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Abstract

The importance of mobile devices in our lives makes it hard to imagine our daily
activities without them. Mobile applications (apps) influence the autonomy of
the devices. However, there is no indication of app energy consumption in app
stores. Energy certificates are the solution to app stores’ lack of energy efficiency
information. Energetic certification must be robust to guarantee the fair evalu-
ation of each app. In our work, we aim to research energy certification mecha-
nisms, detect their vulnerabilities, and present how they can be exploited. We an-
alyzed different types of mechanisms to reach our goal and understand how they
work. We approach the problem by conceiving adversarial strategies targeted to
energetic certification that would make an app rank higher than it should. Within
the scope of the dissertation, we implemented experimental environments de-
fined in the strategies, and then we validated the vulnerabilities identified. The
analysis and experimentation of this dissertation allow the indication of guide-
lines for the developers of energy certification mechanisms to grant a more robust
evaluation method.
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Energetic certification for Mobile Applications (apps), reliable rating system, ex-
ploit rating system.
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Resumo

A importância dos dispositivos móveis na nossa vida dificulta imaginar as nossas
atividades diárias sem eles. As aplicações móveis (apps) influenciam a autonomia
dos dispositivos. Contudo, não há indicação do consumo de energia das apli-
cações nas lojas de aplicações. Os certificados energéticos são a solução para a
falta de informação sobre a eficiência energética nas lojas de aplicações. A cer-
tificação energética deve ser robusta para garantir uma avaliação justa de cada
aplicação. No nosso trabalho, visamos pesquisar certificados energéticos, detetar
as suas vulnerabilidades e, apresentar como estes podem ser manipulados. Para
atingir o nosso objetivo e compreender como funcionam, analisamos diferentes
tipos de certificados. Abordamos o problema concebendo estratégias adversariais
dirigidas à certificação energética que fariam com que uma aplicação tivesse uma
avaliação mais elevada do que deveria. No âmbito da dissertação, implemen-
tamos os ambientes experimentais definidos nas estratégias, e posteriormente
validamos as vulnerabilidades identificadas. A análise e experimentação desta
dissertação permitem indicar diretrizes para que os desenvolvedores de mecan-
ismos de certificação energética possam conceber um método de avaliação mais
robusto.

Palavras-Chave

Certificação Energética para Aplicações Móveis (apps), sistemas de avaliação fiáveis,
abuso de sistemas de avaliação.

ix





Contents

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and State of the Art 5
2.1 Energy Consumption Measurement . . . . . . . . . . . . . . . . . . 5

2.1.1 Power Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Energy Profiler . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Cases of Rating Systems Vulnerabilities . . . . . . . . . . . . . . . . 8
2.2.1 Dieselgate Case . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 User Ratings and Reviews . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Journal Rank Indicator . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Energy Labels for Household Appliances . . . . . . . . . . . 10

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Energy Certification for Apps 13
3.1 Understanding Energy Certification Mechanism for Apps . . . . . . 13

3.1.1 Desirable Characteristics . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Process Steps Behind the Development . . . . . . . . . . . . 15

3.2 Vulnerabilities and Limitations in the Certification Mechanisms . . 17
3.2.1 Design of Test Cases . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Background Service . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Helper Apps Consumption . . . . . . . . . . . . . . . . . . . 20
3.2.4 Refactoring Approaches . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Path Analysis Approach . . . . . . . . . . . . . . . . . . . . . 24

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Approach 27
4.1 Strategy 1: The Background Service Consumption Is Not Regarded

in the Energy Certification Mechanism . . . . . . . . . . . . . . . . . 27
4.1.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Strategy 2: The Helper App Consumption Is Not Regarded in the
Energy Certification Mechanism . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Strategy 3: A Refactored App Is Considered Energy Efficient . . . . 30
4.3.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Strategy 4: The Evaluation Mechanism Cannot Deal With Threads . 31
4.4.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



Chapter 0

5 Experimental Setup 35
5.1 Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 App S2_A1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 App S2_A2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.3 Strategy 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3.1 EARMO and Kadabra Setup . . . . . . . . . . . . . . . . . . 41
5.3.2 wcec-android Setup . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Experimental Results and Discussion 43
6.1 Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 Strategy 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4 Strategy 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Work Plan 53
7.1 First Semester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Second Semester . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Conclusion 57

Appendix A Applications Used in the Experiments 65

xii



Acronyms

APK Android Package Kit

AUT App Under Test

CFG Control Flow Graph

CPU Central Processing Unit

DUT Device Under Test

E-APK Energy-aware Android Patterns for Kadabra

EE Energy Efficiency

IDE Integrated Development Environment

WCEC Worst-Case Energy Consumption

xiii





List of Figures

2.1 Example of a power monitor setup [10] . . . . . . . . . . . . . . . . 6
2.2 Example of measurements collected using Batterystats . . . . . . . 7
2.3 Example of the app stats visualization. Data was collected using

Batterystats and visualized using the Battery Historian. . . . . . . . 8

3.1 Energy certificate for apps proposed by Almasri et al. [1] . . . . . . 22

4.1 Scenario representing the implementation of background service,
for comparison of consumption with the original app. . . . . . . . . 28

4.2 Scenario representing the implementation of helper app calls, for
comparison of consumption with the original app. . . . . . . . . . . 30

4.3 Scenario representing the implementation of high consumption code
in S3_A2 for comparing with the original app A0 consumption. . . 31

4.4 Scenario representing the implementation of high consumption code
for comparison of consumption with the original app. . . . . . . . . 32

5.1 Example of the app that reproduces a YouTube video (S2_A1) . . . 39
5.2 Example of the app that redirects to a YouTube video (S2_A2) . . . 39

6.1 Box plot of the original apps energy consumption . . . . . . . . . . 43
6.2 Box plot of the background service energy consumption obtained

in Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.3 S2_A1, S2_A2 and S2_B energy consumption . . . . . . . . . . . . . 46
6.4 Box plot of S2_A1, S2_A2 and S2_B energy consumption . . . . . . 47
6.5 Energy consumption comparison between app’s version A0 and

S3_A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.6 Box plot of the S3_A2 energy consumption . . . . . . . . . . . . . . 48
6.7 Energy consumption comparison between app’s version S4_A1 and

S4_A2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.8 Box plot of the S4_A2 energy consumption . . . . . . . . . . . . . . 50

7.1 Work done in the first semester by weeks . . . . . . . . . . . . . . . 54
7.2 Work done in the second semester by weeks . . . . . . . . . . . . . 55

xv





List of Tables

5.1 Information about the apps used in the experiences. . . . . . . . . . 35
5.2 Specifications of the smartphone used in the experiments. . . . . . 36

6.1 Kadabra and EARMO results . . . . . . . . . . . . . . . . . . . . . . 48
6.2 wcec-android results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 More information about the apps used in the experiences. . . . . . 65

xvii





Listings

5.1 Strategy 1 dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 android-youtube-player dependency in S2_A1 app of Strategy 2. . 38
5.3 Code necessary for the app S2_A2 of Strategy 2. . . . . . . . . . . . 40

xix





Chapter 1

Introduction

The importance of mobile devices in our lives makes it hard to imagine our daily
activities without them. The use of smartphones, tablet computers, and, more
recently, wearables such as smartwatches have changed and simplified how we
communicate, how we individually or collectively have fun, and how we work
or do business. Ultimately, the number and scope of mobile applications (apps)
appear unlimited. The distribution of such applications is highly facilitated by
app stores such as Google Play Store1 and Aptoide2, which democratize the op-
portunity to commercialize software for mobile devices. Notably, the number of
mobile applications downloaded has increased significantly from 140.7 billion in
2016 to 230 billion downloads in 2021. This indicates a growing trend of mobile
app usage among consumers3.

While the app market targets mobile devices, which by nature most often run
on batteries, the fact is that current marketplaces do not provide any indication
of the absolute or relative Energy Efficiency (EE) of the applications they host.
According to studies, users place the battery life as the most crucial feature when
choosing a new smartphone, emphasizing the need for mobile applications to
be energy efficient4. Considering this, energy certification mechanisms for apps
were developed [1, 2, 3, 4], well as energy evaluation tools [5, 6, 7]. The energy
certification mechanisms give users information regarding the app’s EE of the
apps they are about to install, which may influence the autonomy of their devices.

Energy certificates for apps are like benchmarks that enable developers, providers,
and users to compare apps concerning their power consumption behaviour. Bench-
marks are often used to compare products’ characteristics and performance. Hence,
they must be robust; otherwise, vendors begin to develop their products to rank
as high as possible with the benchmark artificially. Dieselgate5 is a fine example
of the abuse of evaluation mechanisms. Volkswagen implemented software to

1https://play.google.com/store/apps (Last Access: Jul 8, 2023)
2https://en.aptoide.com/ (Last Access: Jul 8, 2023)
3https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-

app-store-downloads/ (Last Access: Jul 8, 2023)
4https://www.statista.com/chart/5995/the-most-wanted-smartphone-features/ (Last

Access: Jul 8, 2023)
5https://www.bbc.com/news/business-34324772 (Last Access: Jul 8, 2023)

1
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https://www.statista.com/chart/5995/the-most-wanted-smartphone-features/
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detect if the vehicle is under test by monitoring sensors such as speed and air
pressure. Whenever the car is under test, the engine is adjusted to an operation
mode that emits fewer pollutants, which allows the vehicle to meet the emissions
requirements imposed by Environmental Protection Agency (EPA). However, Ni-
trogen oxides (NOX) emissions in regular driving were 15 to 35 times higher than
allowed by EPA, Which led Volkswagen to an unfair advantage over other car
manufacturers [8, 9].

With the implementation of mechanisms to analyze and profile the EE of apps
in app stores, there are multiple benefits: developers are incentivized to improve
their applications in terms of EE by increasing the concern about energy-efficient
practices and users benefit from the capability to choose a more energy-friendly
application. Energy certificates are already standard for household appliances
(e.g., television and refrigerators), which motivated manufacturers to develop
more energy-friendly appliances. By inserting energy certificates in the app mar-
ket, it could also benefit from the increased concern for EE practices [5].

However, energy certification mechanisms must be reliable and ensure all apps
have a fair rating. App providers could exploit the evaluation system for better
evaluations if it has vulnerabilities. Then the rating slowly becomes less relevant
since it may no longer represent reality. Developing innovative and robust mech-
anisms for evaluating the apps’ EE is fundamental.

Moreover, project Greenstamp6 is currently developing tools for analysis and pro-
filing of the EE of the apps. The project Greenstamp aims to research and create
innovative methods for evaluating and documenting the EE of mobile applica-
tions in marketplaces. Apart from detecting susceptibilities in the other certifica-
tions, we aim to explore also the evaluation methods developed by Greenstamp
[5, 6, 7]. By reporting the limitations in the energy certification mechanisms for
apps, new mechanisms can hopefully overcome them.

1.1 Objectives

We research energy certification mechanisms for apps and examine any potential
susceptibilities they may have. These susceptibilities threaten the security of the
evaluation system, which can lead to dishonest evaluations. Hence, we explore
the vulnerabilities to determine how developers could design and develop their
apps to rank higher than they should.

Our primary goal is to expose the flaws in the current app certification process so
that creators of future energy certification may create a more robust version. To
this end, we investigated and responded to the main research question:

RQ How can developers create adversarial strategies against energy certification mech-
anisms that would make an app rank higher than it should?

6https://greenstamp.caixamagica.pt/ (Last Access: Jul 8, 2023)

2
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Introduction

Our first objective is to research real examples of strategies influencing evalua-
tions in a rating system. Following that, we aim to research energy certification
mechanisms for applications and explore their problems and weakness. Then,
the issues detected must be validated through experiments.

To reach our main goal and try to answer the RQ, we need to fulfil the following
objectives:

• Survey of the state-of-the-art in software energy certification.

• Analysis of energy certification for mobile applications.

• Identify vulnerabilities in energy certification mechanisms.

• Design scenarios that simulate how app developers can exploit the vulner-
abilities to obtain a better evaluation than they should in the energy certifi-
cation mechanisms.

• Setup of the experimental environment.

• Implement and evaluate the proposed adversarial strategies designed in the
scenarios.

