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Abstract

This dissertation aims to ascertain the robustness of Hermite polynomials in estimating risk-neutral
densities (RND) with simulated data from the Black-Scholes-Merton (BSM) model and market data
from S&P 500 (SPX) index, Arch (ARCH) Ressources and Cassava (SAVA) companies. Hermite
polynomials are an expansion method, within the family of semi-nonparametric approaches for the
estimation of risk-neutral densities, introduced by Madan and Milne (1994). Through comparative
analysis we were able to analyse the deviation of estimated risk-neutral densities from the theoretical
ones.

Furthermore, in order to extract important information regarding market sentiment, we retrieved
skewness and kurtosis for the estimated risk-neutral density functions obtained from the Black-
Scholes-Merton simulated data and market data. With this information we concluded that as skewness
increases, kurtosis decreases; and, since we obtained leptokurtic distributions we may expect higher
risk.

We observed that for simulated data from the BSM model the obtained estimates, when a noise
condition is introduced, only deviates from the theoretical densities for longer maturities. Also, when
maturity increases, apparently the quality of the estimation decreases, as expected. In addition, when
the number of strikes is small, the estimation process is more difficult. Higher open interest, associated
with more relevant option contracts, is a possible criteria for strike selection.

Finally, Hermite polynomials seem to be effective in obtaining proper RND estimates. Investor
seem to be more pessimist regarding the S&P 500 index, and more confident about SAVA and ARCH
companies.

Key-words: Black-Scholes-Merton model, Expansion methods, Hermite polynomials, Risk-
neutral density, Semi-nonparametric methods.





Resumo

Esta dissertação visa verificar a robustez dos polinómios de Hermite na estimação de densidades
neutras ao risco (RND), com dados simulados do modelo Black-Scholes-Merton (BSM) e dados
de mercado do índice S&P 500 (SPX), e das empresas Arch Ressources (ARCH) e Cassava. Os
polinómios de Hermite são um método de expansão, dentro da família de abordagens semi-não
paramétricas para a estimação de densidades neutras ao risco, introduzido por Madan e Milne (1994).
Através de análise comparativa pudemos analisar o desvio das referidas densidades neutras ao risco
relativamente à densidade teórica considerada.

Além disso, a fim de extrair informações importantes sobre o sentimento do mercado, recuperamos
a assimetria e o achatamento para as funções de densidade neutra ao risco estimadas, obtidas a
partir de dados simulados do modelo de Black-Scholes-Merton e de dados de mercado. Com essa
informação concluímos que, à medida que a assimetria aumenta, a curtose diminui; e, como obtivemos
distribuições leptocúrticas, podemos esperar maior risco.

Observamos que, para os dados simulados do modelo BSM, as estimativas obtidas, quando uma
condição de ruído é introduzida, se desviam das densidades teóricas perante maturidades mais longas.
Além disso, quando a maturidade aumenta, aparentemente a qualidade da estimação diminui, como
esperado. Quando o número de Strikes é pequeno, o processo de estimação é mais difícil. Um maior
open interest está associado a uma maior relevância do contrato de opção e é um possível critério para
a seleção de Strikes.

Finalmente, os polinómios de Hermite parecem ser eficazes na obtenção de estimações da RND
adequadas. Os investidores parecem estar pessimistas relativamente ao índice S&P 500 e mais
confiantes relativamente às empresas ARCH e SAVA.

Palavras-Chave: Modelo de Black-Scholes-Merton, Métodos de Expansão, Polinómios de
Hermite, Densidade Neutra ao Risco, Métodos Semi-não Paramétricos.
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Chapter 1

Introduction

Over the last decades, there has been a substantial development of financial markets. An important
example of a financial market is the derivatives market. Options, swaps, forwards and futures represent
an opportunity for investors: to insure their positions against price movements (hedging); to increase
exposure to price movements for speculation; or, eventually, getting access to arbitrage opportunities.

A derivative is a contract between two parties that specifies conditions - in particular, dates and
prices for the underlying asset - under which payments are to be made between the parties (Rubinstein,
1999) [27]. The underlying asset, on which derivative payoff depends, comprehends, for instance,
commodities, stocks, bonds, interest rates or currencies. As a consequence of the 2008 subprime
crisis, derivative markets are now under strict regulation to prevent such situations.

Risk is the central element that influences financial behavior. Measuring that influence and
analyzing ways of controlling and allocating it allows investors to manage their equity, enhancing
their investment preferences.

Options are financial instruments that reveal investors market expectations, which are of great
interest in the world of finance. A major breakthrough in option pricing theory was achieved by
Black-Scholes (1973) [28] and Merton (1973) [22] by presenting an option pricing formula. This was
the cornerstone for developments in option pricing, formally known as the Black–Scholes–Merton
(BSM) model. The model has had a huge influence on the way that traders price and hedge derivatives.

The BSM model assumes that the underlying asset price follows a geometric Brownian motion,
with constant volatility. Implied volatility is the value of volatility obtained from the inverted BSM
option pricing formula, by considering the remaining parameters as constants. Previous studies have
shown that implied volatility seems to be non-constant across exercise prices and option’s maturities
(Jondeau et al., 2007) [17]. That implies the BSM assumption of a lognormal stock price distribution
does not appear to occur in the markets. This evidence suggests that it is necessary to find new option
pricing models more general than BSM model.

In literature, there are several methods to estimate the risk-neutral density (RND), amongst which
there are semi-nonparametric methods, where expansion methods such as Hermite polynomials and
Edgeworth expansions can be included. Semi-nonparametric models propose an approximation for the
RND. Madan and Milne (1994) [21] exhibit how the RND can be obtained using Hermite polynomials.
Jarrow and Rudd (1982) [16] use an Edgeworth expansion around a lognormal density.
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2 Introduction

Hermite polynomials have been explored by researchers over the years. This semi-nonparametric
approach was further used to express Gram-Charlier expansions, as shown by Corrado and Su (1996,
a) [4].

Nowadays, there are various applications for the RND, amongst the most usual are: risk manage-
ment, option pricing of exotic options, and option pricing of new options in the market.

In this dissertation it is analyzed how Hermite polynomials perform in the estimation of the RND
from option prices, using Madan and Milne (1994) [21] approach. To examine the reliability of this
method to recover the RND, simulated data obtained from the BSM model was used. Market option
prices were also considered on the S&P500 index, and two of the most shorted companies during
April 2022: Arch Resources (ARCH) - coal mining and processing company; and, Cassava Sciences
(SAVA) - pharmaceutical company.

This dissertation is organized in six chapters. Chapter 2 introduces the basic concepts related
to options and the BSM option pricing model. Also, it presents a short summary on the volatility
smile curve. Chapter 3 presents a summary of the wide variety of approaches in literature to estimate
the RND, using option prices, focusing on the approaches related to expansion methods. Chapter
4 outlines how to deduce option valuation formulas and RND’s with Hermite polynomials, and
Gram-Charlier expansions. Chapter 5 depicts the analysis of the empirical results. Briefly, by applying
Madan and Milne (1994) method, we start by showing the performed analysis for simulated option
data from the BSM model, and thereafter to market option prices. Finally, in Chapter 6, we comment
on the results obtained throughout the dissertation.



