

Mariana Luísa Lança Miguel e Fernandes Marques

Dissertation in the context of the Master in Informatics Engineering,

specialization in Software Engineering, advised by Prof. João R. Campos and

Carlos G. Araújo and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of

Coimbra.

 July of 2023

A Real Application of Multi-tenancy

 in an Alarm System Software

DEPARTMENT OF INFORMATICS ENGINEERING

Mariana Luísa Lança Miguel e Fernandes Marques

A Real Application of
Multi-tenancy in an Alarm System

Software

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, advised by Prof. João R. Campos and

Carlos G. Araújo and presented to the Department of Informatics Engineering of
the Faculty of Sciences and Technology of the University of Coimbra.

July of 2023

Abstract

Nowadays, alarm systems are widely used for multiple reasons, from intruders
to fire detection, or even environmental hazards and medical services. Through-
out the years, this type of systems has gone through a lot of improvements, be-
coming more and more appealing to their customers and expanding in the global
market. Hence, the demand for Alarm Systems Management Software has grown
throughout the years in a more competitive market. The Alarm Manager is a tool
offered by Altice Labs that fits in this Software category, allowing for real-time
detection of problems in equipment and offering predictive mechanisms for fault
tolerance. However, the system has problems related to high expenses and a
substantial ecological footprint, which can be addressed by optimizing resources
through the implementation of multi-tenancy.

Multi-tenancy is a paradigm of resource sharing between multiple clients, also
called tenants. It is a widely used approach because it allows companies to reduce
the need for infrastructure while maximizing the usage of the available resources.
However, it also has drawbacks, such as complexity, resource competition, and
lack of isolation.

The purpose of this project is to conduct a thorough study of the Alarm Man-
ager’s current architecture and host services and devise, implement, and test a
multi-tenant approach on the most relevant layers, taking into account aspects
such as performance and security to the user. Finally, develop a dashboard to
assist tenant resource monitoring.

Keywords

Alarm System, Optimization, Resource usage, Resource monitoring, Multi-tenancy

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Objectives . 2
1.4 Contributions . 2
1.5 Document Structure . 3

2 Background Concepts and Related Work 5
2.1 Cloud Computing . 5

2.1.1 Virtualization technologies 6
2.1.2 Software-as-a-Service . 7

2.2 Single-Tenancy . 8
2.3 Multi-Tenancy . 9

2.3.1 Considerations when choosing Multi-tenancy 10
2.3.2 Multi-Tenancy in Databases 11

2.4 Technologies . 15
2.4.1 Docker . 15
2.4.2 Kubernetes . 16
2.4.3 Kafka . 17
2.4.4 Prometheus and Grafana . 20

3 Alarm Manager 23
3.1 Actors . 23
3.2 Alarm Manager’s Architecture . 24
3.3 Alarm Procedures . 26
3.4 Alarm Manager Layers . 26

3.4.1 Protocol Adapter . 27
3.4.2 Processing . 27
3.4.3 Web Layer . 30

3.5 Layers Complexity and Resource Cost 30

4 Requirements 33
4.1 Functional Requirements . 33
4.2 Non Functional Requirements . 36
4.3 Risk Analysis . 37

4.3.1 Risks . 37
4.3.2 Assumptions . 38
4.3.3 Issues . 39
4.3.4 Dependencies . 39

vii

Chapter 0

5 Multi-tenancy Analysis 41
5.1 Analysis of the different layers . 41
5.2 Database . 42

5.2.1 Database Models Overview 42
5.2.2 Alarm Manager Considerations 43
5.2.3 Models comparison . 44
5.2.4 Schema isolation as a Solution 45

5.3 Kafka . 46
5.3.1 Kafka solutions overview . 46
5.3.2 Alarm Manager Considerations 50
5.3.3 Solutions comparison . 50
5.3.4 Dedicated namespaces as a Solution 51

5.4 Processing Layer . 54
5.4.1 Shared Processing . 54
5.4.2 Dedicated processing . 62
5.4.3 Solutions comparison . 63
5.4.4 Dedicated instances as a solution 65

6 Development plan 67
6.1 Lifecycle . 67
6.2 Planning for the first semester . 68
6.3 Planning for the second semester . 68

7 Implementation 73
7.1 Required Tools . 74
7.2 Kubernetes . 75

7.2.1 Configure Overlay . 75
7.2.2 Monitoring . 77

7.3 Kafka Docker . 79
7.3.1 Authentication . 80
7.3.2 Authorization . 80
7.3.3 Monitoring . 81

7.4 Other developments . 83

8 Tests 85
8.1 Performance tests . 85

8.1.1 Idle mode . 87
8.1.2 Resources evolution . 88
8.1.3 System performance . 93
8.1.4 System scalability . 94

8.2 Isolation tests . 96
8.2.1 Database . 96
8.2.2 Kafka . 98

8.3 Discussion . 100

9 Conclusion 103
9.1 Future Work . 104

viii

Acronyms

ACL Access Control List.

AM Alarm Manager.

CEP Complex Event Processing.

FaaS Function-as-a-Service.

IaaS Infrastructure-as-a-service.

IAM Identity and Access Manager.

JAAS Java Authentication and Authorization Service.

JPA Persistence API.

NFS Network File System.

PaaS Platform-as-a-service.

RLS Row-Level Security.

SaaS Software-as-a-service.

TTK Trouble Ticket.

VM Virtual Machine.

ix

List of Figures

2.1 VM and Container Architectures, from [57] 7
2.2 Single tenancy, from [43] . 8
2.3 Multi-tenancy, from [43] . 9
2.4 Database Multi-tenancy models overview, based on [66] 12
2.5 Docker architecture, from [26] . 15
2.6 Kubernetes cluster, from [48] . 17
2.7 Kafka clients interacting with a Kafka Cluster, from [54] 18
2.8 Kafka authorization workflow, from [34] 20

3.1 AM layers . 25
3.2 Relation between Processing and its components and other layers . 29

4.1 Use case diagram level 1 . 33

5.1 Shared processing architecture . 55

6.1 Planning for the first semester . 70
6.2 Original planning for the second semester 71
6.3 Followed schedule for the second semester 72

7.1 Proposed multi-tenant architecture 74
7.2 Tenant 1 pod. 76
7.3 Monitoring Dashboard . 78
7.4 Monitoring Dashboard . 78
7.5 Kafka structure . 79
7.6 ACL list example . 81
7.7 Kafka Dashboard . 82
7.8 Alert for number of bytes being consumed surpassed 82

8.1 Processed events from 2h30 to 8h00 87
8.2 Memory activity . 87
8.3 CPU evolution . 88
8.4 CPU usage per tenant . 89
8.5 Comparison of CPU in a single and multi-tenant scenarios for two

tenants . 90
8.6 CPU usage for different concurrent tenants 91
8.7 Comparison of Memory evolution 92
8.8 Comparison of bandwidth evolution 92
8.9 Processing time evolution . 93
8.10 CPU expected scalability . 95

xi

Chapter 0

8.11 Memory expected scalability . 95
8.12 Database successful message . 98
8.13 Database permission denied . 98
8.14 Kafka permission denied example 100

xii

List of Tables

3.1 Layers complexity and resource usage 31

4.1 US1 - Setup Tenant . 34
4.2 US2 - Audit Resource usage . 34
4.3 US3 - Monitor Resource usage . 35
4.4 US4 - Change/Set Resource usage threshold 35
4.5 US5 - Access authorizations . 36
4.6 US6 - Configure Kafka authentication and authorization 36
4.7 Risks Table . 38
4.8 Risks’ mitigation plans Table . 38
4.9 Assumptions Table . 39
4.10 Issues Table . 39
4.11 Dependencies Table . 40

5.1 Database Models Comparison . 42
5.2 Database Models benefits . 45
5.3 Kafka Solutions Comparison . 51
5.4 Machine costs per year . 64
5.5 Planned tasks for the implementation of a shared processing: The

tasks were gathered, validated, and estimated with the team’s as-
sistance . 64

7.1 Use cases list . 73

8.1 Environment current, minimal resources, and testing machine re-
sources . 86

8.2 Projection of the general CPU reduction for number of tenants, due
to the shared Kafka . 90

8.3 Capacity of event processing . 94
8.4 Expected CPU utilization and minimum required 96
8.5 Expected memory utilization and minimum required 96
8.6 Expected bandwidth utilization and minimum required 96
8.7 Database Isolation tests . 97
8.8 Database Isolation results . 98
8.9 Kafka Isolation tests . 99
8.10 Kafka Isolation results . 100

xiii

Chapter 1

Introduction

This report is part of a curricular internship in Software Engineering for the Mas-
ter’s Degree in Informatics Engineering, from the Faculty of Sciences and Tech-
nology, at the University of Coimbra, in the curricular year 2022/2023. It was
oriented by professor João R. Campos, from the Department Informatics Engi-
neering and Carlos G. Araújo, from Altice Labs.

The following sections present the motivation and context for this internship, as
well as its objectives and contributions. Finally, the structure of the document is
presented.

1.1 Motivation

Alarm devices are largely used nowadays for a multitude of purposes since these
types of equipment are a very efficient and automated way of detecting an im-
mense amount of potential threats. These threats range from intruders to a fire,
or even environmental hazards and medical services [45]. Throughout the years,
alarm systems have gone through a lot of improvements, becoming more and
more appealing to their customers and expanding in the global market. Between
the years 2021 and 2022, the global alarm systems and equipment market grew
at a compound annual growth rate (CAGR) 8.2% (from $5.11 billion to $5.53
billion)[21], meaning that, for a given year interval, the mean of annual growth
was of 8.2% [29].

When having an alarm system installed, it’s important to keep a software system
for management, known as Alarm Systems Management Software. From power
and CPU usage to circumstances in which the equipment might fail, this software
must let the owner have an insight into the state of the equipment. Furthermore,
this type of information must be delivered in real-time, while still maintaining
maximum efficiency since these types of equipment generate significant amount
of notifications that affect fault detection. This way, these software systems must
know how to filter the notifications so as to optimize fault detection and man-
agement. In response to this problem, and allied to a growing market, there is an
increasing interest in offering better and more competitive monitoring tools for

1

Chapter 1

real-time alarm management.

1.2 Context

The Alarm Manager (AM) is an Alarm Systems Management Software from Al-
tice Labs. These types of software allow for either single users or companies
to detect equipment issues in real-time, as well as increase service availability.
This is done by detecting when a piece of equipment is down and allowing for a
professional to resolve the problem and execute a report on the situation. Besides
these advantages, the Alarm Manager also offers a predictive fault-tolerant mech-
anism alongside auto-healing and automated fault resolution before it impacts
customer quality. The predictive mechanism can anticipate potential problems
affecting the service by detecting the root cause of the problem.

In order to fulfill its purpose, the AM must offer multiple functionalities and be
able to store large amounts of data. Consequently, the system requires a large
infrastructure so as to respond efficiently to its clients, resulting in it being expen-
sive due to hosting service costs and having a high ecological footprint. However,
this is a problem that can be mitigated by optimizing the way these resources are
used, i.e, minimizing the number of resources necessary to respond to the same
number of clients. Multi-tenancy is a paradigm that helps address this matter in
an efficient way.

1.3 Objectives

The scope of this curricular internship is to optimize resource usage in the Alarm
Manager system. For this, multi-tenancy is thought to be a good solution, at
both application and database levels. However, it raises problems regarding the
changes to implement in the software and how to mitigate drawbacks associated
with the approach.

The objective of this project is to conduct a thorough study of the Alarm Man-
ager’s current architecture and used host services and technologies, providing an
insight into a solution to implement and in which layers since some offer better
optimization than others. After this study, the planned multi-tenant approach is
to be implemented and tested, as well as a dashboard required for the clients’
management that shall allow an administrator to monitor tenant’s resource us-
age. The approach must take into consideration important aspects such as per-
formance and security to the client.

1.4 Contributions

With the work carried out during the internship, the main contributions for the
Alarm Manager are:

2

Introduction

• A study on possible multi-tenant solutions that apply to Alarm Manager
system and how could these be implemented in the product;

• A comparison of the various solutions and proposal of one of them;

• A practical implementation of the solution proposed and evaluation of the
enhancements and setbacks;

• A proposal of a monitoring dashboard for a multi-tenant solution.

1.5 Document Structure

This report is divided into the following chapters:

• Chapter 2 provides a background to the project, describing important con-
cepts, such as Multi-tenancy, and models to support it. Details on the tech-
nologies associated with for the project are also presented;

• Chapter 3 introduces Alarm Manager’s current architecture and its layers’
operation process;

• Chapter 4 presents and describes the functional and non-functional require-
ments and a risk analysis for the project development;

• Chapter 5 analyses and discusses how multi-tenancy can be implemented
in the proposed layers of the Alarm Manager.

• Chapter 6 details the development plan, including the project lifecycle;

• Chapter 7 presents the work developed in this internship, focusing on the
multi-tenant application and the Kafka solution separately;

• Chapter 8 reports and reflects on the test results done to verify the viability
of the solution;

• Chapter 9 concludes this document, presenting a brief description of what
was achieved and the future work.

3

Chapter 2

Background Concepts and Related
Work

Multi-tenancy is a software architecture in which users’ provisioned resources are
shared. Although it seems a simple idea, put like this, it is a much more com-
plex concept that takes into account multiple aspects, from its implementation to
problems such as isolation or performance.

In this chapter, the required concepts to understand single and multi-tenancy are
introduced.

2.1 Cloud Computing

Cloud computing can be acknowledged as a paradigm for hosting and delivering
services over the Internet [68]. The Cloud itself refers to the physical servers,
their software, and databases, that, being located in data centers, provide users
and companies with the necessary assistance to host software systems that are
accessible remotely. These data centers are facilities containing many networked
computers that manage the data in a cost-saving, productive, efficient, and secure
way [23].

A Cloud is, therefore, a pool of virtualized computer resources, which supply
the necessary server provisions and configurations, dynamically [20], and that
are hosted somewhere out of the scope of the Software owner. Thus, the need
to manage physical servers is eliminated while granting the ability to deliver
software on demand, i.e, only the cloud resources delivered and used by the
users will be paid. This payment is the responsibility of the Software owner.

There are four models of cloud computing [17]:

• Infrastructure-as-a-service (IaaS) - Refers to a virtualized computer envi-
ronment or physical infrastructure delivered as a service. It includes servers
and storage, network equipment, and software.

5

Chapter 2

• Platform-as-a-service (PaaS) - It’s the delivery of a computing platform (op-
erating system and its services) as a service over the Internet, such as mid-
dleware, development tools, database management, and more.

• Software-as-a-service (SaaS) - It’s an application hosted on a server and
delivered over the internet.

• Function-as-a-Service (FaaS) or Serverless - Like SaaS, it’s an application
delivered over the Internet. In this case, the server or cluster management
is done by the Cloud provider and the user writes and uploads individual
functions that are executed in response to certain events [12].

Note that there is a hierarchical relationship between these models: FaaS runs on
top of SaaS, that in turn runs on top of PaaS, and PaaS on top of IaaS [67].

Some widely known service providers are Google Cloud, Amazon Web Services
(AWS), Microsoft Azure, and IBM Cloud, among others. Each provider has its ad-
vantages and disadvantages, being the Software owner’s responsibility to choose
what best fits the project.

In Cloud computing, when users access a Web application, they are retrieving
data housed in servers located in data centers, instead of locally [23]. These
virtualized servers contain information to host multiple applications and their
databases, but also implement data isolation and security, the necessary precau-
tion and recovery measures in case of disaster, and data backup, among other
procedures to keep data available, secure, and always up-to-date.

2.1.1 Virtualization technologies

Virtualization, in the Cloud, comes in two different ways: Virtual Machines (VMs)
and Software containers.

Virtual Machines, or VMs, are the result of an abstraction layer that splits the hard-
ware elements of a single computer into multiple virtual computers. These be-
have as if they were physical machines with their own hardware and operating
systems. So a virtual machine contains several files such as configuration files,
storage, and some snapshots that preserve its state at a point in time[35]. For
each host infrastructure containing multiple VMs, there is also a Hypervisor that
creates and executes each machine[57]. The left side of the figure 2.1 shows the
architecture of a Host Machine containing two Virtual Machines.

One of the main advantages of VMs, is that they address scheduling, packaging,
and security problems, by keeping a clear division between Operating Systems
and filesystems[57], and the snapshots which allow the VM to be deleted and
recreated in case something goes wrong[35]. However, this technology has dis-
advantages regarding storage matters. VM images are usually large and thus take
considerable space in the host machine They also take long to boot, from 1 to 10
minutes [57].

6

Background Concepts and Related Work

It is also due to virtualization that is possible to deliver software on demand,
by managing the provisioning of resources of each virtual machine, and scaling
them as the workloads grow.

On the other hand, Containerization is a lighter way, in terms of memory footprint,
to deliver Software utilizing OS virtualization principles[57]. These can run di-
rectly on physical servers or be hosted in Virtual Machines [30], sharing OS, and
contain packages and ready-to-deploy parts of an application, such as the source
code, and they can still host the middleware and business logic[57]. This means
that the container only stores what it needs to execute its operations. The right
side of figure 2.1 shows the architecture of containers hosted on a VM.

Contrary to VMs, Containers can boot in a matter of seconds and don’t require
much storage, as multiple containers share OS, and offers performance benefits,
while still maintaining the level of isolation and security of a virtual machine[27].