1.2 Document Structure

In Chapter 2, we give background information about the methods for measur-
ing or estimating the energy consumption of mobile applications. We overview
diverse rating systems, their vulnerabilities, and how vendors exploit them to
obtain unfair ratings on their products. In Chapter 3, we overview tools and cer-
tification mechanisms that allow an energetic app evaluation and identify suscep-
tibilities in these methods. In Chapter 4, based on the vulnerabilities previously
raised, we present scenarios to exploit them. In Chapter 5, we detail the experi-
mental setup required for our experiments. In Chapter 6, we present the results
obtained in the experiments, where they are also discussed. Finally, in Chapters
7 and 8, we summarize the work done in the dissertation.

3





Chapter 2

Background and State of the Art

This Chapter presents essential background knowledge to understand how en-
ergy certificates are attributed. To this end, we analyzed how an app’s energy
consumption can be measured to verify its efficiency. In Section 2.1, we distin-
guished two main approaches to measuring app energy consumption: energy
monitors and energy profilers. In Section 2.2, we present four examples of vul-
nerabilities in different certifications and benchmarks, which allowed us to ac-
quire a good foundation in the topic. These examples reflect vendors artificially
developed their products to rank as high as possible in a particular rating system.

There is a lack of research on vulnerability analysis in app certification mecha-
nisms. Therefore, we can gather knowledge by analyzing vulnerabilities in other
certifications and benchmarks, which will be helpful in the definition of our ap-
proaches. Moreover, we verify the importance of creating robust rating systems.
If the rating system is not robust, it becomes less relevant since it may no longer
represent reality. We found clear examples of rating systems exploited by ven-
dors.

There is no flawless rating system, and apps’ energy certifications are no excep-
tion. Our work is to detect the vulnerabilities and create adversarial strategies to
make an app rank higher than it should.

2.1 Energy Consumption Measurement

Tracking energy consumption is fundamental to ensuring green software [10].
A range of tools can be used to measure the power consumption of software.
These energy consumption tools have different configurations as well different
applications. Moreover, some implementations only work with some platform
versions (e.g., Android 6.0), and no procedure fits every situation. Therefore, it is
vital to use the technique that best fulfils our needs.

Generally, the analyzed articles use Power Monitors or Energy profilers to mea-
sure apps’ consumption. Each approach has advantages, disadvantages, and lim-
itations that must be considered when choosing an energy measurement tool. We

5
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analyzed these methods in the following subsections.

2.1.1 Power Monitor

The device’s power consumption can be measured using power monitors, which
are hardware tools, to obtain the most accurate energy consumption results. The
power monitor is connected to the device’s power source, allowing the measure-
ment of the actual device’s power usage [10].

However, they can be adamant about setting it up because it implies dismounting
the device and removing the battery. Another difficulty is syncing the power in-
formation with the software tested. The power monitor only collects information
about power usage but does not have information about the software running
on the device [10]. The developer must start and stop the power consumption
recording of the power monitor to synchronize with the application activity [11].
We found some hardware-based power monitors, Monsoon Power Monitor [12],
ODROID used in [13], and NEAT [14]. Finally, hardware-based power monitors
were used in the certificate [15].

Figure 2.1: Example of a power monitor setup [10]

2.1.2 Energy Profiler

Energy profilers estimate the energy the application consumes instead of measur-
ing the power usage like power monitors. They rely on power models adapted
for each smartphone, and then based on which hardware components are active
in the device, they estimate its energy consumption [10]. Energy profilers are
more accessible to set up than Power meters because they do not need hardware
modifications, additional hardware, or power sensors.

6
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Energy profilers have limitations that can compromise energy profiling. They are
mainly used for small sets, so they are not practical for profiling large applica-
tions [11]. Another limitation is that energy profilers are not reliable as power
monitors. Besides, approximating the actual energy consumption does not en-
sure the measurement’s reliability. Using PETrA, 95% of the analyzed methods’
estimation error is within 5% of the actual values measured [16].

The certification mechanisms [1, 3, 2] used this approach, having these limita-
tions. PowerTutor [2], Profiler1 an Android Studio tool, Trepn Profiler2 used in
[17], GreenScaler [18], PETrA [16], Batterystats3, GSam Battery Monitor4, and Bat-
tery Guru5, are energy profilers. PowerTutor, Trepn Profiler, Battery Guru, and
GSam Battery Monitor are apps that must be installed on the device.

We explore Batterystats deeply because of its potential; the tool is included in the
Android framework. Batterystats is easy to implement and presents the neces-
sary information in a clear format. It collects all battery data in our development
machine and creates a report, then using Battery Historian3, we can analyze the
report. Battery Historian converts the output from Batterystats into an HTML
graphic that can be seen in the browser. In Figure 2.2, we present a piece of the
report generated by Batterystats with the battery data collected from the device.
In Figure 2.3, we can visualize a piece of the report converted by Battery Historian
in the browser.

Figure 2.2: Example of measurements collected using Batterystats

1https://developer.android.com/studio/profile/android-profiler (Last Access: Jul 8,
2023)

2https://developer.qualcomm.com/blog/introducing-trepn-profiler-60/ (Last Access:
Jul 8, 2023)

3https://developer.android.com/topic/performance/power/setup-battery-historian
(Last Access: Jul 8, 2023)

4https://play.google.com/store/apps/details?id=com.gsamlabs.bbm&hl=en_US&gl=US
(Last Access: Jul 8, 2023)

5https://play.google.com/store/apps/details?id=com.paget96.batteryguru&hl=en_
US&gl=US (Last Access: Jul 8, 2023)

7
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Figure 2.3: Example of the app stats visualization. Data was collected using Bat-
terystats and visualized using the Battery Historian.

2.2 Cases of Rating Systems Vulnerabilities

Some organizations have tricked the evaluation system into obtaining a better
evaluation of their products than they should. The rankings have vulnerabili-
ties, and manufacturers put effort into abusing them. A ranking can show the
user how the product will perform in certain circumstances, but sometimes it is
a relative evaluation. If the user does not know how the rating is attributed, he
can not make a thoughtful comparison. For example, the concept of Energy Ef-
ficiency (EE) can change between regions. In China, the EE of a television relies
on the television’s power consumption and the television’s brightness. European
Union (EU) opted for calculating the EE relating the power of the product to its
size. Manufacturers try to make the product as efficient as possible in the market,
leading to high-brightness televisions in China and TVs with larger screen sizes
in Europe [19].

2.2.1 Dieselgate Case

The Dieselgate case was a worldwide fraud known thanks to his scandal’s pro-
portions. The German car manufacturer Volkswagen manipulated the emission
test on their engines to obtain a lower emission value than it should have. With
such low emissions, the motors were labelled as "Clean Diesel" motors putting
the brand in an excellent position in the car market [20]. However, in reality,
the emissions in regular driving of Nitrogen oxides (NOX) were 15 to 35 times
higher than the Environmental Protection Agency (EPA) demanded [8, 9]. Only
eight years later, this fraud was discovered, but the company sold 11 million de-
fective cars in that period [8]. Moreover, the excess pollution provoked multiple
health problems, most related to breathing, and also caused deaths [9].

It is important to know under what conditions the emission test is conducted.
The test is done with the car in a dynamometer that fixes the car in place while

8
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allowing the tires to rotate, and then an emission sensor is placed in the vehicle’s
exhaust. The sensor collects emissions information, which allows for checking
whether the emissions are within limits. During the test, a car is made to adhere
to a precise speed profile. The test requirements, including the speed profile, are
standardized and available to the public [21].

The Engine Control Unit (ECU) regulates engine operation by constantly analyz-
ing sensor data and adjusting engine aspects. Therefore, the engine manufacturer
can program the vehicles’ computers which decide how the car will perform [20].
They programmed it with two operation modes: the testing mode and the reg-
ular driving mode [9]. Since the test conditions are public, the company built
software that predicts when the car is being tested, and if it is the case, the ECU
activates the testing mode. The software uses various variables like the speed of
the vehicle, the steering wheel, and traction control sensors to decide whether the
car is being tested. This mode reduces the performance and increases the vehi-
cle’s consumption but lowers the emissions to an acceptable level by EPA [21].
Concluding, Volkswagen had passed the emissions benchmark test, although the
values were much higher than allowed.

2.2.2 User Ratings and Reviews

Many applications in app stores have boosted their ranking to higher positions,
like the top 50 trending applications. The ranking position in an app store can
be induced by multiple factors and variate between different app stores. How-
ever, tendentially, the most critical aspects are the number of downloads and the
ratings given [22]. So, collusive groups were created that perform attacks on the
ranking of the app store, impacting the evaluation of one or multiple applications.
These groups are formed by numerous people that give high ratings and good re-
views in an application defined by the group leader. [22, 23]. Then when the app
store ranking of the apps is updated, the application hit by the attack reaches the
top positions until at least the following ranking update [22]. The app stores have
improved at controlling these practices, but apps still have inflated ratings.

The reputation ranking of products in online stores also is susceptible to manipu-
lation when some users give an unfair rating to a product. Reputation is the score
of a product obtained through collective intelligence, i.e., the result of collabora-
tion between many individuals [24]. The reputation of a product influences the
customer’s choice because it indicates the opinion of other customers. Like in
app stores, companies can hire groups of people to rate their product with an ex-
cellent grade to increase their reputation. However, this type of evaluation given
by the groups is dishonest and reduces the trustworthiness of the reputation.

2.2.3 Journal Rank Indicator

Multiple articles are published every year in science journals, and the quality of
each article can be measured by the impact of the journal in which it was pub-
lished [25]. A journal’s citations are usually used in metrics to rank and compare
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the journal’s impact with others. There are multiple metrics used to perform the
importance evaluation, like the Impact Factor (IF), Eigenfactor Score (ES), and
SCImago Journal rank indicator (SJR). These indicators have the purpose of rank-
ing the importance of the journals by using different metrics [26]. To calculate the
IF of a journal in a given year, we divide the number of citations in that year by
the number of citable papers published two years before the stated date. This
metric leaves room for vulnerabilities because it does not consider other journal
characteristics and citations [25]. The other two metrics are very similar, only
variating in the data size used: SJR used much more information than ES. Both
metrics consider the importance of the journal that made the citation; hence, the
evaluations using these metrics increase when more prestigious journals cite the
journal [26].

The IF metric has some vulnerabilities, and publishers and editors found strate-
gies to boost the journal evaluation. One of the strategies used is publishing
review articles that are usually more cited than original articles. Journals pub-
lishing only review articles can have a very high IF [25]. Another strategy is self-
citation which consists in citing articles from the same journal where the article is
published. Self-citing is more frequent in non-English journals because local com-
munities tend to publish in their language in local journals [26]. Finally, journals
also publish non-citable items such as commentary-type articles and correspon-
dence articles that do not count toward the metric denominator but toward the
nominator, increasing the IF of the journal [26].

2.2.4 Energy Labels for Household Appliances

Household appliances, like televisions and freezers, are responsible for much of
the energy consumption in a house. The primary electric appliances in a house-
hold account for 25.6% of the total energy consumption of Spanish households
[27]. Moreover, with the energy demand increasing in European Union (EU),
there is a need to acquire and encourage the acquisition of more energy-efficient
electric appliances [28]. Electronic appliances’ energy labels help the customer
choose the most energy-efficient alternative. These labels contain information
about the product depending on the product’s category; however, EE and the
product’s energy consumption are expected on all labels in the EU. The energy
label information lets the customer make better energy-efficient decisions bene-
fiting from energy savings. Besides that, the environment is protected because
energy production, which causes much pollution, can be lowered. Due to EE
requirements and more thoughtful customer choices, manufacturers are encour-
aged to manufacture more environmentally friendly appliances [29]. When sev-
eral products reach the best EE classification, the energy labels are updated to
leave room for improvement. If the EU did not update energy labels, there was
no improvement margin, which may generate confusion for the customers by
having such different products with the maximum EE rating.

The electric appliances to receive an energy label are submitted to a series of per-
formance tests. The tests are carried out under similar conditions for the same
product’s category to ensure reliability, with a few exceptions. EE represents the
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energy used concerning the size of the product. For example, the EE of televisions
is calculated by the power consumption (Watts) per squared decimeter (dm2) of
the screen [28, 30]. So the EE of televisions depends on their size, and televisions
with different screen sizes can have the same EE. In the previous labels, replaced
in March 2021, the EE rating is attributed on a scale from D to A+++, with A+++
attributed to the most efficient products and D to the least [27]. Besides energy
efficiency, we have annual energy consumption information, which is calculated
based on the consumption per year of the electrical product, assuming a prod-
uct’s generic use. A television, for example, is considered to be used 4 hours per
day for a year, but a freezer is supposed to be plugged in all year [28].

