

Hugo Bronze Canelas de Brito Prata

INTELLIGENT DATA CONSOLIDATION

METHODS FOR CROWD-SOURCED

CONTRIBUTIONS
A CONTRIBUTION TO FIRELOC

Dissertation in the context of the Master in Informatics Engineering,

specialization in Intelligent Systems, advised by Prof. Alberto Cardoso and Prof.

Jacinto Estima, and presented to the Department of Informatics Engineering of the

Faculty of Sciences and Technology of the University of Coimbra.

July 2023

IN
T

E
L

L
IG

E
N

T
 D

A
T

A
 C

O
N

S
O

L
ID

A
T

IO
N

 M
E

T
H

O
D

S
 F

O
R

C
R

O
W

D
-S

O
U

R
C

E
D

 C
O

N
T

R
IB

U
T

IO
N

S

A
 C

O
N

T
R

IB
U

T
IO

N
 T

O
 F

IR
E

L
O

C

H
u

g
o

 B
ro

n
ze

 C
an

el
as

d
e

B
ri

to
 P

ra
ta

Hugo Bronze Canelas de Brito Prata

INTELLIGENT DATA CONSOLIDATION
METHODS FOR CROWD-SOURCED

CONTRIBUTIONS
A contribution to FireLoc

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, advised by Prof. Alberto Cardoso and Prof.

Jacinto Estima, and presented to the Department of Informatics Engineering of the
Faculty of Sciences and Technology of the University of Coimbra.

July 2023

Hugo Bronze Canelas de Brito Prata

INTELLIGENT DATA
CONSOLIDATION METHODS FOR

CROWD-SOURCED CONTRIBUTIONS
A contribution to FireLoc

Dissertation in the context of the Master in Informatics Engineering,
specialization in Intelligent Systems, advised by Prof. Alberto Cardoso and

Prof. Jacinto Estima, and presented to the Department of Informatics
Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

July 2023

Acknowledgements

I would like to thank the University of Coimbra and the people working within
the FireLoc project. I would also like to express my gratitude to my advisors
in particular, Prof. Alberto Cardoso and Prof. Jacinto Estima, who guided me
throughout the duration of this research project. This work was carried out
within the scope of, and as a contribution to the FireLoc project.

ii

Abstract

It is of the most importance to tackle Natural Disasters as early as possible, so
as to mitigate their effects to the fullest. While preparation and prevention are
important steps in dealing with Natural Disasters, the speed at which an organ-
isation can respond to dynamic events can also greatly influence the outcome of
such disasters. Thanks to recent developments in automation, Artificial Intelli-
gence (AI), and the widespread access to mobile technology, it is our belief that
it is possible to leverage this new technological reality to contribute to the fight
against Natural Disasters.

The present work aims to develop a smart system capable of refining individ-
ual submissions of occurrences made my citizens into clusters made up of more
complex members, allowing for features such as their geo-location, evaluation of
their hazardousness, or the tracking of their evolution over time. To reach this
goal, different techniques related to Clustering and Data Fusion were researched.
Subsequently, some were chosen by taking into account their performance and
specifications in regards to the data that is expected in the context of this project.

This project is a modular contribution to the FireLoc project, a system designed
for the identification, positioning and monitoring of forest fires with the aid of
crowd-sourced data. This project also attempts to provide a new general ap-
proach to dealing with Natural Disasters, by providing a smart system that man-
ages inflows of information-rich, geo-located events.

Our module undertook several tests during our prototyping efforts, whose re-
sults were then analysed. These tests included synthetic and real-world data,
with the latter being centered around the 2017 October wildfires which took place
in Portugal, and the former being pseudo-randomly generated. It was found
that, while the various settings and variables of the algorithms used by the mod-
ule could be further adjusted to yield better results, the module still behaved as
expected and produced high-quality, accurate outputs, within appropriate com-
putational run-times.

Keywords

FireLoc, Disaster Detection and Monitoring, Geo-location, Data Fusion, Data
Clustering and Aggregation, Smart Systems

iii

Resumo

Lidar com um Desastre Natural o mais cedo possível é da maior importância, de
forma a mitigar ao máximo os seus efeitos. Embora a preparação e a prevenção
sejam etapas importantes para lidar com Desastres Naturais, a velocidade com
que uma organização pode responder a eventos dinâmicos também influencia
bastante o resultado destes desastres. Graças aos recentes desenvolvimentos lig-
ados à automação, Inteligência Artificial (IA), e ao acesso generalizado a tecnolo-
gias móveis, acreditamos que é possível aproveitar esta nova realidade tecnológ-
ica para contribuir para a luta contra esses Desastres Naturais.

O presente trabalho pretende desenvolver um sistema inteligente capaz de refinar
submissões individuais de ocorrências em tempo real, aglomerando-as e posteri-
ormente utilizando-as para sintetizar eventos mais complexos. Isto possibilitará
a geo-localização, avaliação de perigo, e monitorização destes eventos. Para con-
seguir isto, várias técnicas relacionadas com agregação, aglomeração e fusão de
dados foram investigadas. Subsequentemente, um número de técnicas foram se-
lecionadas consoante o seu desempenho no contexto dos dados utilizados neste
projeto.

Este trabalho é uma contribuição modular para o projeto FireLoc, que é um sis-
tema desenhado para identificar, posicionar, e monitorizar fogos florestais com
a ajuda de submissões realizadas por voluntários. Este trabalho pretende tam-
bém criar uma abordagem generalizada para lidar com Desastres Naturais ao
proporcionar um sistema inteligente capaz de processar influxos de eventos geo-
localizados, dinâmicos, e ricos em dados heterogéneos.

O módulo foi avaliado através de vários testes durante a fase de prototipagem,
cujos resultados foram posteriormente analisados. Foram utilizados dados sin-
téticos e dados reais na realização destes testes, sendo que os dados reais foram
centrados nos incêndios florestais de outubro de 2017 que ocorreram em Portugal,
e os dados sintéticos gerados de forma pseudo-aleatória. Verificou-se que, em-
bora várias configurações e variáveis dos algoritmos usados pelo módulo ainda
possam ser ajustadas de forma a produzir melhores resultados, o módulo comportou-
se conforme o esperado e produziu resultados precisos e de qualidade, dentro de
tempos de execução apropriados.

Palavras-Chave

FireLoc, Prevenção e Monitorização de Desastres, Geo-localização, Fusão de Da-
dos, Aglomeração e Agregação de Dados, Sistemas Inteligentes

v

Contents

Abstract iii

1 Introduction 1
1.1 The FireLoc Project . 2
1.2 Goals of this Project . 4
1.3 Contributions of this Project . 5
1.4 Document Structure . 6

2 Background and State of the Art 7
2.1 Methods for Data Correlation . 8

2.1.1 Low Level Data Fusion . 9
2.1.2 Medium Level Data Fusion 10
2.1.3 High Level Data Fusion . 10

2.2 Methods for the Intelligent Component 11
2.2.1 Customized Approaches to Clustering 12
2.2.2 Standard Clustering Techniques 14

2.3 Methods for Data Visualisation . 17
2.4 Summary on the State of the Art . 19

3 Development Process 21
3.1 Early Work and First Development Iteration 21

3.1.1 Dataset Generation . 22
3.1.2 Clustering Methodologies . 23
3.1.3 Data Fusion Procedure . 26
3.1.4 Plotting and Mapping of Data 26

3.2 Second Development Iteration . 27
3.2.1 October Dataset Generation and Dataset C 27
3.2.2 Utilizing H-DBSCAN Clustering 28
3.2.3 Improving the Data Fusion Procedure 29
3.2.4 Improving Data Visualization through Folium 32

4 Experiments and Results 35
4.1 Synthetic Data Results . 35

4.1.1 Initial Algorithm Testing & Selection 35
4.1.2 Discussion on the Results of the First Iteration 45
4.1.3 Module Development and Prototyping Tests 46
4.1.4 Discussion on the Results of Module Prototyping 52

4.2 Real-World Data Results . 53
4.2.1 Preparing the Experiment . 53

vii

4.2.2 Running the Experiment . 54
4.2.3 Results and Discussion of the Experiment 54

5 Conclusion 65
5.1 Contributions . 66
5.2 Future Work and Suggestions . 67

References 69

viii

Acronyms

AI Artificial Intelligence.

BN Bayesian Networks.

CNN Convolutional Neural Networks.

DBSCAN Density-based Spatial Clustering of Applications with Noise.

FCT Foundation for Science and Technology.

GPS Global Positioning System.

GUI Graphical User Interface.

H-DBSCAN Hierarchical Density-based Spatial Clustering of Applications with
Noise.

INESC Institute for Systems Engineering and Computers at Coimbra.

ML Machine Learning.

MRF Markov Random Fields.

NLP Natural Language Processing.

NN Neural Networks.

OPTICS Ordering Points to Identify the Clustering Structure.

PCA Principal Component Analysis.

UC University of Coimbra.

ix

List of Figures

1.1 The FireLoc logo. 2
1.2 The FireLoc System, showing part of the data processing modules. 3

2.1 The three basic levels of Data Fusion. 8
2.2 Examples of the elevation problem, from two perspectives. 13
2.3 Example of Centroid Clustering (K-means) applied to two datasets. 15
2.4 Example of Density Clustering (DBSCAN) applied to two datasets. 16
2.5 Example of Folium with three events visible in blue. 18

3.1 Expected structure of the modules’ inputs. 22
3.2 Example of fused events. 32
3.3 Examples of the improved text pop-up with the relevant event data. 33
3.4 Example of an inactive event together with a medium hazard event. 34

4.1 Line-graph - Effects of dispersion/noise factor on performance. . . 37
4.2 Line-graph - Effects of dataset size on performance. 38
4.3 Clustering test, noise factor of 10. 39
4.4 Clustering test, noise factor of 20. 40
4.5 Clustering test, noise factor of 30. 40
4.6 Clustering test, noise factor of 40. 41
4.7 Clustering test for dataset B - northern half of the country. 42
4.8 Clustering test for dataset B - single region (Coimbra). 43
4.9 Data Fusion test for dataset B - single region (Coimbra). 44
4.10 Accuracy test using H-DBSCAN, Data Fusion, and Folium. 45
4.11 Noise re-clustering test using data from Coimbra city. 47
4.12 Mapping of the rating weight swaying an event location. 49
4.13 Decay progression using decay factors of [0.3,0.5,0.7,0.9]. 51
4.14 Decay progression and influence of a new submission in an event. . 52
4.15 October wildfires - Frames 0 and 1. 55
4.16 October wildfires - Frame 0 events -6, 13 and 18. 56
4.17 October wildfires - Frame 1 updated events. 56
4.18 October wildfires - Frames 2 and 3. 57
4.19 October wildfires - Frames 4 and 5. 57
4.20 October wildfires - Isolated event turns into standard event. 57
4.21 October wildfires - Event 54 progression. 58
4.22 October wildfires - Frames 6 and 7. 58
4.23 October wildfires - Frames 8 and 9. 58
4.24 October wildfires - Event 57 progression. 59
4.25 October wildfires - Event 57 progression with details. 59

xi

4.26 October wildfires - Frame 10 - Dealing with inactive events. 60
4.27 October wildfires - Frame 22 - Inconsistencies in the ocean. 60
4.28 October wildfires - Frame +22 - Inconsistency details. 61
4.29 October wildfires - Frame +22 - Inconsistencies fix in blue. 62
4.30 October wildfires - Frame +22 - Inconsistencies, second fixed event. 62

xii

List of Tables

3.1 Enumeration and summary of the modules’ input variables. 23
3.2 Summary of which processed data is held within an event 31

4.1 Algorithm speed results - varying levels of dispersion 36
4.2 Algorithm speed results - varying dataset sizes 38
4.3 Comparison of centroid calculation algorithms. 48
4.4 Effects of user rating on centroid calculations. 49
4.5 Effect of rating calculations on keyword weights (Default Algo-

rithm). 49
4.6 Effect of rating calculations on keyword weights (Softer Algorithm). 50
4.7 Effect of rating calculations on keyword weights (Harsher Algo-

rithm). 50
4.8 Results of the decay calculations on event variables. 51

xiii

Chapter 1

Introduction

In recent years we have been able to witness unprecedented developments both
in the field of Intelligent Systems as well as the Internet of Things. Smart Algo-
rithms and Artificial Intelligence (AI) have become part of our daily lives, and
not only are they now a pillar of industry (Siemens, 2021), but also of society
itself. From automating farming to dealing with train logistics, as well as sug-
gesting new products to consumers through social media, Smart Algorithms are
ever more present in our lives.

And with each passing year, technology as a whole evolves even further (Reock
& KinsbrunerandJustin, 2020), becoming ever more intertwined both within itself
as well as with its users. The average smartphone owner can now boast both an
high-end 4k camera and a micro-computer that not only rivals the most advanced
machines of yesteryear but that also has access to any place on Earth, thanks to
technologies such as Global Positioning System (GPS) and the advancement of
Social Media. All of this within the same package. Our smartphones are truly a
powerful tool which, barring a lack of connection to the internet, can have un-
hinged access to virtually any other piece of technology, information or person,
regardless of time or place.

But even in a relatively high-tech world, natural disasters still occur on a daily
basis, and contemporary methodologies for preventing and combating these dis-
asters are being overwhelmed. With the worsening of climate change in recent
years (Mohanty & Arup, 2021), both the number of instances and severity of
natural disasters have increased, such as floods, fires or droughts. These events
grow more and more common, and the developed world isn’t an exception. Even
considering the additional preventive measure taken in recent years, such as the
increase in investment in organisations that counter these disasters, such as fire-
fighters and foresters, the increasing trend of disasters has yet to show signs of
subsiding.

It only makes sense to take advantage of the new technological reality, along with
the availability of vast amounts of data, to aid and complement any system or
organisation which holds the intent of mitigating natural disasters.

1

1.1 The FireLoc Project

The FireLoc Project (Figure 1.1) is one such system that aims to help in the fight
against wildfires, by utilizing now-widespread mobile technologies. With uni-
versal access to smartphone cameras and the internet, FireLoc aims to draw on
crowd-sourced data to locate, pin-point and monitor forest fires, with the goal of
assisting authorities in the early identification and geo-location of ignitions, so
that these may be tackled with as little delay as possible.

Figure 1.1: The FireLoc logo.

FireLoc 1 is a joint effort of the University of Coimbra (UC) and the Institute for
Systems Engineering and Computers at Coimbra (INESC) (Cardoso et al., 2021),
funded by the Foundation for Science and Technology (FCT), an organization
within the Ministry of Science, Technology and Higher Education of Portugal.
The FireLoc system uses data collected by citizens using a dedicated mobile app
that enables the automatic triangulation of observed fires from the few known
observation points. It also uses image recognition to confirm the presence of fire
and smoke. On top of the previous mandatory data, there is also an option to
submit geographic details through text or additional imagery. By analysing the
crowd-sourced data, the expectation is that the software would then be able to set
forth a more detailed description of these occurrences to the respective authori-
ties.

The FireLoc system is currently under development and built around three main
components:

• The data collection component (i.e., the FireLoc app), which was devel-
oped with mobile devices in mind, while also being complemented by other
modules that allow the collection of data through additional sources;

• The data integration and processing component, which handles duties
such as geolocating observed events with the available data, assess upload
on an user basis, and estimate the risk of events;

• The data visualization component, which includes a multi-platform Graph-
ical User Interface (GUI) meant to be used by the authorities and other end-
users, as well as an administrative interface.

1More detailed information at https://fireloc.org

2

https://fireloc.org

Introduction

In hindsight, the components that this research project focuses on are, for the
most part, the second component, and to a smaller degree, the third component.
This will be elaborated upon in the following subsections. A basic architecture of
FireLoc, including the hierarchical placement of our contribution module, can be
seen in Figure 1.2.

Figure 1.2: The FireLoc System, showing part of the data processing modules.

The new contribution module, named "Data Consolidation Module" in Figure
1.2, is meant to work both in a stand-alone mode, as well as in synchrony with
other FireLoc modules within the data integration and processing component.
As of the writing of this document, the workings of the FireLoc system and the
new module that was created within this research project can be summarised as
follows:

The new contribution module effectively receives submissions in real time which,
at the time of input, would’ve already been analysed by the previous FireLoc
components. These FireLoc components handle the coordinates and geo-location,
as well as search and confirm visual information regarding both wildfires (i.e. fire
and smoke) and landmarks (e.g. gas stations). Finally, they also parse through
text within the submissions in search of relevant information. The modules in
question have access to other sources of information besides crowd-sourced sub-
missions. These include open-source satellite imagery, meteorological data, and
data from the OpenStreetMap2 project, all of which complement the datasets with
valuable information.