Figure 2.1: VM and Container Architectures, from [57]

2.1.2 Software-as-a-Service

As discussed previously, there are four cloud models. However, a closer look at
SaaS is required since, nowadays, a lot of applications are delivered to their users
as SaaS applications. Remember that, in this delivery model, the service provider
hosts the application, and handles all of the infrastructure, application logic, de-
ployments, Software upgrades, bug fixes, and other maintenance tasks, while the
Software owner, who is required to pay a fee for the usage of the product[64],
manages some application-specific parameters and users. On account of this, the
SaaS provider has total control over the management, performance, security, scal-
ability, and privacy of the Software[44].

The users can belong to different tenants, being a tenant a group of software
users that may have different roles and that share common access to the software
instance, such as the application code and data. For example, a company with
multiple users sharing the same environment is a case of a tenant[16]. How the
resources are shared among these tenants, is defined by two models: a Single
and a Multi-tenant. In the following sections, these two architectural models are
explained in depth.

7

Chapter 2

2.2 Single-Tenancy

In the first and most basic Software architecture, Single-Tenancy, each tenant is
provisioned with a single instance[55], that can be, for example, a Web applica-
tion or a database. This means that each customer is provided by a dedicated set
of server infrastructures, guarantying isolation from other tenants and reducing
the risk of accidental data leakages [43]. In this case, the tenant has full control
over its resource usage and customization, while still being aided by the hosting
provider for software management. However, this architecture has its drawback,
such as the low cost-efficiency, since each infrastructure is dedicated to each ten-
ant.

Figure 2.3 illustrates how Single-tenancy works, where each of the A, B, and C
tenants have their own deployment with dedicated Web servers and database
instances.

Figure 2.2: Single tenancy, from [43]

Advantages

Some of the advantages of this architecture are the following[43]:

1. Data isolation - Data is isolated from other tenant’s data, and a tenant’s
activities cannot influence one another’s;

2. More customization - Also due to the tenant’s separation, it is possible to
get data customization;

3. Easier restore - Isolated backups are easier to restore in case of disaster.

Disadvantages

On the other hand, regarding the disadvantages of Single-tenancy[43]:

1. Expensive - Keeping a whole infrastructure for each tenant is more expen-
sive in terms of fees paid to the Cloud Provider;

2. Set up and migration - Setting up a tenant, upgrading or migrating its soft-
ware version is a slower process and, for migration, it must be done for each
tenant;

8

Background Concepts and Related Work

3. Resources Usage - Resources, in a less optimized system, may not be fully
exhausted.

2.3 Multi-Tenancy

Aside from Single-tenancy, there is Multi-tenancy, in which a single instance of an
application and/or database serves multiple customers/tenants. In Cloud com-
puting, this means that multiple tenants share the same cloud resources, such as
CPU, networking, storage/database, or application stack, therefore reducing the
cost of the resources necessary to serve each tenant and decreasing infrastructure
utilization. Multi-tenancy is often used by Software-as-a-Service vendors since
these environments are cheaper to scale and maintain.

The following figure shows, at a high level, how a multi-tenant SaaS responds
to tenants’ requests. It owns a shared pool of resources, accessed and used by
multiple tenants, depending on their needs.

Figure 2.3: Multi-tenancy, from [43]

Although different tenants share the same resources, at a user experience level, it
must be the same as if the tenant owns a full instance of the application, providing
users with isolation, availability, scalability, and customizability. Isolation, since
it must appear to the tenant as though they have exclusive access to the applica-
tion, meaning that their activities do not affect the use of the application by other
tenants, and vice-versa, and they cannot access each other’s data. Availability
of the application can not be affected by the actions of other tenants. Scalability,
for the application must behave independently of the number of tenants, i.e, it
must scale to meet the needs of its tenants. And, finally, Customizability, be-
cause a tenant must have the ability to customize the application, depending on
their needs.

Advantages

Multi-tenancy has its advantages when compared with single-tenancy [43][56]:

1. Lower costs per tenant - Services can be sold to many customers at lower
costs than if each one needed their own dedicated infrastructure, with shared

9

Chapter 2

resources;

2. Better resource usage - Sharing the available resources among tenants al-
lows for a maximization of their usage, such as memory and CPU;

3. Easier maintenance and update - Since there is only one codebase and data
structure to be dealt with, the implementation of upgrades includes all ten-
ants, allowing for these upgrades and maintenance operations to be done at
once;

4. Ease to add new tenants - There is no need to configure an infrastructure.

Disadvantages However, there are also some drawbacks of this architecture and
cases in which a single-tenant architecture can be a better option [43][56]:

1. Greater security risks - Since all tenants share the same physical environ-
ment, there is a need for strict authentication and access control to prevent
clients from reading, writing, or changing each other’s data. Also, there is
the risk of corrupted data propagation through all clients. An example of a
security problem in multi-tenancy is the noisy neighbor, in which a tenant’s
performance decays due to the activities of another tenant[19];

2. Generalized problems - A problem at the provider’s end can lead to issues
for all users. This may apply to up time, system upgrades and other global
processes;

3. Vulnerability - Multi-tenant environments allow multiple access points that
can be explored, constituting a threat to the application’s security. Also,
shared services can become a single point of failure if not well-architected;

4. Less customization - Due to a common codebase, assuring total customiza-
tion for each tenant is impossible;

5. Possibility of competing for resources - Tenants share resources in a re-
source pool, and as the number of tenants grows, more resources must be
added to that pool. However, there are protocols that deal with this prob-
lem, by managing resources usage;

6. Complexity - Having a single codebase/database that must be able to serve
multiple tenants, adds complexity to its development and maintenance;

7. Backup and Restoration - In a shared database, backup and restore data
per tenant is a more complex operation.

2.3.1 Considerations when choosing Multi-tenancy

Choosing whether to construct a multi-tenant application or not depends on the
trade-offs between the advantages and disadvantages, and so, some aspects must
be considered, such as:[56]

10

Background Concepts and Related Work

• Tenant requirements - Such as:

– Scalability - The number of tenants the system will support, the stor-
age per each one and its workload affect the application architecture;

* For a lot of users that make a low usage of resources, sharing as
many components as possible is advantageous;

* For important tenants that make a large volume of operations and
manage a lot of data that may be sensitive, isolated resources might
be the best option.

– Tenant isolation and security - The importance of data and workload
isolation, for each of the tenants, how it can be done and the influence a
tenant may have in others’ workload is an important factor to consider
when deciding whether to share resources among customers or not;

– Customizability - How important it is, for a tenant, to have customized
software that has influence when choosing shared or isolated infras-
tructures.

• Per-tenant cost - How expensive it is to maintain all resources needed for a
growing number of customers;

• Development complexity - Depending on the system’s architecture, what
changes are needed to be done in the application and its database, such as
schemas and queries, and how complex these tasks are;

• Operational complexity - Includes monitoring and managing the software
performance, and disaster recovery, among many others.

Ultimately, multi-tenancy is useful for supporting multiple customers in a cloud
environment, keeping a good ratio of cost-quality, or simply to reduce infrastruc-
ture footprint. However, it is also possible to provide tenants with different ar-
chitectures, since they have different needs, being that some make extensive use
of the resources while others do not. This implies that some would share their
resources with other tenants, while others would have their dedicated infrastruc-
ture, in a single-tenant architecture. This is referred to as a Hybrid architecture
[44].

2.3.2 Multi-Tenancy in Databases

In a database, multi-tenancy can improve the cost of provisioning and operating
databases, handling high-traffic volumes of data at low-cost [40]. This is done by
sharing the resources of a single database server with multiple tenants. However,
this approach has its downsides, such as a degradation in the performance that
arises due to tenant workload competition for critical resources such as CPU, I/O,
and memory at the server[53]. Sharing resources can be done in three different
ways [66], as seen in figure 2.4: a. Isolated database, b. isolated schema, and c. shared
table.

11

Chapter 2

a. b. c.

Figure 2.4: Database Multi-tenancy models overview, based on [66]

Isolated database

In this database model, each tenant’s instance is hosted in a separate database, ei-
ther within a shared database server or in multiple servers. Due to this database
separation, this model allows for greater customization and data and workload
isolation, which means that resource usage by a tenant will not affect others [18].

Figure 2.4 a. represents this model, where each tenant accesses a different database
through the same application.

This model offers the following advantages [15][18]:

• Performance;

• Security isolation;

• Might eliminate the noisy-neighbor problem.

The last point depends whether the databases are hosted in the same or in multi-
ple servers. If in the same server, tenants might still compete for resources, such
as bandwidth, and generate bottlenecks. In case the databases are located in dif-
ferent servers, this problem is mitigated.

This model also has its drawbacks, such as [15][18]:

• It is not a cost-effective option;

• Managing independently operated workloads increase operational over-
head;

• Costs in terms of time to scale, since the ever-increasing number of tenant-
specific instances will demand more operational time to administer;

12

Background Concepts and Related Work

• The complexity due to the necessity to keep a map of tenants to their asso-
ciated instances.

Isolated Schema

In the isolated schema model, each tenant’s information is hosted in separated schemas
that live in a database. This way, the application needs to connect to the right
schema to access data, and hence, having the need to keep a mapping of these
associations, just like in the database multi-tenant model [66].

Contrary to the previous model, in an isolated schema model, it is important to
have the noisy neighbor problem into account, thus requiring effective monitor-
ing to respond quickly to tenant performance concerns[13].

As shown in figure 2.4 b., a single instance of the application, that serves multiple
tenants, accesses different schemas, depending on the tenant.

As usual, this model has its advantages, such as [13][31]:

• Offers data isolation;

• Optimizations can be done at an individual tenant’s schema level.

As well as its disadvantages [13][31]:

• Operational and provisioning overhead due to multiple schemas provision.

Shared Table

On top of having isolated databases or schemas, it is possible for tenants to share
tables, where every row is associated with a tenant by an identifying value. Fur-
thermore, the application doesn’t have to know which schema or database is ded-
icated to the tenant since the business logic maintains the tenancy logic[66].

However, one of the major problems with this solution is regarding both data
and workload isolation, thus being important to ensure that queries never ex-
pose data from more than one tenant, and by monitoring data usage to ensure
acceptable performance, avoiding cases such as noisy neighbors. One solution
is Row-Level Security, or RLS [58]. The purpose of this mechanism is to filter
rows based on a per-user basis, by assigning permissions to different roles, and
substituting the WHERE query to request the right tenant information since it
is a flaw-prone alternative[58]. RLS works by being applied to tables, meaning
that it’s not necessary to modify each query to have access restrictions, and, each
time a tenant tries to connect to the database, the user’s tenant id is sent in the
connection and authenticated. When the user fetches storage data, the RLS poli-
cies are automatically applied, instead of filtering when querying. This allows
to separate what is application logic with multi-tenancy related filters. When the
database connection is closed, the tenant id is removed from connection.

13

Chapter 2

One of the advantages of this solution is that if a policy is defined and it is too
restricted, no data is retrieved. Contrarily, when using WHERE clauses to filter
tenant specific information, if something is missing, data will be leaked, compro-
mising tenant security and isolation. However, this solution has some perfor-
mance issues when escalating the number of tenants or adding complexity to the
queries.

In conclusion, some of the advantages of a shared table model are [14][31]:

• A single database schema to maintain, making the rollout process simpler;

• A single database to connect;

• Easier to add a new tenant;

• Lower costs;

On the other hand, some of the disadvantages are [14][31]:

• Lack of tenant isolation;

• Hard to restore a single tenant’s data;

• Potential query complexity

14

Background Concepts and Related Work

2.4 Technologies

Several technologies exist to support cloud and multi-tenancy solutions. This
section overviews some of the most relevant for this work.

2.4.1 Docker

Docker1 is an open-source solution that utilizes containers to run Software sepa-
rately from its infrastructure, hence, allowing for quicker shipping, testing, and
deploying of code [26][65].

A Docker container is a loosely isolated environment with the purpose of dis-
tributing and testing the application [26]. It contains all the necessary compo-
nents, such as the host, runtime, code, operating system, tools, and libraries [65].

Architecture

Docker follows a client-server architecture, being that the user communicates
with the Docker daemon, also known as dockerd, either through a REST API,
UNIX socket, or a network interface.

As follows, the client, through console commands that are sent to the dockerd
through the Docker API, can manage and create Docker objects, such as images
or containers. Images are a lightweight and small template for creating a Docker
container, built from a Dockerfile, and that can also be downloaded from a Docker
Registry. Containers are isolated instances of an image, containing its configura-
tion options that are provided when created or started[26]. In order to respond to
the client, Docker has the following architecture:

Figure 2.5: Docker architecture, from [26]

1https://www.docker.com

15

Chapter 2

As seen in figure 2.5, the docker architecture consists of the following parts [22][26]:

• Docker engine - Acts as a client-server application with the purpose of
managing the Docker objects. It supports the Docker client CLI, the API
and the docker daemon.

• Docker Client (docker) - It’s the console used to interact with one or more
Docker Daemons, through the Docker API.

• Docker Daemon (dockerd) - Listens for the API requests and manages the
objects, such as images, containers, networks and volumes.

• Docker Host - It’s a virtual or physical machine running the dockerd and
the built containers.

• Docker Images - It’s a type of a Docker object that contains the instructions
for creating a Docker container. To build an image, a Dockerfile, which is a
text document containing all the commands to assemble the image, is used
[1].

• Docker Container - It’s another type of a Docker object that represents a
runnable instance of an image, being provided with the configuration op-
tions when created or started.

• Docker API - REST API for interaction with the Docker daemon.

• Docker Registry - Docker repository for sharing images.

In conclusion, Docker is a method to virtualize an operating system along with
the tools to run the software application, in a lightweight and fast way.

2.4.2 Kubernetes

Kubernetes2 is an open-source platform for management of containerized appli-
cations [46]. It helps orchestrate tasks such as networking, provisioning and de-
ploying in containerized workloads, i.e, define an execution wokflow for the ex-
isting tasks [48], as well as the mechanisms for failure situations, failover and
scalability.

A Kubernetes Cluster is a set of nodes responsible for running the application
[47]. It also provides, among others, a load balancer that distributes the network
traffic throughout the various containers, orchestrates both workflow and stor-
age, and provides a self healing mechanism. This is capable of restarting, replac-
ing and killing containers if needed.

2https://kubernetes.io

16

Background Concepts and Related Work

Cluster architecture

A Kubernetes Cluster is divided in two parts: a control plane and a data plane.
The data plane contains the worker nodes that run the application and execute the
workload. These worker nodes host the pods, i.e, a set of running containers. The
control plane makes the global decisions regarding the cluster, such as worker
nodes and pods, it exposes the API and interface to manage the containers[48].

Figure 2.6 shows a Kubernetes Cluster, composed of a control plane, with three
working nodes, and a cloud provider API, which allows to embed cloud-specific
control logic.

Figure 2.6: Kubernetes cluster, from [48]

As seen, the control plane contains multiple components, such as a kube-apiserver
that serves as frontend for the control plane, the etcd, which is the backing store
of the cluster data, the kube-scheduler, and the cloud-controller-manager. In-
side each of the nodes, there is a kubelet that makes sure that the containers are
running healthily inside the pods, and a kube-proxy, which is a network proxy
that enables the communication inside or outside the cluster with the pod [47].

2.4.3 Kafka

Apache Kafka3 is an open-source messaging system for end-to-end event streaming
[8]. For this communication, Kafka provides an API that grants applications the
ability to consume and produce events from/to the streams in real time, also
known as topics, via a TCP network protocol. These events can also be stored for
later retrieval, as well as manipulated and processed [8].

3https://kafka.apache.org/

17

Chapter 2

In Kafka, there are two types of clients: consumers and producers. A producer
can publish messages to a specific stream, the topic, that can be consumed by
a consumer, or multiple consumers simultaneously, that have subscribed to the
topic, by pulling data from the server [39]. These two types of clients are fully
decoupled from each other. For example, producers do not need to wait for con-
sumers [54].

Consumers are inserted in consumer groups that work together to consume from
topics, and ensuring that each partition is not consumed by more than one con-
sumer, by balancing and rebalancing in case some member goes missing [54].

Architecture

Kafka is a distributed system that runs in a set of clusters, in multiple data centers.
Inside these clusters, multiple nodes, also known as Kafka brokers, are divided
into a number of partitions that are part of a topic and are either a topic leader or
replica. The partition is, in fact, just a single log, where messages are appended
to and read in order [54].

The leader is one of the topics inside the cluster that is responsible for updating
the replicas with the new data as well as coordinating the reads/writes [54]. This
coordination consists of receiving messages from producers and furthermore as-
signing offsets, and committing them to the disk, and, on the other hand, fetch
consumers requests and respond with the messages committed to the disk. Since
messages are ordered, a consumer can define the offset from which on they want
to start reading the messages [8].

The data replication along multiple servers works as a fault-tolerance mechanism
[8].

Figure 2.7 shows the case of a single Kafka cluster with two brokers responding
to a producer and a consumer, as well as replicating the data as this is received.

Figure 2.7: Kafka clients interacting with a Kafka Cluster, from [54]

18

Background Concepts and Related Work

Topics are generally partitioned into multiple brokers. This distribution is there-
fore what allows multiple clients to both read and write from/to topics simul-
taneously. Each of events is stored and organized in filesystems, consisting of a
key, value, timestamp and optional metadata headers. These are retained in the
broker for as long as configured in the topic [8].

