

Bruno Damião Areias Gandres

MAINTENANCE PRACTICES IN SOFTWARE

ENGINEERING

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering advised by Professor Marília Curado,

Eng. Ricardo Gonçalves and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

July of 2023

DEPARTMENT OF INFORMATICS ENGINEERING

Bruno Damião Areias Gandres

Maintenance Practices in Software
Engineering

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. Marília Curado, Eng.

Ricardo Gonçalves and presented to the Department of Informatics Engineering
of the Faculty of Sciences and Technology of the University of Coimbra.

July 2023

Acknowledgements

I would like to express my sincere gratitude to my Dissertation advisors, Prof.
Marília Curado and Eng. Ricardo Gonçalves, for their invaluable guidance and
support throughout my work. Their expertise and encouragement helped me to
complete Dissertation.

I am grateful to Critical Software for providing me with the opportunity to
conduct my internship and for all of the resources and support they provided. I
would like to extend a special thanks to Eng. Ricardo Silva, Eng. Bruno Madureira
and Eng. José Caetano, who went above and beyond to help me with my work
and also to Eng. João Catalão and Eng. João Leal for the integration and good
mood every day.

I would also like to thank my colleagues at DEI. In particular, I would like to
thank Diogo Filipe, Francisco Bugalho, Henrique Teixeira, José Gomes, José Reis,
Pedro Marques and Nuno Silva (and more) for all the memories and support over
these five years.

I would also like to thank my family for their love and support during this
process. Without them, this journey would not have been possible.

v

Abstract

With the increasing need to develop software that remains operational over the
years, the role of software maintenance has grown in importance. Critical Soft-
ware (CSW) has been playing a major role in the analysis, development, and
maintenance of software, being involved in different sectors of the industry and
achieving various certification objectives, thus underscoring the quality of the
products it develops.

The main goal of this work is to migrate a component of one of the major
systems developed by CSW, from Thorntail to Quarkus technology, using main-
tenance practises in order to keep the component up to date, since Thorntail
reached its end-of-life. The use of legacy technology can bring problems of se-
curity and compatibility, and the role of software maintenance is to solve these
problems.

This work outlines the steps taken to implement the migration process in ac-
cordance with the maintenance process. It gives a real insight into the problems
and challenges that are faced in software maintenance work. A study is con-
ducted to introduce the concepts of software maintenance. Additionally, an ex-
amination is performed to evaluate a potential alternative to Thorntail within
the project’s context. The presented work details the entire research and devel-
opment process undertaken throughout the internship, highlighting the changes
and improvements that were made and challenges/problems faced during the
migration of the component. The obtained results show that the main objective
has been met, maintaining the good functionality after the migration being this
objective illustrated in the successful execution of unit and system tests.

Keywords

CSWSYS component, Software Maintenance, Thorntail, Quarkus, Reflection, Sys-
tem Tests

vii

Resumo

Com a crescente necessidade de desenvolver software que se mantenha opera-
cional ao longo dos anos, o papel da manutenção de software tem vindo a crescer
em importância. A CSW tem tido um papel preponderante na análise, desen-
volvimento e manutenção de software, estando envolvida em diferentes sectores
da indústria e atingindo vários objectivos de certificação, evidenciando assim a
qualidade dos produtos que desenvolve.

O principal objetivo deste trabalho é migrar um componente de um dos prin-
cipais sistemas desenvolvidos pela CSW, da tecnologia Thorntail para a tecnolo-
gia Quarkus, utilizando práticas e técnicas de manutenção de forma a manter o
componente atualizado, uma vez que o Thorntail atingiu o seu fim de vida. A
utilização de tecnologia legacy pode trazer problemas de segurança e compatibil-
idade, e o papel da manutenção de software é resolver estes problemas.

Este trabalho apresenta os passos que foram realizados para implementar
a migração seguindo o processo de manutenção. Também dá uma visão real
dos problemas e desafios que são enfrentados num trabalho de manutenção de
software. Foi efectuado um estudo para dar uma introdução aos conceitos de
manutenção de software. Além disso, foi feito um estudo para avaliar uma pos-
sível alternativa ao Thorntail no contexto do projeto. O trabalho apresentado
detalha todo o processo de pesquisa e desenvolvimento realizado durante o es-
tágio, destacando as mudanças e melhorias realizadas e os desafios/problemas
enfrentados durante a migração do componente. Os resultados obtidos mostram
que o objetivo principal foi cumprido, mantendo a boa funcionalidade após a mi-
gração, sendo este objetivo ilustrado na execução com sucesso de testes unitários
e de sistema.

Palavras-Chave

CSWSYS component, Manutenção de Software, Thorntail, Quarkus, Reflexão,
Testes de Sistema

ix

Contents

1 Introduction 1
1.1 Project Context . 1
1.2 Objectives . 2
1.3 Structure of the document . 3

2 Practices in Software Maintenance 5
2.1 Software Life Cycle Processes . 5
2.2 Software Maintenance . 6

2.2.1 Maintenance Processes . 6
2.2.2 Types of Software Maintenance 8
2.2.3 Techniques for Maintenance 10

2.3 Software Maintenance Measurement 12
2.3.1 Size . 12
2.3.2 Complexity . 13
2.3.3 Quality . 13
2.3.4 Understandability . 13
2.3.5 Maintainability . 14

2.4 Handling Maintenance in Agile Projects 15
2.4.1 Scrum . 15
2.4.2 Kanban . 17
2.4.3 Differences between Scrum and Kanban 18
2.4.4 Scrumban . 18

2.5 Technology Stack . 20
2.5.1 Why it is important to maintain a Tech Stack? 20
2.5.2 Technology Stack of CSWSYS 20
2.5.3 Thorntail Background . 21
2.5.4 Thorntail Alternatives . 21
2.5.5 Comparison . 25
2.5.6 Final Thoughts . 27

3 Project Background and Approach 29
3.1 Project Background . 29
3.2 Project Requirements . 30

3.2.1 Functional Requirements . 32
3.2.2 Non-Functional Requirements 32

3.3 CSWSYS Architecture . 33
3.4 Approach . 34

3.4.1 Approach . 35

xi

3.4.2 Initial Plan . 37
3.4.3 Planning . 37
3.4.4 Risk Plan . 39

4 Development, Integration of the solution and Testing 45
4.1 Environment Setup . 45
4.2 CSWSYS Structure and Organization 47

4.2.1 Test Approach . 49
4.3 Dependencies Changing . 49

4.3.1 Before Migration . 51
4.3.2 After Migration . 52

4.4 EJB’s and Annotations . 57
4.4.1 @Health . 57
4.4.2 @Stateless . 58
4.4.3 Eager Instantiation Beans . 58
4.4.4 Private Members . 60

4.5 Configuration Files . 62
4.6 Unit Tests . 66

4.6.1 Replace PowerMock . 67
4.6.2 Delete Whitebox . 69
4.6.3 Unit testing with Constructor Injection 72

4.7 Regression System Testing . 74
4.7.1 Test Environment Setup . 75
4.7.2 Defect Fixing . 76

4.8 Final considerations . 80

5 Conclusion 83

Appendix A Show and Tell 93

Appendix B Regression System Testing execution reports 139

xii

Acronyms

ADA Attribute Anomaly Detect.

API Application Programming Interface.

BOM Bill of Materials.

CDI Contexts and Dependency Injection.

CSW Critical Software.

DAO Data Access Object.

DCC Data Communications Company.

DSP Data Service Provider.

EOL End of life.

JEE Java Enterprise Edition.

JIT Just-in-time.

JPA Java Persistence API.

JVMs Java virtual machines.

KPIs key performance indicators.

LTS long term support.

MTTR Mean Time To Restore.

NFRs Non-functional requirements.

POC proof of concept.

POM Project Object Model.

RSS Resident Set Size.

SDK Software Development Kits.

SLAs Service Level Agreements.

SMIP Smart Metering Implementation Programme.

xiii

SOA Service-Oriented Architecture.

SRD System Requirements Definition.

SRS Software Requirements Specifications.

SRVs Service Requests Variant.

SSH Secure Shell.

SSS System/Subsystem Specification.

STS Smart Technology Solutions.

UML Unified Modeling Language.

VM virtual machine.

WIP work-in-progress.

xiv

List of Figures

2.1 Maintenance Process (from - [6]) . 7
2.2 Modification Request (adapted from [9]) 10
2.3 Spring Boot Vs Quarkus Metrics (from - [47]) 26

3.1 Requirements Hierarchy . 31
3.2 Existing Project Architecture . 33
3.3 Initial planning for the first semester 37
3.4 First-semester plan . 38
3.5 Second-semester initial plan . 38
3.6 Second-semester . 39
3.7 Risk Matrix (from - [52]) . 40

4.1 SDK - Project Structure . 46
4.2 CSWSYS Java version . 46
4.3 settings.xml . 47
4.4 Smart Technology Solutions (STS) Checkstyle 47
4.5 Thorntail Dependencies example . 49
4.6 First errors after Java version change 50
4.7 Thontail Bill of Materials (BOM) . 51
4.8 Thorntail Metrics . 52
4.9 Quarkus Dependency . 53
4.10 Quarkus Version . 53
4.11 Jandex Maven Plugin . 54
4.12 jakarta.el dependency . 54
4.13 Microprofile Dependencies . 55
4.14 Health import change . 58
4.15 Listening for startup event (from - [60]) 58
4.16 Bean in an observer of the StartupEvent (from - [59]) 59
4.17 Startup Annotation (from - [59]) . 59
4.18 Startup Approach . 59
4.19 Field Injection . 61
4.20 Constructor Injection Fields . 61
4.21 Constructor Injection . 61
4.22 Constructor Injection Error . 62
4.23 JDBC driver Error . 63
4.24 server-config.yml . 63
4.25 Quarkus - Application.yaml . 64
4.26 HibernateORM code adaptions . 65
4.27 Config property path example . 65

xv

4.28 ConfigProperty Variable . 65
4.29 Reflection Warning . 67
4.30 PowerMock dependency . 68
4.31 Mockito dependency replace . 68
4.32 PowerMock PrepareForTest Annotation 68
4.33 Unit Test Changes - initMocks() . 69
4.34 Unit Test Changes - mockStatic . 69
4.35 Mockito-inline dependency . 69
4.36 setInternalState Inject Field . 70
4.37 Replace of setInternalState with setter 70
4.38 invokeMethod replace . 70
4.39 Private Method . 70
4.40 Public Method . 71
4.41 Package-private Method . 71
4.42 Unit Test with package-private method 72
4.43 PostConstruct visibility . 72
4.44 setUp function . 73
4.45 Close function . 73
4.46 Mock Registred in Thread error . 74
4.47 Virtual Environment Libraries . 75
4.48 Thorntail Startup Logs . 77
4.49 Expected message log change . 77
4.50 Quarkus Message Log example . 77
4.51 SystemTest Error . 78
4.52 Old Check Database Connection function 78
4.53 Quarkus Scheduled Annotation . 79
4.54 Database Connection State Logs . 79
4.55 Database Connection Down Logs . 79

A.1 1st Show and Tell . 108
A.2 2nd Show and Tell . 126
A.3 3rd Show and Tell . 138

B.1 Test Report . 142
B.2 Test Report . 146
B.3 Test Report . 150

xvi

List of Tables

2.1 Scrum - Pros and Cons (adapted from[24]) 16
2.2 Kanban - Pros and Cons (adapted from[29]) 17
2.3 Scrum vs Kanban (adapted from [30]) 18
2.4 Scrumban Pros and Cons (adapted from [32]) 19
2.5 Quarkus - Pros and Cons (adapted from [42],[43]) 23
2.6 SpringBoot - Pros and Cons (adapted from [44]) 24
2.7 JBoss - Pros and Cons (from [49]) . 25
2.8 Quarkus vs Spring Boot Comparison (adapted from [42]) 25

3.1 CSWSYS component static analysis 30
3.2 Risks table . 43

4.1 Overall dependency changes . 56
4.2 Thorntail CSWSYS component static analysis 80
4.3 Quarkus CSWSYS component static analysis 80
4.4 Overall CSWSYS Changes statistic 81

xvii

Chapter 1

Introduction

Software maintenance plays a very important role in the world of systems and
applications. A software system is created with the intention of being used for
many years, and this implies that it must be compatible with the constant change
and advancement of technology.

Continuous software maintenance will guarantee good performance, fewer is-
sues, and the ability to adapt to changes. According to statistics, when it comes to
software, 60% of the cost is associated with maintenance. From the overall main-
tenance costs 60% are spent on improving the solution [1]. If the software is not
regularly maintained, the costs of this process can be extremely large, and some-
times the company cannot afford these costs. Software maintenance enhances the
growth of the software, and cannot be considered as an option, but as an essential
part of the software development.

1.1 Project Context

Critical Software (CSW) provides systems, software and data engineering ser-
vices for safety, mission and business-critical applications, helping to ensure clients
meet the most demanding quality standards for safety, performance and reliabil-
ity. Its data engineering products and services also provide clients with the in-
formation they need to manage their important assets, helping them to achieve
better business performance.

CSW was founded in 1998 by a multidisciplinary team, including PhDs in
specialised fields of information technology. CSW competitive strengths and ad-
vantages lie in three major factors: software quality, technology innovation, and
global vision. It supports customers across diverse markets, including Telecom,
the public sector, Energy, Finance, Industry, Aerospace, transportation, and de-
fence.

CSW’s core competencies cover a wide range of areas, including system plan-
ning and analysis, system design, verification, development, integration and main-
tenance. The company has been operating in mature markets since 1998, with

1

Chapter 1

NASA as its first client, and has offices in Portugal, the United Kingdom, Ger-
many and USA. The Energy sector is one of the sectors where Critical Software
has been excelling by providing business critical systems development services
to several leading companies in their sectors of activity and in markets with high
maturity in the Energy sector such as United Kingdom, Switzerland, Italy and
Denmark.

CSW has a division called Smart Technology Solutions (STS) which is respon-
sible for a project that is embedded within the energy sector. This is where the
term "UK SMIP" comes in. Smart Metering Implementation Programme (SMIP),
"is an energy-industry led programme which aims to roll-out approximately 53
million smart electricity and gas meters to domestic properties and non-domestic
sites in Great Britain. The aim of SMIP is to provide consumers with “real time”
information on their energy consumption" [3]. There are two types of smart me-
ters: first and second generation, which are referred to as SMETS1 and SMETS2
smart meters, respectively. SMETS stands for Smart Metering Equipment Techni-
cal Specification. "When energy companies began installing smart meters several
years ago, they fitted first generation (SMETS1) smart meters" [4].

Critical Software is currently working with an entity called Data Communica-
tions Company (DCC), which is the "digital spine of the energy system" [2] and is
responsible for managing the smart-meters communication. CSW provides soft-
ware development, testing, and products to the UK SMIP since early 2014, and
has since then contributed some major software components for this infrastruc-
ture. A large infrastructure like this obviously needs an enormous amount of
maintenance. A system with so many users and such an impact on their lives
must always be operational. In this project, software maintenance is essential
since any modifications that need to be made must be made quickly and without
affecting the user.

This work will focus in one of the major systems developed by CSW for the
UK SMIP. Due to the sensitivity of this system in the UK SMIP, it was decided
to refer to it throughout the document as CSWSYS. Therefore, for the purposes
of this work, the CSWSYS is the software system developed and maintained by
CSW for the UK SMIP and CSWSYS component the component which is part of
CSWSYS and the focus of the work.

1.2 Objectives

The primary objective of this internship is to migrate the CSWSYS component
from Thorntail to Quarkus following the software maintenance process as this is
a maintenance task. Thorntail has reached its end-of-life, and Quarkus has been
chosen as the alternative technology for its replacement.

Given that the CSWSYS component uses Thorntail as it application server, it
is crucial to maintain all the current requirements after the migration. Therefore,
it is essential for the CSWSYS component to retain its capability to receive and
validate service requests. It is the component responsible within the CSWSYS to

2

Introduction

perform this task.

By the end of the internship, the CSWSYS component should be successfully
implemented using Quarkus, and both unit and system tests should be con-
ducted to ensure proper functionality.

In summary, this internship aims to achieve the following objectives:

• Understand the significance of software maintenance in the software life
cycle and study the process involved in maintaining software. Identify the
different types of maintenance and the techniques employed;

• Implement all the necessary modifications in Quarkus, adhering to the soft-
ware maintenance process;

• Validate and test the migrated component to ensure its functionality is free
from faults and meets the already defined requirements.

1.3 Structure of the document

This document is structured as follows:

• Chapter 1 contains the detailed objectives of the internship, an overview of
the work and the company;

• Chapter 2 contains the study of software maintenance and the analysis of
alternative technologies to proceed in the migration of the component;

• Chapter 3 contains the existing project requirements, the existing architec-
ture and the approach to implement Quarkus;

• Chapter 4 contains the developed work, approaches and challenges in order
to complete the migration of the CSWSYS component;

• Chapter 5 contains the conclusions, summarises the developed work, the
main limitations and, finally, future work.

3

Chapter 2

Practices in Software Maintenance

Before diving into analysis of the possible solutions, it is important to understand
the importance of software maintenance in the software life cycle and some con-
cepts within the software maintenance world.

This chapter reviews the fundamental concepts of the software maintenance.
Section 2.1 introduces the processes involved in the software life cycle. Section 2.2
provides detailed information about the software maintenance phase, including
a description of its phases, the various types of software maintenance that exist,
and some software maintenance techniques. Section 2.3 addresses the main soft-
ware maintenance measurements. How maintenance is handled in agile projects
is analyzed in section 2.4. In section 2.5, the importance of maintaining a technol-
ogy stack is highlighted. Furthermore, a connection is made between the signif-
icance of maintaining the tech stack and the current CSWSYS’s tech stack. This
connection addresses the problem and rationale behind the necessity of migrat-
ing to Quarkus.

2.1 Software Life Cycle Processes

Developing software is not just about starting to write code, it needs to follow a
set of structured processes that enable the production of high-quality, low-cost
software in the shortest possible production time. There is a set of technical
processes defined in ISO 12207:2017 (which is a comprehensive framework for
organisations to implement software projects in a professional and well-planned
way), that cover all steps of a software life cycle: starting with business or mission
analysis, moving on to the system/software requirements definition, defining the
architecture, implementing and integrating the solution, validating the solution,
and putting it into operation. Once in operation, the product is in the mainte-
nance phase until it is disposed [7]. In addition to these, there are other processes
referenced in the ISO/IEC/ IEEE 12207:2017.

The next section will present the maintenance processes in the context of soft-
ware development on which this work focuses.

5

Chapter 2

2.2 Software Maintenance

The software life cycle does not end when the product is delivered to the cus-
tomer. The software product requires significant change and improvement. Once
in operation, defects are uncovered, operating environments change, and it is
necessary to maintain the product to keep it updated and bug-free.

Software maintenance is an integral part of the software life cycle and is not
less important than software development. It is not just about fixing bugs; it
involves keeping the software secure and scalable. The maintenance process ends
when the software product is finally retired. It is important to understand how
software maintenance is handled, starting by identifying the processes.

2.2.1 Maintenance Processes

In the context of software engineering, as mentioned in Software Life Cycle Pro-
cesses (2.1), software maintenance is essentially one of the many technical pro-
cesses. The maintenance process contains the activities and tasks necessary to
modify a software product while keeping its integrity.

According to ISO/IEC/IEEE 14764, which is a document that provides guid-
ance for the maintenance of software, based on the maintenance process defined
in ISO/IEC/ IEEE 12207:2017, the maintenance life cycle begins with Process Im-
plementation (2.2.1.1) where a planning for maintenance is done and ends with
the Retirement (2.2.1.6) of the product. As mentioned above, the objective of this
process is to modify an existing product (already delivered to the client) in order
to make enhancements while preserving its integrity. The maintenance process,
as represented in the Figure 2.1, is composed of the following processes [6]:

1. Process Implementation;

2. Problem and Modification Analysis;

3. Modification Implementation;

4. Maintenance Review/Acceptance;

5. Migration;

6. Retirement.

2.2.1.1 1 - Process Implementation

The process of maintaining software starts with process implementation. The
maintenance plan and procedures must be developed during this phase in order
to be put into action during the maintenance process. The strategy to be used to
maintain the system should be documented in the maintenance plan, while the

6

Practices in Software Maintenance

Figure 2.1: Maintenance Process (from - [6])

maintenance procedures should give a more specific approach on how to accom-
plish the maintenance [6]. In general, this phase is more focused on planning the
maintenance to be done on the system.

2.2.1.2 2 - Problem and Modification Analysis

As can be seen in Figure 2.1, this phase and the following ones (2.2.1.3 and 2.2.1.4
), are called iteratively when a modification request arises [6]. This phase involves
the analysis and identification of problems and modifications requests. In order
to assess the potential impact of any proposed changes, an analysis of the impact
of the changes is also performed. This phase also includes classifying the type of
maintenance to be performed, which will be discussed in more detail in the next
sub-section.

2.2.1.3 3 - Modification Implementation

This phase involves developing and implementing the modifications to the soft-
ware product [6]. In the first instance, analysis is performed to identify the ele-
ments to be modified (and document this information), as well as the areas that
will be impacted by the modifications and the documentation that needs to be
updated. In a second instance, the implementation of the identified modifica-
tions begins. It is also necessary to ensure that the original requirements are not

7

Chapter 2

affected by the changes.