The EE of a product does not mean that the product will use low energy to per-
form. It just means that it uses low power in relation to the product size. Choos-
ing an electric appliance with lower energy consumption can confuse the cus-
tomer. The customer’s perception of energy labels and their influence on the
buying choice was investigated in [28]. The conclusion was that the energy label
needs to be clarified, or the customers need more knowledge to interpret them.
The customers do not give enough importance to the product’s annual consump-
tion, focusing only on EE, which is easier to understand and more appealing
[28, 30]. This way, customers can be misled into thinking that two electric ap-
pliances have similar energy consumption because they have an equal EE rating;
this incentivizes manufacturers to develop increasing-size products [31]. On the
other hand, TV energy labels in China calculate EE based on power usage to pro-
duce a specific luminance. Therefore, TVs with higher luminance benefit from
the Chinese labels [19].

2.3 Summary

We learned how an app’s energy consumption could be measured and analyzed.
Then, distinguished two different measurement methods: power monitors and
energy profilers. Power monitors are hardware tools that allow a reliable mea-
surement of the device’s power usage but are complicated to implement. Energy
profilers are software tools that are more accessible to implement but, due to the
energy consumption estimates they use, are not as reliable as power monitors.

We gathered a good foundation of vulnerabilities in different certifications and
benchmarks. Each certification mechanism has vulnerabilities that can be ex-
ploited. For example, when exploring energy certificates for household appli-
ances, we acknowledge how EE is calculated based on the product’s category,
specs, and energy consumption. We comprehend the difference between EE and
energy consumption; good EE doesn’t always mean low energy consumption.

Concluding, vendors can design and develop their products to rank as high as
possible with the benchmarks artificially. In the same way, app vendors could
find gaps in the energy certifications that allow their apps to rank higher than
they should. Therefore, we fulfil our first objective: Survey of the state-of-the-art in
software energy certification, defined in Section 1.1.
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Energy Certification for Apps

This Chapter covers the energy certifications for apps and how developers can
create adversarial strategies to make apps rank higher than they should.

Section 3.1 walks through the process of creating an energy certification mecha-
nism for apps and highlights points that should be considered when developing a
robust certification. The energy certifications must be reliable, enabling develop-
ers, providers, and users to compare apps concerning their power consumption
behavior. Otherwise, developers can explore their products to (artificially) rank
as high as possible.

Section 3.2 identifies vulnerabilities in energy certification mechanisms for apps
and evaluation tools. To this end, it provides an overview of the techniques. The
certification mechanisms analyzed were: [1, 2, 3, 4]. Moreover, we analyzed three
tools that allow an energetic analysis of the apps [5, 6, 7].

3.1 Understanding Energy Certification Mechanism for
Apps

Energy Efficiency (EE) could be decisive when discussing apps with similar goals
and functionalities. Energy certificates for applications will allow users to com-
pare similar apps’ EE, which could help them choose the app that suits them
better. It may also incentivize vendors to improve their app’s EE, which leads to
research and development of power-saving mechanisms [32].

There needs to be more information about apps’ energy consumption or effi-
ciency in app stores. Users can only rely on the app vendor’s information, the
number of downloads, and the user rating and reviews when choosing an app.
Energy certificates function like benchmarks that can be used to evaluate the effi-
ciency performance of an app. The objective of benchmarks is to provide a stan-
dardized way to measure the performance of a system or component so that it
can be compared to others, which allows users to make informed decisions about
which apps are best suited for their needs based on performance characteristics.
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Benchmarks must be reliable, so they must be carefully designed and validated.
Furthermore, desirable benchmark characteristics depend on the goals of the
benchmark and the system being tested. The definition of desirable characteris-
tics will be helpful in the analysis of benchmark limitations. This Section defines
desirable characteristics and the process steps in creating a certification mecha-
nism.

We can divide the evaluation methods into two categories:

• Dynamic Analysis: Dynamic analysis requires program execution on the
target hardware or emulator, which enables us to obtain consumption val-
ues similar to the app’s actual consumption. To this end, the testing team
must create Test Cases that simulate the app’s usage. The test case design
is demanding because the developer must understand how the app must
work. Furthermore, it has the limitation that only one use case can be tested
each time [33], and not all possible input combinations can be assessed.
Finally, the app is repeatedly tested to validate the collected consumption
data. The evaluation methods [2, 3, 4, 7] are based on this type of analysis.

• Static Analysis: Using static analysis, we do not need to execute the app
as an alternative to dynamic strategies. Instead, each part of the program
is analyzed, producing an approximation of the entire program [34]. Static
approaches can be easily applied in app stores and automated for every
app, enhancing scalability. The static analysis is utilized in the evaluation
methods [1, 5, 6].

3.1.1 Desirable Characteristics

In this Subsection, we will identify some general desirable characteristics that
the energy certification mechanisms for apps should satisfy. These characteristics
will be used to help identify limitations. The limitations can prevent the energy
certification mechanisms from being applied in an app store.

• Reproducibility: Reproducibility is necessary to make meaningful com-
parisons between systems or components. The benchmark should produce
consistent results when run under the same conditions. When the same app
is run multiple times under the same conditions, the reported energy con-
sumption values must be virtually the same with only minimal deviations
allowed [32].

• Fairness: The benchmark should be fair, meaning it should not favour any
particular system or component unfairly. For example, a benchmark that is
biased toward a specific app may make it appear that the app is superior to
others, even if they are not. Moreover, measurement devices must provide
specific properties which guarantee comparable energy values [32].

• Transparency: The benchmark should be transparent, meaning the method-
ology and data used should be documented and available for review. The
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benchmark needs to cover all possibilities and not allow any room for ex-
ploits.

• Relevance: The benchmark should accurately reflect the performance of the
system or component being tested. It should be designed to represent the
workloads and conditions likely to happen in real-world use [35]. If the
tests performed on the app do not represent the actual use of the app, they
have no relevance to users.

3.1.2 Process Steps Behind the Development

Designing energy certification mechanisms to allow comparisons between appli-
cations and finding a way to present energy-aware benchmarks in the market-
place is challenging [4]. The mechanisms must meet the previous subsection’s
desirable characteristics. Otherwise, app stores may prevent them from being ac-
cepted and implemented. And users may not trust the certificates or be misled
by them.

After analyzing some suggested app certification mechanisms, we defined gen-
eral critical points in their designing process. The critical points will be explored
in the following section to identify limitations and vulnerabilities in the tech-
niques used by the certification mechanisms.

• Define the energy measurement method: The energy measurement method
involves choosing a tool to measure an app’s energy consumption. We
can distinguish between two different measurement methods, the usage of
power monitors or energy profilers. Each technique has advantages, disad-
vantages, and limitations [10]. We have discussed this subject and identified
which measurement method uses each energy certificate in Section 2.1.

• Define test cases: "To measure the energy consumption of a mobile appli-
cation, one needs to design the use case in which the energy consumption
will be tested" [11]. The use cases must be similar inside each app category
to allow the comparison between apps inside the same category.

The app categorization may be hard to define, but it is necessary to establish
category-specific tests. The apps inside a category must be tested similarly
to ensure benchmark fairness. However, some certification mechanisms did
not categorize the apps, which allows comparing all apps between them.

• Manage critical consumption details: Energy labels for applications should
address how applications drain devices’ batteries, and all specific cases should
be considered to ensure the robustness of the benchmark. The background
service consumption, in some applications, impacts the total app consump-
tion. Moreover, some applications need helper apps to provide a particular
service. Energy labels must specify how to deal with helper apps. We will
explore these two points in the following Section.
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• Design energy labels based on applications’ energy consumption: This
step involves conceiving a transparent way to inform the user about a prod-
uct’s EE. The energy label must compare the various apps based on con-
sumption measurements. The user must be able to search for energy-aware
mobile applications quickly and comprehensively [4]. For example, the EE
in the energy labels for household appliances is assigned from A to G, with
A being one of the class’s most efficient and G being the most inefficient
[29].

The two first points presented, define the energy measurement method and de-
fine test cases, are unrelated to the static analysis. They are linked to the dynamic
analysis, which implies running the app on the target device. There are various
valuable uses for static analysis. Finding the routes that lead to undesirable be-
haviour is achievable (bug-searching). Additionally, static analysis techniques are
frequently used in Integrated Development Environment (IDE) to help uncover
code errors and on compilers to do automated optimizations. It also makes it pos-
sible to identify several errors in the source code, some of which are impossible
to find using tests. For instance, uninitialized variables, invalid operations (such
as division by zero and overflow/underflow in arithmetic expressions), resource
leaks, and buffer overflow are some of the issues that may be detected by static
analysis. Inside the static analysis, we emphasize two strategies: refactoring and
path-tracing.

• Refactoring Strategy: Refactoring software involves altering the code’s struc-
ture without changing its behaviour, which software maintainers can use to
reorganize a program [36]. Software quality decays when developers make
poor design choices or add new functionalities, which may lead to the ori-
gin of anti-patterns. Developers should avoid anti-patterns that cause bat-
tery drain, as documented [37]. Moreover, developers can manually refac-
tor the app or use some refactoring tool to assist with the process. Refactor-
ing must be done carefully to ensure the app continues working as expected
on different devices and operating systems.

• Path Analysis Strategy: This strategy uses the app code or APK to trace
all possible execution paths. Then, using all the data, the tools estimate
the consumption of the app or give some evaluation. The tool may access
the device consumption module, allowing a more accurate consumption
estimation.

After analyzing various energy evaluation methods [1, 2, 3, 4, 5, 6, 7], we detect
limitations and vulnerabilities in each process step. In the following section, we
will explore each process step profoundly and focus on the vulnerabilities devel-
opers could exploit to obtain better evaluations in energy certificates.
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3.2 Vulnerabilities and Limitations in the Certifica-
tion Mechanisms

In this Section, we present vulnerabilities and limitations in the process steps of
the design of a reliable energy certification mechanism. Moreover, we explore
two approaches based on static analysis: refactoring and path-tracing strategies.

3.2.1 Design of Test Cases

Use cases are necessary to simulate the actual use of an application when we are
using dynamic analysis. Then apps’ energy consumption can be measured for
each use case, exploring at least one application functionality [11]. The creation
of use cases is a crucial step to allow the comparison between apps’ energy con-
sumption. They must be designed to ensure the reproducibility of results, i.e.,
the results must be similar in each run. If reproducibility is not guaranteed, we
need more tests for each use case to reduce the measurement uncertainty. The hu-
man interaction also causes the measurement uncertainty to increase, with delays
between interactions. So automating the test cases is more suitable to measure
energy consumption [11].

We can detect two approaches relating to the articles that propose app energy la-
bels. Some articles define the use cases oriented to app categories, allowing com-
paring apps inside the same category. In contrast, others design abstract test cases
that are only time-limited without a precise definition of the interaction with the
app. We will also make the distinction between automatized and human-made
tests.

Application-Oriented Use Cases

Nowadays, apps are very complex and have plenty of functionalities, increasing
the complexity of designing use cases. The developer must know the app’s func-
tionalities and objectives to define the use cases. Furthermore, app vendors need
to describe app functionalities clearly because developers can only rely on the
information they give.

Categorizing each app based on its functionalities and the main objective is nec-
essary. So, we must create general use cases to be executed on apps that provide
similar services. The general use cases allow energy consumption comparison.
For example, Wilke et al. [4] made an investigation using two e-mail client apps.
To test the energy consumption of these apps, they designed use cases that can
be applied to both apps: (1) browsing an e-mail account’s inbox and checking for
new e-mails and (2) reading an e-mail. Therefore, they can compare the function-
alities consumption of similar apps.

App Categorization is a complex process that depends on the developer’s per-
ception of the information given by the app vendor. The developer that designs
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the use cases must understand well the app operation. If he fully understands the
app’s operation, he may create a correct path for addressing the use case. Other-
wise, the path designed can be inefficient, which is unfair to the evaluated app,
i.e., be more extensive or time-consuming to reach the same objective, which is
unfair to the evaluated app.

The article [3] used this approach and avoided the difficulties by choosing a set
of 6 apps from the Dictionary category. They selected this category because it
has simple and constrained use case scenarios that can be investigated and car-
ried out in a fair amount of time, enabling them to produce precise estimations.
They designed use cases such as looking up, adding, and deleting words in a
dictionary. One limitation referred to by the author is the recognition of typical
use case scenarios in apps from other categories. Hence, developers must have
specific subject expertise.

