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Abstract

The role of social robots has enhanced relevance in modern societies. The interaction

with humanoid robots proved to be extremely helpful and empowered on multiple levels

while interacting with children, with a therapeutic function to improve social, educa-

tional, and learning skills by mimicking human behaviour and encouraging activities. The

robots can also be a useful tool in the mitigation of negative states and behaviours dur-

ing therapeutic sessions with specialists, such as psychologists. In this sense, engagement

recognition of the child while performing a task with the robot is fundamental to evaluate

whether the child is interested, and maintains interest, in the child-robot activity.

This work focuses on the development of an engagement classification system based on

emotion recognition through facial expression, which hopefully will be useful to online and

offline analysis of therapy sessions. For this purpose, the emotion classification was de-

veloped based on CNN architectures fed by children’s image faces provided from different

datasets (EmoReact, FER2013, and CAFE datasets), and two methods of engagement

classification were explored. Method-1 relies on emotion classification to infer the levels of

engagement based on the direct relationship between levels of engagement and emotions,

whereas Method-2 employs the same network of Method-1 to directly classify four classes

of engagement. The affective model proposed by [1] is used to relate emotions and engage-

ment. Method-1 performs better than Method-2, achieving a accuracy of 88.14%.

A child-robot activity, based on the NAO humanoid robot, was designed with the assis-

tance of Professor Carlos Carona, professor at the Faculty of Psychology of University of

Coimbra, with the initial phase focusing on engaging the child with dances and motions,

followed by a breathing-based relaxation exercise.

Preliminary results with three children performing the child-robot activity, and the

offline use of the engagement classification system, showed promising results and can be

further explored and implemented in psychology areas in the future.

iii



Keywords: Engagement Classification, Emotion Recognition, Convolutional Neural

Networks, NAO Robot

iv



Resumo

O papel dos robôs sociais tem aumentado a sua relevância na sociedade moderna. A

interação com os robôs humanóides provou ser extremamente útil e capacitada a vários

ńıveis enquanto interagem com crianças, com uma função terapêutica para melhorar as

competências sociais, educacionais e de aprendizagem, imitando o comportamento humano

e encorajando atividades. Os robôs podem também ser uma ferramenta útil na mitigação

de estados e comportamentos negativos durante sessões terapêuticas com especialistas, tais

como psicólogos. Neste sentido, o reconhecimento do envolvimento da criança enquanto

executa uma tarefa com o robô é fundamental para avaliar se a criança está interessada, e

mantém o interesse, na actividade do robô criança.

Este trabalho concentra-se no desenvolvimento de um sistema de classificação do envolvi-

mento baseado no reconhecimento de emoções através da expressão facial, que esperamos

que seja útil para a análise online e offline de sessões terapêuticas. Com este porpósito,

a classificação das emoções foi desenvolvida com base em arquitecturas CNN alimentadas

por imagens faciais de crianças provenientes de diferentes conjuntos de dados (EmoReact,

FER2013 e CAFE datasets) sendo explorados dois métodos de classificação do envolvi-

mento. O Método-1 depende da classificação das emoções para inferir diretamente os

ńıveis de envolvimento com base na relação direta entre os ńıveis de envolvimento e as

emoções, enquanto que o Método-2 aplica a mesma rede do Método-1 para classificar di-

rectamente quatro classes de envolvimento. O modelo afectivo proposto por [1] é utilizado

para relacionar as emoções e o envolvimento. O Método-1 funciona melhor que o Método-

2, alcançando uma boa precisão de 88.14%.

Uma atividade criança-robô, baseada no robô humanóide NAO, foi concebida com a

assistência do Professor Carlos Carona, Professor na Faculdade de Psicologia da Univer-

sidade de Coimbra, com a fase inicial centrada no envolvimento da criança com danças e

movimentos, seguida de um exerćıcio de relaxamento baseado na respiração.

Resultados preliminares com três crianças da realização da atividade criança-robô e

da utilização offline do sistema, mostrou resultados promissores que poderão vir a ser

explorados e implementados em áreas da psicologia no futuro.
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1 Introduction

This chapter describes the context and motivation, goals, proposed general framework

and main contributions of the work described in this dissertation, focusing on child-robot

interaction and how to recognise whether the child is engaged in the task/activity with a

robot.

1.1 Context and motivation

In recent times the role of social robots has enhanced relevance in society. They proved

to be extremely helpful and empowered on multiple levels while interacting with children

[9][10]. Frequently, they have a therapeutic function to improve social, educational, and

learning skills by mimicking human behaviour and encouraging activities. The robots

can be a useful tool for improving communication, providing positive stimulation through

entertainment and therapy, and contributing to the mitigation of negative states and

behaviours during the therapeutic sessions with specialists such as psychologists.

In a relationship between a child and, in this case, a robot, one of the main difficulties is

to gain and keep the child’s attention and focus in a certain task. Therefore, in therapeutic

tasks based on child-robot interaction, it is important to find out if the child maintains

interest in the robot’s activity and cooperates with it.

The ability to recognise emotions leads to the development of social skills and effective

communication, and is vital for perception and decision-making [11]. In the research work

presented in this dissertation, recognising a person’s emotion based on the facial expression

is considered as an ideal starting point for inferring their level of engagement with the robot

activity, since it is a reliable predictor of how a person (in this case a child) is feeling.

The research work described in this dissertation may also contribute as a supplementary

assessment tool to be used technical specialists, such as psychologists, after therapeutic

sessions, to determine whether the child was engaged and attentive during the therapy

session and robot activity. In the future, it will be advantageous to capture the child’s

engagement in real time so that the robot may adjust its behaviour to the child’s engage-

ment level, and emotional state.

To reach the intended goals, that will culminate in the design of effective child-robot

1



applications, the work described in this dissertation faces multiple research challenges. Al-

though many progresses have been made in the child-robot interaction field in recent years

[12][13][14], there are still many open questions remaining, such as: i) During the design

of effective robot therapy applications, which type of sensing allows effective perception of

child engagement in the robot task? ii) How can effective Deep Learning (DL) methods

for automatic engagement perception can deal with limited and unbalanced resources in

terms of available data; iii) Which features should be considered to accurately perceive

engagement?

It is intended that the work carried out within the scope of this dissertation will help

to respond to some of these problems. A child-robot activity, using a humanoid robot

NAO, is proposed with the primary goal of researching and using Machine Learning (ML)

techniques (methods based on Convolutional Neural Networks (CNN)) for recognising the

level of engagement, based on the recognition of emotions by using facial expressions of a

child performing a task with the humanoid robot.

1.2 Goals and proposed general framework

The main purpose of this dissertation was to design and develop a classification engage-

ment system to be employed as an auxiliary tool during a therapeutic child-robot activity.

The global framework presented in Fig.1.1 can be decomposed into four principal mod-

ules, which represent the four main objectives of this dissertation, in particular: (1) -

Datasets - to research and establish representative sets of data to be used in training,

test and validation of the proposed engagement classification system; (2) - Engagement

classification system - to research and develop appropriate methodologies of engagement

classification based on deep learning techniques, in particular CNNs; (3) - The child robot

activity - to research and develop a child-robot activity that could be used in thera-

peutic settings; (4) - Recorded experimental tests - acquisition of video images during

child-robot-activity experimental setting for further offline analysis and validation of the

proposed engagement classification methodology.

An engagement classification system as the one depicted in Fig. 1.1 requires a large

amount of data, so a representative dataset of emotions was selected and pre-processed to

serve as the input dataset.

The engagement classification system was developed using CNN that were fed with

images of children’s facial expressions. Two strategies were explored using CNNs: In the

first approach, illustrated in Fig.1.2, the CNN received seven classes of images of children’s

facial expressions as input and returned an emotion-based prediction from which four levels

of engagement could be directly inferred based on the affective model [1]. On the second

approach, illustrated in Fig.1.3, the CNN received the direct inference of the engagement
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level based on the affective model [1] as an input, and returned the four engagement classes.

In both approaches, a training and a testing phase were necessary. During the training

phase, the feature extraction and classification module is trained on a labelled training

dataset. During the testing phase, the classification accuracy of the model is determined

by testing it on a labelled testing set. The training and testing are both subsets of the

same dataset.

The child-robot activity, based on the NAO humanoid robot, was designed with the

assistance of a psychology professor at the University of Coimbra, Carlos Carona, with

the initial phase focusing on engaging the child with dances and motions, followed by a

breathing-based relaxation exercise.

The child-robot activity proposal and the engagement classification system were vali-

dated by three children aged 5, 6, and 7 years. A camera on a mobile phone was used

to record the interactions between the robot and the children, and this data was then

pre-processed and fed into the engagement classification model.

Figure 1.1: Proposed Engagement Classification Framework.
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Figure 1.2: Engagement Classification System - Method-1.

Figure 1.3: Engagement Classification System - Method-2.
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1.3 Implementation and Key Contributions

To accomplish the proposed engagement classification framework, the following key con-

tribution were attained:

1. Selection, analysis and pre-processing of three public datasets: EmoReact (children

video dataset with 8 emotions); FER2013; and CAFE datasets;

2. Evaluation of different CNN architectures using the three datasets mentioned in 1),

such as ResNet18, ResNet50, VGG16, ResNeXt50, and ConvNeXt, with variations

on different parameters, aiming to choose the architecture with the best performance

in classifying emotions;

3. Design and development of an engagement classification system employing the CNN

with best performance in 2), and using two different approaches to infer engagement

levels based on an affective model [7] that relates emotions with engagement;

4. Design of a child-robot activity with the guidance of a psychology therapist professor

of the Psychology Faculty of the University of Coimbra;

5. Experimental results with three children that validate the effectiveness of the pro-

posed child-robot activity;

6. Acquisition of child-robot activity data for posterior evaluation of the engagement

classification system using data from the recorded videos.

1.4 Dissertation Organization

The dissertation is organised into six chapters as follows:

• Background Material (Chapter 2): Contains the theoretical concepts necessary

to understand the proposed engagement classification system frameworks;

• State-of-the-Art (Chapter 3): Review of the most pertinent State-of-the-Art

publications on detecting and classifying engagement and its use in robotherapy;

• Materials and Methods (Chapter 4): Describes the software and hardware used

to achieve the objectives of the work described in this dissertation;

• Developed Work (Chapter 5): Describes dataset pre-processing as well as the

research and development methodologies for each component of the proposed classi-

fication engagement system and child-robot activity;

• Results and Discussion (Chapter 6): Analysis of the experimental outcomes

collected throughout the development of the engagement classification system;

• Conclusion and Future Work (Chapter 7): Draws conclusions and discusses

possible future work.
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2 Background Material

This chapter addresses fundamentals of DL, CNN, and other important theoretical

topics applied in this dissertation.

2.1 Deep Learning

DL is a ML subset embedded in Artificial Intelligence (AI) that enables computers

to do what comes naturally to people, namely, operate like a human brain and acquire

specific knowledge. For that, they are composed of multilayered neural networks that

learn from huge amounts of data. DL is a significant component of data science, which

also covers statistics, predictive modelling, speech recognition [15], computer vision [16],

natural language processing [17] and solve tasks like classifications [18] among others.

2.1.1 Convolutional Neural Networks

CNNs [2][19] are a type of neural network that are also based on the human brain. In

particular, they are based on the visual cortex of a cat’s brain, which is a complex set of

cells that the CNN mimics. CNNs are mostly used for image classification and pattern

identification within images, and their primary advantage is their capacity to identify

relevant features without human interference.

Supervised learning was employed to train computer models for image processing and

classification using a CNN, consisting on an approach that uses training datasets composed

of labelled examples. Computing with appropriate label data target aims to teach the

algorithm to classify unlabelled data based on its training with labelled data. The CNN

model uses a three-dimensional input with height, width, and depth, and its primary layers

are convolutional layers, pooling layers, and fully connected layers, which are described in

more detail below.
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Figure 2.1: A simple CNN architecture (adapted from [2][3]).

Convolutional Layers

The initial layers of a CNN are convolutional layers [2][3] that work as feature extractors

provided its ability to extract high-level features from input data. Each layer conducts

a convolution between its input and a particular kernel. The convolution procedure is

carried out by superimposing the kernel on the input image and calculating the dot product

between the pixel values and the kernel’s weights.