2.2.1.4 4 - Maintenance Review/Acceptance

During the maintenance review/acceptance phase, the primary objective is to
ensure the accuracy of system modifications and their adherence to authorized
standards, employing the appropriate methodology [6]. This phase involves a
comprehensive examination of software changes in order to verify their compli-
ance with the requirements and specifications set forth during the analysis and
implementation phase, while also ensuring that they do not negatively impact
the overall functionality of the software.

2.2.1.5 5 - Migration

During the software life cycle, it is sometimes required to make changes in order
to function in a new environment. This phase involves moving the software to a
new environment, and this requires performing some tasks such as, planning the
migration, through a migration plan. The migration plan covers the requirements
analysis, the migration tools, migration execution and migration verification [6].
This phase is important as it helps solve problems such as changing business re-
quirements, compatibility issues, the end-of-life of the old environment, or taking
advantage of the new features and capabilities of the new environment.

2.2.1.6 6 - Retirement

When a software product has reached the end of its useful life, it must initiate the
retirement process [6]. To determine whether it is beneficial to retain or retire the
outdated technology and whether a replacement software should be adopted,
an analysis should be conducted. The retirement of software necessitates care-
ful planning through the development of a retirement plan that evaluates the
retired requirements, the impact of retiring the software, identifies potential re-
placements (if applicable), and outlines all essential actions required to execute
the retirement successfully.

2.2.2 Types of Software Maintenance

Maintenance is necessary to make sure that the software product continues to
satisfy user requirements, but this process may consume a considerable amount
of life cycle costs. The analysis of the type of maintenance to be performed helps
to understand the costs. There are five types of maintenance [6] that can be per-
formed, and will be detailed bellow:

• Preventive Maintenance
Preventive Maintenance is the modification of a software product after de-
livery to detect and correct latent faults in the software product before they

8

Practices in Software Maintenance

become operational faults [5]. In general, preventive maintenance encom-
passes any type of intention-based activity that allows to forecast upcoming
problems and prevent maintenance problems before they occur [10], such
as code reviews and testing. Preventive Maintenance is undertaken to im-
prove maintainability of the software [14] and is about Software reegineer-
ing (e.g. Data restructuring, Code restructuring);

• Corrective maintenance
Corrective maintenance refers to modifications needed by actual errors in
a software product. It is a reactive modification of a software product per-
formed after delivery to correct discovered problems [6]. It involves fixing
errors or bugs as quickly as possible to restore normal operation of the soft-
ware. Corrective maintenance is an important part of the software develop-
ment process, as it helps to ensure that the software is functioning correctly
and is in accordance with requirements. It gathers a set of tasks such as:
understanding the system, evaluate the problem, repair code and testing;

• Adaptive Maintenance
Refers to the modification of a software product performed after delivery
to keep a software product usable in a changed or changing environment
[5]. This type of maintenance performs a set of tasks such as: understand-
ing the system, defining the adaption requirements, developing prelimi-
nary and detailed adaption design, code changes and testing [8]. Adaptive
maintenance is an important part of the software life cycle as it allows for
the system to remain operational when the platforms on which it is run-
ning change. This is achieved by integrating the software systems to new
platforms, environments, languages and third-party applications;

• Perfective Maintenance
Refers to the modification of a software product after delivery to provide
enhancements for users, improvement of programme documentation, and
recoding to improve software performance, maintainability, or other soft-
ware attributes [5]. It aims to apply changes in the system in order to in-
crease some of its functional and non-functional quality characteristics [10].
This type of maintenance includes understanding the system, diagnosing
and defining requirements for improvements, and, finally, testing [8]. These
changes (adding or deleting features) may arise as a result of new problems
and new ideas and keep the software in line with the users needs as well as
the constant growth of the technology.

• Emergency Maintenance
It is an unscheduled modification performed to temporarily keep a soft-
ware product operational pending corrective maintenance [6]. This type of
maintenance is usually not planned and for that reason is inefficient and
expensive. It is typically performed under time pressure, as the goal is to
fix the problem as quickly as possible to minimize the impact on users.

Figure 2.2 represents the types of maintenance and when to use them.

9

Chapter 2

Figure 2.2: Modification Request (adapted from [9])

In general, each type of software maintenance has its own goals and approaches.
When a modification request arrives, if the software behaviour does not meet the
requirements, the request is classified as a software correction and identified as
corrective or preventive maintenance. Corrective maintenance involves fixing
errors or bugs in the software. Preventive maintenance involves performing ac-
tivities to prevent future problems with the software.

On the other hand, if the software behaviour meet the specifications, when
the modification request comes in, the request is classified as an enhancement
and identified as adaptive or preventive maintenance. Adaptive maintenance in-
volves making changes to the software to ensure it continues to function correctly
in a changed environment. Perfective maintenance involves making improve-
ments to the software to enhance its performance or functionality. Emergency
maintenance is performed on an urgent basis in response to a critical problem or
failure in the software.

2.2.3 Techniques for Maintenance

The types of software maintenance that can be performed were covered in the
previous sub-section: Corrective (defects), Preventive (to make future mainte-
nance tasks easier), Adaptive (changes in environment) and Perfective (accom-
modate new features or delete). However, before beginning any change, it is
necessary to comprehend the product as a whole as well as the impact of the
change.

The following techniques help analyse and understand the behaviour of the
software product:

10

Practices in Software Maintenance

• Program Comprehension
Analysing old software systems has become an important task in software
maintenance. Legacy systems have been subject to extensive analysis in
order to make improvements and modifications. If these systems are not
changed, they will become unusable. So the first step is to understand the
software by using program comprehension. Programmers spend consid-
erable time reading and understanding programmes in order to implement
changes. Code browsers are key tools for programme comprehension and
are used to organise and present source code [5]. If the system does not
have good documentation, it can be an obstacle to performing this task,
consuming much more time than necessary.

• Reengineering
Reengineering is defined as the examination and alteration of software to
reconstitute it in a new form, which includes the subsequent implementa-
tion of the new form. It is often undertaken not to improve maintainability
but to replace ageing legacy software [5]. This can range from fully au-
tomatic approaches to manual reimplementations, including restructuring
techniques, formal transformations, injecting component technologies, and
replacing old user interfaces or database technologies [11]. Moving from an
old legacy system to a new one is called software reengineering.

• Reverse Engineering
Reverse engineering is the process of analysing software to identify the soft-
ware’s components and their inter-relationships and to create representa-
tions of the software in another form or at higher levels of abstraction [5].
It is a process of recovering the design, requirements and functions of a
product from an analysis of its code [12]. Reconstructs concepts such as
system architecture and business rules from the source code and from the
documentation. This process does not modify the software or create a new
one. Considering the time devoted to program understanding, this pro-
cess offers real scope for reducing maintenance costs. The understanding
obtained through reverse engineering can support the implementation of
change through techniques such as forward engineering, restructuring, and
reengineering [14].

In the sub-section 2.2.2, we covered different types of maintenance, and each
type has its own approach. But there is an activity that is common to all, which
is program comprehension. Before starting any modification to the system, us-
ing corrective, adaptive, preventive, perfective, and emergency maintenance, it is
crucial to understand the software.

Reverse engineering is also a useful technique in a corrective change because it
makes identifying defective program components easier. Through data-flow and
control flow diagrams, charts can help identify and trace the required changes.
For adaptive and perfective changes, the reverse engineering technique presents
a vision that facilitates the understanding of the system components, making it
possible to understand where the new requirements fit and how they relate to the
existing components [14]. In the case of preventive maintenance, the graphical

11

Chapter 2

representations that reverse engineering provide help with future maintenance.
Reengineering also prevents foreseen maintenance problems.

2.3 Software Maintenance Measurement

The purpose of measurement is to collect, analyze and report information in order
to support a good management and to demonstrate the quality of the software
product. It is the process of using metrics to track and evaluate the effectiveness
and efficiency of the software maintenance process.

There are several reasons to measure software. Software measurement allows
for the evaluation of the use of different tools, libraries, and methods so that when
the time comes to make a decision, the choice is the one that fits best. Through the
measurement, the maintainer can also determine whether or not the maintenance
is achieving the goal. If the goals are not met, then corrective actions can be
taken. Sometimes there is room to improve the characteristics of the software,
but without objective measures, it is difficult to assess such improvements.

There are several measures that maintainers may need to take. These mea-
sures can be derived from the attributes of the software, the maintenance process,
and personnel. However, the source code is the most commonly used source of
measures because it is sometimes the only information about the system avail-
able. There may be documentation available, but it may be out of date or inac-
curate [14]. Therefore it is possible to take some measures from source code such
as:

• Size;

• Complexity;

• Quality;

• Understandability;

• Maintainability.

2.3.1 Size

As mentioned before, the source code is usually the main source of measure-
ments, so one of the commonest ways of measuring the size of a program is by
counting the number of lines of code [14]. The focus is on the number of lines
that have been added or modified during the maintenance process. This process
makes it easier to determine the effort associated with the changes made.

12

Practices in Software Maintenance

2.3.2 Complexity

One of the major problems that software maintainers face is dealing with the
increasing complexity of the software source code that they have to modify. A
system may be complex because of poor programming practices or maintainabil-
ity concerns were not taken into account during development [15]. "The more
complex a program is, the more likely it is for the maintainer to make an error"
[14]. As the system’s complexity grows, it can become increasingly challenging
to maintain a complete understanding of it. Complexity may have a direct im-
pact upon maintenance costs. The more difficult a highly complex application
system is to maintain, the more billable hours it will accumulate in the course of
the maintenance and enhancements which consume most of a system’s life cycle
costs [15].

There are two types of complexity metrics: Cyclomatic complexity and Cog-
nitive complexity. Cyclomatic complexity is based the code structure and on the
execution flow (number of linearly independent paths). A function with a cy-
clomatic complexity below 10 can be considered simple and testable, while a cy-
clomatic complexity greater than 20 suggests an overly complex function [80].
On the other hand, cognitive complexity focuses on human understandability. It
takes into account both the code structure and cognitive factors, such as recursive
calls. This metric indicates how easy or difficult it is for a human being to com-
prehend the purpose and behavior of a piece of code, aligning with the concept
of understandability (sub-section 2.3.4). A cognitive complexity of 15 is a good
metric for a understandable code [80]. SonarQube [78] is a tool that allows to
measure these complexity indexes.

2.3.3 Quality

Software quality is an important consideration in the maintenance of a software
product [6]. It is possible to evaluate the software quality in two ways: Product
quality and Process Quality.

Product quality is measured by the number of change requests received after
the system has been put into operation. These requests can indicate the degree of
user satisfaction. Another way to measure the product’s quality is by the num-
ber of faults detected after the software system becomes operational. The process
quality can be tracked by two variables: schedule and productivity. Firstly, the
schedule is obtained through the planned and actual work time, and the produc-
tivity is obtained by the number of lines of code that have been modified or added
by the effort required to make the modification (from analysing the modification
to the implementation) [14].

2.3.4 Understandability

"Understandability is the concept that a system should be presented so that an
engineer can easily comprehend it" [16]. Program understandability is the ease

13

Chapter 2

with which the program can be understood, that is, the ability to determine what
a program does and how it works by reading its source code and accompanying
documentation [14]. As the complexity of a program increases, its understand-
ability tends to decrease. Understandability is a crucial factor in software engi-
neering. The ease of understanding does not depend only on the source code but
also on the available documentation, maintenance processes, and maintenance
personnel.

A system can be understood if it is: Complete - the system must contain a
set of sources that contain all the key information; Concise - The source code
should not have an excessive amount of detail, so the developer can focus on
the task; Clear - Consistency and good practices should be used. Having clear
documentation makes the process of understanding the application easier, saving
extra effort. Organised - The software documentation and source code should be
easily located in order to facilitate the cross-referenced information [17].

Setting a code style can be useful as it improves the readability of the code
by using a consistent style, making it easier for developers to understand and
maintain the code. A well-defined code style often includes best practices and
guidelines for writing clean, efficient, and maintainable code. By adhering to the
code style, developers are more likely to follow these best practices, resulting in
higher code quality.

2.3.5 Maintainability

Maintainability is defined as the capability of the software product to be modified
[13]. The maintainability of a system may be used as an indicator of its quality.
According to ISO 9126, there are four maintainability sub-characteristics:

• Analysability: The capability of the software product to be diagnosed for
deficiencies or causes of failures in the software, or for the parts to be mod-
ified to be identified [13];

• Changeability: The capability of the software product to enable a specified
modification to be implemented [13];

• Stability: The capability of the software product to avoid unexpected effects
from modifications of the software [13];

• Testability: The capability of the software product to enable modified soft-
ware to be validated [13].

Maintainability can also be measured by Mean Time To Restore (MTTR), and this
includes both repair time and testing time. By improving the effectiveness of the
repair teams and processes, the objective is to reduce this number as much as
possible.

14

Practices in Software Maintenance

2.4 Handling Maintenance in Agile Projects

Agile methodologies have been gaining popularity over the years, "due to the
fact of producing high-quality software systems" [20], and have been adopted
to deal with uncertainty in software development projects. The main advantage
of using Agile methodologies is not just the fast delivery but also the flexibility
to accept future changes during the life of software development and the active
participation of the customer throughout the development lifecycle. Many agile
methodologies have been developed so far, which help in developing and main-
taining the software at a lower cost [18]. The agile software life cycle does not
have a specific moment for maintenance, and as presented previously, software
maintenance is a vital phase of the software life cycle.

Agile methods have in mind software development in general, not necessarily
software maintenance. Therefore, the question that arises is where does Agile fit
in the world of software maintenance projects. Maintenance projects, by their
nature, are event-driven, which means they are reactive to events such as when
a failure in the system occurs, when a change is requested by a customer... It is
difficult to plan the work for the life of a software product in production. The
Agile method of choice for software maintenance projects has to be picked or
tailored keeping in mind these specific characteristics of maintenance projects.

Agile methods include common characteristics such as an interactive develop-
ment process, small teams working closely together, light documentation, close
customer involvement, frequent testing, knowledge transfer through openness,
and a focus on a high quality of code and product [19]. Studies have highlighted
that Agile methods can help speed up the process and improve code quality, team
motivation, and communication between members of the maintenance team, and
an interactive lifecycle can be seen as advantageous for maintenance due to the
short-term nature of the work [19]. A common characteristic is light documen-
tation, and maintenance engineers do not like less documentation because they
rely on it to understand the system [20]. Some agile methodologies will be pre-
sented in the following sub-sections in order to determine which are best suited
for software maintenance.

2.4.1 Scrum

Scrum is an agile framework for managing and completing complex projects.
This agile framework helps teams manage and structure their work through a set
of practices and principles. It is based on three pillars: transparency, inspection,
and adaptation [23].

The Scrum framework includes specific roles, events, and artifacts that help
to align the team and guide the process. The key roles in Scrum are the Prod-
uct Owner, Scrum Master, and Development Team [23]. The Product Owner is
the member of the Scrum Team who ensures that the group produces the most
valuable product possible [23]. The Scrum Master is responsible for ensuring the
team is following the Scrum process and for helping the team and organisation

15

Chapter 2

be as effective as they can be. Finally, the development team is responsible for
completing the work and creating the product.

The events that constitute framework scrum:

• Sprint - Sprint is a time-boxed short cycle which contains all the other scrum
events. A new sprint starts immediately after the conclusion of the previous
sprint [23];

• Sprint Planning - Event where the team meets to plan the work for the
upcoming sprint [23];

• Daily Scrum - A short stand-up meeting where the team reviews progress
toward the sprint Goal [23];

• Sprint Review - Event held at the end of the sprint where the scrum team
demonstrates the work completed during the sprint to stakeholders and
what has changed in their environment [23];

• Sprint Retrospective - The Scrum Team gets together during this event to
reflect on the last sprint and identify areas for improvement [23].

Scrum artifacts includes:

• Product Backlog - A prioritized list of what is needed to improve the prod-
uct;

• Sprint Backlog - A highly visible list of work that is the Developer’s plan
for the Sprint;

• Increments - "Small pieces of work that serve as concrete stepping stones
toward the Product Goal" [23].

Table 2.1: Scrum - Pros and Cons (adapted from[24])
Pros Cons

Teams can accomplish project
deliverables more rapidly and effectively
with the help of Scrum.

Scrum often leads to scope creep,
due to the lack of a definite end-date

Short sprints enable changes based on
feedback a lot more easily.

Scrum requires experienced and
high-level individuals.

The individual effort of each team
member is visible during daily scrum
meetings.

Team members can become
frustrated by daily meetings.

Scrum ensures efficient time and
money management.

It is challenging to implement the
Scrum framework with large teams.

The team gets clear visibility
through scrum meetings.

Implementing quality is challenging
until the team goes through an
aggressive testing process.

It is important to note that these are general pros and cons of Scrum, as with
any framework it is success relies on the team and organization culture and its
ability to adapt the framework to their own needs.

16

Practices in Software Maintenance

2.4.2 Kanban

As Scrum, Kanban is also an agile framework. Real-time capacity communication
and complete work transparency are required with this framework [26]. Kanban
is based on principles of visualising the flow of the work and limiting the work-
in-progress (WIP).

The key elements of Kanban are:

• Kanban Board - A Kanban board is a tool designed to help visualize work,
limit work-in-progress, and improve the efficiency and flow of the work
[27];

• Work in progress (WIP) limits - Limits set the maximum amount of work
that can exist in each status of a workflow. This helps to control and balance
the flow of work and identify Bottlenecks [28];

• Pull-based system - Work is pulled through the process as capacity be-
comes available.

Although Kanban itself does not prescribe specific meetings, there are several
types of meetings commonly used in Kanban in order to facilitate improvement:
Daily Stand-up, which is a short daily meeting where team discuss progress, chal-
lenges and plans for the day; Replenishment Meeting, which focuses on replen-
ishing the backlog of work; Retrospective Meeting, which is a reflective session
held after a specific period where the team discusses what went well, what did
not go well, and ideas for improvement. Also aims to identify lessons learned,
celebrate sucesses and define actions/experiments in order to enhance team per-
formance; Delivery Planning which focuses on understanding requirements, ex-
pectations, and coordinating efforts.

Table 2.2 will present the advantages and disadvantages of Kanban.

Table 2.2: Kanban - Pros and Cons (adapted from[29])
Pros Cons

Kanban boards are easy to visualise
and keep everyone on the
same page..

There are no timing parameters,
kanban boards have no dates (no
timeframes are associated with
each phase).

Limits the amount of work
in progress (WIP) in order to
ensure quality, when the columns
start getting too long, indicate a
disconnect between resources.

Kanban Boards can become very
complex and confusing, and if not
updated may not reflect reality.

Flexible, so the work to be done can
be rearranged and reprioritized .

Teams struggle to focus on priorities
since there are no clearly defined,
tight responsibilities.

17

Chapter 2

2.4.3 Differences between Scrum and Kanban

Both Scrum and Kanban belong to Agile and Lean methods, where the focus is
to quickly respond to customer requests. Both are highly adaptive and based on
highly collaborative and self-managing teams [33]. They are not completely in-
compatible, there is even a framework called Scrumban that takes the best of each
and merges them. Scrumban will be discussed separately in the next subsection.
Table 2.3 present the main differences between both agile frameworks.

Table 2.3: Scrum vs Kanban (adapted from [30])
Kanban Scrum

Roles There are no pre-defined roles
for a team.

Each team member has a
predefined role (Scrum Master,
Product Owner, Team Member)

Due Dates Continuos delivery. Deliverables are determined
by sprints.

Delegation &
Prioritization

Uses a “pull system,”that
allows team members to
only “pull” new tasks once
the previous task is complete.

Uses a “pull system” however
an entire batch is pulled for each
iteration.

Change policy

Allows for changes to be made
during the project,allowing
for iterations and continuous
improvement prior to the
completion of a project.

Changes during the sprint are
strongly discouraged.

Best Application

Best for projects that are
reactive to events and
do not have a consistent
or planned workload.

Best for teams with stable
priorities that may not change
as much over time.

In summary, Scrum is a framework that is focused on time-boxed iterations
and delivering working software, while Kanban is focused on visualizing the
flow of work, managing and improving processes. Both frameworks can be ef-
fective in their own right and they can also be combined in a hybrid approach
called Scrumban.

2.4.4 Scrumban

Scrumban is a definition of Scrum + Kanban [31] and as mentioned before, is an
agile integration of Scrum and Kanban. Merges the structure and predictability
of Scrum with Kanban’s flexibility and continuous workflow. Scrumban can help
a team benefit from the prescriptive nature of Scrum and the freedom of Kanban
to improve their processes [25].

In Scrumban, the teams use the time-boxed sprints of Scrum to plan and pri-
oritise their work and the Kanban board to visualise and manage the flow of
work. The teamwork is organised in small iterations and tracked with the help of
a visual board. When it becomes necessary to decide which user stories and tasks
should be completed in the next iteration, on-demand planning sessions are con-
ducted. The Kanban work-in-progress (WIP) limit is intended to keep iterations

18

Practices in Software Maintenance

short [25].

Table 2.4: Scrumban Pros and Cons (adapted from [32])
Pros Cons

Bottlenecks can be identified and
reduced by limiting the product
backlog and each stage of the
workflow.

Team managers have less control,
in Scrumban there are not specific
roles on development team. This
approach can cause some confusion
and disorganization.

Enforces transparency, by taking
advantage of the visual features
of kanban (same board). Each
stage is visible not only to the
development team but to all
stakeholders.