Sophisticated apps can cause a more elaborate design process and more complex
use cases. Therefore, it is suggested by Wilke et al. [4] that app vendors must
submit energy consumption measurement tests alongside the mobile application.

Vulnerability 1: App vendors submit energy consumption measurement
tests along with the app.

We detect vulnerability 1 in the energy certificate proposed by Wilke et al.
[4]. This alternative suggests that app vendors should deploy the test cases
with the app. It uses more precise tests because app vendors know their
applications best. Besides, developers spend less time and resources on the
use case design and configuration. However, app vendors could exploit the
tests for better energy evaluation.
We have verified multiple times that vendors can exploit vulnerabilities
in benchmarks to obtain better performance ratings. The Dieselgate case
analyzed in Chapter 2 is one of many examples of app vendors gaming the
benchmarks. In conclusion, to apply this approach, we need to trust app
vendors, which can be unreliable.

Time-Limited Tests

Designing an app’s use case can be challenging for the developer. Sometimes
there is no clear information about the app’s functionalities and objectives. In
this situation, the developer can not create a specific use case for testing the app.
For example, games can have multiple modes and functionalities that can com-
promise app categorization. Hence, the solution is to test the app with human
intervention for a specific time. The apps could then be compared, considering
the energy consumption and the time used. This approach has been used in [1]
and other articles that performed energy measurement tests in apps.

This option does not guarantee the reproducibility of the results; the human in-
teraction is not precise, and delays can arise between each interaction. Therefore,
each test can have different outcomes, which originates uncertainty about the re-
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sults. And, without test automation, implementing the energy certificate in an
app store is demanding, so it has scalability problems.

Test Automation

The automation of tests allows reliability and reproducibility of results. There are
delays between User Interface (UI) interactions in a test manually conducted [11].
Besides, the number of tests can be higher because it does not implicate human
interaction with the device.

To automate the tests, developers must master the application workflow, and the
app can have multiple flow alternatives to achieve the same goal. Furthermore,
it is a callous process, and the testing team must know how the app operates.
To automatize tests, developers create scripts that interact with the app to mimic
human interaction (e.g., Click Button, Insert text). The scripts that allow the user
replication interaction are manually crafted, and each script must ensure the cor-
rect operation of the app [11]. The articles employed automatized tests [3, 4].

3.2.2 Background Service

As we already know, when we use an app, it consumes energy in its operation.
The Central Processing Unit (CPU) and other hardware components, such as
GPS, allow the user to operate the app. Despite not using an app, the app could
consume a lot of energy because of the background service. In some cases, the
app uses energy 24/7 while not in use [15]. Therefore, energy certificates must
consider this type of consumption in their measurements. If not, the energy cer-
tificate can mislead the user by omitting information that sometimes can be the
most impactful in an app’s consumption.

Most energy certifications proposed neglected background service consumption.
Only one referred to and measured this consumption [15]. In that certification, we
can verify that background service consumption can not be ignored and can sig-
nificantly impact overall consumption. The relation between background service
energy consumption between two similar apps has 75%, a meaningful difference
that impacts the app consumption. If the user only has the consumption informa-
tion of the app when it is in the foreground, he cannot make a pondered choice.

Vulnerability 2: The background service consumption is not regarded in
the energy certification mechanism.

Some apps have high background consumption, and these benefit when
this type of consumption is not taken into account in attributing energy cer-
tificates, which is unfair to the competition. Therefore, an app can consume
massive energy in the background and still have a good energy efficiency
rating. We better analyze this vulnerability and how it affects the energy
certificate robustness in Strategy 1.
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3.2.3 Helper Apps Consumption

Android applications can delegate services to other applications via so-called In-
tents. For example, in a mail client app, another application opens the attach-
ment, depending on the file type (e.g., an image or PDF viewer). Consequently,
the app that accesses the attachments determines how much energy this use sce-
nario consumes [4].

We identified a lack of transparency in energy certificates on how the use case
consumption should be measured when the App Under Test (AUT) needs to call
a helper app to complete the use case. The energy certificate description must
mention how to handle the situation where the AUT delegates services to other
apps. We can distinguish two gross approaches for this situation: ignore the
helper app energy consumption and include the helper app consumption in the
consumption of the AUT. In this Subsection, we analyzed the two approaches.

Ignore the Helper App Consumption:

This alternative considers only the AUT energy consumption in the energy cer-
tificate. The consumption information of any app besides the AUT is discarded
or not measured because that information will not be used in the energy rating
attribution. This approach has been applied in [4].

However, the energy label will not reflect the actual consumption of the use cases
tested because it is only considered a percentage of the total consumption of the
use case. Apps that use more helper apps benefit from this consumption mea-
surement method. Therefore, app vendors can start delegating their app’s ser-
vices to helper applications. These services’ consumption will no longer count
for AUT consumption, artificially decreasing the app’s consumption. For exam-
ple, developers can transfer some app services to the browser, and the app can
call the browser to perform the services.

Vulnerability 3: The helper app consumption is not regarded in the energy
certification mechanism.

Apps can delegate services to helper apps to complete a specific activity;
these apps benefit when the energy certificate does not consider the helper
app consumption. We better analyze this vulnerability and how it affects
the energy certificate robustness in Strategy 2.

Use All the Consumption Information, Including the Consumption of the Helper
Apps:

When an app needs to call a helper app to perform a particular service, the user
can choose which app will conduct the service. This approach does not discard
the consumption information from the helper apps; the test case consumption
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considers all helper apps involved. Moreover, the helper app can significantly
impact the total energy consumption of the test case.

It may not be possible to test with the default helper app because some devices’
brands have exclusive apps. For example, Samsung Galaxy devices running An-
droid 7.0 (Nougat) and higher use Samsung Notes1 as the default PDF reader.
However, devices that do not meet these requirements can not install this app
but may also have a default PDF reader. The devices’ default helper app may
have different consumption. Hence, testing with the default device application
may not give the user of another device brand reliable consumption information;
the user cannot ensure the conditions where the app has been tested.

Another alternative is to choose a helper app that can be installed on all devices.
The energy certification mechanism should define default apps to perform spe-
cific tasks; this way, users can better understand AUT consumption. Even though
they may not use the helper app used in the tests, they can install and use it to
obtain similar results. However, this approach can be unfair to the helper apps
not chosen as default for testing by the energy certificate.

3.2.4 Refactoring Approaches

In this Subsection, we present a certification mechanism Almasri et al. [1] and a
refactoring tool Gregório N. et al. [5] based on the refactoring approaches.

Almasri et al. [1] propose an EE ranking based on application refactoring. They
consider an app’s optimization level a good indicator of EE.

To optimize the app, are applied refactoring tools that allow us to track high-
consumption anti-patterns. They used the refactoring tools: EARMO proposed
by [38] and Leafactor [4] to detect high-consumption anti-patterns in the app. The
anti-patterns detected must be replaced with more efficient alternatives, so the
refactoring aims to improve the app’s efficiency. The correction of anti-patterns
detected is not automatic, so it is up to the developer to determine which refactor-
ing possibilities can be applied; this can be a problem because some refactorings
suggested by the tools do not go according to the app developer’s opinion [37].
After the refactoring, in theory, the optimized app consumes less energy.

The app’s energy consumption measurement tests consist of 30 minutes of con-
tinuous exhaustive usage of the app. It is not clear how the functionalities of each
app are approached, which can lead to a reproducibility problem. They measure
the app consumption using the energy profiler PowerTutor tool to collect all the
consumption data. This tool, unfortunately, is no longer available in the recent
Android versions.

The EE calculation presented in Figure 3.1 relates the actual energy consump-
tion and the refactored one. They used a data set of 20 apps for the tests, and
the results obtained after refactoring are auspicious. The energy consumption

1https://www.samsung.com/us/support/owners/app/samsung-notes (Last Access: Jul 8,
2023)
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improved in almost all the tests, proving that the original applications were not
optimized enough. The formula used to obtain the DR (Difference Rate), consid-
ered in the energy-efficiency rating, is DR = E1−E2

E1 , E1 is the app’s energy con-
sumption before refactoring, and E2 is the energy consumption of the app after
performing the refactoring. This formula relates the initial energy consumption
with the post-refactoring, showing how much the app improved with the opti-
mization. If the value is close to 0%, it means that the app was already remarkably
optimized, and the refactoring tools did not detect many power-hungry patterns
in the app. Therefore if the DR is more significant than 0%, it proves that the app
has optimization problems detected by the refactoring tools. Based on the DR
evaluation obtained, the app gets a Star rating associated; for example, with a DR
of 5%, the app receives four stars in the ranking, but with a DR of 26%, the app
only gets three stars. Hence, already optimized apps obtain the top positions in
the energy-efficiency ranking.

Figure 3.1: Energy certificate for apps proposed by Almasri et al. [1]

Moreover, Gregório N. et al. [5] developed a library of detectors that improves
the detection process, Energy-aware Android Patterns for Kadabra (E-APK), ex-
tended Kadabra. It can detect refactoring opportunities that can improve the
app’s efficiency. In addition, the tool can work directly with the Android Package
Kit (APK) in case we cannot access the app’s source code. It is a valuable attribute
because most app stores do not provide the app’s source code.

App Refactoring

Refactoring software involves altering the code’s structure without changing its
behavior, which software maintainers can use to reorganize a program [36]. Soft-
ware quality decays when developers make poor design choices or add new
functionalities, which may lead to the origin of anti-patterns. Developers should
avoid anti-patterns that cause battery drain, as documented [37]. Developers can
manually refactor the app or use some refactoring tool to assist with the process;
refactoring must be done carefully to ensure that the app continues to work as
expected on different devices and operating systems.
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The refactoring tools detect anti-patterns, so developers must decide which refac-
toring operations can be applied to the identified locations. This step is challeng-
ing because each anti-pattern can impact the software differently, changing the
software design. Hence, the refactoring tools’ suggestions should not be applied
in some cases.

Refactoring Tools

Tools can support developers in the refactoring process. Some tools can auto-
matically refactor applications after the developer agrees with the suggestions.
Tools that can directly analyze source code, such as IDE plugins, are desirable;
however, most app repositories do not provide the source code. Therefore, in
these cases, we must use tools that do not rely on the source code and can detect
energy-greedy patterns based on the app APK [3].

Some Android Studio plugins are EcoDroid [39], aDoctor [38], and Randroid [40]
detect energy-greedy patterns and can automatically refactor them. For Eclipse
IDE, we found Leafactor [41], which refactors the source code to follow a set of
patterns known to be energy efficient. The EARMO tool proposed by [37] can
detect energy-greedy patterns in the app code. It does not need the app’s source
code; it directly analyzes the APK. The tool suggests refactoring opportunities
that developers should evaluate. EARMO tool found that 68% of the refactorings
suggested were accepted and proved that the tool reduces the amount of energy
consumption.

Vulnerabilities and Limitations

In the following, we identify limitations and vulnerabilities in the certification
mechanism that uses refactoring tools. It is a heavy and time-consuming task for
the developers. Developers must define which code should be refactored because
some refactorings can impact the software design. In the documentation of the
EARMO tool, we can verify that the app developers accepted just 68% of the
refactoring recommendations. This way, apps will be tested with refactorings
that should not have been applied [37].

More problems are related to exaggerated confidence in refactoring tools. They
conclude that the app is fully optimized if no energy-greedy anti-patterns are de-
tected. It is not a trustable approach because there can be an inefficient app with
no anti-patterns detected by the tools. Hence, this rating system can evaluate an
app with the best evaluation despite the app’s high consumption. This approach
can only be viable if the anti-patterns detected by the tools are the only energetic
problems in an app. The refactoring is limited and must be used by the develop-
ers to improve their applications. However, in this rating, apps that do not have
any anti-patterns detectable are favored despite having a high consumption.
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Vulnerability 4: A refactored app is considered energy efficient.

Refactoring tools can improve the app’s performance and efficiency by de-
tecting refactoring opportunities. Still, they cannot ensure that all detec-
tions correspond to efficiency problems. Neither that all app issues were
detected. So, the tools may give an incorrect evaluation. We better ana-
lyze this vulnerability and how it affects the energy certificate robustness
in Strategy 3.

