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Resumo

Nas décadas recentes, os unmanned aerial vehicle (UAV), vulgarmente conhecidos por drones,

têm-se vindo a tornar cada vez mais populares, tanto profissionalmente como comercial-

mente, permitindo tarefas de supervisão e do género. Contudo, a sua baixa autonomia

energética tornou-se um obstáculo à completa autonomia energética dos sistemas que in-

tegram estes robôs. Entre as várias soluções formuladas para resolver este problema, uma

que se destaca é o uso de estações de carregamentos. Estas são postos onde o UAV pode

aterrar para recarregar a sua bateria via um par de bobinas. No entanto, desta tecnologia

surge outro desafio: aterrar com precisão nas estações de carregamento. Então, esta dis-

sertação visa melhorar trabalho passado através do desenvolvimento de um sistema robusto

de aterragem autónoma baseado em visão por computador. O algoritmo usa uma câmara e

um marcador fiducial para controlar o voo do UAV até ao marcador e aterrar precisamente

nele. Esta dissertação também se foca em comparar diferentes marcadores fiduciais para

determinar quão apropriados são para este fim, bem como desenvolver um marcador fidu-

cial customizado e um algoritmo de deteção para o mesmo. Uma experiência controlada foi

feita para comparar os alcances de deteção e errors de estimação de posição dos marcadores.

Outra experiência foi realizada em ambiente de simulação para testar e validar o algoritmo

de aterragem.

Keywords: UAV, Drone, Aterragem Autónoma, Visão por Computador, Marcadores

Fiduciais

iii



Abstract

In the recent decades, UAVs have become increasingly popular both professionally and com-

mercially, allowing for automation of surveillance tasks and the like. However, their low

energetic autonomy has become an obstacle in the way of full automation of systems inte-

grating these robots. Among the many solution that have been explored, one that shows

promise is inductive wireless charging via charging stations. These are outposts where a

UAV can land to have its battery recharged via a pair of transmitter-receiver coils which

raise their own challenge: landing precisely on them. Thus, this dissertation looks to improve

upon previous work by developing a robust vision-based landing algorithm. The algorithm

uses a camera and a fiducial marker to control the UAV’s flight towards the marker and land

precisely on top of it. This dissertation also focuses on comparing different fiducial markers

to determine how well suited they are for this application, as well as developing a custom

fiducial marker (CFM) with its own detection algorithm. A controlled experiment was done

to compare the markers’ detection range and pose estimation errors. Another experiment

was done in simulation to test and validate the landing algorithm.

Keywords: UAV, Drone, Autonomous Landing, Computer Vision, Fiducial Markers
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“Our business is not to see what lies dimly at a distance, but to do

what lies clearly at hand."
— Thomas Carlyle
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1 Introduction

1.1 Context and motivation

UAVs, more commonly known as drones, are aircrafts that can be remotely controlled, fly

autonomously, or a mixture of both, and carry a multitude of sensors and devices to perform

a variety of tasks [2]. Their advantages include a simple structure, reduced size, low cost and

flexibility. They have uses in many fields, which can be categorised into: search and rescue;

coverage; construction; delivery of goods [3]. The global UAV market was worth, in terms

of revenue, United States dollar (USD) 18.28 billion in 2020 and it is forecast to reach USD

40.90 billion in 2027, with a compound annual growth rate of 12.27% from 2021 to 2027 [4].

In the last decade, UAVs have become increasingly more popular among professionals and

civilians and their main challenges have also become clearer. One of these challenges pertains

to energetic autonomy, which is one of the main drawbacks of these systems. The simplest

way to solve this problem is using batteries with greater capacity, but, as the capacity of

a battery increases, so does its weight, its cost and its size. A greater weight increases the

amount of thrust needed to keep the UAV in the air, thus increasing the energy consumption

of the UAV. Although there are studies and commercial products aimed at maximising the

autonomy of UAVs, most of them are expensive and may require an aircraft adapted to

the solution, which makes said solution unfeasible for commercial drones. So, literature

has focused on four other solutions: battery management, battery recharging, solar power,

and machine learning and communication techniques [5]. This work is aimed at battery

recharging, whose main solutions are tethering, energy harvesting and charging stations.

Tethering consists of linking the UAV to a ground control station (GCS) via a tether,

which allows for efficient charging and other perks, such as a wired connection to the Internet

[6]. However, tethering severely limits the UAV’s work space and creates new challenges in

terms of flight control, due to the weight of the tether and its variable length [7].

Energy harvesting is a technique which collects energy from ambient sources. These
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sources include but are not limited to solar energy, wind energy, vibration and electromag-

netic fields [8]. It is a very situational strategy as it depends on the weather conditions or

on large electromagnetic sources, such as power lines, which are not always available and in-

duce interference on the connections between the UAV and other devices, like a radio remote

controller or a GCS.

Charging stations are posts where the UAV can land to have its battery recharged.

Though this solution does not provide charging as efficiently as tethering and, unlike en-

ergy harvesting, requires the aircraft to land, it has become the preferred solution among

investigators due to the high degree of design freedom and the number of different charging

methods applicable. By using charging stations instead of tethering or energy harvesting,

there is great freedom for placement of scattered stations, which allow UAVs to cover large

distances, albeit not continuously, and perform long missions with full autonomy [9]. These

charging stations may also serve as GCSs where the drone may communicate gathered data

to a remote server or receive new missions. The DJI Dock is an example of a commercial

product with the previously mentioned features [10].

As this solution requires the drone to land on a relatively small structure, autonomous

landing is of the utmost importance for recharging. There is a multitude of autonomous

landing solutions, one of which is vision-based autonomous landing. This is due to cameras

being passive sensors, generally cheap, lightweight and easily adaptable to existing platforms,

which makes them very sought after in the UAV field [11]. A solution vision-based UAV

navigation and localisation that is commonly relied on is the use of visual fiducial markers,

highly recognisable patterns with strong geometric and visual features which may also encode

information and fail-safes with error correction. A great deal of the already available fiducial

markers have associated software libraries that provide pose estimates of the markers relative

to the camera, which makes them ideal for landing.

1.2 Objectives

This dissertation has two main objectives: comparing the performance of some of the most

popular fiducial markers and a custom marker for the purpose of vision-based autonomous

landing; developing an autonomous landing algorithm which relies on the detection of fiducial

markers.
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1.3 Document structure

This dissertation is organised as follows:

• Chapter 2 - Related Work contextualises this work in the literature of visual fiducial

markers and vision-based autonomous UAV landing;

• Chapter 3 - Methods provides the theoretical background for the design and detection

of the CFM and the autonomous landing algorithm;

• Chapter 4 - Experimental Work lists the hardware and software components utilised

in the experimental phase of this dissertation and discusses in detail the experimental

work done;

• Chapter 5 Conclusion and Future Work summarises what was concluded from the

results of this work and suggests improvements.
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2 Related Work

This chapter provides background and discusses the history, progress and state of the liter-

ature on major topics of research concerning UAVs, namely, autonomous UAV landing and

fiducial markers.

2.1 Fiducial markers

A visual fiducial marker is an object in the field of view of an imaging system that serves

as a reference or measurement for it. In the field of mobile robotics, the objects known as

fiducial markers, usually called tags, are artificial visual features of known dimensions that

are easy to recognise and distinguish from one another. These may also support encoding

and error detection and correction. As mentioned in Section 1.1, fiducial markers are very

useful in robotics for their ability to provide pose estimates and even encoded information,

making them great for vision-based navigation and localisation. Fiducial markers have a

multitude of purposes in the field, such as providing instructions for a robot, a six-degrees of

freedom (6-DoF) pose estimate from a single marker with known dimensions or ground truths

for various tasks and aiding in simultaneous location and mapping (SLAM) and navigation

problems, and providing .

One of the most popular markers is ARTag [12], which is based on ARToolKit1, as most

square-shaped markers are. ARToolKit is a system initially designed to track markers for

augmented reality video conferences. Its marker detection consists of applying a global

threshold to the image to search for areas which can be fitted by four line segments. Unlike

ARToolKit, ARTag uses digital coding theory to design the pattern inside the marker, allow-

ing for encoding of information and error correction. It also uses a gradient-based strategy

to detect line segments which form a quadrilateral, which yields more reliable detections and

better performance with partially occluded markers. The internal pattern of this marker is
1See http://www.hitl.washington.edu/artoolkit.html
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a 6-by-6 matrix, i.e., a 36-bit code. Example markers of ARToolKit and ARTag are shown

in Figures 2.1a and 2.1b, respectively.

(a) ARToolKit. (b) ARTag.

Figure 2.1: Examples of ARToolKit and ARTag markers.

Although a great majority of the popular fiducial markers are based on square 2D bar-

codes, also known as quick response codes (QR codes), there are other which use different

geometric structures, such as BullsEye, CCC, CCTag, FourierTag, InterSense, Multi-ring,

Pi-Tag, RUNE-Tag, SIFT, STag, Topotag, TRIP and WhyCode [13]. Some of note among

these are:

• CCC [14] (Figure 2.2a), which is the simplest fiducial and does not provide any infor-

mation besides position;

• CCTag [15] (Figure 2.2b), which expands upon CCC by adding rings with different

radii, which can encode information, much like a traditional bar code;

• FourierTag [16] (Figure 2.2c), which is designed to have a detection that degrades

continuously as the distance to it increases and encodes data in the form of a greyscale

pattern based on the Fourier transform;

• Multi-ring [17] (Figure 2.2d), which encodes data using colour;

• RUNE-Tag [18] (Figure 2.2e), in which the information is encoded in dots of varying

sizes arranged in a circular pattern;

• SIFT [19] (Figure 2.2f), which aims to create artificial SIFT features in a scene and

cannot encode information or provide orientation information due to its radial sym-

metry;
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(a) CCC. (b) CCTag. (c) FourierTag. (d) Multi-ring.

(e) RUNE-Tag. (f) SIFT. (g) TopoTag.

Figure 2.2: Examples of CCC, CCTag, FourierTag, Multi-ring, RUNE-Tag, SIFT and

TopoTag markers.

• TopoTag [20] (Figure 2.2g), which allows custom-shaped markers.

Among all the markers mentioned, the ones selected for the purposes of this dissertation

are ArUco, AprilTag and STag, mainly due to the availability of an OpenCV module for

detection and pose estimation of ArUco markers, a Python module for detection of AprilTag

markers with pose estimation provided by OpenCV and a ROS package for the detection

and pose estimation of STag markers. Additionally, a custom marker has been developed

from scratch and after all the modifications it arrived at a design very similar to CCTag,

although independently.

AprilTag [21] was built on top of ARTag’s foundations and improves the original in a

number of different ways. The image segmentation is based on graphs and gradient patterns

to perform quad extraction, which allows non-intersecting edges to be considered marker

candidates. This marker also improves upon the 2D barcode system and increases its ro-

bustness against rotation and reduces the detection of false positives outdoors. The new

encoding system also increases robustness against warping and occlusion and bolsters a de-

crease in misdetection rates. On top of these advantages, the detection algorithm is to this

day being further developed by investigators. AprilTag has several different marker dictio-

naries, each with its own unique combination of number of unique marker IDs, Hamming

distance between marker IDs and number of bits. Three example markers from the 36h11

dictionary are presented in Figures 2.3a-2.3c.
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The Hamming distance is an information theory concept which represents the number of

different symbols in two strings of equal length, i.e., the minimum number of substitutions

needed to transform one of the strings into the other. In encoding systems, greater Hamming

distances translate to better error correction, since more errors are necessary to transform

one code to another in the dictionary. However, to obtain greater Hamming distances, it is

usually necessary to decrease the number of unique IDs in a dictionary.