It is relatively new, and because of
that, there aren’t many established
processes, and the documentation is
not very extensive.

Everyone can see what work is
being done, which helps to save
time and prevents the duplicated
work.

It is difficult to monitor each element’s
effort and contribution because each
member selects their own tasks, and
there are not mandatory daily meetings
to track.

Continuos Workflow, by setting
limits in work-in-progress (WIP).
Also no daily stand-ups reduce the
levels of stress and frustration.

As mentioned before, maintenance projects are event-driven, and there is an
exigency to react to a change request or to fix bugs that are unpredictable. Scrum-
ban and Kanban enters the picture at this point. When it comes to maintenance,
there are some details in the different methodologies that may be better suited to
the unpredictable nature of changes. While Scrum is better suited when work is
prioritised in batches and priorities do not change in less than one sprint dura-
tion, Kanban is more suitable for work where there is a large degree of variability
in priority. Due to the nature of maintenance tasks, the concept of working on a
continuous delivery model like Kanban works better compared with sprint de-
livery [33]. Scrum’s inflexibility during sprints and inability to adapt to changes
make it a poor methodology for software maintenance. On the other hand, Kan-
ban focuses continuous delivery. All incoming tasks are listed on the Kanban
board (considering the WIP limits) and can be assigned a priority based on their
importance and urgency [33]. As the scrumban also has the flexibility of kanban
it is also an excellent tool for managing ongoing project maintenance chores.

In the Critical Software (CSW) project, initially scrumban was used because
there was no product owner and there were still sprints, but recently the Kan-
ban methodology was adopted, and as we have seen, it is the most appropriate
methodology for software maintenance.

19

Chapter 2

2.5 Technology Stack

The last section examined how agile projects handle software maintenance, and
technology stacks often play a role in determining the tools and processes that
teams use to implement agile methodologies. Agile methodologies prioritize flex-
ibility and adaptability, and the choice of technology stack can have a significant
impact on a team’s ability to meet these goals. Firstly, it is essential to define the
technology stack concept.

A technology stack (sometimes also called Tech Stack) is a set of technologies
used to build and run an application [35]. Typically this comprises of program-
ming languages, frameworks, a database, front-end tools, back-end tools, and
applications connected via APIs.

The technology stack for an agile project needs to be carefully chosen to ensure
that it is well-suited to the needs of the project. The difficulty of maintaining and
scaling the application and how the application will behave now and in the future
depends on the chosen tech stack [34].

2.5.1 Why it is important to maintain a Tech Stack?

The technology stack of a project is one of the main elements that needs to be
constantly maintained because the smooth running of the project depends on it.
Software maintenance and the tech stack are related in that the maintenance of a
software system or application can be impacted by the technologies in the stack.

In terms of compatibility, if the software uses technologies that are no longer
supported or are incompatible with other technologies in the stack, it can be more
difficult to maintain. On the other hand, the software can also be affected in
terms of performance, since using outdated or inefficient technologies can make
the software slower or use more resources than it really needs. Using outdated
technologies can also impact the security of a software system, since these tech-
nologies can make the software more vulnerable to attacks. Continuously main-
taining the tech stack and updating to newer and more secure technologies helps
protect the software from these threats.

Regularly maintaining both software and technology stack is important for
ensuring that the software is stable, efficient, and secure. In the next section 2.5.2,
will be presented the tech stack that is currently being used within the project.

2.5.2 Technology Stack of CSWSYS

The tech stack that is currently being used is:

• Thorntail as building framework;

• MySQL as database language;

20

Practices in Software Maintenance

• Java 8 as the development Language;

• Docker;

• Maven 3.6.

Thorntail will be the technology covered in the following sub-section since it
is the target of the work. Firstly, a description of Thorntail will be made, followed
by a description of the problem that this technology has and, finally, possible
solutions.

2.5.3 Thorntail Background

Thorntail is a MicroProfile certified framework, designed to facilitate the devel-
opment of cloud-native applications by leveraging the power of Enterprise Java
components. Based on WildFly Java application server, providing a reliable foun-
dation for the creation of small, stand-alone microservice-based applications [36].

Thorntail was the application upon which the whole CSWSYS business-level
code was deployed. The historic reason for selecting Thorntail in 2018 was driven
by the lack of available Java EE-compatible application servers that offered a
single-step deployment setup, which is particularly attractive for a containerized
orchestration platform.

The Thorntail project has reached its End of life (EOL), May 31, 2021 [37].
And as we saw in section 2.5.1, using legacy software can bring problems and
vulnerabilities to the system. Therefore, it is necessary to maintain the tech stack
updated and replace Thorntail with a long term support (LTS) technology, and
that technology needs to have the same or better performance than Thorntail.
Since Thorntail is the focus of the study, the other technologies in the CSWSYS
tech stack will not be addressed.

2.5.4 Thorntail Alternatives

In this sub-section, different alternatives will be discussed in order to replace
Thorntail that follows to the same standards as CSW.

2.5.4.1 Quarkus

An alternative to Thorntail suggested by RedHat was Quarkus. Quarkus is a full-
stack, Kubernetes-native Java framework made for Java virtual machines (JVMs)
and native compilation, optimizing Java specifically for containers and enabling
it to become an effective platform for serverless, cloud, and Kubernetes envi-
ronments [38]. Designed to work with HotSpot VM and GraalVM (a universal
virtual machine for running applications written in a number of languages, in-
cluding Java and JavaScript), for native compilation of the application.

21

Chapter 2

The main feature is the use of extensions, which work like regular Maven
dependencies. These include the dependency itself along with the appropriate
configuration files that are needed for use in native images. Quarkus applica-
tions are optimised for low memory usage and fast startup times, because this
framework was built around a container-first philosophy.

GraalVM is a polyglot virtual machine (VM) capable of compiling Java code
(and many other hosted languages) into Java bytecode that is quicker and more
efficient than the regular JVM thanks to Just-in-time (JIT) compilation and a set
of optimizations. An important feature of GraalVM is the ability to compile code
into lightweight Native Images. These images are generally much quicker to start
up due to being extremely optimized. Native images also have a lower memory
footprint than traditional images, due to an in depth analysis of the code at com-
pile time that removes unused code and the compilation of the code that will
effectively be required.

To achieve the fast startup times and low memory usages, the applications are
optimised in the following ways:

• Build Time Processing
Quarkus operates on the principle of performing extensive processing dur-
ing build-time, akin to what traditional frameworks do during runtime.
This includes tasks such as configuration parsing, classpath scanning, and
feature toggling based on classloading [40]. By conducting thorough pro-
cessing at build-time, only the necessary classes are included at runtime,
eliminating the loading of unused classes into the production JVM. Dur-
ing build-time, Quarkus prepares the initialization of all application com-
ponents, processes metadata, reduces memory usage, and facilitates faster
startup times [40];

• Reduction in Reflection Usage
Reflection is a built-in feature in the Java programming language that en-
ables a running Java program to inspect and manipulate its own internal
properties, commonly referred to as "introspection" [41]. Quarkus tries as
much as possible to avoid reflection. By reducing reliance on reflection op-
erations, Quarkus achieves shorter boot times and reduced memory usage,
enhancing overall efficiency and performance [40];

• First-Class Support for GraalVM Native Images
An important feature of GraalVM is the ability to compile code into lightweight
Native executable. When this happens, the boot time is much faster and can
run with a much smaller heap than a standard JVM. Also, the native com-
piler uses aggressive dead-code elimination techniques to only embed the
parts of the JVM and classes that are absolutely required by your applica-
tion [40];

• Native Image Pre-Boot
The maximum frameworks are pre-booted during native compilation. This
way, the native executable has already run most of the startup code and
serialized the result into the executable, providing faster startup [40].

22

Practices in Software Maintenance

Table 2.5: Quarkus - Pros and Cons (adapted from [42],[43])
Pros Cons

Good and simple documentation
on web. Almost every solution can
be found in its community pages.

The installation of the Graal VM
can be challenging.

Quarkus significantly reduces the
application boot time as compared to
alternative frameworks. The reasons
for this are the build-time metadata
processing and the use of GraalVM
or Substrate VM to create standalone
native images.

Lack of Solution on Forums:
The Quarkus community forum
does not always have the answer
to every problem because Quarkus
is relatively new.

Quarkus provides fast since it can
automatically detect changes made
to Java and other resource/configuration
files, and transparently re-compile a
nd deploy the changes.

Highly-optimized build process for
native images takes a long time.

JAX-RS is used as a foundation, which
is a well known enterprise standard

Developing Java applications with Quarkus offers a significant performance
boost as its main advantage. However, the drawbacks arise from the optimiza-
tions executed during the compilation process and due to it being a more recent
framework.

2.5.4.2 Spring Boot

Spring Boot is a popular open-source Java framework designed to simplify the
development of enterprise applications and microservices [42], supporting Java,
Kotlin and Groovy and JIT compilation. It is used to build production-ready
applications with features such as: starters and auto-configurations. Spring Boot
provides an opinionated approach to building Java applications, which helps to
simplify the development process by providing a set of conventions and defaults.
It provides an easy way to get started with a new Spring-based application and it
provides a simple way to create and run a production-ready application.

Spring Boot has three core capabilities that make developing with the Spring
Framework faster and easier:

• Autoconfiguration
One of the advantages of SpringBoot is the automatic configuration of the
application. Applications are initialised with pre-set dependencies, which
do not need to be configured manually. Spring Boot will attempt to auto-
matically configure the application based on the jar dependencies provided
[44];

• Opinionated approach

23

Chapter 2

Based on the needs of the project, Spring Boot takes an opinionated ap-
proach to adding and setting starter dependencies. The required third-
party dependencies are implicitly packaged by Spring Boot and provided
as starter packages. [44]. This feature is just a method of managing all re-
quired dependencies in one place and efficiently making use of them.

This approach can be beneficial because it helps to simplify the develop-
ment process by providing a set of conventions and defaults that are known
to work well together, which can save time and effort. However, this ap-
proach can also be a disadvantage for developers that have specific re-
quirements that do not align with the conventions and defaults provided
by Spring Boot;

• Standalone applications
Spring Boot includes and embedded web server. The developers are not
required to setup a separate servlet container and deploy an application
to it. It is possible create standalone applications that run on their own,
without relying on an external web server [45].

Table 2.6: SpringBoot - Pros and Cons (adapted from [44])
Pros Cons

Extensive documentation and
community support.

Lack of control - Spring Boot
creates a lot of unused dependencies,
resulting in a large deployment file.

Reduced amounts of source code.

The complex and time-consuming
process of converting a legacy or an
existing Spring project to a Spring Boot
application. When there is a framework
conversion, the integration will be greater.

Eases the dependency and comes
with Embedded Servlet Container.

Not suitable for large-scale projects.
Spring boot is built focusing on micro-
services. Not recommended for building
monolithic applications.

No need for XML configuration,
Spring boot provides the option to
use either XML configurations or
annotations. Sometimes, developers
choose annotations to avoid waste
extra time of writing code.
Autoconfiguration.
The ability to create standalone
applications.

2.5.4.3 JBoss/Wildfly

Red Hat’s Jboss supports the WildFly open-source application server software
(also known as JBoss AS). It offers a comprehensive Java Enterprise Edition (JEE)

24

Practices in Software Maintenance

stack, making it an excellent choice for developers building enterprise Java appli-
cations. JBoss includes various technologies, such as Enterprise JavaBeans (EJB),
that are valuable for building robust and scalable applications [49].

JBoss supports Jakarta EE (formerly known as Java EE), a set of specifications
for building enterprise-grade Java applications. This compatibility ensures that
developers can leverage the latest Jakarta EE technologies and benefit from the
extensive ecosystem of Jakarta EE web-based frameworks available. JBoss’s com-
patibility with these frameworks simplifies development and integration pro-
cesses, providing developers with a wide range of tools and options.

Table 2.7: JBoss - Pros and Cons (from [49])
Pros Cons

Support for Java EE. It is slow.
Ease of server administration and
configuration management.

Need more flexibility in
pricing.

Reduction of DevOps resource
requirements and support for
rapid scalability.

User interface need more
improvement.

It being a Java based product is
pretty straightforward.

Needs to support the
Open Services Gateway
initiative (OSGi).

Easy to manage since you can
deploy the applications on the
JBoss server.

The solution could improve
by providing more integration.

Easy to use from a developer´s
perspective. Initial setup is challenging.

2.5.5 Comparison

In this sub-section some comparisons between main technologies will be made
in order to determine the best option. Table 2.8 presents some of the main differ-
ences between Quarkus and Spring Boot:

Table 2.8: Quarkus vs Spring Boot Comparison (adapted from [42])
Comparison Quarkus Spring Boot

Dependencies Uses Contexts and Dependency Injection (CDI)
Uses a robust
Dependency Injection
Container (DI)

Boot time Faster boot times Slower boot times than
Quarkus

Memory consumption Lower memory consumption due all
optimizations

Higher memory
consumption

Maturity New Framework More mature

Community Support
The community doesn’t
always have the solution
to the problem

Excellent documentation
and community support

25

Chapter 2

Quarkus is a more recent framework than Spring Boot, which brings more
innovation. However, the community does not always have all the solutions for
the problems. It offers quick startup times in comparison with Spring Boot and
a positive development experience, since is similiar with other frameworks such
as Thorntail. On the other hand, Spring Boot is a well-known and reliable frame-
work with many features and security measures. Has a huge community support
that knows the answer to any question and has excellent documentation. When
compared with Quarkus, it has higher memory consumption and slower startup
times. The main issue with Quarkus, due to its recentness, is that it has fewer op-
tions and a smaller pool of specialised engineers to answer the questions, which
results in longer investigation times.

According to the test data [47], Quarkus is often better than Spring Boot, in
line with what was previously mentioned. The Figure 2.3 shows the values re-
sulting from the test [47]. "To test both implementations, we’ll use Wrk to perform
the test, and its metrics report to analyze our findings. Also, we’ll use VisualVM
to monitor the applications’ resource utilization during the test execution" [47].
All tests were performed on a machine with the following specifications:

• Memory: 64 Gb;

• Processor: AMD Ryzen 9 5900HX with Radeon Graphics x 16;

• Graphics: NVDIA GeForce RTX 3080 Laptop GPU / AMD RENOIR;

• Disk Capacity: 2.0 Tb;

• OS Name: Fedora Linux 36 (Workstation Edition);

• OS Type: 64-bit;

• GNOME Version: 42.3;

• Windowing System: Wayland.

Figure 2.3: Spring Boot Vs Quarkus Metrics (from - [47])

The startup time, as expected, was faster in both cases for Quarkus. Quarkus
build time was much quicker in the case of native images, but in the case of JVM,

26

Practices in Software Maintenance

it was significantly longer than Spring Boot, since Spring Boot makes good use of
JVM handling and JIT compilation [77]. Regarding CPU usage, overall, Quarkus
obtained better results than Spring Boot, although there was not a big difference.
The JVM consumes more memory than the native code in both technologies. In
both cases, the number of classes loaded was lower for Quarkus. The ahead-of-
time compilation strategy used by Quarkus while building the application gives
the benefit of loading only the necessary classes. Also, for both JVM and Native
options, the Resident Set Size (RSS) memory is lower for Quarkus.

Regarding JBoss/WildFly, while it provides a comprehensive JEE stack with
various features and services, it can sometimes encounter performance problems.
This performance concern is mentioned as a disadvantage of using JBoss (Table
2.7). On the other hand, Quarkus, known as one of the fastest technologies for
developing Java applications, surpasses JBoss in terms of performance. Quarkus
is specifically designed to optimize and improve the performance of Java appli-
cations.

2.5.6 Final Thoughts

After the comparisons of the alternatives of Thorntail in sub-section 2.5.5, Quarkus
generically performed better than Spring Boot, yet Spring Boot also proved to be
a good option to replace Thorntail. Due to the fact that Spring Boot has an opin-
ionated approach, problems can arise when choosing this technology. On the
other hand, Quarkus is built on top of known enterprise standards such as CDI,
JAX-RS, and many more. Developers do not need to learn new APIs or rewrite
the software’s code. They can write an application that is based on CDI, JAX-
RS, or Java Persistence API (JPA), for example, and optimise it by changing the
runtime to Quarkus [50].

In addition to the above analyses, in 2021, CSW conducted a proof of concept
(POC) regarding the migration of other components that are part of CSWSYS to
Quarkus and to Wildfly and reached the following conclusions: It is possible to
migrate to both Application Servers. From a software development perspective,
the migration to Quarkus is significantly easier than the migration to Wildfly. Al-
though there are some incompatibilities between Thorntail and Quarkus due to
Quarkus’s lack of EJBs, these have been demonstrated to be circumvented. The
deployment of Wildfly is very different from the current deployment model fol-
lowed by CSW. Very significant improvements were seen in Quarkus with refer-
ence to memory usage and startup times. Also, some improvements were seen in
Quarkus with reference to transaction duration.

Critical Software had some reservations regarding Spring Boot, due to their
approach regarding Java Enterprise Specifications, which could lead to technol-
ogy lock-in. Quarkus was the choosen technology to replace Thorntail.

27

Chapter 3

Project Background and Approach

This chapter start by giving a project background, details the existing project re-
quirements, the existing project architecture and the approach to tackle the ob-
jectives defined for this internship. The approach includes the high-level steps
defined that summarize the work to be done, a risk analysis and the plan of ac-
tivities divided by each semester.

3.1 Project Background

CSWSYS is composed of several components, each serving different purposes.
The entire CSWSYS system functions as a dual-control validation system for com-
munication between the DSP (Data Service Provider) and the smart meters. The
smart meters only receive commands after they have been validated by CSWSYS.
Each component within CSWSYS exposes a REST web service, enabling commu-
nication with the component (although some endpoints may be hidden). When a
service request from the DSP arrives at CSWSYS, the CSWSYS component takes
responsibility for handling the request.

The CSWSYS component offers low-level detection of all commands sent to
the devices, ensuring that any command sent to the meter is either non-supply
affecting or has been properly authorized by a supplier. The service request ar-
rives in XML format, and the first action taken by the CSWSYS component is
to validate the XML schema against a predefined schema. If the received XML
schema does not comply with the predefined schema, the validation fails, an ex-
ception is raised, and the request is denied. Additionally, there are defined limits
(upper/lower limits) that serve to validate the values within the XML. If a value
falls below or exceeds the defined limits, the request is rejected. This validation
process is known as Attribute Anomaly Detect (ADA). Once validated, the re-
quest is inserted into the database. If the validation fails, the request is rejected.

It is important to note that CSWSYS does not send commands directly to the
smart meters. The smart meters only receive service requests from the DSP af-
ter CSWSYS has validated and authorized the commands. All the components
within CSWSYS are independent of each other. During the maintenance work,

29

Chapter 3

the other components remain unchanged. Since they communicate via IP, hav-
ing components running on different technologies (e.g., some in Thorntail and
the CSWSYS component in Quarkus) does not cause any issues. Changing the
CSWSYS component will not impact the other components, as they operate inde-
pendently.

In the last sub-section it was concluded that Quarkus was the best option to
replace Thorntail for the CSWSYS component. But choosing Quarkus implies
first upgrading the Java version (from 8 to 11). It will be necessary to assess the
existing Thorntail project to understand its structure, dependencies, and func-
tionality, analyse the dependencies used in Thorntail, and migrate them to the
corresponding Quarkus dependencies. As mentioned before, there are some in-
compatibilities between Thorntail and Quarkus due to Quarkus’s lack of EJBs,
which will need to be updated, as well as the imports, annotations, and specific
source code that differ from Quarkus. Currently, the CSWSYS component has
one hundred and three unit tests, and it is expected that they will remain un-
changed at the functional level. The unit tests will be a factor in validating the
changes, indicating that the methods maintained functionality as they returned
the expected result to pre-defined input data. Table 3.1 represents a static analysis
of the CSWSYS component with Thorntail implemented.

Table 3.1: CSWSYS component static analysis

Classes Unit Tests Lines Source Code
Lines

Source Code
Lines [%]

Comment
Lines

Blank
Lines

CSWSYS
Component 88 103 5720 3782 66% 944 994

This analysis will help to assess differences between Thorntail and Quarkus,
and track some measures like the number of lines (sub-section 2.3.1), and the
effort in the end of the migration. It is not expected that these metrics will rise
much, as they may indicate bad signs of migration. Using the SonarQube tool,
we were able to obtain complexity metrics for the CSWSYS component. In terms
of cyclomatic complexity, the CSWSYS component has a total score of 237, which
is the sum of complexities across all 74 files. The highest cyclomatic complexity
value for a single file is 26. In terms of cognitive complexity, the component has an
overall score of 103, with 16 being the highest cognitive complexity score among
all files. In general, the complexity within the CSWSYS component’s files is low.
Since no source code changes (functional changes) are expected, it is anticipated
that the complexity of the component will remain unchanged.

3.2 Project Requirements

In this section it will be presented the existing CSWSYS component requirements.
Either the functional and non-functional requirements of the component had al-
ready been defined, and with the migration of the component, it is desirable
that they remain unchanged. However it is important to understand how these

30

Project Background and Approach

requirements specifications were developed and what are the defined require-
ments.

The diagram present in Figure 3.1 illustrates the requirements hierarchy from
the top level System Requirements Definition (SRD) to the Software Require-
ments Specifications (SRS) produced by CSW.