3.2.5 Path Analysis Approach

It is based on Static Analysis, which allows us to retrieve valuable information by
analyzing the app’s source code. In this Subsection, we present a tool based on
this approach, wcec-android, developed by Kelson D. et al., [6].

Wcec-android estimates an app’s consumption without needing a device to run
the app, which allows analyzing an app quickly and easily without having pro-
gramming knowledge or any app details. The energy consumption is estimated
based on a consumption model of a Device Under Test (DUT). The consumption
model contains the hardware components consumption, such as Wi-Fi and GPS.
Each device has its consumption model, which can be changed in the tool, allow-
ing testing of multiple devices.

Wcec-android traces all possible paths and builds a Control Flow Graph (CFG)
representing each possible path. The CFG contains all possible execution paths of
the program fundamental to performing the consumption analysis. Then, is cal-
culated the energetic cost of each path. Finally, to find the energy upper bound in
the CFG are applied equations that calculate the Worst-Case Energy Consump-
tion (WCEC).

Vulnerabilities and Limitations

As we can notice, the WCEC represents a linear flow in the graph, so two paths
cannot be followed simultaneously. Apps may have threads, which allow multi-
ple tasks to be performed concurrently. However, the tool can only follow one of
the paths. Therefore, the consumption of the paths not followed is not regarded
in the final evaluation.

Vulnerability 5: The evaluation mechanism cannot deal with threads.

The static strategy has a lot of potential. It can extract information from
a program’s source code without executing the app [34]. However, it has
problems with thread usage in apps, which is a great drawback. In Strat-
egy 4, we analyze this vulnerability and present a scenario developed to
validate their existence.
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3.3 Summary

In this Section, we fulfill two objectives. First, we satisfy the objective: Analy-
sis of energy certification for mobile applications, we analyzed five energy certifica-
tion mechanisms [1, 2, 3, 4] and three more tools that allow an energetic analysis
[5, 6, 7]. We have achieved our goal of Identify vulnerabilities in energy certifica-
tion mechanisms. During our evaluation, we discovered five vulnerabilities in the
mechanisms.

• Vulnerability 1: App vendors submit energy consumption measurement tests
along with the app. Suppose the app stores require app vendors to submit
consumption tests. Then, app vendors can easily submit adulterated tests
that permit the app to consume less energy. This vulnerability does not
affect static analysis approaches.

• Vulnerability 2: The background service consumption is not regarded in the en-
ergy certification mechanism. Some apps consume energy while inactive, so if
the certification process does not consider this type of consumption, these
apps may benefit. This vulnerability was explored in Strategy 1, in Section
4.1.

• Vulnerability 3: The helper app consumption is not regarded in the energy certi-
fication mechanism. Explored in Strategy 2, on Section 4.2, where we develop
a scenario to validate the vulnerability veracity. The certification process
is unfair if it does not regard the helper app consumption. Helper apps
perform tasks demanded by the app under test (AUT) and can consume
substantial energy.

• Vulnerability 4: A refactored app is considered energy efficient. Refactoring
tools detect optimization problems in the app. However, if the refactoring
tools do not detect any problem, it does not mean the app is fully optimized.
Because some problems may be undetectable, we analyzed this vulnerabil-
ity and designed a simulation in Strategy 3, in Section 4.3.

• Vulnerability 5: The evaluation mechanism cannot deal with threads. The tools
based on static analysis that analyze a program’s paths have the limitation
of cannot following two paths simultaneously, which prevents them from
dealing with threads. In Strategy 4, in Section 4.4, we present a better anal-
ysis of this vulnerability.

In the approach chapter, Chapter 4, we present our strategies to validate the exis-
tence of the vulnerabilities identified in this Chapter.
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Approach

The energy certification mechanisms must be reliable, enabling developers, providers,
and users to compare apps concerning their power consumption behavior. Other-
wise, developers can artificially explore their products to rank as high as possible.
In Chapter 3, we examined certifications for apps and explored their vulnerabil-
ities. This Chapter presents approaches to demonstrate how developers could
exploit those vulnerabilities.

In the following sections, we present strategies to simulate how developers could
exploit the vulnerabilities identified. The strategies describe how we approach
the susceptibilities, explain our decisions, and present our scenarios. We explore
the identified vulnerabilities: 2, 3, 4, and 5 to validate that developers can exploit
them. Vulnerability 1 is already well-defined and does not need more validation;
developers can manipulate energy consumption measurement tests submitted
with the application. Subsequently, in Chapter 5, we present the detailed experi-
mental setup of the experiments defined in the strategies. Finally, we exhibit the
experimental results in Chapter 6.

4.1 Strategy 1: The Background Service Consumption
Is Not Regarded in the Energy Certification Mech-
anism

This strategy wants to simulate how developers could exploit the vulnerability:
Vulnerability 2: The background service consumption is not regarded in the energy cer-
tification mechanism.

Most energy certification mechanisms for apps do not consider background ser-
vice consumption; only Wilke et al. [4] have considered this type of consump-
tion. Therefore, this strategy wants to emphasize the importance of background
service by exploiting the certifications [1, 2, 3] that did not account for the back-
ground service.
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4.1.1 Scenario

To create adversarial strategies, we design a scenario presented in Figure 4.1. We
compare the consumption of two similar apps with similar foreground consump-
tion. Although, one of the applications has a high background consumption com-
pared to the other. Therefore, the applications will receive an equivalent energetic
evaluation despite the different consumption for the same functionalities.

Figure 4.1: Scenario representing the implementation of background service, for
comparison of consumption with the original app.

In this experiment, app S1_A2 is originated by the modification of S1_A1. App
S1_A2 contains changes that cause the app to consume a lot of energy with the
background service. Then we can measure the consumption of both apps. We
estimate the app’s consumption while running with the same use cases and under
the same conditions to ensure reliability. Furthermore, we also tested the energy
consumption of the apps while not running.

Apps can consume battery while not used; for example, email client apps such
as Gmail1 and Microsoft Outlook2 that synchronize in background. We have dis-
covered two methods that cause the device’s battery to drain even when the app
is not in use.

• We can use Services3, an Android application component, to ensure that
the app does tasks after closing it. This approach keeps the app perform-
ing tasks despite not being in the foreground. The drawback of Services is

1https://play.google.com/store/apps/details?id=com.google.android.gm&hl=pt_PT&
gl=US (Last Access: Jul 8, 2023)

2https://www.microsoft.com/en-us/microsoft-365/outlook-mobile-for-android-and-
ios (Last Access: Jul 8, 2023)

3https://developer.android.com/guide/components/services (Last Access: Jul 8, 2023)
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that the app must inform the user that a service is running while they are
active. Therefore, the app must notify the user that the service is running;
the notification only persists until the service ends.

• Another approach is to create a WorkRequest4. Typically used to notify
users, it allows scheduling activities to perform at a specific time. This ap-
proach will enable us to schedule work even though the app is not running.

The most suitable approach is to create a WorkRequest, which fits more with our
experiment than Services. WorkRequest allows performing work without affect-
ing the user too much or changing the application’s structure. On the other hand,
the persistent notification caused by Services impacts the user interaction with
the app. We aim to select an approach that does not change app functionalities or
add new ones. Therefore, by notifying the user, Services adds new functionality
to the app.

We want the addition of background service not to affect the app’s operation
or functionalities. The background service must consume the device’s energy
without performing valuable work. It can be considered an inefficiency problem
that must be penalized by energy certifications.

4.2 Strategy 2: The Helper App Consumption Is Not
Regarded in the Energy Certification Mechanism

With this strategy, we aim to simulate how developers could exploit the vulnera-
bility: Vulnerability 3: The helper app consumption is not regarded in the energy certifi-
cation mechanism. Most energy certificates do not regard this vulnerability.

Energy certification mechanisms do not clarify how to approach cases where the
AUT needs to call another app, a helper app, to complete the use case test. Only
Wilke et al. [4] considered this and ignored the helper app consumption. The
helper app can do most of the work to complete some functionalities of the AUT.

Therefore, when energy certifications do not consider the helper apps’ consump-
tion, developers can start to delegate app functionalities to these apps. Then, the
measured consumption of an AUT will be a fraction of the actual consumption.

4.2.1 Scenario

As we can verify in the scenario represented in Figure 4.2, the app S2_A1 energy
consumption can be compared to app S2_A2 and the helper app (B). First, we
need to define app S2_A1. Then copy app S2_A1 to create app S2_A2, which must
be modified to delegate services to helper apps. For example, we can delegate
video broadcasting to the Browser; therefore, the Browser will perform app tasks

4https://developer.android.com/guide/background/persistent/getting-started/
define-work (Last Access: Jul 8, 2023)
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that do not count toward the AUT energy consumption. Finally, we can compare
the energy consumption of S2_A1 with S2_A2.

Figure 4.2: Scenario representing the implementation of helper app calls, for com-
parison of consumption with the original app.

4.3 Strategy 3: A Refactored App Is Considered En-
ergy Efficient

This strategy wants to simulate how developers could exploit the vulnerability:
Vulnerability 4: A refactored app is considered energy efficient. This vulnerability is
directed at using refactoring tools in the certification process. We explored a cer-
tification mechanism by Almasri et al. [1] and an evaluation tool, Kadabra, by
Gregório N. et al. [5].

Refactoring tools detect anti-patterns and suggest optimizations to the developer,
and they can be handy in enhancing app efficiency. These tools typically output
the type and location of the problems detected. Therefore, they may be able to
perform an energetic evaluation by returning the number of issues, and then, the
apps are evaluated based on that output.

4.3.1 Scenario

We designed a scenario represented in Figure 4.3 that demonstrates that the refac-
toring tools can attribute a good EE evaluation to an app that is not optimized.
First, we select the code that produces a high energy consumption, and the refac-
toring tools cannot detect it. This code is responsible for the app’s consumption
increase. Then, we created S3_A2, a copy of app A0, where we implemented the
code selected. Finally, we can compare the energy consumption of A0 and S3_A2.

The consumption of S3_A2 is expected to be greater than A0 despite having the
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same detectable issues. Therefore, with entirely different consumption, both apps
get the same evaluation.

Figure 4.3: Scenario representing the implementation of high consumption code
in S3_A2 for comparing with the original app A0 consumption.

The following presents how we approach Almasri et al., [1] Approach.

Almasri Approach: A0 and S3_A2 apps have the same number of refactoring
opportunities detectable by refactoring tools. Hence, both apps receive the same
EE according to the energy certification shown in Figure 3.1 despite the different
energy consumption of the apps. They performed the apps’ refactoring using the
EARMO. The EARMO tool suggests refactoring opportunities that the developer
can manually apply [37]. To ensure the reliability of this experimental scenario,
we must perform the refactoring using the tool.

Concluding, we perform the refactorings presented in the scenario with the tools
referred to in this Section. EARMO, used by Almasri and Kadabra, used by Nel-
son Gregório. In Chapter 5, we present the setup of this experimental environ-
ment.

4.4 Strategy 4: The Evaluation Mechanism Cannot Deal
With Threads

This strategy wants to simulate how developers could exploit the vulnerability:
Vulnerability 5: The evaluation mechanism cannot deal with threads. This problem was
detected in the wcec-android tool developed by Kelson D. et al. [6].

Wcec-android is based on a static approach, which allows estimating the con-
sumption without running the app. We already explained how the tool works in
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Subsection 3.2.5, where we understood that this approach has great potential.

We noticed that the tool does not account for simultaneous paths when building
the CFG that threads can originate. However, threads are familiar in apps, so it
is a limiting factor that the static strategy has not yet overcome. Therefore, apps
with multiple threads may have a different consumption estimation because the
tool will only consider the consumption of one of the running threads. The tool
may only be used in apps without threads, but it is a substantial limiting factor.

4.4.1 Scenario

Understanding that the tool cannot deal with multiple threads running simul-
taneously, we can exploit that limitation. Hence, according to the tool, an app
with two or more threads will consume the same energy. In this strategy, we
developed a scenario that helps us simulate how threads can impact the energy
consumption of an app. To make a fair comparison, we create two versions of the
same app: one with one thread (S4_A1) and another with two threads (S4_A2)
performing the same work.

Figure 4.4 displays the test scenario of this strategy. We modify the original ver-
sion of the app (A0), creating two modified versions of A0: the S4_A1 and S4_A2
versions. Then we measure the consumption of both versions to analyze further.
We also collect the output from wcec-android and verify if our supposition is
correct.