Chapter 2

Basic Concepts

2.1 Options

Options are financial contracts that depend on the price of the underlying asset. This agreement
considers a buyer and a seller, i.e., two counterparts; whereby the buyer acquires the right to buy -
call option - or sell - put option - a specific quantity of a certain asset or financial instrument (the
underlying asset) at a pre-established price - the exercise price or strike price -, at a future date -
European options -, called the expiration date, or during the period that elapses until then - American
options -, paying the seller a given price - premium. The option seller assumes the obligation to buy
or sell the underlying asset, under the pre-established conditions, if the buyer decides to exercise
his right; the seller of the option does not have the possibility of refusing the exercise of the option.
Trader who buy an option are said to have a long position; symmetrically, if they sell an option, they
are said to have a short position. The underlying asset may always get traded, i.e., purchased or sold,
in a market called the spot market. The time until an option expires is called time to maturity or tenor.

Option contracts allow the price of a transaction that takes place in the future to be fixed in the
present; however, the terms of the contract are asymmetrical in the sense that the seller is subject to
the buyer’s will to exercise or not the option. As a result of this asymmetry, the seller only accepts
to enter into the contract if he is monetarily compensated by the buyer, thus receiving the value of
that right from the buyer, that is, the premium. The buyer, on the other hand, limits the amount of
the loss to the premium paid for the option. In fact, the buyer has the possibility to buy or sell the
underlying asset in the spot market, in which financial instruments are traded for immediate delivery,
at a more favorable price, not exercising the option, and the loss results exclusively from the premium
paid to the seller at the time of transaction of the option. If the exercise price is favorable, then the
buyer exercises the option, and the gain is discounted from the premium previously paid.

Options can be traded in the derivatives market, such as over-the-counter markets or exchanges. In
the first case, the terms of the contracts are completely shaped according to the wishes of the parties;
whilst, in the second case, the options are completely standardized, leaving investors to determine
their price through multilateral negotiations.The standardization of options contracts requires the
establishment, by the exchange, of all the parameters of the contract, including the exercise price.

3



4 Basic Concepts

Let St denote the price of the underlying asset at the time t, traded in the spot market. We denote
by T the expiration date of the option, and τ = T − t the tenor of the contract. Also, let K denote the
strike price. The payoffs on the expiration date of a long position and a short position in call and put
options are given by the following table:

Long Short

Call max(ST −K,0) −max(ST −K,0) = min(K −ST ,0)

Put max(K −ST ,0) −max(K −ST ,0) = min(ST −K,0)

Table 2.1 Call and put option payoffs

As a result of the asymmetry of counterpart’s rights-obligations, option payoffs are not linear.
In this case, it is up to the buyer to decide on their exercise. The decision is made considering the
relationship between the price of the underlying asset in the spot market on the exercise date, ST , and
the exercise price, K. The buyer of a call option exercises the option only when ST > K, obtaining a
gain of ST −K. If ST ≤ K, exercising the call would mean that the investor would pay at least as much
as the underlying asset is actually worth in the spot market, so the option is not exercised and the gain
is null. Once the premium previously paid by the buyer to the seller is taken into account (without,
however, taking into account the time value of money) those profits are reduced by the value of that
premium, C0, being respectively ST −K −C0 and −C0.In turn, the buyer of a put option exercises the
option only when ST < K, assuming that the seller received a premium of P0. The following table
summarizes the profits from positions on call and put options:

Type Position ST < K ST ≥ K

Call
Long (buyer) −C0 ST −K −C0

Short (seller) C0 −(ST −K −C0)

Put
Long (buyer) K −ST −P0 −P0

Short (seller) −(K −ST −P0) P0

Table 2.2 Call and put option profits

An option for which the payoff, at time T , is null is said to expire out-of-the-money. An option for
which the payoff is positive is said to expire in-the-money. It is also possible to extend these notions
to a moment where the option has not yet expired. For an european call (put) option, the ratio St/K
is called moneyness, where r is the risk free interest rate and the exponential term accounts for the
discount factor. If this ratio is larger (smaller) than one, the option is said to be in-the-money. For
the situation where it is smaller (larger) than one, the option is said to be out-of-the-money. Option
traders also often consider a option to be at-the-money if the ratio is one.

Figure 2.1 shows the gains from long and short positions in call and put options. Considering the
option premium, the buyer’s payoff is moving downward, and the seller’s payoff is moving upward,
by an amount equal to the premium.
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Figure 2.1 Option payoff and profit

Finally, it should be perceived that for European options, the put and call prices, denoted by Ct

and Pt , where both options have the same strike and tenor, and where the underlying asset does not
pay dividends, are related by the so-called put-call parity as follows,

Ct −Pt = St −Ke−rτ . (2.1)

The position Ct −Pt corresponds to a purchase of a call and a sale of a put. The payoff is
max(ST −K,0)−max(0,K −ST ). This equals ST −K. On the right-hand side of (2.1), St represents
the purchase of the underlying asset which will yield a value of ST at T . In addition, Ke−rτ is the
discounted value of K, i.e., a credit. At time T , this portfolio will be worth ST −K. Given that the
payoff on the left-hand side corresponds to the one on the right-hand side, it follows that the value of
the assets yielding both payoffs are also equal. Otherwise, an arbitrage opportunity would exist.



6 Basic Concepts

2.2 Black-Scholes-Merton Model

Black–Scholes-Merton model assumes that the market consists of at least one asset with risk, usually
called the stock or the underlying asset, and one riskless asset, usually called the money market, cash,
or bond.

Firstly, assumptions about the market are considered. There are no arbitrage opportunities (i.e., it
is not possible to make a riskless profit). Investors have the ability to borrow and lend any amount,
even fractional, of cash at the riskless rate; and they have the ability to buy and sell any amount, even
fractional, of the stock (this includes short selling). The transactions do not incur any fees or costs
(i.e., frictionless market).

Secondly, assumptions are made about the assets. The rate of return on the riskless asset is
constant and thus called the risk free interest rate, r. The stock price, St , follows a geometric Brownian
motion with stochastic differential equation (SDE)

dSt = St µdt +StσdWt , (2.2)

where dSt denotes the instantaneous price change, µ is the expected return, σ is the volatility of the
price process, and dWt is a standard Brownian motion. The parameters µ and σ are assumed to be
constant over time. The stock does not pay a dividend.

Several of these assumptions of the original model have been removed in subsequent extensions of
the model. Later versions account for dynamic interest rates, transaction costs and taxes, and dividend
payouts (Merton, 1973) [22], (Merton, 1974) [23], (Ingersoll, 1976) [14].

Considering these assumptions, suppose there is a derivative security (an option) also trading in
this market. It is specified that this security will have a certain payoff at a specified date in the future,
depending on the values taken by the stock up to that date. Even though the path the stock price will
take in the future is unknown, the derivative’s price can be determined at the current time.

With the pricing dynamic for the underlying asset in hand, (2.2), one must now infer the corre-
sponding pricing dynamic for the derivative asset. We denote by f (St , t) the price of a derivative asset
and we introduce the notations fSS =

∂ 2 f
∂S2 , fS =

∂ f
∂S , ft =

∂ f
∂ t . To obtain the pricing dynamic of f , we

apply Itô’s lemma to (2.2), yielding

d f =
(

1
2

σ
2S2

t fSS +µSt fS + ft

)
dt +σSt fSdWt . (2.3)

Next, we create a portfolio consisting of one unit of the derivative asset and a short position of fS units
in the underlying asset. The portfolio value is Vt = f − fSSt , with pricing dynamic dVt = d f − fSdSt ,
now substituting d f from (2.3) and dSt from (2.2) we obtain

dVt =

(
1
2

σ
2S2

t fSS +µSt fS + ft −µSt fS

)
dt +σSt fSdWt −σSt fSdWt

=

(
1
2

σ
2S2

t fSS + ft

)
dt +0dWt .

