbacks

	Gray Box Testing
	Procedure
	Drawbacks

	Testing Pyramid
	Four Levels of Testing
	Order of Execution and Testing Quantity
	When to Level Up

	Component Testing
	Definition
	Motivation to use Component Tests
	Procedure
	Data Mocking

	End-to-End Testing
	pom
	Smoke Tests
	Best Practices to develop Web Automation Tests

	CI/CD
	ci
	cd
	GitLab CI/CD


	State of Art
	Component Testing
	Cypress
	Playwright
	Karma & Jasmine with TestBed
	Storybook
	Summary Board

	End-to-End Testing
	Cypress
	Selenium
	Playwright
	TestCafe
	Puppeteer
	WebDriverIO
	Katalon Studio
	Summary Board
	Auxiliary Software


	Proposed Solution
	Stratio Foresight Platform
	Repositories
	Target Features for E2E Testing

	Quality Process
	Paradigm Before Proposed Changes
	Solution Purpose and Changes

	POC for Component Tests
	Tools
	POC Closure

	Component Tests Implementation
	Storybook Setup
	Achieved Coverage
	Integration in the CI Pipeline
	Component Tests Parallelism
	Influence on the Development Team

	POC for End-to-End Tests
	Investigation Phase
	Development Phase
	Tools
	poc Closure

	End-to-End Tests Implementation
	E2E Testing vs. Smoke Testing Criteria
	Playwright Setup
	Integration in the CI Pipeline
	E2E Tests Parallelism
	Influence on the Product Team

	Continuous Testing
	Integration in the CI/CD Pipeline
	Coordination with Development and Product Teams

	Overall Impact of the Proposed Solution
	Before Automated Testing
	Defects Prevented or Identified
	Code Coverage
	Test Coverage
	Contribution to the Development and Product Teams
	Approval Time of Product Iterations


	Conclusion
	Dissertation Remarks
	Future Work

	Appendix Information for Component and E2E Testing POC
	Component Tests
	E2E Tests

	Appendix Information Regarding Component Tests
	Test Cases for Component Testing
	Front-end Commons Tests Parallelism Data

	Appendix Information Regarding E2E Tests
	Test Cases for E2E Testing
	Stratio-Web Tests Parallelism Data
	Approval Metrics without Automated Tests