Nonetheless, before explaining what occurs in these layers, it is important to understand

kernel, stride, and padding, among other crucial parameters. The kernel is characterised

by a grid of discrete values designated kernel weights. At the start of the CNN training

method, the kernel’s weights are initialised at random and are adjusted during the training

phase, being a learnable parameter. For each iteration of the kernel, the data is shifted by

a certain number of rows or columns, called the stride. Zero-padding is the straightforward

process of padding the input’s border, and it is an efficient approach for providing further

control over the output volumes’ dimensions.

The convolutional layer performs a dot product between the input image and the kernel.

The kernel has a smaller height and width than the height and width image, but the same

depth. For instance, if the picture is in RGB format, the kernel will also have three

channels.

During the forward pass, the kernel walks with a step equal to the stride size along

the image’s height and width. In addition, the dot product between the input image and

the kernel is determined, where their respective values are multiplied and then summed
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concurrently to provide a single scalar result. The entire procedure is then repeated until

sliding is no longer feasible. The results of dot product represents the feature map.

If we have an input of size [W × W × D] and a kernel with a spatial dimension of F,

stride S, and padding P, then the following formula may be used to compute the output

volume size (Wout):

Wout =
W − F + 2P

S
+ 1 (2.1)

Figure 2.2: An example of convolutional operation with an input image [4×4×1], a kernel

[2× 2× 1] and a stride of 1 in both axis (adapted from [4][3]).

Pooling Layers

The major purpose of pooling layers, which are applied after convolutional layers, is to

subsample the feature maps. This technique lowers large-scale feature maps to smaller-

scale feature maps. Similar to the convolutional technique, both the stride and the kernel

are assigned sizes before to the execution of the pooling process, and the majority of the

dominating information (or characteristics) are maintained at each iteration of the pooling

process.

There are several accessible pooling algorithms; however, the most used are the Maxi-

mum [20][21], Average [21], Global Average[22] and Adaptive Average [23] Pooling meth-

ods, which select the highest value, calculate the average of the region selected by the

kernel, or compute a weighted average based on the distance to the central element, re-

spectively. Adaptive Average Pooling is just an average pooling operation that calculates

the right kernel size based on the size of the input and the size of the output. With this

operation, the search space should become much easier to use and more expressive.
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Figure 2.3: An example of a max, average, and global average pooling operation with an

input feature map [4× 4× 1], a kernel [2× 2] and a stride of 2 in both axis (adapted from

[4][5]).

Fully Connected Layers

At the end of each CNN architecture is a Fully Connected (FC) layer [24]. Each neuron

in this layer is coupled to all neurons in the preceding layer and receives input from the

final pooling or convolutional layer. This input is a vector formed from the feature maps

after they have been flattened. CNN classification happens at this layer; hence, the output

of the FC layer provides the final CNN output.

Activation Function (AF)

Non-linear layers are generally placed right after the convolutional layer and FC layers

to bring non-linearity to the activation map and give them the capacity to learn extra-

complicated things. The input value is computed by adding the weighted sum of the

neuron’s input and its bias. This implies that the activation function determines whether

or not a neuron should activate in response to a certain input by generating the associ-

ated output. CNN and other deep neural networks most frequently employ the activation

functions Rectified Linear Units (ReLU) [25], Sigmoid [26], Hyperbolic Tangent (Tanh)

[26] and the more recently explored Gaussian Error Linear Units (GELU) [27], with cor-

responding graphics and equations shown in Fig. 2.4 and Fig. 2.5.
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Figure 2.5: Tanh and GELU Activation Functions, respectively.

Loss Function

Some loss functions are applied in the output layer of the CNN model to compute

the predicted error generated by the training data. This deviation reflects the disparity

between the label and the predicted output, or estimation.

The Cross-Entropy Loss Function [28] mathematically described in 2.2, one of the more

commonly used loss functions, is used to evaluate the CNN model’s performance. The

difference between the predicted and true probability distributions is computed, with the

true distribution represented by one-hot encoded labels.

Loss = −
n∑

i=1

ti log(pi) (2.2)

where n denotes the number of classes, ti denotes the ground truth label and pi denotes

the softmax probability for the ith class.

A Softmax Classifier is used for multi-class classification problems. The softmax function

is used to obtain the predicted probabilities for each class by computing the exponential
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of each input, normalising the results to obtain a probability distribution, and predicting

the class with the maximum probability.

Dropout and Stochastic Depth Technique

Dropout [29] is a commonly employed method of generalization. Throughout each train-

ing epoch, neurons are lost at random. In this manner, the feature selection power is di-

vided uniformly over the whole group of neurons, and the model is forced to learn different

independent features.

Stochastic Depth [30] aims to reduce the depth of a network during training, while

leaving it untouched during testing; it is a method for residual networks that removes

or deactivates residual blocks at random during training. This technique is similar to

dropout, except whereas dropout eliminates neurons, Stochastic Depth eliminates blocks

(roughly the layers of a residual network).

CNN Learning Process

A massive set of images labelled with their corresponding class labels, e.g. (sad, disgust,

happiness, fear, etc) is fed into the neural network during CNN training. The CNN begins

with random weights, and it processes each image with these random weights, before

making comparisons with the input image’s class label. If the output does not match the

class label, the CNN makes a small change to the weights of its neurons so that the output

will exactly match the class label image and this lowers the loss function.

Using a process called backpropagation[31], the values of weights are adjusted. Back-

propagation improves the tuning procedure and facilitates more precise changes. Each

training session of the picture dataset is referred to as an epoch. The learning rate is

defined as the parameter update step size. The training epoch is a complete repetition of

the parameter update, including the whole training dataset. Note that, although it is a

hyper-parameter, the learning rate must be chosen with care so that it does not impact

the learning process inaccurately.

The Gradient Descent or Gradient-Based Learning approach repeatedly modifies the

network parameters throughout each training session in order to reduce the training error.

To precisely update the parameters, the objective function gradient (slope) must be com-

puted using a first-order derivative with respect to the network parameters. To decrease

error, the parameter is then modified in the opposite direction of the gradient. Using

network back-propagation, the gradient at each neuron is back-propagated to all neurons

in the previous layer during the process of parameter updating. This procedure can be

resumed mathematically as follows:
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wijt = wijt−1 −∆wijt (2.3)

where,

∆wijt = η × δL

δwij
(2.4)

and wijt denotes the final weight in the present training epoch, whereas wijt−1 denotes

the weight in the previous t − 1 training period. The learning rate is η, and the error in

prediction (Loss) is L.

There are several variants of the gradient-based learning algorithm that are widely used,

including the following: Batch Gradient Descent, Stochastic Gradient Descent, Mini-Batch

Gradient Descent, Momentum, and Adaptive Moment Estimation (Adam).

During its training, CNN goes through a number of epochs, during which its weights

change by the right amount. After each epoch step, the neural network gets marginally

more accurate at identifying and accurately predicting the category of training pictures.

As the CNN gets better, the changes to the weights get smaller.

After training the CNN, its accuracy is validated using a test dataset. The test dataset

consists of labelled images that were omitted from the training procedure. CNN is fed

with each image, and the output is compared to the test image’s real class designation.

In essence, the test dataset analyses CNN’s prediction performance. If a CNN performs

well on its training data but poorly on its test data, this is referred to as overfitting. On

the other hand, an underfit model results when the model does not learn enough from

the training data. Justfitted refers to a model that performs well on both training and

testing data.

2.1.2 Fine-Tuning Transfer Learning

Deep CNN models need to be trained on a significant amount of data in order to achieve

satisfactory results while addressing a variety of classification problems. The absence of

sufficient training data is the most often encountered obstacle connected with the utilisa-

tion of such models. The Transfer Learning (TL) methodology [32] is consequently now

being used to overcome the problem of small datasets and tackling the problem of inade-

quate training data.

During its training, the DL network is exposed to a massive amount of data and also

learns the bias as well as the weights associated with each node. After that, these weights

are moved to various networks in order to retrain them or test a fresh model that is

comparable to the original. As a result, the cutting-edge approach makes it possible to

pre-train weights rather than necessitating training from the ground up.

A lot of CNN models, like VGG [33], ResNet [34] and ConvNeXt [35], have been trained
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on huge datasets like ImageNet [36] to recognise images. When there is not enough infor-

mation to go on, these models are very helpful in a number of ways. To start, training

large models on large datasets requires expensive processing power and is time-consuming.

Lastly, a model that has already been trained can make it easier for the network to become

more general and speed up the rate of convergence. As a result, TL eliminates the need

to start from scratch when learning how to perform a new task.

Resuming, there are two types of transfer learning [3]: (1) fine-tuning the whole pre-

trained network model so that the weights of every layer are optimised for the target

dataset; or (2) using the pre-trained network model as a feature extractor, where the

layers’ weights are frozen and are used as feature extractors while the last layers’ weights

are optimised for the target dataset, acting as classifiers.

Figure 2.6: An example of the conceptual TL technique (adapted from [5] [6]).

2.1.3 Data Augmentation Techniques

The best strategy to prevent the model from becoming over-fit to the data and to

get a decent generalisation is to train the model using a substantial quantity of data.

Data Augmentation (DA) [37] refers to the process by which we utilise certain artificial

techniques to increase the size of the training set in order to accomplish this goal. Some

examples of possible techniques include flipping the image both vertically and horizontally,

rotating it by a certain number of degrees, cropping the image, translating a few pixels,

injecting noise, and changing the colour space.
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3 State of Art

This chapter provides an overview of the most relevant works in Engagement Classi-

fication, being organised in five main sections: Robotherapy and Child-Robot Relation,

Engagement, Models to Detect Engagement Levels, Emotion Recognition, and Engage-

ment Recognition.

3.1 Robotherapy and Child-Robot Interaction

According to Lytridis et al. [38], the use of social robots in education has been a

key focus of robotics research in recent years. Numerous studies have demonstrated the

benefits of using robots as instructors or teaching assistants. These studies focus mostly

on activities in which the child interacts with the robot to attain a particular educational

or therapeutic objective. Children tend to be more interested in the educational process

when a robot is involved, which is the primary reason why robots in education are reported

to have a beneficial influence.

Robotherapy investigates possibilities and the impact of using robots in therapy sessions.

On sensory-motor, affective, cognitive, and social levels, Robotic Psychology examines the

compatibility between humans and robotic organisms. Robotherapy may be defined as a

framework of human–robotic creature interactions designed to rebuild a person’s bad ex-

periences via the development of coping methods, mediated by technological instruments,

in order to offer a platform for the creation of new positive life skills. These concepts are

addressed in the article Libin et al. [7].

From David et al. [39]’s perspective, interactive/social robots often have an anthropo-

morphic look or resemble animals and imagined entities, engaging with humans for different

objectives including educating, entertaining, and/or giving therapeutic assistance because

they can exhibit human-like behaviour or other social interaction capabilities. They can

be used as companions, for psychotherapy, or for physical and cognitive rehabilitation.

The same work suggests that robots might play one or more of the following functions in

robotherapy: Robo-Therapist, Robo-Mediator, and Robo-Assistant. The Robot-Therapist

role provides a new method for psychotherapy but not a new type of psychotherapy, as

their actions are specified and controlled by clinicians. The robots can essentially operate
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as psychotherapists and potentially fully replace them in their absence. This may be the

result of excessive costs, a lack of service providers, or the inability of psychotherapists to

attend to patients at all times. The Robot-Mediator acts when the classical psychothera-

peutic techniques cannot be applied to specific populations (e.g., when the clinical disorder

renders patients less sensitive to human interactions, such as in the case of autism spec-

trum disorder (ASD)) and/or the target population would respond better to a treatment

specifically implemented with a robotic mediating agent. The Robot-Mediator functions

as a specialised and required ”catalyst” that facilitates or accelerates therapeutic progress

by mediating the interaction between the therapist and his or her patients. Similar to

chemistry, if the catalyst is absent, the impact either does not occur or happens less ef-

fectively. In addition, the robot can serve as a motivator, making the intervention more

understandable and appealing. The robot facilitates the therapist’s role performance as

a Robot-Assistant. Psychotherapists employ robots to complement and/or facilitate their

traditional tactics during interventions. The robot is not required for psychotherapy, but

its use can facilitate or enhance conventional therapeutic procedures. In David et al. [39]

trial, the NAO robot was employed to cheer up young patients who required isolation in

sterile hospital rooms after receiving a bone marrow transplant. Even though only qual-

itative input was collected from children, medical professionals, and parents, the results

were largely favourable.