(2.4)

The dynamic of this portfolio is without risk because the term dWt has a coefficient of 0. To avoid
arbitrage, the instantaneous return of this portfolio must be the same as the risk-free rate of interest.
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Hence, the change in portfolio value is

dVt = rVtdt = r ( f − fSSt)dt. (2.5)

From (2.4) and (2.5), we get
1
2

σ
2S2

t fSS + rSt fS + ft = r f .

This is the Black-Scholes-Merton fundamental partial differential equation (FPDE). It governs the
price of all derivatives written on St that have a pricing dynamic given by (2.2).

The explicit solution of this fundamental partial differential equation depends on the boundary
conditions related to the terms of the derivative contract. For instance, considering a European call
option with strike price K and time to maturity T . The terminal payoff of this option is max(ST −K,0).
The terminal payoff defines the boundary condition for solving the FPDE. Let C (St , t) be the price of
the call option. We can then write the FPDE for the European call as

1
2

σ
2S2

t
∂ 2C
∂S2 + rSt

∂C
∂S

+
∂C
∂ t

= rC, (2.6)

with terminal constraint C (ST ,T ) = max(ST −K,0).
Given the stock price dynamics in (2.2) and considering f (St , t) = log(St). By Itô’s lemma we

have

dlog(St) =

(
µ − 1

2
σ

2
)

dt +σdWt . (2.7)

Integrating (2.7) from t to T gives

log(ST ) = log(St)+

(
µ − 1

2
σ

2
)
(T − t)+σ (WT −Wt) .

ST has a log-normal distribution, so

log(ST )∼ N
(

log(St)+

(
µ − 1

2
σ

2
)

τ,σ2
τ

)
(2.8)

where τ = T − t.
The solution of (2.6), by adding proper constraints, leads to the Black–Scholes–Merton formulas

for the prices of European call and put options:

C (St , t) = StΦ(d1)−Ke−rτ
Φ(d2) (2.9)

and
P(St , t) = Ke−rτ

Φ(−d2)−StΦ(−d1) (2.10)

with

d1 =
log(St/K)+

(
r+ 1

2 σ2
)

τ

σ
√

τ
, (2.11)

d2 =
log(St/K)+

(
r− 1

2 σ2
)

τ

σ
√

τ
= d1 −σ

√
τ. (2.12)
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2.3 Volatility smile curve

Considering a plot of the implied volatilities of options with a certain maturity as a function of its
strike prices, its shape is known as volatility smile. Plotting implied volatility against strike prices for
a given maturity, produces a skewed smile instead of the expected flat surface, in the context of the
BSM model. The pattern differs across various markets. It is believed that investor reassessments
of the probabilities of fat-tail leads to higher prices for in-the-money and out-of-the-money options.
This anomaly implies deficiencies in the standard BSM option pricing model which assumes constant
volatility and log-normal distributions of underlying asset returns. Empirical asset returns distributions,
however, tends to exhibit fat-tails (leptokurtosis) and skewness. Modelling the volatility smile is
an active area of research in quantitative finance, and better pricing models such as the stochastic
volatility models, partially address this issue. The volatility smile for European calls with a certain
maturity is the same as that for European puts with the same maturity.



Chapter 3

Literature Review

Black, Scholes and Merton revolutionized the option pricing theory with their approach. Initially,
Black and Scholes (1973) [28] started off by introducing a valuation formula for options, while
Merton (1973) [22] was also in parallel reaching similar conclusions within a different context,
namely, extending the option pricing formula in order to include dividends and stochastic interest
rates. Clearly, Black-Scholes-Merton (BSM) initial model assumes that: the rate of return of the asset
is constant and thus risk-free; the asset price follows a geometric Brownian motion, and it is assumed
that its drift and volatility are constant; there are no arbitrage opportunities nor dividends; finally, the
market is frictionless.

However, constant volatility is not observed in the markets. BSM model considers that all variables
are observale, except for the volatility. Nevertheless, by inverting the option valuation formula one is
able to obtain the implied volatility. Hentschel (2003) [11] noted that implied volatilities suffer from
biases if option prices are observed with errors, such as finite quote precision, bid-ask spreads, or
nonsynchronous prices.

Since the option pricing formula is derived from a no arbitrage relation between the option and its
underlying stock, in which market risk has been hedged away, the model and any parameters implied
from it are not affected by investors’ risk preferences (Figlewski, 2018) [9].

The determination of the risk-neutral density (RND) will be the main subject of analysis within the
scope of this dissertation. Some initial steps were given by Cox and Ross (1976) [8] while searching
for the relation between the choice of the process and the solution to option valuation problems. They
state that the current option price is the discounted expected value of future payoffs under the RND.

Thereafter, Breeden and Litzenberger (1978) [3] proposed a relation between the risk-neutral
density and call option prices, deriving the first from the latter’s second partial derivative. Macbeth
and Merville (1980) [20] suggested that the model of Cox and Ross (1976) [8] exhibited better option
pricing performance than the BSM model.

Rubinstein (1985) [26] proposed an extensive work finding alternative non-parametric tests for
option pricing models, which concluded that the level of market prices, the level of stock market
volatility and the level of interest rates may be relevant macroeconomic variables that should be
considered in future models.

9
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Hull and White (1987) [12] followed the previous work of Merton (1973) [22] and Cox and Ross
(1976) [8] to find that Black-Scholes price overvalues at-the-money options and undervalues deep in
and out-of-the-money options, and that mispricing increases with the time to maturity.

Hull and White (1988) [13] extend their research to conclude that the value of a contingent claim
is independent of the drift rate and of the market price of risk for a derivative which is a traded security.

The estimation of the risk-neutral density can follow various approaches. In this regard, we follow
the categorisation proposed by Jondeau, Poon and Rockinger (2007) [17]. Models illustrated in the
literature can be divided in two broad approaches: structural and non-structural. A model is qualified
as structural if it proposes a full description for the stock price dynamics and/or for the volatility
process. Whereas, a model is qualified as non-structural if it yields a description of the RND without
completely describing the dynamic of the price.

Non-structural approaches can subsequently be subdivided into three categories: parametric,
semi-nonparametric and non-parametric models.

Parametric methods involve a small number of parameters on which the RND function depends,
without referring to any price dynamic. As example, there is the mixture of two lognormal distributions,
with known mean and volatility, on which the BSM model is based. We have seen that a single
lognormal distribution is not sufficiently flexible to fit observed option prices.

Non-parametric methods involve a big number of parameters, and does not define a specific form
for the density. The number of parameters that this approaches comprise is much larger than in the
parametric case.

Semi-nonparametric inference techniques have become increasingly important tools for solving
statistical estimation. Semi-nonparametric models usually propose a number of parameters smaller
when compared to non-parametric models and bigger when compared to parametric ones. It may
appear at first that semi-nonparametric models include non-parametric models, however, a semi-
nonparametric model is considered to have less parameters than a completely non-parametric model.