The FireLoc data processing component utilizes several forms of AI throughout
the modules that are part of it. The analysis of wildfires is done through Deep

2More detailed information at https://www.openstreetmap.org

3

https://www.openstreetmap.org

Learning image recognition algorithms to find signs of smoke and flames. On
the other hand, the analysis of text is done through Natural Language Process-
ing, which attempts to understand whether the submission holds any sort of rel-
evant textual information on the situation, terrain, or landmarks close by. This
process allows for the creation of simple and accurate "occurrences" which hold
all the relevant information, while rejecting data that is deemed to be irrelevant
by the algorithms. Some examples of irrelevant data would be submissions of
pictures with the absence of any signs of fire or smoke, or malicious/spam sub-
missions. Once the crowd-sourced data is treated, it is forwarded to our module.

1.2 Goals of this Project

The aim of this research project is to elaborate and prototype on a new stand-
alone module that manages the processing, validation, and aggregation of data
that results from the analysis of crowd-sourced submissions done by the FireLoc
system. The inputs given to the new module by FireLoc will be used to produce
concise and aggregated information about complex events, in a way that would
otherwise be unachievable with just a single source of information. These com-
plex events are to be displayed within a basic map GUI. In summary, the FireLoc
System will handle the early processing and validation of volunteer contribu-
tions, while the new module will follow up and process the contributions into a
standard event data-structure made up of one or more of these contributions.

In its current state, FireLoc produces several occurrences which may or may not
be related, and which may be complete or missing pieces of information. These
FireLoc contributions need to be analysed so as to understand whether to asso-
ciate them to existing events, create a new event, or to discard them. Should a
contribution be associated to an existing event, or should it lead to the creation
of a new event, both cases result in the attempt to identify the following pieces of
information: geospatial location, the events’ chronology (if there were any prior
related events), and any element that is deemed to bring forth new relevant in-
formation about an event (should said event already exist).

By employing forms of AI and Machine Learning (ML) to achieve this projects’
goals, the overall process would be completed in an efficient manner, while also
limiting both the cost of maintenance, as well as the need for human supervi-
sion and/or intervention. Finally, by allowing this information to be showcased
to the authorities through a visual interface, the entirety of the decision-making
process should become more streamlined. This would result in an optimal reduc-
tion in delays when it comes to mitigating natural disasters that can’t always be
predicted or prepared for. There would also be a reduction in the inherent delays
and errors in answering fluid conditions away from the front-lines, such as from
a logistical hub.

The main goals established in the context of this research project were the follow-
ing:

• Research on possible methodologies to be used in the creation of a stand-

4

Introduction

alone module;

• Development of a fully functioning prototype module capable of handling
and displaying real-time, heterogeneous data;

• Apply the developed module to realistic field-testing.

The first goal was elaborated throughout the research done for the State of the
Art and background of the methodologies to be employed during development.
Several works of similar nature were studied so as to understand optimal ways
to tackle the problems at hand.

The second goal was met during our development iterations, where we created
the module, which was made up of three main components: A data aggrega-
tion component, which utilized clustering techniques (H-DBSCAN), a data fu-
sion component (a mix of Medium and High level fusion), and a visualization
component, which displayed the fused incidents on an interactive map (utiliz-
ing the Folium tool). For this goal, data was also generated, both randomly and
based on real-world events, while meeting the numerous requirements set for the
module3. These development iterations were divided between the testing and se-
lection phase, or the "initial" phase, where methods and architecture were chosen,
and the main development phase which created the module itself.

The final goal was met through several phases of testing. Both synthetic and real-
world data was used to test the module. Synthetic data was randomly generated
through various scripts, following rules created by using real-world data as a
basis. The real-world dataset, on the other hand, was created using the October
2017 fires in Portugal as a reference.

1.3 Contributions of this Project

As previously stated, this project aimed to produce a new module, which can
either be integrated into the FireLoc system, or used in a stand-alone mode. On
top of this, the following documentation was also produced:

• State of the Art in regards to the context of this work and its methodologies;

• Architecture of the module and it’s role within FireLoc;

• Prototyping results;

• Suggestions on improvements and future work.

By publicising the previous documentation, we also hope to contribute to the
overall evolution of the State of the Art of the various fields present in this re-
search project. This also means to play a part in and expand the efforts to mitigate
the effects of Natural Disasters world-wide.

3See Table 3.1 for an in-dept enumeration of the data used by the module.

5

1.4 Document Structure

The remainder of this document is organized as follows: Chapter 2, Background
and State of the Art, enumerates key concepts that are relevant to the work at
hand, as well as the State of Art, which goes over current works relevant to this
project along with the technologies and methodologies employed by their au-
thors.

In Chapter 3, Development Process, the chosen approach and methodologies are
outlined. This chapter is divided into two phases of development. The initial
phase, which puts into practice the research outlined in the state of the art and
the several methodologies to be used. This phase is used to settle on the method-
ologies, and showcases an early architecture of the module, while also function-
ing as a proof-of-concept. The final phase completes the development of a fully
working module that is ready for real data and field-testing.

Chapter 4, Experiments and Results, enumerates the several test and prototyping
runs, along with their results, a discussion reflecting on them, and any improve-
ments or changes that result from these experiments.

Finally, the Conclusion in Chapter 5, reviews the previous chapters while also
presenting a summary of what was achieved throughout this research project.
Some suggestions for future works and improvements are also proposed within
this chapter.

6

Chapter 2

Background and State of the Art

This chapter is reserved to further elaborate on the background, concepts, and
methodologies that are relevant to the context of the creation of a new module
for the FireLoc System, that can also act as a generic, stand-alone approach to
solving the issue of real-time autonomous aggregation, management and moni-
toring of data on events such as wildfires or other natural disasters. The use of
crowd-sourced data to attempt to solve problems involving event detection has
recently started to become a common approach. Examples of works that guided
this research projects’ approach include Afyouni et al. (2022), which attempted
to detect unusual events (both generic and specific) by utilizing social media.
At an early stage, an attempt was done in dividing the researched concepts into
coherent groups that represent a specific role or methodology within our new
module. This was done so as to better understand the requirements imposed on
the project, and to also function as well-defined milestones within our research
for relevant methodologies and other similar works.

For each of these groups, a synopsis is presented within their respective sub-
sections. These address the different methods available for each role, showcase
examples of real-world applications along with a resume of their inner workings,
as well as their individual relevance to the goals of this research project. The
module was divided into three main groups of methodologies:

• Methods for Data Correlation 1;

• Methods for the Intelligent Component;

• Methods for Data Visualisation.

In the following sections, we elaborate on the methods that appear to be the most
widely used when attempting to face similar technical challenges to those of this
research project.

1Images and Text are processed beforehand by a different FireLoc module, which includes a
Natural Language Processor, among other features.

7

2.1 Methods for Data Correlation

According to the contribution and goals set in chapter 1, the module needs to be
able to merge and correlate different types of data from different sources, ranging
from data which only includes simple coordinates to data which may include
images and/or text. This process must be done in a way that extracts all the
meaningful data that is to be used by the remaining components of the module.
One possible methodology to meet these requirements is a process called Data
Fusion.

Data Fusion is the process of integrating diverse information gathered from mul-
tiple sources (such as sensors and cameras) to produce comprehensive and uni-
fied data about a more complex entity, in a way that proves more desirable than
using an individual source of data (i.e. more reliable or efficient) (Chatzichristos
et al., 2022). Data Fusion is a widely used technique across several fields of re-
search when it comes to correlating data in a way that accurately describes the
real world and its inner relations. This is due to the need to integrate data from
different sources, as using multiple sources of data is a proven way of reduc-
ing uncertainties, imperfections, outliers or any other obstructions to meaningful
data, as shown in works such as Abdulhafiz et al. (2013). Data Fusion is there-
fore commonly used in projects that handle heterogeneous inputs from multiple
different sources.

There are several methodologies within the concept of Data Fusion. The three
main forms of Data Fusion are elaborated in Figure 2.1.

Figure 2.1: The three basic levels of Data Fusion.

8

Background and State of the Art

Works such as Kashinath et al. (2021a), Schmitt et al. (2016) and Khaleghi et al.
(2013), are commonly grouped in three levels: low (data) level, also called data
association, medium (feature) level, also called state estimation, and high (deci-
sion) level, also called decision fusion. More recently, new types of data fusion
are starting to emerge, such as Kernel Data Fusion (Smolinska et al., 2019). In this
work, we will only elaborate on the three most basic and well-known types of
Data Fusion.

Some examples of projects successfully applying Data Fusion can be seen through
the several works done within the field of traffic monitoring, which elucidate on
the use of the different levels of Data Fusion used to handle data from multiple
sensors (Kashinath et al., 2021b). Zhang et al. (2016) delineates an approach on
using Data Fusion to achieve real-time urban traffic state estimation using Global
Positioning System (GPS) and loop detectors.

Within the context of traffic sensing, a Data Fusion approach would seek to re-
construct data from these sensors with the goal of finding correlations that result
in better data, and therefore better decisions and results. The use of fluid GPS
coordinates to monitor vehicles is something akin to the aim of our own research
project, and is thus a major point of interest.

2.1.1 Low Level Data Fusion

Low Level Data Fusion is considered to be the simplest fusion method to achieve
a combination of inputs (Smolinska et al., 2019). In this case, the data is rear-
ranged into a new data matrix, where the different variables are placed one after
the other (even if redundant). The resulting matrix will be the aggregation of the
previously separated data.

The goal of low level data fusion is to improve raw data quality at early stages
of data processing. It combines several sources of raw data and seeks to produce
new raw data, (Floudas et al., 2007). This should in theory result in the newly
fused data becoming more informative, synthetic and easier to handle than the
original data. At this level, increases in data quality are achieved using tech-
niques such as filters that perform data cleaning and de-noising, as well as es-
timation of missing values, or removal of outliers. Computationally-wise, this
level of Data Fusion is considered to be the lightest.

An example of low-level Data Fusion can be observed through the application of
Kalman Filters, which were used in the works of C. Wang et al. (2014) to fuse het-
erogeneous traffic data, along with Gaussian mixture models. Other techniques
employ the use of estimation to compensate for missing information and to re-
duce sampling, with Saffari et al. (2022) showing an application of Data Fusion
in large-scale urban networks, or the use of weighted averages to improve the
precision of sensor measurements by correcting these same measurements with
Data Fusion, as seen in Yang et al. (2019) where it was applied to object speed
measuring.

9

2.1.2 Medium Level Data Fusion

Medium Level Data Fusion is based on feature extraction which maintains rel-
evant variables while eliminating undesirable variables from the datasets. Re-
duction or transformation of variables is also common, an example of this being
Principal Component Analysis (PCA), a statistical technique which is popular
for analysing large datasets (Cheng, 2022). Medium Level Data Fusion can be
achieved with a multitude of algorithms that have been developed for this pur-
pose (Smolinska et al., 2019), (Floudas et al., 2007). The use of these algorithms
often requires thorough research of the individual features to develop an efficient
solution, however.

The goal of medium level data fusion is to merge and filter data so as to extract
meaningful features from different sources. Unlike low-level data fusion, there’s
and additional step prior to the final fusion step that is common to all Data Fu-
sion techniques. It is within this step that fusion of features extracted from the
original data occurs. In other words, data reduction is applied through one of
several available feature reduction methods. One way of achieving this data re-
duction is through PCA (Cheng, 2022). This step is where the main difficulty of
medium-level fusion lies, because of the necessity to understand which features
are relevant and need to be kept, and which are not and are therefore undesir-
able, as well as the innumerable ways of achieving this with varying levels of
performance.

Huang et al. (2016) applied Medium Level Data Fusion within the field of health-
care, by researching on the detection of falls of senior-citizens. These falls were
monitored through several different sensors in different axis, such as wearable
sensors and cameras, and the data gathered by these sensors was then correlated
with feature-level data fusion and support vector classification. This resulted in
a higher detection rate and lower false alarm rate. Other applications of this kind
of data fusion can be explored in the works by Zhu et al. (2017), where GPS data
was fused with data from users phones to estimate the time until a bus reached
a designated bus stop, and Gao et al. (2019) where video was used as the main
target of the fusion process. Interestingly, on the work by Zhu et al. (2017), it
was proven that fusion does not guarantee a desirable result, and that correlation
structure needs to be taken into account when elaborating a fusion algorithm.

2.1.3 High Level Data Fusion

High Level Data Fusion works on a decision level, and makes use of selection,
inference and state estimation. This type of fusion also falls under the notion
of distributed detection systems, which uses multiple sensors and estimation to
identify objects (Floudas et al., 2007). The first step of high level fusion is to
fit supervised models to each data matrix. These models are regression models
which provide continuous responses for the inputted data, deciding on the data
class membership using high-level inference. These decisions are later combined
into a complex final model. This can be surmised into a process of selecting one
out of a multitude of hypothesis, while taking into account both the decisions of

10

Background and State of the Art

a given number of sensors as well as the effect which noise and interference have
on these same sensors (Smolinska et al., 2019).

Soua et al. (2016a) showcased an application of high-level data fusion by utilizing
it to estimate the final destination of ongoing traffic in their works. Another work
of interest within the topic of traffic monitoring is the one of Soua et al. (2016b),
where data fusion was used along with fuzzy logic, the latter used to simulate
human reasoning rather than binary logic in state estimation, with the goal of
making the most efficient transitions of traffic light state within a large urban
junction by utilizing state estimation.

Due to the inherent traits of High Level Data Fusion, it is widely used in several
other fields outside of traffic monitoring. Classification problems such as indus-
trial quality control and maintenance are interesting applications of decision-level
data fusion, with the works of Wei et al. (2021) as a particularly interesting exam-
ple in the field of aircraft manufacturing. In the context of this research project,
the most interesting work found during our research into the available method-
ologies for this chapter was Texier et al. (2019), which used decision-level fusion
for disease outbreak detection and surveillance. This work proved that data fu-
sion based approaches were at least equivalent to all contemporary standard al-
gorithms, and oftentimes even yielded a great efficiency gain.

2.2 Methods for the Intelligent Component

The next component is the Intelligent System. As stated in chapter 1, this com-
ponent is meant to be an intelligent component that utilizes forms of Artificial
Intelligence (AI) and Machine Learning (ML) to autonomously model data into
coherent structures that can then be visualized and understood by humans, and
further processed if needed.

As a brief introduction to Intelligent Systems, AI is a tool which enables a ma-
chine to simulate human behaviors. ML on the other hand is a subset of AI,
which allows a machine to automatically learn from past data without being pro-
grammed explicitly for a specific goal. This usually means taking data and look-
ing for underlying trends within it through the use of a wide ranging choice of
algorithms. AI are designed to make decisions, often using real-time data. Us-
ing sensors, digital data, or remote inputs, they are capable of combining huge
amounts of information from a variety of different sources, and act on the in-
sights derived from these data, in some circumstances even without any form of
human insight or supervision. This allows the users of AI to access automation
capabilities that are close to unlimited.

In the context of this contribution, it is seen as of great importance to be capable
of dealing with an huge influx of data in real-time in a most efficient manner.
The Intelligent System Component is required to handle a dataset made up of
heterogeneous data from the previous components, the bulk of which are events
made up of simple geo-located coordinates. It would then proceed to analyse
and mold these data so that they can be used by the subsequent components.

11

More precisely, the Intelligent System Component needs to meet the following
requirements within acceptable time limits for real world use:

• Receive a dataset of events from the other components of the FireLoc Sys-
tem;

• Organise events within the dataset by their similarity to each other;

• Prioritise certain events depending on their content and which user ID sub-
mitted them;

• Leverage redundancy and handle duplicate events and submissions;

• Allow for a Sequence/Progression of events, or in other words, deal with
the aging of events.

There are several contemporary AI techniques that are capable of fulfilling these
requirements, and not all of these requirements call for the use of ML to achieve
the most efficient solutions, since ML can easily result in additional computa-
tional loads. The following sub-chapters elaborate on these requirements based
on the methodologies we found to be most commonly employed to solve simi-
lar issues. The expected uses that ML is meant to have in this research project
are, firstly, in the field of Clustering data for visualization of similarities between
events and density in geo-location, and secondly, the use of deep-learning in the
assignment of priority to events, as well as the management of redundancy and
duplicate events. Finally, we also expect to use forms of Data Fusion and Data
aggregation to handle incoming inputs from FireLoc. Due to the necessary em-
phasis on automation, following trends and leveraging data, it was decided to
narrow down the relevant techniques to be researched and evaluated to the ML
techniques that are elaborated in the following sub-chapters. These were found to
be decisively relevant candidates for handling event geo-location and monitoring
problems such as the one described in this document, having already been used
to solve similar problems such as those described in Song et al. (2010), Widianto
et al. (2020), or Afyouni et al. (2022).