Figure 3.1: Requirements Hierarchy

Firstly, at the highest level, we have the System Requirements Document from
the client, which describes the behaviour and the features of a system. At the
lowest level, software requirements are developed by CSW according to specifi-
cations provided by the client. These SRS are in User Stories format.

Beyond the software requirements, there are some requirements that must
be met. Business Requirements, in order to follow design guidelines to ensure
that the solution architecture is compliant with standards. SMETS1 Support Re-
quirements that are more at the regulatory level. Furthermore, there are also Ser-
vice Level Agreements (SLAs)/ key performance indicators (KPIs) which impact
the application - these SLAs/KPIs are present in the contractual obligations that
CSW needs to fulfil and they flow down into System/Subsystem Specification
(SSS)/SRS.

31

Chapter 3

3.2.1 Functional Requirements

Functional requirements represent statements of services that the system should
provide, how the system should react to particular inputs and how the system
should behave in particular situations. A function is a defined objective or char-
acteristic action of a system or component and a functional requirement specifies
a function that a system or system component must be able to perform.

An example of Functional Requirements of the CSWSYS component, are:

• Receive, validate and persists a service request into Database;

• Export monitoring data to management agents;

• Provide information to determine if the service is running.

3.2.2 Non-Functional Requirements

Non-functional requirements (NFRs) are a set of specifications that describe the
system’s operation capabilities and constraints and attempt to improve its func-
tionality [21]. Non-functional requirements can be classified into several cate-
gories. The following apply to the project:

3.2.2.1 Dependability Requirements

The dependability of a system is a judgement about the user’s trust in that system.
It reflects the extent of the user’s confidence that it will operate as expected and
that it will not ‘fail’ in normal use [22]. The following dependability requirements
are the already defined non-functional requirements regarding the CSWSYS com-
ponent:

• Availability: Ability of the system to deliver the services when requested.
It is important that the system remains available as long as possible so that
it can respond to all requests.

The service shall support high availability. Permit maintenance of system
component while the service remains online. The system should meet a
target Availability level of 99,990%;

• Maintainability: specify the ease of repairing the system after a failure has
been discovered or changing the system to include new features. The mean
time to restore the system (MTTR) following a system failure must not be
greater than 6 hours;

• Performance: Defines how fast a software system or a particular piece of it
responds to certain users’ actions under a certain workload;
The system shall enable the Service Provider to meet a response time of 4
seconds;

32

Project Background and Approach

• Scalability The service shall scale to support large volumes of service re-
quests - 30000 services requests per second.

CSW is not able to test and assure these requirements alone. Assurance of
these requirements requires integration with other systems in the customers test
environments. However, the application needs to be designed and technology
(such as language and tech stack) needs to be chosen that are capable of fulfilling
these requirements.

There are some performance tests carried out by CSW for this application,
but they only assure partially these requirements. Therefore, in general, perfor-
mance testing and test assurance for non-functional requirements are outside of
the work discussed on this document.

3.3 CSWSYS Architecture

In this section will be presented the existing architecture of the CSWSYS applica-
tion and as in the previous sub-section, it is desirable that the architecture remain
intact after the migration is complete.

The architecture of a software system can be represented in various ways, and
in the case of CSW, the chosen method is Unified Modeling Language (UML),
which provides a visual representation of the architecture, design, and imple-
mentation of complex software systems. The diagram presented in Figure 3.2
illustrates the CSWSYS architecture. On the left side, highlighted in green, are
the external systems that interact with CSWSYS. On the right side, highlighted in
yellow, is the CSWSYS component that forms the solution. The orange compo-
nent represents the focus of this study, and the other components represent the
data sources involved.

Figure 3.2: Existing Project Architecture

There are additional components within the CSWSYS architecture; however
for confidentiality reasons, they are not represented, leaving only the component

33

Chapter 3

that will be migrated and other components about which the CSWSYS compo-
nent require information.

The CSWSYS component (orange) is responsible for receiving Service Requests
Variant (SRVs) from the Data Service Provider (DSP) component, validate those
service requests and manage their persistence. The validation includes XML
schema compliance. If any validation fails, the service request is rejected.

Initially, CSWSYS was monolithic, but due to the nature of the project and
the need to be stateless, it went from monolithic to Service-Oriented Architec-
ture (SOA). As we can see from the Figure 3.2, the architecture of CSWSYS is
composed by many services. SOA is a way of software development that makes
software components (services) reusable. These services can be integrated into
new applications because they have the capacity to communicate with other ser-
vices across platforms and languages. This method provides more flexibility than
the monolithic method.

The structure of SOA is based on "loose coupling" concept. This means that
services can be called without know how the service is implemented and do not
require complex point-to-point integration as is the case in a monolithic architec-
ture [51].

3.4 Approach

A set of objectives was defined for this internship and to accomplish all of them,
an approach consisting of the following steps was selected. Since this work is a
maintenance job involving the migration of a component, the approach will fol-
low the process outlined in sub-section 2.2.1, and as this is a change of environ-
ment, the adaptive maintenance type discussed in sub-section 2.2.2 will be used.
This means that, initially, there is a phase of analysing how everything works and
the necessary modifications, followed by a modification implementation phase,
and ending with the testing and validation phase. Since the components are in-
dependent from each other, the work will be focused on the CSWSYS component,
applying the changes to the source code of the component.

For this work, a variation of the Kanban methodology which is the method-
ology used within the team, was adopted, aligned with the approach used in
this internship, which will be presented in the next sub-section. Two types of
Kanban meetings were addressed during the internship: Daily meetings, which
allowed the team to receive feedback from the team about problems and chal-
lenges that arose as the work progressed since they had more experience in the
project; Retrospective meetings every two weeks in order to reflect on the work
that has been done in the past few weeks. The remaining Kanban meetings, such
as Replenishment meetings, were not taken into account as the tasks had been
defined according to the plan. The planning for the second semester, which will
be discussed in sub-section 3.4.3, took into account the approach presented in the
next sub-section.

34

Project Background and Approach

3.4.1 Approach

1. Run the application with the Thorntail still in operation (legacy technol-
ogy)
This step includes the installation of all dependencies and libraries that the
application needs to run. Once the application is running, this is a good
starting point to use the program comprehension, technique addressed in
sub-section 2.2.3, to analyse the code and identify the pieces of code that
need to be modified;

2. Get familiar with Quarkus
As Quarkus is a recent technology, the next step is getting familiar with the
Quarkus features and development processes. This step includes the imple-
mentation of the Quarkus sample application to understand how it works,
to get to know the needed dependencies and to understand the needed mi-
gration tools;

3. Define adaption requirements
After getting familiar with Quarkus and understand how it works, there
are requirements to run Quarkus which differ from Thorntail (e.g. versions,
libraries), as well as other configurations that need to be defined;

4. Dependency changes
To start the migration itself, it is first necessary to handle the dependency
changes by replacing the Thorntail dependencies with Quarkus dependen-
cies and handle missing dependencies because, by removing Thorntail de-
pendencies, some transitive dependencies will be missing, which can be
added as needed. Some dependency versions should be updated because,
with Java 11, some implementations became deprecated;

5. Code changes
Some practices used in Thorntail will have to be changed, as well as im-
ports. These changes will be made incrementally in small modules so that
they can be made more easily. Variables covered in this section 2.3, such as
code size and understandability, should be considered while modifying the
code to avoid making it worse. The CSWSYS component has 3782 source
code lines (Table 3.1), as it is expected to keep the number of final lines close
to this.

6. Verify migration through testing
Validate the implemented changes (where applicable) through unit tests
and system tests, it is important to verify that it has been implemented cor-
rectly and that it does not negatively impact the existing functionality of the
system. The CSWSYS component has currently 103 unit tests (3.1) and it is
expected that these tests will continue to be passed so that the component
maintains good functionality. These are two criteria of success ;

7. Documenting the change
Update any necessary documentation to reflect the changes that have been
made. This helps ensure that the system remains up-to-date and that future

35

Chapter 3

changes can be made in a controlled and organized manner. As seen earlier,
documentation is an important tool that helps in program comprehension,
saving future effort.

36

Project Background and Approach

3.4.2 Initial Plan

The figure 3.3, represents a first version of the work plan drawn up at the begin-
ning of the semester, and which was amended during the course of the internship.

Figure 3.3: Initial planning for the first semester

The initial plan presented contained high-level tasks in the first semester that
included the study of energy sector in the context of this work, definition and
evaluation of the requirements, the analysis of solutions on the market, develop-
ment and integration of the solution and validation of the solution, and in the
second semester, the continuation of the last three. This initial plan was detailed
in order to have concrete tasks to follow.

The first semester served to familiarize with the project since it is an extensive
project, and to understand which norms and procedures are used within Critical
Software in order to choose a solution that fits and follow these rules. The task
of development and integration of solution and validation has been changed for
the second semester since theses tasks require the understanding of the code.

3.4.3 Planning

The following Gantt diagrams contain the activities conducted in the first semester
(Figure 3.4) as well as the plan for the second semester (Figure 3.5). In sum-
mary, throughout the first semester, the main activities consisted of: understand-
ing the world of energy, more specifically the UK SMIP, studying and analysing
the project, identifying the existing component requirements, analysing the tech-
nology to be changed and finding alternative solutions that are in line with the
standards and procedures that are used by the CSW, and understanding the pro-
cesses that are used in software maintenance.

37

Chapter 3

Figure 3.4: First-semester plan

The Figure 3.5 represents a draft made for the second semester based on in-
formation accessible back then. The plan consisted, at the beginning of February,
of the setup of necessary technologies to run the current CSWSYS application,
the analysis of the source code to understand how the application works, the im-
plementation of necessary code changes in order to migrate the application from
Thorntail to the previously studied technology alternative, and finally the imple-
mentation of the validation strategy.

Figure 3.5: Second-semester initial plan

The Figure 3.6, represents the planning that was followed in the second semester.
This plan differs from the first version (Figure 3.5) carried out previously. This
plan was divided in two main tasks based on the defined approach to implement
the migration (sub-section 3.4) previously discussed: Develop, integration of the
solution, Solution Validation. And also, three presentations during the semester
"Show and Tells".

38

Project Background and Approach

Figure 3.6: Second-semester

The task Development, integration of the solution, was divided into five main
sub-tasks: Setup the environment in order to run the current CSWSYS project;
familiarisation with the project and understand the structure and source code of
the CSWSYS component; Changes at the dependency level; EJB’s and annotation
changes; Code reworking and unit testing. After the code changes, the next task
was to validate the solution with regression system testing and defect fixing in
order to fix some problems that arose during the execution of the tests. Finally
some Show and Tells presentations were carried out during the semester. The
goal of the "Shows and Tells" was to show the team the work that was being
developed and some of the problems faced in order to receive some feedback
and make improvements. The presentations can be found in Appendice A.

3.4.4 Risk Plan

Due to the nature of this work, a risk plan capable of summarizing the most rel-
evant risks was conducted. This plan includes the risk statement, which is a
concise description of a potential risk; the consequence, which is the potential
negative impact that a software risk could have; the probability, which is the like-
lihood that a specific software risk will occur; the impact, which is the potential
negative effect that a software risk could have; and the mitigation plan, which is
a set of actions and strategies that are put in place to reduce the likelihood and
impact of software risks. Nine risks were identified, which are detailed in the
next sub-sections.

39

Chapter 3

3.4.4.1 Risk Matrix

The Figure 3.7 represents the Risk Matrix. The categories ranges from low to high.
The impact goes from Insignificant to Catastrophic and the probability goes from
Very Unlikely to Very Likely. This helps to prioritize and analyse the risks of this
work.

Figure 3.7: Risk Matrix (from - [52])

3.4.4.2 [RISK-01]

• Risk Statement: Lack of documentation.

• Consequence: The lack of available documentation make the process of
understanding the source code more difficult.

• Probability: Unlikely.

• Impact: Moderate.

• Mitigation Plan: Ask for help from collaborators to help clarify details of
the source code.

40

Project Background and Approach

3.4.4.3 [RISK-02]

• Risk Statement: New technologies make estimations more difficult.

• Consequence: The lack of experience on Quarkus and Thorntail and on the
systems itself make difficult to size the work and this can lead to delays on
completing the code change and other foreseen problems during the work.

• Probability: Possible.

• Impact: Moderate.

• Mitigation Plan: Preparatory research work to get the code running and
familiarisation with Quarkus.

3.4.4.4 [RISK-03]

• Risk Statement: Insufficient time to validate the whole component.

• Consequence: There may be features that have not been properly tested.

• Probability: Possible.

• Impact: Moderate.

• Mitigation Plan: Testing during code migration in order to minimise the
amount of possible bugs.

3.4.4.5 [RISK-04]

• Risk Statement: Dependency Incompatibility can lead to delays in the work.

• Consequence: It may affect and delay the execution of the remaining tasks,
leading to the objective not being met on time

• Probability: Possible.

• Impact: Moderate.

• Mitigation Plan: May require code changes or using previous versions in
order to mitigate these incompatibilities.

3.4.4.6 [RISK-05]

• Risk Statement: The use of certain dependencies may contain vulnerabili-
ties that compromise the integrity of the component.

• Consequence: It may affect and delay the execution of the remaining tasks,
leading to the objective not being met on time

41

Chapter 3

• Probability: Possible.

• Impact: Moderate.

• Mitigation Plan: Walkthrough of the different issues and weighting of res-
olution, according to the time available.

3.4.4.7 [RISK-06]

• Risk Statement: Using different dependencies can cause changes in boot
performance, either positively or negatively.

• Consequence: There may not be time in the internship to complete the tasks
and carry out this analysis with Performance tests.

• Probability: Likely.

• Impact: Moderate.

• Mitigation Plan: Performance and Load Tests in order to compare the per-
formance against the Thorntail, and assess its behaviour. Out of scope.

3.4.4.8 [RISK-07]

• Risk Statement: Quarkus does not run on Java 8, so it is necessary to mi-
grate to Java 11. All the code is based on Java 8.

• Consequence: The remaining components as they are in Java 8 will not be
able to compile and will not work afterwards.

• Probability: Very Likely.

• Impact: Moderate.

• Mitigation Plan: Allocate more development time, focusing on code re-
working.

3.4.4.9 [RISK-08]

• Risk Statement: With the change of dependencies (elimination of Thorntail
and Java 8, replacement by Quarkus), there are implementations of these
dependencies that no longer exist in the new versions.

• Consequence: Extensive code changes can impact the planning.

• Probability: Very Likely.

• Impact: Major.

• Mitigation Plan: Add more time on rework tasks, descope everything that
is not essential.

42

Project Background and Approach

3.4.4.10 [RISK-09]

• Risk Statement: In order to validate the changes it necessary to run the
system tests as regression tests.

• Consequence: There may be no time to execute all the created system tests.

• Probability: Very Likely.

• Impact: Moderate.

• Mitigation Plan: Create a sub set of the system tests, just for the CSWSYS
component, in order to not impact the plan and still validate the functional-
ity of the component.

Table 3.2 represents the risks that occurred and the respective mitigation plan
that was active.

Table 3.2: Risks table
Risk ID Happened Mitigation Plan
RISK-01 Not activated
RISK-02 Not activated
RISK-03 Not activated
RISK-04 Not activated
RISK-05 Not activated
RISK-06 X Performance and Load Tests became Out of Scope.
RISK-07 X Allocation of more time for code reworking.

RISK-08 X Add more time to code rework tasks, descope Performance
and Load tests.

RISK-09 X Execution of a sub-set of the system tests regarding
CSWSYS component.

43

Chapter 4

Development, Integration of the
solution and Testing

This chapter aims to show the work developed in order to meet the main objec-
tive, which is to migrate the CSWSYS component from Thorntail to Quarkus.

It is divided into eight sections. The first section addresses the first phase of
the work, which was to configure the setup to run the whole project. The second
section is related to the structure and organisation of the CSWSYS.

From the third section on, the phase of implementing modifications begins,
starting with the dependencies changing. The fourth section focuses on source
code changes, followed by the configuration file changes section. Sections six
and seven deal with unit tests and system tests, respectively. In the last section,
there is an overview of the changes and the results of those changes.

4.1 Environment Setup

During the work, the company laptop was used, and this laptop has the following
specifications:

• Processor: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz;

• RAM Memory: 32,0 GB;

• System Type: 64-bit operating system, x64-based processor;

• Graphics Card: NVIDIA GeForce GTX 1650 with Max-Q Design.

In order to be able to build and run the CSWSYS, the following tools needed to
be installed:

• Oracle VM Virtual Box;

• Ubuntu 22.04;

45

Chapter 4

• IntelliJ IDEA 2022.3.2;

• Docker 23.0.0;

• Apache Maven 3.6.3;

• SDKMAN - Java 8;

• DBeaver 22.3.4;

• SoapUI 5.7.0;

• Git.

The virtual machine was configured with 16 GB of RAM, four processors, and
250 GB of storage. The SDKMan, which is a tool for managing parallel versions of
multiple Software Development Kits (SDK), was used to install the latest version
of Java 8, which is the version used within the project. The project is located
inside Bitbucket, which is a Git-based source code repository hosting service [53].
The source code of CSWSYS and hence the CSWSYS component code was cloned
from the main branch to the local machine using Secure Shell (SSH). After cloning
the code, in IntelliJ, it was necessary to define which SDK should be used in order
to execute the project. After installing Java 8, inside the project structure tab of
IntelliJ, the SDK version 1.8 was used.

Figure 4.1: SDK - Project Structure

The default Java version was also defined to Java 8 (Figure 4.2):

Figure 4.2: CSWSYS Java version

While using Maven, most of the project-specific configuration is present in
the pom.xml. Maven also provides a settings file, settings.xml, which allows to
specify which local and remote repositories it will use. This file was copied to
user.home/.m2 directory as represented in Figure 4.3. The .m2 directory is where

46

Development, Integration of the solution and Testing

Maven stores all the local dependencies in the machine. When the Maven build
command is executed, the project dependencies are stored locally for future use
[75]. In settings.xml credentials that allow to access the defined repositories are
stored. Without this file, or if the credentials are wrong or out of date, the project
will not compile, as it can not access to the repositories.

Figure 4.3: settings.xml

The Smart Technology Solutions (STS) division also has some code guidelines
and checkstyle definitions defined, which are present in the settings.xml file. Intel-
liJ uses those guidelines in order to verify if the code complies with these guide-
lines and conventions.

Figure 4.4: STS Checkstyle

When there are some checksytle errors, for example, unused imports or vari-
ables in the code, the code fails to compile, forcing the developer to use good code
practices. Following a consistent coding style throughout the whole project (this
includes indentation, naming conventions, and code formatting), as discussed
earlier, improves the understandability of the code (sub-section 2.3.4) making it
easier to read and to understand, saving effort when software maintenance tasks
need to be carried out.

4.2 CSWSYS Structure and Organization

After completed the environment setup phase, the next step was to get familiar
with the structure and organization of the CSWSYS project. The CSWSYS is com-
posed by several modules, including the CSWSYS component. Although they

47

Chapter 4

are independent components, some of them depend on common modules. Es-
sentially, the structure of the project is organised:

1. Component Modules;

2. Distributable Module;

3. Parent Project Object Model (POM).

The project structure is composed by multiple maven modules and sub-modules.
At the root of the project it is possible to find: pom.xml, core module and dist
module. The parent POM is an XML file that contains information about the
project and configuration details used by Maven to build the project. Each mod-
ule, contains also a POM with all needed dependencies. The core module, which
is a library and should be included as a dependency as needed, holds common
features for all application modules. The distributable (dist) module is respon-
sible to build the final package of the application with all dependencies. Each
module, with the exception of the distributable module has a list of sub-modules
divided by features:

• Common-api: Holds common Application Programming Interface (API) to
share between other modules;

• Business-api: Business API with services interfaces;

• Business: The implementation of all services on business-api;

• Data: Holds the relational data objects and any Data Access Object (DAO)
services;

• Webservices: The implementation of Web Services.

Since this project uses Thorntail, it is expected that the POM of each sub-
module inside the CSWSYS component module contains Thorntail’s dependen-
cies.

Figure 4.5, illustrates an example of the most typical dependencies used in the
CSWSYS project and also in the CSWSYS component. First, the javax dependency
refers to the dependencies for Java 8, and second the io.thorntail dependency, the
dependencies for Thorntail. This will be the initial stage of the work, and it is
necessary to remove dependencies like these ones.

48

Development, Integration of the solution and Testing

Figure 4.5: Thorntail Dependencies example

4.2.1 Test Approach

For the CSWSYS project, including the CSWSYS component, the following defi-
nitions are being considered:

• Unit Tests: Each unit test is very limited in scope and test only one specific
class;

• System Testing: System testing method refers to a range of test types fo-
cused on verifying that the complete, integrated engineered system behaves
in compliance with its specified system requirements.

For this internship, the System Testing will work as Regression System Testing.
Regression testing consists of re-running tests to ensure that previously devel-
oped and tested software still performs after changing from Thorntail to Quarkus.
Regression testing allows the understanding of whether defects have been intro-
duced or uncovered in unchanged areas of the software.

4.3 Dependencies Changing

Moving to the Modification Implementation stage (sub-section 2.2.1.3), this sub-
section addresses the dependency changes phase. As this work is an adaptive
maintenance type, some adaptation prerequisites needed to be defined to migrate
the CSWSYS component to Quarkus based on the Quarkus demo [74].