An important family of semi-nonparametric methods are the expansion methods, to which Edge-
worth expansions, Hermite polynomials and Gram-Charlier expansions belong. Expansion methods
use a straightforward probability distribution (often normal or lognormal) and then add correction
terms to it. For the purpose of this dissertation, the main focus will be expansion methods. In the
following paragraphs, we will present some research on Edgeworth expansions, Hermite polynomials
and Gram-Charlier expansions.

Jarrow and Rudd (1982) [16] present how a given probability distribution can be approximated
by an arbitrary distribution in terms of a series expansion involving second and higher moments
- Edgeworth expansion. The resulting option price is expressed as the sum of a BSM price plus
adjustment terms which depend on the second and higher moments of the underlying asset stochastic
process. This approach allows the evaluation of the impact of skewness and kurtosis of the underlying
stock’s distribution, on the option price.

Madan and Milne (1994) [21] started off by presenting a family of Hermite polynomials. This
was further expanded by Abken, Madan and Ramamurtie (1996) [1] that used the previous findings to
price options on Eurodollar futures by using restrictions on the prices of Hermite polynomial risk for
contingent claims, with different times to maturity.
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Corrado and Su (1996, a) [4] use Gram-Charlier expansions for the RND to adjust skewness
and kurtosis for the BSM formula. In the same year, Corrado and Su (1996, b) [5] present further
research to extend the widely used procedure of obtaining implied standard deviations to also include
procedures for simultaneously obtaining implied skewness and implied kurtosis coefficients.

Aït-Sahalia and Lo (1998) [2] and Jackwerth (2000) [15] show that there exists a theoretical
relationship between the RND, the Subjective Density (SD) (also referred to as observed or physical
density), and the Risk Aversion Function (RAF). Coutant (1999) [6] deduces the RND and SD using
Hermite polynomials’ expansions to obtain a time-varying estimator of the investors’ RAF.

Guasoni (2004) [10] adapts the Madan and Milne model to a multiple expiration setting and
considers an estimation method for the RND at a moving horizon of fixed length, which exploits the
prices of options with different maturities.

Rompolis and Tzavalis (2007) [24] employ a method to retrieve the RND of future asset prices, or
their implied log-returns, based on an exponential form of a Gram–Charlier series expansion. This
type of expansion guarantees that the values of the RND will always be positive, and it can account
for strong deviations of the stock price distributions from the Gaussian one. They conclude that this
type of Gram–Charlier expansion can sufficiently approximate the true RND. Later, the same authors
tackle the estimation of the RND for option pricing models, whose risk-neutral density form is not
given [25].





Chapter 4

Expansion Methods

In this chapter, we outline some expansion methods available to retrieve the RND. Firstly, we present
the fundamentals of Hermite polynomials, as it is the method we employ in Chapter 5. Thereafter, in
Section 4.2, we present the fundamentals for Gram-Charlier expansions, as they are defined using
Hermite polynomials (Corrado and Su, 1996, a) [4].

4.1 Hermite polynomials

Hermite polynomials technique is a semi-nonparametric approach to estimate RND for the underlying
asset, based on the Madan and Milne (1994) [21] approximation of the Gaussian density, and
implemented by Abken, Madan and Ramamurtie (1996) [1], and Coutant, Jondeau and Rockinger
(2001) [7], on pricing call options. The main objective within the scope of this dissertation is to
estimate the RND, based on Hermite polynomials.

The Gaussian density of a normal distribution with parameters (µ,σ2) is given by

φ(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (4.1)

In order to present the Hermite polynomials approach we will simplify (4.1) and instead of considering

the entire expression, we will consider e−x2
. Therefore, its n-th derivative, dn(e−x2

)
dxn , is evaluated, as

follows:

d(e−x2
)

dx
=−2xe−x2

d2(e−x2
)

dx2 =−2e−x2
+4x2e−x2

= (4x2 −2)e−x2

d3(e−x2
)

dx3 = 8xe−x2
+(−2x)(4x2 −2)e−x2

=−(8x3 −12x)e−x2
.

13
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Proceeding iteratively, we obtain the following expression for the n-th order derivative,

dn(e−x2
)

dxn = Pn(x)e−x2
,

where Pn(x) is a polynomial that can be further written as (−1)nHn(x), that is

dn(e−x2
)

dxn = (−1)nHn(x)e−x2
. (4.2)

Thus, we can present the Hermite polynomials as the Hn(x) polynomials. The term (−1)n will allow
for the highest order coefficient of Hn(x) to always be positive.

From (4.2) we have

Hn(x) = (−1)nex2 dn(e−x2
)

dxn . (4.3)

Generally, if we re-introduce the Gaussian density (4.1) instead of e−x2
, then Hermite polynomials

could be defined as

Hn(x) = (−1)n 1
φ(x)

dn(φ(x))
dxn .

4.1.1 Recurrence Relations

The first derivative of (4.3) is given by

H
′
n(x) = (−1)n

[
2xex2 dn(e−x2

)

dxn + ex2 dn+1(e−x2
)

dxn+1

]
= 2xHn(x)−Hn+1(x). (4.4)

On the other hand, let us consider the general Leibniz rule that generalizes the product derivative rule
and states that, if f and g are n-times differentiable functions, then the product f g is also n-times
differentiable and its n-th derivative is given by

( f g)(n) =
n

∑
k=0

(
n
k

)
f (n−k)g(k).

Hence, we can rewrite the derivative of the Hermite polynomial as

H
′
n(x) = (−1)n

2xex2 dn(e−x2
)

dxn + ex2
dn
(
−2xe−x2

)
dxn


= (−1)n

[
2xex2 dn(e−x2

)

dxn −2ex2
n

∑
k=0

(
n
k

)
x(k)
(

e−x2
)(n−k)

]
.

In the sum above, since we are considering derivatives of x, only two terms are going to remain, that
is, we are only considering the 0-th derivative of x and the first derivative, because every other term is
going to be equal to 0. Thus,
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H
′
n(x) = (−1)n

[
2xex2 dn(e−x2

)

dxn −2ex2

[
x

dn(e−x2
)

dxn +n
dn−1(e−x2

)

dxn−1

]]

= (−1)n−1

[
2nex2 dn−1(e−x2

)

dxn−1

]
= 2nHn−1(x).

(4.5)

Finally, from (4.4) and (4.5) we can obtain Hn+1(x) from Hn(x) and Hn−1(x):

Hn+1(x) = 2xHn(x)−2nHn−1(x). (4.6)

4.1.2 Orthogonality

Our goal is to present the orthogonality of Hermite polynomials,∫
∞

−∞

Hn(x)Hm(x)e−x2
dx = 2n n!

√
π 1{m=n}(m,n). (4.7)

where 1 is the indicator function, if n = m it corresponds to one, if not it corresponds to zero. Note
that m and n can be interchanged. The term e−x2

is important since it allows the integral to converge,
as a consequence of the product of the polynomials Hn(x) and Hm(x).

In order to analyse orthogonality, consider the integral

(−1)m
∫

∞

−∞

Hn(x)
dm(e−x2

)

dxm dx,m > n. (4.8)

For simplification in the following calculus, we ignore the (−1)m term, that will be added later.
Considering n ̸= m, the integral from (4.8) and integrating it by parts, we have

Hn(x)

[
dm−1(e−x2

)

dxm−1

]+∞

−∞

−
∫

∞

−∞

d(Hn(x))
dx

dm−1(e−x2
)

dxm−1 dx. (4.9)

In (4.9), the first term will be equal to zero since the (m−1)-derivative includes the exponential term.
Therefore, this term converges, and it is equal to zero. We are left with the second term, which we can
again integrate by parts; however, we have again a derivative of e−x2

. When we do m integration’s by
parts we get

(−1)m
∫

∞

−∞

(
dm(Hn(x))

dxm

)
e−x2

dx.