2.2.1 Customized Approaches to Clustering

This work labels an approach to clustering as a custom approach should it em-
ploy the use of algorithms which weren’t created, or aren’t commonly used strictly
for the purpose of clustering data. Examples of these are Markov Random Fields
(MRF) and Bayesian Networks (BN), which see widespread usage across several
research fields with roles unrelated to clustering.

Markov Random Fields

MRF, also known as Markov Networks, are a form of representing dependen-
cies. They describe a system by local interaction and denote features of a system

12

Background and State of the Art

by using terms representing their spatial or contextual dependencies. Markov
networks are also undirected and can be cyclic, which allows this model to rep-
resent infinite loops in its dependencies. A benefit of MRF is that these types of
networks are designed based on both statistical and structural information that
standard clustering methods tend to neglect (Wang et al., 2013). In the case of our
research project, this would allow for more specific grouping when using MRF
for clustering.

An example of this benefit would be the following scenario: if, although point A
is closer to B, and as such standard clustering methods such as K-means group
them together, there could be other more relevant ways of grouping these points
such as A with C, when taking into account topology and elevation. We refer
to this as the Elevation Problem, which is exemplified in Figure 2.2, with the
expected K-means grouping in red, and a custom MRF in green.

Figure 2.2: Examples of the elevation problem, from two perspectives.

Within this context, it would make more sense to group point D with point B and
point C with point A, due to the nature and accessibility of the terrain. MRF are
also widely used in the field of terrain mapping due to this characteristic, as seen
in works such as Tse et al. (2015).

MRF also face certain setbacks, however. They are computationally demanding,
and while there are many algorithms that are capable of optimising these net-
works, such as Iterated Conditional Modes, they add another layer of complexity to
the solution. MRF are often used in image processing and computer vision. Using
these networks for clustering is an approach which is well documented in Song
et al. (2010). Other interesting works that use this type of technique for clustering
purposes are often found in the field of medicine, thanks again to the higher ac-
curacy of this technique. Examples of these works are Suliga et al. (2008) where
the goal of MRF is to find clusters of pixels that represent cancerous masses. An-
other more relatable research project which used MRF for clustering purposes is
Li et al. (2021), however. In this specific work, MRF were used to cluster social
events for organisers in the context of event-based social networks, with the goal
of event management. This specific work proves us that MRF could effectively be
used in the context of our research project. Overall, it can be concluded that MRF
are more robust and detailed than standard Clustering methods, at the cost of
computational performance, proven by the results shown in the previous works.
This means that MRF are the better option when accuracy takes precedence over
any other metric when evaluating an algorithm.

13

Bayesian Networks

BN are probabilistic models that share similarities with MRF. One difference,
however, is that Bayesian networks are directed and acyclic, so they can induce
dependencies between events, making these models ideal for predicting the con-
tributing factor of an event, or in other words, patterns. Unlike MRF however,
they can’t handle infinite loops within them (cycles), and so if the data was gen-
erated from a model where several variables correlate to each other, then BN wont
be able to model this relationship (Ben-Gal & Irad, 2008).

A relevant example would be to predict relationships between diseases and their
symptoms, one of many examples being in cancer research. Such a case was ex-
tensively described in Zhao et al. (2021), where BN were used with the goal of
revealing molecular structures of tumours so that these could then be further re-
searched. In the previous research article, the performance of BN proved to be
better compared to the other algorithms it was up against, mainly due to the in-
herent pattern-finding traits of this particular type of network. BN, not unlike
MRF, are also considered computationally demanding. All branches must be cal-
culated in order to calculate the probability of any one branch. Additionally, there
is no commonly accepted way for creating BN from data, all while they are con-
siderably difficult to create, requiring "a priori" knowledge for achieving the most
efficient solutions. In works such as Pham et al. (2009), it was demonstrated that,
at the cost of extra computation power, BN prevailed over standard clustering
techniques such as K-means, which were shown to be 10% less accurate.

Another interesting work that uses this type of technique for clustering purposes
is Marek et al. (2014). In this specific work, spatial analysis was applied to medical
datasets with the goal of mapping disease events through clustering. According
to this work, Baysean algorithms are already widely used to smooth data so that
they become easier to spot. This work created clusters both in the spatial and
space-time planes, with the clusters depicting the risk of health anomalies in a
density map.

2.2.2 Standard Clustering Techniques

There are many clustering techniques described in contemporary literature, such
as Probabilistic, Partitional, Spectral or Grid based Clustering, amongst others.
The two main considered Clustering techniques for this contribution are Centroid
based and Density-based Clustering, which are the most well-documented and
commonly used techniques.

Centroid-based clustering

Centroid-based clustering organizes the data into non-hierarchical clusters. These
algorithms are simple, efficient and scale well to large datasets. Examples of this
technique include K-means, which is the most widely-used centroid-based clus-
tering algorithm. K-means aims to partition data into clusters in a way where

14

Background and State of the Art

each individual observation belongs to the cluster with the nearest mean to a
cluster centroid. The initial k centroids are randomized, and as the cluster grows
the center is recalculated (LEDU & Ecosystem, 2018), (GeeksforGeeks, 2023). An
example of the employment of K-means over a dataset of points can be seen in
Figure 2.3. This technique is often used in Market and Image Segmentation, but
is far from limited to these fields.

Figure 2.3: Example of Centroid Clustering (K-means) applied to two datasets.

Some of the issues with K-means include sensitivity to initial conditions and out-
liers, requiring manual setting of an optimal K-value and distance metric, and the
inherent randomness to K-means, which can result in less efficient results on the
short-term. These variables influence the shape of the clusters. K-means also has
difficulty handling clusters of varying density and/or arbitrary shapes.

When it comes to event detection, use-cases of K-means can be seen in works
such as Oladimeji et al. (2015), where K-means was applied with the goal of
event detection within systems such as fire alarms. This work achieved the goal
of event detection by performing data aggregation on the nodes created by K-
means, which clustered the data around two possible labels (the two possible
outputs of the system) and then followed with pattern recognition utilizing Con-
volutional Neural Networks (CNN). This work concluded that utilizing this com-
bination of methodologies significantly improve fire detection performance when
compared with what were defined as standard approaches: Feed-Forward Neu-
ral Networks (NN) or Naive Bayes Classifiers.

Density-based clustering

Density-based clustering connects areas of high density into clusters. Examples
of this technique include Density-based Spatial Clustering of Applications with
Noise (DBSCAN) and Ordering Points to Identify the Clustering Structure
(OPTICS). These are mainly used to find relevant associations and structures
within data and focus on density approaches to said data. These are very simple
to implement, only requiring two initial inputs, the minimum size of a cluster,
and the maximum distance between its members. Density-based clustering al-
lows for arbitrary-shaped distributions as long as dense areas are present in the
dataset (Dey, 2023). By also having a notion of noise, density-based clustering
is, by design, more robust to outliers since it does not assign them to clusters.

15

Unfortunately, these algorithms still have difficulty with data clusters of vary-
ing densities, much like K-means. The previous dataset of points utilized for the
K-means example can now be seen in Figure 2.4 being clustered with DBSCAN.

Figure 2.4: Example of Density Clustering (DBSCAN) applied to two datasets.

The main theory behind the DBSCAN algorithm is quite simple: a point belongs
to a cluster if said point is close to other points from that same cluster. This proves
to be a challenge when the dataset is sparsely populated.

DBSCAN has several variants. One of these, Hierarchical Density-based Spatial
Clustering of Applications with Noise (H-DBSCAN), which turns the standard
DBSCAN algorithm into an hierarchical clustering algorithm. A big difference
between these two variations is that H-DBSCAN assigns would-be noise points
to the cluster that provides the highest overall stability and/or density, resulting
in a lower amount of noise points. H-DBSCAN is more robust thanks to this,
as it is now able to better handle areas of varying density, and thus allowing
for a more flexible exploration of the dataset. The initial variables are also not
static for the run-time of the algorithm, unlike the standard DBSCAN. The initial
values adapt to varying data density and shape as it gets processed (McInnes et
al., 2016). In essence, H-DBSCAN builds a tree-shaped structure which explores
clusters within multiple levels of granularity.

OPTICS is yet another density-based clustering algorithm (AlindGupta, 2023).
While it’s similar to DBSCAN, OPTICS creates an ordering of the data points
based on their density connectivity, the reachability plot. This plot utilizes both
a core and reachability distances. Reachability is a measure of how easily one
point of data can be connected to another one, within the density threshold. Ar-
eas with low reachability distance indicate dense cluster regions, while areas with
high reachability distances represent sparse cluster regions, or even noise. This
reveals the structure of the data, and so allows for the identification of clusters
at different levels of density. In other words, unlike DBSCAN, there is no pre-
defined density threshold. In its place, density is determined implicitly based
on the reachability distances. OPTICS is less sensitive to the variables set at the
start of the implementation, and provides a more flexible exploration of clusters
compared to the standard DBSCAN.

When it comes to using DBSCAN, we can see that it has in fact been used in works
similar to this contribution. Some include Widianto et al. (2020), which elaborates
on the use of DBSCAN with the goal of identifying disasters through Twitter. DB-

16

Background and State of the Art

SCAN has also been used in both Karanja (2016) and Anwar et al. (2019), where
DBSCAN was employed to identify areas with wildfire risk, utilizing historical
data of wildfire hot-spots as occurrence points, and then calculating risk based on
cluster density. This makes this technique particularly relevant in the context of
this research work. Another interesting work in the context of using clustering to
observe trends is Cerezo-Costas et al. (2018), which used geo-located social media
posts to help detect and understand unexpected behaviors in urban areas in real
time, some examples being abnormal patterns and contrasting location densities
which could signify a multitude of activities. This was achieved using several
social media platforms such as Twitter and Instagram, and was put to test within
large urban areas such as the city of New York. The methodologies used along
with DBSCAN included Natural Language Processing (NLP) to automate the un-
derstanding of the social media posts, and thread-based data aggregation tech-
niques. Another interesting work in the context of geo-located events is Huang et
al. (2018), where DBSCAN was once again used with the goal of detecting events
and their textual content which could then be used for a multitude of research
purposes, such as marketing or geo-social studies. This work focused on Twit-
ter posts as a source of data, and utilized DBSCAN to cluster tweets according
to their spatial and temporal characteristics. Afterwards, these tweets were sub-
jected to analysis by a text processor. The results proved to be promising, as using
data collected from four college cities over the span of two years resulted in the
identification of several events that occurred within that time-frame.

In conclusion, when it comes to using density-based clustering, we could see
that these previous works show several common traits with the goals of our own
research project, and thus we found them to be very enlightening in the context of
handling event detection in both the spatial and temporal spaces. Being standard
clustering techniques means that these suffer from some inherent problems when
it comes to accuracy. The earlier elevation problem that MRF solved still stands
when using DBSCAN for example, so caution is needed when dealing with three-
dimensional data, or two-dimensional data that uses elevation data, such as with
topographic maps. Depending on the accuracy needed, either in geo-location
coordinates or local terrain characteristics, density clustering may not be a viable
methodology for certain works.

2.3 Methods for Data Visualisation

The final stage of our modules’ data processing involves displaying the final form
of the data into a visual interface. This interface is not the final FireLoc interface.
The function of this interface is to allow for the visualization of the current state
of the data, mainly for testing purposes. It can, however, come to influence or
guide the final form of the FireLoc interface.

As for the requirements set for this part of the module, they mainly involve the
display of the processed events onto a real-world map, with a high degree of
accuracy. It must allow for the visualization of the events’ inner data, such as
its keywords, the ID of users who contributed to said event, or the submissions

17

that the event is made up of. There is also a need for the display of the events’
evolution over time.

There are many ways of visualizing data within the programming language that
was used in this research project, that is, Python. The libraries which were re-
searched include "Matplotlib" and "Folium", which are the focus of this sub-
chapter.

Matplotlib and Folium for Data Visualization

Matplotlib is a popular and widely used data visualization library in Python. It
provides a comprehensive set of tools for creating static, animated, and interac-
tive visualizations. Pyplot is the main tool to be used from this library in the
context of our work. Pyplot is a module, which was made popular due to its data
visualization capabilities and ease of use. It provides a simple interface that is
capable of creating a number of different plots, such as line, bar, or scatter plots.
It also allows for more specialized plots, such as histograms. Most of the works
researched in the context of this project utilized this library in one form or another
as a means of displaying data. Examples of this library can be directly seen in the
examples given for the application of standard clustering algorithms to datasets.

Folium is yet another Python library used for creating interactive and customiz-
able maps. It is built using the leaflet2 library, and allows the easy visualization of
spatial data within web-based maps. This makes it an ideal choice for visualizing
the geospatial data that our events are based on. Folium provides a simple and in-
tuitive interface for creating maps, requiring only the initial location and a zoom
level for the simplest map. More complex maps can be then created by adding
more features to additional layers, such as markers, lines, or heat-maps, amongst
others. Folium is also very easy to integrate with other Python components and
libraries. An example of Folium can be seen in Figure 2.5.

Figure 2.5: Example of Folium with three events visible in blue.

Effectively, Folium meets all the requirements of this project when it comes to
data visualization. It simplifies the process of visualizing geospatial data, and

2More information on leaflet at https://leafletjs.com.

18

Background and State of the Art

provides a wide range of customization options. All of this makes Folium a viable
choice for handling the role of data visualization within our project. Both Folium
and Matplotlib examples utilizing real-world data could be examined in Becca_R
(2019). Examples include geolocation, traffic congestion in the USA, the level of
bike infrastructure, and finally, a way to visually correlate all of these features
within a single map.

2.4 Summary on the State of the Art

This section briefly goes over and summarises the chapter on Background, Con-
cepts & State of the Art. The first section of this chapter, Data Correlation, goes
over the Data Correlation portion of the work. This section focuses on Data Fu-
sion, and some of the techniques used to achieve it. By the end of this section, and
after the research of several works of similar nature, it could be expected that the
type of Data Fusion to be used would be a mixture of Medium and High Level
Data Fusion. This would be further elaborated upon in the following chapter,
Development Process.

The second section, the Intelligent Component, went over several methodolo-
gies to process and group data of similar nature. More importantly, this chapter
goes over clustering techniques, which are the first step to data processing within
the module being created in this research project. This section went over several
types of clustering, which were implemented and tested in the following chap-
ters.

The third section, Data Visualisation, went over possible ways of displaying the
now processed information. Both Matplotlib and Folium ended up being used
in this research project. Matplotlib proved to be essential during the testing and
prototyping phase of this project due to its various tools. Folium on the other
hand, became the front-end of the module created during this research project as
a contribution to FireLoc.

19

Chapter 3

Development Process

In this chapter, we elaborate on the work performed to prototype on the method-
ologies considered within chapter 2, the State of the Art, and underline the initial
work done to enable the development of the module that this project aimed to
create. This chapter will also go over the several iterations of development on the
module, explaining the methodologies, data, tests, metrics, and any other consid-
erations that arose during said development.

As previously stated, this project aimed to create a module that can be used both
as a stand-alone program and synchronously with other modules within the Fire-
Loc system. Its primary objective is to receive pre-processed data about occur-
rences, which may or may not be complete, and use it to create more complex
entities which are, theoretically, more accurate. This is to be achieved through
Data Fusion. To aid in the process of Data Fusion, several methodologies needed
to be considered, and subsequently selected based on how and whether they met
the necessary requirements.

The research and development process undertaken during this project is elabo-
rated upon in the following sub-chapters, which divides the overall work into
concise, goal-defined iterations. A process of testing and prototyping occurred
during and after each iteration. This process had the goal of confirming the the-
ory developed during the state of the art, and confirming the results of each it-
eration, along with the several tests done throughout them. This also served
the purposed of enabling us to take conclusions on the several methodologies,
their performance and results. These results served both as a guideline on the
current state of the project at the time, as well as a basis to plan the following
development iteration. The results can be found on the following Chapter 4 -
Experiments and Results.