A few characteristics describe a robot friend as a good human companion, per Libin et

al. [8]: It mimics a natural (human or animal-like) activity. It models motor, emotional,

and cognitive behaviours commonly experienced by animals or people. It interacts with a

person on several levels: tactile–kinesthetic, sensory, emotional, cognitive, and social.

3.1.1 Child-Robot Activity

Hadfield et al. [40] proposed a child-robot interaction in their research work. They used

a NAO robot that approached one of a bricks and acted as if it were going to pick it up,

but was unable to do so. It attempted to attract the kid’s attention and induce the child

to hand over the brick through a sequence of gestures. These movements included pointing

at the brick, opening and closing its hand, shifting its attention between the child and the

block, and a combination of hand and head movements. If the child did not comprehend

the robot’s intent after a specific amount of time, the robot would proceed to ask the kid

vocally. After receiving the brick, the robot thanked the child and, at times, looked for

another brick to hold.

Rudovic et al. [41] implemented a NAO robot-assisted therapy for children with Autism

Spectrum Condition (ASC) that teaches them about emotional expressions. A therapist

uses pictures of facial and physical expressions of basic emotions (e.g., sadness, happiness,

and fear). The therapist next asks the youngster to identify the emotion displayed by
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the robot. The kid is then encouraged to mimic the robot’s facial expressions during the

mirroring stage. If the child is successful, the therapist advances to the next level by telling

a story and asking the kid to imagine how a robot would feel in a specific situation.

Javed et al. [42] used the Darwin Mini humanoid robot to explore five sensory stations

set up on a table, each of which presented a specific sensory stimulation to which the

robot responded interactively and in a social appropriate manner. In the seeing station:

The robot approaches a box with a lid that opens to reveal a flashlight shining in its

direction. The robot hides its eyes from the light by turning away. In the hearing station,

the robot approaches a speaker that begins to play music, and the robot starts to dance.

In the smelling station, the robot approaches a flowerpot, sniffs the flowers, and sneezes.

In the tasting station, the robot approaches two dishes holding various types of food. It

tastes one and expresses pleasure; then it tastes the other and expresses distaste. In the

last station, touching station, the robot approaches a soft red blanket and touches it to

indicate that it likes the blanket’s soft texture.

Feng et al. [43] used a NAO robot to guide an autistic child to perform an interaction

task. The interaction was as follows: first, upon detecting a kid, the robot changes its

posture towards the child and moves at a proper distance; second, the robot encourages the

child to communicate through language and action. Third, the engagement is evaluated,

and according to the result, the robot adapts its behavior. If the evaluation of engagement

reveals that the kid is interested, the robot will instruct him or her to replicate its actions.

If the outcome of the evaluation of engagement is neutral, the robot will enhance current

interactions and attempt to capture the kid’s attention. If the evaluation reveals aversion,

the robot will attempt to stimulate the child’s interest by speaking and behaving. If the

feeling of aversion persists for a predetermined amount of time, the robot will modify its

behaviour to comfort the kid.

The activities described above are summarised in the Table 3.1 and the Table 3.2 de-

scribes in generic terms the child-robot interaction, relating the needs with the benefits.

Figure 3.1 relates child-robot interaction with engagement recognition and subsequent

adaptation of the robot’s behaviour to the child using reinforcement learning, not covered

in this dissertation.
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Table 3.1: Child-Robot activities table.

Article Robot Activity

Hadfield et

al. [40]

NAO Robot The robot went up to one of the bricks and tried to pick it up, but it

couldn’t. It tried to get the child’s attention and get the child to hand

over the brick by making a series of gestures or by speaking if the child

did not comprehend the robot’s intent

Rudovic et

al. [41]

NAO Robot Robot-assisted therapy for autism that teaches children with ASC about

emotional expressions by encouraging them to mimic the robot’s facial

expressions during the mirroring stage

Javed et al.

[42]

Darwin Mini

Robot

The robot explored five sensory stations set up on a table, each of which

presented a specific sensory stimulation to which the robot responded

interactively and socially appropriately

Feng et al.

[43]

NAO Robot The robot guides the autistic kid to perform an interaction task by

imitating its actions

Table 3.2: Classification of Interactive Engaging Robots with Regard to Human Needs

and Benefits, adapted from [7][8]

Interactive Engaging Robot PERSON

Type Behavioural configuration Need Benefit

Social Robots Imitation of human

facial expressions

and complex gestures

with social meaning

or modelling basis

emotional states and

life-like behaviours

To provide company Communication and

companionship

Educational

Robots

To entertain Enrichment of learn-

ing skills

Robots with ther-

apeutics potential

To alleviate negative men-

tal states and psychological

dysfunction

Therapy of negative

states and behaviours
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Figure 3.1: Child-Robot Interaction.

3.1.2 Breathing Techniques into Psychotherapy

According to Salomen et al. [44] breathing control is a technique for regulating and con-

trolling both the pattern and depth of breathing, thereby facilitating shoulder relaxation.

Slow and deep breathing enhances parasympathetic activity, which sends signals to the

brain to relax the body and controls the body’s response to stress, advocated by Jerath

et al. [45], Magnon et. al [46] and Russo et al. [47]. Other breathing control methods

have been studied by Mason et al. [48], Steffen et al. [49] and Vierra et al. [50] to have

direct effects on health issues such as oxygen saturation, blood pressure, and heart rate

variability. There are numerous strategies for controlling breathing for relaxation. One

is Weil A. Weil’s 4-7-8 breathing regulation, a breathing rhythm created by an American

physician. The 4-7-8 method of breathing regulation involves inhaling, holding air, and

expelling for the respective counts of 4, 7, and 8. The 4-7-8 breathing control is based on

an ancient yogic technique called pranayama. It is meant to help you feel less anxious and

sleep better at night.

These breathing methods are applicable to the child robot activity proposed in this

dissertation, in which the robot can teach one of these techniques to the child.

3.2 Concept of Engagement

The concept of engagement has been investigated from a number of different viewpoints.

One of these points of view refers that engagement is the process by which people start

to feel connected, keep feeling connected, and then stop feeling connected to each other.

It mixes verbal communication with non-verbal actions, all of which enhance the feeling
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of connectivity between interactors, and it does this by combining the two [51]. Another

definition describes engagement as a quality of the user experience that is characterised

by attributes such as challenge, positive affect, endurability, aesthetic and sensory appeal,

attention, feedback, variety or novelty, interactivity, and perceived user control. It states

that there are four distinct phases during the process of engagement: the point of engage-

ment, the period of sustained engagement, disengagement, and re-engagement [52].

For engagement recognition, some features can be used, such as gaze direction, emotions,

speech detection, audio, contextual analysis, electroencephalography, posture [38]. In this

dissertation, the engagement was classified based on emotion through facial expressions.

According to Anagnostopoulou et al. [53], the recognition of student engagement can

be an important task because it is a factor in the improvement of the learning process as

well as a qualitative indicator. From D’Errico et al. [54] perspective, to accomplish quality

interaction between children and social robots, it is crucial that robots can adjust their

behaviour to the cognitive state of children; for that reason, the recognition of engagement

is an important task.

3.3 Models to Detect Engagement Levels

Several works [55][56][57][58][59][60] emphasise the significance of recognising emotions

to determine a person’s engagement in a certain task. There are several models of emo-

tions, the majority of which show a direct relationship that establishes the connection

between emotions and engagement levels. Emotions are a major focus of affective com-

puting research. Emotions are related to complex internal states that include emotional,

cognitive, physiological, expressive, and motivational components.

Khawlah et al. [1] builds a new engagement model with many levels based on [55]-[60]

models: These stages are: Strong Engagement, High Engagement, Medium Engagement,

Low Engagement, and Not Engaged and each of these levels correspond to different emo-

tions that can be recognise through facial expression analysis.

Watson and Tellegen’s [55] approach maps two levels of engagement to various emotions.

Russel and Feldman [61] have since modified the Watson and Tellegen model with a 45-

rotational theory. Consequently, they modified the Russel and Feldman model. First,

they retained just intellectual feelings and eliminated all others, and second, incorporated

additional academic emotions for which Remington et al. [59] assessed their placement

(0-360 degrees).

Strong engagement and disengagement have maintained the same position as predicted

by Watson and Tellegen. The high degree of participation (engagement) was characterised

by anger, enthusiasm, and excitement. This level has both significant positive and negative

effects that are related with a positive (attractive emotions) or negative valence (repulsive
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emotions). Thus, when a child has a high amount of positive or negative emotions, he or

she may have a high level of engagement. The medium degree of engagement comprised

emotions of contentment, happiness, pleasure, delight, and sadness. This level contains

both pleasant and unpleasant feelings. Consequently, a student’s degree of involvement

may be moderate while he or she is experiencing positive or negative emotions. The low

level of engagement was marked by tiredness, boredom, and relaxation. This level has

a small amount of positive and negative impact. Thus, whether a child has low positive

affect or low negative affect, engagement may be low. The diagram depicted in Fig.3.2

presents the emotional model developed by [1].

Figure 3.2: The affective model developed by [1], in which emotions are directly related

to levels of engagement.
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3.4 Emotion Recognition

A selection of representative studies on emotion recognition through facial expressions

is highlighted below and summarised in the Table 3.4.

Witherow et al. [62] used a network to learn generic facial expression patterns from adult

expressions, which were then fine-tuned using the transfer learning technique to capture

representative features of kid facial emotions. They construct and train a CNN model

for classifying adult and child facial expressions. Their model architecture comprises three

convolutional layers with the ReLU activation function, batch normalisation, and dropout.

Maximum pooling was used following each convolutional layer. A ReLU-activated fully

connected layer and a softmax classification layer follow the convolutional layers. Their

efforts yielded 76,03% on CAFE dataset.

Zheng et al. [63]) classify children and adult datasets using a Support Vector Machine

(SVM) classification-based facial expressions recognition algorithm, achieving an accuracy

of 77.40% on the CAFE dataset. They also study the differences in facial expressions

between children and adults.

Liu et al. [64] model was tested on the FER2013 dataset and consists of three different

structured CNN subnets trained separately. The three subnets contain eight to ten layers,

respectively. The features extracted by these subnets are concatenated together by adding

a fully connected layer at the end, and a softmax layer is used as the output layer of the

whole network. The whole network is structured by assembling these subnets together.

They achieved an accuracy of 62,44% classifiying the seven classes of emotions provided

in the FER2013 dataset.

Khaireddin et al. [65] works used a VGGNet architecture to classify emotions through

feeding facial expression images into the model. The CNN had four convolutional blocks

that extract high-level features, and the fully connected layers classify the emotion of the

image, obtaining 73,28% on the FER dataset.

Lopez-Ricon et al. [66] in order to categorise facial expressions in children, they compare

the AFFDEX SDK and a convolutional neural network (CNN) with Viola-Jones trained

using the AffectNet dataset and tuned with the NIMHChEF dataset using transfer learn-

ing. Then, they compared the CNN and the AFFDEX SDK for classification on the CAFE

dataset, achieving the best performance with the CNN-AFFDEX Viola Jones retrained

model at 44.88%.

Pramerdorfer et al. [67] identify existing bottlenecks, and by forming an ensemble of

modern deep CNNs, they were able to obtain a test accuracy of 75,20% on the FER2013

dataset, outperforming previous works without requiring auxiliary training data or face

registration.
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Table 3.3: Representative studies on Emotion Recognition through facial expression.

Article Dataset Methods Results

Witherow et al.

[68]

CAFE dataset CNN Acc=76,03%

Zheng et al.