The term on brackets is the m-th derivative of the n-th Hermite polynomial. Since m > n, this term
will be equal to zero, and we can conclude that

(−1)m
∫ +∞

−∞

Hn(x)
dm(e−x2

)

dxm dx = 0.
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Considering n = m,

∫ +∞

−∞

Hn(x)
dn(e−x2

)

dxn dx = (−1)n
∫ +∞

−∞

(
dn(Hn(x))

dxn

)
e−x2

dx.

We will now compute the parameter in brackets. Applying successively the recurrence relation (4.5),
we obtain

dn(Hn(x))
dxn = 2n

dn−1(Hn−1(x))
dxn−1 = 2n×2(n−1)× dn−2(Hn−2(x))

dxn−2 = · · ·= 2nn!,

so the integral will be,

(−1)n2nn!
∫ +∞

−∞

e−x2
dx = (−1)n2nn!

√
π.

To finish this deduction, we just need to multiply this for (−1)n, and now we can conclude that
the Hermite polynomials are equal to zero, for n ̸= m; and equal to 2nn!

√
π , for n = m.

4.1.3 Generating Function

Now, we are going to present e2xt−t2
as a generating function for Hermite polynomials, in the sense

that Taylor series coefficients for the function e2xt−t2
are Hermite polynomials, as follows,

e2xt−t2
=

∞

∑
n=0

Hn(x)
n!

tn. (4.10)

This is similar to claiming that

Hn(x) =

dn
(

e2xt−t2
)

dtn


t=0

. (4.11)

By simplifying (4.11) we get

Hn(x) =

dn
(

e2xt−t2
)

dtn


t=0

=

dn
(

e−(x−t)2+x2
)

dtn


t=0

= ex2

dn
(

e−(x−t)2
)

dtn


t=0

.

Taking into account that d f (x−t)
dt =−d f (x−t)

dx , we have,

Hn(x) = ex2

dn
(

e−(x−t)2
)

dtn


t=0

= (−1)nex2

dn
(

e−(x−t)2
)

dxn


t=0

= (−1)nex2
dn
(

e−x2
)

dtn ,

as stated by (4.3).

Therefore, we can conclude, from equation (4.10), that the n-th Hermite polynomial corresponds to
the n-th coefficient in the Taylor series for the function e2xt−t2

. Equation (4.10) allows to identify the
generating function for the Hermite polynomial as e2xt−t2

.
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4.1.4 Option pricing formula

Following Jondeau, Poon, Rockinger (2007) [17] we start, by considering a change of variable. We
will define the standardized log-return z as a function of the actual prices, denoting the volatility over
the horizon of the option as s = σ

√
τ ,

ST = Stexp
(

µτ − 1
2

s2 + sz
)
⇒ z =

log
(

ST
St

)
−
(

µτ − s2

2

)
s

.

Let q be the RND for the underlying asset, St . The following change of variable allows to obtain q(.)
in terms of qz(.):

q(ST )dST = qz

(
log(ST/St)−

(
µτ − s2/2

)
s

)
× 1

ST
× 1

s
×dST . (4.12)

Focusing on a call option, its payoff could be given, as a function of z,

c(z,St ,K,µ,s,τ) = max
(

St

(
µτ − 1

2
s2 + sz

)
−K,0

)
.

The price of a call option is given by

C(z,St ,K,µ,s,τ) = e−rτ

∫ +∞

0
c(z,St ,K,µ,s,τ)qz(z)dz, (4.13)

where qz (.) denotes the risk neutral density for z. In addition, we can generalize this function so that
it holds for an option having a generic payoff, g(z), to which corresponds the price

C(St ,K,µ,s,τ,r) = e−rτ

∫ +∞

0
g(z)qz(z)dz. (4.14)

It is assumed that g(z) may be defined by basis functions constituted by Hermite standardized
polynomials hk(z), written as

g(z) =
∞

∑
k=0

akhk(z), (4.15)

where hk(z) is given by,
hk(z) = Hk(z)/

√
k!,

see Madan and Milne (1994) [21].
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Following Abken, Madan and Ramamurtie (1996) [1], we present the first five terms:

h0(z) = 1,

h1(z) = z,

h2(z) =
1√
2
(z2 −1),

h3(z) =
1√
6
(z3 −3z),

h4(z) =
1√
24

(z4 −6z2 +3).

By replacing (4.15) in (4.14), we have

C(St ,K,µ,s,τ,r) = e−rτ
∞

∑
k=0

ak

∫
z
hk(z)qz(z)dz. (4.16)

In addition, the risk-neutral density qz(.) may be obtained by multiplying φ(z) by the risk-neutral
change of measure λ (z), given in terms of Hermite polynomials expansion, as follows, see Madan
and Milne (1994) [21],

λ (z) = erτ
∞

∑
l=0

πlhl(z), (4.17)

hence,
qz(z) = φ(z)λ (z). (4.18)

Therefore, by replacing (4.17) in (4.18) we obtain

qz(z) = φ(z)

(
erτ

∞

∑
l=0

πlhl(z)

)
, (4.19)

where πl is interpreted as the implicit price of non-traded risk, given by hl(z). In what follows, we will
truncate the infinite sum up to the fourth order and to insure qz(z) is a density we impose π0 = e−rτ .
We can estimate the mean µ and the variance σ2 of log-returns and set the mean π1 and the variance
π2 equal to 0, since z is the standardized log-return. π3 and π4 are the implicit prices of skewness and
kurtosis, respectively. Accordingly,

qz(z)≈ φ(z)

(
erτ

4

∑
l=0

πlhl(z)

)
= φ(z)erτ

(
e−rτ +π3h3(z)+π4h4(z)

)
= φ(z)

(
1+

b3√
6
(z3 −3z)+

b4√
24

(z4 −6z2 +3)
)
,

(4.20)

where the bi = erτπi, i = 3,4, are the future value of the i-th implicit price of the risk coefficient.
Parameters b3 and b4 are the skewness and kurtosis, z is assumed to follow a normal distribution.
Parameters µ , s, b3 and b4 are estimated through a nonlinear objective function. The skewness and
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kurtosis for expanded density of z are

Sk [z] =
√

6b3,

Ku [z] = 3+
√

24b4,
(4.21)

see Jondeau and Rockinger (2001) [18].