(a) AprilTag 36h11

marker with ID 0.

(b) AprilTag 36h11

marker with ID 1.

(c) AprilTag 36h11

marker with ID 2.

Figure 2.3: Examples of AprilTag markers from the 36h11 dictionary with different IDs.

ArUco is also based on ARTag and ARToolKit and its biggest contribution is allowing

the user to configure their own dictionaries, instead of relying solely on previously available

ones, like most other markers. Since the dictionaries are custom-generated, they do not need

to include as many markers as other dictionaries, which decreases the computation time

and effort. The dictionaries created by the user only contain markers with the maximum

Hamming distance possible. Figures 2.4a-2.4c display examples of ArUco markers from

ArUco 6x6 250 dictionary, which as a dictionary size of 250 and a marker size of 36.

The collection of markers taken into account in a particular application is known as a

dictionary of markers. It is merely a list of each marker’s binary codifications. A dictionary

is described by two values: the dictionary size and the marker size. The dictionary size is

the number of unique IDs in the dictionary. The marker size is the number of bits that

the markers have. Some dictionaries do not specify their size, stating instead the Hamming

distance between IDs. One instance of a dictionary which specifies its dictionary and marker

sizes is the ArUco 4x4 50, which has a dictionary size of 50 and a marker size of 16 (4x4

means 4 · 4 = 16 bits). One instance of a dictionary which instead specifies the Hamming

distance between different IDs and its marker size is the AprilTag 36h11, which has a marker

size of 36 (which means the square codes are 6-by-6 bits) and a Hamming distance between

IDs of 11.
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(a) ArUco 6x6 250

marker with ID 0.

(b) ArUco 6x6 250

marker with ID 1.

(c) ArUco 6x6 250

marker with ID 2.

Figure 2.4: Examples of ArUco markers from the 6x6 250 dictionary with different IDs.

STag markers, like the two previous markers, are also surrounded by a square border,

but the markers themselves are circular. The focus of STag is achieving great stability

in pose estimation measurements. Thus, after the line segmentation stage, a preliminary

homography is computed for the detected marker, which is then refined with ellipse fitting.

This refining stage is shown to provide better results in localisation compared to quadrilateral

extraction methods. It also increases the stability of the measurements [22]. An instance of

an STag marker is shown in Figures 2.5a-2.5c.

(a) STag HD15 marker

with ID 0.

(b) STag HD15 marker

with ID 1.

(c) STag HD15 marker

with ID 2.

Figure 2.5: Examples of STag markers from the HD15 dictionary with different IDs.

2.2 Vision-based autonomous landing

Saripalli [23]-[24] proposed a system to autonomously land a UAV that combined Global

Positioning System (GPS), a three-axis gyroscope, a three-axis accelerometer, an ultra-sonic

sonar and a colour camera. Apart from the aircraft and its components and sensors, the

system also had a GCS that sent high-level commands and differential GPS corrections to
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the UAV. The vision system identified the landing target by utilising Hu’s moment of inertia

descriptors for the geometric figure it detects in the image and the control architecture was

behaviour-based with three modes: search mode that used GPS to approach the general

vicinity of the landing area; track mode that used vision to align the UAV with the landing

pad; landing mode. It achieved landing times between 62 s and 112 s, with a mean of 73 s

and a mean autonomous flight time of 234 s. The yaw misalignment was between 0◦ and 15◦,

with a mean of 6◦ and a standard deviation of 5◦. The mean error was position is 40 cm. The

approach did not include the inertial measurement unit (IMU) measurements in the control

loop. At 10 frames per second, the total central processing unit (CPU) time of acquiring

images, thresholding and filtering them, segmenting them, labelling the components and

compute the Hu’s moments of inertia of the components was about 89 %.

Venugopalan [25] suggested a new approach to the UAV-GCS relationship by placing the

computer acting as the controller on the UAV instead of the GCS. Although it placed a

greater energetic stress on the aircraft and was constrained by a reduction in the available

computational resources, there was no input lag in the control system, as the control mea-

surements and commands did not have to be communicated over a wireless network. In the

experimental work, a coloured marker with no information encoded was used for landing

with vision. Another improvement achieved by this work was the correction of the error

in the estimation of the pose of the landing target that arised from non-zero roll and pitch

angles. When these angles are non-zero, the target appears offset in the image, which, with-

out compensation, induces a significant error in the pose estimation that increases with the

altitude of the UAV.

Baca [26]-[27] proposed a vision-based landing control strategy that utilised model pre-

dictive control (MPC). The solution presented in the paper was for the one of the trials

in the Mohamed Bin Zayed Internation Robotics Challenge (MBZIRC) 2017 competition,

which challenged the competitors to land a UAV autonomously on top of a moving target

as fast as possible. The state of the moving target was previously known. The aircraft was

equipped with magnets on the landing gear to adhere to the target, a rangefinder, a camera

and a real-time kinematic global navigation satellite system (RTK-GNSS) receiver, and used

an unscented Kalman filter (UKF) to estimate the state of the car and MPC to generate the

desired state for the UAV. The team that devised this approach achieved the fastest landing

time in the competition, 25 s.

Sudevan [28] used template matching with speeded up robust features (SURF) and fast

library for approximate nearest neighbours (FLANN) to find the landing target in the image
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and used a state machine architecture for the landing behaviour of the UAV. The controller

was a proportional-integral-derivative (PID) controller.

Lee [29] departed from traditional computer vision and relied on an artificial intelligence

(AI) agent to command the aircraft to approach the landing target, although the agent

was taken off command when the UAV was 1.5m above the target due to safety reasons.

Nonetheless, it proved an AI agent trained in simulated environments with reinforcement

learning could emulate a human pilot and safely approach a landing destination.

Nguyen [30] used the lightweight lightDenseYOLO convolutional neural network (CNN),

a combination of the lightDenseNet and YOLO v2 neural networks, the first as a feature

extractor and the second as the marker detection module. On top of the previously mentioned

network, Profile Checker v2 was also added to enhance the predicted results. The UAV was

equipped with a gimbal that kept the camera’s optical axis at a 90◦ angle with the ground.

The neural network ran on an Android device mounted on the UAV.

Liu [31] uses height-adaptive control, where the PID controller’s constants vary with the

relative altitude of the drone, to account for the increased influence of the velocity commands

on the position of the target in the image when the camera is closer to the target.

Zhang [32] further explored machine learning applied to vision-based autonomous land-

ing by implementing a novel graph convolutional network (GCN) hybrid decision network

strategy to land a UAV. The evaluation of this method was only in a simulated environment,

however.

Keipour [33] used a gimbal mounted on the drone to point the camera towards the landing

target. By providing a way to detect the target without needing to be directly over it, this

approach shortens the landing times and facilitates landing in moving targets. The target

in the experimental work of the paper was moving in a straight line with constant velocity

of 15 km/h so that, if it got out of the field of view of the camera, the UAV would simply

need to accelerate in the direction where the target was last seen. Out of 22 recorded trials

where the controller needed to bring the UAV close to the target 19 were successful. The

three 3 failed trials were due to excessive sunlight reflecting on the target. Out of 9 recorded

landing trials 5 were successful. The time between first detecting the target and landing

varied between 5.8 s and 6.5 s. The paper provides videos of the trials from the point of view

of the aircraft’s camera.

Persson [34] also used MPC but improved upon it by introducing a variable look-ahead

horizon which computed the best possible value to make the controller problem solvable but

not so much that it became too computationally expensive. In the experimental outdoors
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work, the wind speed was of about 5m/s. As a method to counteract the effect of the wind,

the controller was allowed to utilise not only the first optimal input computed by the variable

horizon MPC, in case the control problem was not being solved fast enough.

Lee [35] proposed an approach to solve the problem of autonomously landing a UAV

on a target placed on a ship, which has heave, sway and surge movements that must be

accounted for. In order to solve the problem, machine learning and classical computer vision

were fused. The machine learning component performed long-distance object detection to

track the ship and the classical computer vision component estimated the pose of the UAV

relative to the ship. The experimental work consisted of over 100 landing trials and the

aircraft successfully landed on the 2m square target with a safe landing threshold of 0.35m

every time.

Saj [36] claims to have proved that their model of reinforcement learning performs better

than a classical PID controller for landing UAV’s autonomously, even with relatively strong

winds. Although the results defend the claim, there is no variety to the test environments

to make the claim irrefutable.
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3 Methods

3.1 Custom fiducial marker

The CFM has been designed from scratch and was inspired by the classic helipad marker

usually present in helicopter landing sites, shown in Figure 3.1. It was designed with sim-

plicity and a good detection range in mind, at the expense of encoding. It consists of an

outer ring for long-distance detection, an inner ring to increase the robustness of detection

and decrease the number of false positives, and a smaller inner ring for when the camera is

too close to the marker to be able to see the other two rings. The relative dimensions of the

rings’ inner and outer radii are shown in Table 3.1 and the fiducial itself is shown in Figure

3.2.

Figure 3.1: Classic helipad pattern.

The detection algorithm for this marker was also built from the ground up and is based

mostly on ellipse fitting and subsequent filtering. It can be split in three stages: ellipse

filtering; detecting rings; detecting the marker based on ring matching.

Although the marker is composed of circular rings, if perspective projection is assumed,

the distorted circumferences are elliptical. Hence, the ellipse filtering stage.
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Table 3.1: Dimensions of the CFM relative to x, the inner radius of the inner ring.

Ring Inner radius Outer radius

Outer 40x 50x

Middle 15x 25x

Inner x 3x

Figure 3.2: Custom fiducial marker.

3.1.1 Pre-processing

Before entering the three-stage detection pipeline, an image must first be pre-processed in

order to get better results in the following stages.

The first step is applying a bilateral filter to the image. This filter removes noise, pre-

servers edges and is non-linear. It replaces each pixel with a weighted mean of the intensities

of the neighbouring pixels. The weights typically follow a Gaussian distribution, but other

distributions can be used. The formal definition of the bilateral filter is presented in Equation

3.1, below,

Ifilterred(p) =
1

wn

∑
pi∈N

wr (∥I(pi)− I(p)∥) · ws(∥pi − p∥) · I(pi) (3.1)

wn =
∑
pi∈N

wr(∥I(pi)− I(p)∥) · ws(∥pi − p∥) (3.2)

Where

• Ifilterred is the output, i.e., the filtered image;

• wn is the normalisation weight, computed with the range and spatial kernels;
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• p is the coordinates of the current pixel;

• N is the neighbourhood of pixels around p;

• pi is the pixel of N which is currently being accounted for;

• wr is the range kernel, which assigns more weight to pixels closer to p in intensity;

• ws is the spatial kernel, which assigns more weight to pixels spatially closer to p;

• I is the input image.

OpenCV’s implementation, bilateralFilter1, utilises Gaussian distributions for wr

and ws, and therefore takes as inputs σr and σs, the standard deviations of the Gaussian

distributions for the range and spatial kernel, respectively. For this purpose, this function

was called with σr = σs = 175 in 5-by-5 neighbourhoods.

The next step is binarising the image, i.e., replacing every pixel with either a 0 or the

desired maximum value, depending on whether they meet a certain condition. The bina-

risation method chosen for this detector is a simple threshold binarisation, in which pixels

below the intensity threshold are set to 0 and the others are set to the desired maximum

value, as described in Equation 3.3.