The first prerequisite, as previously mentioned, involves upgrading the Java
version from eight to eleven. Additionally, it is necessary to import the Quarkus
Bill of Materials (BOM) to replace the Thorntail dependencies, update the Dock-
erfile to enable Quarkus to run in JVM mode, and create a new application con-
figuration file, as it differs from the one used in Thorntail. This section focuses

49

Chapter 4

on analyzing the dependencies utilized in Thorntail and migrating them to their
corresponding counterparts in Quarkus.

This phase began with the transition from Java 8 to Java 11. While Quarkus
is compatible with Java versions higher than 11 (such as Java 17), it is gener-
ally not advisable to make such a significant leap between versions from a soft-
ware maintenance vision. This could result in various compatibility issues that
may not have a solution. Following the Java version upgrade, the initial and
expected symptom was the deprecation of certain dependencies and associated
libraries. Figure 4.6 displays the first encountered errors after switching the Java
version. Notably, the removal of the package javax.xml.bind.annotation and others
from Java SE 11 and JDK 11 [76].

Figure 4.6: First errors after Java version change

The initial approach to address this problem involved changing and replac-
ing deprecated or missing dependencies in the root POM. However, since this
project consists of multiple modules, and some modules that do not interact with
the CSWSYS component still rely on Java 8, modifying the main POM, which
contains dependencies for all components, is not a viable solution. If this were
done, none of the components would function properly. To overcome this issue,
the second approach involved modifying and removing dependencies specifi-
cally within the CSWSYS component’s POM. Additionally, modules that do not
interact with the CSWSYS component were also commented out. As a result,
during project compilation, only the modules on which the CSWSYS component
depends will utilize Java 11 without Thorntail’s dependencies.

This approach presents a significant challenge: the inability to compile all the
components simultaneously. While these components are independent, they rely
on certain shared modules, such as the core module, which contains common
features. Leaving the other components uncommented introduces Java incom-
patibilities and hampers ongoing development work, as making changes in each
component becomes necessary. However, these changes fall outside the scope of
the internship.

Initially, due to existing unit tests, the CSWSYS component could not compile
with the changes being made, particularly the new Java version. As a workaround,
the project was initially compiled with the flag: mvn clean package -DskipTests,
which skips executing unit tests. Thus, our first goal was to successfully compile
the project with the new dependencies and without running the unit tests.

50

Development, Integration of the solution and Testing

4.3.1 Before Migration

Within the CSWSYS component’s POM, the javax and Thorntail’s dependencies
were removed. In this sub-section, a brief description of each old dependency
will be provided to understand its purpose. Additionally, explanations will be
provided for the decisions made regarding these dependencies.

4.3.1.1 thorntail-bom

The io.thorntail:bom-all (Figure 4.7) is a reference to the BOM for the Thorntail
project in the Maven build system. A Bill of Materials (BOM) is a file that defines
a set of versions for a group of dependencies, making it easier to manage depen-
dencies and ensure compatibility among them. The bom-all refers to a BOM that
includes all the necessary dependencies for Thorntail. This is the main depen-
dency of Thorntail which was removed.

Figure 4.7: Thontail BOM

4.3.1.2 Javax (javaee-api)

Java EE (Java Platform, Enterprise Edition) is a collection of specifications and
APIs (Application Programming Interfaces) that provide a platform for develop-
ing enterprise-level applications in Java. The Java EE API (javaee-api) is a ref-
erence implementation of these specifications, providing the necessary classes,
interfaces, and methods for building Java EE applications. It is important to note
that starting from Java EE 8, the Java EE specifications have been transferred to
the Eclipse Foundation and renamed as Jakarta EE. Therefore, if the goal is to
maintain Java EE functionality in Java 11 or later, Jakarta EE should be used in-
stead. The Figure 4.5 illustrates the java dependency used inside the CSWSYS
component.

4.3.1.3 io.thorntail - Microprofile Metrics

The io.thorntail is a Java library/framework that provides an implementation
of the MicroProfile Metrics specification. MicroProfile is a project that aims to

51

Chapter 4

enhance the development of microservices-based applications on the Java EE or
Jakarta EE platform. MicroProfile Metrics (Figure 4.8), one of the specifications
within MicroProfile, focuses on collecting and exposing metrics about the ap-
plication’s performance, health, and other relevant aspects. It provides a stan-
dardized way to monitor and measure various aspects of microservices, such as
response times, error rates, throughput, and resource utilization.

Figure 4.8: Thorntail Metrics

4.3.1.4 io.thorntail - Microprofile Health

MicroProfile Health, one of the specifications within MicroProfile, enables devel-
opers to create health checks for microservices applications. Health checks are
routines that assess the state and availability of various components within the
application, such as databases, external services, or internal dependencies. These
checks provide insights into the overall health and readiness of the application.
This dependency is commonly used inside the CSWSYS component, as the Figure
4.5 illustrates.

4.3.2 After Migration

The previous dependencies were changed by the following ones, in order to keep
the same functionality of the application. Also an overall vision of the main de-
pendencies that were changed before and after the migration will be handled in
Table 4.1.

4.3.2.1 quarkus-bom

After removing Thorntail’s dependencies, the next step was to add Quarkus de-
pendencies. The first one was the quarkus-bom, which is a Maven BOM that
centrally manages the versions of Quarkus dependencies in a project. This BOM
replaced the previously discussed Thorntail BOM. By importing the quarkus-
bom into the root POM, it is possible specify the desired Quarkus dependencies
without explicitly mentioning their versions. The BOM ensures that all the listed
dependencies use compatible and tested versions, minimizing the chances of ver-
sion conflicts or compatibility issues. Version 2.16.1 was used for the quarkus-

52

Development, Integration of the solution and Testing

bom. With this addition, it became possible to add Quarkus dependencies to the
CSWSYS component.

Figure 4.9: Quarkus Dependency

As we can see in Figure 4.10 the version were defined globally, in the begin-
ning of the root POM in order to keep consistency and reduce the probability of
making mistakes. Additionally, from a software maintenance perspective, this
good practice allows to save time when versioning is carried out, as is not neces-
sary the version of each single Quarkus dependency.

Figure 4.10: Quarkus Version

By utilizing a BOM, ensures that all dependencies within the project are using
compatible versions. This reduces the risk of conflicts and compatibility issues
that may arise when using different versions of dependencies. It also reduces the
maintenance overhead, as it is not necessary to manually update version numbers
across the modules. All the modules that import the BOM will automatically use
the updated version.

4.3.2.2 jandex-maven-plugin

In the sub-section 2.5.5 a analysis of Quarkus was carried out and one of the main
discussed advantages of Quarkus is its fast boot time. In order to achieve this,
Quarkus moves steps like classpath annotation scanning forward from runtime
to build-time. For this, it is necessary to announce all dependencies at build-time.

Quarkus heavily utilizes Jandex at build time, to discover various classes or
annotations. When the plugin is enabled, it scans the bytecode of the applica-
tion’s classes and generates an index file containing metadata about these classes.
This index file is then used by Quarkus at runtime to optimize class loading and

53

Chapter 4

enhance performance. It is not necessary to interact directly with the plugin, as
its functionality is transparently integrated into the build process when using
Quarkus. To generate the index it was necessary to add the plugin (Figure 4.11)
to the build file, in plugin section.

Figure 4.11: Jandex Maven Plugin

4.3.2.3 jakarta.el

The jakarta.el package (Figure 4.12) serves as the counterpart to the javax.el pack-
age in the Jakarta EE platform. It offers the same functionality for working with
EL expressions but operates under the Jakarta EE namespace. With the transfer
of Java EE technologies to the Eclipse Foundation and their rebranding as Jakarta
EE starting from Java EE 8, package names have been modified to align with this
transition. In this Java version, the javax namespace can still be used while retain-
ing the jakarta functionality. However, in more recent versions, it is mandatory
to switch the namespace from javax to jakarta.

Figure 4.12: jakarta.el dependency

54

Development, Integration of the solution and Testing

4.3.2.4 Eclipse Microprofile Health/Metrics

To replace the Microprofile health and metrics dependencies from Thorntail, two
alternatives were considered. The first option was to utilize the dependencies
provided by Quarkus itself, such as quarkus-smallrye-metrics [55] and quarkus-
smallrye-health [56]. The second option was to use the Microprofile Metrics and
Microprofile Health from the Microprofile project.

When comparing SmallRye from Quarkus and Eclipse MicroProfile from a
software maintenance perspective, several factors need to be evaluated. SmallRye
is tightly integrated with the Quarkus framework, offering a seamless develop-
ment experience. This integration allows for efficient maintenance of Quarkus ap-
plications, leveraging the full capabilities of SmallRye within the Quarkus ecosys-
tem. However, using SmallRye with Quarkus introduces a dependency on the
Quarkus framework.

On one hand, this dependency may limit flexibility if, in the future, there is a
need to migrate to a different framework or if the project requirements change.
On the other hand, Eclipse MicroProfile promotes interoperability by providing
standardized specifications and APIs. This simplifies maintenance efforts, as ap-
plications developed using MicroProfile can be easily migrated or integrated with
other MicroProfile-compliant frameworks and tools. For these reasons, the sec-
ond option was chosen (Figure 4.13).

(a) Microprofile Metrics

(b) Microprofile Health

Figure 4.13: Microprofile Dependencies

55

Chapter 4

Other dependencies were also added and removed. The Table 4.1 represents
an overall vision of the before and after regarding the dependencies that had been
changed.

Table 4.1: Overall dependency changes
Before Migration After Migration

<dependency>
<groupId>io.thorntail</groupId>
<artifactId>microprofile-health</artifactId>
</dependency>

<dependency>
<groupId>org.eclipse.microprofile.health</groupId>
<artifactId>microprofile-health-api</artifactId>
</dependency>

<dependency>
<groupId>io.thorntail</groupId>
<artifactId>microprofile-metrics</artifactId>
</dependency>

<dependency>
<groupId>org.eclipse.microprofile.metrics</groupId>
<artifactId>microprofile-metrics-api</artifactId>
</dependency>

<dependency>
<groupId>org.glassfish</groupId>
<artifactId>javax.el</artifactId>
<scope>test</scope>
</dependency>

<dependency>
<groupId>org.glassfish</groupId>
<artifactId>jakarta.el</artifactId>
<scope>test</scope>
</dependency>

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-jdbc-mysql</artifactId>
</dependency>

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-all</artifactId>
<scope>test</scope>
</dependency>

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-core</artifactId>
<scope>test</scope>
</dependency>

Added

<dependency>
<groupId>org.mockito</groupId>
<artifactId>mockito-inline</artifactId>
<scope>test</scope>
</dependency>

<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-api-mockito</artifactId>
<scope>test</scope>
</dependency>

Removed

<dependency>
<groupId>org.powermock</groupId>
<artifactId>powermock-api-mockito</artifactId>
<scope>test</scope>
</dependency>

Removed

Added

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-scheduler</artifactId>
</dependency>

Added

<dependency>
<groupId>io.quarkus.arc</groupId>
<artifactId>arc</artifactId>
</dependency>

Added

<dependency>
<groupId>io.smallrye.config</groupId>
<artifactId>smallrye-config-source-yaml</artifactId>
</dependency>

Added

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-container-image-docker</artifactId>
</dependency>

Added

<dependency>
<groupId>io.quarkus</groupId>
<artifactId>quarkus-hibernate-orm</artifactId>
</dependency>

56

Development, Integration of the solution and Testing

Some dependencies will be discussed in the following sections, as they have
become necessary in the course of the changes.

4.4 EJB’s and Annotations

The next phase of the work was focused on migrating the CSWSYS component
code from Thorntail to Quarkus. This involves updating package imports, an-
notations, and any Thorntail-specific code to their equivalent Quarkus counter-
parts. The Quarkus documentation was also used to provide information on how
to perform these updates. After replacing the dependencies discussed in the last
section, some errors appeared due to missing implementations and deprecated
annotations, such as:

• javax.ejb.Stateless;

• javax.ejb.Singleton;

• javax.ejb.Startup;

• javax.ejb.ScheduleExpression;

• org.eclipse.microprofile.Health.

As mentioned in sub-section 2.5.6, there are certain incompatibilities between
Thorntail and Quarkus due to Quarkus not supporting EJBs. All annotations
found in services and methods need to be modified, and every type of bean must
have an annotation for it to be used. Bean classes without a bean-defining anno-
tation are not detected, and Quarkus does not compile them. So, services with no
annotations should be explicitly marked as @Dependent.

4.4.1 @Health

Starting with health checks, the annotation @Health, which was used within the
project from the org.eclips.microprofile.Health import, became deprecated (Fig-
ure 4.14) [57]. Two options were available to replace @Health with the new de-
pendency: @Liveness or @Readiness. A Health check for readiness allows third
party services to know if the application is ready to process requests or not. For
example, a readiness check might check dependencies, such as database connec-
tions. A Health Check for liveness allows third party services to determine if the
application is running.

Since the CSWSYS component is responsible for receiving and processing ser-
vice requests and has some database connections dependencies, the annotation
@Readiness was the chosen, being the most suitable in this case.

57

Chapter 4

Figure 4.14: Health import change

4.4.2 @Stateless

The @Stateless annotation is typically used in Java EE applications to indicate that
a bean does not maintain any conversational state between method calls. How-
ever, since Quarkus is designed for microservices and serverless architectures, it
does not support the use of @Stateless. Instead, the @ApplicationScoped anno-
tation was used to achieve similar functionality. This annotation indicates that
an object is created once per application. The @Stateless annotation was replaced
with @ApplicationScoped. Furthermore, the @Stateless also automatically ini-
tiated database transactions. The @Transactional annotation was introduced in
places where transactions were necessary.

4.4.3 Eager Instantiation Beans

Along the code, some @Startup annotations were found. This annotation mark
a singleton bean for eager initialization during the application startup sequence
[58]. In Quarkus, beans are instantiated lazily by default, which means they are
created only when they are first requested. Since javax.ejb.Startup annotation
does not exist in Java 11, it was necessary to find an alternative. In the Quarkus
documentation, three solutions were present. To instantiate a bean eagerly could
be through [59]:

• Declare an observer of the StartupEvent (Figure 4.15);

Figure 4.15: Listening for startup event (from - [60])

58

Development, Integration of the solution and Testing

• Use the bean in an observer of the StartupEvent (Figure 4.16);

Figure 4.16: Bean in an observer of the StartupEvent (from - [59])

• Annotate the bean with @io.quarkus.runtime.Startup (Figure 4.17).

Figure 4.17: Startup Annotation (from - [59])

The chosen approach for this replacement also considered software mainte-
nance. The utilization of the StartupEvent (Figure 4.15) and @Startup (Figure
4.17) comes from the io.quarkus dependency. StartupEvent is an event class pro-
vided by Quarkus, enabling the observation of the application’s startup phase.
However, these approaches rely on the Quarkus dependency, which restricts flex-
ibility and increases the effort required for future migration to another frame-
work. To address these concerns, a more generic approach was adopted for the
replacement. The startUp method is annotated with @Observes to indicate event
observation. The observed event is @Initialized(ApplicationScoped.class), which
denotes the initialization of the application scope. This method will be invoked
during application startup, allowing for the execution of any necessary actions at
that time.

Figure 4.18: Startup Approach

There is no real difference between utilizing the StartupEvent from Quarkus
and the @Initialized(ApplicationScoped.class). The discrepancy lies in the timing

59

Chapter 4

that each is fired. The StartupEvent is consistently triggered after the @Initial-
ized(ApplicationScoped.class) event, which itself is fired during the initialization
of the application context. By incorporating this startUp method, it becomes un-
necessary to modify all the @Startup annotations for eager instantiation, thereby
saving effort in future endeavors.

With the Thorntail version, a @Singleton annotation was also used, but sim-
ilarly as the startup dependency, the javax.ejb Singleton became deprecated and
needed to be replaced. With @Singleton, only one instance is created in the whole
application and does not terminate until the application is shut down [72]. This
behaviour is similar to the @ApplicationScoped annotation. Also, the @Singleton
annotation was accompanied by the @Startup annotation, which informed the
EJB container to initialise the bean at startup.

Although in Quarkus the @Singleton annotation also exists, the old annotation
in the CSWSYS component source code was replaced by @ApplicationScoped.
The difference between these two annotations is also related to eager instance
creation. On one hand, with the @ApplicationScoped, a single bean instance is
used for the application and shared among all injection points. The instance is
created lazily, i.e., once a method is invoked upon the client proxy [73].

On the other hand, @Singleton is just like @ApplicationScoped except that no
client proxy is used. The instance is created when an injection point that resolves
to a @Singleton bean is injected. Since it has no proxy, an instance is created
eagerly when the bean is injected. By contrast, an instance of an @Application-
Scoped bean is created lazily, i.e., when a method is invoked upon an injected
instance for the first time [73].

In the end, Quarkus recommends sticking with the @ApplicationScoped, and
in order to keep the eager initialization of the Singleton, the previous startUp
approach (Figure 4.18) was also used to achieve this.

4.4.4 Private Members

In Quarkus, private members (fields or methods) of a bean class are not directly
accessible for injection or interception by the CDI container. By default, the CDI
container can only manage and interact with public or package-private mem-
bers of a bean class. It is generally not recommended to directly access private
members of a bean in CDI applications as it violates encapsulation and can create
challenges in maintenance and testing. If Quarkus DI needs to access a private
member, it has to use reflection, which is why it is encouraged to avoid using
private members in beans.

In the initial stages, the chosen approach involved replacing private fields
with package-private injection fields (as shown in Figure 4.19), following the rec-
ommendation provided by Quarkus. Later on, the approach shifted from field
injection to constructor injection. Both construction injection and field injection
are methods used for implementing dependency injection in object-oriented pro-
gramming.

60

Development, Integration of the solution and Testing

Figure 4.19: Field Injection

Construction injection involves passing dependencies to an object through its
constructor. In other words, the dependencies are injected into the object when
it is created. This approach is typically used when dependencies are required for
the object to function correctly. While both construction injection and field injec-
tion can be effective, construction injection is generally considered to be the better
approach because it ensures that the object has all of its required dependencies
from the start, which can make it easier to reason about the object’s behavior and
dependencies. Additionally, using construction injection can make the code eas-
ier to test because it allows dependencies to be easily mocked or stubbed during
testing. The figures 4.20 and 4.21 represent the modifications from field injection
to constructor injection, where a constructor was created with the variables as
arguments. These variables which previously had no modifier (package-private)
became private final.

Figure 4.20: Constructor Injection Fields

Figure 4.21: Constructor Injection

61

Chapter 4

After converting the field injection to constructor injection, some errors started
to appear, as represented in Figure 4.22. These errors derived from the private
member annotations not being present within the constructor in the parameters.
This way, Quarkus could not understand what it had to inject.

Figure 4.22: Constructor Injection Error

All the annotations of beans need to go inside the constructor, so Quarkus
know what to inject, except of @Inject which stays outside. In addition, when us-
ing constructor injection the inject fields turned from package-private to private
final, increasing the robustness of the code. This type of visibility, encapsulate
the state of an object by restricting direct access from outside the class. Mark-
ing a variable as final ensures that its value cannot be changed once assigned.
This immutability guarantees that the variable will remain constant throughout
the lifetime of the object, reducing the potential for bugs caused by unintended
modifications.

Since Quarkus has a simplified bean discovery the content of beans.xml is
ignored. The beans.xml file is known as the bean archive descriptor, and was
present along the project. CDI has the notion of a bean archive. A bean archive
is just a module that has a file named beans.xml in the META-INF directory.
The container looks for beans in bean archives. It ignores other modules. Since
Quarkus ignore the content of the file [71], the beans.xml was removed. Before re-
moving beans.xml, some conflicts also appeared as Quarkus could not made the
discovery of some beans, and the component did not work properly, and after
deleting the beans.xml the conflicts disappeared.

4.5 Configuration Files

Maintaining configuration files is a crucial aspect of software maintenance. Quarkus
uses its own configuration mechanism, commonly based on the MicroProfile Con-
fig specification. As part of the migration process, the Thorntail-specific configu-
ration files and properties were converted to the Quarkus configuration format.
After completing the phase of changing dependencies, EJBs, and annotations, the
project’s configuration scope became a focus area, as expected. It was anticipated
that issues related to newly added or existing dependencies would arise during
the course of the project.

The initial error encountered during code compilation was caused by the fail-
ure to inject certain settings into the variables. This issue was resolved by updat-
ing the version of the dependency microprofile-config-api from 1.2.1 to 2.0. This

62

Development, Integration of the solution and Testing

API from MicroProfile Config supports configuration injection, allowing configu-
ration properties to be directly injected into application components, such as CDI
beans. This promotes the use of dependency injection and simplifies the retrieval
of configuration values within the application.

The second error that arose was related to the database connection. Figure
4.23 represents the error log of the database connection.

Figure 4.23: JDBC driver Error

This error can be splitted in two parts. Firstly, the error message "Unable
to find a JDBC driver corresponding to the database kind ’mysql’ for the data
source" indicates that the driver dependency was missing. To resolve this, the
dependency quarkus-jdbc-mysql (Table 4.1) was added.

The second part of the error states "define the driver manually, or disable the
JDBC datasource by adding ’quarkus.datasource.CSWSYS.jdbc’ to your configu-
ration if you don’t need it." The drivers are manually defined within a configu-
ration file. The project already had a configuration file called server-config.yml,
which allows for the definition of properties and settings related to components
and services used in the application, including the database URL, username,
password, driver class, connection pool settings, and any other database-specific
configuration options. The existing configuration was created using Thorntail
flags and needed to be updated for compatibility with Quarkus.