Substituting (4.19) in (4.16) we obtain

C(St ,K,µ,s,τ,r) =
∞

∑
k=0

∞

∑
l=0

akπl

∫
z
hl(z)hk(z)φ(z)dz =

∞

∑
k=0

akπk,

where the second equality results from the orthogonality of Hermite polynomials. Truncating this sum
to the fourth order, we have

C(St ,K,µ,s,τ,r) = e−rτa0 +π3a3 +π4a4. (4.22)

Abken, Madan and Ramamurtie (1996) [1], use a call option generating function

G(t,St ,K,µ,s,τ) =
1√
2π

∫ +∞

−∞

c(z,St ,K,µ,s,τ)e−(z−t)2/2dz,

to prove that

a0(z) = Steµτ
Φ(d1)−KΦ(d2),

a1(z) = sSteµτ
Φ(d1)+Steµτ

φ(d1)−Kφ(d2),

a2(z) =
1√
2

[
s2Steµτ

Φ(d1)+2sSteµτ
φ(d1)+Steµτ

φ
′
(d1)−Kφ

′
(d2)

]
,

a3(z) =
1√
6

[
s3Steµτ

Φ(d1)+3s2Steµτ
φ(d1)+3sSteµτ

φ
′
(d1)

+Steµτ
φ
′′(d1)−Kφ

′′
(d2),

a4(z) =
1√
24

[
s4Steµτ

Φ(d1)+4s3Steµτ
φ(d1)+6s2Steµτ

φ
′
(d1)+4sSteµτ

φ
′′
(d1)

+Steµτ
φ

′′′
(d1)−Kφ

′′′
(d2),

(4.23)

where d1 and d2 are given by (2.11) and (2.12). Therefore, (4.22) can be represented as a function of
the variables µ , s, π3 and π4, denoted by C(µ,s,π3,π4).

4.2 Gram-Charlier expansions

Later work on Hermite polynomials allowed researchers to reach a new type of semi-nonparametric
approach relying on these polynomials: Gram-Charlier expansions. Gram-Charlier expansions have
been largely used as a semi-nonparametric approach to overcome the restriction imposed by the
usual normality assumption, see Corrado and Su (1996, a) [4], Jondeau and Rockinger (2001) [18],
Rompolis and Tzavalis (2007) [24], Rompolis and Tzavalis (2008) [25] and Lin et al. (2015) [19].
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A Gram-Charlier series expansion of a density function f is defined as

f (x) =
∞

∑
n=0

cnHnφ(x) (4.24)

where φ is the standardized normal density function, Hn are Hermite polynomials, and the coefficients
cn are determined by moments of the distribution function F . However, usually the series is truncated
to exclude terms beyond the fourth moment. The resulting truncated density provides an approximation
that accounts for non-normal skewness and kurtosis. Specifically, after standardizing to a zero mean
and unit variance, a truncated series that accounts for skewness and kurtosis yields the following density
function where µ3 and µ4 denote standardized coefficients of skewness and kurtosis, respectively

q(z) = φ(z)
[

1+
µ3

3!
(z3 −3z)+

µ4 −3
4!

(z4 −6z2 +3)
]
. (4.25)

Equation (4.25) is similar to equation (4.20), due to the fact that (4.24) is expressed through
Hermite polynomials.

From the density function (4.25) we can present the following expected values: E(z) = 0, E(z2) =

1, E(z3) = µ3, E(z4) = µ4, see Corrado and Su (1996, a) [4]. Thus, the coefficients of skewness and
kurtosis for q(z) are explicit parameters in its functional form. Under a normal distribution we have
the skewness and kurtosis coefficients µ3 = 0 and µ4 = 3, respectively, which substituted into (4.25)
correspond to the special case of a standard normal density.

Assuming risk neutrality, we apply equation (4.25) to derive a theoretical European call option
price as the present value of an expected payoff at option expiration. This option price is derived from
the following expression, see Breeden and Litzenberger (1978) [3],

CGC = e−rt
∫

∞

k
(ST −K)q(z)dz. (4.26)

From the integral, an option price formula is obtained on a Gram-Charlier density expansion:

CGC =CBSM +µ3Q3 +(µ4 −3)Q4 (4.27)

where CBSM is the Black-Scholes-Merton option pricing formula (2.9),

Q3 = Ste−rτ s
3!
[
(2s−d1)φ(d1)+ s2

Φ(d1)
]

Q4 = Ste−rτ 1
4!
[
s
(
d2

1 −1+3s(s−d1)
)

φ(d1)+ s3
Φ(d1)

]
.

In equation (4.27), Q3 and Q4 represent the marginal effect of non-normal skewness and kurtosis,
respectively, on the option price CGC.

Equation (4.27) is vital when using Gram-Charlier expansions, because when stock returns are
normally distributed, then µ3 = 0 and µ4 = 3, and it presents the BSM option price formula; on the
other hand, if µ3 ̸= 0 and/or µ4 ̸= 3, equation (4.27) is the sum of a BSM option price plus adjustment
terms for non-normal skewness and kurtosis.



Chapter 5

Empirical analysis

In this chapter, we will analyse the effectiveness of the Hermite polynomial expansion approach in the
estimation of the RND, using theoretical and market option prices. Theoretical option prices will be
simulated from the Black-Scholes-Merton model presented in Chapter 2. This simulation analysis is
performed using the blsprice routine of MATLAB. Afterwards, we will use historical market option
prices on the S&P 500 index and two of the most shorted companies during April 2022, quoted in the
Chicago Board Options Exchange (CBOE) - Arch Resources and Cassava Sciences.

We will proceed with the implementation of the model proposed by Madan and Milne (1994) [21]
to estimate the RND, applying it to both simulated and market data, through a routine constructed in
MATLAB. In order to simplify our notation, we will aggregate the parameter values θ = (St ,K,r,τ)
and consider (4.22) as a function of variables µ , s, π3, π4. The optimization problem is then given by

minimize
µ,s,π3,π4

NC

∑
n=1

(Ci −C (µ,s,π3,π4))
2

s.t. 0 < µ < 1

0 < s < 1

−1 < π3 < 2

0 < π4 < 5

where Ci (i = 1, ...,NC) are the observed call option prices.

Comparisons between the estimated and theoretical BSM distributions will be done throughout
this chapter.

5.1 Black-Scholes-Merton data analysis

This first section aims to present the result of using Hermite polynomials to estimate RND functions,
with data generated from the BSM model.
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To analyse the data generated by the BSM model we set the parameters as follows: the un-
derlying asset price, St = 40; the risk-free interest rate, r = 0.01; the volatility, σ = 0.25; and,
τ =

{ 1
12 ,

3
12 ,

6
12 ,1

}
. We considered fifty strike prices, K, equally spaced between twenty and eighty,

for each maturity.

To reproduce market’s behaviour, namely price fluctuations, random noise, ξ , is added to the theoretical
option prices, CBSM, so that the perturbed prices, C∗

BSM, are given by

C∗
BSM =CBSM +0.01×CBSM ×ξi, (5.1)

where ξi ∼ N(0,1).

Firstly, we present the results without noise, followed by the results using the (5.1) noise condition.
After this, we will analyse skewness and kurtosis for the estimated RND from the BSM data, with and
without the noise condition.

5.1.1 Risk-Neutral Density estimation - without noise

We started by computing call and put option prices through the BSM model, with the parameters
presented before. After RND estimation using Hermite polynomials, we were able to compare
theoretical and estimated RNDs for the standardized log-returns, (4.20), and for the underlying asset
price, St . The estimative obtained for the log-returns is compared to the theoretical Normal distribution,
and the estimative obtained for the underlying asset price is compared to the Lognormal distribution.

Analysing Figures 5.1 to 5.4 we can observe they are, apparently, well fitted. They are related to
the four maturities presented before.

Figure 5.1 Theoretical and estimated RND functions from BSM data, without noise - Maturity: 1
month. On the left, for the standardized log-returns; and, on the right, for the underlying asset price.
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Figure 5.2 Theoretical and estimated RND functions from BSM data, without noise - Maturity: 3
months. On the left, for the standardized log-returns; and, on the right, for the underlying asset price.