Configurations, as all as metadata regarding the Kafka clusters and consumer
client details is stored in ZooKeeper. ZooKeeper, such as Kafka, is an open source
Apache project, for management of distributed systems over large clusters [33].

Kafka supports authentication as well as authorization. Kafka uses () and it can
be enabled between brokers, between clients and brokers or between brokers and
ZooKeeper. There are four protocols supported, next explained:

• PLAIN - Is a password based mechanism that uses plain text, i.e, the client
proves to the server its identity by sending its credentials not encrypted [5];

• SCRAM - also known as Salted Challenge Response Authentication Mech-
anism, is a password authentication protocol. However, it uses a hashing
technique that, using the password, generates a secure value, that is used
to authenticate the client. Thus, the password itself is not transmitted. It is
used agains eavesdropping [6];

• OAUTH - Short for Open Authorization, is a token-based mechanism act-
ing as an intermediary between the end user and a third-party. With this
mechanism, the user authenticates inside its application, and a token is pro-
vided to the third-party service, acting as a token that authorizes certain
information to be shared [50];

• GSSAPI - Also known as Generic Security Services Application Program-
ming Interface, is not an authentication mechanism itself. Instead, it pro-
vides a generic API for another application, such as Kerberos [41].

The access credentials are stored in a Java Authentication and Authorization Ser-
vice file, allowing a decoupling of the authentication method.

This authentication mechanism is necessary for the authorization as well, which
can be done resorting to a JAAS, as well, or with Access Control List (ACL). ACL,
as in the name, is a list containing all the operations different users can or can-
not execute in the topics. It is stored in the Zookeeper and, when a Kafka broker
starts up, the Access Control List is loaded into a cache and maintained for autho-
rization whenever a request comes through [8]. Figure 2.8 shows the workflow of
the authorization, from the moment the broker starts and loads its ACLs, to the
client request.

19

Chapter 2

Figure 2.8: Kafka authorization workflow, from [34]

2.4.4 Prometheus and Grafana

Both Prometheus4 and Grafana5 are open-source solutions to scrape and display
metrics in a user-friendly way. These two technologies are used to gather and
display a multitude of metrics about the application, from resource usage, to the
number of active connections in a database or the duration of an alarm’s process-
ing. Metrics are numeric measurements that are presented as time series.

Prometheus is thus responsible for acquiring and storing metrics as time series
data, i.e, with a timestamp alongside the metric values[4]. It is composed of mul-
tiple components, such as [4]:

• Prometheus server - collects and stores the data with an HTTP pull model
[62];

• Client libraries - to define and expose metrics that are defined inside an
application via an HTTP endpoint [61];

• Push gateway - so as to expose the metrics from jobs that may not exist long
enough to be scraped, such as batch jobs [63];

• Alertmanager - to handles alerts sent from the client application [60].

4https://prometheus.io/
5https://grafana.com/oss/grafana/

20

Background Concepts and Related Work

This project is supported by Grafana, which is a Web application able to access
the stored metrics and to query, visualize, and create alerts in personalized dash-
boards [7].

21

Chapter 3

Alarm Manager

The Alarm Manager (AM) is a system which main purpose is to ensure fault
management by surveying, detecting, treating, and monitoring alarms from a
network. It is a passive approach, which means it does not know of the existence
of a fault point, i.e, an alarm device, until the first occurrence of a networking
event. This event may be a notification or a critical problem in the device. It
should be noted that being a passive system is different from saying that it is
predictive. The first one is related to the system discovering new pieces of equip-
ment, while the second with predicting, in certain circumstances, if a problem
would happen in an already known fault point.

Given that the Alarm Manager is a complex system, it is extremely important to
deeply comprehend its purpose and architecture. So, in this chapter, the system
actors and the architecture of the AM is explained, focusing on its layers’ purpose,
method of operation, and change and resource cost.

3.1 Actors

The system has four primary actors, each one with different roles and goals to
achieve with the system, and thus, use cases have either the objective of satisfy-
ing or being initiated by the actor[24]. The system has four primary actors, next
described:

• Alarm Manager Admin - This administrator is part of the AM team and has
the purpose of managing the system. Hence, he/she can perform actions
such as configuring tenant-wide resources and tools;

• Tenant Admin - The tenant administrator represents an employee work-
ing in a company that uses the Alarm Manager System, and that has the
authorization to execute management actions such as alarm and user con-
figuration. It also can perform basic tasks such as monitoring alarms;

• User - The user represents a common employee working in a company that
uses the Alarm Manager System. He/She has the purpose of monitoring

23

Chapter 3

alarms;

• Network Operations Center (NOC) - The NOC is responsible for Monitor-
ing the System Status and its alarms, as well as accessing alarm statistics.

3.2 Alarm Manager’s Architecture

The system is hosted in a Cloud Service, Azure Cloud Services, where it is de-
ployed in two different ways, depending on the client’s choice: in a Virtual Ma-
chine (VM) or in Kubernetes. In the case of Kubernetes, in each Cluster, there are
a group of worker nodes, each containing three different namespaces, running
different tasks in Docker containers in every pod:

• One for the authentication system, known as Identity and Access Manager
(IAM), that is responsible for generating a bearer token when the user au-
thenticates. This token is used when needed, throughout the system, to
identify the user and restrict his/hers actions if not authorized;

• Another for the AM layers that processes and executes the logic operations
upon the alarm information that is received;

• And a third one for the Kafka operations, which streams information be-
tween the layers.

The system follows a three-tier architecture, which, as the name indicates, is com-
posed of three different tiers, with different purposes [32]:

1. Presentation Tier - Consists of web servers and aims to display information
to the user and allow him/her to interact with the server-side;

2. Application Tier - This tier is composed of the application servers where
the business logic is performed. It has the purpose of communicating with
the client side, interacting with the data tier, and processing information;

3. Data Tier - Consists of the set of databases that stores and retrieves the
necessary data to process and display to the client.

This architecture is widely used nowadays by most Web Applications designed
as multi-tier systems, due to its advantages, such as flexibility. [32]

The operations in the AM are possible due to a group of layers that work se-
quentially to process the data and generate an outcome. These are the Protocol
Adapter, Processing, and the Web application, as illustrated in figure 3.1 and
detailed ahead:

24

Alarm Manager

• Protocol Adapter - This adapter processes events received from both in-
ternal or external sources. In the second case, these events are received in
Gateways. It processes SNMP, HTTP, and Syslog events, and events gener-
ated by the AM;

• Processing - This layer is responsible for performing actions in alarms as
well as in events, such as event processing, suppression, duplication, alarm
group, and inhibition;

• Web Application - Main GUI to access variety of services offered, such as
the Active Alarm Window, Monitoring, Management, Reports and Statis-
tics.

Figure 3.1: AM layers

Also, the system provides another tools so as to allow the client to customize
the alarm processing and its rules. These are called toolkits, and can be of two
different types:

• The correlation toolkit, in the AM, allows the end user to manage and cre-
ate rules for the Correlation Engines, which analyse and identify the root
causes of problems, their impact, and relates with all the alarms derived
from that cause;

• The SNMP toolkit allows the end user to adapt the format of SNMP events,
in order to let the system know how to parse the custom parameters of these
events.

These layers function separately from each other, i.e, are decoupled, communi-
cating data through Kafka pipelines or Network File System (NFS). The pipelines
are controlled by the Zookeeper that manages all the metadata regarding its pro-
ducers, brokers, and consumers [38]. In Kafka, the data is published in topics and
sent through a stream to the right consumers, who, later on, consume it, whereas,
in the case of the NFS, the data is stored in files on a network, allowing the sys-
tem to access those files and directories remotely [36]. For communication with

25

Chapter 3

external systems or with both the Correlation and Simple Network Management
Protocol (SNMP) Toolkit, an API is used.

Data, such as the active alarms information, event configurations and parame-
terizations, and rule sets, is stored directly in either a PostgreSQL or an Oracle
database. However, in order to minimize access to the database, and hence max-
imize performance, data that is normally displayed and edited, and therefore
needs to be rapidly and commonly accessed, is also stored in a cache. As con-
sequence, when a client enters the web application, the displayed information is
retrieved from a cache, or, if needed, from the database to be stored in the cache
for later use. The technology used for the database depends on the client’s pref-
erences.

The system is coded in Java language.

3.3 Alarm Procedures

The procedure starts with the arrival of a text packet, such as SNMP traps, HTTP
packets, or Syslog messages, in one of the gateways. Depending on the gateway it
lands on, the packet will have a different identifier that will correspond to differ-
ent event formats, known by the system. This translation is done in the protocol
adapter. In case the packet comes as a trap, i.e, as a SNMP packet, customizations,
defined by the client in the SNMP toolkit, can be applied. This means that differ-
ent traps can follow different formats. After this translation is done, what is now
an event and no longer a packet is sent to the processing layer to have client’s
attributes and parameterizations, that are stored in cache, applied. At this time,
the event becomes an alarm and is ready to be displayed in the Web layer.

Other processes happen in parallel, such as event correlation, meaning that a set
of correlation engines are applied to this alarm with the purpose of analysing its
root cause and identifying what generated the problem and its impact.

Associated with these alarms and their parameterizations, some timers may ac-
tivate a trigger that is responsible for executing periodic action on the alarms.
An example of this is the incremental priority option, that defines, under certain
circumstances, how the alarm priority increments.

In the web application, the user is able to define the alarm parameterizations as
well as new rules for the correlation engines.

3.4 Alarm Manager Layers

Since the system has a modular architecture, the layers are decoupled from each
other, communicating through the Kafka pipelines or NFS. This means that what-
ever method is used to process information inside a layer, the other layers will not
be affected. Only the output must maintain its format, so it can be recognized by
the other layers.

26

Alarm Manager

3.4.1 Protocol Adapter

This layer has the purpose of receiving the packets caught by the Gateway and
translating them from the original text format to a uniform JSON format that the
system has the ability of processing.

The system, in order to parse and translate the packet, needs to know its struc-
ture, which is known through a gateway identifier that comes with the packet.
Depending on this identifier, the Protocol adapter manages to deconstruct the
text packet, and gather all the information that is needed to create an event, in a
JSON format.

However, in case it is an SNMP event, custom parsing can be done, since the
client, through the SNMP toolkit, can add new rules to this process, also called
mib.

Finally, the event is sent through a Kafka Topic or a REST API to the Processing
Layer and to the Correlation Engines, in case the client has acquired the service.

3.4.2 Processing

The Processing layer, as the name says, processes the events and execute the re-
quired actions for the system to work properly. It functions as the core of the
whole system, having three main tasks:

1. Process the received events - Events arrive at the Processing layer, from the
Protocol Adapter and through the correct Kafka topic with the right format.
Next, it is necessary to verify whether the alarm is suppressed and if the
event’s required fields are validated. The event, itself, is then processed,
i.e, parametrizations are calculated and applied and, in case the process
has been successsful, it’s registered and both the fault point and the alarm
registration are created and updated in the database. At last, the alarm
is processed and flush asynchronously to the Web layer, through a Kafka
topic, to the web cache.

2. Respond to client’s requests - Client requests arrive at the Processing via
REST API requests. Depending on the request, different courses of action
will be taken, such as recognize, archive or update an alarm parametriza-
tions. These changes are flushed to the database and active alarms cache, in
the web layer. Finally, a success or failure message is sent back to the client.

3. Handle firing timers - The Processing is constantly listening to automatic
timers, such as waiting, guard, and archive timers. For example, an alarm
that has a 5 minute archive timer, if during that interval it does not receive
a new event, it is archived automatically.

The Processing layer, as the name says, processes the JSON events that are sent
from the Protocol Adapter, with the expected format, by customizing, applying

27

Chapter 3

parameterizations, such as applying timers, setting alarm priorities, and adding
thresholds, and creating the alarm itself. Since these parameterizations rely on
the client and the type of event, the Processing looks up this information in the
cache, or, if not possible, from the database. Finally, these newly built alarms are
flushed to the Active Alarms Cache, in order to display the new information in
the Web application.

It thus interact with multiple components:

• Nginx - It is responsible for load balancing, redirecting the requests to avail-
able processing nodes, using Round-Robin. This means that, when an event
arrives from the Protocol adapter or from the Web layer, Nginx has to dele-
gate one of the nodes in order to execute the required task;

• Hibernate - It allows the integration of the backend with the database by
mapping Java classes into database tables;

• Velocity - Apache velocity is used to build views from a template. These
views are used to build files, such as XML, with a defined template. They
are seen, for example, in the SNMP tooklit or for the reports.

• Kafka - Enables the event transition between layers. This is done between
most layers in the AM and, in the case of the Processing, the events come
from the Protocol Adapter e these are propagated to the Web layer, after
being processed. These events have a retention period of 12 hours, i.e, they
are kept stored for 12 hours.

• Esper - It is a Complex Event Processing (CEP) with the purpose of monitor-
ing and analyse events from Kafka topics and database. Using statements,
it is capable of checking if an event from a subsystem, machine and direc-
tory is being received, gather information on a machine’s activity or lack of
it, among others. With a set of rules it is capable of filtering data as needed.

• REST API - Grants users the ability to interact with the existing alarms, by
HTTP requests. The Processing will then validate the request and, in case
it is valid, execute the needed tasks. Given that this request is synchronous,
when it is processed, the Processing sends back the REST response and up-
dates the cache and database, if needed.

• Cache - The main purpose of the cache is to offer a rapid access to the nec-
essary data for the AM system. For the Processing, there is a set of loading
caches that include alarm parameterizations, such as rules, filters, among
others. These are small caches used for the processing mechanism. Being
an eternal cache, its data does not expire, and periodically it synchronizes
with the database, through a Kafka topic, alarmsTopic. The cache can have
two types: ehcache or Guava.

• Database - All the information regarding the alarms is stored in the database.
Every time an alarm is updated or a new event received, the database is up-
dated. However, in only two schenarios data is retrieved from the database:

28

Alarm Manager

when it is not contained in cache or in case of cache synchronization. It can
be Oracle or PostgreSQL, depending on the client’s choice.

• Quartz - This technology is used in the Processing for scheduling actions.
A scheduled alarm goes off when a trigger is activated, for example, when
there is no new events received in a defined period of time, so as to be
archived, or change status to waiting or guard.

• Webhooks - These allow, resorting to URLs, to define custom operations in
the form of callbacks, that run in the system when an action is executed.

The following figure 3.2 represents the relation between Processing, some of its
components, and the other layers:

Figure 3.2: Relation between Processing and its components and other layers

29

Chapter 3

3.4.3 Web Layer

Finally, the Web Layer puts on view the outcome of this process to the client,
in the form of a list of all the active alarms. These alarms are stored in the Ac-
tive Alarms Cache and are accessed when the client authenticates and enters the
application.

Besides this, since the user can also apply parameterizations to the alarms, and
create Trouble Tickets, TTKs, among other actions, the Web layer also has to send
this information to the processing layer in order for this to be stored for later use.

3.5 Layers Complexity and Resource Cost

Because the layers are independent of each other it is possible to change their
structure without affecting other layers, as long as the output structure is kept.
For this reason, it is possible to define a phased migration to a multi-tenant ap-
proach.

Knowing that layers can be altered independently and that the system is too mas-
sive for a whole multi-tenant solution in the duration of this internship, some
were prioritized. So, in order to understand development priority, it is important
to study how costly migration is. Bear in mind that these qualitative attributions
are assigned according to Altice’s internal priorities and with the system exper-
tise of the team’s technical leader. For this comparison, the following parameters
were used:

• Algorithm Complexity (AC) - How complex is the current layer implemen-
tation; It depends on the algorithm as well as its dependencies. It can have
values of High or Low;

• Implementation Complexity (IC) - This is a prediction of how complex it
may be to implement a multi-tenant solution; It depends on the algorithm,
its dependencies, and possible solutions. However, a more thorough analy-
sis is done in section 5. It can have values of Very High, High, Medium, or
Low;

• Resources Usage (RU) - It refers to the resource consumption of each system
layer. It depends on the total amount of the client’s processed alarms. It can
have values of High or Low.

A good layer to implement multi-tenancy is one that has a low algorithm com-
plexity and high resource usage since it allows maximizing resource economy
with the least implementation effort.

30

Alarm Manager

Layer AC IC RU
Web Low Low Low
Processing High Very High High
Correlation Engines High High High
Toolkits (SNMP, Correlation) High Very High Low
Protocol Adapter High Very High High
Kafka Low Medium High
API Low Low Low

Table 3.1: Layers complexity and resource usage

Even though it’s not a layer, and thus it should not be included in the previous
table, the database has a high implementation complexity and low resource us-
age.

Currently, Kafka is the layer that consumes resources the most, especially RAM,
not only because it relies heavily on storing the messages in the filesystem but
also because it is used in most communications between layers. This adds some
complexity to the solution since it requires a lot of changes in a lot of points of the
system/code, making this a relevant layer to study.

On the other hand, layers like Processing, Protocol Adapter, and Toolkits, have
a high degree of complexity, meaning that changing these layers will be costly.
However, in the Processing, Protocol Adapter, and Correlation Engines, the re-
source usage is high, making these important modules to focus on.

31

Chapter 4

Requirements

In order to understand what the system will offer and how it will behave, it is
essential to identify, define, and document its requirements, both functional and
non-functional, constraints, risks, system assumptions, issues, and dependencies.
All this information is presented in this chapter.