Figure 4.24: server-config.yml

Regarding the database, Quarkus supports Hibernate ORM which is a pop-
ular object-relational mapping (ORM) framework for Java. It provides a conve-

63

Chapter 4

nient way to map Java objects to relational database tables and perform various
database operations. Quarkus sets many Hibernate ORM configuration settings
automatically and often uses more modern defaults, but in order to maintain the
existing config properties, the Hibernate ORM has various options that need to
be added to the new Quarkus application properties files.

The next phase of the work was to create a new configuration file with Quarkus,
maintaining the project settings, config properities and adding the Hibernate
ORM. To use the HibernateORM, the dependency quarkus-hibernate-orm which
is present in Table 4.1, was added to the root POM. Quarkus allows to configure
various properties for Hibernate ORM via the application.yaml file. It possible to
define database connection details, Hibernate dialect, transaction management,
and other ORM-related settings. Quarkus provides a set of default configura-
tions, so it was only need to specify properties specific of the application. To
enable YAML configuration in Quarkus, the dependency quarkus-config-yaml was
added.

Figure 4.25: Quarkus - Application.yaml

With Thorntail, a persistence.xml file was used, whose goal was to configure
persistence units in JPA applications. However, unlike traditional Java EE appli-
cations, Quarkus does not rely on a persistence.xml file for configuring JPA. With
Quarkus, there is no need to have persistence.xml [64]. Using persistence.xml and
HibernateORM throws an exception, so the approach was to remove it, leaving
one less file to be maintained.

The Figure 4.25 represents the upgrade of the configuration file from Thorn-
tail (Figure 4.24) to Quarkus. The idea was to maintain all properties that were
already defined, such as HTTP port and MySQL database configuration. The re-
maining config properties of the project have not changed, since it is expected
that they maintain their constant value for the proper functioning of the applica-
tion. With the changes of the configuration file, some code changes needed to be
carried out. Since CSWSYS has multiple datasources (Figure 3.2), the migration
and the use of Hibernate ORM, required some adaptions.

Figure 4.26 represents the changes along the source code, with the the replace

64

Development, Integration of the solution and Testing

of annotation from javax with the io.quarkus.hibernate.orm.PersistenceUnit package-
level annotation.

Figure 4.26: HibernateORM code adaptions

Another example of code changes concerning the new configuration file were
the paths to get the properties from the configuration. As it is possible to see in
Figure 4.27, the variable CSWSYS_DB_URL changed from "thorntail.datasources.." to
"quarkus.datasource....".

Figure 4.27: Config property path example

This minor change was applied to all paths that contained "thorntail", other-
wise would get errors where could not find the properties inside the file. These
values are then injected as Config Properties into variables. The @ConfigProperty
annotation is part of the MicroProfile Config specification, which is supported by
Quarkus. It is used to inject configuration values from the application’s configu-
ration sources into Java classes.

Figure 4.28: ConfigProperty Variable

When a field or a method parameter is annotated with @ConfigProperty, Quarkus
will search for a matching configuration property and inject its value into the an-
notated element. In this example, the @ConfigProperty annotation is used to
inject the value of the CSWSYS_DB_URL into the ’url’ field. The name attribute spec-
ifies the name of the configuration property to inject. Quarkus will search for a

65

Chapter 4

matching property in the application.yaml and populate the message field with
its value. Wrong values inside the configurations files can lead to the bad function
of the application, that’s why is important to keep maintained.

Quarkus does much of its configuration at build time, reading and using some
configurations properties during this phase. These properties are fixed at build
time and it is not possible to change them at runtime. It always need to repackage
the application in order to reflect changes of such properties. In order to separate
both properties, in Quarkus Documentation, the properties fixed at build time are
marked with a lock icon in the list of all configuration options while the remain-
ing properties are the additional properties which can be overridable [70].

Two properties files were used:

• One file in the dist/CSWSYS component/src/main/resources folder in order to
provide all the necessary configs for build time process - Datasources and
Hibernate ORM properties;

• One file in the deploy/local/CSWSYS component/config folder in order to pro-
vide additional configs that can be overridable at runtime - Logging prop-
erties, secondary database properties;

During the build phase of the application, if the module does not have a config
file inside the resources directory, at build time the application will fail because
it needs to have a config file (related to the database properties because of the
hibernate orm). If the config file is in the src/main/resources directory, the JAR will
be created successfully and the config file will be added inside the JAR.

Initially, the same application.yaml file with fixed and overridable properties
was used in both the dist and deploy folders. However, this approach caused is-
sues during the regression system testing phase (section 4.7). The configuration
properties file within the JAR package also included overridable properties, re-
sulting in a conflict between the values in the JAR configuration file and the test
environment configuration file. As a result, the configuration properties within
the JAR file differed from those in the testing environment, leading to errors. In
order to solve it, on the JAR package side there was only a configuration file with
fixed properties and on the other side only properties that are overridable.

4.6 Unit Tests

After successfully compiling the CSWSYS component code without including the
unit tests, it was anticipated that the subsequent step would involve verifying
the correctness of the preceding changes by ensuring the passage of all unit tests.
Unit testing plays a crucial role in detecting bugs and problems at an early stage
of the development process. By testing each code unit in isolation, it becomes
possible to identify and address issues before they spread to other areas of the
system. This proactive approach aids in minimizing the overall cost and effort
involved in resolving bugs at a later stage.

66

Development, Integration of the solution and Testing

During the execution of the unit tests for the CSWSYS component, certain is-
sues were encountered. Firstly, the existing unit tests make use of PowerMock
[61], a robust testing framework for Java that extends the capabilities of popular
mocking frameworks such as Mockito. However, PowerMock exhibits incom-
patibilities with Java 11, necessitating its removal from the unit tests. Secondly,
some tests specifically target private methods, requiring PowerMock to employ
reflection for mocking these private methods. As previously mentioned, Quarkus
discourages the use of reflection whenever possible to optimize startup time and
minimize memory usage. Figure 4.29 illustrates the warnings observed during
the compilation phase, wherein Quarkus needed to use reflection for accessing a
private method or variable.

Figure 4.29: Reflection Warning

The extensive reliance on PowerMock can serve as an indication of poor code
design. Ideally, all code should be designed in a way that promotes testability.
The practise of mocking private methods or accessing internal state through re-
flection using PowerMock may suggest a lack of proper encapsulation. By ad-
hering to the principles of encapsulation, code can be structured in a modular,
maintainable, and testable manner, eliminating the need for advanced mocking
frameworks. To invoke and modify the internal state of private methods and
fields, the utility class Whitebox provided by PowerMock is utilised. Whitebox
offers a range of static methods that bypass visibility restrictions, enabling access
to private members (fields or methods), invocation of private methods, and ma-
nipulation of internal state. However, it is important to note that while Whitebox
provides a means to interact with the internal behaviour of a class, this approach
contradicts the principles of encapsulation and modularity.

The focus of this phase of the work was divided in:

• Replace PowerMock as is not compatible with Java 11;

• Delete Whitebox, in order to delete reflection from code.

4.6.1 Replace PowerMock

The first step taken to delete PowerMock from unit tests, was remove all the Pow-
erMock dependencies from the POM’s (Figure 4.30).

The PowerMock was replaced with Mockito [62]. One dependency of Mock-
ito already existed inside project, mockito-all. This dependency was replaced by

67

Chapter 4

Figure 4.30: PowerMock dependency

mockito-core 5.1.1 (Figure 4.31) since mockito-core artifact is Mockito’s main ar-
tifact and mockito-all is an out-dated dependency that bundles Mockito as well
as its required dependencies[63].

Figure 4.31: Mockito dependency replace

The upgrade to mockito-core resulted in the deprecation of certain implemen-
tations previously utilized with mockito-all. For instance, mockito.Matchers was
replaced by mockito.ArgumentMatchers, and MockitoAnnotations.initMocks was
replaced by MockitoAnnotations.openMocks. Furthermore, the mockStatic method
provided by PowerMockito was substituted with mockStatic from Mockito. Con-
sequently, with the removal of the PowerMockito dependency, specific code mod-
ifications were required. One significant change involved the removal of the Pre-
pareForTest annotation. This annotation served as an indicator for PowerMock,
informing it which classes would be manipulated during testing.

Figure 4.32: PowerMock PrepareForTest Annotation

The usage of initMocks was replaced with openMocks (Figure 4.33), which
initializes the annotated fields such as @Mock or @InjectMocks. In all tests, the

68

Development, Integration of the solution and Testing

presence of initMocks is crucial, as it ensures that all mocks are properly ini-
tialized. Without this initialization step, the mocks would result in null pointer
exceptions.

Figure 4.33: Unit Test Changes - initMocks()

In Figure 4.34, we can observe the replacement of mockStatic from Power-
Mockito with mockStatic from Mockito. Additionally, to utilize this method for
mocking static methods and final types, it was necessary to include the depen-
dency of mockito-inline (as mentioned in Table 4.1). Without this dependency, an
error, as shown in Figure 4.35, would occur. By default, the MockMacker feature
is disabled and can be activated through an extension file. However, with the
mockito-inline dependency, inline mock making is enabled without the need to
configure a separate MockMaker extension file. This eliminates the necessity of
maintaining an additional file.

Figure 4.34: Unit Test Changes - mockStatic

Figure 4.35: Mockito-inline dependency

4.6.2 Delete Whitebox

The next phase of the unit test modifications involved removing the use of White-
box. Whitebox facilitated access to private fields and the invocation of private
methods through the utilisation of reflection. Throughout the unit tests, certain
methods from Whitebox, such as setInternalState and invokeMethod, were em-
ployed. The setInternalState method allowed for the modification of the value
of private or static fields within a class. It circumvented the encapsulation pro-
vided by Java’s access modifiers (such as private or protected) and enabled the
modification of internal state for testing purposes. On the other hand, the in-
vokeMethod method, as its name suggests, permitted the invocation of private
or static methods and the retrieval of their return values. These methods relied
on reflection to accomplish their objectives. To eliminate the use of reflection in
the unit tests, these methods were removed from the unit-tests.

In order to work around the usage of these methods and maintain the in-
tended purpose of the unit tests, certain modifications were implemented. For

69

Chapter 4

the setInternalState method, two approaches were employed. The first approach
involved utilising setters (Figure 4.37), while the second approach involved ac-
cessing the variables directly (Figure 4.36). Since Quarkus promotes the avoid-
ance of private members, it is permissible to access variables within the same
package and assign values to them.

Figure 4.36: setInternalState Inject Field

Figure 4.37: Replace of setInternalState with setter

When dealing with the invocation of private methods, the purpose of these
unit tests was to assess the behavior of these methods. The objective was to ver-
ify if the returned result matched the expected outcome or to determine if the
expected exception was raised when incorrect input data was provided. To re-
place the invokeMethod calls, two approaches were utilized: Verifying the pri-
vate method’s execution through a public method - This approach involved test-
ing a public method that would, in turn, invoke the private method being tar-
geted for testing. This allowed access to the private method and facilitated its
evaluation; Changing the visibility of the private method from private to package-
private or protected, allowing direct access to the method within the same pack-
age.

For the first approach, Figure 4.38 illustrates an example of a test aimed at
evaluating the private method createFirmwareUpdateImageData (as shown in Fig-
ure 4.39) and asserting the expected return value. In the original implementation
using invokeMethod, it was only necessary to pass the class, the function name,
and the input data as parameters.

Figure 4.38: invokeMethod replace

Figure 4.39: Private Method

70

Development, Integration of the solution and Testing

The idea behind replacing the invokeMethod calls was to identify if the method
being tested was invoked within a public method. In the given scenario, the
createFirmwareUpdateImageData method is called within the public method im-
ageParsingAndStoring (as shown in Figure 4.40), allowing access to the private
method for testing purposes. Consequently, it was necessary to adapt the test to
align with the structure of the method being tested. In the modified approach,
the when() method (Figure 4.38) was utilised to enable method stubbing. This
method is employed when there is a need to mock specific return values for par-
ticular method calls.

Figure 4.40: Public Method

As observed in Figure 4.40, in order to access the createFirmwareUpdateImage-
Data function, the condition within the if clause needs to evaluate to false. This
is where the when() method (as shown in Figure 4.38) becomes relevant. Ad-
ditionally, the desired return value should be defined before calling the public
method. The public method is invoked with the input data, ensuring that the
private method being tested also receives the same input as before when using
invokeMethod. Subsequently, the verify statement is used to validate specific
behaviour, functioning similarly to an assert. It verifies that the write() method
within the public method is called at least once with the expected value, similar to
the previous assert statement. By employing this approach, it was possible to cir-
cumvent the use of invokeMethod, avoiding the need for reflection and achieving
the same objective as the original unit test. Furthermore, this approach eliminates
the dependency on an additional library such as PowerMock.

The second approach discussed earlier involved adjusting the visibility of
certain private methods. In some instances, the methods that needed testing
were nested within other private methods, which posed challenges for working
around them. To address this issue, the visibility of these private methods was
changed to package-private. A member with no explicit access modifier is by de-
fault accessible only within classes in the same package. By making the methods
package-private, they could be accessed and tested within the unit test code.

Figure 4.41: Package-private Method

As a result, within the unit tests, it became sufficient to directly call class.methodName

71

Chapter 4

(as shown in Figure 4.42). Since the methods were changed to package-private,
the need for reflection was eliminated.

Figure 4.42: Unit Test with package-private method

Several other improvements were made with regard to Whitebox. Initializa-
tion functions that were originally annotated with @PostConstruct and declared
as private were modified to be protected or even public. The @PostConstruct
annotation is used to mark a method that should be executed after dependency
injection is completed, allowing for any necessary initialization steps.

Figure 4.43: PostConstruct visibility

Within certain unit tests, it was necessary to initialise and load specific in-
formation before running the tests. However, if the @PostConstruct method is
declared as private, the framework is unable to invoke it, resulting in the initial-
ization logic not being executed. To address this issue, the method annotated
with @PostConstruct was adjusted to be at least package-private or protected.
This ensures that the framework can access and invoke the method, allowing the
required initialization to take place before the unit tests are executed.

4.6.3 Unit testing with Constructor Injection

As mentioned in the previous sub-section 4.4.4, it was explained that Field Injec-
tion was replaced with Constructor Injection. When using Mockito with @Inject-
Mocks, it attempts to inject mocked dependencies using one of three approaches,
following a specified order of precedence:

1. Constructor Injection;

72

Development, Integration of the solution and Testing

2. Property setter injection;

3. Field injection.

Prior to running each unit test, a setup function annotated with @BeforeMethod
is executed to reset and create clean mocks. This setup function ensures that the
mocks are initialised and all the required configurations are loaded before each
individual unit test. Its purpose is to provide a clean and consistent state for each
test, preventing any interference or contamination between test cases.

Figure 4.44: setUp function

Upon the completion of a unit test execution, it is necessary to release the al-
located resources. To address this, a close() function was introduced (as shown
in Figure 4.45) to close the mocks and release the associated resources. By utilis-
ing the @AfterMethod annotation, the logic within the close() function is executed
after each individual unit test. This ensures that the state is not preserved be-
tween unit tests, preventing any potential interference or inaccurate results when
running subsequent tests. Moreover, the use of openMocks() in conjunction with
AutoCloseable guarantees that the mocks are properly initialised and cleaned
up, even in the event of an exception occurring during the test execution. Ad-
ditionally, a try-with-resources construct was employed for mocking static meth-
ods. This approach automatically calls the close() method of the AutoCloseable
object upon exiting the try-with-resources block, ensuring proper resource man-
agement.

Figure 4.45: Close function

If the close() method is not invoked, the subsequent unit tests will not be ex-
ecuted properly. This is because the mocks remain registered within the active
thread, leading to errors. The problem is depicted in Figure 4.46, highlighting the
issue caused by the mocks not being properly released.

73

Chapter 4

Figure 4.46: Mock Registred in Thread error

As seen before, the whole project (including CSWSYS component) before the
migration, only used Field Injection. After switching to constructor injection a
problem derived from TestNG arose. This problem arises when constructor injec-
tion and TestNG are used simultaneously.

After switching to Constructor Injection, a bug emerged within the unit tests,
specifically related to the creation of test class instances. The state is preserved
across multiple test methods, resulting in errors when running the unit tests con-
secutively. However, the tests execute successfully when run individually.

Mockito recognizes that a instance has already been initialized and attempts
to use field injection when the second unit test is executed. This approach works
unless the field is declared as final. In the previous example (Figure 4.20), the
fields became final when transitioning to constructor injection. Mockito respects
constructor injection, meaning it will not modify an object if it has been created
using constructor injection. A simple workaround for this "bug" was to assign
a null value to the test class instance after executing the unit test (Figure 4.45),
using victim = null;. This ensures that a new instance of the test class is created
for each test, mitigating the issue caused by TestNG’s state persistence.

This phase of the work required the most effort as it involved analyzing and
modifying all the unit tests accordingly, removing the reflection and maintan-
ing the same objective. After all changes, every unit-test passed successfully.
The project’s development involving numerous individuals with diverse back-
grounds and varying development practices presents challenges in maintaining
consistent code quality. Additionally, meeting deadlines sometimes need taking
shortcuts to expedite the process, which is where the whitebox functionality be-
comes useful. In theory, private methods should not be tested directly, but the
whitebox’s invokeMethod allows for such testing, albeit being considered a sub-
optimal practice. However, the use of the whitebox can also be viewed from a
perspective of "consistency." If the whitebox functionality was already being uti-
lized in the project prior to the current work, it could have influenced subsequent
developers to continue using it, maintaining consistency across the codebase.

4.7 Regression System Testing

After implementing all the necessary changes, it was important to validate them
through system tests to ensure the proper functioning of the component. The ex-
ecution of system tests served as regression tests, as the same tests were executed
both before and after the changes to ensure that the functionality was maintained.

74

Development, Integration of the solution and Testing

In the previous section, it was discussed the changes made to the unit tests,
which served as a way to validate the implementation of Quarkus. However,
unit tests only validate the behaviour of individual code units and do not verify
the component as a whole when interacting with other components. On the other
hand, system tests are end-to-end tests that verify the entire component from start
to finish. These tests are identified by tags representing user stories, indicating
that they fulfill the requirements.

As mentioned in the Dependencies Changing sub-section, some components
that do not interact with the CSWSYS component were commented out in or-
der to compile the code with Java 11. Consequently, it was not possible to run
all the components simultaneously within the IDE. To overcome this limitation,
a Docker approach was adopted. A Dockerfile was used to build a Docker con-
tainer image for the CSWSYS component (in Quarkus), allowing it to be run along
with all the other components (in Thorntail) [65].

4.7.1 Test Environment Setup

The first step to run all the system tests was setting up the test environment. Ini-
tially, a virtual environment was created within the virtual machine using Python.
This new virtual environment had its own pip tool for installing libraries. The fol-
lowing libraries were installed within this virtual environment:

• Python 2.7;

• Robot Framework 4.1.3

• Ruamel.yaml

Figure 4.47: Virtual Environment Libraries

A clone from the git test repository was carried out in order to have all the
updated configurations, keys, and scripts in order to be able to execute the system
tests of the actual state of the project. These scripts are responsible for getting the
latest and most stable version of CSWSYS and later running the containers and
populating the testing databases in order to be all set to run the system tests.

Within the project, the approach for testing all the components involved a test-
ing environment where component images were downloaded from a repository
and executed within Docker containers. These containers were able to commu-
nicate with each other within the same Docker network. The system tests were
executed using a script that utilised the Robot Framework. This script executed a

75

Chapter 4

docker-compose file to build the containers with predefined configurations. The
CSWSYS component image, which originally used Thorntail, was also present
in the repository alongside other component images. Therefore, to execute the
CSWSYS component with Quarkus, it was necessary to remove the CSWSYS
component field from the docker-compose file and manually execute a docker
command to run the locally created image.

From the Quarkus demo [74], a Docker folder containing Dockerfiles was used
within the CSWSYS component to define and build the CSWSYS component’s
docker image. The Dockerfile contains instructions for building the docker im-
age, and the Docker folder was added to the dist directory. Additionally, the
CSWSYS component utilised the quarkus-container-image-docker dependency (listed
in Table 4.1), which facilitated the building and generation of the component’s
docker image.

Given the large number of system tests encompassing all the components, a
subset of tests was chosen to be executed. Furthermore, running all the system
tests for CSWSYS would require powerful machines, which can be costly. To
overcome this limitation, only a subset of tests specific to the CSWSYS compo-
nent were executed locally. These tests were divided into three modules corre-
sponding to different electricity suppliers, resulting in a total of 310 system tests.
The objective of running these system tests was to ensure that they all passed,
indicating that the functionality of the CSWSYS component was maintained after
migrating to Quarkus. These system tests aimed to assess the connection between
the database and the CSWSYS component, as well as the behaviour of receiving
valid and invalid service requests with different timeout and expiration values.
A detailed report of the results obtained from running the system tests can be
found in the appendix B.

4.7.2 Defect Fixing

Several challenges were encountered during the execution of the system tests, in-
cluding issues with database connections, discrepancies in configurations prop-
erties values between the development and testing environments, and variations
in expected output logs between Thorntail and Quarkus.

Firstly, regarding the database connection, a different database was used for
the testing environment. In the beginning, the same configuration file from the
development environment was used, which brought problems. In the develop-
ment environment, everything was performed on the localhost domain, so the
database URL was built with the localhost domain name. However, in the testing
environment, the database was running in a Docker container, so the localhost
no longer works, as it was necessary to replace it with the Docker network IP.
Additionally, the database name in the testing environment differed from that in
the development environment, causing connection failures.