To verify the existence of the limitation, the consumption of S4_A2 must be higher
than S4_A1, and the output from the wcec-android for both tools must be similar.

Figure 4.4: Scenario representing the implementation of high consumption code
for comparison of consumption with the original app.
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4.5 Summary

In this Chapter, we designed four strategies to simulate how developers could
exploit the vulnerabilities identified in Chapter 3, which allowed us to complete
one more objective: Design scenarios that simulate how app developers can exploit the
vulnerabilities to obtain a better evaluation than they should in the energy certification
mechanisms. Each strategy contains a scenario that helped us defeat the evaluation
tools. The strategies explored are:

• Strategy 1: The Background Service Consumption Is Not Regarded in the Energy
Certification Mechanism explores Vulnerability 2. In Section 4.1, we demon-
strated that using the PeriodicTaskWorker class, the app can consume the
device’s battery when it is not in use. Then, we can collect the energy con-
sumption used when the app is in the background.

• Strategy 2: The Helper App Consumption Is Not Regarded in the Energy Certifi-
cation Mechanism explores Vulnerability 3. Some energy certification mech-
anisms do not consider the consumption of helper apps. Our Strategy, pre-
sented in 4.2, permits us to compare the energy consumption of an app
that reproduces a video embedded with an app that redirects the user to a
YouTube video, reproducing the same video. YouTube acts as a helper app.
Then, we collect the consumption of both apps and the helper app.

• Strategy 3: A Refactored App Is Considered Energy Efficient. explores Vulnera-
bility 4. Refactoring tools may not detect all energetic problems in an app.
Therefore, we aim to compare the consumption of two apps with the same
refactoring problems detected despite one having undetectable problems.
In Section 4.3, we present our approach, which allows us to compare the
consumption of the two apps and collect the evaluation data using refactor-
ing tools.

• Strategy 4: The Evaluation Mechanism Cannot Deal With Threads. explores
Vulnerability 5. Tools that find the WCEC using static analysis interpret
the app’s source code and trace all possible execution paths. These paths
can only flow in one direction; therefore, the tool may not give the correct
evaluation if some app has threads. In Section 4.4, we present a scenario
that allows the validation of our statement by comparing two similar apps,
one with one additional thread and the other with two additional threads.
Then, we collect the consumption of both apps using an energy measure-
ment method and perform the evaluation using a WCEC tool.

We remember Vulnerability 1: App vendors submit energy consumption measure-
ment tests along with the app. App vendors can easily submit adulterated tests that
permit the app to consume less energy. This vulnerability does not need further
validation; therefore, we did not build a test environment.

In the next chapter, Chapter 5, we present the experimental setup necessary to re-
produce our experiments defined in the strategies. Chapter 6 presents the results
and discussion of our experiences.
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Experimental Setup

This Chapter explains how readers can replicate the experiences. We collected
a set of apps of different categories from F-Droid1. This well-known app store
provides the source code of the apps published. We choose one app from six
meaningful categories. The apps chosen are displayed in Table 5.1, with all their
essential information. The complete apps’ information is presented in Appen-
dices on Table A.1. We developed the app Challenge 1, where we made the first
modifications and tests. All apps were modified accordingly with each strategy
and used in the experiments. However, in Strategy 2, we use an app specially
created for the experiments.

App Number App Name Source Category
1 Challenge1 Own App No category
2 Fast N Fitness F-Droid Sports & Health
3 BTC Map F-Droid Money
4 Vector Pinball F-Droid Games
5 ArityCalc F-Droid Science & Education
6 omWeather F-Droid Internet
7 Qwotable F-Droid Reading

Table 5.1: Information about the apps used in the experiences.

For each app, we developed a specific test case that represents the typical use of
the app. The typical use of the app depends on the app category and function-
alities. The tests were done with the saving mode off, and the battery capacity
above 80% in an Android device used in the experiments was a Samsung Galaxy
A22 5G with 4GB of RAM and a battery capacity of 5000 mAh, running on An-
droid 13. Table 5.2 presents other important information about the device. The
experimental results obtained in Chapter 6 are relative to this device. Therefore,
we cannot guarantee that similar results will be achieved with other devices.

To handle and build the apps, we used Android Studio IDE, the Electric Eel |
2022.1.1 version, where we could change the app IDs to allow multiple versions
of the same app on the device. Each version is modified to reach the goals of

1https://f-droid.org/en/packages/ (Last Access: Jul 8, 2023)
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Component Specification
Name Samsung Galaxy A22 5G
Launch June 2021
Screen TFT LCD, 90Hz

6.6 inches
1080 x 2400 pixels

Storage / Memory 64Gb / 4Gb RAM
OS Android 13, One UI core 5
CPU Octa-core (2x2.2 GHz Cortex-A76

& 6x2.0 GHz Cortex-A55)
GPU Mali-G57 MC2
Chipset Mediatek MT6833 Dimensity 700 (7 nm)
Battery Capacity 5000 mAh

Table 5.2: Specifications of the smartphone used in the experiments.

a specific strategy. We choose Android Studio IDE because it is amply used for
Android development.

We compare two app versions in the strategies to acknowledge the consump-
tion differences in the exact scenarios. We used BatteryStats2 to measure energy
consumption, providing critical information about the app’s operation. It was al-
ready presented in Section 2.1. This tool is the most appropriate for our situation.
We collected multiple pieces of information in each run, such as foreground and
background time, CPU time, consumption in the foreground and background,
consumption of the cache, consumption of the screen, and total consumption.
We exclude screen consumption in our experiments because it cannot be fully
controlled despite representing much of the app consumption.

To increase energy consumption, we focus on increasing the CPU usage of the
app. Other methods were considered, like using high-consumption hardware
components of the device such as WIFI and GPS; however, with these approaches,
we need to add app’ permissions that are not in our interest. Therefore, to in-
crease CPU usage, we implemented a thread that constantly performs work to
increase CPU usage. However, the work to be done by the thread is indiffer-
ent because it will be running indefinitely, causing high consumption regardless.
Therefore, we use an array sorting algorithm to increase the CPU usage in Strate-
gies 1, 3, and 4, the Bubble Sort 3. BubbleSort is known to be one of the most
time-consuming sorting algorithms, to sort a vector.

Each app has been tested a minimum of 15 times on the same device and under
the same circumstances to reduce data uncertainty. All other apps were closed,
and all unnecessary hardware components were disabled, such as GPS and WI-
FI.

We created a GitLab repository 4 that contains all the code necessary for the ex-

2https://developer.android.com/topic/performance/power/setup-battery-historian
(Last Access: Jul 8, 2023)

3https://www.geeksforgeeks.org/bubble-sort/ (Last Access: Jul 8, 2023)
4https://gitlab.com/Ramalho2000/daniel-ramalho-dissertation (Last Access: Jul 8,
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periments; it also includes a ready-to-use example app from each Strategy.

5.1 Strategy 1

As previously discussed, we aim to prove that energy certification mechanisms
must consider background energy consumption. Therefore, we developed a way
of allowing the app to consume energy while not in use. However, the app
must not consume more in the foreground. We already decided that WorkRe-
quest5 is the best method where we can schedule the work to only begin when
the app is closed and stop when the app is open again. We used the class Peri-
odicWorkRequest extended from WorkRequest, which allows the scheduling of
periodic tasks. The work selected that consumes much energy is the BubbleSort.

To implement our approach, we start by placing the demanded dependencies,
presented in Listing 5.1. Without this dependency, we cannot create a WorkRe-
quest.

1 dependencies {
2 // https: // developer.android.com/jetpack/androidx/releases/work#groovy
3 def work_version = "2.7.0"
4 implementation "androidx.work:work -runtime:$work_version"
5 }

Listing 5.1: Strategy 1 dependencies

In our GitLab repository, we present the code required for creating the class
MyPeriodicTaskWorker, which extends the Worker class. This class performs work
synchronously on a background thread 6. In the overridden method doWork() of
the Worker class has placed the code that we want to be executed synchronously
in the background.

We verify if the maximum time of background time has been exceeded and if the
app is not running. If these conditions are met, the device starts to perform the
work continuously. On the other hand, if the background time has been exceeded,
all Workers are canceled, and the background tasks end.

Finally, in the app’s MainActivity, we need to schedule tasks for our MyPeriodic
TaskWorker class. But first, we validate if the app is not running. The method
InitBackgroundTasks(), called by the MainActivity, starts the background ac-
tivity. For the sake of the experiment, we defined a maximum background time;
otherwise, the apps will drain the battery indefinitely. Then, we create a Period-
icWorkRequest and enqueue it in the WorkManager.

Testing Method As to the consumption collection method of the applications,
the apps were tested for 30 minutes. We measured the app consumption all at

2023)
5https://developer.android.com/guide/background/persistent/getting-started/

define-work (Last Access: Jul 8, 2023)
6https://developer.android.com/reference/androidx/work/Worker (Last Access: Jul 8,

2023)
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once since there were many tests to be done, and each one took a lot of time.
Therefore, the consumption collected would not be the actual consumption of
the app if it were running without the interference of the other apps. However,
the experimental setup defined is enough to validate our strategy. We tested app
number 1 of Table 5.1, Challenge1, isolated and collected the consumption data
acting as a control version. Based on the consumption of the control version, we
can deduce that the other apps must have a similar consumption when running
isolated.

5.2 Strategy 2

In strategy 2, we aim to prove that energy certification mechanisms must regard
the consumption of helper apps. Therefore, we developed an app that displays a
video and another similar to the first one that redirects the user to a video player
app. The video the apps show is the same to ensure a fair comparison.

To test the app’s consumption, we open the app and wait for 10 seconds before
pressing the button to start the video. Then, we wait until the video ends, which
lasts exactly 1 minute. Therefore, the total test time is 70 seconds, of which 60
seconds is video reproducing. Finally, we collect the consumption information of
both apps and the consumption of YouTube used by the second app.

Figures 5.1 and 5.2 present the flow of the app used in the experiment. In the
first Figure, the app shown is app S2_A1, which reproduces an embedded video.
Users, after pressing the button WATCH VIDEO, a YouTube player appears and
displays a video. In the second Figure, the app shown is app S2_A2, which redi-
rects the user to a video on YouTube after pressing the same button as the first
app.

In the following subsections, we present an overview of the code used, and our
GitLab repository presents the complete code.

5.2.1 App S2_A1 Setup

To display a video in the app, we used android-youtube-player7, a stable YouTube
player for Android that can be customized to our needs. This library could incor-
porate a YouTube video player in our app. The library simplifies the Google rec-
ommendation of inserting the IFrame Player API inside a WebView. It is reliable
and is used by more than 5 thousand apps.

To implement the library, first, we need to add the dependency presented in List-
ing 5.2. The dependency is added in build.gradle file on the project level. Without
adding this dependency, we cannot use the library methods.

1 dependencies {
2 / / d ependency f o r youtube − p l a y e r

7https://github.com/PierfrancescoSoffritti/android-youtube-player (Last Access:
Jul 8, 2023)
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Figure 5.1: Example of the app that reproduces a YouTube video (S2_A1)

Figure 5.2: Example of the app that redirects to a YouTube video (S2_A2)

3 / / URL: h t t p s : / / g i t h u b . com / P i e r f r a n c e s c o S o f f r i t t i / andro id −youtube − p l a y e r
4 implementation ’com . p i e r f r a n c e s c o s o f f r i t t i . androidyoutubeplayer : core : 1 2 . 0 . 0 ’
5 }

Listing 5.2: android-youtube-player dependency in S2_A1 app of Strategy 2.
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Secondly, we create a new Fragment that contains all the necessary code to re-
produce the video in the app. Moreover, we must define the video player layout
fragment_video_player in the layouts directory. This layout creates an YouTube
PlayerView centred on the screen.

Then, in the Fragment, we can change the videoId as we like, it can be obtained
from the YouTube video URL. The Id is shown in the URL after the watch?v=
keyword; for example: in https://www.youtube.com/watch?v=YLslsZuEaNE URL,
the videoId is YLslsZuEaNE. Eventually, the Fragment loads the YouTube video
chosen into the YouTubePlayerView defined in the layout.

Finally, we must create an instance of the Fragment videoPlayerFragment and
display it to the user as presented in the MainActivity. We implemented a onClick
Listener, which requires a button watchButton to function. The listener handles
the click, replacing the present content with the Fragment content.