Figure 5.3 Theoretical and estimated RND functions from BSM data, without noise - Maturity: 6
months. On the left, for the standardized log-returns; and, on the right, for the underlying asset price.

Figure 5.4 Theoretical and estimated RND functions from BSM data, without noise - Maturity: 1 year.
On the left, for the standardized log-returns; and, on the right, for the underlying asset price.
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5.1.2 Risk-Neutral Density estimation - with noise

Afterwards, we implemented a similar process to the one in the previous section, by adding a noise
condition, (5.1).

Analysing Figures 5.5 - 5.8 we can observe that they are apparently slightly less well fitted
as maturity increases. Estimated RNDs with maturities of 1 month and 3 months are better fitted,
however we can detect a slight deviation from the theoretical density. This deviation from theoretical
RND is apparently more prominent for estimated RNDs with maturities of 6 months and 1 year. In
these cases, uncertainty valution associated to prices is also greater, given the fact that the noise
condition apparently amplifies fluctuations. The estimates obtained with noise were run multiple
times corroborating the theoretical intuition referred.

Figure 5.5 Theoretical and estimated RND functions from BSM data, with noise - Maturity: 1 month.
On the left, for the standardized log-returns; and, on the right, for the underlying asset price.

Figure 5.6 Theoretical and estimated RND functions from BSM data, with noise - Maturity: 3 months.
On the left, for the standardized log-returns; and, on the right, for the underlying asset price.
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Figure 5.7 Theoretical and estimated RND functions from BSM data, with noise - Maturity: 6 months.
On the left, for the standardized log-returns; and, on the right, for the underlying asset price.

Figure 5.8 Theoretical and estimated RND functions from BSM data, with noise - Maturity: 1 year.
On the left, for the standardized log-returns; and, on the right, for the underlying asset price.

5.1.3 Skewness and Kurtosis

Skewness and Kurtosis were obtained through formulas (4.21), which we implemented for BSM data
with and without noise conditions. Skewness depicts the asymmetry of the distribution, while kurtosis
captures the tail thickness of the distribution.

Table 5.1 aggregates skewness and kurtosis for RND estimated from BSM data. Skewness for
RND with and without noise decreases as maturity increases. Skewness for RND with maturity of 1
month is positive, however very close to zero. Furthermore, we observe that kurtosis is approximately
3 when noise is not considered, and greater when noise is considered, increasing as maturity increases.
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Skewness and Kurtosis for RND estimated from BSM data

Skewness Kurtosis
Without Noise Noise Without Noise Noise

1 month 0.0146 0.0132 3.00 3.00
3 months -1.0117e−4 -0.0428 3.0004 3.1308
6 months -1.3838e−4 -0.0962 3.0004 3.1592

1 year -2.9070e−4 -0.1402 3.0008 3.2619
Table 5.1 Skewness and kurtosis for RND estimated from the BSM data, with and without the noise
condition.

5.2 Market data analysis

5.2.1 Data set description

Numerical results will be obtained from the S&P500 (SPX) index and two of the most shorted
companies from April 2022; initially, we included five companies, however due to similar estimation
performance, we present here only two of them. The companies are: MicroStrategy Incorporated
(MSTR) - business intelligence, mobile software, and cloud-based services; Cassava Sciences (SAVA)
– pharmaceutical company; Arch Resources (ARCH) – coal mining and processing company; Costco
Wholesale Corporation (COST) – retail; and, Blink Charging (BLNK) – electric vehicles equipment
and stations. We will only present results for S&P 500, ARCH and SAVA. This data was obtained
from CBOE exchange market and relates to European style options for SPX and American style
options for ARCH and SAVA. Furthermore, it should have been considered out-of-money options,
in the sense that, they approximate better European style options. Therefore, this estimation is an
approximation to the proper RND.

For each sample, we considered the arithmetic mean of bid and ask, call and put, option prices.
The interest rate data is collected from the Central Bank of the Federal Reserve System of the United
States of America, r = 0.0233.

Data was collected from August 15th, 2022 to August 25th, 2022, with four times to maturity -
approximately one month, three months, six months and a year, depending on the day it was retrieved
and the suitable correspondent maturity available. Using Madan and Milne’s method, we obtained
the estimated RND for each of these four maturities, for each underlying asset. Given that similar
observations were obtained for these 10 days, we will only present and analyze the results for August
18th, 2022; similar conclusions can be derived for the remaining days. Table 5.2 summarizes the
information on the data. We will consider call option prices in our estimations, however, in order to
illustrate the behaviour of the call and put options we will also present the information related to puts.
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Day Underlying asset St Maturity τ (days)

August 18th
SPX
ARCH
SAVA

4283,7402
158,59
26,25

September 16th, 2022 29
November 18th, 2022 92
February 17th, 2023 183
August 18th, 2023 365

Table 5.2 Data set information for SPX, ARCH and SAVA.

5.2.2 RND estimation results

In this section, we present the results of implementing Madan and Milne (1994) [21] approach
applied to SPX, Arch Resources and Cassava Sciences. Call and put option strikes, and respective
open interests are presented in Figures 5.9, 5.10, 5.12, 5.13, 5.15, 5.16, 5.18, 5.19, 5.21, 5.22, 5.24,
5.25,5.27, 5.28, 5.31, 5.32, 5.33, 5.34, 5.36 and 5.37. RND estimatives were defined by considering
log-returns and, thereafter, the underlying asset price, ST . The latter is obtained through a change of
variable. Open interest displays key information regarding the liquidity of an option. The larger the
open interest, the easier it will be to trade that option at a reasonable bid-ask spread. In this context, it
could be seen as a measure of the relevance of an option price, at a given strike.

SPX data

Observing Figures 5.9, 5.12 and 5.15 we can detect several peaks in call options open interest with
maturities of 29, 92 and 183 days, with periodicity of 1000; also, we can see a concentration of values
in the central zones of the plotting. Observing Figures 5.10, 5.13 and 5.16 we note that open interest
values for put option are relevant for strikes until 5000. Finally, for the maturity of 365 days, open
interest values for call options are relevant for strike prices approximately between 4000 and 5000; as
for put options, they are relevant for strike prices approximately between 2500 and 5000.

Analysing Figure 5.11 the estimated RND is apparently well fitted against the Normal theoretical
RND. As maturity increases, in Figures 5.14 and 5.17, we observe that the Hermite polynomial
estimated RND seems to be leptokurtic, away from the Normal RND. This happens for both cases,
log-returns and the underlying asset price. This may be due to greater uncertainty valuation of markets,
as maturity increases.

We must note that there exists numerical problems when estimating the RND for τ = 365 days.
Also, as maturity increases, there is a greater valuation deviation from normality.

Finally, Table 5.3 presents information regarding the number of strikes for each maturity.

Underlying asset Maturity Number of Strikes

SPX

September 16th, 2022 810
November 18th, 2022 507
February 17th, 2023 140
August 18th, 2023 128

Table 5.3 Number of Strikes - SPX.
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τ = 29 days

Figure 5.9 Call Options and Open interest from SPX data - Maturity: 29 days

Figure 5.10 Put Options and Open interest from SPX data - Maturity: 29 days

Figure 5.11 RND from SPX data - Maturity: 29 days.