3.1 Early Work and First Development Iteration

The first iteration involved the viability testing of the several methodologies at
hand, as well as the creation of a dataset that could be used to simulate the ex-
pected inputs that this module would receive from the FireLoc system. The main

21

goal of this iteration was to confirm the State of the Art, as well as getting the vari-
ous methodologies to work with our datasets. The selection of the methodologies
to be used in the final version of the module also happened in this iteration.

3.1.1 Dataset Generation

The first step in this iteration was the creation of two datasets. A complete
dataset, Dataset A, with all the data types that are expected under the set req-
uisites in a real-case scenario, and a simpler dataset, Dataset B, which was made
up of two numerals representing coordinates, two Boolean’s representing the
presence of fire and/or smoke, and a string of text representing a "keyword".
Dataset B is meant to be used only as an input in debugging and proof-of-concept
tests. On the other hand, Dataset A is meant to represent real-life submissions of
new occurrences, so it needs to account for the possibility of missing information
within some submissions. While the "keywords", "district", and "parish" vari-
ables may or may not be missing from submissions due to being acquired from
optional user-generated text, the coordinates (latitude and longitude) and time
variables are mandatory and automatically acquired at the time of submitting
an occurrence. Variables generated internally by FireLoc are also never missing.
This is the case for ID variables (user and submission), and variables related to
the quality of interaction of users with the FireLoc app (user rating). Variables
signaling the presence of fire and/or smoke resulting from image processing are
always present as well, albeit holding either a positive or negative value. Both
datasets have 150 unique members.

For Dataset A, its data was generated by limiting the generation of coordinates to
the longitude and latitude limits of certain districts of mainland Portugal, such as
Coimbra, Lisbon, or Porto. The submission and user IDs were generated incre-
mentally, and for each unique user ID, an unique user rating was also generated.
Time was also generated incrementally, based on the date and time of the ma-
chine being used. Boolean’s were assigned values randomly, and a dictionary of
strings was used to randomly choose keywords related to the topic of wildfires.
The assignment of districts and parishes happened after the generation of coordi-
nates due to these being limited by district. Parishes were random, but assigned
based on the district they belonged to at the time. An effort was made to have
a generous amount of missing data, and a small amount of erroneous data was
also added, such as wrong districts for a given area. In summary, Dataset A will
have the structure outlined in Figure 3.1. For additional details, each variable is
also summarized within Table 3.1.

Figure 3.1: Expected structure of the modules’ inputs.

22

Development Process

Table 3.1: Enumeration and summary of the modules’ input variables.

Variable Description

Submission ID These are unique IDs which label a submission, used
for identification and search purposes.

Date-Time A timestamp of when the submission was initially
created by an user.

User ID These are unique IDs which label an user account,
used for identification and search purposes.

User Rating A trust rating assigned to an user, based on the quality
of the users’ submissions. Handed by FireLoc.

Fire Confirmation A confirmation variable on the presence of fire.
A FireLoc module generates this variable.

Smoke Confirmation A confirmation variable on the presence of smoke.
A FireLoc module generates this variable.

Latitude North–south coordinate position, in degrees.
A FireLoc module calculates this variable.

Longitude West–East coordinate position, in degrees.
A FireLoc module calculates this variable.

District High-level administrative location of where a
submission is perceived to be placed at by the user.

Parish Medium-level administrative location of where a
submission is perceived to be placed at by the user.

Keywords Worded descriptions submitted by users of the overall
area and landmarks near the submission.

For Dataset B, due to the lack of focus on data of high accuracy, the generation
of data involved a simple semi-random generation of points of data within cer-
tain boundaries, with a subsequent addition of "noise". These points were then
complemented with the additional information for Dataset B. That is, the two
Boolean’s, which were also randomized, and the string of text, which once more
utilized a dictionary of strings to randomly choose keywords from.

Finally, a random generator of coordinates was also created so that each algo-
rithm could each be stress- tested using a number of highly-different input datasets.
Since this function was only to be used with the clustering algorithms, only coor-
dinates were considered for the testing.

3.1.2 Clustering Methodologies

Clustering was deemed the most efficient way of separating data based on the
most important metric in regards to similarity between submissions, that being
latitude and longitude. The latitude and longitude variables are always present in
a submission, and they hold the highest weight in deciding whether a submission
is similar to others or not.

23

There are a number of clustering algorithms available, both as pre-made Python
libraries and as standardized approaches to using tools such as Neural Networks
for the sake of clustering. The following clustering methodologies were consid-
ered:

• Baysean Neural Networks;

• Markov Random Fields;

• K-means Clustering;

• DBSCAN/iDBSCAN Clustering;

• OPTICS/iOPTICS Clustering;

• H-DBSCAN Clustering.

Utilizing clustering techniques shows promise, as they’re seen as an efficient way
of grouping points of data utilizing distance metrics. This was proven during the
research done in chapter 2, where most works of similar nature to this research
project utilized a form of data clustering. Furthermore, these clustering algo-
rithms also have the added benefit of already being implemented within several
Python libraries, such as SciPy and pyclustering, which highly-optimized imple-
mentations written in low-level languages.

The first milestone within the clustering algorithm testing and prototyping phase
was to have an implementation of each of the previous algorithms in a state that
made them capable of running Dataset B. The only metric used to group submis-
sions at this point was the distance between points of data. Since most clustering
algorithms are already implemented within the aforementioned Python libraries,
a simple initialization of the clustering parameters was all that was needed to
start utilizing these algorithms. Having them in a working state, the next step
was to tinker with the several variables that affect the outcome of the clustering
algorithms.

Firstly, the customized techniques which were considered in the state of the art.
Unfortunately, these techniques could not be fully implemented in a timely man-
ner. This is due to the constraints of creating a custom implementation of a clus-
tering algorithm within the set time-frame, as well as the necessity of having pre-
clustered training data for the methodologies utilizing Neural Networks. On the
other hand, when taking into account MRF implementations, we noted that many
of the implementations of previous works, that were the basis for our own MRF
implementation, utilized standard clustering techniques at one point of their im-
plementation on their adjacency matrices. This is due to the fact that standard
clustering algorithms are more computationally efficient and easier to implement.
By combining MRF-based methods with standard clustering, excessive computa-
tional weight is bypassed to a degree. We therefore decided to follow these works
and implement MRF with the aid of K-means Clustering.

When it came to centroid-based clustering, it was decided to again implement
K-means, due to its commonality, as well as ease of implementation. From this

24

Development Process

technique, we expected that the results would be very randomised. This would
be mainly due to the initially random centroids, which then evolve over time as
the clusters grow. Other variables included the minimum number of members of
a centroid, which also plays an important role in this technique.

When it came to density-based clustering, several algorithms were chosen for
testing: OPTICS, DBSCAN and H-DBSCAN. In both OPTICS and DBSCAN, the
maximum distance between points played the most important role in deciding
on whether to group certain points or not. Both still need an additional variable
to function. That is, the minimum amount of members to form a cluster, which
for the most part was defined as 3. We found density-based clustering to show
the most promise due to how it inherently handled data grouping.

One additional detail that had to be taken into account was the presence of noise,
and how to deal with it. It makes no sense to ignore these points of data within
our context. It is very much possible that a single occurrence will be submitted in
a remote area, and ignoring such a possibility in the context of natural disasters
would be both erroneous and dangerous. To solve this, a function was created
which iterates over the points of data labeled as "noise" by the clustering algo-
rithms, and proceeds to decide on what to do with a "noise" point using one of
the two following possibilities:

• Should the "noise" point be within a set threshold distance from any given
cluster, the point becomes a member of the nearest cluster;

• Otherwise, the point is saved and labeled as a possible starting point to a
cluster, and is prepared for a special-case Data Fusion procedure.

This solved the issue of noise in the clustering results, and proved to show satis-
factory results with both Dataset A and B, as well as with random inputs. Having
solved the issue of noise, there was no longer a risk of "ignoring" possible remote
occurrences of natural disasters.

Another requirement set for the module was to be able to handle real-time sub-
missions. This proved to be an interesting optimization problem, due to the fact
that it is not known for certain when these submissions arrive, and in what quan-
tity. The standard clustering algorithms do not have any mechanism to cluster a
single new point of data without iterating through all the existing points. This
is non-optimal, as iterating through hundreds or thousands of points every time
a single point needs to be processed is an extremely computationally expensive
operation. In an attempt to understand how to solve this issue, stream-clustering
and incremental-clustering were researched, along with the iDBSCAN and iOP-
TICS algorithms, in specific. Unfortunately, these algorithms are still in their pro-
totyping phases, and as such are yet to be made readily available. Nonetheless,
there exists an algorithm that allows for efficient single-point clustering opera-
tions, that is, H-DBSCAN.

Having a working instance of H-DBSCAN was the next step in our clustering pro-
totyping. While this algorithm is not available in the previous Python libraries,
it is readily available in its own library of the same name. H-DBSCAN, unlike

25

its non-hierarchical counterpart, has 2 methods available for clustering data. The
first method is a standard, static input of data that applies clustering to a dataset.
The second method enables us to cluster new data after the initial clustering is
applied. Following the testing with Dataset A, an additional function was cre-
ated with the goal of calling this second method. This function is called within a
"while true" infinite loop, which simulates the real-time factor of data inputting.

3.1.3 Data Fusion Procedure

Having clustered the points of data based on their distance to each-other, the
process of applying data fusion has been made much more efficient. Taking into
account the context of natural disasters, it only makes sense to consider fusing
occurrences within a certain radius of the first one. Clustering has solved this
issue, therefore the next step is to process the data of all the clustered points. In
this development iteration, the fusion process only involves simple processing of
the variables within each point of data. As a result, it produces an "Event", that’s
made up of, and holds the information of at least one or more occurrences.

This is how, during this iteration, Data Fusion dealt with the various data within
the submitted occurrences:

• ID variables are all saved within an array, should they be unique, and a new
unique ID is created for said event;

• The newest date becomes the event date, while all other dates are saved
within an array, to be used as an event history;

• User ratings are used to calculate an average rating for the event;

• The Fire and Smoke checks are updated accordingly, taking into account all
of the occurrences within the cluster. Positive confirmations of fire or smoke
can never result in negative checks during the fusion process;

• Event Coordinates are updated through the average of all the coordinates
within the cluster, thus producing a centroid;

• Text variables, such as districts, parishes, and keywords, are all turned into
2D arrays, where the first half holds a string of the data, and the second half
holds a weight value, which is calculated through the rate at which said
string is referenced within the cluster.

In the end, this results in an event whose structure is a dictionary made up of
keys, which are the type of variable stored, and values, which are the results of
the data fusion as described above, for said variable (key).

3.1.4 Plotting and Mapping of Data

Plotting the information stored within the clustered and fused data proved to be
a simple affair by using two different Python libraries. The first library to be used

26

Development Process

was "matplotlib", which allowed us to use "Pyplot"’s scatter functions to display
the before and after of the several tests done through this iteration.

The second step involved mapping the more realistic data from Dataset A. For
this, it was decided to utilize Folium. This Python library processes any data it
receives through Python and maps the results in realistic maps through "Leaflet".
This allowed us to accurately map events in specific locations of interest, such as
natural reserves or forested areas. After processing the data, Folium allows the
drawing of event icons that act as pop-up buttons onto a map, thus allowing for a
simple GUI that enables the user to see all the information regarding any mapped
event. Folium is used through a number of web-browsers, and can either be
instanced for as long as the program runs or saved within an HTML file that can
then be opened or updated. During this iteration, only the most basic information
was displayed.

3.2 Second Development Iteration

The second iteration involved the actual development of the contribution mod-
ule, along with deeper testing and prototyping of the chosen methodologies for
each component of the module. These were: H-DBSCAN for the intelligent com-
ponent and a focus on Feature-level Data Fusion. In addition to this, we pro-
ceeded to the creation of a dataset that simulated the 2017 October wildfires
which happened in Portugal throughout the fall. This Dataset was used both
for testing purposes, as well as to simulate real field-testing. Dataset A, which
was also improved, was complemented with an additional dataset of the same
structure and generation, Dataset C. All of these developments are elaborated in
the following sections.

3.2.1 October Dataset Generation and Dataset C

As previously stated, two new datasets were created for the purpose of the sec-
ond development iteration. These were Dataset C, which is an extension of Dataset
A, created through the same process, and that is simply meant to be read in parts
so as to simulate real-time batches of information being handed to our new mod-
ule. The second dataset was a modified version of a dataset on the 2017 October
wildfires in Portugal, originally created by another FireLoc Team from twitter
mining and other sources such as "fogos.pt". We chose this 5-month time-period
between the first day of June and the last day of October because these fires have
become infamous due to their gravity at the time. This dataset uses real events
and real coordinates, so our hope was to utilize it as a form of "field-testing".

Both of the new datasets include the exact same variables as Dataset A, but in the
case of the October wildfires dataset, some variables were missing, and therefore
had to be generated. This was because the original October dataset was initially
created by another FireLoc contributor focused on text analysis, and so was miss-
ing information unique to other FireLoc modules, such as ours. These variables

27

were the following:

• User ID - Which was randomly generated;

• User Rating - Which was randomly assigned to an user ID. Each ID has an
unique rating;

• Smoke Confirmed - Which was randomly generated;

• Keywords - Only the keyword "incendio" was present in the dataset, so
keywords from our keyword dictionary were randomly added to 20% of
the dataset, while "incendio" was removed from 80% of the dataset.

Furthermore, some variables from the original October dataset had to be pro-
cessed in specific ways. Those were:

• Date Time - Had to be processed to our format: day/month/year hour:minute;

• District and Parish variables - This data showed reliability issues, so it was
decided to create a script which utilized the Python library geopandas1 to
pinpoint the several coordinates, which we had access to within a geometric
map of Portugal, which used the official administrative charter of Portugal2

as a source. This script returned the district and parish of each point in the
dataset.

This resulted in the creation of a new October wildfires dataset of our own, which
is the final dataset used in our testing and prototyping efforts. Its size is approxi-
mately of 6500 unique submissions.

3.2.2 Utilizing H-DBSCAN Clustering

Having updated the data, the next step was to fully implement the clustering
phase of data correlation. The previous iteration set H-DBSCAN as the best can-
didate for our clustering algorithm, so we proceed to implement the following
functions based on it:

• The "Fit Predict" Function, which, when the module is started, clusters all
the available data, and creates a H-DBSCAN instance trained in the dataset
in the process. This is a standard clustering algorithm implementation;

• The "Approximate Predict" Function, which uses the instance to try and
cluster points to already existing clusters;

1See https://geopandas.org/en/stable/.
2Available at https://www.dgterritorio.gov.pt/cartografia/cartografia-tematica/caop.

28

Development Process

Approximate Predict is especially useful due to the fact that it is a significantly
computationally light process. It cannot, however, create new clusters 3. It can
only assign data to existing clusters, or label it as noise. Our clustering process
takes advantage of this. When new data is received, an attempt is made to as-
sign it to existing clusters through Approximate Predict. Should this not succeed,
the data is added to a queue until a re-clustering threshold is met and calls the
Fit Predict function again. This threshold can be set as a time value, such as ev-
ery hour, or as a queue length value, which re-clusters once the queue reaches
said threshold. On a real-world application, both should be used so as to handle
periods of extreme data submission, of both low and high input density.

One further modification was done to our clustering implementation: To solve
the issue of noise within the vicinity of clusters, a threshold was created which
represents a second clustering distance. This distance is used to calculate whether
a noise point is relatively close to an existing cluster, or if it’s totally isolated in an
area of low density. Should a noise point be within this threshold of an existing
cluster, this point will be added to said cluster. On the other hand, if there are no
clusters in the vicinity, this point will be added to a "noise cluster" which will be
later used in the data fusion procedure. This helps to solve the issue of density
variations in the cluster borders without ignoring submissions or creating several
single-member clusters.

3.2.3 Improving the Data Fusion Procedure

The next step was to refine the data fusion procedure, taking into account the
results of the first iteration. Two primary functions were created for this goal,
along with several other auxiliary functions. We first elaborate on the two main
fusion functions:

• The "Data Fusion" function, which applies our standard data fusion proce-
dure to clustered data;

• The "Noise Handler" function, which needs to handle the processing and
fusion of any leftover data labelled as noise.

The Data Fusion function receives the previously clustered data, processes it
through the use of several auxiliary functions, and creates a structure to store
the fused data.