Ib(p) =

0, I(p) < T

M, I(p) ≥ T

(3.3)

Where M is the desired maximum value and T is the fixed threshold value. Since the

image is in a single-channel 8-bit format, the maximum value of a pixel is 28 − 1 = 255 and

that is the value chosen for M .

Obtaining a binary image is crucial to the following step, finding the contours in the

binary image, since it provides much better accuracy. This process is handled by OpenCV’s

findContours2 function, which takes as inputs the source image, the contour retrieval mode

and the contour approximation method. The retrieval mode determines whether the output

list containing the contours organises them hierarchically and how it organises them. It

was decided to use the flag RETR_LIST, which returns the contours without hierarchical
1See https://docs.opencv.org/4.x/d4/d86/group__imgproc__filter.html#

ga9d7064d478c95d60003cf839430737ed
2See https://docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#

gadf1ad6a0b82947fa1fe3c3d497f260e0
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organisation. The contour approximation modes are used to compress contours, which are

essentially lists of coordinates of the pixels belonging to said contour. For instance, if some

points of the contour all fall in a straight line arrangement, only the end points are kept, in

order to save memory. Since the UAV’s on-board computer has limited resources, the chosen

flag was CHAIN_APPROX_SIMPLE, which works as previously mentioned.

Now that the image has been properly readied for the detection pipeline, it is fed into

the first stage, ellipse filtering.

3.1.2 Ellipse filtering

The purpose of the first stage is determining which contours returned from pre-processing are

valid ellipses. The filter iterates over each element of the contour list and checks a number

of conditions to determine if it is a valid ellipse.

Firstly, if the contour has 4 or less points, it is discarded. Due to the CHAIN_APPROX_SIMPLE

flag, a contour with four points is a quadrilateral, which is not detailed enough to be con-

sidered an ellipse. Following the same logic, contours with less than four points are also

invalid.

Then, an ellipse is fitted to the contour using OpenCV’s fitEllipse3 function, which,

in Python, returns a tuple containing the coordinates in pixels of the centre of the ellipse,

x and y, a tuple with the lengths in pixels of its minor and major axes, a and b and its

orientation in degrees, ϕ, and the index of its contour in the contour list, c. To ensure the

contour is elliptical, its area must be the same of the fitted ellipse. The area of the fitted

ellipse is computed with Equation 3.4.

Aellipse =
abπ

4
(3.4)

Using the area of the fitted ellipse, the inferior and superior limits of the interval within

which the area of the contour, Acontour, must lie, Amin and Amax, are computed using equations

3.5 and 3.6. The area of the contour is computed with OpenCV’s contourArea4 function.

Amin = Aellipse(1− tarea) (3.5)

Amax = Aellipse(1 + tarea) (3.6)

3See https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#

gaf259efaad93098103d6c27b9e4900ffa
4See https://docs.opencv.org/4.x/dd/d49/tutorial_py_contour_features.html
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Algorithm 1: Ellipse filter.
Input: List of image contours, C

Output: List of valid ellipses, E

tarea ← 0.05

E = [ ]

for Ci ∈ C do

if card (Ci) > 4 then

[x, y, a, b, ϕ, c]← fitEllipse(Ci)

Aellipse ← abπ
4

Amin ← Aellipse(1− tarea)

Amax ← Aellipse(1 + tarea)

Acontour ← contourArea

if Aellipse ∈ [Amin, Amax] then
E.append([x, y, a, b, ϕ, c])

end

end

end

Where tarea is the relative area tolerance, which is set to 0.05. If the contour’s area is

outside the [Amin, Amax] interval, it is discarded. This is the final condition the candidate

contours must meet and the end of the ellipse filtering stage.

The filter is described in Algorithm 1. Each member of the output list of valid ellipses

contains the coordinates of the centre of the ellipse, its major and minor axes lengths, its

orientation and the index of the contour which delimits it. The index identifies the contour

in the input list.

3.1.3 Ring detection

Before starting the ring detection stage, the number of elements of E is checked and, if the

list doesn’t contain at least two elements, the current image is discarded and it is considered

as containing no markers.

In order to determine which pairs of ellipses in E are valid rings, the algorithm must

iterate over every combination of ellipses. The list of all combinations of two ellipses is E2.

In order for a ring to be valid it must pass the following checks:
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Algorithm 2: Checking if two ellipses are concentric.
Input: Coordinates of the centres of the two ellipses, c1 and c2

Output: Boolean indicating if the ellipses are concentric (true)

Function twoAreConcentric(c1, c2):

if ∥c1 − c2∥ ≤ tconcentric then

return true

else return false

end

• Concentricity: the ellipses must be concentric;

• Eccentricity: the ellipses must have the same eccentricity;

• Orientation: the ellipses must have the same orientation;

• Type: the ring must be of either the outer, middle or inner types;

• Blackness: the ring must have at least a certain percentage of black points;

Concentricity

In order to meet this condition, the centres of the ellipses in the pair must coincide. Since

the camera sensor is prone to noise, a tolerance is defined to account for innate errors. This

tolerance, tconcentric, is set to 10 pixels. The condition is shown in Algorithm 2.

Eccentricity

The non-negative real number that uniquely identifies the shape of a conic section is called

its eccentricity, ε. More formally, if one considers a conic section as the intersection of a

plane with a double-napped cone, as shown in Figure 3.3, its eccentricity can be defined as

shown in Equation 3.7.

ε =
sin β

sinα
, α ∈

]
0,

π

2

[
, β ∈

[
0,

π

2

]
(3.7)

Since this stage always deals with ellipses, the eccentricity formula can be replaced with

the ellipse eccentricity formula presented in Equation 3.8. Similarly to the concentricity

condition, a tolerance teccentricity with a value of 0.2 is given to this check.

ε =

√
b2 − a2

b
, b ≥ a (3.8)
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Figure 3.3: Simplified 2D diagram of a conic section seen as the intersection of a double-

napped cone, in black, and a plane, in red.

Algorithm 3: Checking if two ellipses have similar eccentricities.
Input: Lengths of the minor and major axes of both ellipses, a and b

Output: Boolean indicating if the ellipses have the same eccentricity (true)

Function eccentricityIsEqual(a, b):

ε←
√
b2−a2

b

if |ε1 − ε2| ≤ teccentricity then

return true

else
return false

end

end

For the purposes of this condition, the absolute value of the difference between the

eccentricities of both ellipses is taken, i.e., |ε1− ε2|. Similarly to the concentricity condition,

a tolerance is given to this check. Its value is 0.2. The check is described in Algorithm 3

Orientation

When using OpenCV, the orientation of a fitted ellipse is defined as the angle between the

horizontal axis and the minor axis, increasing in a clockwise fashion, unlike the standard in

mathematics. In order to check if the ellipses meet this condition, the difference between

their orientations, ∆ϕ, is taken. Since it is convenient to constrain the difference of angles

to the
[
−π

2
, π
2

]
interval, instead of simply taking their arithmetic difference, the formula in

Equation 3.9 is used, because the function atan2 from Python’s math module outputs an

angle in the desired interval. The condition check is described in Algorithm 4.
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Algorithm 4: Checking if two ellipses have the same orientation.
Input: Orientation of both ellipses, ϕ1 and ϕ2

Output: Boolean indicating if the ellipses have the same orientation (true)

Function twoHaveEqualOrientation(ϕ1, ϕ2):

∆ϕ← arctan sin(ϕ1−ϕ2)
cos(ϕ1−ϕ2)

if |∆ϕ| ≤ torientation then

return true

else
return false

end

end

∆ϕ = arctan
sin (ϕ1 − ϕ2)

cos (ϕ1 − ϕ2)
(3.9)

Like in the previous two conditions, this one has a tolerance torientation of 20◦.

Type

The three rings types are: outer ring; middle ring; inner ring. Their type is determined by

the ratio between the radii of the inner and the outer circumferences which delimit the ring.

Looking at Table 3.1, one can see the ratios are 4
5
, 3

5
and 1

3
, respectively.

Since at times the ring suffers from projection distortion and becomes elliptical, the

evaluation of the ratio of radii must be changed to the evaluation of the ratio between the

lengths of the major axes of both ellipses, rb, and the ratio between the lengths of the minor

axes of both ellipses, ra. This is shown in Equations 3.10 and 3.11.

ra =
a1
a2

, a1 < a2 (3.10)

rb =
b1
b2
, b1 < b2 (3.11)

As in all the other checks, the type check has a tolerance ttype of 0.1 for all types of ring.

If both ra and rb are within the tolerance for the same type of ring, the ring is considered of

that type. The check is described in Algorithm 5.
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Algorithm 5: Evaluating the type of a ring.
Input: Lengths of the minor and major axes of the ring’s ellipses a and b

Output: Value indicating the type of the ring: outer (0), middle (1), inner (2) or

invalid (-1)

Function getRingType(a, b):

ra ← a1
a2

rb ← b1
b2

if |ra − 4
5
| < ttype ∧ |rb − 4

5
| <type then

return 0

else if |ra − 3
5
| < ttype ∧ |rb − 3

5
| < ttype then

return 1

else if |ra − 1
3
| < ttype ∧ |rb − 1

3
| < ttype then

return 2

else

return -1

end

end

Blackness

In order to pass the blackness check, the ring must have a percentage of black points, B,

greater than or equal to tblack% = 0.8. A pixel is considered black if its intensity value is less

than the black threshold, tB, which is described in Equation 3.12. The intuition behind the

formula follows this logic: it is desired that the black threshold sit 30% of the way between

the darkest and the brightest pixel in the image; therefore, the difference between said pixels

is taken and 30 % of that is computed; then, the value of the darkest pixel must be added

to the result in order to obtain a value 30 % of the way between the reference pixels. This

check does not have a tolerance. The blackness check is shown in Algorithm 6.

tB = 0.3 · (max I −min I) + min I (3.12)

After checking for all conditions

After meeting all conditions, the ring is considered valid and its centre and orientation are

computed by taking the mean centre, cR, and orientation, ϕR, of the ellipses that make
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Algorithm 6: Determining if a ring has enough black points.
Input: List of ellipses that make up the ring E, Image I, List of contours C

Output: Boolean indicating if the ring defined by E in the image I has enough

black points

Function isBlack(E, I, C):

tB ← 0.3 · (max I −min I) + min I

p← C.getRingPointsCoordinates()

np ← card(p)

nB ← card(I(pi) < tb), pi ∈ p

if nB

np
≤ tblack% then return false

return true;
end

up the ring. Its type, centre coordinates and orientation are appended to the list of valid

rings, R. In order for the ring to be considered black enough The ring detection algorithm

is summarised in Algorithm 7.
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Algorithm 7: Ring detection.
Input: Grayscale image I, List of valid ellipses E, List of image contours C

Output: List of valid rings, R

E2 ← combinations(E, 2)

R = [ ]

for E2
i ∈ E2 do

[x, y, a, b, ϕ, c]← E2
i

if not twoAreConcentric([x1, y1], [x2, y2]) then continue

if not eccentricityIsEqual(a, b) then continue

if not twoHaveEqualOrientation(ϕ1, ϕ2) then continue

if getRingType(a, b)= −1 then continue

if not isBlack(E2
i , I, Cc) then continue

cR =
[
x1+x2

2
, y1+y2

2

]
ϕR = ϕ1+ϕ2

2

R.append([ringType, cR, ϕR])

end

3.1.4 Marker detection based on ring matching

This is the final stage of the marker detection process and it is skipped if no rings were

detected in the last stage. This algorithm matches the rings detected in the previous stage

and checks if any of the combinations result in a valid marker.