The second issue was related to discrepancies in the output logs between
Thorntail and Quarkus during the startup of the components. At an early stage of
the system tests, the logs were utilized to determine if the containers had started

76

Development, Integration of the solution and Testing

in order to proceed with the tests. It was expected that there would be some
differences between the log outputs of Quarkus and Thorntail. Without the ex-
pected log message, the tests would not commence, resulting in the predefined
time limits for the components’ startup being reached. In the case of Thorntail, as
shown in Figure 4.48, a log message from the framework, such as THORN99999:
Thorntail is Ready was printed after the startup process.

Figure 4.48: Thorntail Startup Logs

Within the setup file of the Robot Framework for the CSWSYS component
system tests, the expected message log that needed to be waited for was mod-
ified. Previously, the expected message log was associated with the startup of
the Thorntail application, specifically THORN99999: Thorntail is Ready. However,
with the transition to Quarkus, the message log to be awaited during the Quarkus
application startup was changed (Figure 4.49). Instead of the previous message,
the new expected log was Profile prod activated. as shown in Figure 4.50.

Figure 4.49: Expected message log change

Figure 4.50: Quarkus Message Log example

During the start of the system tests, this verification process continues un-
til either the expected message is found in the container or the timeout limit is
reached. The checks are performed at intervals of five seconds, allowing to deter-
mine if the container with Quarkus has started or not.

The third error faced was also related to the configuration files of the testing
environment. During the execution of the system tests, certain tests were expect-
ing timeout values that were present inside the configuration files in order to test
if some service requests took longer than the time defined in the configuration
in order to validate or refuse the service request. These timeouts were different
from the ones in the testing environment, which resulted in test failures.

The fourth error faced was related with overridable configuration properties
within the configuration files thate are used during the build time. One of the sys-
tem tests aimed to add a service request to the database and wait for the service
request to expire according to the defined timeout value present in the configu-
ration file. After passing the expiration date, the service request is removed from
the database by another component, and finally, the same service request is added
again after the expired service request was removed. The problem was that the

77

Chapter 4

expiration time of the service request had overtaken the specified time to execute
the test and remove it from the database by the responsible component. So when
checking the database to see if the service request was expired, the wrong timeout
value led the clean-up component to never remove the service request from the
database because, in that time-box, the service request is still not expired, leading
the test to fail since it cannot add a new service request because one is still present
in the database (Figure 4.51).

Figure 4.51: SystemTest Error

Although the configuration file in the test environment was fixed with the
correct values, a configuration file in the wrong directory during the component
packaging process resulted in a merge between the configuration files, leading to
the use of incorrect timeout values. To address this issue, the solution involved
modifying the application-side configuration files, as discussed in Section 4.5,
separating the build-time configurations into one file (inside dist directory) and
the overrideable configurations into another (deploy directory).

The execution of the system tests also proved to be beneficial as it helped un-
cover a bug in the code. As mentioned earlier, some system tests were designed
to validate the connection between the CSWSYS component and the database.
On one hand, the tests aimed to confirm when the connection is UP, and on the
other hand, they verified if the health check endpoint returns the correct status
when the database check fails. To determine the state of the database connection,
a timer was implemented, which periodically executed a query to the database
every ten seconds to check for a response. This response indicated whether the
database was up or down. In the original implementation, when the Java ver-
sion was 8, this was achieved using the ScheduleExpression from javax.ejb [67].
However, this approach was commented out during the Dependencies Chang-
ing phase, when javax.ejb became deprecated and was not replaced, as shown in
Figure 4.52.

Figure 4.52: Old Check Database Connection function

As a result, the checkDataBaseConnectionState method is never invoked, and
thus it cannot perform periodic checks. To address this issue, a fix was imple-

78

Development, Integration of the solution and Testing

mented by leveraging a Quarkus dependency called quarkus-scheduler (listed in
Table 4.1), which involved annotating the method with @Scheduled. This anno-
tation instructs Quarkus to execute the method every ten seconds. The frequency
at which the method needs to run periodically is also defined in the configuration
file. Previously, the ScheduleExpression was constructed using a cron expression,
which is a string format used to define the schedule for recurring tasks or jobs.
Quarkus also supports cron expressions [68], but with a slightly different syntax
based on Quartz [69]. Figure 4.53 illustrates the usage of the @Scheduled annota-
tion attached to the checkDatabaseConnectionState method, with a cron expression
indicating a periodicity of ten seconds. The concurrentExecution flag ensures that
the method is never executed concurrently.

Figure 4.53: Quarkus Scheduled Annotation

The checkDatabaseConnectionState method is invoked every ten seconds, per-
forming a database query and updating the connection state based on the re-
sponse. Figure 4.54 illustrates the behaviour of this periodic task, showing the
following steps: 1) The scheduled task is initiated; 2) The query is executed; 3)
The scheduled task finishes and updates the database state. Before implement-
ing the fix, if the system test stopped the database container, the connection state
would remain "UP" because this scheduled task was never triggered. As a result,
the connection state did not reflect the actual state of the database.

Figure 4.54: Database Connection State Logs

Figure 4.55 illustrates the behaviour when executing the system test and stop-
ping the container with the database.

Figure 4.55: Database Connection Down Logs

In this scenario, the connection is lost, no more packets are exchanged, and
the state is updated accordingly, aligning with the intended purpose of the test.

These changes resulted in all the tests passing successfully, achieving the ob-
jective of preserving functionality after the migration.

79

Chapter 4

4.8 Final considerations

The previous section provided an overview of the changes made and the chal-
lenges encountered during the migration of the CSWSYS component from the
legacy technology, Thorntail, to Quarkus.

In the initial phase, the focus was on replacing the dependencies from Thorn-
tail with corresponding Quarkus dependencies (Section 4.3). To ensure maintain-
ability and facilitate potential future migrations to different technologies, deci-
sions were made to avoid excessive reliance on the Quarkus framework itself.
Instead, more generalized dependencies were used, allowing compatibility with
other frameworks.

Once the dependencies were updated, the attention turned to code modifica-
tions, specifically addressing EJBs, annotations, and unit tests (Section 4.4). The
majority of effort was dedicated to adjusting the unit tests, as some had to be
rewritten due to the removal of deprecated practices such as PowerMock and Re-
flection. Ensuring the successful execution of unit tests without any failures was
crucial for validating the functionality of the component. Additionally, configura-
tion properties were migrated to the Quarkus format as part of the configuration
adjustments (Section 4.5).

These code changes as well as some code improvements (Field Injection to
Constructor Injection, Reflection remove) resulted in an increase in the number of
lines in the source code. Table 4.2 represents the static analysis conducted before
the migration, while Table 4.3 showcases the static analysis conducted after the
migration and code modifications.

Table 4.2: Thorntail CSWSYS component static analysis

Classes Unit Tests Lines Source Code
Lines

Source Code
Lines [%]

Comment
Lines

Blank
Lines

CSWSYS
Component 88 103 5720 3782 66% 944 994

Table 4.3: Quarkus CSWSYS component static analysis

Classes Unit Tests Lines Source Code
Lines

Source Code
Lines [%]

Comment
Lines

Blank
Lines

CSWSYS
Component 88 103 6054 3952 65% 1020 1082

The increase in the number of lines, while not substantial, can be primarily
attributed to the conversion from field injection to constructor injection and the
elimination and replacement of the whitebox functionality. The use of constructor
injection and the removal of direct method invocations with whitebox resulted in
a slight increase in the number of lines. However, no new classes or unit tests
were created, and the overall value of the code remained unchanged.

In addition to unit testing, the successful execution of existing system tests
was another critical validation criterion for the migration. These end-to-end tests

80

Development, Integration of the solution and Testing

were designed based on the requirements and served as regression tests, ensur-
ing that the CSWSYS component operated correctly. A subset of relevant system
tests was selected for the CSWSYS component, and after resolving the identified
issues, all tests were successfully executed.

Table 4.4 represents an overview regarding the file changes that happened.
These values were derived by comparing the state of the project before any changes
occurred to its state after all changes had been implemented (git commits diff).

Table 4.4: Overall CSWSYS Changes statistic
Files

Changed Insertions Deletions Java Files
Changed

XML Files
Changed

YAML Files
Added

Overall
Changes 191 files 5450 2338 96 46 2

The XML files that were changed are related to the dependency change phase,
specifically involving the Thorntail, old Java and Quarkus dependencies. The
Java files used by the CSWSYS component were modified. These files were not
exclusively associated with the CSWSYS component, they also belong to the mod-
ules shared by other components. As mentioned in the section regarding configu-
ration files, the required changes involved converting the files from Thorntail for-
mat to Quarkus format. Two additional files were added to the project, regarding
this changes. No additional methods or classes were added, as the complexity of
the CSWSYS component remained unchanged.

Throughout the completion of the planned tasks, valuable lessons were learned.
It became apparent that a different approach could have been employed. Firstly,
deleting all unnecessary POM files would have improved the organization and
efficiency of the dependency change process. Secondly, focusing on identifying
and commenting only the specific sub-modules used by the CSWSYS component
would have eliminated the need to modify unnecessary modules initially. In ad-
dition, the utilization of libraries like lombok [79] could have been beneficial, as
they enable the use of annotations that help reduce the number of lines for con-
structors, getters, and setters level. This not only makes the code cleaner but also
enhances readability.

Another important lesson learned was the importance of thorough documen-
tation throughout the maintenance work. It is crucial to document bug fixes, code
enhancements, and any findings made during the maintenance phase. Compre-
hensive documentation facilitates tracking of implemented changes and serves as
a valuable reference for future maintenance activities. Inaccurate or incomplete
documentation caused delays during the internship, highlighting the critical role
of accurate documentation.

81

Chapter 5

Conclusion

The objective of this internship was to migrate a component (the CSWSYS com-
ponent) of a larger system (CSWSYS) from an end-of-life technology, Thorntail,
to a more recent one, Quarkus. Using legacy technologies such as Thorntail may
lead to vulnerabilities, security weaknesses, and incompatibilities. Maintaining
a software system prevents future problems and allows the software to stay up-
dated and functional over time.

In order to address this maintenance task, we adhered to a defined approach
based on the software maintenance process (sub-section 2.2.1). Initially, an analy-
sis of the entire CSWSYS project’s structure and organisation, with a focus on the
CSWSYS component’s source code, was conducted. The second phase concen-
trated on implementing modifications and improvements to enhance the code’s
maintainability. The final phase involved reviewing and validating the mainte-
nance improvements via system tests, which are end-to-end tests performed on
the CSWSYS component in a testing environment, to ensure its proper function-
ing. Successful execution of both unit tests and regression system tests was used
as validation for the migration.

It is important to note that this work served as a proof-of-concept for a specific
use case and was conducted under specific time constraints, which allowed only
a subset of the CSWSYS component’s regression system tests to be run. Due
to these constraints, we were unable to execute performance and load tests to
compare its behaviour against Thorntail. This limitation, which was identified as
a risk at the onset of the project, led to the activation of a mitigation plan, making
these tests out of scope. Therefore, it was not possible to validate the performance
metrics discussed in sub-section 2.5.5 within the project timeframe, making it a
task for future consideration. Performance and load tests are crucial for ensuring
software component reliability, stability, and efficiency. Nonetheless, the primary
objective of the internship was fulfilled: the CSWSYS component successfully
runs on Quarkus, within the specified plan.

In conclusion, this document provides a detailed account of the changes, strate-
gies, practices, and challenges encountered during this maintenance project, of-
fering a realistic view of the task. The internship provided valuable insight into
the complexities of maintaining a legacy system and the overall maintenance pro-

83

Chapter 5

cess.

The findings could serve as a valuable resource if the client decides to convert
the remaining components to Quarkus. As future work, some tasks and assess-
ments remain to be carried out in order to assess the effort required to migrate
all the project based on the necessary changes that were made to the CSWSYS
component. The unit tests is the phase where more effort will be required as it
is necessary to remove all the reflection. The effort needs to be weighted accord-
ing to the skill and experience of the people who will carry out the remaining
components migration and according the size of each component in order to get
an accurate estimate. The documentation of the changes made reduces the effort
required to search for alternatives to Thorntail, as many changes will be similar
to those made to the CSWSYS component. Additionally, the migration of mod-
ules shared among other components eliminates the need for additional efforts
associated with those modules. As previously mentioned, performance and load
tests, as well as security assessments, need to be executed in order to present
guarantees of migration.

84

References

[1] What Makes The Software Maintenance So Important?, https://apibest.com/
blog/what-makes-software-maintenance-so-important. Accessed: 2022-12.

[2] Who we are?, https://www.smartdcc.co.uk/about-dcc/who-we-are/. Ac-
cessed: 2022-12.

[3] Smart Metering Implementation Programme [SMIP],
https://smartenergycodecompany.co.uk/glossary/
smart-metering-implementation-programme/. Accessed: 2022-09.

[4] What is SMETS1 and SMETS2 smart meter?, https://www.ugp.co.uk/
support/faqs/smart-meters/what-is-smets1-and-smets2-smart-meter/.
Accessed: 2022-09.

[5] Bourque and R.E. Fairley, eds., Guide to the Software Engineering Body of Knowl-
edge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

[6] ISO/IEC/IEEE 14764:2006, Software Engineering — Software Life Cycle Processes
— Maintenance

[7] ISO/IEC/IEEE 12207:2017, Systems and software engineering — Software life cycle
processes

[8] A. Von Mayrhauser and A. M. Vans, "Program comprehension during software
maintenance and evolution," in Computer, vol. 28, no. 8, pp. 44-55, Aug. 1995, doi:
10.1109/2.402076.

[9] How to Plan for Software Maintenance, https://medium.com/swlh/
types-of-software-maintenance-2b0503848b43. Accessed: 2022-11.

[10] Kontogiannis K, Techniques for Software Maintenance (2011)

[11] Muller H, Reps T, Snelting G, Program Comprehension and Software Reengineer-
ing

[12] Software Engineering | Reverse Engineering, https://www.geeksforgeeks.
org/software-engineering-reverse-engineering/. Accessed: 2023-11.

[13] ISO/IEC FDIS 9126-1:2000, Information technology — Software product quality -
Quality model

[14] P. Grubb and A.A. Takang, Software Maintenance: Concepts and Practice, 2nd ed.,
World Scientific Publishing, 2003.

85

https://apibest.com/blog/what-makes-software-maintenance-so-important
https://apibest.com/blog/what-makes-software-maintenance-so-important
https://www.smartdcc.co.uk/about-dcc/who-we-are/
https://smartenergycodecompany.co.uk/glossary/smart-metering-implementation-programme/
https://smartenergycodecompany.co.uk/glossary/smart-metering-implementation-programme/
https://www.ugp.co.uk/support/faqs/smart-meters/what-is-smets1-and-smets2-smart-meter/
https://www.ugp.co.uk/support/faqs/smart-meters/what-is-smets1-and-smets2-smart-meter/
https://medium.com/swlh/types-of-software-maintenance-2b0503848b43
https://medium.com/swlh/types-of-software-maintenance-2b0503848b43
https://www.geeksforgeeks.org/software-engineering-reverse-engineering/
https://www.geeksforgeeks.org/software-engineering-reverse-engineering/

Chapter 5

[15] R.D. Banker, S.M.Datar and D. Zweig, SOFTWARE COMPLEXITY AND
MAINTAINABILITY, 1989

[16] Understandability: The Most Important Metric You’re Not Tracking, https://
www.pagerduty.com/eng/what-is-software-understandability/. Accessed:
2023-01.

[17] Understandability: The Most Important Metric You’re Not Tracking, https:
//www.infoq.com/articles/understandability-metric-not-tracking/.
Accessed: 2023-01.

[18] Tarwani, Sandhya and Anuradha Chug. “Agile Methodologies in Software Mainte-
nance: A Systematic Review.” Informatica (Slovenia) 40 (2016)

[19] Heeager, L.T., Rose, J. Optimising agile development practices for the maintenance
operation: nine heuristics. Empir Software Eng 20, 1762–1784 (2015).

[20] F. u. Rehman, B. Maqbool, M. Q. Riaz, U. Qamar and M. Abbas, "Scrum Software
Maintenance Model: Efficient Software Maintenance in Agile Methodology," 2018
21st Saudi Computer Society National Computer Conference (NCC), 2018, pp. 1-5,
doi: 10.1109/NCG.2018.8593152.

[21] Non-functional Requirements: Examples, Types, How to Approach, https://www.
altexsoft.com/blog/non-functional-requirements/. Accessed: 2022-10.

[22] CS 410/510 - Software Engineering - System Dependability, https://cs.
ccsu.edu/~stan/classes/CS410/Notes16/10-SystemDependability.html.
Accessed: 2022-10.

[23] What is Scrum?, https://www.scrum.org/resources/what-is-scrum. Ac-
cessed: 2022-12.

[24] Scrum Project Management: Advantages and Disadvantages, https://www.
simplilearn.com/scrum-project-management-article. Accessed: 2022-12.

[25] Kanban vs Scrum vs Scrumban: What Are The Differences?, https://ora.pm/
blog/scrum-vs-kanban-vs-scrumban/. Accessed: 2022-12.

[26] What is kanban?, https://www.atlassian.com/agile/kanban. Accessed:
2022-12.

[27] What is a kanban board?, https://www.atlassian.com/agile/kanban/
boards. Accessed: 2022-12.

[28] What are WIP limits?, https://www.atlassian.com/agile/kanban/
wip-limits. Accessed: 2022-12.

[29] Kanban vs. Scrum: A simple breakdown of each complex methodology, https://
www.teamwork.com/blog/kanban-vs-scrum/. Accessed: 2022-12.

[30] KANBAN VS. SCRUM: WHAT ARE THE DIFFERENCES?, https:
//www.planview.com/resources/guide/introduction-to-kanban/
kanban-vs-scrum/. Accessed: 2022-12.

86

https://www.pagerduty.com/eng/what-is-software-understandability/
https://www.pagerduty.com/eng/what-is-software-understandability/
https://www.infoq.com/articles/understandability-metric-not-tracking/
https://www.infoq.com/articles/understandability-metric-not-tracking/
https://www.altexsoft.com/blog/non-functional-requirements/
https://www.altexsoft.com/blog/non-functional-requirements/
https://cs.ccsu.edu/~stan/classes/CS410/Notes16/10-SystemDependability.html
https://cs.ccsu.edu/~stan/classes/CS410/Notes16/10-SystemDependability.html
https://www.scrum.org/resources/what-is-scrum
https://www.simplilearn.com/scrum-project-management-article
https://www.simplilearn.com/scrum-project-management-article
https://ora.pm/blog/scrum-vs-kanban-vs-scrumban/
https://ora.pm/blog/scrum-vs-kanban-vs-scrumban/
https://www.atlassian.com/agile/kanban
https://www.atlassian.com/agile/kanban/boards
https://www.atlassian.com/agile/kanban/boards
https://www.atlassian.com/agile/kanban/wip-limits
https://www.atlassian.com/agile/kanban/wip-limits
https://www.teamwork.com/blog/kanban-vs-scrum/
https://www.teamwork.com/blog/kanban-vs-scrum/
https://www.planview.com/resources/guide/introduction-to-kanban/kanban-vs-scrum/
https://www.planview.com/resources/guide/introduction-to-kanban/kanban-vs-scrum/
https://www.planview.com/resources/guide/introduction-to-kanban/kanban-vs-scrum/

References

[31] Understanding the Kanban Guide for Scrum Teams, https://www.scrum.
org/resources/blog/understanding-kanban-guide-scrum-teams. Accessed:
2022-12.

[32] What is Scrumban? The Best Parts of Scrum and Kan-
ban, https://www.businessprocessincubator.com/content/
what-is-scrumban-the-best-parts-of-scrum-and-kanban/. Accessed:
2022-12.

[33] M. O. Ahmad, P. Kuvaja, M. Oivo and J. Markkula, "Transition of Software Main-
tenance Teams from Scrum to Kanban," 2016 49th Hawaii International Conference
on System Sciences (HICSS), 2016, pp. 5427-5436, doi: 10.1109/HICSS.2016.670.

[34] What is a tech stack? Technology stack in a nutshell, https://dac.digital/
what-is-a-tech-stack-technology-stack-in-a-nutshell/. Accessed:
2022-12.

[35] What is a Tech Stack? Choosing What Goes In Yours, https://www.heap.io/
topics/what-is-a-tech-stack. Accessed: 2022-12.

[36] Red Hat build of Thorntail, https://access.redhat.com/products/
thorntail. Accessed: 2022-11.

[37] The End of an Era, https://thorntail.io/posts/the-end-of-an-era/. Ac-
cessed: 2022-11.

[38] What is Quarkus?, https://www.redhat.com/en/topics/
cloud-native-apps/what-is-quarkus. Accessed: 2022-11.

[39] What is Quarkus?, https://www.ionos.com/digitalguide/server/
configuration/what-is-quarkus/. Accessed: 2022-11.

[40] Container First, https://quarkus.io/container-first/. Accessed: 2022-11.

[41] McCluskey G. (1998, January) - Using Java Reflection, https://www.oracle.
com/technical-resources/articles/java/javareflection.html. Accessed:
2022-11.