Variables that are used for identification or history purposes are directly handled
within this function. These include the processing of user IDs, event IDs, user rat-
ings, date-time variables, and the Boolean’s that confirm fire and smoke. While
date-time and ratings are used by other auxiliary functions, these are also saved
so as to keep track of all the data related to each submission, and to simplify find-
ing specific submissions. Date-time is further used to assign a latest date to the

3See https://hdbscan.readthedocs.io/en/latest/prediction_tutorial.html for an in-dept exam-
ple.

29

event, which is the newest submissions’ date, along with an event age, with the
oldest submission. ID variables are saved so as to know which users contributed
to an event, and which submissions make up said event. An event rating is also
calculated through an average of its user ratings. The rest of the submission vari-
ables are handled by the auxiliary functions, and then saved within the event.
The auxiliary functions are the following, including their purposes:

• The "User Rating Weight" function, which calculates a rating weight based
on the value of an users’ rating. This functions’ behaviour can be modified
by the modules’ user by selecting which algorithm is used to calculate the
rating weight. By default, there are three algorithm options available to
the modules’ user, which either result in a soft, average, or harsh rating
penalization. The standard one is used by default. This rating weight is
used along with time decay to calculate a "Submission Weight";

• The "Time-Decay" function, which calculates the age of a submission and
assigns a weight based on it, giving more importance to newer submissions.
A submission loses half its value after 24 hours and then quickly trends to
zero. Decay as it is, is limited to 20%, but can be changed to other values
or used as a threshold to reject older submissions. This time decay is used
along with rating weight to calculate a "Submission Weight";

• The "Weighted Haversine Centroid" function, which calculates the centroid
of an event through all its submissions. This function uses the Submission
Weight factor to give more importance to newer submissions from users of
a higher rating;

• The "Location Processor" function, which handles the location data (districts
and parishes) present in the submissions. It keeps count of the existing
data on location names, and calculates a percentage of submissions pointing
to that location. If a fire advances its front towards a new district, these
weights will shift over time as new submissions are received, modifying
the final percentage calculation. It uses the Submission Weight factor to
prioritize newer submissions;

• The "Keyword Processor" function, handles keyword text in a similar way
to location text, but with the exception that several keywords may be present
in a submission, and that each keyword has an unique weight assigned to
it. This assigns more weight to keywords that signify a higher hazard (i.e.
"smoke" vs "chemical plant" or "gas station"). Should a keyword become
more relevant at one point, the keyword weight naturally increases, and
therefore so will the keyword percentage. Again, Submission Weight af-
fects the final values of these variables;

• The "Event Hazard Level" function, which calculates a simple hazard level
based on the keywords hazard weight and the Boolean variables present in
the event, assigning a higher hazard level the more data describing hazards
is present. At the time of this document, three levels were created: Low,
Average, and High.

30

Development Process

Handling Submissions Labeled as Noise

The Noise Handler function on the other hand, needs to take care of the fact that
outliers always exist, and due to dealing with natural disasters, no submission
should be ignored and possibly cause vital information to not be displayed. In
essence, the Noise Handler is always run after the Fit Predict function. The goal
being that, once this function receives any existing leftover noise data, it processes
it into single-member clusters labeled as isolated events. The fusion procedure is
then applied to these events as normal, but with slight modifications due to the
fact that variables involving averages and other calculations that require multiple
submissions need to be approached differently.

All of the variables that are used for history/logging purposes simply hold the
data of the single submission that makes up the event, while the auxiliary func-
tions are applied normally, with the exception of the centroid calculation which
is redundant for a single coordinate. Their results reflect the fact that a single
submission can only result in a less accurate, one-sided event. They are labeled
as such, and are identifiable through their negative IDs, which start at -1, and are
visually different (explained in the next Folium Improvements sub-section).

Event Variable Summary

Through the process of Data Fusion, an event either synthesizes or stores data
relating to the variables outlined in Table 3.2.

Table 3.2: Summary of which processed data is held within an event

Variable Description

Event ID Unique ID which allows users to identify an event.
Uses negative values for isolated events.

Event Hazard Level A calculation on how much the event poses as an
hazard, utilizes event keywords and booleans.

Date - Latest Update A variable which displays when a certain event
was last updated with a new submission.

Date - Age A calculation of the age of an event from creation
until current time.

Date - History A log of dates at which an event was updated.

User IDs A log of user IDs which contributed to a certain
event.

Submission IDs log of submission IDs which make up a certain
event.

Rating Average An event trust rating calculated through the rating
of contributing users.

31

Variable Description

Smoke Confirmation A boolean which confirms the presence of smoke

Fire Confirmation A boolean which confirms the presence of fire

Latitude North–south coordinate position, in degrees

Longitude West–East coordinate position, in degrees

Districts High-level administrative location of where an event
is perceived to be placed at by users

Parishes Medium-level administrative location of where an event
is perceived to be placed at by users

Keywords Worded descriptions, by users, of the overall area and
landmarks near the event

3.2.4 Improving Data Visualization through Folium

Having updated the event structure to hold the new data, it now needed to be dis-
played within the Folium instance in an easy to read format. In this subsection,
the modifications which were made to the Folium implementation are elaborated
upon. The first goal was to make events both more visually appealing and dif-
ferentiable. For this, it was decided to add a heat-based colour scheme to the
icons through an events’ hazard level: beige (low hazard), orange (average haz-
ard), red (high hazard), as well as black for isolated events (noise events). This is
exemplified in Figure 3.2

Figure 3.2: Example of fused events.

On top of this, by selecting data redundancy within the module, a Null level is

32

Development Process

also available. This will colour events past a user defined amount of time green,
or simple remove these events from the map if the user selects so.

The hazard level is calculated through a simple algorithm, which utilizes the key-
words present within the events’ data, as well as the booleans which signal the
present of smoke and/or fire. In the case of no keyword being yet present in
the events’ data, or at most having smoke confirmed, an event is labeled as low-
priority. Should fire be confirmed, or keywords which signify lower-level haz-
ards be present (which ones are defined by the module instance owner, some
default values are present), then the event is labeled as a medium-priority inci-
dent. Should highly hazardous keywords be added, such as explosive material,
chemicals or bio-hazards, then the event becomes high-priority.

Which keywords are deemed highly hazardous by the module can be defined by
the module instance owner. This is done by adding a new keyword and assigning
an hazard weight to it. Some default values are present for common keywords,
such as "explosive", "chemicals", or "smoke". These default keywords can be re-
moved or modified.

This simple visual aid made finding specific events within a group easier, and
doubled as a warning to both the inaccuracy of isolated events, and to the ex-
istence of priority (red) events. Following this, improvements to the display of
information were implemented. The text box was widened, and information was
spaced and formatted so as to allow better readability. This can be seen in Figure
3.3

Figure 3.3: Examples of the improved text pop-up with the relevant event data.

Other visualization improvements were implemented, such as fixing the zoom
level of icons to be able to see them with the map zoomed out, and an automatic
addition of a text-based warning for isolated events.

33

Old events were also processed so that their icon becomes green should they be
past a certain threshold of inactivity. These can also be hidden from the map
should the respective setting be turned on, and this inactivity recolouring can be
turned off by the user altogether. An example of these settings can be seen in
Figure 3.4

Figure 3.4: Example of an inactive event together with a medium hazard event.

Most of these modifications to our Folium implementation were done in paral-
lel to the implementation of the auxiliary functions which were elaborated on in
the previous sub-section, such as the Event Hazard Level function resulting in
an implementation of colour-coding. Three different Folium functions were cre-
ated in total, with two being used mainly for debug purposes, displaying all the
submissions and colour-coded clusters pre-data fusion, and the last one being the
main implementation to be used by our module. A save function was also im-
plemented so as to allow the user to choose between updating the same map or
creating a map slideshow.

34

Chapter 4

Experiments and Results

This chapter presents the different tests performed throughout this research proje-
ct, along with their respective results and the conclusions taken from them. The
first half of this chapter, Lab-Testing Results, explains the several tests that were
carried out during the development iterations of our module. This includes all
tests done with synthetic data. This is data that was randomly generated or oth-
erwise created within a lab environment. On the other hand, the second half is
reserved for tests pertaining to the stage of this project which was past the final
development iteration. More precisely, stress-tests under "real-world" conditions,
with "real-world" data that was generated by various human sources. In this
section, we include the data that was collected from the 2017 October wildfires,
which took place in Portugal.

4.1 Synthetic Data Results

This section presents the tests carried out during the development iterations of
the module. Each subsection will expose the tests carried out through a given
iteration, examine their results and finalize with a conclusion on these results
and how they influenced the next iteration.

4.1.1 Initial Algorithm Testing & Selection

This subsection goes over the tests done after the initial development iteration.
These tests were done with the goal of understanding the various algorithms at
our disposal, as well as to choose which one performed the best within the context
of our research project.

Clustering Testing was based on two factors: Clustering speed and visual clus-
tering quality. Speed tests utilized 100 datasets and calculated the average time
to cluster them successfully. Quality tests focused on specific datasets and were
based on a visual analysis of the results of the clustering process, where one com-
pared all the end results of the clustering process and selected the result with

35

the most desirable outcome: Least amount of noise, most consistent/continuous
cluster shapes. For the speed datasets, the input was randomly generated, while
for the quality datasets, both randomly generated and Dataset B were used. Dur-
ing early testing, several algorithm initialization values were used, so as to try
and achieve the best results for specific datasets during quality testing. Such
was the case with using smaller cluster sizes and distances (when applicable) for
Dataset B, due to the smaller number of points, and also because of calculations
based on degrees.

Clustering Speed Testing

For the performance tests, each algorithm was run 100 times, and each of these
100 iterations used the same randomly generated data. The amount of clusters
generated was 20, while each cluster was made up of 40 points. A variable
"noise_factor" controlled the dispersion of the clusters. Testing was done from
very dense clusters, where no individual points are discernible without zoom, up
until no clusters became discernible from noise. This test used noise factors of 0.5,
1, 5, 10, 20, 30, and 40. Higher noise factors would lead to more dispersed points,
while lower values would result in more compact, dense clusters. In other words,
higher values result in more extreme density variations in the dataset.

On the initialization of the clustering algorithms, the following settings were used
as a starting point:

• K-means & Markov - n_clusters = 20, n_init = ”auto”

• DBSCAN - eps = 15, min_samples = 10

• OPTICS - eps = 15, min_samples = 10

• HDBSCAN - min_cluster_size = 10, min_samples = 10

These values focused on pushing the algorithms to higher computation times
rather than get the best results possible. The results of the various performance
tests can be analyzed in Table 4.1 and in the graph in Figure 4.1.

Table 4.1: Algorithm speed results - varying levels of dispersion

Clustering Factor Factor Factor Factor Factor Factor Factor
Algorithm 0.5 1 5 10 20 30 40
K-means 0.0086 0.0092 0.0096 0.0094 0.0106 0.0568 0.0809
DBSCAN 0.0062 0.0062 0.0058 0.0075 0.0071 0.0060 0.0090
OPTICS 0.4099 0.4559 0.4402 0.4451 0.4462 0.4338 0.5082

H-DBSCAN 0.0126 0.0180 0.0172 0.0177 0.0177 0.0130 0.0190
Markov 0.2274 0.2325 0.2743 0.2907 0.2523 0.2104 0.3141

36

Experiments and Results

Figure 4.1: Line-graph - Effects of dispersion/noise factor on performance.

From the results in both Table 4.1 and Figure 4.1, we can see that all algorithms re-
main relatively stable throughout all levels of dispersion. However, this does not
take away from the fact that dispersion does seem to affect the algorithms run-
time. K-means appears to become slower with highly dispersed datasets. This is
likely because there is a need to calculate the distance of every single point to a
centroid, and with higher dispersion, these distances also rise exponentially. The
effect on Markov is also likely due to the fact that it uses K-means as a way to clus-
ter its resulting matrix. OPTICS remained stable up to a noise factor of 30. At this
point, clusters become harder to find, and noise levels increase considerably. We
conclude that OPTICS, being an overall heavier density-based algorithm, likely
struggles with these types of datasets. All other algorithms remained largely un-
affected by data dispersion, when it came to run-time performance.

The influence of dataset size in the performance was also confirmed, as can be
seen in Table 4.2. There is no expected dataset size, in the sense that a dataset will
be as large as the number of user submissions. To test this, datasets of size 800,
1600, 2500, 5000, 10000, and 25000 were used, with the final value of 25000 being
an extreme case. We base this on the fact that the 2017 October wildfires dataset
has around 8000 entries dispersed throughout several weeks. This produced the
results displayed within Table 4.2 and in the graph in Figure 4.2.

37

Table 4.2: Algorithm speed results - varying dataset sizes

Clustering Size Size Size Size Size Size
Algorithm 800 1600 2500 5000 10000 25000
K-means 0.0568 0.0881 0.0703 0.0648 0.0718 0.0758
DBSCAN 0.0060 0.0150 0.0249 0.0618 0.1536 0.4578
OPTICS 0.4338 0.8906 1.6002 2.9602 7.2011 28.0004

H-DBSCAN 0.0130 0.0354 0.0509 0.1087 0.2324 1.2569
Markov 0.2104 1.1674 2.8284 9.2303 60.4741 291.0427

Figure 4.2: Line-graph - Effects of dataset size on performance.

From the results in both Table 4.2 and Figure 4.2, we can see that dataset size starts
to have an impact on certain algorithms when it comes to run-time performance,
starting at around 5000 inputs. The most affected are the Markov clustering im-
plementation, as well as OPTICS. While OPTICS still manages to remain under
the 1 minute run-time mark when handling 25000 inputs, Markov finished, on
average, slightly short of 5 minutes. This made us question the viability of our
Markov implementation in a context of high amounts of real-time inputs. On the
other hand, the remaining algorithms all performed within a 2 second run-time,
which is acceptable for a real-time application.

Clustering Quality Analysis

When it comes to "quality", the clustering settings highly affect the results of the
tests and how the algorithms behave towards the datasets. These values were
adapted throughout the testing so as to get the best general results possible for
specific datasets and densities. Randomly generated datasets were used along
with Dataset B so as to analyse the clustering results with and without a bias

38

Experiments and Results

(where one knows which clusters to expect). It is important to note, however,
that algorithms which require less modifications are preferable, due to the real-
time data input factor.

Analysing the "quality" of a cluster is highly dependant on the context of the
problem and dataset. In the case of our research project, on a standard scenario,
we expect that submissions form consistent clusters based on locations and their
surrounding areas. In this context, a desirable output will involve labeling as few
noise points as possible in low density areas while trying to create clear, coherent
borders out of the areas of higher densities, which we assume are urban areas
or areas with high traffic. The amount of clusters generated per dataset was 10,
while each cluster was made up of 40 points. For each noise factor, 5 datasets
were generated and tested. The noise factors used were 10, 20, 30 and 40. On the
initialization of the clustering algorithms, the following settings were used as a
starting point:

• K-means & Markov - n_clusters = 10, n_init = ”auto”

• DBSCAN - eps = 10, min_samples = 5

• OPTICS - eps = 10, min_samples = 5

• HDBSCAN - min_cluster_size = 5, min_samples = 5

Figure 4.3 showcases the results for the first batch of tests, noise_ f actor = 10.

Figure 4.3: Clustering test, noise factor of 10.

On the tests done with a density factor of 10, or in other words, with dense clus-
ters, we can see that every algorithm produces a low-noise solution, with well-
shaped clusters. It was necessary to drastically raise OPTICS’s eps and min_samples
(both to 15), to get acceptable results. This allowed OPTICS to produce results of

39

higher quality than its peers. The same occurred with DBSCAN, having to raise
the eps to 15 as well.

Figure 4.4 showcases the results for the second batch of tests, noise_ f actor = 20.

Figure 4.4: Clustering test, noise factor of 20.

On the tests done with a density factor of 20, clusters are spread out to a medium
degree, and with a higher variation in density. OPTICS is not able to produce a
low-noise solution without again raising both eps and min_samples (both to 25).
When these are raised, however, OPTICS is able to produce excellent results. K-
means, Markov and H-DBSCAN produce the most well-shaped clusters.

Figure 4.5 showcases the results for the third batch of tests, noise_ f actor = 30.

Figure 4.5: Clustering test, noise factor of 30.

On the tests done with a density factor of 30, clusters are even more spread out

40

Experiments and Results

and have an even higher variation in density. OPTICS starts to show considerably
worse results when compared other algorithms. Several settings were used, such
as higher eps and min_samples (values ranging [25,50]), but the higher dispersion
of data resulted in OPTICS always labeling a considerable amount of points as
noise regardless. H-DBSCAN and DBSCAN produce similar results, but while
DBSCAN produces less noise, H-DBSCAN produces a lower number of clusters,
which also are of higher quality. K-means and Markov are able to form random
clusters with ease. All algorithm values remained the same.