The first condition the algorithm checks for is the number of rings that have been de-

tected. Although the marker is comprised of three rings, if the camera is too far away or too

close to it, it will see less than three rings and thus not all rings need to be detected for a

combination of rings to be considered a valid marker.

If R contains a single ring, it is immediately considered a valid marker and a ROS

geometry_msgs/Point message is published with the pixel coordinates of the centre of the

ring. If R contains two rings, the rings must have different types to be considered a valid

marker. They must not be the inner and outer ring as well. I.e., the valid two-ring com-

binations are outer-middle and middle-inner. They must also be concentric and have the

same orientation. If the two rings meet these conditions, the mean of their centres in pixels

is taken and published as the marker’s centre. If R contains three rings, they must all be of

different types, be concentric and have the same orientation. If they do, the mean of their
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Algorithm 8: Checking if three ellipses are concentric.
Input: Coordinates of the centres of the three ellipses, c1, c2 and c3

Output: Boolean indicating if the ellipses are concentric (true)

Function threeAreConcentric(c1, c2, c3):

d12 ← |c1 − c2|

d13 ← |c1 − c3|

d23 ← |c2 − c3|

if max(d12, d13, d23) ≤ tconcentric then

return true

else return false

end

Algorithm 9: Checking if three ellipses have the same orientation.
Input: Orientation of the ellipses, ϕ1, ϕ2 and ϕ3

Output: Logical value indicating if the ellipses have the same orientation (true)

Function threeHaveEqualOrientation(ϕ1, ϕ2, ϕ3):

∆ϕ12 ← arctan sin(ϕ1−ϕ2)
cos(ϕ1−ϕ2)

∆ϕ13 ← arctan sin(ϕ1−ϕ3)
cos(ϕ1−ϕ3)

∆ϕ23 ← arctan sin(ϕ2−ϕ3)
cos(ϕ2−ϕ3)

if max(∆ϕ12,∆ϕ13,∆ϕ23) ≤ torientation then

return true

else return false

end

centres in pixels is taken and published as the marker’s centre. The concentricity, orientation

and type checks are shown in Algorithms 8-10.

If R contains more than three rings, the evaluation is more complex. The marker in the

image could be comprised of either two or three rings. Thus, the algorithm must iterate

over every combination of two rings, R2, to check if any of them are a valid marker. If not,

it then iterates over every combination of three rings, R3, to look for the marker. If none

is found again, the image is discarded. Similarly to when R has two rings, the rings in R2
i

must be of different types, one of them must be the middle ring and they must be concentric

and have the same orientation. The three rings of R3
i must all be of different types, be

concentric and have the same orientation. A summary of the one-ring, two-ring, three-ring
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Algorithm 10: Checking if three ellipses have different types.
Input: Orientation of the ellipses, ringType1, ringType2 and ringType3

Output: Logical value indicating if all the ellipses have different types (true)

Function threeAreOfDifferentTypes(ringType1, ringType2, ringType3):

allDifferent← true

if ringType1 = ringType2 then return allDifferent← false

if ringType1 = ringType3 then return allDifferent← false

if ringType2 = ringType3 then return allDifferent← false

return allDifferent

end

Algorithm 11: Marker detection matching when R contains one ring.
Input: Ring R

Output: Centre of the detected marker cm

Function getCentreOneRing(R):

cm ← R.cR

end

and more-than-three-rings scenarios is presented in Algorithms 11-14.

After filtering out the combinations that are valid markers, if there is more than one valid

combination, the first one is considered the marker and the rest are discarded. Subsequently,

the mean of the centres of the rings that compose the marker is taken and published. If

no marker was detected, the centre’s coordinates are set to -1 and they are interpreted as

invalid.

This marker detection algorithm is laid out in Algorithm 15.
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Algorithm 12: Marker detection matching when R contains two rings.
Input: List of rings R

Output: Centre of the detected marker cm

Function getCentreTwoRings(R):

[ringType, c, ϕ]← R

if ringType1 = ringType2 then return cm ← [−1,−1]

if not twoAreConcentric(c1, c2) then return cm ← [−1,−1]

if not twoHaveEqualOrientation(ϕ1, ϕ2) then return cm ← [−1,−1]

cm ← c1+c2
2

end

Algorithm 13: Marker detection matching when R contains three rings.
Input: List of rings R

Output: Centre of the detected marker cm

Function getCentreThreeRings(R):

[ringType, c, ϕ]← R

if not threeAreOfDifferentTypes(ringType1, ringType2, ringType3) then return

cm ← [−1,−1]

if not threeAreConcentric(c1, c2, c3) then return cm ← [−1,−1]

if not threeHaveEqualOrientation(ϕ1, ϕ2, ϕ3) then return cm ← [−1,−1]

cm ← c1+c2+c3
3

end
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Algorithm 14: Marker detection matching when R contains four or more rings.
Input: List of rings R

Output: Centre of the detected marker cm

Function getCentreFourOrMoreRings(R):

markers = [ ]

R2 ← combinations(R, 2)

for R2
i ∈ R2 do

[ringType, c, ϕ]← R2
i

if ringType1 = ringType2 then continue

if not twoAreConcentric(c1, c2) then continue

if not twoHaveEqualOrientation(ϕ1, ϕ2) then continue

markers.append( c1+c2
2

)

end

R3 ← combinations(R, 3)

for R3
i ∈ R3 do

[ringType, c, ϕ]← R3
i

if not threeAreOfDifferentTypes(ringType1, ringType2, ringType3)

then continue

if not threeAreConcentric(c1, c2, c3) then continue

if not threeHaveEqualOrientation(ϕ1, ϕ2, ϕ3) then continue

cm ← c1+c2+c3
3

end

if card(markers) < 1 then

cM ← [−1, 1]

else if card(markers) = 1 then

cM ← markers

else

cM ← markers1

end

end
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Algorithm 15: Marker detection based on ring matching.
Input: List of valid rings R

Output: Centre of the detected marker cm

if card(R) = 1 then cm ←getCentreOneRing (R)

else if card(R) = 2 then cm ←getCentreTwoRings (R)

else if card(R) = 3 then cm ←getCentreThreeRings (R)

else cm ←getCentreFourOrMoreRings (R)
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3.2 Autonomous landing

The autonomous landing algorithm developed for this work is based on state-machine ar-

chitecture and uses a proportional-integral (PI) controller to guide the UAV to the landing

position.

The state-machine has three states: mission, descending and landing, and is shown in

Figure 3.4. The mission state pertains to whatever mission has been assigned to the aircraft.

The descending state starts when the mission is finished and activates the landing controller

to align the UAV with the marker and descend towards it. Finally, the landing state starts

when the UAV is in the descending state and reaches an altitude relative to the marker

inferior to 80 cm. This value is stored in talt.

Figure 3.4: State-machine architecture of the landing algorithm.

The descending state supports wind simulation via random velocity controls.

3.2.1 Landing algorithm

This algorithm is entirely implemented within a single Pythons script. The first step when

starting the landing controller node, /landing_controller, is initialising the necessary

constants, variables, publishers and subscribers. These are: the alignment tolerance, the

PI controller’s constants and errors, the velocity limits for the UAV, the relative altitude

threshold for landing and the wind simulation parameters.

This algorithm takes as an input the centre of the detected marker in the image and

attempts to align the UAV with it. However, a tolerance must be given to the error between

the centre of the image and the centre of the marker due to vibrations, errors in the estimation

of the centre of the marker and wind noise. This tolerance is defined as a circular area

concentric with the image, within which the error between the centre of the image and the

centre of the marker is considered 0. The alignment tolerance, talignment, is the radius of

the circular area and has a value of 300 pixels. The value does not need to be dynamic

because, as the camera approaches the ground, the area on the ground projected inside the
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circular area becomes smaller, effectively reducing the alignment tolerance in the real world

and making the UAV approach the marker.

The type of controller chosen for this application is a PI controller, whose command

signal, u(t), is describer described in Equation 3.13.

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ (3.13)

Where Kp is the proportional gain, e(t) is the error at the time instant instant t and

Ki is the integral gain. The general intuition behind this controller is that the proportional

component works in the present by adjusting the command signal to the current error and

responds in greater magnitude to greater errors, while the integral component, due to the

integral term, "remembers" the past errors of the system and adjusts the command sig-

nal according to them. However, since the controller is implemented digitally, as are its

measurements, it must take the discrete form, presented in Equation 3.14.

u[k] = Kpe[k] +Ki

k∑
n=0

e[n] (3.14)

Where k is the current discrete time step. The intuition is the same as for the continuous

case, but with a sum in the place of the integral. The chosen values of Kp and Ki are 10−6

and 7 · 10−7, respectively. This controller only applies to the x and y axes, as the z axis is

controlled by a simple proportional controller with a gain Kpz of −5 · 10−4

The constants associated with velocity control are the lower and upper limits for vx, vy
and vz, the velocities of the UAV in each of the three Cartesian axes. These limits vmin and

vmax are, respectively, −0.5m/s and 0.5m/s for both vx and vy. For vz the limits vzmin and

vzmax are 10−5m/s and 0.5m/s.

Unfortunately, due to technical issues it was not possible to use Gazebo’s native wind

simulation. In its stead, random velocity commands were used to simulation wind noise. The

wind values were approximated with a discrete low-pass filter and a random term following

a Gaussian distribution. This approximation is shown in Equation 3.15.

vw[k] = λvw[k − 1] + (1− λ)vrand[k] (3.15)

Where vw[k] is the simulated wind velocity at discrete time step k, λ is a value between 0

and 1 and describes how significant the random component is in the value of vw[k], and vrand

is the random component which follows a Gaussian distribution. The value of λ is 0.9 and
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Algorithm 16: Wind noise simulation.
Input: Wind noise in the last step, vw[k − 1]

Output: Wind noise for the current step, vw[k]

Function getWindVelocity(vw[k − 1]):

vrand ← N (µw, σw)

vw[k]← λvw[k − 1] + (1− λ)vrand

return vw[k]

end

the distribution that the random component follows has a mean µw of 0m/s and a standard

deviation σw of 0.1m/s.

After the initialisation phase, the script connects to the FCU through the iq_gnc application

programming interface (API). The UAV is now ready to fly.

When the landing algorithm switches from the mission state to the descending state, the

landing controller starts accepting messages from the CFM detection node with the centre

of the marker in the image. Upon receiving a message, it will compute the values of wind

noise for this iteration according to Algorithm 16.

Now, if the message received contains a point with the x and y coordinates set to -1, the

algorithm does not feed it to the controller and instead simply publishes the wind velocity as

noise in the system. If the point is valid, i.e., neither the x or the y coordinate is set to -1, the

algorithm feeds the point to the controller, which computes the error and the corresponding

velocities to correct it.

The error is defined as the Euclidean distance in pixels from the center of the marker in

the image, cM , to the center of the image, cI in each of the x and y coordinates. However, if

the Euclidean distance (not separated into the x and y coordinates) is less than talignment, it

is instead set to 0. If the error is 0 and the altitude of the UAV relative to the marker is less

than talt the API sends a request to the FCU to enter landing mode. In landing mode, the

FCU guides the aircraft autonomously downward while maintaining it’s x and y position.