[63]

CAFE dataset Shape features + SVM Acc=77,40%

Liu et al. [64] FER2013 dataset CNN Acc=62,44%

Khaireddin et

al. [65]

FER2013 dataset VGG Acc=73,28%

Pramerdorfer

et al. [67]

CAFE dataset Ensemble of modern deep CNNs Acc=75,2%

Lopez-Ricon et

al. [66]

CAFE dataset CNN-AFFDEX Viola-Jones Re-

Trained

Acc=44,88%

3.5 Engagement Recognition

This dissertation focus primarily on the automatic recognition of children’s engagement

while interacting with an humanoid robot, in this case the NAO robot. In recent years,

automatic engagement recognition became an hot research topic, mostly motivated by the

massification of distance learning due to the COVID19 pandemic. A set of representative

studies, is highlighted below and summarised in the Table 3.4.

Lin Geng et al. [69] investigated student participation in online courses. Using the

DAiSEE dataset and a 3D convolutional network consisting of eight convolutional layers,

five maximum pooling layers, two fully connected layers, and a softmax classifier. In [69]

the problem of unbalanced data distribution was approached by employing focal loss. The

proposed methodology was able to extract temporal and spatial information from videos

and classify engagement in four levels with 56.2% of accuracy.

Woo Han Yun et al. [19] investigated an automated approach for detecting children’s

participation in an educational setting using convolutional neural networks (CNNs). They

produce their own video dataset. The CNN, a VGG FaceNet, extracts the low-level fea-

tures. They use a temporal dynamics module to generate high-level features, which are

then passed through a fully connected layer and a softmax layer to classify engagement

into two levels: engaged and disengaged. They attain an accuracy rate of 81.44%.

The work developed by Omid et al. [70] provides a deep learning model that addresses

the data sparsity barrier, by performing pre-training on the widely accessible FER 2013
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dataset before training on specialised engagement data developed by the authors. They

proposed a method composed of two stages: the first uses a CNN adapted to VGG-B

to train facial emotion recognition model to offer rich face representation; the second

stage uses the model’s weights to initialise their deep learning-based model to identify

engagement, which consists of four blocks of two convolutional layers followed by a max

polling layer, three fully connected layers, and a softmax classifier used to classify two

classes: engaged and disengaged with an accuracy of 72.38%.

Ognjen Rudovic et al.[41] have created a method to automatically measure the child’s

emotional states and engagement, which can subsequently be utilised to optimise child-

robot interaction and track therapeutic success. In their approach they adopted a very

complete input dataset that includes: NAO robot position, the child’s gaze direction, facial

expression, body posture, tone of voice, heart rate, skin conductance (SCT), body tem-

perature, and accelerometer data, [41] proposes a personalised deep learning framework:

the Personalized Perception of Affect Network (PPA-net).

Jack Hadfield et al. [40], estimate the level of a children engagement achieving 77,11%,

during a child robot joint attention task, based on the position of the robot, the position of

the child, the angle between the child’s gaze and the robot, the angle between the child’s

body facing and the robot, and the distance of the hands from the respective shoulders.

Their approach is a multi-view deep-based estimation of the child’s pose, using cameras

strategically placed in a room to extract the relevant keypoints and using a deep neural

network to classify the engagement levels based on these features.
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Table 3.4: Representative works regarding Engagement Recognition.

Article Objective Sensors Dataset Features Methods Results

Lin

Gen et

al. [69]

Study the engagement

of students in online

courses

Computer

camera

DAiSEE Spatiotemporal fea-

ture

3D Convolutional

Networks

Acc=56,2%

Woo

Han et

al. [19]

Automatic children

engagement recogni-

tion method based on

CNN focused in an

educational environ-

ment

RGB

video

camera

Own

Dataset

Low-level

features/High-level

features extracted by

CNN

VGG facial pre-

trained network;

Temporal dynam-

ics module

Acc=81,44%

Omid

et al.

[70]

Automatic Recog-

nition of Student

Engagement using

CNNs to detect facial

expressions and fine-

tune classification of

engagement

FER

2013;

Own

Datat-

set

Facial Expressions Adapted VGG-B Acc=72,38%

Rudovic

et al.

[41]

Automatically esti-

mate levels of the

child’s affective states

and engagement then

be used to optimize

the child robot inter-

action and monitor

the therapy progress

Sensors

on the

child’s

wrist;

Camera;

Micro-

fone

Own

dataset

Robo NAO position,

child’s gaze direction;

facial expression; body

posture; tone of voice;

heart rate; skin con-

dutance (SCT), body

temperature and ac-

celerometer data

Personalized

Perception of

Affective network

(PPA-net)

ICC=59%

Hadfield

et al.

[40]

Estimate the level of

engagement between

the child and the

robot

4 Kinect

Cameras

Own

dataset

Robot’s position;

Child’s position; An-

gle between child’s

gaze and the robot;

Angle between the

child’s body facing

and the robot; Dis-

tance of the hands

from the respective

shoulders

DNN Acc=77,11%
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4 Materials and Methods

This chapter summarises the examined datasets, hardware materials, and software tools

used in the work described in this dissertation.

4.1 Datasets

In a classification or detection task, a representative dataset is essential. Finding a

suitable public dataset to train and test the proposed engagement classification method-

ologies was tough because datasets with children are just a few, and those that exist are

not openly accessible because of children’s privacy and image rights and concerns. The

PInSoRo dataset [71], the Dartmouth Database of Children’s Faces [72], CAFE dataset

[73], FER2013 [74] and the EmoReact dataset [75] are five usable datasets.

The PInSoRo dataset is a large open dataset containing recordings of 120 children who

recorded child-child and child-robot interactions during free play. This dataset seemed

to have lots of potential in terms of available data, however the access to this dataset is

extremely complicated and time-consuming.

The Dartmouth Database includes images of sixty male and sixty female models between

the ages of six and sixteen. Five different camera angles and eight distinct facial expressions

are used to photograph the models. The models are taken against a dark background while

wearing black helmets and bibs to hide their hair and ears. Although there is an access

request methodology that is apparently less complex than the one required to the PInSoRo

dataset, so far, no response was obtained to the requests performed officially by the ISR-

UC.

The EmoReact dataset is comprised of 1102 annotated videos representing the multi-

modal emotions of children aged four to fourteen. A prompt affirmative response was

obtained after formal request on EmoReact’s website, and for that reason this dataset was

used for a preliminary attempt.

The Child Affective facial Expression (CAFE) dataset consists of 1192 photographs of

children ages 2 to 8 exhibiting six basic emotions. A formal request has been made by the

ISR-UC to use the CAFE dataset, which was accepted and enabled its use in the described

work.
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The publicly available dataset Facial Emotion Recognition 2013 (FER2013), which con-

sists of 48x48-pixel grayscale images of adult faces, was also used to train, test and validate

the proposed emotion and engagement classification methodologies. Despite the fact that

it is composed by adult images due to its extensive use in other projects, it allows the

comparison of the proposed methods with others of the state-of-art.

4.1.1 EmoReact Dataset

The EmoReact Dataset consists of 1102 audiovisual clips annotated for seventeen emo-

tional states, representing the multimodal emotions of children between the ages of four

and fourteen, of various ethnicities and genders. EmoReact was developed in 2016 us-

ing videos downloaded from the now-defunct YouTube channel ”React Channel,” which

included children’s reactions to food, technology, YouTube videos, and gaming devices.

Each of the downloaded original videos had multiple children reacting to an issue. Using

ELAN [76], they manually split the videos into five-second clips, so that each clip contained

only one child’s response to a certain topic. In this segmentation, only videos longer than

three seconds were evaluated, resulting in a total of 1254 clips. To produce their labels,

they utilised Amazon’s Mechanical Turk (MTurk), an online crowdsourcing platform [77].

After making a determination based on their preliminary research, they selected a group

of six workers, consisting of three males and three females. Three independent workers

annotated each video for seventeen labels. They acquired the labels from MTurk and then

evaluated the level of worker agreement using Kripendorff’s alpha [78]. In this phase, 152

videos were removed since it appeared the annotators were imprecise. The final batch

of 1102 videos was acquired following this processing. They selected the eight emotion

categories with the highest levels of coder agreement for their initial dataset analysis and

research experiments. However, it was allowed that each video could contain multiple

emotion labels. The length of the videos in the dataset runs from 2 to 10 seconds and

were recorded at 24 FPS (Frames Per Second). The dataset was divided into three subsets,

each containing 432, 303, and 367 videos: the training set, the validation set, and the test

set. In order to increase the generalisation of models and results, these sets are defined

in a manner that is person-independent (people from training data are not included in

validation or test data).

The authors of the dataset provided three folders containing the aforementioned subsets

as well as three text files with the corresponding names. Additionally, they provided text

files containing the names of videos in the training, validation, and test sets in the exact

order they appear in the labels and features. The selected emotions were curiosity, uncer-

tainty, excitement, happiness, surprise, disgust, fear, and frustration, and their presence

in the text files was determined in this precise order. In other words, there is a text file

containing the same number of lines as the number of videos in each folder. The eighth
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emotion are represented by each column, while valence (mean value of attractiveness or

repulsion of emotions; a negative value implies repulsive emotions and a positive value

represents attractive emotions) is defined by the final column. Therefore, a ”1” will be

entered in the column if the emotion was present in the video. For instance, the expression

[1,0,0,0,1,0,0,0,3.2222] indicates that the video contains facial expressions of curiosity and

surprise with a valence of 3.2222.

Table 4.1 shows the EmoReact distribution of videos for training, validation and testing.

Table 4.1: Distribution of videos for training, validation and testing.

Train Validation Test

Number of videos 432 303 367

4.1.2 Dataset CAFE (The Child Affective Facial Expression)

The CAFE dataset was designed to offer fresh data to the field of emotion development

research on the emotional facial expressions of children aged two to eight. The collection

consists of 1192 images of 154 children, 90 girls and 64 boys (27 African Americans, 16

Asians, 77 Caucasian/European Americans, 23 Latinos, and 11 South Asians), posing with

seven distinct facial expressions (happy, surprise, angry, disgusted, fearful, sad, and neu-

tral). All images were shot against a white background, and the photographer, an assistant

researcher with laboratory expertise in developmental work with children, encouraged the

kids to express their feelings naturally. Not all children were able to replicate the seven

expressions, and they were therefore eliminated from the dataset. The image labels were

created by 100 undergraduate students, half of whom were female and half of whom were

male, from a variety of racial and ethnic backgrounds, using two methods for validation:

the Facial Affective Coding System (The Facial Affective Coding System (FACS))[79] to

identify each facial expression and a second method in which untrained research partici-

pants identified each facial expression, followed by establishing agreement between raters.

The research employed a mix of the two methodologies, with the FACS-trained photogra-

pher photographing all the children and the untrained volunteers being asked to identify

each shot in the set on two separate occasions. Thus, while a FACS-trained researcher

photographed the children, untrained individuals were asked to interpret the children’s

facial expressions.

After submitting a formal request via the Databrary platform (www.databrary.org), a

free open data repository for development research, the dataset was made available to

ISR-UC research team. The dataset is organised into 45 sessions; each session corresponds

to an individual child who pose one of the seven emotions. With the exception of surprise,

angry and disgust, CAFE characterises emotions with the mouth open and closed or with
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the tongue; hence, each session can contain between seven and thirteen representative

photos.

4.1.3 Dataset FER2013

The FER2013 dataset contains 48x48 grayscale images of adult faces. The faces are

indicative of seven facial expressions and have been mechanically registered such that the

face occupies roughly the same amount of area and is roughly centred in each image.

The training set has 28709 examples, whereas the public test set contains 3589 examples,

representing 24% of the training set. The dataset is organised by training and testing,

with seven subfolders for each emotion. Thus, the dataset had the required templates for

the work described in this dissertation, without the need for further processing.

Table 4.2 shows the distribution of the quantity of facial expression images by dataset

FER2013 training and testing.

Table 4.2: Distribution of the quantity of facial expression images by dataset FER2013

training and testing.

Emotions No. of training images No. of testing images

angry 3995 958

disgust 436 111

fear 4097 1024

happy 7215 1774

neutral 4965 1233

sad 4830 1247

surprise 3171 831

Table 4.3 shows the used datasets and their applications in this dissertation.