4.1 Functional Requirements

Functional requirements describe what the system must do to meet the customer’s
needs. And so, considering that a multi-tenant approach in the system layers is
supposed to be invisible to the user, meaning that he/she is not expected to no-
tice any difference in how the system behaves, these requirements are limited to
configuration and monitoring functions executed by an Alarm Manager Admin.
Hence, even though the system has four types of users, only one is relevant to
these requirements.

Figure 4.1, shows the requirements to be developed, followed by a simplified
description of these processes from a user’s perspective, also known as user sto-
ries. These follow the template proposed by Mike Cohn [52], responding to the
questions Who, what, and why for each user story.

Figure 4.1: Use case diagram level 1

33

Chapter 4

The implementation of these user stories is restricted by the changed layers. For
example, being the Kafka layer multi-tenant, monitoring must be implemented
for this part of the solution. Besides this, only user stories with a high priority
are to be implemented. The rest will be converted into issues and serve as future
work for the Alarm Manager team, as requested by the advisor from Altice labs.

Setup Tenant

Priority: High
As an Alarm Manager Admin
I want to be able to make the needed configurations
So that a new tenant admin has the needed resources, and authorizations to
make use of the system.
Scenario: AM admin finishes configuration and guarantees that the procedure
was done correctly.
"Given I’m in the role of AM administrator
When I use create a new namespace in a Kubernetes cluster
And I create a new kustomize overlay
Then i define which replicas are needed
And I configure the cluster variables such as the tenant topic prefix for Kafka, the
database credentials, and its schema
Then I create the NFS directory
And set its path in the right file
Then I configure the database schema
Then I configure the Kafka authentication in the Kafka cluster and the authorization
Then I install the instance
And I wait for all pods to be up
Then the cluster manager has the status "Running" for all pods

Table 4.1: US1 - Setup Tenant

Audit Resource usage

Priority: Medium
As an Alarm Manager Admin
I want to receive notifications in case a tenant exceeds the limit of resources
So that the tenant can be notified and take an action.
Scenario: Tenant crosses the threshold of resources used.
"Given I’m in the role of AM administrator
When the tenant exceeds the limit of resources
Then the Grafana dashboard displays the notification of the alert.

Table 4.2: US2 - Audit Resource usage

34

Requirements

Monitor Resource usage

Priority: High
As an Alarm Manager Admin
I want to be able to consult how the resources are being used
So that I can collect and evaluate information.
Scenario: AM admin monitors resource usage.
"Given I’m in the role of AM administrator
When I open the Grafana dashboard
Then it shows me the statistics of the allocated resources
When I select the tenant in the option "tenant"
Then the dashboard shows me the tenant’s resources usage

Table 4.3: US3 - Monitor Resource usage

Change/Set Resource usage threshold

Priority: Low
As an Alarm Manager Admin
I want to set a threshold to the resources a tenant can make use of
So that I can take an action in case it is crossed.
Scenario: AM Admin sets a resource threshold.
"Given I’m in the role of AM administrator
When I open the Grafana dashboard
And go into the alerts page
Then I select the variable I want to monitor
And the threshold value
Then I save
When I go back to the graph information
Then I see the created alert.

Table 4.4: US4 - Change/Set Resource usage threshold

Consult tenant’s authorizations

Priority: Medium
As an Alarm Manager Admin
I want to be able to consult tenant’s authorizations
So that I can collect and evaluate information and change anything, if needed.
Scenario: AM admin monitors access authorizations.
"Given I’m in the role of AM administrator
When I open the access monitoring page

35

Chapter 4

And look up the tenant Id
Then the System shows me all the authorizations the tenant has."

Table 4.5: US5 - Access authorizations

Configure Kafka authentication and authorization

Priority: High
As an Alarm Manager Admin
I want to be able to configure a tenant’s Kafka authentication and authorization
So that the AM admin grants or revokes tenant authorization.
Scenario: AM admin grants/revokes tenant authorization to a group of topics.
"Given I’m in the role of AM administrator
When I open JAAS file inside the Kafka cluster
Then I append the new tenant’s credentials
Then I run the command to create a new ACL entry to grant access to the tenant to all
topics starting with the right prefix
When I run the command to see the list of all ACL entries
Then I see the newly created entry.

Table 4.6: US6 - Configure Kafka authentication and authorization

4.2 Non Functional Requirements

Following what functions the system requires, it is also essential to specify the
needed characteristics of the system and their measurement criteria. This pro-
cess is the non-functional requirements gathering, so, in this section, for each
of the attributes, a scenario is provided, along with a MoSCoW method rating
(M for Must, S for Should, C for Could and W for Would). The following non-
functional requirements are the most relevant for the system’s architecture:

1. Efficiency (M) - Efficiency is a measure of how well the system utilizes its
resources, such as processor capacity, disk space, memory, and communica-
tion bandwidth.

• Description [Scenario 1]: In normal operation mode, when requested,
the system provides the user with the requested resources from a set of
shared pools. The CPU capacity stays below 80% and is able to respond
to 100% of tenants’ requests.

2. Confidentiality (M) - Deals with blocking unauthorized access to functions
and information, ensuring that the software is protecting the privacy and
safety of data, and delivering it as intended.

36

Requirements

• Description [Scenario 2]: In normal operation mode, if a tenant tries to
access another tenant’s data, the system should prevent access. 100%
of these unauthorized accesses should be prevented.

4.3 Risk Analysis

Before deciding whether a project should move forward or not, it’s always re-
quired to do a risk analysis. This process serves to identify factors that can neg-
atively affect the project’s development or success. And so, identifying, address-
ing, and finding proper solutions from an early stage is an imperative task.

Gathering risks is part of a RAID analysis. A RAID log is a project management
tool used to analyse and document project critical factors on an ongoing project,
such as possible issues and project dependencies[11]. The acronym "RAID" stands
for Risks, Assumptions, Issues, and Dependencies.

4.3.1 Risks

Risks are potential problems that may arise in the project and, therefore, it is im-
portant to identify, analyse and solve these before they have a negative impact
on the project. In this section, risks shown in table 4.7 are divided into three cat-
egories: Low (severity 1-2), Medium (severity 3-4), and High (severity 6). Sever-
ity(Sev.) is calculated by multiplying probability of the occurrence (Prob.) with
the impact (Imp.).

ID Description Prob. Imp. Sev. Consequence

R1

Due to the problem and sys-
tem complexity, a proper solu-
tion may not be found within
the internship duration.

1 3 3 The final product is
not completed.

R2

Due to the complexity of the
problem, it may be too difficult
to implement a solution with
the planned features due to lack
of experience and complexity of
the product.

2 3 6

The requirements
may be misunder-
stood and it may
not be possible to
implement all the
target requirements.

R3

Since changes in the project ob-
jectives can occur, there may not
be enough time to conclude all
planned tasks.

2 2 4

The requirements
may suffer changes.
If there is no time,
these may not be
implemented as
planned.

37

Chapter 4

R4

Since an agile process is used,
some requirements may be al-
tered, reprioritized, or not im-
plemented.

2 2 4
The final product
may differ from the
original plan.

Table 4.7: Risks Table

For each risk, there is a mitigation plan, i.e, a solution to the problem, as shown
in table 4.8. These aim to either avoid the risk occurrence, mitigate in case it
happens or if there is no possible solution, accept the problem.

ID Mitigation Plan
R1 Accept

R2
By going through an extensive analysis of the problem, partitioning it,
and solving each of the parts, with the help of more experienced people,
it is possible to avoid this problem or at least minimize its impact.

R3
Identify and specify thoroughly all the relevant aspects in the early phase
in order to minimize unknown issues that may cause changes in the
project.

R4
Replan the tasks in order to understand whether the new requirements
are feasable within the internship time and that at least the most impor-
tant ones are assured.

Table 4.8: Risks’ mitigation plans Table

4.3.2 Assumptions

Assumptions are aspects of the project that are known to be true. However, if a
wrong assumption that leads to risk is made, it is simple to identify its root cause
and discover if the assumption is true or false. Each assumption is detailed with
a description, a reason for why it is an assumption, and its impact on the project,
in case it is found to be false, as seen in the table 4.9:

ID Description Reason for Assumption Impact if Assumption In-
correct

A1

The technologies
used support a
multi-tenant envi-
ronment

Technologies documenta-
tion corroborate this as-
sumption

Depending on the tech-
nology, some parts of the
project may require a tech-
nology change or may not
be included in the solution

38

Requirements

A2

Moving from a single
to a multi-tenant
architecture will be
beneficial for the
project

A theoretical study indi-
cates tha, when it comes
to resource consumption,
a multi-tenant solution is
advantageous.

The project loses its inter-
est.

Table 4.9: Assumptions Table

4.3.3 Issues

Issues refer to problems that are occurring during the project and were not ex-
pected. Hence, these are to be documented as they appear as the project pro-
gresses. To document these, a description of the issue and its impact is done, as
well as the issue’s priority.

ID Issue Description Impact Description Imp. Prior.

I1 Some of the used technologies offer a
limited multi-tenant solution.

It impacts multi-tenant ar-
chitecture nd its advan-
tages.

H. H.

I2

Some technologies don’t offer suffi-
cient tools to monitor or limit tenant-
specific resource usage (For example,
Kafka Multi-tenancy only allows ap-
plying quotas to streams that are used
by multiple tenants.)

It impacts how precise the
resource monitoring is. M. M.

I3
Lack of permissions to execute some
tasks, such as apply changes in a Ku-
bernetes pod.

Some tasks have to be
accompanied by a team
member that possesses the
required permissions.

M. M.

I4 Testing limitations

Testing was limited to the
machine specifications and
the number of tenant in-
stances available.

M. L.

Table 4.10: Issues Table

4.3.4 Dependencies

Dependencies are tasks that depend on the completion of other tasks, in order to
be started or finished. This helps to define a timeline for the project tasks. Table
4.11 shows the dependencies for this project.

39

Chapter 4

ID Dependency Description Importance
D1 Access to the project’s source code High

D2 Access to the Alarm Manager application in order to
test implementations Low

D3 Access and permissions for the Kubernetes cluster Medium
D4 Access to the cluster’s Dashboard High

Table 4.11: Dependencies Table

40

Chapter 5

Multi-tenancy Analysis

This chapter has the purpose of presenting multi-tenancy for the Alarm Manager.
It is noteworthy to take into account that being a large and complex product, it
is impossible to detail a whole multi-tenancy solution within the duration of the
internship. For this reason, only the parts considered most relevant, as seen in
section 3.5, are studied. This is possible since the Alarm Manager is made up of
separated layers, that can be altered and upgraded independently.

And so, for the proposed solution, five main points must be taken into account:

• Resource management between the tenants

• Resource isolation from other tenants, both data and workload;

• Resource monitoring, for supervision and troubleshooting;

• Customization, as the service may vary from tenant to tenant in certain
circumstances;

• Scalability, for tenant growth.

5.1 Analysis of the different layers

The Alarm Manager is a large system with multiple and elaborated functionali-
ties, so aiming for a full product solution is not possible in the given time. Due
to this restriction, it is required to analyse the cost and complexity of the vari-
ous layers in order to study those that can bring the most advantages in case of
optimization, and establish a hierarchy.

As referred in the section 3.5, despite its complexity, both Kafka and Processing
are layers that currently make a lot of resource usage, being good starting points
for this project. Apart from these, it is also important to find a strategy for a
multi-tenant database model, as requested by the internship advisor. Thus, the
first phase of the project is expected to analyse multi-tenancy in the database,
Kafka, and Processing layers.

41

Chapter 5

5.2 Database

5.2.1 Database Models Overview

As presented in section 2.3.2 of the State of the Art, there are three multi-tenant
database models: isolated databases, isolated schemas, and shared tables. In or-
der to make an overview of these models’ adequacy, the next table shows the
advantages and disadvantages of each one.

Isolated database Isolated Schema Shared table
Shared Schema
among tenants No No Yes

Data isolation Yes Yes
Possible; requires
isolation mecha-
nisms

Data customiza-
tion/flexibility Yes Yes Problematic

Query Complex-
ity Simple Simple Complex

Setup time for a
tenant Slow 1 Fast Fast

Infrastructure
Cost Most expensive Medium Cheapest

Operation Over-
head High Low Low

Version Migration
Complexity O(n) O(n) O(1)

Table 5.1: Database Models Comparison

As the table shows, due to its physical separation, keeping the databases apart
allow for more tenant isolation and customization, since the multiple tenants do
not need to share their data environment. However, this comes with a price, for
it is more expensive to setup and has a higher operation overhead.

On the other hand, an isolated schema means that all tenants share the same
database, but each has a different schema. This separation is enough to keep
the tenant’s data isolated and also maintain some customization. In the case all
tenants have the same schema structure, an isolated schema achieves as much
customization as an isolated database. However, it is easier to set up, since it
is only needed to set up a new schema, instead of a whole database. Another
advantage of an isolated schema compared with an isolated database, is the lower

1The setup time in isolated databases depends whether these are hosted in the same server or
not. This is applicable for the scenario with multiple servers. If multiple databases are stored in
the same server, the time complexity is the same as a shared schema

42

Multi-tenancy Analysis

operation overhead, i.e, metadata files, memory allocation, RAM usage, among
others.

Finally, having tenants sharing tables ends up being cheaper in terms of infras-
tructure as there is only the need to set up, start and host a single database and
schema, but falls behind the other models in terms of isolation, customization
and query complexity. Since all tenant data is stored in the same storage space,
there must be mechanisms to isolate this data, being a common one the RLS, as
discussed in 2.3.2. However, queries complexity is added, since they need to be
filtered by their tenant. In the case in which queries are already complex as they
are, this constraint adds computational work in order to retrieve the intended
data.

In order to study which solution fits the problem the best, the product’s consid-
erations must also be taken into account.

5.2.2 Alarm Manager Considerations

For the Alarm Manager System case, it is important to have some considerations
in mind:

1. Even though caches are used to restrict the number of accesses done to
the database, a considerable amount of data is still stored in the database,
such as the received alarms, and their configurations, reports, and statis-
tics, among others. Considering that bigger clients generally receive about
100 events per second, this is indeed a lot of data to store and to query, for
backup purposes or when the information is not cached. This way, perfor-
mance is an important requirement;

2. For all clients there is only one schema structure, however, each one can
configure and add custom alarm parameters; in the database, this is repre-
sented as columns in alarm tables, meaning that database customization at
the table level is needed;

3. In terms of database services, these are paid for each database instance,
meaning that, until a threshold of resources is crossed, the service price
remains unaltered, independently of the number of schemas and tables;

4. Finally, tenants must be isolated, not only due to sensitive data regarding
these but also due to workload.

To sum up, performance, customization, and isolation are imperative attributes
that shall be kept in the new solution, while still decreasing the cost of the database
service.

43

Chapter 5

5.2.3 Models comparison

Having done a theoretical analysis of the possible models to implement, and the
most relevant and required attributes in terms of the product itself, it is possible
to compare all the possibilities and find a fit for the case.

As seen in table 5.1, both isolated database and isolated schema are the most se-
cure, customizable, and that offer the best performance models. Having into
consideration the requirements for the Alarm Manager, in 5.2.2, these three char-
acteristics are extremely important for the system and must be guaranteed, for
the client experience must not be affected by sharing the environment with mul-
tiple tenants. And so, in a multi-tenant environment, supporting the same level of
performance and isolation is needed. However, in the case of a shared table, stor-
ing all the information together leads to higher query complexity. Thus, sharing
tables among tenants is not the most appropriate solution.

The query complexity is a big concern in the system since all queries to the
database are done at a level tenant, i.e, data is always retrieved per tenant. In
the case of shared tables, since all tenant’s data is stored together, the complexity
of the executed queries is augmented, for these must be executed upon bigger
tables and apply a more complex logic in order to filter what is tenant-related
data. Row-level security, or RLS, offers a good solution for the filtering matter,
yet, for more complex queries, it degenerates performance.

The same does not happen in both isolated database and schema, for there exists
a separation between tenant’s data. Therefore, the tables size is smaller, when
compared with the shared table model, lookup is faster and there is no need to
filter the data per tenant. In comparison with the current system, query complex-
ity remains similar.

However, due to this isolation, migrating database versions, either upgrade or
downgrade, is a laborious task and it must be done for each tenant individually.
The same does not apply for a shared environment, in which this task is less time-
consuming because it is done once and applied to all tables in the database at
once. Nonetheless, this has the drawback of not allowing tenants to be in different
versions of the database since they are forced to change the version as one.

Furthermore, as mentioned in point 3 of the previous section, 5.2.2, being that the
service provider charges depend on the number of databases and not schemas or
tables, the cost of keeping a schema for each tenant is the same as maintaining the
necessary tables. This means that, regarding costs, isolating a schema and sharing
data cost the same while isolating a database ends up being more expensive.

A major problem with having either a single database or a set of databases shar-
ing multiple tenants, is that the number of points of fault is narrowed to how
many databases are being used. When each tenant has its own database, one
failing means that one tenant won’t have access to its own data. With the other
models, this problem will affect multiple tenants at once. Resolving this mat-
ter is possible with fault-tolerance approaches, such as redundancy, or disaster
recovery mechanisms. However, these are expensive solutions.

44

Multi-tenancy Analysis

The following table summarizes the discussed points, for each model:

Isolated
database

Isolated
Schema

Shared
table

Data isolation ! ! %

Data customization/flexibility ! ! %

Query Complexity ! ! %

Setup time for a tenant % ! !

Service Provider cost % ! !