Only when the error is 0 does the controller act upon the z axis by computing the error

ez[k]. When the error is non-zero, the altitude of the UAV is considered 0 and thus ignored

by the controller.

If the UAV does not enter landing mode, the controller converts the errors in the image’s

x and y coordinate system to the FCU’s coordinate system. OpenCV’s coordinate system

is ESD and the FCU’s coordinate system is ENU, as shown in Figure 3.5, which means the
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Algorithm 17: Limiting a value to its lower and upper limits.
Input: Value to limit a, Lower limit am, Upper limit aM

Output: Limited value, a′

Function limitValue(a, am, aM):

a′ ← max(min(a, aM), am)

return a′

end

conversion consists of simply inverting the y and z coordinates. After computing the errors,

they are added to their respective integral running sums,
∑k

n=0 ex[n] and
∑k

n=0 ey[n], for the

purposes of PI control.

Figure 3.5: Diagram comparing OpenCV’s ESD coordinates and the FCU’s ENU coordi-

nates.

Finally, the velocity commands are computed according to Equation 3.14 and limits to

their minimum and maximum values using Algorithm 17.

Then, the wind noise is added to limited values and the result is published to

/mavros/setpoint_velocity/cmd_vel.

The landing algorithm is summarised in Algorithm 18. The image width Iw is 1296 and

the image height Ih is 972.
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Algorithm 18: Landing algorithm.
Input: Centre of the marker in the image cM

Output: Vector with the velocity commands, u

drone←iq_gnc.initialiseAPI()

vw[k]←getWindVelocity(v[k − 1])

[cMx, cMy]← cM

if cMx = −1 ∨ cMy = −1 then

[vx, vy, vz]← vw[k]

return u← [vx, vy, vz]

else

e[k]← ∥cM − cI∥

if e[k] < talignment then e[k]← 0

if e[k] < talignment then

ez[k]←drone.altitude()

if ez[k] < talt then drone.setState(landing)

else

ez[k]← 0

end

[vwx, vwy, vwz]← vw[k]

ex[k]← cMx − Iw
2

ey[k]← Ih
2
− cMy

ux ←limitValue(Kpex[k] +Ki

∑k
n=0 ex[n], vmin, vmax)+vwx

uy ←limitValue(Kpey[k] +Ki

∑k
n=0 ey[n], vmin, vmax)+vwy

u< ←limitValue(Kpzez[k], vzmin, vzmax)+vwz

return u← [ux, uy, uz]

end
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4 Experimental Work

4.1 Hardware

Figures 4.1 and 4.2 show photographs of the UAV along with labelled components.

Figure 4.1: Photograph of the UAV showing its camera.

The UAV used in this work is a modified SkyHero Little Spyder equipped with a Pixhawk

4 FCU, an OrangePi PC Plus single-board computer (SBC), a Basler dart camera with an

8mm Computar lens, an RTK-GNSS receiver with one antenna, a FrSky radio receiver and

a WiFi antenna. A diagram of all these pieces of hardware is shown in Figure 4.3.

The Pixhawk 41 FCU comes equipped with an STM32F765 as the main processor, an

STM32F100 input-output (IO) processor, an ICM-20689 IMU, an IST8310 magnetometer,

and an MS5611 barometer.

The RTK-GNSS system is comprised of a u-blox ANN-MB-00-002, which supports GPS

(L1, L2), GLONASS (G1, G2), BeiDou (B1, B2), Galileo (E1, E5b), QZSS (L1, L2) and
1See https://docs.px4.io/main/en/flight_controller/pixhawk4.html
2See https://www.u-blox.com/en/product/ann-mb-series?legacy=Current
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Figure 4.2: Photograph of the UAV with hardware components labelled.

SBAS (WAAS, EGNOS, MSAS and GAGAN) constellations, and a DROTEK DP06013

receiver with a horizontal precision of 1 cm plus 1mm per km away from the base station

and a vertical precision of 1 cm+1 ppm R50. A vertical precision of 1 cm+1 ppm R50 means

a radius of 1 cm at 50 % circular error probability with data collected over 24 hours.

The OrangePi PC Plus4 SBC is an open-source platform with and H3 Quad-core Cortex-

A7 H.265/HEVC 4K CPU, 1GiB of DDR3 synchronous dynamic random-access memory

(SDRAM), a TF card slot (limited to a maximum of 32GiB of storage) and three universal

serial bus (USB) 2.0 host ports.

The camera is a Basler daA2500-14uc with a 1/2.5" CMOS sensor with a resolution of

2592-by-1944 pixels (5 MP) which provides coloured images and typically consumes 1.3W.

The lens mounted on the camera is a Computer M0814-MP25, which has a fixed focal length

of 8mm, its aperture set to its widest setting, f/1.4, and the focus ring set to near-infinity.

The radio receiver is a FrSky X8R6 which listens at 2.4GHz and the remote controller is

a FrSky Taranis X9D Plus7.

The WiFi antenna supports both 2.4GHz and 5GHz bands and has a gain of 12 dBi.

In order to avoid interference with the frequency band used by the radio receiver/controller

pair, the antenna is used in the 5GHz mode.
3See https://www.u-blox.com/en/product/zed-f9p-module
4See http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/

Orange-Pi-PC-Plus.html
5See https://computar.com/product/552/M0814-MP2
6See https://www.frsky-rc.com/product/x8r/
7See https://www.frsky-rc.com/product/taranis-x9d-plus-2/
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Figure 4.3: Diagram describing the connections between the hardware components.

4.1.1 Camera settings

The Basler daA2500-14uc offers a variety of configurable settings, most of which can be

changed in pylon Viewer, Basler’s official configuration and diagnostics tool. The most

relevant camera settings that were changed for this dissertation were: the binning amount,

the shutter mode and the encoding.

Binning amount

Binning is an imaging technique that groups neighbourhoods of pixels into super-pixels.

Binning’s advantages are more sensitivity to light intensity and higher frame rate due to the

reduced resolution. Binning’s main disadvantage is the reduced resolution. This setting is

further explored in Section 4.3.

Shutter mode

Although there are three common shutter modes – rolling, global and global reset –, this

camera only supports rolling shutter and global reset shutter. In rolling shutter, the data

acquisition emulates the behaviour of a mechanical shutter and scans the pixel matrix line-

by-line. This leads to even lighting across the image (provided the scene does not change

abruptly between line scans) but if a subject is moving much faster than the shutter speed,

motion artefacts arise. Global reset shutter is a variation of global shutter. Whereas global

shutter scans all pixels at once in the same amount of time, global reset starts scanning all

the lines at the same time, but reads the matrix a line at a time. This leads to brighter pixels

towards the bottom of the image due to the increased exposure time. This is undesirable

for this work because the CFM algorithm relies on thresholding images to detect the CFM.
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Figure 4.4: Diagram illustrating a Bayer encoding by showing an analogue Bayer filter over

a camera sensor. Source: [1].

By having an area of the image significantly brighter than the rest, the thresholding process

becomes biased in favour of separating the image into these two areas instead of properly

thresholding it. Thus, the selected shutter mode is rolling.

Encoding

Encoding in this context refers to the format in which the data from the camera sensor is

stored. The camera offers two encoding: red, green and blue (RGB) and Bayer, both 8-bit.

Using RGB encoding, each pixel stores three values, one for each of the red, blue and green

colours, which means it has complete colour information but it needs more data to store it.

Bayer encoding utilises a Bayer pattern, shown in Figure 4.4, in which each pixel only stores

one value, either red, green or blue, according to the element of the filter above it. This

allows for colour image, though with incomplete information, but only needs a third of the

data that RGB needs. This means a camera operating with Bayer encoding can have triple

the frame rate of one operating with RGB encoding, given the same bandwidth. Since this

work requires a good frame rate, RGB encoding was discarded and Bayer was used instead.

4.2 Software

The software for this work was developed in Python using the Robot Operating System

(ROS)8 framework. ROS was instrumental due to its support of simulation using Gazebo9,

support of data visualisation using RViz10, support of data recording and playback using the

rosbag11 package and bag files, and a number of off-the-shelf packages that integrate different
8See https://www.ros.org
9See https://gazebosim.org/home

10See http://wiki.ros.org/rviz
11See http://wiki.ros.org/rosbag
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pieces of hardware and software. In order for the UAV to be able to fly autonomously and

have an autopilot system, MAVLink12 and ArduPilot13 were also used. ArduPilot was also

essential for simulation, as it enables software in the loop (SITL) simulation.

ROS was used to construct a node network for messaging between the different parts

of the system and due to very low workload of transferring code tested in simulation to

the UAV. A number of off-the-shelf packages along with a custom one were used both in

simulation and in the real world. The utilised off-the-shelf packages are the following:

• Camera driver - pylon-ros-camera14;

• Fiducial marker detection - aruco_ros15 and stag_ros16;

• UAV simulation - iq_sim17;

• Interface between the FCU and ROS - mavlink18 and mavros19.

A custom package, msc, was developed by building on top of an existing package,

iq_gnc20, which is an API that facilitates development of guided UAV missions using

MAVLink. This custom packages contains the nodes listed below. The topics preceded

by "Debug" are only published on or subscribed to when in debug mode.

• CFM detection node - /target

– Subscribed topics:

∗ /pylon_camera_node/image_rect (sensor_msgs/Image).

– Published topics:

∗ /target/centre (geometry_msgs/PointStamped);

∗ Debug: /target/ellipse_debugging (/sensor_msgs/Image);

∗ Debug: /target/ring_debugging (/sensor_msgs/Image);

∗ Debug: /target/target_debugging (/sensor_msgs/Image).
12See https://mavlink.io/en/
13See https://ardupilot.org/ardupilot/#
14See https://github.com/basler/pylon-ros-camera
15See https://github.com/pal-robotics/aruco_ros
16See https://github.com/usrl-uofsc/stag_ros
17See https://github.com/Intelligent-Quads/iq_sim
18See https://github.com/mavlink/mavlink
19See https://github.com/mavlink/mavros
20See https://github.com/Intelligent-Quads/iq_gnc
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• Guided mission controller node - /landing_controller

– Subscribed topics:

∗ /pylon_camera_node/image_raw (/sensor_msgs/Image)

∗ /target/centre (/geometry_msgs/PointStamped)

∗ /mavros/local_position/pose (/geometry_msgs/PoseStamped)

– Published topics:

∗ /mavros/setpoint_velocity/cmd_vel (/geometry_msgs/TwistStamped)

The /target node subscribes to the camera images topic and publishes the centre of the

detected marker in pixels. The /landing_controller node subscribes to the centre of the

marker and uses the measurement in a PID closed loop controller to control the approach

velocity of the UAV towards the marker.

In order to facilitate debugging, the /target node publishes on three image topics and

subscribes to one pose topic. Each of three image topics helps in debugging a different

part of the CFM detection pipeline (ellipse fitting, ring detection, and marker detection

based on ring matching). In order to help with the visualisation of the tolerance in the

alignment of the marker with the centre of the image, a ring is drawn the image published

on /target/target_debugging.

ArUco and STag markers are detected using off-the-shelf ROS packages but AprilTag

markers are detected using Python’s apriltag module. For this purpose a custom node was

created. It uses the module to detect AprilTag markers and then compute their centre in

the image. It then publishes the centre for the landing controller to subscribe.