Table 4.3: A listing of the datasets examined.

Datasets Type Ages Utility

EmoReact Children 4-14 Initial tests

FER2013 Adults - Validation of our network’s

CAFE Children 2-8 Selected one

4.2 CNN Networks

The primary CNN architectures that were utilised in this research were VGG16[33],

ResNet18 [34], ResNet50 [34], ResNeXt50 [35], and ConvNeXt [35]. These CNNs were
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chosen because of their ability to perform well in previous research. The selected network

will be detailed in further depth in Section 4.2.1. Figure 4.1 illustrates the structure of

each of the six different types of architecture.

The parts of each of these six networks include convolutional layers, pooling layers,

activation functions, and FC layers. This is something that all of these networks have in

common. The number of convolutional layers, the type and position of pooling layers, the

type of activation functions, and the number of FC layers vary amongst models.

Figure 4.1: Architecture comparison of VGG16, Resnet18, ResNet50, ResNext50, and

ConvNeXt.

4.2.1 ConvNeXt Network

The ConvNeXt network is rather new, having been launched only last year. Liu et

al. [35] discovered the network while attempting to answer the question, ”How do design

decisions in Transformers impact ConvNets’ performance?” To answer this question, they

conducted a set of tests on the ResNet50 network, matching the features of a conventional

CNN to those of a transformer by employing tiny tricks employed in transformers in

conjunction with advancements in regularisation, augmentation, and optimisation.

The following tests were performed as part of this strategy: increasing the number of

training epochs from 90 to 300; using AdamW Optimizer; Using several data augmen-

tation techniques, such as Mixup, CutMix, RandAugment, and Random Erasing; Using

regularisation schemes, such as stochastic depth and label smoothing; Changing the stage
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compute ratio; Changing stem to ”Patchify”; Using depthwise convolution; Using inverted

bottlenecks; Using large kernel sizes; Replacing ReLU with GELU; Using fewer activation

functions; Replacing BN with LN and separate downsampling layers.

The figure 4.2 below provides an overview of the network.

Figure 4.2: ConvNeXt architecture.

4.3 Performance Metrics

The classification accuracy of each model was determined to assess the performance of

the frameworks. Classification accuracy is defined as the percentage of correct predictions

relative to the total number of predictions:

Accuracy(%) =
No. of correct predictions

Total no. of predictions
× 100 (4.1)

In its most basic form, the confusion matrix is a table that presents the results of

classification efforts in a graphical format. This matrix is of the format N by N, where N

is the total number of classes. The rows in this table reflect the predicted instance of the

class, while the columns represent the true label of the class. The cells that indicate the

incorrect predictions are the ones that are not on the main diagonal, which contains the

accurate predictions.

The picture below illustrates an example of a confusion matrix for a binary classification

consisting of only two classes. Where TP, or true positives, were the successful positive

classifications, TN, or true negatives, were the right negative classifications, FP, or false

positives, were the erroneous positive classifications, and FN, or false negatives, were the

inaccurate negative classifications.

4.4 Hardware Materials and Software Tools

4.4.1 NAO Robot

The NAO robot was founded in the French firm Aldebaran Robotics from Bruno Maison-

nier’s boyhood ambition.
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Figure 4.3: Confusion Matrix for a binary classification

NAO is a completely programmable humanoid robot that has proven beneficial in ed-

ucation, healthcare, research, and customer-facing contexts. Highlighting the field of ed-

ucation, it may be a fantastic learning tool to accompany students of all levels and help

them improve, among other skills, social, literacy, programming, and research abilities.

The 57cm tall NAO is equipped with a variety of sensors, including: seven touch sensors

on the hands, feet, and head; pressure and acceleration sensors; sonar; an inertial unit; four

microphones; a speaker; a gyroscope; two infrared emitters and receivers, two ultrasonic

sensors, and two 2D cameras. It is also capable of recognising twenty distinct languages

and has twenty-five degrees of freedom, allowing for fluid movement. Finally, it may be

programmed using its own platform, Choregraphe, and the programming languages C#,

Java, or Python, enabling its usage in a variety of subjects.

The robot is termed humanoid because it is capable of human-like behaviours and can

be programmed to execute a variety of acts, including dancing, sitting, standing, walking,

communicating, responding to stimuli, and detecting objects, among others.

Figure 4.4: NAO Robot. Figure 4.5: Choregraphe Software.
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4.4.2 Choregraphe and NAOqi Framework

Choregraphe [80] is a cross-platform desktop application for Robot NAO that allows the

creation of complex behaviors, dances, and human interactions.

The NAOqi Framework is the framework for programming and controlling NAO. It man-

ages common robotics needs like parallelism, resources, synchronisation, and events. This

system offers homogeneous information exchange, homogeneous module-to-module com-

munication, and homogeneous programming (motion, audio, and video). The framework

is cross-platform, therefore it may be used on Windows, Linux, and Mac for development.

C++ and Python use the same API, making it cross-language. Also permits introspection,

meaning the framework is aware of which modules provide access to which functions.

The created behaviours of Choregraphe are written in its own graphical language, which

NAOqi understands and executes. Choregraphe interfaces with NAOqi to provide useful

tools like the video monitor panel, the behaviour management panel, the toolbar, the

robot view, and the timeline editor. This software includes, among other preprogrammed

behaviours, stand up, sit down, speech, and recognise speech. This approach, termed as

”Animation Mode,” simplifies the programming of complex behaviours in Choregraphe.

In addition, we can test it on a virtual robot before sending it to a real robot.

4.4.3 Python, PyTorch and NVIDIA GeForce RTX 3060

Python [81], which is frequently used in the development of ML algorithms, was chosen as

the programming language for this project. A variety of Python library packages presented

in Table 4.4, were employed in the course of the work described in this dissertation. Pytorch

[82] is a free and open-source framework for ML that provides users with the instruments

required to construct, parameterise, train, and optimise artificial neural networks.

Visual Studio Code (VSCode) [83] was selected as the IDE for developing the code as

it allows us to use Jupyter Notebooks, which helps the writing, debugging, and execution

of code.

Training Artificial Neural Networks (ANN) with many layers takes a long time and

is hard to do. But this problem can be fixed by letting a Graphics Processing Unit

(GPU) handle the work of updating the network. For ML libraries to run on a GPU, the

graphics card must have access to the latest drivers and support Compute Unified Device

Architecture (CUDA) [84] and its libraries. CUDA is an NVIDIA framework for parallel

computing that lets developers use the full power of the GPU’s graphics processors. The

NVIDIA CUDA Deep Neural Network library (cuDNN) [85] is a library of Deep ANN

primitives that is sped up the GPU. A NVIDIA GeForce RTX 3060 [86] was used as the

GPU for this project. Table 4.5 shows the most important details about it.
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Table 4.4: Python packages.

Package Version

Python 3.10.5

Torch 1.11.0

Numpy 1.22.4

Matplotlib 3.5.2

Table 4.5: NVIDIA GeForce RTX 3060 specifications.

Cuda Cores 3584

Video Memory 12 GB GDDR6

Memory Bus 192-bit

Engine Clock Base:1320 MHz, Boost:1777 MHz

Memory Clock 15 GHz

Power Consumption 170W

Supported OS Windows, Linux
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5 Developed Work

This chapter describes the dissertation’s developed work and all steps leading up to

its completion, in particular: pre-processing of datasets; design and development of the

engagement classification system; research and development of two different methods for

automatic engagement classification; and design and implementation of child-robot inter-

action activity using a NAO humanoid robot.

5.1 Datasets pre-processing

In this dissertation, three public datasets were used for training, test and validation

of the proposed automatic engagement classification methodologies, namely: EmoReact,

FER2013, and CAFE.

The EmoReact dataset is divided into three sets: training, validation and testing sets,

containing 432, 303 and 367 videos, respectively. The EmoReact dataset also includes three

text files providing the labels for each video and another group of text files giving the order

of the video labels. However, both the folder structure and the labelling provided in each

recorded video are not appropriate to the engagement classification system proposed in

this dissertation. Due to that reason, a pre-processing of the dataset was required to

reorganise the data and label them in a way they can be used as inputs to the proposed

engagement classification system.

The FER2013 is a dataset of adults that has been extensively studied by the scientific

community. It was used to validate several results, with the advantage of not requiring any

further processing, and it can be applied directly to the proposed engagement classification

system.

The CAFE is a dataset composed of images with faces of children. To be used in the

proposed engagement classification system, a simple reorganisation of image sessions was

required.
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5.1.1 Organisation of EmoReact dataset folders based on emotions

The EmoReact dataset is originally separated in three folders: training, validation, and

test, which is not suitable to the proposed engagement framework. The reorganisation of

the dataset consisted in subdividing each folder (corresponding to training, validation, and

test sets) in eight sub-folders, each referring to an emotion (curiosity, disgust, excitement,

fear, frustration, happiness, surprise). To organise the videos in subfolders of emotions

it was necessary to carefully analyse the text files containing the labels present in each

video (emotions based on facial expressions) and the file with the names of the videos, to

figure out which labels of emotions correspond to each video, once the labels are in the

corresponding order of the video names. It is worth noting that each video contains more

than one facial expression, and this fact makes reorganising the dataset very challenging.

A diagram summarising the reorganisation process is shown in Fig. 5.1.

The folders reorganisation process was performed automatically with a Python code

specifically developed for that purpose. First, the video’s name was picked in iteration x,

and then the correct video was selected in the folder corresponding to videos, i.e., the video

with the name specified by the name file in iteration x. On line x, line with the number

corresponding to iteration x, of the labels file, the columns are examined to determine

the presence or absence of the emotion whose facial expression was displayed in the video.

The same video is subsequently moved to the folders corresponding to the emotions based

on facial expressions associated with it in the labels file. This means that if a video

contains three distinct emotions, it will be copied to the three folders corresponding to

those emotions.

Figure 5.1: EmoReact reorganisation process.
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5.1.2 Organisation of CAFE dataset folders based on emotions

The CAFE dataset is arranged in sessions of seven to thirteen images, with each session

corresponding to a particular child. The difference in the number of images per session

depends on whether it comprises (or not) facial expressions with open mouth. In the

original organisation of the dataset, each image of a particular child is labelled by the

emotion based on his/her facial expression.

In order to prepare the CAFE dataset to be applied as input to the proposed engagement

classification system, it was necessary to reorganize all the images into seven folders, each

corresponding to a different emotion (angry, disgust, fearful, happy, neutral, sad, surprise).

Table 5.1 shows the result of distributing images per emotions in the CAFE dataset.

A Python script was created to perform this operation, which consists in reading the

filename of each image and move it to the appropriate emotion folder. Since both ”angry”

and ”angryopen” represent the primary emotion, both were moved to the same folder, in

this case ”angry”.

Table 5.1: Distribution of the quantity of facial expression images by dataset CAFE train-

ing and testing.

Emotions No. of training images No. of testing images

angry 158 47

disgust 148 43

fearful 108 32

happy 166 49

neutral 178 52

sad 84 24

surprise 80 23

Total 922 270

5.1.3 Extraction and image cropping using MTCNN

The emotion recognition method, used in one of the approaches to classify engagement

5.2.1, uses images to extract the relevant features for emotion based on expression recogni-

tion. For the datasets composed by videos, (e.g. EmoReact, and our own) it is necessary

to extract frames to be used as static images. The videos contained 24 Frames Per Sec-

ond (FPS). Due to the different duration of the videos, it was important to make sure

that a constant number of frames per video was chosen. In this case a constant number

of 20 frames were extracted from each video.

The step corresponds to the number of frames that must be skipped between extracted
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frames, and is calculated according to:

Step =
T× 24(FPS)

TNF
(5.1)

where T corresponds to the total time of the video in seconds, and TNF corresponds to

the total number of frames. Figure 5.2 shows how the frame extraction is performed in

each video.