Operation Overhead % ! !

fault points ! % %

Version Migration Complexity % % !

Table 5.2: Database Models benefits

As seen in the table 5.2, the isolated schema model offers the most advantages,
for it balances the best the required characteristics and the model’s own draw-
backs, providing the best solution for the Alarm Manager database.

5.2.4 Schema isolation as a Solution

As mentioned earlier, isolating the database schema for each option is the option
that best fits the presented problem. So, the next step is how to manipulate the
database to an isolated schema model. Recall that, in this model, a single or a
set of databases are shared by multiple tenants, where each has access to its own
isolated schema, allowing for isolation and customization.

Currently, the Alarm Manager offers their clients two database options: Post-
greSQL and Oracle. This internship focuses on PostgreSQL databases.

Before starting implementation, it is important to understand the important as-
pects to take into account, such as tenant migration from the current architecture
to the new one, new tenant setup, authentication, and resource monitoring.

Data migration

The first step is to migrate the already existing data into a single database that
will contain the various schemas. Attending that, currently, tenants have sepa-
rated databases with a single schema, the default "public", it is possible to export
every schema, one by one, with the pg_dump command. This command dumps
a single database that can be output in scripts, aka plain-text files that contain the
commands necessary to reconstruct the database, or archive file formats that, in
order to reconstruct the database, must be used with pg_restore [59].

45

Chapter 5

Using the flag –schema with the pg_dump allows choosing which schema shall
be exported.

Database access

In order to associate each tenant with their own schema, a table to help associate
a tenant id with its own schema is necessary. This is stored in the ALARMMGR
schema, which is a global schema.

In the AM, there are two different ways to connect and communicate with the
database: through Persistence API (JPA) or through a datasource. In both cases,
users connect to their corresponding database using Connection Strings. A SQL
connection String is an expression containing the parameters required for the ap-
plication to connect to a database server, i.e, the server instance, database name,
and authentication details, among other details[28]. So, it’s possible to pass the
schema identification as a parameter and have the user connect to the right
schema. The schema id is obtained from the schema_id table that the system
can look up since it knows the client Tenant ID. The Tenant ID is obtained from
tenant_id metadata table that relates the tenant with the client Id.

This way, the client ID has only access to its own data schema, hence being both
authenticated and authorized. Next is shown an example of a user named "alar-
mmgr" accessing the "alarmmgr_schema" schema in the "alarmmgr_db" database.

dbc:postgresql://almgrptc-pgsql-el7.c.ptin.corppt.com:5432/alarmmgr_db?
currentSchema=alarmmgr_schema

user: alarmmgr
pass: alarmmgr

The parameter currentSchema specify which schema, or schemas are set in the
search-path [42]. Since the data structure does not suffer many changes, the SQL
queries don’t suffer differences.

5.3 Kafka

As previously mention, the Kafka layer is an extremely important layer, since it
is responsible for flowing great amounts of data throughout the whole system
layers. For example, for a client that receives about two hundred events each
second of a maximum size 4KB, having each of these events flowing through the
whole system reflects in a lot of memory being used. However, and specially
for smaller clients, these numbers are much minor and therefore it is possible to
aggregate multiple tenants together.

5.3.1 Kafka solutions overview

Keeping a shared Kafka for multiple tenants means that these will share a set of
clusters and a Zookeeper. Inside a cluster, topics and topic partitions can con-

46

Multi-tenancy Analysis

stitute sharing points for different clients, keeping always in mind their data se-
curity, customization, and performance. And so, three different solutions were
found:

• Shared topics among tenants with dedicated partitions [51];

• Shared topics among tenants with an identifier in each message;

• Dedicated topics, inserted in different "namespaces" [10].

Next, each of these solutions is described more thoroughly.

Dedicated partitions

Tenants share event streams and topics, in this solution, having a group of ded-
icated partitions. Remember that a topic is composed of multiple partitions, re-
sponsible for orderly and evenly storing the received events. These events can
be fairly stocked over multiple partitions due to balancing mechanisms, which
calculates where to store the event depending on the offset, which is a sequential
id number that uniquely identifies each record. Even though Round-Robin is the
most used mechanism, it’s up to the producer to decide the balancing mechanism
[9].

With the described mechanism it is possible to achieve multi-tenancy. When the
message is created, the producer, who is tenant aware, prefixes a tenant identifier
to the message key. It is later sent to the stream, where it is stored depending on
a defined hash function that maps the id to a particular partition. However, it
is important to notice that different tenants will have different loads, leading to
imbalanced partitions. Imbalanced partitions in a topic lead to reduced through-
put and slower message processing. It is therefore essential that the number of
partitions dedicated to each tenant depend on their load.

This solution offers both data and some workload isolation, since the messages
are stored separately, as well as a good resource usage. However, there are many
disadvantages: the scalability because, unlike topics, partitions must fit on the
servers they’re hosted in and therefore cannot grow infinitely [9], and also the
unbalanced topics.

Shared topics

In the next solution, tenants share the same Kafka topics. However, contrary to
the previous one, all tenants have access to the same resources, which minimizes
the number of topics needed to respond to the clients’ needs.

In order to identify the messages, the producer, which is tenant aware, must ap-
pend an identifier. This can either come in the header or in the body of the mes-
sage. Keeping the identifier in the header is the best solution, since it does not
require the message to be parsed before knowing which tenant it belongs to.

47

Chapter 5

However, and independently of how this identifier is sent, all consumers will
have to consume the message, before filtering it and discard those not wanted.
This constitutes a hazard to the application performance, since all messages, from
all tenants, would have to be received and verified by all applications.

This solution is similar to the dedicated partitions, however there is a main ad-
vantage and a main disadvantage: it is a balanced solution but there is no iso-
lation. And so, there must be a mechanism to protect data and to protect from
noisy neighbors. Protecting data is possible with encryption, either transport
encryption or end-to-end encryption:

• Transport encryption - The network transmission is encrypted and secured
from eavesdropping between the client and the broker server;

• End-to-end message encryption - The message itself is encrypted during
the message exchange. In the producer side, the message is encrypted
alongside a symmetric AES key, and, in the consumer side, an ECDSA and
RSA key pair decrypt the AES data key in order to decrypt the message
itself.

Regarding the noisy-neighbor problem, quotas come in hand to limit tenant’s
bandwidth. This way, a client cannot surpass defined resource thresholds and so,
when it tries to use more than what is supposed, its resources are throttled. There
are multiple types of quotas, such as:

• Producer and consumer bandwidth quotas - Define the threshold for a ten-
ant traffic/bandwidth, in bytes per second. When the client exceeds its pro-
ducer/consumer bandwidth quota, it starts to throttle new requests;

• Request quotas - Limits the clock time that a broker spends on a request
handler (I/O) and network threads, when a client exceeds the CPU usage
permitted. It protects both the request processing as well as other tenants’
bandwidth, since excessive CPU usage degrades the broker bandwidth;

• Quotas on topic operations - This quota prevents the cluster from being
overwhelmed with operations, such as create, delete, or alter;

• Broker/per-listener limits on connection creation rate - Limit the amount
of CPU spent on creating new connections;

• Per-IP limits on connection creation rate - Ensure that no client can create
too many connections that add CPU overhead to the broker and may lead
to high request latencies.

• Limit on the number of active connections - Limit the number of connec-
tions from different IPs accepted by the broker.

These quotas can be enforced at the broker level, in its configuration file, or at a
client level, for example, using the ClientQuotaCallback interface.

48

Multi-tenancy Analysis

Dedicated namespaces

Finally, the third solution entails the scenario where tenants maintain dedicated
namespaces. This means that each is able to execute actions on a group of topics
that is dedicated to themselves. Although the concept of namespace does not exist
in Kafka, it is possible to simulate it with the tools given by Kafka itself. This is
the solution proposed in the official documentation for a multi-tenant scenario.

In short, tenants produce and consume messages to/from dedicated topics. These
topics follow a name convention in which an identifier is prefixed to the topic
name. This prefix is what simulates the namespace, for Kafka is able to define
authorization in a group of topics that have the same prefix.

For this to be put in action, some steps must be taken: Tenant authentication as
well authorization for operations to be executed in the topics must be configured,
and, at the application side, concatenate the tenant to the topic name.

Starting the the first step, authentication, Kafka uses SASL authentication, or
Simple Authentication and Security Layer. There are four protocols supported by
Kafka: plain, SCRAM, OAUTH and GSSAPI. The authentication can be enabled
between brokers, between clients and brokers or between brokers and ZooKeeper.
The access credentials are stored in a Java Authentication and Authorization Ser-
vice (JAAS) file, allowing a decoupling of the authentication method. This is an
indispensable step for the prefixed-ACLs. A prefixed-ACL entry is applies to all
topics starting with a given prefix. For example, a tenant that is given write per-
mission to all topics starting with "tenant.", can write to topic "tenant.topic" and
all others with the same prefix, but not to topic "tenant1.topic". This crucial point
is what creates the concept of namespace. It has the following format:

Principal P is [Allowed/Denied] Operation O From Host H On
Resource R.

This way, topics are secured from unexpected accesses. In order for the producer
to send the messages to the right topic and the consumer to receive from the
right ones, it is necessary to add the prefix when consuming/producing. This is
a straightforward step, since the application is to be tenant aware.

This solution has the advantage of being an efficient, simple, and secure solu-
tion to implement. However, the number of topics is not minimized, as seen in
previous solutions, and so, having a crescent number of tenants reflects in an
exponential growth of small topics.

Other solutions

Outside Apache Kafka, Apache Pulsar, a open source messaging and streaming
solution, offers a natively multi-tenant solution. It groups users into units that
represent namespaces, as well as set policies such as message retention, expiry
policy, and resource utilization as per namespace level or individual topic level.
Besides this, it also offers a quoting tools more advanced than Kafka, at a names-

49

Chapter 5

pace or individual topic level (in Kafka this is normally only possible at a broker
level) [25].

Also, Confluent Platform, is a paid data streaming platform that utilizes Kafka
as its core, and that adds better tools to implement and monitor a multi-tenant
solution.

However, it’s the team’s decision not to change the currently used technologies.
Hence, these will not be detailed and the solution is constrained to what’s offered
by Kafka.

5.3.2 Alarm Manager Considerations

Before deepen on each of the alternatives pros and cons, some consideration re-
garding the product itself must be taken into account:

• The Alarm Manager has few tenants, however, each generates a lot of data.
The main purpose is for the system to support more concurrent users;

• Data isolation is required, for there must be some security mechanism. How-
ever, encryption is not a solution, since the passed packages are small and
it is slow and complicated to encrypt a lot of small chunks.

Keeping these characteristics in mind, it is possible to study a solution that best
fits the problem.

5.3.3 Solutions comparison

Having in mind the previous considerations, in 5.3.2, is possible to gather an
answer to the problem.

Both solutions sharing topics, as seen, have the advantage of maximizing re-
source efficiency than otherwise. However, both have a major problem: topics
do not grow infinitely. In one hand, partitions are limited by the server space
where they are hosted, and in the other, the more partitions in a topic the worse
the throughput. Hence, having too many tenants interchanging too much data
in the same group of topics will lead to a performance degradation. On top of
this, the solution regarding the dedicated partitions has also the problem of im-
balanced topics, which, as well, causes a hazard to the system performance. The
third solution, concerning dedicated namespaces, from the three presented, does
not use resources as well, as it still needs to keep all topics for each of the tenants.
Besides, it is preferable to have few bigger topics than multiple small ones [2].
However, it does offer some improvements by sharing the clusters.

Concerning isolation, keeping different topics for the tenants is the best solution,
for both data and workload. Data is kept segregated in different topics that re-
quire authorization to be accessed, but also the lack of performance in a topic

50

Multi-tenancy Analysis

does not affect how the remaining function. So, if there is a problem in a topic,
for example, lack of balance, the remaining topics will keep on working prop-
erly. In the other solutions, the isolation is weaker. For example, in the case of
shared topics and partitions, there is no data isolation, for the encryption is not to
be supported, meaning that the messages would flow through the same streams
completely legible. This aspect makes this solution improper.

Regarding workload isolation, it was proposed the use of quotas to mitigate this
problem. However, just as the encryption, it is a team decision not to throttle
the clients when these exceed the number of resources allowed, namely CPU,
memory, or bandwidth. Instead, the goal is to notify the Network Operations
Center (NOC) in order to take some measure.

The table 5.3 summarizes the discussed points, for each solution:

Dedicated parti-
tions Shared topics Dedicated

namespaces
Shared topics Yes Yes No
Data isolation Yes No Yes
Workload isolation No No Yes
Performance Medium Low High
Scalability Hard Hard Yes
Resources gains High High Low
Monitoring per ten-
ant Hard Hard Yes

Table 5.3: Kafka Solutions Comparison

Like other multi-tenant solutions, it would be possible to mix these, in order to
create a solution in which small tenants could have separated partitions, and big-
ger tenants, that would require more workload, would have their own names-
paces. But since in this phase of the project a homogeneous solution is the main
goal, dedicated namespaces was determined to be the best solution, because of
its scalability and isolation, even without being the most beneficial in terms of
resource gain.

5.3.4 Dedicated namespaces as a Solution

Bearing in mind the solutions and the product limitations, having different names-
paces for each client proved to be the best solution, for it is possible to maintain
isolation without jeopardizing performance, even though the gains are smaller.

For this solution, the authentication protocol must be configured on each of the
brokers server.properties. This includes specifying the protocol and setting its lis-
teners ports. Besides, the JAAS has to be constructed manually on each of the
brokers, and each of the tenants appended to the file. A plaintext authentication

51

Chapter 5

was established as a sufficient solution since the user does not have direct access
to the Kafka cluster and therefore only the application interacts with the authen-
tication mechanism. However, it is still necessary for the authorization. A JAAS
entry has the following format:

KafkaServer {
org.apache.kafka.common.security.plain.PlainLoginModule

required
username="admin"
password="admin-secret"
user_admin="admin-secret"
user_alice="alice-secret";

};

For every new tenant, a new entry must be added.

In order to authenticate, a producer/consumer in a Java application must pass its
credentials like the following, in a Properties object:

Properties props = new Properties();
props.setProperty("bootstrap.servers",

"localhost:<port>");
props.setProperty("security.protocol",

"SASL_PLAINTEXT");
props.setProperty("sasl.mechanism", "PLAIN");
props.setProperty("sasl.jaas.config",

"org.apache.kafka.common.security.plain.PlainLoginModule
required username=\"<username>\" password=\"<password>\";");

The authorization is done using a command, from the command line. The fol-
lowing example shows how a Prefix ACL can be thought of: "Principal User:Jane
is allowed to produce to any Topic whose name starts with ’Test-’ from any host". This
can be translated into a command the following way:

bin/kafka-acls.sh --authorizer-properties
zookeeper.connect=localhost:2181 --add --allow-principal
User:Jane --producer --topic Test- --resource-pattern-type
prefixed

Or it can also be done in a Java application with the AdminClient0 library. When
the producer/consumer wishes to produce/consume to/from a topic, the broker
will search in the Access Control List whether the authenticated user has permis-
sion for the request or not.

The application, knowing which tenant it belongs to, can easily produce/consume
to/from the right topic, with the format:

tenant<id>.<topic-name>

0Library documentation.

52

https://kafka.apache.org/23/javadoc/index.html?org/apache/kafka/clients/admin/AdminClient.html

Multi-tenancy Analysis

New tenant

For every new tenant most of the previous steps must be manual: appending a
new user credential in the JAAS file, creating the new topics one by one with the
right prefix, and setting the authorizations for the new tenant.

However, creating the new topics and setting the authorization can also be done
in Java in a much more automatic way. The following snippet shows how to
create a new ACL entry:

AdminClient adminClient = AdminClient.create(props);

// Define the resouce to apply the control to
ResourcePattern resourcePattern = new ResourcePattern(

ResourceType.TOPIC,
<topic name>,
PatternType.PREFIXED);

// Define user and type of control
AccessControlEntry accessControlEntry = new

AccessControlEntry(
"User:" + <principal>,
"*",
AclOperation.WRITE ,
AclPermissionType.ALLOW);

AclBinding aclBinding = new AclBinding(resourcePattern,
accessControlEntry);

// Create the ACL
CreateAclsResult createAclsResult = adminClient.createAcls(

Collections.singleton(aclBinding),
new CreateAclsOptions().timeoutMs(5000)

);

AclOperation defines the ype of ACL and can take the values ALLOW or DENY.
AclPermissionType defines what the user, also known as principal, can or cannot
do. It can have the values WRITE, CREATE, DELETE, ALTER, DESCRIBE, among
many others.

Monitoring

Currently, monitoring the Alarm Manager is already done using both Prometheus
and Grafana, to gather and display the metrics, and therefore supervise and trou-
bleshoot. This step is possible configuring a Prometheus port, normally 9090, and
is currently already supported by the system. Other solutions are widely used to
gather metrics such as Yammer metrics.

With these metrics, its possible to gather data such as request latency, consumer,

53

Chapter 5

lag, and metrics on the quotas, among others, that can be grouped by the topic
prefix or the logged in client. To note that some metrics are not done at a client or
topic level and may complicate the supervision.

For the quota solution, as seen, there will be needed a mechanism to alert when a
tenant crosses a threshold, which can be done in Grafana. By defining alerts, the
Network Operations Center (NOC) shall receive a notification everytime a tenant
surpasses its fair share of resources.