Unfortunately, it was not possible to test the landing algorithm in the real world, so it

was tested and validated in simulation. Gazebo was chosen to simulate the UAV landing

due to how closely related it is to ROS. The UAV model was previously available in the

iq_sim package and a camera was attached to its bottom, like in the real UAV. One great

advantage of simulating the UAV is that Gazebo provides its exact pose, allowing for better

evaluation of the performance of the landing algorithm.
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4.3 Comparison of fiducial marker detection perfor-

mance

4.3.1 Objectives

The camera driver allows the user to choose one of four values for the image binning in each

direction, from 1 to 4. A value of 1 means using the full resolution in that direction, a value

of 2 means grouping neighbourhoods of 2 pixels into super-pixels, in the chosen direction and

so on for 3 and 4. Although binning divides the resolution of the image by a factor equal

to the size of the pixel neighbourhood, it allows for higher frame rates and the resulting

super-pixels are more sensitive to light intensity than the individual pixels.

In order to maintain the aspect ratio of the image, both horizontal binning and vertical

binning are set to the same value. However, using 3-by-3 binning results in a different

aspect ratio, so that option was discarded and only 1-by-1, 2-by-2 and 4-by-4 binnings were

considered. Due to the technical limitations of the pylon-ros-camera package, the camera

can only achieve about half of the maximum frame rate for a given set of settings, which

makes 1-by-1 binning too slow to be of use, with a frame rate of 2.11 Hz using 8-bit RGB

encoding and 6.32 Hz using 8-bit Bayer encoding. Such a low frame result results in severe

rolling shutter artefacts. Thus, this option is discarded as well.

As such, one of the purposes of this experiment is comparing the performance of the

remaining two binning values, two-by-two and four-by-four, and determining which one

is best suited. The other purpose of the experiment is to compare the performance of the

detection of each of the markers (ArUco, AprilTag, STag and the custom marker) for different

binning values and positions, with even lighting across them.

4.3.2 Setup and procedure

The chosen experiment site was a balcony with a flat floor made of square tiles arranged in a

grid pattern with consistent tile and gap sizes. This facilitates the establishment of ground

truth measurements for the purposes of this experiment.

The camera was set in a way such that its optical axis is aligned with the floor tiles’ grid

and parallel to the floor plane. All markers were printed on A4 paper, with the same size

and secured to the box in the same position, so that they are consistently parallel to the

image plane and their position relative to the reference positions is always the same. Figure
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4.5 shows a photograph of the setup.

Figure 4.5: Experimental setup.

The reference positions are the intersections of the gaps between floor tiles, as shown

in Figure 4.6. Their x coordinates range from 1 m to 13 m, in 1 m increments. Their y

coordinates range depends on the x coordinates as described in Table 4.1, resulting in 37

different positions. A diagram of the positions is presented in Figure 4.6.

Table 4.1: Different sets within which y varies, depending on the value of x.

Set of x values [m] Set of y values [m]

{1} 0

{2, 3} {−0.5, 0, 0.5}

{4, 5, 6} {−1, 0, 1}

{7, 8, 9, 10, 11, 12, 13} {−2, 0, 2}

Each of the already available markers chosen for this experiment has various dictionaries,

also known as tag families. Since only one at a time will be needed for landing and the marker

needs a good detection distance, for each one, the dictionary with the smallest possible IDs

and the smallest possible number of bits was chosen. By choosing the dictionary with the

smallest IDs, one is ensuring they are choosing the dictionary which maximises the Hamming

distance between the IDs, which allows for more error correction. By choosing the dictionary
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Figure 4.6: Diagram with dots representing the reference positions for the experiment and

the frame of reference.

with the least amount of bits, one is ensuring they are choosing the dictionary with the

biggest bit squares, thus maximising the detection distance. The latter is more important

than the former.

Given these conditions, the chosen markers are:

• ArUco 4x4 50 IDs 0: marker with 16 bits and 50 different IDs;

• AprilTag 16h5 IDs 0: marker with 16 bits and a Hamming distance of 5;

• STag HD23 IDs 0: marker with a Hamming distance of 23.

The experimental procedure itself is the same for all eight trials – two for each of the

four markers. Before starting each trial, the weather conditions were noted, as well as the

light intensity. At the beginning, the marker was placed at the initial position, i.e., (1, 0).

Then, recording was started and after 5 s the marker is moved to the next position, always

waiting at least the same amount of time at each position. By waiting at every position it

is possible to gather more data at each one and better analyse the estimation performances.

4.3.3 Results and discussion

For analysis, 5 frames were selected for each position for each binning value for each marker.

The frames were selected so that the marker does not move between them and that it

is completely visible. Then, for each frame, the position is estimated, the method being

different for each marker. For ArUco, the position was estimated using OpenCV’s aruco

Python sub-module. For AprilTag, the estimation was done by the apriltag Python sub-

module, which returns the corners of the marker. These corners were used by OpenCV’s

solvePnP function, which estimates the position of the marker. For STag, the positions were
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estimated live by the ROS package stag_ros and the position estimation output was record

into a text file. Finally, for the custom marker, the method was the same as STag’s position

estimation.

For every marker, the statistical analysis of the results was done by a MATLAB script.

The script estimates, for every frame, the error in each of the three axes and then, for each

position, computes the mean error of that position’s frames as well as its standard deviation.

Tables with this data are shown in Appendix A. If at least one of the frames of a certain

position did not yield a detection, the data is considered insufficient and the statistics are

not computed. Additionally, the script computes and graphs the distance estimation for

every marker and the ground truth distance, as shown in Figures 4.7 and 4.8, for 2-by-2 and

4-by-4 binning, respectively.

Figure 4.7: Mean of the estimated distance at each position for every marker and the ground

truth using 2-by-2 binning.

Figure 4.8: Mean of the estimated distance at each position for every marker and the ground

truth using 4-by-4 binning.

By looking at Figure 4.7 one can see only AprilTag achieved detections across all positions
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and it did so with estimation errors overall smaller than the other markers. In Figure 4.8

it is noticeable that 4-by-4 binning had a great negative impact on the performance of all

markers. All markers saw a reduction of about a half in their maximum detection distance,

except for ArUco, which had sporadic detections in some of the greater distances, although

only in one x value for each y value. This performance is too poor to be useful for landing

the UAV and, as such, the marker chosen for this purpose was the AprilTag, due to the

better detection distance and smaller error. Since 4-by-4 binning degrades the performance

to an unacceptable degree, 2-by-2 binning is chosen instead.

4.4 Landing algorithm

4.4.1 Objectives

The objective of this experiment is to test and validate the landing algorithm developed

for this dissertation and described in Section 2.2. Given the results of the experiment de-

scribed in Section 4.3, AprilTag was chosen as the marker, instead of the CFM. The metrics

evaluated in this experiment are the landing time and the error in position upon touchdown.

4.4.2 Setup and procedure

The simulation environment is a flat ground plane with the image of a runway and a box with

the marker printed on its top face. The box’s dimensions are 0.15341-by-0.15341-by-0.01 m.

The marker’s dimensions were chosen to mirror the size of the real AprilTag marker printed

for the experiment in Section 4.3.It is shown in Figure 4.9.

The UAV starts in the origin of the world and the box is located at (1.5,−1.5, 0) m. The

landing controller is not immediately started because the wind simulation associated with

it disturbs the behaviour of the FCU controller while the UAV gets in position to start a

trial. Once both the autopilot and the SITL are running and ready, i.e., once the simulated

RTK-GNSS is locked, the UAV is set to guided mode, where it can receive way points and

velocity commands from MAVLink. It is then ordered to take off to 10 m above it’s home

position (i.e., the origin of the world) and only then is the landing controller node started.

The behaviour of the drone is observed and record into a ROS bag file. The bag file records

the following topics:

• Pose of the UAV estimated by the FCU: /mavros/local_position/pose
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Figure 4.9: Screenshot depicting the simulation environment.

(geometry_msgs/PoseStamped);

• Velocity commands sent to the FCU: /mavros/setpoint_velocity/cmd_vel

(geometry_msgs/TwistStamped);

• Centre of the target: /target/centre (/geometry_msgs/PointStamped);

• Images from the camera: /iris/pylon_camera_node/image_rect

(/sensor_msgs/Image);

• Wind noise: /wind (geometry_msgs/TwistStamped).

4.4.3 Results and discussion

The data from the rosbag was written to text files that were loaded by MATLAB and

organised into seven plots, discussed below. Since both the command and wind velocities

only start publishing when the landing controller node is started, i.e., when the UAV is in

position to start the trial, at 20 s, the lack of data before that time was replaced with zeros,

as well as afterwards, when the UAV entered landing mode.

The trajectory of UAV can be seen in Figure 4.10. As can be observed, the UAV rapidly

converges on top of the target, but the descent is slow, taking 55 s, to avoid crashing. The

final position of the UAV is (1.4999, 1.4318,−0.2137), which means the positional error is

0.0682 m.

Figures 4.11-4.13 show the evolution of the position of the UAV along the x, y and z

axes, as well as the command velocity in the same axes.
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Figure 4.10: Trajectory of the UAV in the simulated trial.

Figure 4.11: Position and command velocity of the UAV in the x axis.

Figures 4.14-4.16 shown the velocity of the simulated wind in each of the three axes, as

well as the command velocity of the UAV.

Analysing Figures 4.14-4.16 one can conclude that the controller successfully eliminated

the effect of the wind, even when there was a sudden spike in velocity at 20 s. The controller

shows some overshoot in both the x and y axis, but it is not severe and the UAV stabilises

relatively fast, in about 20 s. This experiment was a success but the wind simulation is

somewhat lacklustre and could be improved with the use of ordinary differential equations

to better simulate its behaviour, as well as with increased magnitude and simulated wind

gusts.
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Figure 4.12: Position and command velocity of the UAV in the y axis.

Figure 4.13: Position and command velocity of the UAV in the z axis.

Figure 4.14: Wind and command velocities of the UAV in the x axis.
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Figure 4.15: Wind and command velocities of the UAV in the y axis.

Figure 4.16: Wind and command velocities of the UAV in the z axis.
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5 Conclusion and Future Work

One of the aims of this dissertation was to explore different fiducial markers and see which

one was best suited for autonomous UAV landing. For this purpose, ArUco, AprilTag, STag

and a CFM were compared in a controlled environment. The detection of the CFM was also

custom built from scratch, using ellipse fitting and a series of conditions to match ellipses

into rings and rings into valid markers. The conclusion of the comparison is that AprilTag

is the best suited in every aspect, outperforming the others in detection range and pose

estimation error, on top of being easily integrated into ROS and Python.

The other aim was to develop, test and validate a vision-based autonomous landing

algorithm for the UAV that landed it on top of a fiducial marker. For this, a custom ROS

package was built on top of the existing iq_gnc package and deployed to a real UAV.

Unfortunately, the UAV was damaged during development and rendered unable to be used

for further testing. For this reason, the UAV was instead simulated using the simulation

software Gazebo. The trials were successful and the UAV landed in 55 s with a positional

error of 0.0682 m.

5.1 Future work

Though the design of the CFM is satisfactory, some improvements can be made to its

detection. Future work will improve upon the detection by exploring different pre-processing

strategies to try to maximise the detection range and minimise the error of estimation of the

centre, as well as explore new combinations of thresholds.