5.2.2 App S2_A2 Setup

In the second app, to redirect the user to the video player, we used Intent8 with
the action: ACTION\_VIEW, which allows the user to be redirected to another page
with a click of a button. We redirect the user to YouTube, where the video is
reproduced.

In Listing 5.3, we present the code necessary to replicate our experiment. The
String url can be changed as we want; it identifies the URL to where the user
will be redirected. To implement this, we must create a button named watchButton,
and the listener presented handles the click. Then, when the user clicks the but-
ton, he is redirected to the URL defined. And the user can return to the app by
pressing the back button on the device.

1 watchButton.setOnClickListener(v -> {
2 //Place the URL of the YouTube video
3 String url = "https ://www.youtube.com/watch?v=YLslsZuEaNE";
4 Intent i = new Intent(Intent.ACTION_VIEW );
5 i.setData(Uri.parse(url));
6 startActivity(i);
7 });

Listing 5.3: Code necessary for the app S2_A2 of Strategy 2.

5.3 Strategy 3 and 4

Strategies 3 and 4 have similar setups; therefore, they can be explained in the
same section. We used threads implementing the class Thread in Java in both
strategies. The only setup difference is that in Strategy 4, two threads are created
to perform the task, and in Strategy 3, only one instead. We form arrays with

8https://developer.android.com/guide/components/intents-common(Last Access: Jul 8,
2023)
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random numbers, and then the threads order them indefinitely using the Bub-
bleSort, consuming much energy. The complete code to which we refer below is
presented in our GitLab repository.

In the MainActivity, to allow continuous CPU usage, we need to apply some
modifications. First, we need to add the method bubbleSort(), already explained.
Secondly, we add our own created class OrderArrayThread, which extends the
Thread class. Inside the class is placed an infinite loop continuously calling
the bubbleSort() method. Finally, in the onCreate() method, where usually
is placed the initialization code, we created an instance of OrderArrayThread
named t1. Then, we can begin the execution of the thread using the start()
method, which allows two threads to run concurrently.

As we already discussed, strategies 3 and 4 setup is very similar. The difference
is in the code placed on onCreate() method. In this method, two threads must
be created instead of one. To reach that, we must create a thread t2 instance of
OrderArrayThread and call the start() method as we did previously.

All apps here tested for a timestamp of 1 minute to allow a meaningful com-
parison between them, despite not being our primary purpose because the apps
are from different categories. We consider this timestamp suitable for bringing
meaningful data.

5.3.1 EARMO and Kadabra Setup

In Strategy 3, we must set up EARMO and Kadabra tools. Both tools are capable
of analyzing apps and outputting their evaluations. The evaluation is the number
of energy greedy patterns identified.

EARMO Setup To use EARMO, we need to execute a jar file that analyzes the
app Android Package Kit (APK) or source files. Before that, files unrelated to the
app code, such as Google dependencies, must be deleted otherwise, the program
will fail. We used the default properties of the tool.

Kadabra Setup In the Kadabra case, the tool automatically removes these files,
therefore, we can provide the APK to the tool without any changes. Again, is
executed a jar file that examines the app. The tool uses the app’s package name
in the analysis process. This gave us some problems because our test apps do
not have their actual package name, we had to change it to allow the existence of
multiple app versions. This is easily corrected by saving the APK with its original
package name.
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5.3.2 wcec-android Setup

In Strategy 4, we used wcec-android 9 to collect the consumption estimation of the
tool. The tool has been developed to be used in a Linux environment, therefore,
we used Ubuntu terminal 10 for Windows. We installed all the dependencies
needed in the Linux subsystem to execute the tool. Finally, wcec-android outputs
the consumption estimation value.

5.4 Summary

We presented the experimental setup necessary to reproduce our experiments,
including the eight apps and the device used. We deliver all the required code to
be implemented in the apps to reach the objectives of the strategies. The experi-
mental results may vary based on the device used; for example, they can change
depending on the OS and CPU versions. Therefore, we cannot ensure that our
results relate to all devices. We offer a GitLab repository 11 where all the code is
delivered in conjunction with app Challenge1, app number 1 of Table 5.1, which
have the code implemented.

In this Chapter, we reached one of our objectives: Setup of the experimental environ-
ment, presented in Section 1.1. In the next Chapter, we give the results obtained
from the strategies and complete our last objective to support our RQ.

9https://github.com/DelcioKelson/wcec-android (Last Access: Jul 8, 2023)
10https://ubuntu.com/wsl (Last Access: Jul 8, 2023)
11https://gitlab.com/Ramalho2000/daniel-ramalho-dissertation (Last Access: Jul 8,

2023)
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Experimental Results and Discussion

We present and analyze the results obtained in the experimental scenarios. The
setup of each experiment was defined in Chapter 5. The following four sections
contain the strategies results. The power consumption data was collected using
Batterystats, and each app has tested at least 15 times. With the data collected,
we aim to validate the existence of the vulnerabilities explored in the strategies.

In Figure 6.1, we present the consumption data of the original apps used in the ex-
periments. The figure allows us to observe the data distribution. The maximum
standard deviation is 0.07932 clearly achieved by the BTC MAP app, which indi-
cates that the data is not too scattered. The app BTC Map permits users to navi-
gate the map and discover interest points in every corner of the world. Moreover,
the consumption data of each app follows a normal distribution.

Figure 6.1: Box plot of the original apps energy consumption

The apps have different CPU usage because they belong to distinct categories al-
lowing multiple functionalities. For example, app number three, BTC Map, per-
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mits users to navigate the map and discover interest points in every corner of the
world. Which consumes many device resources causing a significant consump-
tion in the original version. On the other hand, for example, app two, named
Fast N Fitness, is a straightforward app with low functionalities hence its low
consumption. In the same way, it affects the consumption distribution. The more
complex apps have a more significant standard deviation.

6.1 Strategy 1

In this experiment, we compared the background consumption of the original
app (A0) and a modified version that consumes energy in the background (S1_A2).
A0 consumption in the background was null. Therefore, Figure 6.2 shows only
the S1_A2 consumption. The original app versions did not consume any energy
in the background. However, version S1_A2 of each app consumed a consider-
able amount of energy. As discussed in Section 5.1, the app consumption pre-
sented in the table is obtained with the apps running simultaneously, impacting
the actual apps’ consumption.

The Control Version has been created to deduct the consumption in the back-
ground of the other apps. Therefore, we deduct that the other apps running iso-
lated must have a similar consumption to the Control Version, approximately
32.8926 mAh.

As expected, we got some outliers provoked thanks to the lack of control of the
background usage in a device. The execution of background tasks might be de-
layed because WorkManager is affected by the operative system 1. The Control
version’s mean is 32.8926 mAh, and the standard deviation is 2.9490. The maxi-
mum standard deviation among the other apps’ is 1.8414.

The static analysis tools, Kadabra and EARMO, used in [5, 1], and wcec-android
used in [6] gave the same output to A0 and S1_A2. Therefore, the static analysis
did not detect the modifications inserted that allowed the app to consume in the
background.

1https://developer.android.com/reference/androidx/work/PeriodicWorkRequest (Last
Access: Jul 8, 2023)
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Figure 6.2: Box plot of the background service energy consumption obtained in
Strategy 1

The energy certification mechanisms must consider this type of consumption be-
cause it can relate to a high part of an app’s consumption; an app can drain the
battery 24/7 despite not running. For example: considering the consumption
of our Control Version, 32.8926 mAh for 30 minutes in the background, and the
battery capacity of the device used, which is 5000 mAh, we can expect to be con-
sumed 1.32% of the battery each hour.

Suppose the energy certificate mechanism does not consider the background en-
ergy. In that case, it will give the same evaluation to both app versions, A0 and
S1_A2, persuading the consumer to believe that the apps have similar consump-
tion. However, as we verified, A0 consumes no energy in the background, and
S1_A2 consumes much. From an app vendor’s point of view, he knows that the
app can consume as much as we want in the background without affecting the
energetic evaluation, which may harm the app market. Unfortunately, only one
certification mechanism analyzed considered this type of consumption Wilke et
al. [4]. The other evaluation technique’s [1, 2, 3, 5, 6] gave the same evaluation to
apps with and without background consumption.

6.2 Strategy 2

As presented in Section 5.2, we aim to compare the consumption of an app that
reproduces a YouTube video embedded (S2_A1) with an app that redirects the
user to YouTube (S2_A2); we consider YouTube (S2_B) as a helper app. In this
Section, we present the strategy’s experimental results.
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As we can verify in Figure 6.3, we collected the energy consumption of the orig-
inal app (S2_A1), the modified version (S2_A2), and the helper app (S2_B). We
stacked consumption values of S2_A2 plus B to agile the comparison with the
original app.

S2_A1 and S2_A2 are similar and allow equivalent functionality. Therefore, it is
expected that both apps have identical consumption. However, the consumption
of S2_A2, the app that redirected the user to YouTube, was shallow compared to
S2_A1. We registered a mean consumption of 1.0780 mAh and a standard devia-
tion of 0.05635 to S2_A1. To S2_A2, the mean consumption is 0.0261 mAh, and the
standard deviation is 0.0031. It is a considerable difference. The consumption of
the second app can be virtually discarded because the helper app is responsible
for most of it in the test case, with a consumption of 1.1547 mAh and a standard
deviation of 0.0424.

Figure 6.3: S2_A1, S2_A2 and S2_B energy consumption

In Figure 6.4, we can analyze the data distribution. Additionally, the consump-
tion data collected from each app version follows a normal distribution and has
low variance.

The agglomerated consumption of S2_A2 and S2_B is similar to that of S2_A1.
Hence, it is appropriate to add the consumption of the helper app to achieve the
actual energy used to complete the task. If we leave aside the S2_B consumption,
the app S2_A2 benefits from the evaluation method.

f the apps were tested using a method that discards the helper apps’ consump-
tion, the app vendors might start developing their apps to delegate more services
to other apps. Given the strategy presented, it may represent a real case. The de-
velopers modify one app that allows video playback originating app S_A2 that
redirects the user to the video playback. This way, the app would receive an in-
flated rating because, as we have seen, the S_A2 consumption was superficial.
As discussed in Section 4.2, only Wilke et al. [4] addressed this situation. The
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Figure 6.4: Box plot of S2_A1, S2_A2 and S2_B energy consumption

certification mechanisms [1, 2, 3] did not consider these circumstances.

6.3 Strategy 3

Figure 6.5 presents the Batterystats results, where we can interpret that the app’s
modifications increased their consumption. In this Strategy, we compare the con-
sumption of the original app (A0) with a modified version (S3_A2). The con-
sumption growth was provoked by the increased CPU usage thanks to the thread
inserted that continually performs a specific activity. We observed a consumption
gain similar in all app modifications; an average increase of 1.9532 mAh and a
standard deviation of 0.0860.

The apps have different consumption because of their complexity and function-
alities. Figure 6.6 presents the distribution of the app version consumption. The
consumption data collected from each app version follow a normal distribution,
with low dispersion being 0.3016 the maximum standard deviation. This devia-
tion corresponds to the BTC MAP app. One possible cause is the app’s different
hardware consumption to render other map parts.

Table 6.1 shows each app version’s Kadabra and EARMO tools results. As we
can verify, the number of refactoring opportunities detected by each tool did not
change when we modified the apps. Hence, the tools did not catch the modifi-
cations inserted in the original app leading to the same evaluation obtained by
the apps A0 and S3_A2. Therefore, if refactoring tools are used in an energy cer-
tification mechanism, apps with different performances could receive the same
energetic grade.

With this experiment, we understand that the refactoring tools may not detect
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Figure 6.5: Energy consumption comparison between app’s version A0 and
S3_A2

Figure 6.6: Box plot of the S3_A2 energy consumption

App Name Kadabra EARMO
S3_A1 S3_A2 S3_A1 S3_A2

Challenge1 0 0 0 0
Fast N Fitness 51 51 72 72
BTC Map 0 0 390 390
Vector Pinball 5 5 367 367
ArityCalc 0 0 220 220
omWeather 10 10 647 647
Qwotable 0 0 656 656

Table 6.1: Kadabra and EARMO results
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some energetic problems, which can deceive the customer into thinking that the
app is fully optimized. Because the tools gave the same evaluation to apps with
much different consumption, Some of the undetectable energetic problems may
drain the battery severely. Therefore, the refactoring approach may not be ade-
quate for app energy certifications.