Figure 4.6 showcases the results for the fourth batch of tests, noise_ f actor = 40.

Figure 4.6: Clustering test, noise factor of 40.

A density factor of 40 was the maximum level of dispersion used for testing. After
this value, clusters become rare in density-based algorithms, often forming single
super-clusters. K-means and Markov are again able to form random clusters with
ease. OPTICS remains unable to create quality clusters, instead finding points of
high density within large quantities of noise. H-DBSCAN and DBSCAN produce
similar results. Both tend to form super-clusters, but H-DBSCAN appears to form
a lower number of "useless" clusters around the main cluster. While several set-
tings were tested, the results did not deviate far from the settings used at the start
of these tests.

These results enable us to analyze how the several algorithms behave in regards
to different cluster shapes and densities, and then to evaluate the results based
on how much noise was created. As an additional test, we visually assign noise
points to clusters, and try to understand whether the final clusters form logical
gatherings of incident submissions.

Following this, Dataset B was used as the next input. Dataset B is made up of
randomly generated points which, for accuracy purposes, were based on real
coordinates. Two levels of inputs were considered, where the first level focused
on high density points, or in other words, as if looking at the entire "country" on a
map. The expectation was that it would produce few clusters, mainly around the
"cities". For the following settings, this test produced the results shown in Figure

41

4.7:

• K-means & Markov - n_clusters = 5, n_init = ”auto”

• DBSCAN - eps = 1, min_samples = 3

• OPTICS - eps = 2, min_samples = 5

• HDBSCAN - min_cluster_size = 5, min_samples = 5

Figure 4.7: Clustering test for dataset B - northern half of the country.

In this test, DBSCAN and H-DBSCAN produced similar results. OPTICS pro-
duced viable clustering results, but there are redundant clusters which can be
found in the lower left corner of the plot. The best outcome for this area would
have been a single cluster, like in the other density algorithms. K-means and
Markov both produced good, yet random results, as expected.

The second level focused on lower density points, as if looking at a single region
or city. This would mean a higher dispersion of points and some occurrences
of noise. The goal was to see how the algorithms fared against more sensible
data, with much smaller variations in distances between points. For the following
settings, this test produced the results shown in Figure 4.8:

• K-means & Markov - n_clusters = 5, n_init = ”auto”

• DBSCAN - eps = 4, min_samples = 3

• OPTICS - eps = 4, min_samples = 5

• HDBSCAN - min_cluster_size = 5, min_samples = 5

42

Experiments and Results

Figure 4.8: Clustering test for dataset B - single region (Coimbra).

In this test, DBSCAN was not able to form more than a single cluster. All eps
and min_sample values between [1-10] were used and mixed. Curiously, OPTICS
produced good clustering results for this test. Two clusters were formed in the
areas of higher density, with noise present in the periphery. We assume this is due
to the low amount of density variation present in the city dataset. H-DBSCAN
produced results that were near equal to OPTICS, but managed them with lower
noise levels. K-means and Markov both produced good, yet random results, as
to be expected.

The tests using real-world data required the settings for both OPTICS and DB-
SCAN to be revised and their values lowered, while H-DBSCAN kept the settings
from the earlier tests.

Data Fusion Testing

Having tested the clustering implementations, we moved to testing the early data
fusion implementation.

The clusters which were created from the previous tests utilizing Dataset B had
to be fused into a single entity, their information variables saved for logging, and
their incident variables had to be processed and fused. The first step was to apply
fusion based on coordinates. This meant that the cluster became a single point
whose centroid was the average of all points of the cluster. In the case of OPTICS
and H-DBSCAN, the noise cluster (labeled as -1) was also fused, producing a
third point. This test produced the results shown in Figure 4.9.

43

Figure 4.9: Data Fusion test for dataset B - single region (Coimbra).

These results show us how clustering could be used as a process of aggregat-
ing similar submissions for data fusion by calculating the centre of an events’
expected location. Comparing the overall area of the cluster with the fused cen-
troid, we can see that clustering allows for a consistent and accurate guess of what
submissions belong to, or make up an event simply by utilizing the available co-
ordinate data. For the fusion procedure itself, a standard average calculation was
used to calculate an approximation of where the events’ centre would be. When
it came to the remaining variables, these were simply saved within lists and other
placeholders, or light calculations were applied to benefit the most recent data.
This was not optimal for the accuracy of the events’ data as a whole.

The next logical step would be to prototype on how to include these variables in
the data fusion procedure. Before moving to this, however, an implementation of
Folium had to be created to display the existing data and to analyse the accuracy
of the coordinates of the event. A cluster was hand-made around the Beaches
in "Figueira da Foz", with the goal of originating a fused event in an exact spot.
Five different submissions were added to an input file. The submissions (in blue)
originated the event (in red) which can be seen in Figure 4.10.

44

Experiments and Results

Figure 4.10: Accuracy test using H-DBSCAN, Data Fusion, and Folium.

As can be seen, we were able to accurately place and cluster several blue submis-
sions in a circle around the targeted area using H-DBSCAN. Once Data Fusion
was applied, a red event was created in the centre of the targeted area.

4.1.2 Discussion on the Results of the First Iteration

The goal of the initial tests were to prove the viability of the techniques being con-
sidered for our project, as well as to then proceed to choose the best techniques.

When it came to Clustering, we could see that both OPTICS and Markov lagged
behind in terms of performance. Since the first dataset tests were reasonably
small in size, all algorithms still managed to cluster the data within a second of
run-time, but it is evident that the larger the datasets become the higher run-times
will be. This is because these algorithms have a linear time complexity at best (K-
means), and exponential at worst (OPTICS). Markov, on the other hand, includes
heavy calculations to create a matrix of values used to model the relationships or
dependencies between data points. This raises the run-time exponentially. The
middle term is represented by H-DBSCAN, which is an hierarchical algorithm
with quadratic time complexity. While it was not the fastest algorithm, it fared
well in all performance use cases.

On the visual results of the clustering, we could see the following for the ran-
domly generated datasets:

• K-means and Markov managed to cluster most data, but the resulting clus-
ters suffered from randomness of the initial centroids. This would cause
clusters to form in areas where it would be most optimal for only one to ex-
ist, for example. This makes them inadequate for the context of our project;

45

• DBSCAN and H-DBSCAN produced similar results on higher density datasets,
but H-DBSCAN handled lower density datasets better. On dataset B, the
low density and resulting noise made it so that DBSCAN was not viable;

• The OPTICS implementation could not produce favourable results without
extensive revision of its initial settings for each new dataset, which makes it
inadequate for handling volatile streams of data.

On the visual results for dataset B, we came to the conclusion that the randomness
of K-means and Markov made them undesirable. This is because of the need to
know the amount of clusters beforehand, on top of the randomness of creating
said clusters, and the resulting creation of too many random fused events. We
also found that both Markov and OPTICS were too heavy for the needs of our
project, since these did not return an accuracy level that justified the additional
increase in computational loads.

This left us with DBSCAN and H-DBSCAN as the best result-yielding algorithms.
Taking into account all the results, H-DBSCAN proved to create the best results in
all situations, and also yielded good performance results, with no revisions being
necessary. It produced consistent clusters in various levels of density, and labeled
points as noise in relatively lower levels compared to the other algorithms. It also
had no need to know how many clusters existed beforehand and produced the
most accurate fused events. H-DBSCAN was therefore chosen as the algorithm
to be used for data clustering.

4.1.3 Module Development and Prototyping Tests

This subsection goes over the tests done during and after the final development
iteration. These tests were done with the goal of successfully applying the chosen
algorithms, improving the accuracy of the various calculations necessary for the
data fusion and clustering process, as well as to test any newly implemented
features.

Clustering Improvements

After the implementation of H-DBSCAN, the main concern became the existence
of noise, as well as the testing of its secondary clustering function, "approximate
predict". Through the various tests, further adjustments were also made to the
initial variables of H-DBSCAN so as to produce the best clusters with the least
amount of noise.

For "approximate predict", a simple test was done upon implementation: four
points were manually inputted after reading Dataset A, two points close to ex-
isting clusters, and two points far from existing clusters. For this test, the results
were also straightforward: "approximate predict" behaved as expected, and in-
puts near existing clusters were clustered successfully, while the two points far
from any clusters were labeled as noise. No further tests were deemed necessary
for this feature since it is unable to create new clusters, only add to existing ones.

46

Experiments and Results

For dealing with leftover noise, a function which acted as a second layer of clus-
tering was created. This function iterated over any points labeled as noise, and
calculated whether any of them were within a threshold of an existing cluster.
Should this function deem that one point is indeed within this threshold, then
said point is added to the cluster. This threshold was the target of the tests, as an
acceptable value had to be defined.

Figure 4.11 shows the results of both tests, with black icons signaling noise. The
noise points which are close to clusters are re-clustered, while those that are too
far remain labeled as noise. The addition of a new point through "approximate
predict" can also be seen in the top-right corner, near "Loreto", where the beige
cluster gains a new member. These results were achieved with a threshold of 1.4.

Figure 4.11: Noise re-clustering test using data from Coimbra city.

The value which showed the best results was 1.5. Values under 1.4 were too low
to re-cluster noise points which we felt belonged to certain clusters, while val-
ues above 1.6 started to cluster noise points which were outright outliars which
should be considered isolated points. H-DBSCAN was set to min_samples = 1
and min_cluster_size = 2, or in other words, clusters started at two points, with
one as the core.

Data Fusion - Haversine Calculations

While the fused centroid proved to be reasonably accurate when it came to the
calculation of its coordinates, this project always had the goal of calculating the
most accurate coordinates from the available data.

The current calculation assumed the points belonged to a flat space plane. This
is obviously inaccurate since in reality the coordinates belong to a globe shaped
entity. This means that the curvature of the Earth needs to be taken into account
in the centroid calculations. An Haversine average was therefore implemented
for both distance and centroid calculation, utilizing the following formula:

hav(θ) = hav(φ2 − φ1) + cos(φ1)cos(φ2)hav(λ2 − λ1)

47

hav(θ) = sin2(
θ

2
) =

1 − cos(θ)
2

θ =
d
r

,

where r is the Earths’ radius and d is the distance between two points.
φ is a points’ latitude value while λ is the points’ longitude value. θ is
the central angle between two points in a sphere.

Having implemented this formula, a single cluster was created and the centroid
calculation was applied. This produced the results in Table 4.3.

Table 4.3: Comparison of centroid calculation algorithms.

Standard Haversine Difference
Latitude 40.2300 40.2298 0.005%

Longitude -8.4428 -8.4427 0.006%

These results show us that, for calculations at a "city" level, Haversine is only
about 0.01% more accurate. While this value appears to be low, one needs to take
into account that it also scales when processing larger areas, while the increase in
computational weight is negligible. Since it is overall desirable to have as much
accuracy as possible within our context, since the module is meant to be of gen-
eral use, this update on distance calculations was added to the final version of the
module.

Data Fusion - Rating Weighting

An addition to the data fusion procedure was the use of the user rating as a factor
on deciding the value of submissions. A function was implemented with the goal
of giving more importance to submissions coming from users of higher rating.
For this, a simple calculation was applied on an users’ rating to convert it from
the [1-20] format to a [0-1] format, which can then be multiplied with the various
values present within the event. ID and boolean variables were not influenced
by this factor, while coordinates and textual variables were. For coordinates, a
weighted average was applied, while for textual variables, a decay variable was
applied. This makes the centroid to tend to the values of more "trusted" submis-
sions.

Adding 10 points in a line within "Coimbra", where user ratings increase to the
left and decreases to the right, we get the centroid calculations shown in Table
4.4.

Mapping these results within Folium, utilizing weighted calculations show a sig-
nificant difference, as seen in Figure 4.12. While the standard (green) centroid is
dead-centre when looking at the coordinates (blue), the weighted (red) centroid
tends towards the side with the coordinates with highly rated users.

48

Experiments and Results

Table 4.4: Effects of user rating on centroid calculations.

Standard Weighted
Latitude 40.2223 40.2280

Longitude -8.4250 -8.4292

Figure 4.12: Mapping of the rating weight swaying an event location.

The same theory was applied to the text variables. Since these are displayed
through the basis of calculating a distribution percentage of which keywords
are mentioned within an event, keywords mentioned by higher rated users will
maintain their value, while keywords which are mentioned by lower rated users
will have their value reduced.

By creating a number of events with a single submitter, whose rating ranges be-
tween 5 and 20 in increments of 5, we can test the weighting calculations for
keywords. These calculations produced the results in Table 4.5.

Table 4.5: Effect of rating calculations on keyword weights (Default Algorithm).

’Fumo’ Keyword Weight ’Fogo’ Keyword Weight
User Rating 20/20 1 3
User Rating 15/20 0.75 2.25
User Rating 10/20 0.5 1.5
User Rating 5/20 0.25 0.75

These results show a drop of 25% in the weights of the text values, for a difference
of 5 points in rating. This value seemed appropriate for our context, but can

49

be adjusted by the modules’ user. We took this change to test the alternative
weighting algorithms created for the module. These calculations produced the
results in Tables 4.6 and 4.7.

Table 4.6: Effect of rating calculations on keyword weights (Softer Algorithm).

’Fumo’ Keyword Weight ’Fogo’ Keyword Weight
User Rating 20/20 1 3
User Rating 15/20 0.875 2.625
User Rating 10/20 0.75 2.25
User Rating 5/20 0.625 1.875

Table 4.7: Effect of rating calculations on keyword weights (Harsher Algorithm).

’Fumo’ Keyword Weight ’Fogo’ Keyword Weight
User Rating 20/20 1 3
User Rating 15/20 0.56 1.68
User Rating 10/20 0.263 0.789
User Rating 5/20 0.092 0.276

These show the effect of both a sharper and softer penalization on the events’
keywords. Besides these three, the modules’ user would be free to implement
additional algorithms for their specific use-cases.

Data Fusion - Time Decay

An important requisite for our module was the factoring of age and time in a
submissions value. Newer submissions should have a higher value than older
submissions. For this, an approach was implemented based on the previous user
rating factoring. A decay factor variable was created, along with a maximum de-
cay cap and a custom date variable, to allow the user to choose whether to delete
old submissions or let them tend to zero, as well as to choose whether to use the
machines’ date-time or a custom date (for example, to allow the simulation of
older events). For testing purposes, the cap was set to 20% of the submissions
original value, and the custom date was put aside, since we’re using data gener-
ated based on the machines’ date-time.

A decay function was implemented in the same fashion as the rating system.
Each time a new fusion procedure is started, the date-time values are refreshed.
Any new submissions are used to update the most recent dates, and the old date-
times are updated according to the currently set date-time (either the machines’
or an user-custom date-time). Upon doing this, a decay weight [0-1] is calculated
utilizing these values. This decay will be multiplied with the various variables
within the event. Figure 4.13 displays the decay progress when utilizing four
different decay factors, as well as the decay weight reached at the 24-hour mark.

50

Experiments and Results

Figure 4.13: Decay progression using decay factors of [0.3,0.5,0.7,0.9].

Table 4.8 shows the results that were achieved when using a decay factor of 0.5.
Three events were created, depicting the three stages of a submissions’ lifespan:
collection, maturity, and EoL.

Table 4.8: Results of the decay calculations on event variables.

’Fumo’ Keyword Weight ’Gasolina’ Keyword Weight
30 minutes of age 0.9291 4.6006

24 hours of age 0.4693 2.3463
27 days of age 0.1800 0.9000

Creating an event with a single text variable, we can see that at the point of cre-
ation, it’s variable has near 100% of its weight. At the 24-hour mark, the weight
of the variables is almost halved. While afterwards, the weight is capped at 20%
of its original value.

We can also see the placement update within Folium, when an event made up of
only old submissions is updated with a new submission (Figure 4.14).

51

Figure 4.14: Decay progression and influence of a new submission in an event.

Blue icons represent the original points, with +24 hours of lifespan, while green
represents the original centroid of said points. Upon receiving a new submission
with less than one minute of lifespan, coloured in beige on the map, we can see a
new event centroid in red. This new centroid trends towards the new submission,
which has the most weight out of all available submissions. Should, in 24 hours,
a new event be added on top of the beige submission, the red centroid will trend
further north. This shows us that the decay algorithm behaves as expected. For
a faster weight decay, or in other words, to give even higher priority to newer
submissions, one simply needs to use an higher decay value.