5.4 Processing Layer

The Processing layer is the main layer of the system, functioning as its core. It
has the purpose of executing the various jobs for the application to work prop-
erly. This layer is thus responsible for processing the alarms, when these arrive
and are handled by the Protocol Adapter, as well as execute manual actions upon
the alarms that are requested by the client, and handle alarm timers. Manual
actions from the user include, for example, recognize an alarm or change its pri-
ority rules. Given its importance and activity, the Processing must be efficient,
since its operations, generally, must be completed in the order of milliseconds. In
this section, possible solutions for the processing are proposed.

In order to study a solution, it is important to acknowledge tenant isolation, per-
formance and scalability. It is essential that the Processing is capable of scaling if
needed. This is already possible, for the layer escalates horizontally and a sched-
uler (nginx) helps schedule tasks. However, another problem arises regarding
customization. By sharing a same layer architecture, processing different alarms
with different formats can become tricky, requiring a more complex code struc-
ture.

Inside each Processing node, various components must be included in a solution,
such as cache, API, among others. Additionally, since both the database and
Kafka solutions have been already defined, for this layer it is also required the
Processing to be acquainted with the current tenant and connect to the right Kafka
topics and schema.

Due to its complexity, two possibilities are identified: keeping the current pro-
cessing architecture, with minor changes due to the database and Kafka solutions,
or change to a complete multi-tenant solution. Each have different pros and cons.
In the following sections, both are described and analysed.

5.4.1 Shared Processing

For a complete multi-tenant solution, the Processing must be fully shared by mul-
tiple tenants. Thus, the layer should be composed of multiple Processing nodes
that are able of scaling horizontally. For this solution, the layer shall have insight
on which tenant an event belongs to.

54

Multi-tenancy Analysis

The following figure presents this architecture. It is composed of a shared pro-
cessing with multiple nodes. Besides these nodes, there is also as a nginx sched-
uler and a shared cache. All the nodes communicate with a single database.
Events arrive in the layer through a single Kafka cluster, but from different topics,
and HTTP requests arrive through the API.

Figure 5.1: Shared processing architecture

Therefore, tenant identification and components behaviour are problems that
arise. In the following sections these problems are analysed and new solutions
are proposed.

Tenant identifier

Information arrives in the Processing in two different ways: by Kafka topics or
by REST requests. In both cases, it is possible to identify the owner of the event.

For Kafka, given that various topics are dedicated to a single tenant, and that
the name contains its tenant owner, it is possible to obtain its identifier. This will
require that a consumer subscribe to multiple topics simultaneously. Knowing
all existing tenants, it can add the tenant identifier to the beginning of the topic

55

Chapter 5

name and subscribe to all tenant’s topics. In order to be aware of all the existing
tenants, this information must be stored in a general database table.

Other options include adding the identifier to the header or message body, which
implies that this information travels multiple application layers, unnecessarily.
This would impose an overhead in system process.

Regarding the REST API, the tenant identifier can be passed in three different
ways: in the URL, in the message header, or in its body.

1. URL - Data is passed as a URL parameter. It is a simple method, however,
in a scenario where multiple endpoints are already used, multiplying by
the number of tenants leads to an exponential growth and therefore low
scalabiliy. It does not offer data security.

2. Header - In this case, the identifier is passed in the request’s header. When
a REST API authentication is done, the credentials are transmitted in the
header.

3. Body - Information is sent in the message body. It’s a simple process, al-
lowing flexibility in the format of the data, however, is not efficient, due to
parsing overhead.

Alarm Manager (AM) already supports both basic and bearer authentication.
Therefore, the tenant identifier can be passed through the header.

Cache

The Processing layer is made up of multiple small caches that are an efficient way
of storing data that needs to be swiftly accessed. These are ConcurrentHashMap
objects, composed of a key and a value. The key is used to lookup a record when
needed, and it can range from a String to any other application specific object
type, such as Target, TopicPartition, among others. So, for a multi-tenant solution,
a tenant identifier must be included in this pair, in order to identify the owner of
a record.

To isolate tenant-specific data within each cache two approaches can be followed:
prepend the tenant ID to the record key or map the current hash maps to their
tenant IDs.

Since all searches are done resorting to the record key, a simple solution would
be to add a prefix to the key. This would not require deep changes to the caches
structures, however, since some of the keys are class objects, it would be required
the addition of a new attribute to identify the tenant.

This solution has the advantage of being simple to implement and would keep
the cache structure unaltered. Furthermore, even though each tenant’s caches are
small, storing them all together leads to an exponential growth of the data struc-
ture. However, being a hashing algorithm, ConcurrentHashMap has, in average,

56

Multi-tenancy Analysis

time complexity O(1), thus, not imposing a problem, for it is expected to maintain
the look up, insert and delete time. The worst case scenario is achieved if the hash
keys are too similar, leading the algorithm to behave as a linear searcher and thus
taking O(n) time to look up/insert/delete data.

Another approach is to store each of the current caches as values in a hash pair,
while keeping the tenant identifier as key. Contrary to the previous solution, this
would require the addition of a level to the cache structure, leading to an average
time complexity higher comparing to the previous case. The time complexity
would still be O(1), but with a higher factor due to the need to perform two levels
of hashing and additional memory access for the second-level data structures.

In terms of storing space, the first solution is more economic than the second one.
Neither option offers any kind of data or performance isolation.

In conclusion, appending the tenant identifier to the both in terms of performance
and space is the most efficient and convenient option.

REST API

REST requests are used by external users and between the web application and
the system core. For multiple users to share the same API to connect to a set of
shared Processing nodes, these can either have separate or shared endpoints. In
5.4.1, these solutions are already described.

Some authentication mechanism, with the purpose of identifying where the re-
quest comes from and what it has authorization to retrieve, is indispensable.
Alarm Manager (AM) already supports both basic and bearer authentication.
Therefore, a multi-tenant solution simply implies that when the node receives a
request from an endpoint, the application will have acquired the tenant identifier,
needed for authorization.

Its important to note that with this solution, tenants share the same endpoints,
and therefore workload.

Database

In section 5.2, keeping separated schemas per tenant is the multi-tenant solution
selected. And so, it is required that the application knows how to connect to the
right schema. Knowing that in the Alarm Manager connections to the database
can be done in two different ways, JPA or datasources, solutions for both cases
must be defined.

Persistence API (JPA) in Hibernate is an interface that describes how objects are
persisted in a Java application. In addition to this, it also gives the right tools to
create a multi-tenant solution, allowing to connect to the right schema at runtime,
depending on the tenant identifier. The persistence.xml is where the strategy and
classes for the solution are defined.

There are two possible approaches: Either a single JDBC Connection pool to

57

Chapter 5

the database is done, and the connection is altered using the SQL SET SCHEMA
commands, depending on the connected tenant; or distinct JDBC Connection
pool per-tenant, in which each connections point to a different tenant schema.

A single connection is more flexible, for it can dynamically switch schemas with-
out having to create additional connection pools, and is more resource efficient.
However distinct JDBC connections offer stronger resource isolation as well as
are easier to maintain and troubleshoot. For this reason, and to avoid the crescent
maintenance complexity, having distinct JDBC connection pools is a safer option
for a database connection solution.

For distinct JDBC Connection pool per-tenant, by passing a tenant identifier, a
session is opened in the right schema. For this, it is required to implement two
interfaces: A connection provider that will provide the connection for the tenant,
and a tenant resolver in order to identify the current tenant.

The connection provider contains at least the methods for getting and releasing
connections (either any connection or a specific one). If Hibernate is not able to
resolve a tenant identifier, it will use the method getAnyConnection to retrieve
some connection. These methods are used during startup.

Next is shown an example for implementing a tenant connection using JPAs, pro-
vided in [3].

public class SchemaMultiTenantConnectionProvider
extends AbstractMultiTenantConnectionProvider {

private final ConnectionProvider connectionProvider;

public SchemaMultiTenantConnectionProvider() throws
IOException {

connectionProvider = initConnectionProvider();
}

...

@Override
public Connection getConnection(String tenantIdentifier)

throws SQLException {
Connection connection = super.getConnection(tenantIdentifier);
connection.createStatement()

.execute(String.format("SET SCHEMA \%s;",
tenantIdentifier));

return connection;
}

}

SchemaMultiTenantConnectionProvider’s purpose is to initiate the connection provider,
i.e, to create a driver with the necessary multitenant configurations, or to open a
connection when required.

58

Multi-tenancy Analysis

As seen, it extends AbstractMultiTenantConnectionProvider, an interface from Hi-
bernate used to implement a connection provider for a JPA. For datasources, Ab-
stractDataSourceBasedMultiTenantConnectionProviderImpl is used instead.

For the tenant resolver, it must implement a tenant identifier and be able to val-
idate the existing sessions. The following snippet shows a possible implementa-
tion for a resolver. As seen, it keeps a map of users, containing a key and a value,
where the value is the name of the schema to connect to.

public class CurrentTenantIdentifierResolver
extends MultiTenantResolver {

private Map<String, String> userDatasourceMap;

...

@Override
public String resolveCurrentTenantIdentifier() {

if(this.tenantIdentifier != null
&& userDatasourceMap.containsKey(this.tenantIdentifier)){

return userDatasourceMap.get(this.tenantIdentifier);
}
return userDatasourceMap.get("default");

}
}

Having defined these classes, in the persistence.xml it is defined the strategy
(DATABASE, DESCRIMINATOR, NONE, OR SCHEMA) and it’s specified the
class packages for the tenant resolver and connection provider, as seen in the fol-
lowing snippet.

<property name="hibernate.multiTenancy" value="SCHEMA"/>
<property name="hibernate.tenant_identifier_resolver"

value="multitenant.SchemaTenantResolver"/>
<property name="hibernate.multi_tenant_connection_provider"

value="multitenant.SchemaMultiTenantProvider"/>

This file is where the datasource is also defined. To notice that, since the solution
is to keep a single database with multiple schemas, there is only one datasource
for all tenants.

Kafka

In section 5.3, it is defined that keeping dedicated namespaces per tenant is the
multi-tenant solution proposed. For this, Kafka needs to be aware of all existing
tenants. It can be fetched from the database. This is required for the consumption
of messages, in order to subscribe the "same" topic in all tenant’s namespaces
simultaneously. In order to produce messages, the producer only needs to know

59

Chapter 5

the tenant it belongs to (either from the event header or the API request). In both
cases, the tenant’s identifier is prefixed to the topic name.

Quartz

As known, Quartz is used to trigger actions either periodically or in given cir-
cumstances. This mechanism is used, for example, for archiving alarms, in the
database, by checking periodically the alarms’ archive date, and moving all that
are verify the condition. Every job must be dedicated to a tenant.

In a multi-tenant environment with multiple schemas, there are two solutions: A
shared job that runs all schemas, or a different job per schema.

Alongside these jobs, the Alarm Manager contains a group of tables in the database
that contain information on how to configure jobs and triggers, and it also stores
some logs about them. It is possible to either store these tables in a global schema,
or keep them in each tenant schema. Since different tenants can have different
jobs and triggers configurations, the first solution would require the tenant id to
be added to these table. For this solution, Quartz information is stored in each
schema.

For a global job solution, it must run all tenant schemas. It requires that, during
the job, the schema is switched for each of the tenants.

For jobs per tenant, a proposed solution is to add a tenant identifier to the job
itself. Jobs are created with the method createNewJob in the class TimerManagerEJB.
In order to pass the tenant identifier in the job, it would only be requried to call
the method UsingJobData, as seen in the following snippet:

private JobDetail createNewJob(Class<? extends Job>
wakeUpHelperClass, String jobName, String jobGroup, String
description) {

return JobBuilder.newJob(wakeUpHelperClass)
.withIdentity(jobName, jobGroup)
.withDescription(description)
.storeDurably(true)
.requestRecovery(false)

.UsingJobData("tenant_id", tenant_id_val)
.build();

}

With this tenant id, when a trigger is fired, it already contains to whom it is doing
its task for, and because of this it can search the archive time in the alarms from
a specific schema, for example. The tenant id is obtained by calling the following
method:

context.getJobDetail().getJobDataMap().getString("tenant_id")

To note that the number of jobs running at a given time is limited by the size of

60

Multi-tenancy Analysis

the thread pool. Therefore, it can not grow infinitely.

The first solution excludes the possibility of different tenants having different
scheduling properties, such as different firing times. It requires to add the logic
behind the schema switching and differences that exist between the schemas. Re-
garding the second solution, it is heavier, for every job must be multiplied by the
number of existing tenants, and there is a threshold for the number of executing
jobs. However, the number of tenants is not very high and it is not expected to
grow very rapidly, for the chances of this threshold being exceeded are dim.

Having this in mind, and knowing that customization is an important property
of Quartz, keeping separated jobs for the tenants is the most adequate solution
for Quartz.

Monitoring

Custom metrics in the layer are obtained using the Prometheus client library. In
the AM system, these metrics’ names are statically defined, and so, instead of
creating a new metric for each tenant, it is a better option to use labels. A label is
a way to group metrics together that vary some parameter. Thereby, they allow
to separate metrics per tenant.

The following example comes from the project’s source code, and is used to ob-
tain the number of requests being processed in a given moment.

private static final Gauge requestsGauge =
Gauge.build().name("alarmmgr_requests_in_progress").help("Requests
In Progress").register();

In order to add a label, it is only needed to call the method "labelNames" with
the label key and, when executing some action on this gauge, such as increment,
decrement, start timer, among other, call the method to specify its value.

private static final Gauge requestsGauge =
Gauge.build().name("alarmmgr_requests_in_progress").help("Requests
In Progress").labelNames("tenant").register();

requestsGauge.labels(tenantID).inc();

This is a simple solution to split metrics per tenant, however, requires to change
a lot of different points of the source code.

Shared processing flow

The proposed solutions lead to following flows:

• Web/API Request - Request is received from the Web layer or from the
REST API

61

Chapter 5

1. Request is received from the REST API - The tenant identification is
sent in the authentication mechanism;

2. In the Processing, the nginx scheduler is responsible for deciding a Pro-
cessing node;

3. With the tenant identification, the node knows to whom the request
belongs to, being thus able to connect to the right schema, access its
data stored in the cache, and every other possible task.

• New event - Event arrives from Protocol Adapter

1. Event arrives in the layer coming from a topic, in a JSON format. The
header of the event contains the tenant identifier;

2. The scheduler (ngix) gives the task to some of the available nodes;

3. With the tenant identification, the node knows to whom the request
belongs to, being thus able to connect to the right schema, access its
data stored in the cache, and every other possible task;

4. The needed validations are done to the event;

5. It is stored in the right schema and sends the updated information to
the right topic.

• Automatic Operations - Related to Quartz

1. The tenant identifier is contained in the trigger.

2. With the tenant identification, the node knows to whom the request
belongs to, being thus able to connect to the right schema, access its
data stored in the cache, and every other possible task.

Pros and cons

Explained the architecture, it’s clear that less resources are required to execute
the requested tasks, which is this solution’s main advantage. However, problems
regarding isolation, customization and complexity arise.

5.4.2 Dedicated processing

In this solution, processing nodes are dedicated to the tenants. Therefore, it is
only required that the layer knows which tenant it belongs to. Only the database
access and Kafka topics require modification for this solution.

Database

For a tenant to access its own schema in the database, it is changed the connection
string, by adding the tenant’s credentials and schema name.

For this, it is expected for the schemas with the expected tables to exist and a user
with authorization to access them.

62

Multi-tenancy Analysis

Kafka

Regarding the Kafka solution it should be prefixed the tenant ID to the topic
name string for both the producer and the consumer. Since the processing node
is dedicated to the tenant, it only subscribes and produces to the topics with its
own tenant identifier.

Pros and cons

Having dedicated processing instances is a simpler solution that does not affect
deeply the current Alarm Manager structure. Along the same lines, it does not
offer any improvement, serving only to connect the previous solutions proposed.

5.4.3 Solutions comparison

Having presented the two solutions, these need to be weighted so as to under-
stand the best option for the problem. Starting with a shared Processing, it is a
cheaper option, needing less resources to complete efficiently its tasks. However,
it presents some problems regarding performance isolation, customization and
complexity. It is a solution that imply a lot of changes in the core of the project.

Due to its complexity, even though it is a cheaper solution, the changes that
would be required to share the processing layer may be expensive for the pos-
sible gains. Because of this, before defining if changes are to be made to this
layer, a effort vs gain analysis is relevant.

Resources analysis

In order to analyse how resources are used and how can the product scale, it is
required to understand how much a Processing node currently uses, how expen-
sive is the change, and how will a multi-tenant solution help make the processing
cheaper.

Currently, each processing node consumes, in average, 1 CPU and 2 GB of RAM.
However, in order to start an instance, these resources must be duplicated. Hence,
each node instance requires 2 CPUs and 4GB of RAM. These resources grow lin-
early with the number of tenants’ applications.

Each machine hosts at least two instances and has the following specifications:

8vCPU | 32 GiB Memory

General Purpose SSD (gp3) - 512Gb

10Gb outbound traffic

This reflects in 21 756.96 € each year, i.e, 10 878.48 € per tenant, every year. And
so, currently, approximately 87 027.84 € are spent every year to host the eight
clients that use the Alarm Manager.