Considering that the purpose is to detect facial emotions, after obtaining the frames from

each video, the image was cropped to only include the children’s faces. Everything else in

the image is irrelevant to emotion detection and can be discarded as noise. The images

were cropped using the Multi-Task Cascaded Convolution Neural Networks (MTCNN) [87]

method, which are able to detect faces in an image using three stages of CNNs; therefore,

it is only necessary to select the bounding boxes of the various faces and save them to a

folder

In order to save resources, memory, and time, these two steps were performed sequen-

tially, i.e., the frames were extracted from the video and the crop function was called prior

to saving the images. After that, the images of the children’s faces were saved in the folder

for the eight different emotions, as depicted in Fig. 5.3.

This method was used on both EmoReact and the data collected during the recorded

sessions of the child-robot. The only difference is that for the data from the test, 500

frames were chosen from each of the three videos.

Figure 5.2: Diagram illustrating the process of extracting frames from a video.
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Figure 5.3: Diagram illustrating the process of cropping frames from a video.

5.1.4 Selection of images

After reorganising the children’s images in folders corresponding to emotions, it was

necessary to manually select and analyse the images one by one to eliminate incorrect

detection of children’s faces, and to correct poorly made crops. There were a total of

300.000 frames in the folders, making the selection a time-consuming task.

Another problem that occurred during the dataset pre-processing was that since each

video may contain more than one emotion there were frames that did not represent any

emotion or that expressed a different emotion than the one indicated by their folder. This

fact occurs because facial expressions are not labelled for each frame but rather for each

video. Consequently, it was necessary to re-select manually the representative images for

each emotion, which was a very arduous and time-consuming task and very error-prone.

Table 5.2 presents the information contained in the pre-processed EmoReact dataset.

5.2 Engagement Classification System

This section describes the emotion recognition approach and the two proposed engage-

ment classification methods.
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Table 5.2: Distribution of the quantity of facial expression images by dataset EmoReact

training and testing.

Emotions No. of training images No. of testing images

curiosity 16262 4554

disgust 4763 835

excitement 14067 2569

fear 1120 174

frustration 5818 1632

happiness 27894 7712

surprise 31174 1666

Total 73098 19142

5.2.1 Emotions Recognition

This section describes the work performed to recognise emotions based on facial ex-

pressions. The model for emotion recognition based on facial expressions was built using

the theoretical and practical CNN architectures described in Sections 2.1.1 and 4.2 and

applying the techniques and concepts in Section 2.1.2 and 2.1.3. Algorithm 1 presents the

general procedure for emotion recognition based on facial expressions.

The main objective was to design a network that was capable of accurately classifying

seven distinct emotions. Each network was fed with images of children’s faces from the

dataset, each of which was labelled with the corresponding facial expression. A resize can

be used to change the size of an image; the larger the image size, the more information the

network has to train and learn, but it also takes longer to train the network. Additionally,

a data augmentation technique was used to apply a horizontal flip, a vertical flip, and a

rotation of a specific angle to the images and add them to the original dataset. These

three techniques were evaluated simultaneously, in pairs, and separately (e.g., lines 2-3).

The network needs to be initialised; in this work, the ResNet18, VGG16, ResNet50,

ResNeXt50, and ConvNeXt networks were experimented with, and during the initialisa-

tion, it was decided whether to use the pre-trained network or not. The transfer learning

technique, specifically the fine-tuning sub-technique, was used by selecting a network pre-

trained with ImageNet data. ImageNet is a visual dataset with more than 14 million

pictures that are meant to be used for research on visual object recognition, (e.g., lines

4-5).

In this work, two types of optimisers (learning rate) were used: an invariant learning rate

with a fixed value and the ADAM (Adaptive Moment Estimation) learning rate, which

adapts its value during the network training phase. ADAM combines two main concepts to
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improve the efficiency of the algorithm: adaptive first- and second-order moment estimates

and adaptive learning rate updates. The first-order adaptive moment estimates, known as

the Exponential Weighted Moving Average (EWMA), are used to compute an estimate of

the mean gradient, which is then used to update the model parameters. Adaptive second-

order moment estimates, known as the Squared Exponential Weighted Moving Average

(EWMA Squared), are used to calculate an estimate of the second moment of the gradient

and are then used to adjust the learning rate, which can be adjusted differently for each

model parameter. Momentum is calculated as a weighted average of previous gradients and

is added to the gradient update to help the algorithm follow a more consistent direction on

irregular loss surfaces or ones with many local minima. Momentum has a practical effect

in that it lets the optimisation algorithm gain speed in the right direction and ”cross” flat

or low-gradient areas faster without making sudden direction changes. The momentum

value is a hyper-parameter that can be adjusted for different tasks and models. Normally,

values between 0.9 and 0.99 are used (e.g., line 6). The training process starts by running

the batch training data through the network. Next, the network output is compared to

the expected and known outputs of the loss function. The gradient descent algorithm, in

combination with the backpropagation method, allows for the calculation of the gradients

of the loss function in relation to the network weights, which are then used to update the

network weights in order to minimise the loss function. Backpropagation is repeated for

each training epoch until the maximum number of epochs is reached, (e.g., lines 7-14).

To avoid overfitting, it is common to test the network on a separate validation dataset.

When training is complete, the network weights are stored for future use. The network is

now ready to be used to make predictions on new data (e.g., lines 15-16).

On the testing data, the model predicts the classes while being evaluated by comparing

the predicted labels to the true labels and calculating the model’s performance metrics

(accuracy and confusion matrix), (e.g., lines 18-20).

In order to identify the optimal combination of variables, it is necessary to test a range

of network configurations and adjust the network’s parameters, such as the learning rate,

the batch size, and the number of epochs.

The methodology applied to the EmoReact dataset was equally applied to the FER2013

and CAFE: i) Transfer learning - by using a pre-trained network with ImageNet; ii) Data

Augmentation - applying a horizontal flip, a vertical flip, and a rotation, to the dataset

images. Fig. 5.4 and Fig. 5.5 shows the global pipeline.
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Algorithm 1: CNN - Image Classification

1: procedure ImagesClassification

2: Load the dataset

3: Process input images (e.g. resize, data augmentation)

4: Initialize the CNN model with the chosen architecture.

5: Initialise weights of the CNN network

6: Define a optimizer and a learning rate scheduling

7: for each− epoch, . . . do

8: Shuffle training data

9: for each− batch, . . . do

10: Perform forward propagation through the network

11: Calculate error (e.g. using softmax loss function)

12: Perform backpropagation to calculate gradients

13: Update weights of the network (e.g. using gradient descent)

14: end for

15: Calculate model performance on validation set

16: Save model weights with best validation performance

17: end for

18: Test the model with testing data

19: Calculate classification accuracy

20: return Predicted class labels of test data

21: end procedure

The best result, in terms of accuracy, was obtained with the CAFE dataset and Con-

vNeXt network, with a maximum accuracy of 85.92%. Table 5.3 shows the parameters

corresponding to that accuracy result. Additionally, the training was conducted three

times to get maximum and average results (accuracy).

All of the results and variations of the referred parameters (Batch Size, Learning Rate,

Image Size, No. Epochs and Data Augmentation) may be seen in the Appendix 7.1.
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Figure 5.4: Engagement Classification: Method-1
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Figure 5.5: Engagement Classification: Method-2

Table 5.3: Parameters for our best network.

Network ConvNeXt

Dataset CAFE dataset

Batch Size 64

Learning Rate 0,0001 Adam

Image size 128× 128

No. Epochs 50

Pre-trained True

Data Augmentation Horizontal Flip; Vertical Flip; Rotation=45º

5.3 Engagement Classification Methods

This section describes two proposed approaches for engagement classification based on

emotion recognition. Emotions can be used to determine the level of engagement. This

affective model serves as the basis for our classification of engagement levels, and Table

5.4 shows which level of engagement correspond to each of the seven emotions that our
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model classifies.

It is possible to observe in Table 5.4 that the set of 7 emotions do not encompass the

entire spectrum of emotions covered by the affective model (see. Fig. 3.2), nor do we have

emotions for engagement levels that are low or not engaged. In this instance, we had to

modify the model to accommodate the neutral emotion, not only because there was no

other level available but also because the model does not predict neutral as an emotion.

Table 5.4: Relationship between engagement level and emotions based on affective model.

Level of Engagement Emotions

strong surprise

high angry; fearful

medium happy; disgust; sad

low/not neutral

5.3.1 Method-1: CNN returns the emotion classes that were followed

by the direct inference of engagement

In this first approach, the emotion classification best-achieving network described in

Section 5.2.1 was employed, as shown in Fig. 5.4. This method accepts of children’s faces

as images, as well as labels corresponding to each emotion and returns emotion classes.

A direct inference of engagement is then performed by considering the correspondence

between emotions and engagement levels as presented in Table 5.4.

The direct inference of engagement based on emotion recognition is detailed in Algo-

riyhm 2. This direct inference of engagement based on emotions yielded satisfactory results

as it will be discussed later in this dissertation.

5.3.2 Method-2: CNN returns the engagement classes

In this second method, before training the network, the affective model (see Table

3.2) was applied to determine the direct relationship that exists between the levels of

engagement and the emotion, as shown in Fig. 5.5.

This means that the input from the network consists of images of children’s faces with

engagement level labels. The network used is the same as in Method-1 and has the same

parameters as Table 5.3, but it only returns four engagement classes rather than seven

emotions. This did not achieve such satisfactory results compared to Method-1, as it will

be discussed later in this dissertation.
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Algorithm 2: Direct Inference of engagement

1: for x, in predicted . . . do

2: if x == angry or x == fearful then

3: x = high

4: continue

5: end if

6: if x == happy or x == disgust or x == sad then

7: x = medium

8: continue

9: end if

10: if x == neutral then

11: x = low/not

12: continue

13: end if

14: if x == surprise then

15: x = strong

16: continue

17: end if

5.4 NAO Robot Activity

The designed robot-child activity has two main goals: to engage the child and to promote

a calming and relaxing experience. Thus, the activity was separated into these two primary

sections, which are described in more detail below and illustrated in Fig. 5.6. It was

programmed using Choreographe, NAO proprietary software, as described in Chapter 4.

In order to attract the child’s attention, the activity began with the NAO introducing

itself and speaking in short phrases. Using the software’s block programming made it

possible to accomplish this; the blocks that allow the robot to talk, recognise speech, stand

up, and sit down are available (pre-programmed), so we simply made use of them. Next,

we introduce a piece of the ”Macarena” dance, an open-source [88] recruit that is likewise

programmed using blocks. To conclude the engagement part, the NAO demonstrates the

ability to perform push-ups, another open-source block programme [88].
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Figure 5.6: Diagram of Complete Child-Robot Activity.

At the end of the activity, the breathing control exercise was introduced (discussed in

3) to provide some relaxation and tranquillity. The breath control exercise consists of

three phases: in the first phase, lift the arms for four seconds while inhaling, and in the

second phase, maintain the arms in a stretched position for seven seconds while holding

the breath. Finally, lowering the arms, exhale for eight seconds. These steps are repeated

three times in succession, then the workout ends. Fig. 5.7 better illustrates the described

phases.

Figure 5.7: Diagram depicting the three main phases of the relaxing exercise.
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It was necessary to programme the robot’s limbs and joints so that it could perform

the outlined movements, making the activity more dynamic while teaching the child. This

programming was made easy by the software, which enabled us to physically move the

robot’s limbs and save the joint positions throughout the movements. This enabled the

building of a timeline in which the movements that were caused in the real NAO robot

were gradually saved and could be duplicated.

Primary School Demonstration

A brief demonstration of the NAO robot activity was held at the ”Escola Básica no1

de Condeixa-a-Nova” during the development process. This demonstration displayed the

initial part of the activity, which consisted of attracting the children’s attention with ice-

breaking lines and encouraging them to dance with the robot. The demonstration was

conducted five times with five separate pre-school through fourth-grade classes, totalling

around 200 school-aged children.

Students were particularly attentive to the robot and desired to replicate its behaviour

by touching it and observing its actions. The image in Fig. 5.8 below was captured during

one of these sessions.

Figure 5.8: Image captured during a demo session.
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Test with Children

One of the main goals of this work was to combine the two major components created

throughout the project: the robot-child interaction and the classification of engagement.