In spite of the good experimental results obtained in Section 4.4, they were obtained in a

highly controlled simulated environment, which has close to ideal conditions. In the future,

the algorithms described in this work will be transferred to real hardware and tested in the

real world. Control issues will arise due to the simulation of the wind being relatively simple

and real wind being far more chaotic. The need for a PID controller may arise to compensate
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for oscillations due to wind gusts.
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Appendix A

Comparison of fiducial marker detec-

tion performance

A.1 AprilTag

Table A.1: Mean and standard deviation of the estimation error at each position using the

AprilTag 16h5 ID 0 marker and 2-by-2 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.024 0.015 -0.573 0.000308 0.000026 0.000130

2 -1 0.022 -0.016 0.039 -0.546 0.000336 0.000076 0.000051

2 0 0.022 -0.036 0.032 -0.549 0.000757 0.000046 0.000021

2 1 0.022 -0.025 0.029 -0.551 0.000464 0.000092 0.000033

3 -1 0.022 -0.032 0.056 -0.521 0.000863 0.000148 0.000035

3 0 0.022 -0.052 0.053 -0.524 0.003590 0.000177 0.000183

3 1 0.022 -0.042 0.045 -0.527 0.000639 0.000092 0.000021

4 -1 0.022 -0.013 0.086 -0.497 0.000955 0.000253 0.000011

4 0 0.022 -0.071 0.062 -0.501 0.006669 0.000083 0.000222

4 1 0.022 -0.017 0.062 -0.508 0.001105 0.000268 0.000037

5 -1 0.022 -0.017 0.101 -0.471 0.001949 0.000428 0.000062

5 0 0.022 -0.052 0.086 -0.477 0.001700 0.000117 0.000188

5 1 0.022 -0.067 0.058 -0.480 0.003352 0.000628 0.000033

6 -1 0.022 -0.029 0.115 -0.448 0.000355 0.000063 0.000006

6 0 0.022 -0.044 0.098 -0.457 0.000713 0.000014 0.000009

6 1 0.022 -0.101 0.081 -0.457 0.008194 0.001195 0.000037

7 -2 0.022 0.005 0.136 -0.422 0.007639 0.002272 0.000064

7 0 0.022 -0.108 0.113 -0.428 0.004558 0.000079 0.000043

7 2 0.022 -0.033 0.079 -0.440 0.009845 0.002328 0.000075

8 -2 0.022 -0.079 0.178 -0.395 0.001943 0.000464 0.000120

8 0 0.022 -0.085 0.134 -0.403 0.007182 0.000173 0.000111
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Table A.1 continued from previous page

8 2 0.022 -0.081 0.093 -0.411 0.002043 0.000399 0.000051

9 -2 0.022 0.016 0.165 -0.371 0.062603 0.014987 0.002071

9 0 0.022 -0.054 0.142 -0.381 0.019332 0.000337 0.000498

9 2 0.022 -0.093 0.108 -0.384 0.009534 0.002055 0.000340

10 -2 0.022 0.002 0.187 -0.345 0.015944 0.003320 0.001380

10 0 0.022 -0.149 0.161 -0.358 0.002322 0.000089 0.000048

10 2 0.022 0.008 0.142 -0.366 0.020195 0.003708 0.000464

11 -2 0.022 -0.042 0.213 -0.323 0.035134 0.006803 0.000675

11 0 0.022 0.004 0.174 -0.335 0.029150 0.000558 0.000660

11 2 0.022 0.081 0.176 -0.346 0.019869 0.003298 0.000301

12 -2 0.022 0.135 0.194 -0.306 0.016788 0.003240 0.000349

12 0 0.022 0.084 0.189 -0.318 0.011201 0.000185 0.000246

12 2 0.022 0.156 0.201 -0.326 0.015410 0.002388 0.000317

13 -2 0.022 0.323 0.170 -0.288 0.019244 0.003305 0.000396

13 0 0.022 0.379 0.196 -0.298 0.025783 0.000566 0.000583

13 2 0.022 0.166 0.217 -0.305 0.010601 0.001403 0.000216

Mean of all positions -0.030 0.082 -0.476 0.004358 0.000458 0.000114
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Table A.2: Mean and standard deviation of the estimation error at each position using the

AprilTag 16h5 ID 0 marker and 4-by-4 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.012 0.015 -0.573 0.000627 0.000845 0.000303

2 -1 0.022 Insufficient data Insufficient data

2 0 0.022 Insufficient data Insufficient data

2 1 0.022 -0.040 0.026 -0.551 0.000679 0.000321 0.000094

3 -1 0.022 -0.051 0.058 -0.520 0.000506 0.000315 0.000008

3 0 0.022 Insufficient data Insufficient data

3 1 0.022 -0.058 0.034 -0.526 0.003302 0.000488 0.000066

4 -1 0.022 Insufficient data Insufficient data

4 0 0.022 0.066 0.062 -0.499 0.004273 0.000042 0.000415

4 1 0.022 -0.133 0.017 -0.503 0.001478 0.000502 0.000034

5 -1 0.022 -0.046 0.104 -0.462 0.001001 0.000222 0.000030

5 0 0.022 -0.078 0.080 -0.472 0.000278 0.000002 0.000009

5 1 0.022 Insufficient data Insufficient data

6 -1 0.022 0.027 0.097 -0.443 0.000788 0.000147 0.000026

6 0 0.022 -0.081 0.093 -0.450 0.010573 0.000098 0.000137

6 1 0.022 0.027 0.088 -0.455 0.002704 0.000448 0.000170

7 -2 0.022 Insufficient data Insufficient data

7 0 0.022 -0.026 0.111 -0.421 0.046885 0.000200 0.000831

7 2 0.022 Insufficient data Insufficient data

8 -2 0.022 Insufficient data Insufficient data

8 0 0.022 Insufficient data Insufficient data

8 2 0.022 Insufficient data Insufficient data

9 -2 0.022 Insufficient data Insufficient data

9 0 0.022 Insufficient data Insufficient data

9 2 0.022 Insufficient data Insufficient data

10 -2 0.022 Insufficient data Insufficient data

10 0 0.022 Insufficient data Insufficient data

10 2 0.022 Insufficient data Insufficient data

11 -2 0.022 Insufficient data Insufficient data

11 0 0.022 Insufficient data Insufficient data

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 Insufficient data Insufficient data

12 0 0.022 Insufficient data Insufficient data

12 2 0.022 Insufficient data Insufficient data

13 -2 0.022 Insufficient data Insufficient data

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean of all positions -0.034 0.065 -0.489 0.006091 0.000302 0.000177
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A.2 ArUco

Table A.3: Mean and standard deviation of the estimation error at each position using the

ArUco 4X4 50 ID 0 marker and 2-by-2 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.023 -0.004 -0.569 0.002232 0.000326 0.000644

2 -1 0.022 -0.064 0.005 -0.544 0.012908 0.003138 0.000434

2 0 0.022 -0.044 -0.012 -0.545 0.005415 0.000154 0.000180

2 1 0.022 Insufficient data Insufficient data

3 -1 0.022 -0.059 -0.006 -0.515 0.000520 0.000342 0.000034

3 0 0.022 -0.060 -0.022 -0.516 0.011004 0.000990 0.000540

3 1 0.022 -0.070 -0.029 -0.522 0.008188 0.001477 0.000739

4 -1 0.022 -0.069 -0.011 -0.486 0.001330 0.000081 0.000046

4 0 0.022 -0.064 -0.029 -0.491 0.000000 0.000000 0.000000

4 1 0.022 -0.030 -0.054 -0.498 0.008962 0.002929 0.000754

5 -1 0.022 -0.010 -0.025 -0.461 0.021383 0.004077 0.000767

5 0 0.022 -0.092 -0.032 -0.464 0.000000 0.000000 0.000000

5 1 0.022 0.032 -0.047 -0.473 0.030600 0.006401 0.001037

6 -1 0.022 -0.166 -0.012 -0.439 0.034044 0.005451 0.000659

6 0 0.022 -0.014 -0.045 -0.445 0.018815 0.001005 0.000937

6 1 0.022 -0.079 -0.080 -0.448 0.064299 0.010428 0.001167

7 -2 0.022 -0.188 0.015 -0.406 0.043338 0.012705 0.001312

7 0 0.022 0.037 -0.049 -0.417 0.048434 0.001225 0.002877

7 2 0.022 -0.038 -0.103 -0.425 0.003910 0.000723 0.000089

8 -2 0.022 -0.177 -0.008 -0.382 0.061746 0.015179 0.002065

8 0 0.022 Insufficient data Insufficient data

8 2 0.022 -0.188 -0.148 -0.399 0.088235 0.023001 0.001970

9 -2 0.022 -0.318 0.023 -0.346 0.000000 0.000000 0.000000

9 0 0.022 -0.148 -0.079 -0.365 0.000000 0.000000 0.000000

9 2 0.022 Insufficient data Insufficient data

10 -2 0.022 -0.423 0.028 -0.322 0.000000 0.000000 0.000000

10 0 0.022 -0.280 -0.087 -0.338 0.106562 0.000949 0.003169

10 2 0.022 Insufficient data Insufficient data

11 -2 0.022 Insufficient data Insufficient data

11 0 0.022 Insufficient data Insufficient data

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 -0.210 -0.036 -0.280 0.094698 0.015961 0.002122

12 0 0.022 Insufficient data Insufficient data

12 2 0.022 Insufficient data Insufficient data

13 -2 0.022 -0.608 -0.002 -0.255 0.005435 0.001048 0.001473

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean -0.152 -0.025 -0.437 0.022340 0.003000 0.000795
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Table A.4: Mean and standard deviation of the estimation error at each position using the

ArUco 4X4 50 ID 0 marker and 4-by-4 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.018 0.013 -0.573 0.002767 0.000824 0.000189

2 -1 0.022 -0.016 0.033 -0.545 0.000000 0.000000 0.000000

2 0 0.022 -0.036 0.029 -0.547 0.000000 0.000000 0.000000

2 1 0.022 -0.063 0.016 -0.550 0.000000 0.000000 0.000000

3 -1 0.022 -0.022 0.053 -0.519 0.005986 0.001722 0.001528

3 0 0.022 -0.046 0.038 -0.521 0.021414 0.000160 0.000263

3 1 0.022 0.002 0.043 -0.526 0.025622 0.003871 0.000338

4 -1 0.022 -0.088 0.090 -0.492 0.000372 0.000563 0.000049

4 0 0.022 Insufficient data Insufficient data

4 1 0.022 -0.204 0.008 -0.503 0.000000 0.000000 0.000000

5 -1 0.022 -0.042 0.101 -0.467 0.000000 0.000000 0.000000

5 0 0.022 -0.084 0.077 -0.477 0.104329 0.001412 0.003169

5 1 0.022 -0.064 0.056 -0.478 0.000000 0.000000 0.000000

6 -1 0.022 -0.324 0.156 -0.437 0.000000 0.000000 0.000000

6 0 0.022 -0.162 0.093 -0.453 0.016092 0.000221 0.000570

6 1 0.022 -0.180 0.053 -0.453 0.000000 0.000000 0.000000

7 -2 0.022 -0.090 0.155 -0.412 0.000000 0.000000 0.000000

7 0 0.022 Insufficient data Insufficient data

7 2 0.022 Insufficient data Insufficient data

8 -2 0.022 Insufficient data Insufficient data

8 0 0.022 Insufficient data Insufficient data

8 2 0.022 Insufficient data Insufficient data

9 -2 0.022 Insufficient data Insufficient data

9 0 0.022 Insufficient data Insufficient data

9 2 0.022 -0.366 0.044 -0.378 0.204342 0.042461 0.005518

10 -2 0.022 Insufficient data Insufficient data

10 0 0.022 Insufficient data Insufficient data

10 2 0.022 Insufficient data Insufficient data

11 -2 0.022 Insufficient data Insufficient data

11 0 0.022 -0.869 0.178 -0.308 0.280825 0.004151 0.007593

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 Insufficient data Insufficient data