4.1.4 Discussion on the Results of Module Prototyping

During this testing phase, the goal was mainly to test and prototype new features
for the module. Each time a new feature was implemented, several tests were
done to assure the feature behaved as expected. Afterwards, should it be needed,
tests were done to decide on the best values for the settings of said feature. Some
examples of this were the time decay factor or the H-DBSCAN initialization.

During this phase, tests were done mainly with randomly generated datasets,
when the goal was to test coordinate calculations, and with Dataset A, when the
goal was to test the application of the various weights (time decay, user rating,
hazard) to the variables, and how they behaved.

We found that, for clustering, H-DBSCAN outputted the best results with the set-
tings min_samples = 1 and min_cluster_size = 2, and with our noise threshold
set to 1.5. This yielded well-shaped clusters, and low amounts of noise. Our noise

52

Experiments and Results

re-clusterer function also appropriately processed any noise in the vicinity of ex-
isting clusters, which reduced any instances of noise points to isolated outliers.

On the topic of Data Fusion, several feature processing mechanisms were applied
successfully:

• Influencing an events’ variables through the rating of an user;

• Influencing an events’ variables through the hazard value a keyword is de-
fined as;

• Influencing an events’ variables through the age of the submission that orig-
inates them.

On top of this, coordinate calculation also employed the Haversine formula to
yield the most accurate results achievable with the data at hand.

Having implemented these features and adjusted their settings for general use,
the results showed us that the module was now fully operational under lab cir-
cumstances. This meant that the next phase could now involve stress testing.
This more thorough testing, utilized real-world data from the October wildfires
of 2017, and will be elaborated upon in the following section.

4.2 Real-World Data Results

In this section, we will go over the tests done with the final version of the module.
The goal of these tests is to simulate the use of our module by FireLoc or any other
entity through the span of several months.

Due to the fact that it was not yet possible to integrate our module within the
FireLoc system for field testing purposes, our real-world testing instead consid-
ered using real-world data to simulate a real wildfire situation. This is where the
2017 October wildfires dataset comes in. As previously stated, this dataset was
created with real user submissions on the wildfires which took place in Portugal
throughout October 2017. These submissions were mined from social media and
other platforms such as "fogos.pt". Any other missing data was generated by our
scripts. This included assigning IDs’ to users and submissions, assigning unique
user ratings to certain IDs’, as well as finding and processing location data (see
chapter 3.2.1). Following this, the dataset was sorted by submission date. This
dataset has data spanning from June 2017 up until the 1st of November 2017, or
in other words around 5 months worth of data.

4.2.1 Preparing the Experiment

Having the October dataset fit for use, the next step was to prepare the mod-
ule to simulate real-world use by handling several batches of input in real time.
The necessary code to do this was promptly implemented. First, the dataset was

53

divided, where the first 100 submissions were used as a start batch and the re-
maining 6400 were to be inputted in batches. Both batch size and frequency are
set within the module. These settings are all modifiable by the user, and can be
turned on or off. Secondly, the modules date was adjusted so as to start at the first
day of June, at 00:01. This date is then updated to the oldest date present in a new
batch of submissions. This simulates time progression and devalues older sub-
missions over time. Finally, a cycle was created within the modules main code.
This cycle reads the input data in increments, and simulates the module being
called by FireLoc to handle said data.

Each time the module is called, a new dataset of fused events is created, with its
respective iteration ID. This means that the first dataset will hold the output from
the processing of the first batch, while the second dataset will hold the processed
data from both the first and the new batch. This experiment did not make use of
the "approximate predict" function due to the size of the dataset and data batches.
Finally, a slideshow of these datasets is created for analysis purposes through
Folium. An HTML script was also created to complement the basic Folium GUI
features with a "next slide" button.

4.2.2 Running the Experiment

For this experiment, the batch size was set to 50 submissions per batch, with a
frequency of 2 seconds. This is expected to result in around 130 iterations. Each
batch takes between 1 and 5 seconds to be processed along with the already ex-
isting data. At the end of the processing operation, all 6500 submissions should
have been processed, resulting in a new Folium map HTML file which can be
used to analyse the progress of the events from June until November. Having a
batch size of 50 makes most iterations between 20 and 30 hours worth of submis-
sion updates. This value becomes lower during times of high volume of submis-
sions, during the peak of the wildfires. We set the event inactivity threshold to
1.5 weeks, and these shall be coloured green. Both the H-DBSCAN and the data
fusion implementations retained the previous values from 4.1.3. On a standard
use-case, such as being integrated with FireLoc, this would not be an issue as the
iteration frequency would simply be set by the usage of the module.

4.2.3 Results and Discussion of the Experiment

A total of 124 frames were created during this test, depicting the progress of pro-
cessing the 6500 submissions over a period of 5 months. The following images
allow us to look at the first 10 frames, from left to right, where we can see the
progress around the area of Lisbon. We choose this region because it can exem-
plify the usage of the module since it presents a reasonable number of differing
events within a given area. Figure 4.15 showcases the first two frames:

54

Experiments and Results

Figure 4.15: October wildfires - Frames 0 and 1.

Looking at the first two frames, which include the first 200 submissions country-
wide, we can see the start of several incidents. Three of these events stand out
in frame 0: the central event (ID 18, red circle), the topmost event (ID -6. black
circle), and the west-most event (ID 13, orange circle). Taking a closer look at
these events, we can confirm their location data. We can also confirm what is
happening in each event, such as event 18 being coloured in red due to the fact
that an incident of higher danger (a petrol station) is part of it. Event 13, on the
other hand, shows that there is a re-ignition happening in the area. Finally, event
-6, is coloured black (and has a negative ID) due to being isolated. In other words,
this event was labeled as noise and is made up of one submission, which makes it
less accurate. Moving to frame 1, we can see that the map is now more populated,
and that some preexisting events were updated. This includes event 18. We can
see that the event moved slightly towards the southwest, and that a new orange
event (ID 43) appeared to the east of it. This exemplifies an event being split into
two when the path of its submissions follows two different directions. Another
event that was updated was event 19, which is the only beige event within the
city limits. This time, the events newer submissions became heavier, updating its
coordinates over time. These results are present in Figures 4.16 and 4.17.

55

Figure 4.16: October wildfires - Frame 0 events -6, 13 and 18.

Comparing these events with their updated counterparts in frame 1, we can see
how event 19 aged, and how its older submissions became less valuable, causing
a shift in the location. We can also see how event 18 was split, with the closes two
submissions remaining part of it, and submission 23 starting a new event with a
new submission (166).

Figure 4.17: October wildfires - Frame 1 updated events.

Moving on to frames 2, 3, 4 and 5, we continue to see both the progress of existing
events and the increase in event population within the area of interest through
Figure 4.18 and 4.19.

56

Experiments and Results

Figure 4.18: October wildfires - Frames 2 and 3.

Figure 4.19: October wildfires - Frames 4 and 5.

We can see an event in orange being created in frames 2 and 3, and then pro-
gressing to a more hazardous event in frames 4 and 5 (event 54, red circle). This
progress can be confirmed through Figure 4.21, which shows the event details at
each frame. We can also see a split in events originating an isolated event (black,
blue circle), which then also turns orange upon being complemented with new
submissions. This progress is shown in Figure 4.20.

Figure 4.20: October wildfires - Isolated event turns into standard event.

57

Figure 4.21: October wildfires - Event 54 progression.

This behaviour continues consistently throughout all 124 frames. Looking at
frames 6, 7, 8 and 9, we can see that these were days with low levels of activ-
ity, still with some new events appearing, and with slight updates in location
(Figures 4.22 and 4.23).

Figure 4.22: October wildfires - Frames 6 and 7.

Figure 4.23: October wildfires - Frames 8 and 9.

58

Experiments and Results

We can notice an event being updated right in the centre of Lisbon between
frames 6 and 7, and then again in frame 9. Taking a closer look at this event
(ID 57, red circle), we can see its progress over 2 days of updates in Figure 4.24.

Figure 4.24: October wildfires - Event 57 progression.

We can infer that the event receives new submissions. Being newer, these have
higher weight, and so the event values start to lean towards the new submissions.
The coordinates are updated, as well as the textual description of the location,
which begins with just Lisbon as an option, and then receives submissions with
descriptions that are placed further in the vicinity. By the second update, the
biggest location weight is now in Amadora, at 60%. Finally, the age factor starts
to influence the newer weights and the event is again leaning towards Lisbon
over time. This events details are showcased in Figure 4.25.

Figure 4.25: October wildfires - Event 57 progression with details.

On top of this, the map is slowly becoming more populated. This means that
events are also getting older. Now moving to frame 10, should the setting be
turned on within our module, older inactive events will start turning green. We
set this threshold to be a week and half of inactivity, or about 11 days. Should an
user want to, there is also an option so that these could simply be hidden from
the map.

This procedure has no effect on the clustering process, since all submissions are
still available to be re-clustered. It does, however, clean up the map considerably.

59

It leaves inactive events for logging and history purposes, should the respective
setting be turned on. The user can also choose for them to be deleted from the
mapping procedure. An example usage of this feature can be seen in Figure 4.26.

Figure 4.26: October wildfires - Frame 10 - Dealing with inactive events.

Curiously, some inconsistencies were also found, having originated from the clus-
tering process. Three specific events were created and subsequently placed in the
middle of the ocean. While the original requisites for data stated that the island
territories did not need to be included in our datasets, we decided to include
them never the less, and found these results to be academically interesting. These
inconsistencies are showcased in Figure 4.27.

Figure 4.27: October wildfires - Frame 22 - Inconsistencies in the ocean.

At first glance it was theorised that this was the result of extreme density vari-
ation between the continent and the island territories. We also found that all of
these events shared the same inconsistency: they were all from Funchal, ilha da
Madeira, or Portalegre, a sparse region bordering Spain. Figure 4.28 further dis-
plays the details of one of the inconsistent events.

60

Experiments and Results

Figure 4.28: October wildfires - Frame +22 - Inconsistency details.

To confirm this, several minor tests were done. Utilizing different settings for
H-DBSCAN produced similar results, and no concrete cause was found from de-
bugging the various components of our module.

After going through all the events within several map frames, we found that
this same issue was not present in any of the remaining events. This was tested
by assigning different unused colour labels to unique district names, so that ev-
ery event labeled with a certain district name would be coloured uniquely. This
made any inconsistency easy to spot. Another interesting result was that other
island events were clustered properly, and that this did not happen when the "ap-
proximate predict" clustering function was used while injecting the submissions
manually.

This issue was then solved by duplicating the submissions which caused this in-
consistency. By duplicating submissions 128, 1272, and 4820, they either became
standard events within their correct area or correctly joined preexisting events.
We can see that the event within the island is now correctly made up of submis-
sions 5065, 5062, and 5048 (see Figure 4.29), and submission 128 became an event
in Portalegre (see Figure 4.30).

61

Figure 4.29: October wildfires - Frame +22 - Inconsistencies fix in blue.

Figure 4.30: October wildfires - Frame +22 - Inconsistencies, second fixed event.

62

Experiments and Results

Due to these results, it was finally concluded that this was indeed a density outlier
caused by the H-DBSCAN algorithm, and that to be solved without compromis-
ing the remaining results, one would likely need to either use a more limiting
approach to clustering, such as applying clustering on an administrative division
level, or use a manual form of event assignment for these outliers. The inconsis-
tent dates in the fixed events were due to testing using the machines’ date rather
than the October datasets’ date and did not influence results.

Final Thoughts on the Module Prototyping

At the end of our prototyping phase, we came to the conclusion that the mod-
ule could effectively meet all the requirements set in the context of our research
project. All three main components, data correlation, data fusion, and data vi-
sualization, worked as intended, and produced acceptable results. Various sub-
missions made up of heterogeneous data at different levels of completeness were
collected from social media and made into the October wildfires dataset. This
data was promptly processed and handled by the Clustering and Data Fusion
components, and turned into consistent, accurate and easy-to-analyze events.
These were then plotted in an interactive map through Folium, displaying all the
relevant data of each individual event. Three inconsistent events were spotted,
within a total of 1160 events. These inconsistencies were then corrected.

During this final testing, some new features were theorised throughout the use
and testing of the module. These included what features could be made more
efficient or accurate, or what could be easier to use at the human level. Some
of these could not be implemented for various reasons, but would be interesting
updates to increase efficiency and user-friendliness. These were added to the final
chapter of this document. Those that were added included improvements of the
way data is displayed within an events’ popup box, optimization improvements
when running the module, as well as new features such as the removal of inactive
events. New features were added to and elaborated in the second half of the
Development Process chapter (Second Development Iteration).

63

Chapter 5

Conclusion

It is of the utmost importance that critical systems such as those used for disaster
response are not neglected or allowed to become obsolete. One way to avoid this
is to complement these systems with new, modular technology. FireLoc seeks to
complement these systems with modern tech, allowing the use of mobile phone
systems and their own app to receive crowd-sourced submissions of people near
the location of disasters. This would bring a breathe of fresh air to the true and
tested, yet aging response systems.

Handling submissions of heterogeneous data to create something that can be
used by the authorities requires a processing step which is not yet implemented
within FireLoc, however. This is the goal of this thesis: to create a module that
manages the processing, validation, and aggregation of data that results from the
analysis of crowd-sourced submissions done by the FireLoc system.

Through the research done during the writing of the State of the Art, we became
convinced that the best approaches to reach the goals we were given for this
research project were techniques involving Data Fusion and Clustering. These
techniques have many variations, and thus we focused ourselves on those that
appeared most common on problems of similar nature. We found these to be Den-
sity Clustering (DBSCAN, OPTICS) and Centroid Clustering (K-means). When it
came to the process of Data Fusion, a mixed approach was theorized, utilizing
both concepts of medium and high level Data Fusion.

Through the first implementation of these techniques, it became clear that it was
possible to obtain acceptable results through all of them. Knowing this, further
tests were done to find out which ones created the most reliable output, based
on the circumstances of the theme of the project, that is, wildfires. This meant
higher standards in the level of accuracy and consistency of the results. From
these results, it was decided to use H-DBSCAN for the first step of data grouping.
This was due to the fact that H-DBSCAN produced the least noise per number of
points, with the best tolerance for varying density, or in other words, because it
allowed the most optimal exploration of the dataset.

The final iteration had the H-DBSCAN implementation for the FireLoc input
completed, as well as a fully working Data Fusion implementation, capable of

65

processing all the data expected by FireLoc. In conjunction with the Folium im-
plementation, these three main components formed the new contribution mod-
ule, which was promptly put through assessment and testing.

An analysis was done to the results of the various tests applied to the module,
both through the October Fires dataset, as well as the datasets that were pseudo-
randomly generated based on real-life data. We found that, while further ad-
justments of the various variables of the clustering and data fusion algorithms
could result in better outputs, the module reliably produced outputs which met
our expectations. All of its’ various components behaved as expected, and within
appropriate computational run-times.

The main difficulty encountered throughout this project was the lack of a fully
complete, accurate and modern dataset which could be used for testing and pro-
totyping purposes. The October fires dataset was hindered by the fact that it was
6 years old at this point, which caused trouble when testing age-based variables
and how they reacted to our data fusion approach. Large portions of data had to
be generated. Nonetheless, the module still worked as intended and produced
the expected results.

Our testing and prototyping phase, along with the rest of the work done through-
out this research project, showed us that our module has high potential when
it comes to the context of monitoring of wildfires using crowd-sourced submis-
sions. Data Clustering and Fusion proved to be extremely useful when it came to
generating data that would be useful to the authorities. On top of this, the module
also allowed for this data to be succinctly displayed, allowing for quick analysis
of individual pieces of data. Effectively, the module performed as expected both
in real-time and simulation situations.

5.1 Contributions

The work done throughout the span of this research project resulted in the fol-
lowing contributions:

• The state-of-the-art and background research documentation describing the
focus of our research and the various techniques considered for this project;

• A functional and automated data aggregation module, capable of working
both as an integration to FireLoc system, as well as in a stand-alone mode;

• Test results of the application of this module when using the October Fires
of 2017, which took place in Portugal, as well as the synthetic datasets;

• Suggestions on improvements to be done to this module or any future works
basing themselves on it.

66

Conclusion

5.2 Future Work and Suggestions

The module which has been developed so far still has room for improvement.
At the time of integrating the module with the FireLoc system, specific tweaks
to how the module functions are called can be made to optimize efficiency, such
as focusing more on clustering variables to existing clusters or re-clustering the
entire current dataset. This is the same for the modules’ default values, such
as the clustering variable initialization, variable weights, and age decay limits.
Truly optimal values will always need more real-world testing, which were not
possible in a lab environment.