To accomplish this goal three children, two female and one male, ages 4, 7, and 6,

respectively, participated in the robot activity testing. For this activity to be carried out

with the children, the parents signed an ”Informed Consent” form in which the entire

process of data collection and use is explained.

Each testing session lasted five minutes and was performed in the presence of the parents.

For the tests, the robot-child activity described in the last section was done in separate

sessions while a smartphone camera on a tripod recorded them.

Each video corresponding to each session was then processed, i.e., it was converted into

500 frames per video, and a crop was applied to each frame using the approach described

in Section 5.1.3. The images from each of the three videos are then applied to the two

classification engagement methods outlined in Section 5.3.1 and Section 5.3.2. The ob-

tained results are displayed in Chapter 6, where each frame was classified into one of four

engagement classes according to Method-1 and Method-2.

Figure 5.9: Image captured during the testing session with child4, child6 and child7,

respectively.

As shown in Fig. 5.10, two different methods were applied to classify engagement levels

from videos recorded during the child-robot interaction sessions.

51



Figure 5.10: Engagement Classification Pipeline.
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6 Results and Discussion

This chapter describes the experimental results that were achieved for the Emotion

Recognition System with the ResNet18, VGG16, ResNet50, ResNeXt50 and ConvNeXt

networks, as well as the Method-1 and Method-2 for the Engagement Classification System.

The validation of the proposed child-robot activities with target participants (children from

5 to 7 years old). A discussion of results is also presented in this chapter.

6.1 Results of the Engagement Classification System

This section first presents the results obtained for the proposed Emotion Classification

approach and and then presents the results for the Engagement Classification methods.

6.1.1 Emotion Classification Results

This section presents a summary of the best results obtained for emotion classification

with the ResNet18, VGG16, ResNet50, ResNeXt50 and ConvNeXt networks. To achieve

these results, it was necessary to adjust a number of hyper-parameters that directly affect

the training performance of the network, such as batch size, learning rate, number of

epochs, and image size as input to the network.

The batch size is the number of training examples used in one iteration and affects the

training time per iteration. The larger the batch size, the longer it takes to execute a single

iteration, but it also enables a more precise update of network weights. This is because the

gradient is calculated from more training samples, resulting in a more accurate estimate of

the direction to adjust the weights. But the gradient calculated from a large batch may be

too smooth, making it hard to know how to change the weights for the optimal solution.

The learning rate is the number of weights updated during the training phase, also

known as the ”step size.” The learning rate determines how quickly the network converges

to an ideal solution and adapts to the problem. Higher learning rates allow for quick

convergence, oscillating and diverging around the optimal solution. Lower learning rates

allows slower convergence, which can get accurate results but is a time-consuming task

and requires a greater number of training epochs, because the fact the algorithms take
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very small steps when updating the weights.

An epoch is a complete pass of the entire training dataset through the algorithm. The

number of epochs affects the convergence speed of the network to the optimal solution.

In general, the larger the number of epochs, the closer the network approaches a good

solution. However, there is a risk of overfitting, which is when the network adjusts too

much to the training data and becomes less general.

The size of the images influences the amount of memory required to train a network

as well as the duration of the training. For instance, larger images may provide more

information about the objects within the image, but smaller images may not capture

all relevant data. This can influence the network’s accuracy and performance during

classification or object detection tasks.

This variation of the parameters is presented in detail in the appendix tables 7.1 where

the tests with best results are highlighted. It is possible to see that the best results were

always obtained using the pre-trained network with ImageNet data, implying that the

transfer learning technique was used as well as the use of data augmentation, in particular

the combination of the three techniques: vertical flip, horizontal flip, and 45-degree rota-

tion. The results show that using a larger image size improves model performance, but

depending on the hyper-parameter combinations, using a larger image size is not always

possible due to computational capacity. This observation holds true for batch size as well.

The best results were obtained with an ADAM learning rate of 0,001, which is a very

commonly used value. In each model’s training, 30 or 50 epochs were used so that the

network would have enough iterations to learn and adjust the weights.

The results obtained with the ResNet18, VGG16, ResNet50, ResNeXt50 and ConvNeXt

networks for the FER2013, EmoReact, and CAFE datasets are compared to state-of-the-

art results, as shown in the Tables 6.1- 6.5.

It is difficult to compare EmoReact dataset-derived results to the current state-of-art.

This is because, the EmoReact dataset was modified to suit the emotion and engagement

classification algorithms by converting videos to frames and manually selecting the most

relevant frames, making it a dataset just tested in this dissertation. Additionally, and

to the best of our knowledge, there is a limited amount of research that has used the

EmoReact dataset, and the metrics used for these few works, such as ROC and F1-score

[89], are different from those presented in this dissertation due to the fact that EmoReact

is composed by videos with both visual and audio components. The results achieved with

the EmoReact dataset are presented in Table 6.1.
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Table 6.1: Accuracy achieved using different networks on EmoReact dataset.

Network Acc(%)

ResNet18 43.29%

VGG16 47.12%

ResNet50 43.56%

ConvNeXt 46.68%

By comparing Table 6.2 and Table 6.3 it is possible to observe that the results obtained

by the tested networks VGG16, ResNet50, ResNeXt50, and ConvNext, in the ranking

of the seven emotions on dataset FER2013, were slightly lower than those achieved in

other state-of-the-art works. However, the accuracy results obtained with the ConvNeXt

network are very close to state-of-the-art results. This difference can be explained by the

fact that the batch size used by us is smaller than the batch size used by [67] due to

memory capacity.

Table 6.2: Accuracy achieved us-

ing different networks on FER2013

dataset.

Network Acc(%)

VGG16 68.18%

ResNet50 66.87%

ResNeXt 68.57%

ConvNeXt 71.81%

Table 6.3: Acc(%) comparison with state-of-art

methods using different networks on FER2013

dataset.

Work Methods Acc(%)

Pramerdorfer et al. [67] ResNet50 72.40%

Pramerdorfer et al. [67] VGG16 72.70%

Khaireddin et al. [65] VGG 73.28%

Liu et al. [64] CNN 62.44%

For the CAFE dataset, the results obtained by the ResNeXt50 and ConvNeXt networks

presented in Table 6.4 clearly surpass the results reported in the state of the art (see Table

6.5).
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Table 6.4: Accuracy achieved

using different networks on

CAFE dataset.

Network Acc(%)

ResNeXt 82.86%

ConvNeXt 85.92%

Table 6.5: Acc(%) comparison with state-of-art methods

using different networks on CAFE dataset.

Work Methods Acc(%)

Zheng et al. [63] Shape features + SVM 77.40%

Witherow et al.

[62]

CNN 76.03%

Lopez-Ricon [66] CNN-AFFDEX Viola-

Jones Re-Trained

44.88%

Nagpal et al. [90] msDBM + RF 48.00%

Dias et al. [91] CNN + Triple Loss 72.68%

Emotion Classification Best Results

The model designed for engagement classification was based in the one acquired by

training the ConvNeXt network on the CAFE dataset. Table 6.6 presents the mean, max-

imum, and standard deviation of the training performed three times with the parameters

described in Table 5.3, where a maximum of 85.92% and a mean of 84.19%. Figure 6.1

shows the training loss curve and the validation loss curve. Due to the fact that both

curves declined, suggesting that the model was adapting itself to the training data, it was

concluded that neither overfitting nor underfitting happened.

Table 6.6: Results with ConvNeXt Network

to classify emotions.

Results Acc(%)

max 85.92%

mean 84.19%

standard deviation 1.22%

Figure 6.1: Training and validation losses

curves.

Table 6.7 presents the accuracy per class and the total number of images of each class; for

example, for class 0, ”angry,” the model predicted correctly 85% of 47 images, resulting

in 40 images well predicted. Figure 6.2 presents the confusion matrix, where the main

diagonal shows how many images were well classified and how many were misclassified in

the rest of the cells.
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Table 6.7: Classification results for 7-

emotions classes.

Classes Acc(%) No. Images

0 (Angry) 85% 47

1 (Disgust) 81% 43

2 (Fearful) 75% 32

3 (Happy) 91% 49

4 (Neutral) 90% 52

5 (Sad) 87% 24

6 (Surprise) 86% 23 Figure 6.2: Confusion Matrix for 7-emotions

classes.

6.1.2 Engagement Classification Results

This section presents the best testing results obtained for Method-1 and Method-2 for

engagement classification. A fair comparison of the results presented in this dissertation

with those presented in the state of the art (see Table 6.8) is not possible, because they

used different proprietary datasets, and different classes of engagement (e.g. some works

use only two classes: engaged and not engaged).

Table 6.8: Acc(%) comparison with state-of-art methods to engagement recognition.

Work Dataset Results (%)

Lin Gen et al. [69] DAiSEE Acc=56.20%

Woo Han et al. [19] Own Dataset Acc=81.44%

Omid et al. [70] Own Dataset Acc=72.28%

Rudovic et al. [41] Own Dataset ICC=59%

Hadfield et al. [40] Own Dataset Acc=77.11%

Method-1: CNN returns the emotion classes that were followed by the direct

inference of engagement

In Method-1 the best network achieved (ConvNeXt network with CAFE datatset) for

the Emotion Classification system was employed, and because no networks were trained,

there are no loss curve graphs. Table 6.9 shows that Method-1 has a maximum accuracy
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of 88.14% in classifying the level of engagement. Table 6.10 and the Fig. 6.3 presents the

accuracy per class and the confusion matrix, respectively.

Table 6.9: Results with ConvNeXt Network to classify engagement.

Results Acc(%)

max 88.14%

mean 87.89%

standard deviation 0.17

Table 6.10: Classification results for 4-

engagement classes.

Classes Acc(%) No. Images

0 (Strong) 86% 23

1 (High) 82% 79

2 (Medium) 91% 116

3 (Low-Not) 90% 52

Figure 6.3: Confusion Matrix for 4-

engagement classes.

Method-2: CNN returns the engagement classes

Table 6.11 shows that the Method-2 has a maximum accuracy of 85.92% in classifying

the level of engagement. 6.12 and the Fig. 6.5 presents the accuracy per class and the

confusion matrix, respectively. It is possible to concluded that no overfitting nor under-

fitting occurred based on the model curves depicted in Fig. 6.4, which indicate the model

was adjusting to the training data.
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Table 6.11: Results with ConvNeXt Net-

work to classify engagement.

Results Acc(%)

max 85.92%

medium 84.93%

standard deviation 0.69

Figure 6.4: Training and validation losses

curves.

Table 6.12: Classification results for 4-

engagement classes.

Classes Acc(%) No. Images

0 (Strong) 73% 23

1 (High) 77% 79

2 (Medium) 93% 116

3 (Low-Not) 88% 52

Figure 6.5: Confusion Matrix for 4-

engagement classes.

Comparison between Method-1 and Method-2 Performance

Comparing the results obtained with Method-1 and Method-2 for the Engagement Clas-

sification, the percentage difference in accuracy is 2.22%, which, despite being a low value,

can be significant in this type of classification problem. By analysing the two confusion

matrices presented in Figures 6.2 6.3 it is possible to observe that the Method-1 model

correctly predicted more images per class.

This discrepancy in accuracy, despite employing the same network with the same pa-

rameters in both Method-1 and Method-2, may be justified by the fact that the inference

of engagement is made after the emotion classification, through the direct relation between

emotions and engagement levels. The Method-1 model is required to be more discriminat-

ing, returning seven classifications, and to learn more specific features. In Method-2, the

model returns four classes, making it easier to learn the characteristics of the face images

by covering some features that correspond to more than one emotion. However, a more
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discriminating method, Method-1, turns out to have positive effect on results. Another

fact is that re-labeling the dataset before training the network makes the dataset unbal-

anced because the medium level of engagement class contains many more images than the

other classes; this probably affected the performance of the model.

Results with Engagement Classification Method-1 and Method-2 on the FER2013

dataset

The methods developed for engagement classification were tested on the FER2013

dataset. The process was the same as with the CAFE dataset, except that the network

used was ConvNeXt trained on the FER2013 dataset. The accuracy results in Table 6.13,

reveal that although the results are not low, they do not surpass the results obtained with

the CAFE dataset. Method-1 continues to perform better than Method-2, as it did for

the CAFE dataset.