63

Chapter 5

Cost machine per month (2 instances) 1 813,08 €
Total costs for a machine per year 21 756,96 €
Cost for a client per year (one instance) 10 878,48 €
Total costs per year (8 instances/4 machines) 87 027,84 €

Table 5.4: Machine costs per year

An estimation of the implementation days was obtained communicating with the
team: the multiple tasks were gathered, validated, and estimated (see table 5.5).
It is not an accurate value, however it reflects the team’s expectations. Thereby,
the implementation of a shared solution is estimated to last about 850 days, for a
single developer, it indicates a total of 180K euros. Divided in three years it is 60
000 € every year.

Task Duration (in days)
Tenant identification in events 2 - 3
Configure cache 27 caches
Change load structure, fetch from cache, answers from
cache; adapt all caches

54 (2 per cache)

Configure external APIs (11 APIs)
Handle requests, anomalies, inventories, maintenance,
and prevention

110 (10 per API)

Configure external APIs (73 EJBs) 219 (3 per EJB)

Database - Implement and test solution (83 data-
sources, 48 JPAs)

393 (3 per datasource and
JPA)

Database - migration for a multi-schema version 10
Configure Quartz (25 timers) 50 (1-2 days per timer)
Statistics 15
Total 850

Table 5.5: Planned tasks for the implementation of a shared processing: The tasks
were gathered, validated, and estimated with the team’s assistance

Now, for a multi-tenant, for the following resources,

16vCPU | 64 GB Memory (+2CPUs/4Gb per tenant)

General Purpose SSD (gp3) - 1024Gb (+128Gb per tenant)

50Gb outbound traffic (+10gb per tenant)

Considering that each of these machines can host up to four tenants using the
current amount of resources, the cost of the application is the same from one to
four tenants. For the fifth, a new machine is required and therefore the cost goes
up. Each of these machines costs up to 25 357.08 € per year.

64

Multi-tenancy Analysis

For a three year case, it is estimated the following costs of maintaining a given
number of tenants:

4 8 12 16
0

1

2

3

4

5

·105

Number of tenants

Pr
ic

e
Total cost of an instance per tenant in a three year interval

Multi-tenant
single-tenant

As seen, at the end of the three years, summing up with the amount required to
implement multi-tenancy in the AM, single-tenancy ends up being cheaper even
with fourteen tenants. Given that currently the Alarm Manager has eight clients
and that a new one subscribes to the product every few years, fourteen tenants is
not a conceivable value for the near future.

Therefore, the implementation of a shared processing is currently a task too ex-
pensive for the gains, given the number of existing tenants. However, it is still an
option that the product might benefit from in the future.

5.4.4 Dedicated instances as a solution

Given the high costs for a multi-tenant solution for the Processing layer, dedi-
cated instances for each client is shown to be the best option for the Alarm Man-
ager case, in the near future. Thus, a solution for Processing includes changes in
how the database is accessed, as well as the Kafka topics.

In chapter 7, this solution is implemented and reported.

65

Chapter 6

Development plan

Before starting to gather a concrete solution for the problem, it is crucial to plan
the project. This is an important step that must be done at the beginning of the
process since it’s when its lifecycle is defined, which provides the basic frame-
work for management, and the steps for the project completion are established.
This chapter’s focal point is the project’s approach.

6.1 Lifecycle

Throughout the whole year, the team responsible for the Alarm Manager, and to
which I was added, works in a Scrum methodology. Every day, the team meets to
discuss what has been done and what is planned for the day. This is also known
as daily. Moreover, every two weeks, a sprint is closed and a new one is opened,
with tasks being estimated and delivered to team members.

Regarding the dailies, in the first semester, I only attended these twice a week
(Thursdays and Fridays), and in the second semester, I participated daily. In both
semesters these had the purpose of giving and receiving feedback about my work
with the team, allowing sometimes to brainstorm about new approaches that I
could explore. Since most of my work was researching or, when implementing, it
was never directly in the final product, I was not expected to participate in tasks
as such as estimate story points for requirements. The purpose of this lifecycle
was to experiment the process of working in a real development team, such as
how it is managed and its methodologies.

Besides these daily meetings, in the first semester I met with my internship ad-
viser and two other team members to give updates and receive feedback on my
work, every Friday. Furthermore, every two weeks, I also met with my thesis ad-
visor, so as to discuss my dissertation work. During the second semester, I started
meeting with my internship advisor twice a week (Thursdays and Fridays), and
sporadically with my thesis advisor. Also, every month, throughout the whole
internship, I met with my internship and thesis advisors, in order to guarantee
that the interests of both the company and department were aligned. Finally, if
requested or thought necessary, other meetings were scheduled with other Altice

67

Chapter 6

workers or project members, in order to get more insight into specific topics.

This project is then divided into four parts [37][49]:

1. Starting the project - Identify and study the problem;

2. Organizing and preparing - Breaking down the project into small tasks (re-
quirements), analysing risks, and identifying the project timeline;

3. Carrying out the project work - Implement planned requirements and mon-
itor the quality of the product, by executing a set of tests to the system;

4. Closing the project - Handoff of the work produced and terminate the
project.

To schedule all tasks, a Gantt diagram for each of the semesters was created,
which can be seen in the following sections.

6.2 Planning for the first semester

For the first semester, it was expected to complete the first two parts, i.e, "Starting
the project" and "Organizing and preparing". The first breaks down into tasks
such as thorough research on multi-tenancy, the methods to achieve it, and vari-
ous other topics revolving around it, as well as a study on the Alarm Manager sys-
tem and its architecture. Furthermore, the second part, "Organizing and prepar-
ing", focuses on planning both functional and non-functional requirements, the
project’s constraints, and risks, along with plans to mitigate these. In the first
semester, it’s expected to work 16 hours/week. All this considered, in figure 6.1,
the Gantt chart with the planning for the first semester is shown.

The intermediate delivery was due on January 16th and marked the end of the
first part of the project. That same day also marks the beginning of the first sprint
after the intermediate delivery.

6.3 Planning for the second semester

The second semester was focused on detailing, implementing, and testing a solu-
tion for the database and the chosen Alarm Manager layers, as per the functional
requirements. During the second semester, as opposed to the first one, it was ex-
pected to work full-time. The diagram 6.2 describes the planned scheduling for
the second semester.

However, this scheduling was not strictly followed and therefore some tasks un-
derwent changes, leading to an execution of the scheduling as followed in figure
6.3. These changes are due to the Processing solution as well as the Kafka im-
plementation taking longer than estimated. When a planning was proposed, a

68

Development plan

solution for processing was not yet defined, and since the implementation was
less deep than expected, it took less time that estimated. Also, testing was not
included in the first planning. Therefore, requiring less time to implement, it was
easily possible to schedule the testing tasks in the planning. Even so, all manda-
tory functional requirements were implemented: new tenant setup, authentica-
tion and authorization in both Kafka and the database and monitoring.

After the internship, time was allocated to writing the results, and finishing the
dissertation, in order to have it completed and reviwed by July 10th.

69

Chapter 6

Figure 6.1: Planning for the first semester

70

Development plan

Figure 6.2: Original planning for the second semester

71

Chapter 6

Figure 6.3: Followed schedule for the second semester

72

Chapter 7

Implementation

In this chapter, the development done throughout the internship is presented.
It implements the selected solutions discussed in chapter 5. It has the purpose
of supporting and testing their viability and impact. This chapter is therefore
divided in four parts: Installing requirements, Kubernetes, Kafka, and other im-
plementations.

As analysed and discussed in chapter 5, the solution is to keep dedicated process-
ing nodes with a shared database and dedicated schemas for each of the tenants,
and a shared Kafka namespaces. This scenario is shown in figure 7.1. As referred
in chapter 6, some of the implementation is done with the assistance of team
members, specially the team tech lead.

The system implemented is Kubernetes is composed of two Processing nodes,
two Web applications, two Protocol Adapters, a database and a Kafka and Zookeeper
clusters. This allows for two simultaneous tenants to receive, process, and display
events.

This implementation has the purpose of responding to the proposed use cases.
Table 7.1 presents the list of use cases from chapter 4, and their implementation
status.

Use case Priority Required? Implemented?
US1 Setup Tenant High Yes Yes
US2 Audit Resource usage Medium No Yes
US3 Monitor Resource usage High Yes Yes

US4 Change/Set Resource usage
threshold Low No No

US5 Access authorizations Medium No No

US6 Configure Kafka authentica-
tion and authorization High Yes Yes

Table 7.1: Use cases list

73

Chapter 7

Figure 7.1: Proposed multi-tenant architecture

7.1 Required Tools

In order to implement the necessary changes, some software and tools are re-
quired.

Starting with the IDE, IntelliJ was used. TortoiseSVN, a subversion client that
allows to pull and push the project’s repository trunk was also used. It is help-
ful to obtain the project source code, but also to share the modifications done.
Dbeaver offers a SQL client interface, that allows to view, manage, and execute
SQL queries in the database. Postman, along with jMeter are powerful tools to
test the development done. Both are capable of sending HTTP packages to the

74

Implementation

system. jMeter is used as a mass tester.

For the Kubernetes environment, Kubectl is a command line used to manage the
cluster. It is required for K9s, a tool for providing supervision to the cluster status,
as well as its pods. On the other hand, Docker is used for the Kafka development,
allowing to create and manage a contained environment.

7.2 Kubernetes

Due to technical requirements, the whole AM system is built in a Kubernetes
environment called T-K8S, a cluster generally used by the team for developing
solutions and testing. As a result, a constraint is raised: other systems use the
same Kafka pod, and for this reason it is not possible to implement client authen-
tication nor, consequently, client authorization. This impacts the tests done as it
generates noise.

The procedure for building the AM system followed a manual procedure using
an overlay. An overlay is used as a part of Kustomize, a tool to customize Ku-
bernetes objects. It is a directory with a kustomization.yaml file that is deployed
to Kubernetes and that refers to other kustomization directories, known as bases.
A base contains a set of resources and associated customizations. It combines
Wordpress and MySQL format. The construction of the overlay was done from
a sample already existing in the project and with the assistance of the tech lead.
Other changes, which were done directly in the processing source code, were
made by team members. This only requires the prefix to be added to the topic
names.

7.2.1 Configure Overlay

As mentioned, most work was done in a Kustomize overlay, using an already
existing sample that is able to simplify the deployment of a new instance.

And so, the first step for the creation of a tenant instance is to setup a new Ku-
bernetes namespace that will host the instance. Since permissions are required
to complete this step, it was required the assistance of a third party to create the
namespace.

Afterwards, the next step is to modify the overlay as needed. The solution re-
quires to link the overlay to the newly created namespace, define the application
URL, which packages (which are bases) are desired for the tenant, and configure
database and Kafka solutions. These steps are done by defining variables that are
stored in a ConfigMap and that are called from inside the system.

Next, to configure the NFS path, it is required to create the directory manually,
that must be specified in storage-persistentvolume.yaml.

Before finishing the process, a license must be generated. This licence is based on
the namespace and is intended to verify its validity.

75

Chapter 7

The last step is installing the instance using a kubectl apply command, that will
patch the yaml file variables to the system variables. Every time a change is made,
its just a matter of reapplying the overlay to update the instance.

The pod’s status can be consulted in K9s. The following image 7.2 shows an
example of the displayed information:

Figure 7.2: Tenant 1 pod.

As discussed in 5.2, a solution for the database requires to change how the database
is accessed. Currently, a user logs in and is redirected to a public schema. The
purpose is to have all tenants accessing the same database, and having a different
schema for each one.

Therefore, the only two differences for the current procedure is that all tenants
will have the same host (variable db_host) with different schemas.

This solution also requires some additional steps, in order to create the schema’s
tablespaces owned by each tenant. This must be done in SQL.

In order to implement the Kafka selected solution, the application must be aware
of what to prepend to the topic. As previously referred, configMap is an object
that is able to patch values to the system from a yaml. Hence, this is possible by
defining a new variable in configmap-ansiblevars.yaml. In the system’s source code,
every time the topic name is called, it comes with the tenant identifier prefixed.
This is done by acquiring the tenant name value from the configMap and prepend
it to the topic name every time it is requested.

Summarizing, this development responds to the use case 1: "Setup tenant", by
defining the manual steps to create a new instance so as to host a new tenant.

76

Implementation

7.2.2 Monitoring

The AM system already offers many metrics for monitoring and troubleshooting.
Since most can already be separated by namespace, and each tenant instance is
hosted in a different namespace, it is easily possible to obtain metrics per tenant.
Thus, a dashboard was created for the purpose of monitoring and testing the
cluster behavior, containing the following metrics:

• Cluster CPU utilization - Percentage of CPU resources being used in a
given moment. This is global to the whole cluster;

• Cluster Memory utilization - Percentage of the currently allocated memory
from the available memory. This is global to the whole cluster;

• Processed events - Tells how many events are being processed in an interval
per tenant;

• Event Processing time - Tells how much time was spent since the event
came into the Processing and left it in an interval per tenant;

• Query processing time - Tells how much time was needed in average for
a query to be processed in the whole process inside the layer in an interval
per tenant;

• Cache received messages - Tells how many cache accesses are being done
in a given instant per tenant.

• CPU Usage - Tells how many bytes of the CPU are being used in an interval
per tenant;

• Memory usage (GB) - Tells how many bytes of the memory are being used
in an interval by tenant;

• Current rate of bytes received/transmitted - Tells how many bytes from
event packets are being received and transmitted in a given moment by
tenant;

• Received/transmitted bandwidth - Tells the capacity of the cluster to re-
ceive/transmit data in an interval by tenant;

• Rate of received/transmitted packets - Tells how many event packets are
being received and transmitted in an interval by tenant;

• Rate of received/transmitted packets dropped - Tells how many packets
have been dropped in an interval per tenant.

The following figures, 7.3 and 7.4 , show the dashboard when events are being
sent to two tenants:

77

Chapter 7

Figure 7.3: Monitoring Dashboard

Figure 7.4: Monitoring Dashboard

The dashboard responds to the use case 3: "Monitor resource usage", by present-

78

Implementation

ing a dashboard that displays the metrics required to monitor a client’s resources.

7.3 Kafka Docker

A complete solution regarding Kafka was also implemented separately, since the
namespace is shared with other applications, making it impossible to implement
authentication and authorization. And so the development of the Kafka solution
was done in a containerized environment, using an image from bitnami1. To
notice that this development was done without support from the AM team.

Remember that the purpose is to build a Kafka solution such as depicted in fig-
ure 7.5, with multiple applications connecting to the same cluster, authenticating
using SASL authentication (in this case plain SASL) and using different topics
(depending on its prefix name).

Figure 7.5: Kafka structure

For this implementation, it is required to install a Kafka, Zookeeper, Grafana, and
Prometheus services. These services are created using a docker compose yaml
file containing:

• A Zookeeper service (also bitnami), including a JAAS file and its configura-
tions, so as to be mounted alongside the service.

• A Kafka service, which mounts a JAAS authentication file, custom server
properties, users’ property files and theirs credentials, as well as the re-
quired prometheus files: its javaagent and a configuration file.

• A Prometheus service, with its port configured and a yaml file containing
its metrics rules (in this case, none was defined) and the specification of the
job to be monitored, as well as its port.

1https://hub.docker.com/r/bitnami/kafka/

79

Chapter 7

• A Grafana service, with its port configuration.

The configuration file for both the Kafka and Zookeper services is built for it dif-
fers from the original configuration, due to the authentication and authorization
mechanisms. This way, when the container starts it is already totally configured.
The following sections detail this configuration process.

7.3.1 Authentication

To enable authorization in a Kafka cluster it is required to enable the intended
SASL authentication mechanisms in the server properties, in this case, PLAIN
authentication. Because of this, it is expected that the variables, such as
sasl.enabled.mechanisms and sasl.mechanism.inter.broker.protocol, contain the value
PLAIN. It is required to configure listeners and protocols. In zookeeper, it is also
needed to specify that the authentication scheme is SASL.

These changes only tell which authentication mechanism is being used. In order
for users to authenticate, the servers must acknowledge them and therefore be
aware of their credentials. For this, a JAAS configuration file contains the list
of the existing users. However, it only specifies which users can authenticate,
but not their credentials. These must be stored either separately or together in a
properties files, so that, when authenticating, the service can link the user to its
credentials. The following example shows the structure of a JAAS configuration
file, giving server access to four users: admin, Alice, Bob, and Charlie.

Server {
org.apache.kafka.common.security.plain.PlainLoginModule

required
username="admin"
password="admin"
user_admin="admin"
user_alice="alice"
user_bob="bob"
user_charlie="charlie";

};

Thereby, every action that is done, either create or delete a new topic, produce
or consume events, demands user credentials, passed alongside each command.
When adding a new user, it is required to add manually the JAAS configuration
and to provide the user credentials.

7.3.2 Authorization

Besides authentication configuration, some simple steps must be executed before
creating ACLs for each tenant. In both Kafka and Zookeeper services, the autho-
rization must be enabled in the configurations files, by adding the lines

80

Implementation

authorizer.class.name=kafka.security.authorizer.AclAuthorizer and zookeeper.set.acl=true,
respectively. Besides this, it must be taken into account that users with no ACLs
must have all access blocked and, since this is not the default configuration, it is
mandatory to set this configuration.

Having completed these steps, it is possible to create ACLs for each existing user,
either through the command line or using the Client Admin library in Java. These
can be created using the topic prefix. ACLs can be listed, returning a list of all
rules, divided by topic prefix, as seen in the following figure:

Figure 7.6: ACL list example

This defines which action each user can or cannot perform, and which resources
it has access to or not. This way, use case 4 : Change/Set Resource usage thresh-
old dashboard is implemented and authentication and authorization are possible
inside the cluster.