[42] Quarkus vs Spring Boot: Which Framework is Right for You., https://rollbar.
com/blog/quarkus-vs-spring-boot/. Accessed: 2022-11.

[43] Quarkus vs Spring boot Pros and cons., https://techbriel.com/
quarkus-vs-spring-boot-pros-and-cons/. Accessed: 2022-11.

[44] Pros and Cons of Using Spring Boot, https://bambooagile.eu/insights/
pros-and-cons-of-using-spring-boot/. Accessed: 2022-11.

[45] What is Java Spring Boot?, https://www.ibm.com/topics/java-spring-boot.
Accessed: 2022-11.

[46] Advantages of Spring Boot, https://www.adservio.fr/post/
advantages-of-spring-boot. Accessed: 2022-11.

87

https://www.scrum.org/resources/blog/understanding-kanban-guide-scrum-teams
https://www.scrum.org/resources/blog/understanding-kanban-guide-scrum-teams
https://www.businessprocessincubator.com/content/what-is-scrumban-the-best-parts-of-scrum-and-kanban/
https://www.businessprocessincubator.com/content/what-is-scrumban-the-best-parts-of-scrum-and-kanban/
https://dac.digital/what-is-a-tech-stack-technology-stack-in-a-nutshell/
https://dac.digital/what-is-a-tech-stack-technology-stack-in-a-nutshell/
https://www.heap.io/topics/what-is-a-tech-stack
https://www.heap.io/topics/what-is-a-tech-stack
https://access.redhat.com/products/thorntail
https://access.redhat.com/products/thorntail
https://thorntail.io/posts/the-end-of-an-era/
https://www.redhat.com/en/topics/cloud-native-apps/what-is-quarkus
https://www.redhat.com/en/topics/cloud-native-apps/what-is-quarkus
https://www.ionos.com/digitalguide/server/configuration/what-is-quarkus/
https://www.ionos.com/digitalguide/server/configuration/what-is-quarkus/
https://quarkus.io/container-first/
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://rollbar.com/blog/quarkus-vs-spring-boot/
https://rollbar.com/blog/quarkus-vs-spring-boot/
https://techbriel.com/quarkus-vs-spring-boot-pros-and-cons/
https://techbriel.com/quarkus-vs-spring-boot-pros-and-cons/
https://bambooagile.eu/insights/pros-and-cons-of-using-spring-boot/
https://bambooagile.eu/insights/pros-and-cons-of-using-spring-boot/
https://www.ibm.com/topics/java-spring-boot
https://www.adservio.fr/post/advantages-of-spring-boot
https://www.adservio.fr/post/advantages-of-spring-boot

Chapter 5

[47] Spring Boot vs Quarkus, https://www.baeldung.com/
spring-boot-vs-quarkus. Accessed: 2022-11.

[48] Difference Between Java EE and Spring: Which Framework is the Best Choice?,
https://anywhere.epam.com/business/spring-vs-java-ee. Accessed: 2022-
11.

[49] Tomcat vs JBoss – What’s the Difference? (Pros and
Cons), https://cloudinfrastructureservices.co.uk/
tomcat-vs-jboss-whats-the-difference/. Accessed: 2022-11.

[50] Thoughts on Quarkus, https://blog.sebastian-daschner.com/entries/
thoughts-on-quarkus. Accessed: 2022-11.

[51] SOA VS MICROSERVICES: WHAT’S THE DIFFERENCE?,
https://www.crowdstrike.com/cybersecurity-101/cloud-security/
soa-vs-microservices/. Accessed: 2022-10.

[52] Risk Matrix, https://www.wrike.com/blog/what-is-risk-matrix/
#Risk-matrix-example.

[53] Bitbucket, https://en.wikipedia.org/wiki/Bitbucket. Accessed: 2023-05.

[54] Introduction to PowerMock, https://www.baeldung.com/
intro-to-powermock. Accessed: 2023-05.

[55] Smallrye Metrics, https://quarkus.io/guides/smallrye-metrics. Ac-
cessed: 2023-05.

[56] Smallrye Health, https://quarkus.io/guides/smallrye-health. Accessed:
2023-05.

[57] MicroProfile Health, https://download.eclipse.org/microprofile/
microprofile-health-2.1/microprofile-health-spec.html. Accessed:
2023-05.

[58] Startup, https://docs.oracle.com/javaee/6/api/javax/ejb/Startup.
html. Accessed: 2023-05.

[59] Startup Event, https://quarkus.io/guides/cdi-reference#startup_
event. Accessed: 2023-05.

[60] Listening for startup and shutdown events, https://quarkus.io/guides/
lifecycle#listening-for-startup-and-shutdown-events. Accessed: 2023-
05.

[61] PowerMock - GitHub, https://github.com/powermock/powermock. Ac-
cessed: 2023-05.

[62] Mockito, https://site.mockito.org/. Accessed: 2023-05.

[63] The Difference Between mockito-core and mockito-all, https://www.baeldung.
com/mockito-core-vs-mockito-all. Accessed: 2023-05.

88

https://www.baeldung.com/spring-boot-vs-quarkus
https://www.baeldung.com/spring-boot-vs-quarkus
https://anywhere.epam.com/business/spring-vs-java-ee
https://cloudinfrastructureservices.co.uk/tomcat-vs-jboss-whats-the-difference/
https://cloudinfrastructureservices.co.uk/tomcat-vs-jboss-whats-the-difference/
https://blog.sebastian-daschner.com/entries/thoughts-on-quarkus
https://blog.sebastian-daschner.com/entries/thoughts-on-quarkus
https://www.crowdstrike.com/cybersecurity-101/cloud-security/soa-vs-microservices/
https://www.crowdstrike.com/cybersecurity-101/cloud-security/soa-vs-microservices/
https://www.wrike.com/blog/what-is-risk-matrix/#Risk-matrix-example
https://www.wrike.com/blog/what-is-risk-matrix/#Risk-matrix-example
https://en.wikipedia.org/wiki/Bitbucket
https://www.baeldung.com/intro-to-powermock
https://www.baeldung.com/intro-to-powermock
https://quarkus.io/guides/smallrye-metrics
https://quarkus.io/guides/smallrye-health
https://download.eclipse.org/microprofile/microprofile-health-2.1/microprofile-health-spec.html
https://download.eclipse.org/microprofile/microprofile-health-2.1/microprofile-health-spec.html
https://docs.oracle.com/javaee/6/api/javax/ejb/Startup.html
https://docs.oracle.com/javaee/6/api/javax/ejb/Startup.html
https://quarkus.io/guides/cdi-reference#startup_event
https://quarkus.io/guides/cdi-reference#startup_event
https://quarkus.io/guides/lifecycle#listening-for-startup-and-shutdown-events
https://quarkus.io/guides/lifecycle#listening-for-startup-and-shutdown-events
https://github.com/powermock/powermock
https://site.mockito.org/
https://www.baeldung.com/mockito-core-vs-mockito-all
https://www.baeldung.com/mockito-core-vs-mockito-all

References

[64] Setting up and configuring Hibernate ORM, https://quarkus.io/guides/
hibernate-orm#setting-up-and-configuring-hibernate-orm. Accessed:
2023-05.

[65] Containerize an application, https://docs.docker.com/get-started/02_
our_app/. Accessed: 2023-05.

[66] Building, https://quarkus.io/guides/container-image#building. Ac-
cessed: 2023-05.

[67] ScheduleExpression, https://docs.oracle.com/javaee/6/api/javax/ejb/
ScheduleExpression.html. Accessed: 2023-05.

[68] Updating the application configuration file, https://quarkus.io/guides/
scheduler#updating-the-application-configuration-file. Accessed:
2023-05.

[69] CronTrigger Tutorial, https://www.quartz-scheduler.org/documentation/
quartz-2.3.0/tutorials/crontrigger.html. Accessed: 2023-05.

[70] All configuration options, https://quarkus.io/guides/all-config. Ac-
cessed: 2023-05.

[71] Bean Discovery, https://quarkus.io/guides/cdi-reference#bean_
discovery. Accessed: 2023-05.

[72] Singleton Session Bean, https://www.baeldung.com/
java-ee-singleton-session-bean. Accessed: 2023-05.

[73] @ApplicationScoped and @Singleton look very similar. Which one should
I choose for my Quarkus application?, https://quarkus.io/guides/cdi#
applicationscoped-and-singleton-look-very-similar-which-one-should-i-choose-for-my-quarkus-application.
Accessed: 2023-05.

[74] CREATING YOUR FIRST APPLICATION, https://quarkus.io/guides/
getting-started. Accessed: 2023-05.

[75] Where Is the Maven Local Repository?, https://www.baeldung.com/
maven-local-repository. Accessed: 2023-05.

[76] JDK 11 Release Notes, https://www.oracle.com/java/technologies/
javase/11-relnote-issues.html#JDK-8190378. Accessed: 2023-05.

[77] Just In Time Compiler, https://www.geeksforgeeks.org/
just-in-time-compiler/. Accessed: 2023-05.

[78] SonarQube Documentation, https://docs.sonarqube.org/latest/. Ac-
cessed: 2023-05.

[79] Project Lombok, https://projectlombok.org/. Accessed: 2023-05.

[80] Managing Code Complexity, https://devguide.trimble.com/
development-practices/managing-code-complexity/. Accessed: 2023-05.

89

https://quarkus.io/guides/hibernate-orm#setting-up-and-configuring-hibernate-orm
https://quarkus.io/guides/hibernate-orm#setting-up-and-configuring-hibernate-orm
https://docs.docker.com/get-started/02_our_app/
https://docs.docker.com/get-started/02_our_app/
https://quarkus.io/guides/container-image#building
https://docs.oracle.com/javaee/6/api/javax/ejb/ScheduleExpression.html
https://docs.oracle.com/javaee/6/api/javax/ejb/ScheduleExpression.html
https://quarkus.io/guides/scheduler#updating-the-application-configuration-file
https://quarkus.io/guides/scheduler#updating-the-application-configuration-file
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
https://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html
https://quarkus.io/guides/all-config
https://quarkus.io/guides/cdi-reference#bean_discovery
https://quarkus.io/guides/cdi-reference#bean_discovery
https://www.baeldung.com/java-ee-singleton-session-bean
https://www.baeldung.com/java-ee-singleton-session-bean
https://quarkus.io/guides/cdi#applicationscoped-and-singleton-look-very-similar-which-one-should-i-choose-for-my-quarkus-application
https://quarkus.io/guides/cdi#applicationscoped-and-singleton-look-very-similar-which-one-should-i-choose-for-my-quarkus-application
https://quarkus.io/guides/getting-started
https://quarkus.io/guides/getting-started
https://www.baeldung.com/maven-local-repository
https://www.baeldung.com/maven-local-repository
https://www.oracle.com/java/technologies/javase/11-relnote-issues.html#JDK-8190378
https://www.oracle.com/java/technologies/javase/11-relnote-issues.html#JDK-8190378
https://www.geeksforgeeks.org/just-in-time-compiler/
https://www.geeksforgeeks.org/just-in-time-compiler/
https://docs.sonarqube.org/latest/
https://projectlombok.org/
https://devguide.trimble.com/development-practices/managing-code-complexity/
https://devguide.trimble.com/development-practices/managing-code-complexity/

Appendices

91

Appendix A

Show and Tell

In this section, the Shows and Tells presentations that were carried out during the
internship are available.

93

CRITICALSOFTWARE.COM

Date: 10/07/2023

1st Show and Tell

CSWSYS component–

Quarkus

Bruno Gandres

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 1

Agenda

▪ Overview

▪ Developed Work

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 2

Overview

• Request Manager Migration: From Thorntail to Quarkus;

• Java 11;

• Quarkus 2.16.1 Final;

• The work carried out so far has focused on:

▪ Dependencies;

▪ CDI;

▪ Some adaptations in unit tests.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 3

Work Developed

• Since the other components were in java 8 and the

request manager was in java 11, there were problems

compiling the components all together;

• Components that were not required were commented on in

the root pom.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 4

Work Developed

Dependencies

• Javaee and Throntail's dependencies were commented;

• Quarkus can use SmallRye Health which is an implementation of the MicroProfile Health

specification. SmallRye Metrics allows applications to gather metrics and statistics;

• @Health was changed to @Readiness.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 5

Work Developed

CDI

• Quarkus needs a Jandex index to detect annotated classes;

• Included jandex-maven-plugin to enable the DCI bean discovery.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 6

Work Developed

Annotations

• @Startup

• Startup annotation was removed;

• There was an option to declare an observer of the StartupEvent or annotate the bean with

@io.quarkus.runtime.Startup (synthetic observer of StartupEvent is generated).

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 7

Work Developed

Annotations
• @Stateless

• @TransactionAttribute

•To avoid the usage reflection, Quarkus recommends not using private members in your beans.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 8

Work Developed

Database

• Add JDBC driver dependency;

• With Hibernate-Orm, the file persistence.xml is not

necessary.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 9

Work Developed

Unit Tests

• Powermock has some issues with Java 11;

• Attempted to replace powermock-api-mockito with powermock-

api-mockito2, but errors started appearing;

• It is not good practice to use powermock, so all powermock

dependencies were commented/removed;

• Powermockito was replaced with Mockito;

• Whitebox was removed.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 10

Work Developed

Unit Tests

• With the new version of mockito some adaptations have been made:

• org.mockito.Matchers org.Mockito. ArgumentMatchers

• PowerMockito.mockStatic Mockito.mockStatic

• MockitoAnnotations.initMocks MockitoAnnotations.openMocks

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 11

Work Developed

Unit Tests

• openMocks returns a closable to close when completing any test.

• The mockStatic creates a thread-local mock controller for all static

methods. Should be closed or the mock will remain active on the

current thread, showing an error.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 12

Some problems

• Missing dependencies;

• Missing implementations derived from recent/old versions;

• Difficulties with Mockito;

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 13

CRITICALSOFTWARE.COM

THANK

YOU!

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 14

Appendix A

Figure A.1: 1st Show and Tell

108

CRITICALSOFTWARE.COM

Date: 10/07/2023

2nd Show and Tell

CSWSYS component -

Quarkus

Bruno Gandres

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 1

Agenda

▪ Overview

▪ Developed Work

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 2

Overview

• 1st Show and Tell (23/03/2023):

• Thorntail’s dependencies deleted;

• Quarkus dependencies added;

• Powermock to Mockito.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 3

• Reflection removal;

• Constructor Injection;

• Milestones:

• 28/03/2023 - Request Manager runs on Quarkus;

• 30/03/2023 - Request Manager passes SOAP UI tests;

• 13/04/2023 - Reflection removal;

• 18/04/2023 - Replacing Field Injection with Constructor Injection.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 4

Overview

Work Developed

Configurations

• The confluence page for Quarkus configurations, indicated to put the config path in the VM options,

which led to IDE running the command with config first and then with jar, failing to run quarkus-jar.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 5

Confluence example:

Work Developed

Configurations

• The confluence page for Quarkus configurations, indicated to put the config path in the VM options,

which led to IDE running the command with config first and then with jar, failing to run quarkus-jar.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 6

Confluence example:

Work Developed

Configurations

• The config path must be passed as a Program Argument;

• In the execution command, the jar path appears first and then the configuration path.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 7

• Some classes had no annotation, which did not allow Jandex to do the discovery.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 8

Work Developed

Work Developed

Constructor Injection

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 9

• Field Injection was replaced with Constructor Injection;

• It was a suggestion from the first show and tell;

• Injected fields can be declared as final, which helps with robustness.

Work Developed

Reflection Removal

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 10

• Removal of invokeMethods:

• Work around with public methods;

• Change private methods to package-private.

Work Developed

Reflection Removal

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 11

• Removal of invokeMethods:

• Replacing Private @PostConstructs to package-private/protected.

Work Developed

Reflection Removal

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 12

• Removal of setInternalState:

• Mockito tries to inject mocked dependencies using one of the three approaches:

• Constructor Injection

• Setter Injection

• Field Injection

• With the constructor injection, the arguments are resolved with mocks declared in the test only.

• The annotations need to be inserted in the constructor.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 13

Work Developed

Constructor Injection - Findings

• For constructor injection, TestNg with @InjectMocks does not create a new instance of

the test class; it keeps the state between test methods. When openMocks is called for the

second time, Mockito will find the victim field already initialized and will try to use field

injection. It’s a known issue of InjectMock + TestNg;

• A solution is to put victim = null in a @AfterMethod.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 14

Work Developed

Constructor Injection - Findings

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 15

• Changes to the Health Check Tests:

o Spaces.

Work Developed

SOAP UI

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 16

• Changes to the Health Check Tests:

o Spaces.

Failure: Sucess:

Work Developed

SOAP UI

CRITICALSOFTWARE.COM

THANK

YOU!

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 17

Appendix A

Figure A.2: 2nd Show and Tell

126

CRITICALSOFTWARE.COM

Date: 07/07/2023

3rd Show and Tell

CSWSYS component –

Quarkus

Bruno Gandres

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 1

Agenda

▪ Overview

▪ System Tests

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 2

• Execute system tests regarding Request Manager

• Defect fixes

• Milestones:

• 28/03/2023 - Request Manager runs on Quarkus;

• 30/03/2023 - Request Manager passes SOAP UI tests;

• 13/04/2023 - Reflection removal;

• 18/04/2023 - Replacing Field Injection with Constructor Injection;

• 31/05/2023 – All system tests regarding Request Manager

Passed;

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 3

Overview

Work Developed

System Tests

• Request Manager was commented in start-test-env.sh docker compose from testing environment

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 4

Work Developed

System Tests

• Dockerfile were added to Request Manager’s dist folder;

• Dependency quarkus-container-image-docker was added to perform Docker builds;

• The remaining component’s containers were run automatically, and the Request Manager container

was run manually.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 5

docker run --name CSWSYS-component --memory 4G --restart no --volume $(pwd)/deploy/local/ CSWSYS-component

/config:/deployments/config -v $(pwd)/deploy/local/ CSWSYS-component /logs/:/deployments/logs --env

EXTRA_JVM_PROPS=-DCSWSYS.smki-web-client.server.url=https://smki-web-server:7086/smki -p 8070:8070 --

network test_cswsysnet --ip 172.200.0.60 --health-cmd "if [[$$(curl -s -f http://localhost:8070/health | awk -F\\\" '{print

$$4}') = *UP*]]; then exit 0; else exit 1; fi" --health-interval 1m --health-retries 3 --health-timeout 5s brunogandres/cswsys-

component-shared:1.20.0-SNAPSHOT

Work Developed

System Tests - Problems

• Database connection refuse

• Wrong database URL inside deploy config file – Was localhost as the development

environment

• Wrong database name - CSWSYSvv

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 6

Work Developed

System Tests - Problems

• Not finding the right log in order to understand that the container is running

• The expected log message in order to know if the container was running with Thorntail

was “THORN99999: Thorntail is Ready”

• Was changed by “Profile prod activated”

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 7

Work Developed

System Tests - Problems

• Problem with database connection checks.

• The javax.ejb.scheduleExpression replacement had been forgotten, so the periodic task of

checking the connection every 10 seconds never happened, keeping the database state

UP when the test sent the database down.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 8

Work Developed

System Tests - Problems
• Wrong config values:

• The same configuration files from development were used in the testing environment with the

wrong configuration properties.

• Inside the dist folder, there was an application.yaml with configuration properties fixed at build time

and also configuration properties that are overridable at runtime, which led to an override of the

timeout values of the tests.

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 9

dist/CSWSYS-component/src/main/resources deploy/local/ CSWSYS-component /config

Work Developed

System Tests

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 10

• Trilliant | Secure | Ie system tests were executed successfully

CRITICALSOFTWARE.COM

THANK

YOU!

© Copyright Critical Software. All rights reserved. Information Classification: Confidential 11

Appendix A

Figure A.3: 3rd Show and Tell

138

Appendix B

Regression System Testing execution
reports

In this section, the execution report of the Regression System Tests are available.

139

Appendix B

Figure B.1: Test Report

142

Appendix B

Figure B.2: Test Report

146

Chapter 5

Figure B.3: Test Report

150

	Introduction
	Project Context
	Objectives
	Structure of the document

	Practices in Software Maintenance
	Software Life Cycle Processes
	Software Maintenance
	Maintenance Processes
	Types of Software Maintenance
	Techniques for Maintenance

	Software Maintenance Measurement
	Size
	Complexity
	Quality
	Understandability
	Maintainability

	Handling Maintenance in Agile Projects
	Scrum
	Kanban
	Differences between Scrum and Kanban
	Scrumban

	Technology Stack
	Why it is important to maintain a Tech Stack?
	Technology Stack of CSWSYS
	Thorntail Background
	Thorntail Alternatives
	Comparison
	Final Thoughts

	Project Background and Approach
	Project Background
	Project Requirements
	Functional Requirements
	Non-Functional Requirements

	CSWSYS Architecture
	Approach
	Approach
	Initial Plan
	Planning
	Risk Plan

	Development, Integration of the solution and Testing
	Environment Setup
	CSWSYS Structure and Organization
	Test Approach

	Dependencies Changing
	Before Migration
	After Migration

	EJB's and Annotations
	@Health
	@Stateless
	Eager Instantiation Beans
	Private Members

	Configuration Files
	Unit Tests
	Replace PowerMock
	Delete Whitebox
	Unit testing with Constructor Injection

	Regression System Testing
	Test Environment Setup
	Defect Fixing

	Final considerations

	Conclusion
	Appendix Show and Tell
	Appendix Regression System Testing execution reports