Table 6.13: Accuracy achieved using Method-1 and Method-2 on the FER2013 dataset.

Method Acc(%)

Method-1 75.85%

Method-2 75.27%

6.2 Experimental Test with Children

This section presents the results obtained by applying Method-1 and Method-2 to the

images extracted from the recorded videos during the child-robot activity. Table 6.14 and

Table 6.15 presents the percentage of the number of occurrences of each class in each video.

Table 6.14: Results with Method-1.

Classes Child4 Child6 Child7

Strong 0% 0.66% 0%

High 0% 10.57% 0%

Medium 98.46% 50.88% 100%

Low-Not 1.54% 37.89% 0%

Table 6.15: Results with Method-2.

Classes Child4 Child6 Child7

Strong 0% 0.22% 0%

High 0% 0% 0%

Medium 100% 99.73% 100%

Low-Not 0% 0% 0%

Comparison between Method-1 and Method-2 Performance

Comparing the results of applying Method-1 and Method-2 to the test images extracted

from the videos of the session recorded with the three children, it was anticipated that

Method-1’s model would perform better after the analysis of the performance with the
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CAFE dataset. Due to the absence of labels in the data acquired from the children’s tests,

it is not possible to compare the model’s predictions with the true labels.

The results are shown as a percentage of the number of occurrences of each class (levels

of engagement) during the child-robot activity, on the video recorded with each child,

e.g., the class ”medium” occurred in 98.46% of the frames. Observing the data, it is

possible to conclude that Method-1 was able to classify each video into a greater number

of classes, being more discriminative, compared to Method-2. Furthermore, by examining

the extracted frames from the videos, it can be seen that child4 and child7 maintain a

consistent facial expression throughout the session, whereas child6 exhibits more facial

expression variation, providing some validation for our model.
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7 Conclusion

The main goals of this dissertation were to design and implement a child-robot activity

that would engage, interact, and teach a calming exercise and to develop an engagement

classification system based on the recognition of emotions through facial expressions that

could be used to analyse child-robot activity during offline and online processes.

EmoReact, the FER2013, and the CAFE datasets were used to conduct an analysis

to determine the accuracy performance of the emotion and engagement classifications

measured in accuracy.

In terms of the accuracy of emotion classification, the results reveal that proposed

model based on a ConvNext architecture classified emotions with an accuracy of 85,92%,

achieving the best performance with the CAFE dataset and surpassing the results obtained

for the EmoReact and FER2013 datasets.

The engagement classification system tested with the CAFE dataset performs effectively

when compared to previously published works, with an accuracy of 88,14% and 85,92%

for Method-1 and Method-2 respectively. Although, a fair comparison with other methods

of the state of the art is debatable, because the number of classes and the datasets used

in those works are different.

The application of the engagement classification system to videos recorded with children

has also shown positive outcomes and promising results for application in offline analysis.

Further work is required, in particular the evaluation of our results by professional thera-

pists that can truly assess if the automatic recognition of engagement is being carried out

in an effective manner.

It is also important to emphasise that one of the limitations of this work is that the

datasets that were used do not include emotions that correspond to the levels of low engage-

ment and not engaged. Additionally, the affective model that relates levels of engagement

to emotions does not predict neutral as emotion. The association of neutral emotion to a

low/not engaged level was idealised by us and for that reason it is an association that can

affect the correct performance in the engagement classification.

The results presented, despite being promising, have great potential for improvement,

for example by applying other computer vision techniques, testing adaptations to the
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chosen network, or even testing other networks (e.g. temporal analysis), and exploring

new datasets with different classes of emotions and features.

The main objective proposed in the introduction was successfully achieved. The emotion

and engagement classifications were trained, tested, and applied in an offline real child-

robot activity.

7.1 Future Work

There are a number of different strategies that, if implemented, might contribute to the

improvement of the work developed in this dissertation.

Classification engagement based on other features can improve the results. The direction

of the kid’s gaze, the kid’s body posture, and speech recognition are features that used

with in combination with the emotion classification could improve the results.

There are additional machine learning approaches that can be researched and analysed,

as well as other networks and adjustments to the one used. The performance of results

might also be improved by exploring and building new datasets that fits the requirements

of this work was explored with the help of psychology therapists.

Real-time engagement classification is also envisaged to allow a re-adaptation of the

robot behaviour to the child during the interaction activity. The work can be directed

towards the development of reinforcement learning algorithms so that the robot can adjust

to the child by capturing his attention or maintaining his level of engagement through the

feedback (reward) received by the engagement classification.
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A Results Tables

A.1 Results with Resnet18

Table A.1: Results with ResNet18 - EmoReact dataset and batch size 64.

Classes [Acc(%)] #1 #2 #3 #4 #5

0 43% 47% 39% 44% 37%

1 29% 27% 17% 23% 26%

2 25% 16% 16% 22% 17%

3 1% 1% 8% 1% 0%

4 6% 12% 7% 21% 2%

5 61% 61% 65% 59% 73%

6 10% 9% 17% 9% 13%

Img Size 32x32 32x32 48x48 48x48 48x48

LRate 0,01 0,01 0,0001 0,01 0,0001

Pre-Trained True True False False True

Epochs 10 15 10 15 15

TrainAcc 61,96% 60,92% 61,75% 60,61% 62,40%

TestAcc 41,45% 41,42% 41,17% 41,31% 43,29%
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A.2 Results with VGG16

Table A.2: Results with VGG16 - EmoReact dataset.

Classes [Acc(%)] #1 #2 #3 #4

0 0% 41% 58% 57%

1 0% 17% 59% 60%

2 0% 9% 52% 54%

3 0% 27% 87% 87%

4 0% 17% 64% 64%

5 100% 79% 58% 56%

6 0% 12% 79% 78%

Img Size 32x32 64x64 64x64 64x64

Pre-Trained False True True True

LRate 0,01 0,0001 Adam 0,0001 Adam 0,0001 Adam

Epochs 15 50 50 50

DA - HF/R=45º HF/R=45º HF/VF/R=45º

Batch Size 64 32 64 32

TrainAcc 37,94% 65,00% 74,00% 76,00%

TestAcc 40,29% 46,80% 46,82% 47,12%

Table A.3: Results with VGG16 - FER2013 dataset, pre-trained and no. of epochs 50.

Classes [Acc(%)] #1 #2 #3 #4

0 59% 66% 61% 59%

1 69% 68% 61% 60%

2 51% 50% 52% 50%

3 87% 85% 87% 86%

4 59% 58% 61% 61%

5 57% 55% 57% 54%

6 81% 82% 81% 80%

Img Size 64x64 64x64 64x64 64x64

LRate 0,0001 Adam 0,0001 Adam 0,0001 Adam 0,001 SGD

DA HF/R=45º HF/R=45º HF/VF/R=45º HF/VF/R=45º

Batch Size 32 64 32 32

TrainAcc 81,05% 82,00% 74,00% 70,00%

TestAcc 67,75% 67,40% 68,18% 66,77%
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A.3 Results with ResNet50

Table A.4: Results with ResNet50 - EmoReact dataset, pre-trained with no. of epochs 50.

Classes [Acc(%)] #1 #2 #3

0 40% 42%

1 31% 36%

2 18% 16%

3 5% 28%

4 4% 25%

5 69% 54%

6 14% 10%

Img Size 128x128 64x64

LRate 0,0001 Adam 0,0001 Adam

DA - HF/VF/R=45º

Batch Size 32 32

TrainAcc 63,80% 64,00%

TestAcc 43,56% 39,44%

Table A.5: Results with ResNet50 - FER2013 dataset and pre-trained.

Classes [Acc(%)] #1 #2 #3 #4

0 54% 51% 51% 50%

1 62% 54% 53% 54%

2 49% 45% 44% 46%

3 86% 86% 85% 78%

4 50% 57% 60% 55%

5 55% 54% 48% 53%

6 78% 75% 70% 80%

Img Size 128x128 64x64 64x64 64x64

LRate 0,0001 0,0001 Adam 0,0001 Adam 0,0001 Adam

Epochs 50 50 30 30

Batch Size 64 32 32 16

TrainAcc 63,96% 63,33% 62,39% 62.60%

TestAcc 64,05% 63,58% 62,17% 61,66%
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Table A.6: Results with ResNet50 - FER2013 - continuation.

Classes

[Acc(%)]

#5 #6 #7 #8 #9 #10

0 58% 56% 54% 54% 60% 58%

1 61% 61% 66% 61% 65% 63%

2 42% 51% 50% 46% 47% 47%

3 83% 85% 85% 86% 85% 86%

4 65% 56% 66% 65% 61% 59%

5 50% 51% 52% 54% 53% 56%

6 79% 77% 84% 83% 82% 80%

Img Size 64x64 64x64 64x64 64x64 64x64 64x64

LRate 0,0001 Adam 0,0001 Adam 0,0001 Adam 0,0001 Adam 0,0001 Adam 0,0001 Adam

Epochs 30 30 30 50 50 50

DA HF HF/VF HF/VF/R=45º HF/R=45º HF/R=45º HF/VF/R=45º

Batch Size 32 32 32 32 64 64

TrainAcc 70,90% 68,48% 88,03% 83,95% 88,44% 78,00%

TestAcc 64,72% 64,33% 66,87% 66,67% 63,31% 66,28%

76



A.4 Results with ResNeXt50

Table A.7: Results with ResNeXt50 - FER2013 dataset.

Classes (Acc(%)) #1 #2

0 60% 59%

1 64% 60%

2 50% 50%

3 87% 86%

4 66% 61%

5 57% 54%

6 80% 80%

Img Size 64x64 64x64

LRate 0,0001 Adam 0,0001 SGD

Epochs 50 50

DA HF/VF/R=45º HF/VF/R=45º

Batch Size 64 32

TrainAcc 80,58% 76,85%

TestAcc 68,57% 66,77%

Table A.8: Results with ResNeXt50 - CAFE dataset.

Classes (Acc(%)) #1

0 82%

1 69%

2 68%

3 95%

4 92%

5 79%

6 82%

Img Size 64x64

LRate 0,0001 Adam

Epochs 50

DA HF/VF/R=45º

Batch Size 32

TrainAcc 91,99%

TestAcc 82,86%
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A.5 Results with ConvNeXt

Table A.9: Results with ConvNeXt - FER2013 dataset, pre-trained, no. of epochs 50,

batch size of 64.

Classes

[Acc(%)]

#1 #2 #3 #4 #5 #6 #7 #8

0 63% 57% 61% 56% 30% 59% 63% 65%

1 66% 57% 60% 54% 65% 70% 64% 67%

2 54% 48% 50% 49% 51% 52% 52% 55%

3 88% 85% 86% 85% 86% 88% 87% 88%

4 66% 65% 63% 65% 68% 66% 66% 69%

5 61% 58% 57% 54% 60% 60% 59% 59%

6 84% 78% 82% 78% 82% 83% 83% 84%

Img Size 64x64 64x64 64x64 64x64 64x64 64x64 64x64 128x128

LRate 0,0001

Adam

0,0001

Adam

0,0001

Adam

0,0001

Adam

0,0001

Adam

0,0001

Adam

0,0001

Adam

0,0001

Adam

DA HF/VF/

R=45º

HF VF R=45º HF/VF/

R=20º

HF/VF/

R=40º

HF/VF/

R=45º

TrainAcc 83,45% 67,07% 82,09% 71,65% 82,65% 88,20% 87,86% 91,08%

TestAcc 71,13% 67,21% 68,07% 66,39% 69,61% 70,05% 70,00% 71,81%

Table A.10: Results with ConvNeXt - CAFE dataset, pre-trained, image size of 128x128,

learning rate of 0,0001 Adam, data augmentation (HF/VF/R=45º) and no. of epochs 50.

Classes [Acc(%)] #1 #2 #3

0 85% 87% 85%

1 69% 74% 81%

2 68% 75% 75%

3 95% 97% 91%

4 94% 92% 90%

5 79% 66% 87%

6 78% 73% 86%

Batch Size 64 64 64

TrainAcc 93,35% 94,02% 92,53%

TestAcc 83,33% 83,70% 85,92%
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