5.2 Market data analysis 29

τ = 92 days

Figure 5.12 Call Options and Open interest from SPX data - Maturity: 92 days

Figure 5.13 Put Options and Open interest from SPX data - Maturity: 92 days

Figure 5.14 RND from SPX data - Maturity: 92 days.
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τ = 183 days

Figure 5.15 Call Options and Open interest from SPX data - Maturity: 183 days

Figure 5.16 Put Options and Open interest from SPX data - Maturity: 183 days

Figure 5.17 RND from SPX data - Maturity: 183 days.
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τ = 365 days

Figure 5.18 Call Options and Open interest from SPX data - Maturity: 365 days

Figure 5.19 Put Options and Open interest from SPX data - Maturity: 365 days

Figure 5.20 RND from SPX data.
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ARCH data

Observing Figure 5.21 we can see that open interest increases, as strike prices increase; for Figure
5.22, we detect high open interest for Strike = 65, spiking again between 120 and 160, registering a
downfall on 140. In Figure 5.24 there is a concentration for strikes between 140 and 180, with two
major spikes. In addition, for Figure 5.27 we detected 4 major considerable strikes, and in Figure 5.28
the relevant strikes are from 60 to 140.

Analysing Figures 5.23, 5.26 and 5.29, we observe that the Hermite polynomial estimated RND
moves away from the Normal RND. This happens for both log-returns and the underlying asset price.
This occurs due to greater uncertainty of markets, as maturity increases. These results are more similar
to the Normal density, than the ones we obtained before for SPX.

We didn’t had any types of convergence problems estimating RND for ARCH.
Finally, Table 5.4 presents information regarding the number of strikes for each maturity.

Underlying asset Maturity Number of Strikes

ARCH
September 16th, 2022 28
November 18th, 2022 34
February 17th, 2023 33

Table 5.4 Number of Strikes - ARCH.
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τ = 29 days

Figure 5.21 Call Options and Open interest from ARCH data - Maturity: 29 days

Figure 5.22 Put Options and Open interest from ARCH data - Maturity: 29 days

Figure 5.23 RND from ARCH data - Maturity: 29 days.
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τ = 92 days

Figure 5.24 Call Options and Open interest from ARCH data - Maturity: 92 days

Figure 5.25 Put Options and Open interest from ARCH data - Maturity: 92 days

Figure 5.26 RND from ARCH data - Maturity: 92 days.
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τ = 183 days

Figure 5.27 Call Options and Open interest from ARCH data - Maturity: 183 days

Figure 5.28 Put Options and Open interest from ARCH data - Maturity: 183 days

Figure 5.29 RND from ARCH data - Maturity: 183 days.
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Figure 5.30 RND from ARCH data.

SAVA data

Observing Figures 5.31 and 5.36 we observed that the open interest assumes its maximum at Strike =
25. From Figures 5.32, 5.34 and 5.37 and 5.15 we see that put options are more desired than call
options for this company.

In addition, we detected lack of convergence for the RND with τ = 29 days, hence, the corre-
sponding plot is not shown. Even with a selection of strikes with higher open interest, convergence
was not achieved. On the other hand, analysing Figures 5.35 and 5.38, we observe that the Hermite
polynomial estimated RND moves away from the Normal RND. This happens for both standardized
log-returns and the underlying asset price. This maybe occurs due to greater uncertainty of markets,
as maturity increases.

Finally, Table 5.5 presents information regarding the number of strikes for each maturity.

Underlying asset Maturity Number of Strikes

ARCH
September 16th, 2022 16
November 18th, 2022 17
February 17th, 2023 16

Table 5.5 Number of Strikes - SAVA.
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τ = 29 days

Figure 5.31 Call Options and Open interest from SAVA data - Maturity: 29 days

Figure 5.32 Put Options and Open interest from SAVA data - Maturity: 29 days
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τ = 92 days

Figure 5.33 Call Options and Open interest from SAVA data - Maturity: 92 days

Figure 5.34 Put Options and Open interest from SAVA data - Maturity: 92 days

Figure 5.35 RND from SAVA data - Maturity: 92 days.
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τ = 183 days

Figure 5.36 Call Options and Open interest from SAVA data - Maturity: 183 days

Figure 5.37 Put Options and Open interest from SAVA data - Maturity: 183 days

Figure 5.38 RND from SAVA data - Maturity: 183 days.
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Figure 5.39 RND from SAVA data.

5.2.3 Skewness and Kurtosis

Considering SPX, we observe that skewness is negative, which means that left tail is heavier, and
therefore the probability of strongly negative returns is higher than for positive returns. There seems
to be a relationship between skewness and kurtosis. When skewness goes up, in absolute value, so
does the kurtosis.

Considering ARCH, we detect that skewness is only negative for τ = 92 days, hence similar
conclusions to the previous paragraph arise. On the other hand, for τ = 29 and τ = 183 days, skewness
is positive.

Negative skewness may indicate that investors are somewhat pessimistic.
The kurtosis coefficient is greater than 3 for every underlying asset (leptokurtic distribution),

which can suggest there is a large probability of extreme values occurrence on both sides.

Day Underlying asset Maturity Skewness Kurtosis

August 18th

SPX
September 16th, 2022 -0,0975 3,1495
November 18th, 2022 -0,3172 3,3490
February 17th, 2023 -0,6928 3,8431

ARCH
September 16th, 2022 0,0273 3,2908
November 18th, 2022 -0,0037 3,4119
February 17th, 2023 0,1570 3,4266

SAVA
November 18th, 2022 0,2603 3,2536
February 17th, 2023 0,4243 3,0745

Table 5.6 Skewness and Kurtosis for SPX, ARCH and SAVA.



Chapter 6

Conclusion

Derivative markets provide investors with a rich source of information for evaluating market sentiment,
concerning the underlying asset evolution. Options prices are an efficient tool to express market
perceptions of underlying asset prices in the future. From this data it is possible to estimate the RND.
In this dissertation, we used Hermite polynomials as a semi-nonparametric approach on the estimation
of the RND. This expansion method was employed on theoretical prices obtained through the BSM
model and thereafter applied to market data from the S&P 500 index and two short-sold companies.

Through graphical analysis, we observe that simulated data from the BSM model the obtained
estimates, when a noise condition is introduced, only deviates from the theoretical densities for longer
maturities; also, as skewness decreases, kurtosis increases. Once applied to either BSM model data
and market data, Hermite polynomials seem to behave well to obtain proper RND estimates. We
concluded that if maturity increases, apparently the quality of the estimation decreases. Also, if there
is a small number of strikes, this difficults the estimation process.

In addition, we dealt with American options, instead of European options, therefore, the obtained
results can be seen as an approximate estimative to the proper estimated density.

Furthermore, open interest is a relevant source of information regarding the relevance of an option
contract. High open interest leads to higher relevance of the option contract. Moreover, it is also used
as a criteria for strike selection.

Finally, for τ = 92 days, when skewness is negative we can conclude that investors are pessimistic
about market behaviour of the S&P 500 index and of ARCH. On the other hand, for τ = 29 days
and τ = 183 days, investors seem to be more confident about SAVA and ARCH. Since we obtained
leptokurtic distributions we may expect higher risk.

Overall, Hermite polynomials seem to be an effective semi-nonparametric approach to retrieve
proper risk-neutral densities estimates.
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