Algorithm Updates

New Clustering algorithms are being developed at the time of writing this doc-
ument. These include stream-clustering algorithms, such as IOptics or Online
DBSCAN. The fact these algorithms are built around the concept of clustering
real-time streams of data can make them better options over the algorithms which
were available at the time (in theory). When it comes to the data clustering com-
ponent of the module, this would be the most optimal upgrade.

Additional algorithms or functions can be created to further help confirm inci-
dent placement within areas of interest. This includes, for example, an algorithm
that compares the received coordinates and location-related text with a database
of coordinates of all existing districts and parishes. This would then return a like-
lihood of belonging to certain areas, rather than basing the likelihood entirely on
user-submitted data. Limiting clustering areas is also another option. By divid-
ing the area of interest (Portugal, in our case) in smaller sectors, one can limit
where clusters are formed to a degree, and thus avoid unwanted clusters in spe-
cific sectors, or even avoid the mixing of outliers with general data. A custom
density-based clustering algorithm could also be created just for the context of
the FireLoc system, but this would make the module less universal and would
need to be further researched for viability.

Data Visualization Updates

Data visualisation also has room for improvement, by utilizing Folium in a more
integrated way. ipWidgets could be used to upgrade the interface and add more
features to the map. For example, the ability to go back in time through a date
slider would certainly be useful for logging purposes. Implementing this would
require access to older map versions, which is already implemented in the current
module version. Changing icons based on the keywords within an incident is
also another option (i.e. changing a default icon to a barrel or explosion icon)
These upgrades, however, may prove to be redundant due to the fact that FireLoc
already has an interface module, so it remains to be seen how much of our Folium
implementation will be used in the final integrated version of the module.

The events, as they are, are also only identifiable by a numeric ID, a new al-

67

gorithm that assigns a dynamic name to each event could be created, assign-
ing names based on the events’ region and or hazard data. This would make
events easier to understand by users at a conversation level, i.e., something such
as "North-Mafra rekindling" rather than "event ID316". Deleting or labeling an
event as over would also be an useful feature, but would require additional effort
in the GUI component. This would likely be redundant due to the module being
integrated within FireLoc, which has its own interface.

68

References

Abdulhafiz, Waleed, Khamis, & Alaa. (2013, 01). Handling data uncertainty and
inconsistency using multisensor data fusion. Advances in Artificial Intelligence,
2013. doi: 10.1155/2013/241260

Afyouni, Imad, Khan, Aamir, Aghbari, A., & Zaher. (2022, 06). Deep-eware:
spatio-temporal social event detection using a hybrid learning model. In
(Vol. 9). doi: 10.1186/s40537-022-00636-w

AlindGupta. (2023, Jan). Ml: Optics clustering explanation. GeeksforGeeks.
Retrieved from https://www .geeksforgeeks .org/ml -optics -clustering
-explanation/ ([Accessed 03-Apr-2023])

Anwar, Muchamad, Hadikurniawati, W., Winarno, Edy, Supriyanto, & Aji. (2019,
11). Wildfire risk map based on dbscan clustering and cluster density evalua-
tion. Advance Sustainable Science, Engineering and Technology, 1. doi: 10.26877/
asset.v1i1.4876

Becca_R. (2019). Data Visualization with Python Folium Maps — towardsdata-
science.com. https://towardsdatascience.com/data-visualization-with
-python-folium-maps-a74231de9ef7. ([Accessed 21-May-2023])

Ben-Gal, & Irad. (2008). Bayesian networks. In Encyclopedia of statistics in qual-
ity and reliability. John Wiley & Sons, Ltd. doi: https://doi .org/10 .1002/
9780470061572.eqr089

Cardoso, A., Fonte, C., Estima, J., de Almeida, J. P., & Patriarca, J. (2021). The
FireLoc Project: Identification, Positioning and Monitoring Forest Fires with
Crowdsourced Data. In The FireLoc Project: Identification, Positioning and Moni-
toring Forest Fires with Crowdsourced Data.

Cerezo-Costas, H., Fernández-Vilas, A., Martín-Vicente, M., & P. Díaz-Redondo,
R. (2018). Discovering geo-dependent stories by combining density-based clus-
tering and thread-based aggregation techniques. Expert Systems with Applica-
tions, 95, 32-42. doi: https://doi.org/10.1016/j.eswa.2017.11.019

Chatzichristos, C., Van Eyndhoven, S., Kofidis, E., & Van Huffel, S. (2022). Chap-
ter 10 - coupled tensor decompositions for data fusion. In Y. Liu (Ed.), Ten-
sors for data processing (p. 341-370). Academic Press. Retrieved from https://
www.sciencedirect.com/science/article/pii/B9780128244470000169 doi:
https://doi.org/10.1016/B978-0-12-824447-0.00016-9

69

https://www.geeksforgeeks.org/ml-optics-clustering-explanation/
https://www.geeksforgeeks.org/ml-optics-clustering-explanation/
https://towardsdatascience.com/data-visualization-with-python-folium-maps-a74231de9ef7
https://towardsdatascience.com/data-visualization-with-python-folium-maps-a74231de9ef7
https://www.sciencedirect.com/science/article/pii/B9780128244470000169
https://www.sciencedirect.com/science/article/pii/B9780128244470000169

Cheng, C. (2022). Principal Component Analysis (PCA) Explained Visually with
Zero Math — towardsdatascience.com. https://towardsdatascience .com/
principal-component-analysis-pca-explained-visually-with-zero-math
-1cbf392b9e7d. ([Accessed 03-May-2023])

Dey, D. (2023, Jan). Dbscan clustering in ml: Density based clustering.
GeeksforGeeks. Retrieved from https://www .geeksforgeeks .org/dbscan
-clustering-in-ml-density-based-clustering/ ([Accessed 08-Jan-2023])

Floudas, Nikos, Polychronopoulos, Aris, Aycard, Olivier, . . . Malte (2007). High
level sensor data fusion approaches for object recognition in road environment.
In 2007 ieee intelligent vehicles symposium (p. 136-141). doi: 10.1109/IVS.2007
.4290104

Gao, Jun, Murphey, Yi, Zhu, & Honghui. (2019, 12). Personalized detection of
lane changing behavior using multisensor data fusion. Computing, 101. doi:
10.1007/s00607-019-00712-9

GeeksforGeeks. (2023, Jan). K means clustering - introduction. Author. Retrieved
from https://www.geeksforgeeks.org/k-means-clustering-introduction/
([Accessed 08-Jan-2023])

Huang, Che-Wei, Narayanan, & Shrikanth. (2016). Comparison of feature-level
and kernel-level data fusion methods in multi-sensory fall detection. In 2016
ieee 18th international workshop on multimedia signal processing (mmsp) (p. 1-6).
doi: 10.1109/MMSP.2016.7813383

Huang, Yuqian, Li, Yue, Shan, & Jie. (2018). Spatial-temporal event detection
from geo-tagged tweets. ISPRS International Journal of Geo-Information, 7(4). doi:
10.3390/ijgi7040150

Karanja, S. (2016). Density-based cluster analysis of fire hot spots in kenya’s
wildlife protected areas. In Density-based cluster analysis of fire hot spots in kenya’s
wildlife protected areas.

Kashinath, Ariffin, S., Mostafa, A., S., Mustapha, Aida, . . . Jhon, T. (2021a). Re-
view of data fusion methods for real-time and multi-sensor traffic flow analy-
sis. IEEE Access, 9, 51258-51276. doi: 10.1109/ACCESS.2021.3069770

Kashinath, Ariffin, S., Mostafa, A., S., Mustapha, Aida, . . . Jhon, T. (2021b). Re-
view of data fusion methods for real-time and multi-sensor traffic flow analy-
sis. IEEE Access, 9, 51258-51276. doi: 10.1109/ACCESS.2021.3069770

Khaleghi, B., Khamis, A., Karray, F. O., & Razavi, S. N. (2013). Multisensor data
fusion: A review of the state-of-the-art. Information Fusion, 14(1), 28-44. doi:
https://doi.org/10.1016/j.inffus.2011.08.001

LEDU, & Ecosystem, E. (2018, Sep). Understanding k-means clustering
in machine learning. Towards Data Science. Retrieved from https://
towardsdatascience.com/understanding-k-means-clustering-in-machine
-learning-6a6e67336aa1 ([Accessed 08-Jan-2023])

70

https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1
https://towardsdatascience.com/understanding-k-means-clustering-in-machine-learning-6a6e67336aa1

References

Li, Xiao, Saidutta, Malur, Y., Fekri, & Faramarz. (2021, 07). Social event planning
using hybrid pairwise markov random fields. International Journal of Intelligent
Systems, 36. doi: 10.1002/int.22569

Marek, Lukas, Pászto, Vít, Tucek, Pavel, . . . Jiří (2014, 04). Spatial clustering
of disease events using bayesian methods. In Spatial clustering of disease events
using bayesian methods (Vol. 1139).

McInnes, L., Healy, J., & Astels, S. (2016). How hdbscan works. https://hdbscan
.readthedocs.io/en/latest/how_hdbscan_works.html. ([Accessed 01-May-
2023])

Mohanty, & Arup. (2021). Impacts of climate change on human health and agri-
culture in recent years. In 2021 ieee region 10 symposium (tensymp).

Oladimeji, O., M., Turkey, Mikdam, Ghavami, Mohammad, . . . Sandra (2015).
A new approach for event detection using k-means clustering and neural net-
works. In 2015 international joint conference on neural networks (ijcnn) (p. 1-5).
doi: 10.1109/IJCNN.2015.7280752

Pham, D., Ruz, & Gonzalo. (2009, 09). Unsupervised training of bayesian net-
works for data clustering. Proceedings of The Royal Society A Mathematical Physi-
cal and Engineering Sciences, 465, 2927-2948. doi: 10.1098/rspa.2009.0065

Reock, & KinsbrunerandJustin, E. (2020, Jan). The evolution of smartphones - and
web technology development. Perfecto.io. Retrieved from https://www.perfecto
.io/blog/evolution-of-smartphones-web

Saffari, E., Yildirimoglu, M., & Hickman, M. (2022). Data fusion for estimating
macroscopic fundamental diagram in large-scale urban networks. Transporta-
tion Research Part C: Emerging Technologies, 137, 103555. doi: https://doi.org/
10.1016/j.trc.2022.103555

Schmitt, Michael, Zhu, & Xiao. (2016, 12). Data fusion and remote sensing –
an ever-growing relationship. IEEE Geoscience and Remote Sensing Magazine, 4,
6-23. doi: 10.1109/MGRS.2016.2561021

Siemens. (2021). https://new.siemens.com/global/en/company/stories/industry/ai-
in-industries.html. In Ai and industry 4.0. ([Accessed 05-Jan-2023])

Smolinska, A., Engel, J., Szymanska, E., Buydens, L., & Blanchet, L. (2019).
Chapter 3 - general framing of low-, mid-, and high-level data fusion with
examples in the life sciences. In M. Cocchi (Ed.), Data fusion methodology
and applications (Vol. 31, p. 51-79). Elsevier. doi: https://doi.org/10.1016/
B978-0-444-63984-4.00003-X

Song, Ran, Liu, Yonghuai, Martin, Ralph, . . . Paul (2010, 11). Markov random
field-based clustering for the integration of multi-view range images. In Markov
random field-based clustering for the integration of multi-view range images (p. 644-
653). doi: 10.1007/978-3-642-17289-2_62

71

https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html
https://www.perfecto.io/blog/evolution-of-smartphones-web
https://www.perfecto.io/blog/evolution-of-smartphones-web

Soua, Ridha, Koesdwiady, Arief, Karray, & Fakhri. (2016a). Big-data-generated
traffic flow prediction using deep learning and dempster-shafer theory. In 2016
international joint conference on neural networks (ijcnn) (p. 3195-3202). doi: 10
.1109/IJCNN.2016.7727607

Soua, Ridha, Koesdwiady, Arief, Karray, & Fakhri. (2016b). Big-data-generated
traffic flow prediction using deep learning and dempster-shafer theory. In 2016
international joint conference on neural networks (ijcnn) (p. 3195-3202). doi: 10
.1109/IJCNN.2016.7727607

Suliga, M., Deklerck, R., & Nyssen, E. (2008). Markov random field-based cluster-
ing applied to the segmentation of masses in digital mammograms. Computer-
ized Medical Imaging and Graphics, 32(6), 502-512. doi: https://doi.org/10.1016/
j.compmedimag.2008.05.004

Texier, Gaëtan, Allodji, S., R., Diop, Loty, . . . Hervé (2019, Mar 05). Using decision
fusion methods to improve outbreak detection in disease surveillance. BMC
Medical Informatics and Decision Making, 19(1), 38. doi: 10.1186/s12911-019-0774
-3

Tse, Rina, Ahmed, Nisar, Campbell, & Mark. (2015, 04). Unified terrain mapping
model with markov random fields. Robotics, IEEE Transactions on, 31, 290-306.
doi: 10.1109/TRO.2015.2400654

Wang, Chaohui, Komodakis, Nikos, Paragios, & Nikos. (2013). Markov Random
Field Modeling, Inference & Learning in Computer Vision & Image Under-
standing: A Survey. Computer Vision and Image Understanding, 117(11), 1610-
1627. doi: 10.1016/j.cviu.2013.07.004

Wang, C., Zhu, Q., Shan, Z., Xia, Y., & Liu, Y. (2014). Fusing heterogeneous traffic
data by kalman filters and gaussian mixture models. In 17th international ieee
conference on intelligent transportation systems (itsc) (p. 276-281). doi: 10.1109/
ITSC.2014.6957704

Wei, Yupeng, Wu, Dazhong, Terpenny, & Janis. (2021). Decision-level data fusion
in quality control and predictive maintenance. IEEE Transactions on Automation
Science and Engineering, 18(1), 184-194. doi: 10.1109/TASE.2020.2964998

Widianto, H., Mochammad, Sudirman, Ivan, Awaluddin, & Muhammad. (2020,
08). Application of density based clustering of disaster location in realtime
social media. TEM Journal, 929-936. doi: 10.18421/TEM93-13

Yang, Junjia, Wang, Shijun, Na, Xuezhu, . . . Yang (2019). A weighted data fusion
method in distributed multi-sensors measurement and control system. In 2019
6th international conference on information science and control engineering (icisce)
(p. 654-658). doi: 10.1109/ICISCE48695.2019.00135

Zhang, P., Rui, L., Qiu, X., & Shi, R. (2016). A new fusion structure model for real-
time urban traffic state estimation by multisource traffic data fusion. In 2016
18th asia-pacific network operations and management symposium (apnoms) (p. 1-6).
doi: 10.1109/APNOMS.2016.7737227

72

References

Zhao, Yize, Chang, Changgee, Hannum, Margaret, . . . Ronglai (2021, 03).
Bayesian network-driven clustering analysis with feature selection for high-
dimensional multi-modal molecular data. Scientific Reports, 11. doi: 10.1038/
s41598-021-84514-0

Zhu, Lin, Guo, Fangce, Polak, John, . . . Rajesh (2017, 01). Multisensor fusion
based on data from bus gps, mobile phone, and loop detectors in travel time
estimation. Computing.

73

	Abstract
	Introduction
	The FireLoc Project
	Goals of this Project
	Contributions of this Project
	Document Structure

	Background and State of the Art
	Methods for Data Correlation
	Low Level Data Fusion
	Medium Level Data Fusion
	High Level Data Fusion

	Methods for the Intelligent Component
	Customized Approaches to Clustering
	Standard Clustering Techniques

	Methods for Data Visualisation
	Summary on the State of the Art

	Development Process
	Early Work and First Development Iteration
	Dataset Generation
	Clustering Methodologies
	Data Fusion Procedure
	Plotting and Mapping of Data

	Second Development Iteration
	October Dataset Generation and Dataset C
	Utilizing H-DBSCAN Clustering
	Improving the Data Fusion Procedure
	Improving Data Visualization through Folium

	Experiments and Results
	Synthetic Data Results
	Initial Algorithm Testing & Selection
	Discussion on the Results of the First Iteration
	Module Development and Prototyping Tests
	Discussion on the Results of Module Prototyping

	Real-World Data Results
	Preparing the Experiment
	Running the Experiment
	Results and Discussion of the Experiment

	Conclusion
	Contributions
	Future Work and Suggestions

	References