However, refactoring tools can quickly analyze an app, which is useful when
dealing with many apps. They can examine the app’s code without running it.
The testing team does not need programming knowledge since the tools handle
all the work. There are a lot of advantages, but if the refactoring tools cannot
detect some energetic problems, they may give dishonest evaluations.

Despite the apps developed not being optimized and still getting a good grade in
the evaluation mechanisms that use refactoring tools. Developers will recognize
that refactoring tools do not detect all energetic problems. So, they may develop
their apps to exploit those gaps, using inefficient code alternatives that are not
detectable to the tools. The evaluation mechanisms [5, 1] used refactoring tools.
So, they attributed the same evaluation to apps with much different consumption.

6.4 Strategy 4

In Figure 6.7, we can verify that the app consumption, measured with the Bat-
terystats tools, increased when we inserted the new thread. The blue column
represents the app version that contains one thread (S4_A1), and the orange col-
umn the two-thread version (S4_A2). Adding a new thread had a similar impact
in all apps, with an average increase of 1.8210 mAh and a standard deviation of
0.0593.

To complement our data analysis, Figure 6.8 presents the data distribution of
S4_A1 versions energy consumption. The data collected from each app version
follows a normal distribution, and the maximum standard deviation is 0.2325,
meaning the dispersion is low.

In Table 6.2, we can see the results obtained with the wcec-android tool. The
figure shows that the wcec-android outputs a similar consumption estimation for
each app version, S4_A1, and S4_A2. The percentage change has been calculated
using the formula: C = S4_A1−S4_A2

S4_A1 , with which we obtain values close to 0.0%.
Hence, the tool gave the same evaluation to app versions with much different
consumption, as we verified in Figure 6.7.

We tested the apps using other static analysis methods, the refactoring tools Kadabra
and EARMO, used in [5, 1]. Neither of the methods attributed a different eval-
uation to S4_A1 and S4_A2. We can conclude that the refactoring tools did not
report the new thread presence. However, in this Strategy, we focused on the
wcec-android tool.

The tool tested, wcec-android, cannot handle thread usage, a significant limi-
tation because many apps use threads nowadays. Similar static analysis ap-
proaches may not yet be prepared for app energy certification mechanisms, but
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Figure 6.7: Energy consumption comparison between app’s version S4_A1 and
S4_A2

Figure 6.8: Box plot of the S4_A2 energy consumption

we need more analysis to validate this hypothesis. However, if the Worst-Case
Energy Consumption (WCEC) approach could overcome the thread limitations,
they may be implemented in app stores. Some of the tools’ advantages are the
testing speed and the testing team not needing app’ or programming knowledge.
Moreover, the tool can be applied easily in a large set of applications, which is
crucial when dealing with millions of apps.

Knowing that the tool does not handle threads well, developers may start im-
plementing more threads in their apps, which can increase the performance and
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App Name S4_A1 S4_A2 Percentage
Change

Challenge1 2378.8181 2383.2508 0.2%
Fast N Fitness 2197200.5469 2197200.5469 0.0%
BTC Map 22.7803 22.7803 0.0%
Vector Pinball 1042350.0097 1042350.0097 0.0%
ArityCalc 40667.4708 40667.4708 0.0%
omWeather 3.0092 3.0092 0.0%
Qwotable 7566298.5922 7566298.5922 0.0%

Table 6.2: wcec-android results

functionalities of the app without downgrading in the energetic evaluation. The
evaluation mechanism Kelson D. et al. [6] is susceptible to this practice. Other
evaluation methods based on static analysis are also vulnerable, such as [1, 5].

6.5 Summary

We validate that energy certification mechanisms for apps have susceptibilities
that developers can exploit. The problems were detected in the evaluation tech-
niques [1, 2, 4, 3, 5, 6, 7]. We acknowledge five vulnerabilities raised in Section
3.2:

• Vulnerability 1: App vendors submit energy consumption measurement
tests along with the app.

• Vulnerability 2: The background service consumption is not regarded in
the energy certification mechanism.

• Vulnerability 3: The helper app consumption is not regarded in the energy
certification mechanism.

• Vulnerability 4: A refactored app is considered energy efficient.

• Vulnerability 5: The evaluation mechanism cannot deal with threads.

Vulnerability 1 was already validated without the need to implement a strategy.
Developers can submit manipulated tests that make the app consume less energy
than it actually consumes. This vulnerability is presented in Wilke et al. [4].

The remaining vulnerabilities were analyzed in the following strategies:

• Strategy 1: In Section 6.1, we validated the existence of Vulnerability 2,
where we acknowledged that apps could consume much energy in the back-
ground. Our apps consumed 1.32% each hour without being used. There-
fore, the certification mechanism must address this type of consumption. If
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not, developers can develop their apps to consume as much as they like in
the background without being penalized. Only Wilke et al. [4] addressed
this situation.

• Strategy 2: In Section 6.2, we explored Vulnerability 3. We obtained conclu-
sive data that allows the validation of the vulnerability. The consumption
of the app that used the helper app to complete the functionality has su-
perficial compared to the app that performed the task completely. The app
reproducing the embedded video consumed 1.0780 mAh, and the other app
consumed 0.0261 mAh. So, developers can redesign their apps to delegate
services to others, improving their energetic evaluation. The helper apps
usage only was addressed by Wilke et al. [4].

• Strategy 3: The experimental results of this strategy, presented in Section
6.3, help validate the existence of Vulnerability 4. We noticed that refac-
toring tools did not detect the code inserted. Therefore, the tools gave the
same evaluation to apps with much different consumption. The apps have
a mean consumption difference of 1.9532 mAh, having the same energetic
evaluation. App vendors can discover other gaps in the evaluation given
by the refactoring tools, as we did, and exploit them. This problem was de-
tected in the approaches that used refactoring tools: Almasri et al. [1] and
Gregório N. et al. [5].

• Strategy 4: Section 6.4 presents the experimental results obtained explor-
ing Vulnerability 5. Tools that examine the app’s source code and trace all
possible paths have the limitation of not being able to follow two paths si-
multaneously. Therefore, apps with threads may have the same evaluation.
In our experiments, apps with a consumption difference of 1.8210 mAh may
have the same evaluation. Therefore, developers can add more threads to
their apps without affecting the apps’ energetic evaluation. This problem is
common to the static analysis used by [1, 5, 6]. But more prevalent in the
WCEC approach developed by Kelson D. et al. [6].

We completed our last objective: Implement and evaluate the proposed adversarial
strategies designed in the scenarios, presented in Section 1.1. We also answered our
RQ, suggesting multiple ways developers could exploit the certification mecha-
nisms.

52



Chapter 7

Work Plan

This Chapter reviews our work in the first and second semesters. Section 7.1
presents the summary of the work done in the first semester, and Section 7.2 the
tasks done in the second.

7.1 First Semester

We started the first semester by defining the project scope and the research ques-
tion RQ. Secondly, we researched and analyzed all the valuable information for
state-of-the-art. Then, we explore energy certificates proposed for apps and all
the necessary information to interpret them, such as the energy measurement
methods used to measure an app’s energy consumption.

After the research, we explored the energy certificates deeper to identify limita-
tions and vulnerabilities. Then through our strategies, we establish how devel-
opers could exploit the certifications to make an app rank higher than it should.

The Gantt chart illustrated in Figure 7.1 exhibits the work done in the first semester;
the work was divided into five main steps:

1. Definition of the research question(s) and project scope: In the first step,
we will define the main objectives of the work.

2. State-of-the-Art research: We review the literature on certificate vulnera-
bilities explored by manufacturers and write the State-of-the-Art.

3. Definition of the methodology and approach: We analyzed energy certifi-
cates for apps and identified their vulnerabilities and limitations.

4. Implementation of a proof-of-concept: We explored the vulnerabilities iden-
tified and illustrated how developers could develop their apps to rank higher
than they should.

5. Writing the intermediate report: Finally, after gathering all the information
from the previous steps, we write the intermediate report.
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Figure 7.1: Work done in the first semester by weeks

7.2 Second Semester

In the second semester, we started by analyzing the project Greenstamp propos-
als. Greenstamp aim is to develop a promising approach for classifying mobile
apps accordingly to their energy consumption profile. Then we redefined and
improved the first-semester strategies to include the Greenstamp methods.

We built the experimental setup and conducted the experiments. The approaches
are well-structured and can be reproduced. We presented essential details such
as the mobile device and the apps used.

Finally, we wrote and submitted an article to a Journal.

In Figure 7.2, we show the work performed in the second semester through a
Gantt chart; we divided the work into four main steps:

1. Analyze more energy certification mechanisms: We start the semester by
analyzing the Greenstamp methods and improving our approaches.

2. Setup of the experimental environment: We defined the experimental en-
vironment and created a repository that contains all the code necessary to
reproduce our experiments.

3. Implementation and evaluation of the proposed adversarial strategies:
We need to validate the existence of adversarial strategies. To that end, we
implemented the experimental setup and tested the apps according to our
definitions.

4. Writing and publishing an article: We wrote and submit an article.

5. Writing the final report: To conclude the work plan for the second semester,
we wrote the final report.
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Figure 7.2: Work done in the second semester by weeks

55





Chapter 8

Conclusion

Energy efficiency is an important consideration when developing mobile appli-
cations. However, app stores do not present any energy information about the
apps. Energy certification mechanisms for apps will allow users to make more
energy-friendly choices. They must be robust to guarantee each app has a fair
evaluation because developers may begin to design and develop their products
to rank as high as possible artificially. Determining and reporting the mecha-
nisms’ susceptibilities, we help the following certifications to be more robust.

With our research, we conclude that vendors develop their products to rank as
high as possible. We analysed four cases of vulnerability exploitation: the Disel-
gate case, where Volkswagen modified its vehicles to pass the emissions test de-
spite emitting an excessive amount of pollutants; the hiring of collusive groups
to positively rate a product in online marketplaces; the exploit of a journal impor-
tance indicator, the Impact Factor, by publishing review articles that tendentially
have more citations, among other techniques; the gap between the EU and Chi-
nese energy certifications for household appliances which completely different
evaluation techniques.

First, we established our work objectives and research question. We researched
real examples of techniques that influenced evaluations in a rating system. This
analysis provided us with the knowledge to identify vulnerabilities in certifica-
tions. We then examined proposed energy certification mechanisms for apps, un-
derstood their functioning, and identified potential weaknesses developers could
exploit.

We designed and implemented the experimental environments of our strategies.
Subsequently, we tested the apps modified according to each environment and
discussed the results obtained. We analysed the work developed by the project
Greenstamp, where we could detect issues. Then, construct our strategies con-
taining experimental scenarios to cover the new susceptibilities. Finally, we wrote
and submitted an article.

With the strategies, we validated the existence of the vulnerabilities: The back-
ground service consumption is not regarded in the energy certification mecha-
nism, The helper app consumption is not regarded in the energy certification
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mechanism, A refactored app is considered energy efficient and The evaluation
mechanism cannot deal with threads. The experiences performed in each sce-
nario were conclusive. For example, the refactoring tools gave the same evalu-
ation to two apps with a consumption difference of 1.9532 mAh in a 1-minute
test. We have observed that there are ways in which developers manipulate cer-
tifications. And if the certifications overcome the issues detected, the developers
will discover new ways of defeating the evaluation mechanisms. This implies a
constant evolution of the evaluation method to minimize the exploit possibilities,
keeping it as reliable as possible,

With our work, we conclude that app developers may: submit adulterated con-
sumption tests, exploit the app’s background usage, delegate services to other
apps, exploit the energy problems undetected by the refactoring tools, and ex-
ploit the thread’s usage. Discovering opportunities for developers to enhance
their evaluations, we responded to our RQ: How can developers create adversarial
strategies against energy certification mechanisms that would make an app rank higher
than it should?
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Appendix A

Applications Used in the
Experiments

App
Number App Name Source Category App ID Version

1 Challenge1 Own App No category com.challenge1 -
2 Fast N Fitness F-Droid Sports & Health com.easyfitness 0.20.4
3 BTC Map F-Droid Money org.btcmap 0.6.1
4 Vector Pinball F-Droid Games org.woheller69.arity 1.34
5 ArityCalc F-Droid Science & Education com.dozingcatsoftware.bouncy 1.12.1
6 omWeather F-Droid Internet org.woheller69.omweather 1.3
7 Qwotable F-Droid Reading com.lijukay.quotesAltDesign 0.2

Table A.1: More information about the apps used in the experiences.
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