12 0 0.022 -0.958 0.191 -0.277 0.054315 0.002293 0.001191

12 2 0.022 Insufficient data Insufficient data

13 -2 0.022 Insufficient data Insufficient data

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean -0.191 0.075 -0.469 0.037688 0.003036 0.001074
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A.3 STag

Table A.5: Mean and standard deviation of the estimation error at each position using the

STag HD23 ID 0 marker and 2-by-2 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.072 0.020 -0.575 0.001523 0.000030 0.000077

2 -1 0.022 -0.128 0.067 -0.546 0.001018 0.000218 0.000014

2 0 0.022 -0.127 0.024 -0.549 0.004453 0.000079 0.000118

2 1 0.022 -0.128 0.002 -0.552 0.002395 0.000520 0.000037

3 -1 0.022 -0.168 0.080 -0.521 0.010598 0.001883 0.000230

3 0 0.022 -0.173 0.053 -0.523 0.001415 0.000016 0.000200

3 1 0.022 -0.182 0.012 -0.527 0.007025 0.001060 0.000322

4 -1 0.022 -0.214 0.135 -0.496 0.000626 0.000161 0.000011

4 0 0.022 -0.220 0.069 -0.500 0.014974 0.000230 0.000264

4 1 0.022 -0.262 -0.011 -0.506 0.011595 0.002675 0.000171

5 -1 0.022 -0.225 0.147 -0.469 0.009138 0.001859 0.000131

5 0 0.022 -0.287 0.090 -0.474 0.009023 0.000186 0.000124

5 1 0.022 -0.279 0.008 -0.480 0.010504 0.001877 0.000210

6 -1 0.022 -0.334 0.167 -0.444 0.001307 0.000310 0.000116

6 0 0.022 -0.328 0.095 -0.453 0.029307 0.000400 0.000545

6 1 0.022 -0.312 0.030 -0.457 0.075361 0.011402 0.001266

7 -2 0.022 -0.359 0.253 -0.417 0.009292 0.002860 0.000171

7 0 0.022 -0.314 0.115 -0.425 0.078485 0.001142 0.001406

7 2 0.022 -0.296 0.005 -0.440 0.026582 0.007245 0.000355

8 -2 0.022 -0.437 0.276 -0.391 0.098930 0.026315 0.002029

8 0 0.022 -0.319 0.125 -0.401 0.009377 0.000206 0.000229

8 2 0.022 -0.426 -0.002 -0.409 0.151737 0.035487 0.002832

9 -2 0.022 -0.587 0.318 -0.362 0.021752 0.005095 0.000800

9 0 0.022 -0.330 0.139 -0.375 0.126023 0.001959 0.002575

9 2 0.022 -0.396 0.021 -0.383 0.038630 0.008057 0.000719

10 -2 0.022 0.000 0.000 0.000 0.000000 0.000000 0.000000

10 0 0.022 -0.438 0.160 -0.353 0.021881 0.000233 0.000332

10 2 0.022 -0.477 0.036 -0.362 0.134943 0.024987 0.003134

11 -2 0.022 -0.518 0.300 -0.318 0.019111 0.003797 0.000323

11 0 0.022 -0.545 0.176 -0.324 0.005324 0.000092 0.000078

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 Insufficient data Insufficient data

12 0 0.022 Insufficient data Insufficient data

12 2 0.022 -0.484 0.085 -0.317 0.018214 0.002742 0.000280

13 -2 0.022 Insufficient data Insufficient data

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean -0.302 0.097 -0.431 0.030663 0.004617 0.000616
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Table A.6: Mean and standard deviation of the estimation error at each position using the

STag HD23 ID 0 marker and 4-by-4 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.074 0.021 -0.573 0.001488 0.000087 0.000080

2 -1 0.022 -0.131 0.057 -0.543 0.005987 0.001496 0.000093

2 0 0.022 -0.118 0.030 -0.547 0.003302 0.000126 0.000109

2 1 0.022 -0.150 -0.005 -0.549 0.019379 0.004309 0.000126

3 -1 0.022 -0.182 0.083 -0.516 0.007687 0.001496 0.000133

3 0 0.022 -0.144 0.048 -0.520 0.026473 0.000441 0.000367

3 1 0.022 -0.203 0.021 -0.523 0.004877 0.000652 0.000160

4 -1 0.022 -0.159 0.110 -0.491 0.074531 0.019693 0.001434

4 0 0.022 -0.202 0.071 -0.496 0.033871 0.000484 0.000532

4 1 0.022 -0.348 -0.020 -0.500 0.004245 0.000962 0.000071

5 -1 0.022 -0.337 0.161 -0.462 0.002586 0.000116 0.000048

5 0 0.022 -0.301 0.089 -0.468 0.056200 0.000909 0.000983

5 1 0.022 -0.288 0.007 -0.474 0.041636 0.008778 0.000831

6 -1 0.022 -0.069 0.109 -0.441 0.010515 0.001952 0.000301

6 0 0.022 Insufficient data Insufficient data

6 1 0.022 Insufficient data Insufficient data

7 -2 0.022 Insufficient data Insufficient data

7 0 0.022 Insufficient data Insufficient data

7 2 0.022 Insufficient data Insufficient data

8 -2 0.022 Insufficient data Insufficient data

8 0 0.022 Insufficient data Insufficient data

8 2 0.022 Insufficient data Insufficient data

9 -2 0.022 Insufficient data Insufficient data

9 0 0.022 Insufficient data Insufficient data

9 2 0.022 Insufficient data Insufficient data

10 -2 0.022 Insufficient data Insufficient data

10 0 0.022 Insufficient data Insufficient data

10 2 0.022 Insufficient data Insufficient data

11 -2 0.022 Insufficient data Insufficient data

11 0 0.022 Insufficient data Insufficient data

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 Insufficient data Insufficient data

12 0 0.022 Insufficient data Insufficient data

12 2 0.022 Insufficient data Insufficient data

13 -2 0.022 Insufficient data Insufficient data

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean -0.193 0.056 -0.507 0.020913 0.002964 0.000376

60



A.4 Custom marker

Table A.7: Mean and standard deviation of the estimation error at each position using the

custom marker and 2-by-2 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.034 -0.001 0.020 0.001661 0.000005 0.000006

2 -1 0.022 -0.091 -0.001 0.049 0.000285 0.000064 0.000034

2 0 0.022 -0.059 -0.012 0.047 0.000448 0.000033 0.000018

2 1 0.022 -0.046 -0.023 0.041 0.010765 0.002508 0.000310

3 -1 0.022 -0.116 -0.001 0.078 0.002880 0.000517 0.000100

3 0 0.022 -0.071 -0.021 0.075 0.000580 0.000021 0.000091

3 1 0.022 -0.073 -0.036 0.071 0.001245 0.000176 0.000047

4 -1 0.022 -0.120 -0.011 0.107 0.002813 0.000751 0.000179

4 0 0.022 -0.090 -0.029 0.100 0.001 0.000 0.000

4 1 0.022 -0.044 -0.045 0.093 0.004 0.001 0.000

5 -1 0.022 -0.171 -0.015 0.135 0.005 0.001 0.000

5 0 0.022 -0.126 -0.039 0.130 0.004 0.000 0.000

5 1 0.022 -0.109 -0.063 0.121 0.005 0.001 0.000

6 -1 0.022 -0.201 -0.025 0.157 0.012 0.002 0.000

6 0 0.022 -0.148 -0.052 0.152 0.009 0.000 0.000

6 1 0.022 -0.161 -0.077 0.143 0.010 0.002 0.001

7 -2 0.022 -0.181 -0.019 0.189 0.003 0.001 0.000

7 0 0.022 -0.182 -0.057 0.182 0.017 0.000 0.001

7 2 0.022 Insufficient data Insufficient data

8 -2 0.022 -0.328 0.019 0.220 0.013 0.003 0.000

8 0 0.022 -0.261 -0.071 0.205 0.002 0.000 0.000

8 2 0.022 Insufficient data Insufficient data

9 -2 0.022 Insufficient data Insufficient data

9 0 0.022 Insufficient data Insufficient data

9 2 0.022 Insufficient data Insufficient data

10 -2 0.022 Insufficient data Insufficient data

10 0 0.022 Insufficient data Insufficient data

10 2 0.022 Insufficient data Insufficient data

11 -2 0.022 Insufficient data Insufficient data

11 0 0.022 Insufficient data Insufficient data

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 Insufficient data Insufficient data

12 0 0.022 Insufficient data Insufficient data

12 2 0.022 Insufficient data Insufficient data

13 -2 0.022 Insufficient data Insufficient data

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean -0.131 -0.029 0.116 0.005263 0.000739 0.000183
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Table A.8: Mean and standard deviation of the estimation error at each position using the

custom marker and 4-by-4 binning.

Position [m] Mean estimation error [m]
Standard deviation of the

estimation error [m]

x y z x y z x y z

1 0 0.022 -0.019 0.014 0.016 0.000417 0.000011 0.000023

2 -1 0.022 -0.021 0.028 0.044 0.000642 0.000168 0.000011

2 0 0.022 -0.045 0.027 0.041 0.000862 0.000062 0.000009

2 1 0.022 -0.051 0.028 0.038 0.000853 0.000252 0.000096

3 -1 0.022 -0.049 0.047 0.068 0.005785 0.000684 0.000224

3 0 0.022 -0.173 -0.001 0.091 0.015361 0.000076 0.000329

3 1 0.022 -0.073 0.026 0.062 0.002214 0.000351 0.000023

4 -1 0.022 Insufficient data Insufficient data

4 0 0.022 Insufficient data Insufficient data

4 1 0.022 Insufficient data Insufficient data

5 -1 0.022 Insufficient data Insufficient data

5 0 0.022 Insufficient data Insufficient data

5 1 0.022 Insufficient data Insufficient data

6 -1 0.022 Insufficient data Insufficient data

6 0 0.022 Insufficient data Insufficient data

6 1 0.022 Insufficient data Insufficient data

7 -2 0.022 Insufficient data Insufficient data

7 0 0.022 Insufficient data Insufficient data

7 2 0.022 Insufficient data Insufficient data

8 -2 0.022 Insufficient data Insufficient data

8 0 0.022 Insufficient data Insufficient data

8 2 0.022 Insufficient data Insufficient data

9 -2 0.022 Insufficient data Insufficient data

9 0 0.022 Insufficient data Insufficient data

9 2 0.022 Insufficient data Insufficient data

10 -2 0.022 Insufficient data Insufficient data

10 0 0.022 Insufficient data Insufficient data

10 2 0.022 Insufficient data Insufficient data

11 -2 0.022 Insufficient data Insufficient data

11 0 0.022 Insufficient data Insufficient data

11 2 0.022 Insufficient data Insufficient data

12 -2 0.022 Insufficient data Insufficient data

12 0 0.022 Insufficient data Insufficient data

12 2 0.022 Insufficient data Insufficient data

13 -2 0.022 Insufficient data Insufficient data

13 0 0.022 Insufficient data Insufficient data

13 2 0.022 Insufficient data Insufficient data

Mean -0.061 0.024 0.051 0.003733 0.000229 0.000102
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