7.3.3 Monitoring

In order for Prometheus to gather Kafka and Zookeeper metrics, it is required
a JMX exporter jar, known as javaagent, and a JMX configuration file. On one
hand, the javaagent exposes the application’s JMX objects for Prometheus to con-
sume, and on the other, the JMX configuration file itemizes a set of rules that
define which metrics are caught and grouped. However, Kafka needs to know
that these metrics are to be caught, and therefore, both prometheus.jmx.enabled and
prometheus.kafka.enabled must be set to true.

These metrics are next used by Grafana, as displayed in figure 7.7, in order to
create a dashboard to monitor and troubleshoot the tenant usage and brokers’
health.

81

Chapter 7

Figure 7.7: Kafka Dashboard

This dashboard also allows to create alerts. As previously referred, it is not ex-
pected for resources to be throttled when a user surpasses a threshold. Instead,
it is preferable for a NOC employee to be notified and some measure be taken.
This is done by setting threshold values in the queries. As seen in the following
example 7.8, when a value exceeds the threshold for more than a given time (in
the example is 20 seconds), alarm is fired:

Figure 7.8: Alert for number of bytes being consumed surpassed

In this case, both tenants are making a similar utilization of the resources, how-
ever tenant 1 has the threshold set for 45KB/sec and tenant 2 set for 85KB/s, re-
sulting in only tenant 1 firing the alarm for excess utilization of consumed bytes.

The dashboard responds to use case 2: Audit Resource usage and use case 3:
"Monitor resource usage" , by presenting a dashboard that displays the metrics
required to monitor a client’s resources and defining alerts when resource usage
is exceeded.

82

Implementation

7.4 Other developments

In order to support the shared processing solution, a Maven project was created
with all the necessary dependencies. It replicated one of the system packages,
Procedures Manager, allowing to implement some parts of the solution in a sam-
ple of the project, in order to test whether the solution was viable or not, and for
future work. And so, the solution for both datasources and JPAs, the authentica-
tion of a tenant in the REST API, and the labels in Prometheus metrics, in order
to separate tenant specific metrics were implemented.

83

Chapter 8

Tests

Having assessed and discussed multiple solutions, identified, and implemented
the most adequate, it is now important to test the resulting system. In accordance
with the non functional requirements, it is required that the system is efficient,
improves the resource usage, and assures confidentiality.

Therefore, the purpose of this chapter is to present and analyse the tests con-
ducted to the system. It is divided into three parts: the first focuses on perfor-
mance tests carried out in the Kubernetes environment examining how the sys-
tem reacts to different event loads. The second section evaluates the confiden-
tiality aspects of both Kafka and the database, by verifying whether tenants can
or cannot access resources belonging to others. Finally, the third section analyses
and discusses the results.

8.1 Performance tests

In order to test the performance of the proposed solution, it is considered impor-
tant to answer the following questions:

1. How do resources such as CPU, memory, and bandwidth evolve with cres-
cent load of events?

2. How does the system reacts to crescent load of events? At what point does
it start degrading?

3. How does the system scales for supporting more tenants? What influences
this behavior?

For this, events are built and injected using jMeter. A bean shell pre-processor
allows to build a Json object by defining what variables are to be sent in the event,
and their values, so as to send them to the system to be processed with different
throughput. The system is composed of a Protocol Adapter, a Processing ,and a
Web application.

85

Chapter 8

All tests followed the same procedure:

• One or two simultaneous tenants receive events. A tenant is a complex
instance that receives events and that is able of interacting with multiple
users with permissions to. So, even though, it was not possible to test with
more tenants due to technical restrictions, having two tenants per instance
is already an advantageous scenario.

• Varying number of events are sent, ranging from 10 to 250 events per sec-
ond, grouped by three categories: low load (10 to 50 events/sec), normal
load (70 to 135 events/sec), and high load (170 to 220 events/Sec). These
levels are representative of loads from real clients.

• All tests had the duration of 10 minutes and were executed three times. The
presented values are the average of all the experiments. The result of the
experiments of multi-tenancy are the average of the values obtained by the
two tenants.

In most cases presented, both tenants were tested with the same loads simulta-
neously, which is not usual in a real situation. This represents the worst case
scenario.

These tests were run in a Kubernetes test environment, used generally for testing.
This means that on one side, the machine has more than the minimum resources,
limiting to the analysis of performance degradation under high loads. On the
other side, the environment is shared with other applications concurrently, which
may influence the results.

This decision was done since the resources are already available and the time it
would take to explicitly set up the environment merely for these preliminary tests
was not worth the cost. Nevertheless, these tests are sufficient to draw conclu-
sions regarding the behavior of the instance. Each tenant uses its own namespace,
however, the Kafka namespace is also shared with other applications. To note, as
well, that these results refer to the process of receiving, parsing, analysing, stor-
ing, and displaying each event.

Table 8.1 shows the resources available in the current environment, the minimum
resources required, and the specifications of the machine being used to inject the
events, since it affects the amount of tests sent:

Current resources Minimal resources Testing machine
CPU (cores) 60 2 2
Memory (GB) > 300 32 8
Bandwidth
(GB/s) - 10 -

Table 8.1: Environment current, minimal resources, and testing machine re-
sources

86

Tests

It should be noted that these tests are run in development mode. This means
that results are to be higher than expected. For example, an event that can be
processed in 4 ms in production mode, might take about 30 ms in development
mode.

To monitor the machine’s behaviour, the cluster metrics are gathered and dis-
played in a Grafana dashboard, previously presented in 7.2.2.

8.1.1 Idle mode

Before diving into the test conclusions, it is important to note that even when idle,
resources are always being consumed. This detail influences the results from the
test and therefore must be taken into account. For example, tenant CPU usage is
always between 0.13 and 0.3 CPUs, while Kafka CPU utilization is always around
0.103.

Also regarding the memory usage, its usage ranges from 6,2 and 6,7 GB. Follow-
ing the next example, as depicted in the graph 8.1, from 2h30 to 8h00, there are
no events being received and processed. However, from 8.2, the behaviour is not
so linear, being that from 3h50 it starts growing steadily.

Figure 8.1: Processed events from 2h30 to 8h00

Figure 8.2: Memory activity

This is due to external and automatic activities, such as Quartz jobs and cache
updates.

87

Chapter 8

8.1.2 Resources evolution

Starting with the first question: How do resources such as CPU, memory, and
bandwidth evolve with crescent load of events ?, it is expected that the system
is capable of distributing its resources equally per event, and that the quantity
of used resources per tenant grow the more events are processed. Hence, for the
same number of events, users utilize the same amount of resources to maintain
performance. However, it is expected that different number of events being pro-
cessing lead to imbalance between tenants resources. In a limited scenario, this
would cause noisy-neighbors. This way, the curve for the three of the resources
per tenant is expected to be linear, the more events are being sent.

However, it is not expected for the sum of all resources to be linear to the number
of tenants. This is due to shared components, such as Kafka resources.

This way, it was obtained the CPU, memory and bandwidth usage for a single
and a multi-tenant scenario with two tenants.

CPU

Graphs 8.3 and 8.4 displays the results regarding the CPU usage per tenant, de-
pending on the number of tenants and events per second, and the case of two
concurrent tenants, processing the same number of events, respectively.

10 25 50 70 100 135 170 200 230
0

0.5

1

1.5

Events per second

A
ve

ra
ge

C
PU

us
ag

e
[#

]

CPU usage per tenant in a single-tenancy scenario
CPU usage per tenant in a multi-tenancy scenario

Figure 8.3: CPU evolution

As expected, the CPU values grow linearly, as the number of events that are sent
per second increases. Also, in both cases tenants have access to the same quantity
of resources, even though the number of tenants duplicated, which is easily seen
in the second graph. This means that, even in a scenario in which resources are

88

Tests

10 25 50 70 100 135 170 200 230
0

0.5

1

1.5

Events per second

A
ve

ra
ge

C
PU

us
ag

e
[#

]

CPU usage for tenant 1
CPU usage for tenant 2

Figure 8.4: CPU usage per tenant

limited, it is expected that all events, whichever tenant they belong to, have access
to the same amount of CPU resources and might have them throttled, imposing
a threat to the workload isolation.

Considering, nonetheless, that most of the time events are not sent equally, it is
yet notorious how the CPU usage depends on the number of events. For exam-
ple, for a scenario in which a tenant is processing two times the events of another
tenant, the CPU usage grows in about 50%. In case this factor grows to four times,
the CPU usage increases to 100%. In both cases, receiving a constant number of
events, the other tenant will have also constant resource usage. This variation
in the CPU usage, and similarly for the memory and bandwidth, allows to con-
clude that resource usage is done per event and therefore both tenants can process
events at a similar rate, independently of the number of events arriving.

However, in general, less CPU is utilized for the case of multi-tenancy, due to the
shared Kafka namespace. The graph 8.5 shows that the CPU usage improves.

Table 8.2 presents the average decrease of CPU compared with the usage done
by one tenant. Above two tenants, the values were estimated with the difference
between the percentage of CPU usage between one and two tenants and by keep-
ing a constant CPU usage for the Kafka layer. To note that the resource usage
for Kafka, in a multi-tenant architecture, varies little with the increasing num-
ber of tenants, whereas, having multiple clusters, is more expensive. It is thus a
projection that followed a linear progression.

89

Chapter 8

10 25 50 70 100 135 170 200 230
0.5

1

1.5

2

2.5

3

3.5

Events per second

A
ve

ra
ge

C
PU

us
ag

e
[#

]

Number of CPUs used per tenant for single-tenancy
Number of CPUs used per tenant for multi-tenancy

Figure 8.5: Comparison of CPU in a single and multi-tenant scenarios for two
tenants

Tenants Average decrease in
CPU

2 Tenants 12 %
3 Tenants 22 %
4 Tenants 34 %
5 Tenants 45 %

Table 8.2: Projection of the general CPU reduction for number of tenants, due to
the shared Kafka

And so, starting from two tenants, a multi-tenant scenario offers at least a de-
crease of 12% in CPU usage, mostly due to the shared Kafka. This value increases
in about 11% by each tenant that is added. Therefore, the more tenants, the bigger
the gains.

Transposing this to a minimal scenario, presented in 8.1, it is possible to notice
that these improvements are not enough to host at least two tenants in minimal
conditions in normal load. As depicted in the following graph that shows the
CPU usage for one and two tenants, and a projection for a third one, at least 4
CPUs are required to host two tenants. For lower to normal usage, up to three
tenants. For a higher number of tenants and in order to keep the stability of the
distribution of the resources, more resources need to be added.

90

Tests

10 25 50 70 100 135 170 200 230
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Events per second

A
ve

ra
ge

C
PU

us
ag

e
[#

]

CPU per tenant in a one tenant scenario
CPU per tenant in a two tenant scenario

Projection of CPU per tenant in a three tenant scenario

Figure 8.6: CPU usage for different concurrent tenants

Memory

Regarding memory usage per tenant, it is notorious that these values do not
range much, normally between 6.4 to 6.85 for bigger loads. Furthermore, when
comparing with two different tenants, is seen that they diverge little as well. The
graph 8.7 shows how these memory resources are used depending on the number
of tenants and events per second:

As shown, testing with two tenants in the same conditions, it is demonstrated that
the amount of memory grows the more events are being processed. Compared
with the single-tenant case, it is possible to see that, in general, more memory is
used per tenant, in average 90MB. This small difference little impacts the system.

Bandwidth

Finally, related to the network bandwidth per tenant, which is the capacity of
the network to transmit and receive data, the available resources for the scenario
with one tenant is similar to two tenants, as shown in graph 8.8.

As shown, in both cases a tenant requires the same amount of resources to work
properly. Having similar resource access is extremely important, for it is what
will allow that, in both cases, the performance and thus time of processing are
similar.

91

Chapter 8

10 25 50 70 100 135 170 200 230
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7

Events per second

A
ve

ra
ge

M
em

or
y

us
ag

e
[G

B]

Memory usage for single-tenancy
Memory usage for multi-tenancy

Figure 8.7: Comparison of Memory evolution

10 25 50 70 100 135 170 200 230
0

500

1,000

1,500

2,000

2,500

Events per second

A
ve

ra
ge

Ba
nd

w
id

th
us

ag
e

Comparison of bandwidth evolution

Bandwidth per tenant in a single-tenant scenario
Bandwidth per tenant in a multi-tenant scenario

Figure 8.8: Comparison of bandwidth evolution

92

Tests

8.1.3 System performance

Answering the second question, How does the system reacts to crescent number
of events? In what point does it start degrading?, it is expected that the more
events are being processed, the longer it takes to process them. Besides this, also
the number of tenants is expected to affect negatively the processing time for each
event.

By analysing how long it takes for each event to be processed, it is shown in 8.9
that the processing time increases the more events are being processed.

10 25 50 70 100 135 170 200 230

5

10

15

20

25

30

Events per second

A
ve

ra
ge

Pr
oc

es
si

ng
ti

m
e

[m
s]

Event processing time in single-tenant scenario
Event processing time in multi-tenant scenario

Figure 8.9: Processing time evolution

From these data it is calculated that, in average, events take more 3.42 ms to pro-
cess than in the single-tenant scenario. This is caused, firstly, due to a higher
demand for processing resources, that lead to events being received faster than
the system is capable of processing, and therefore they wait momentarily. An
analysis of the Kafka and database results, led to the conclusion that Kafka oper-
ations are little impacted by the multi-tenant solution, being that its performance
depends more on the amount of events being processed in a given moment, but
each database queries take up to 1ms more to execute and in average half a
millisecond.

Analysing the throughput and comparing it with the number of events sent per
second, we get that in both cases, with one or two concurrent tenants, the sys-
tem is able to respond to the requests in due time. For example, having a 98%
throughput means that, for 100 events sent in a second, the system can process
98% of them in a second.

93

Chapter 8

One tenant Two tenants
Low load 96% 95%
Medium load 99% 94%
High load 97% 97%

Table 8.3: Capacity of event processing

From the table 8.3, it is not possible to infer a point in which the performance
starts degrading. Since it is not possible to test with more tenants and a more
limited environment in the current test conditions, this is a question to keep for
future analysis. Nonetheless, it would be expected that, when the resources us-
age approximates the machine’s limit, which depends on the load and number
of tenants, the performance would be heavily degraded until a point in which
packets would be dropped.

In conclusion, despite the performance being degraded in the current system,
with the processing time increasing, this increase does not affect heavily its over-
all performance, since it is still capable of responding to the majority of received
events (in average 95%) in the same interval they were received.

8.1.4 System scalability

How does the system scales for supporting more tenants? What influences this
behavior? Since the system is being tested in a Kubernetes environment, it is
challenging to answer the question. For a system with the minimum resources, it
is expected that the system breaks with 2 tenants in high load. In the current test
scenario this is impossible to test.

Analysing a comparison between a scenario with one and two tenants, it is ob-
servable that the same amount of CPU is being used per namespace. Supposing
that this is applicable to three and more tenants, in the current scenario, graph
8.10 is created. Even though it does not represent the degradation caused by an
approximation to the resources limits, it is clear that 2 CPUs are not capable of
providing two tenants even in a normal load situation. 4 CPUs would be re-
quired. For three tenants, processing great amounts of events, 4 CPUs is once
more not enough. However, in a scenario in which the three tenants process in
average 100 events/sec, it is possible to host them three in a single instance. In
short, tenants with smaller load sharing an environment require less resources to
work properly and can therefore fit inside a same instance.

This analysis is possible comparing CPU since it is expected that this resource
grow linearly, as seen in the analysis in 8.1.2. However, both RAM memory and
bandwidth do not follow such a strict pattern and are not as accurate. The graph
8.11 displays the expected memory usage for up to four tenants.

And so, summarizing, the following tables, 8.4, 8.5, and 8.6, show how many
resources are expected to be required for a given number of tenants for an average
of 135 events per second, bearing in mind that these should not exceed 80% of the

94

Tests

10 25 50 70 100 135 170 200 230
0

1

2

3

4

5

6

Events per second

A
ve

ra
ge

C
PU

ut
ili

za
ti

on
[#

]

CPU per tenant in a one tenant scenario
CPU per tenant in a two tenant scenario

CPU per tenant in a three tenant scenario
CPU per tenant in a four tenant scenario

Figure 8.10: CPU expected scalability

10 25 50 70 100 135 170 200 230

5

10

15

20

25

30

35

Events per second

A
ve

ra
ge

R
A

M
ut

ili
za

ti
on

[G
B]

Total memory usage for one tenant
Total memory usage for two tenants

Total memory usage for three tenants
Total memory usage for four tenants

Figure 8.11: Memory expected scalability

95

Chapter 8

available resources. As previously noted, these are not completely accurate and
may not correspond to the reality.

Tenant 1 2 3 4
Utilization (%) 64 234 346 458
Min req 2 4 8 8
% Utilization 32% 59% 43% 57%

Table 8.4: Expected CPU utilization and minimum required

Tenant 1 2 3 4
Utilization (Gb) 6,72 16,83 23,64 30,46
Min req 16 32 32 64
% Utilization 42% 53% 74% 48%

Table 8.5: Expected memory utilization and minimum required

Tenant 1 2 3 4
Utilization (GB/s) 1,90 4,88 5,70 7,60
Min req 4 6 8 10
% Utilization 48% 80% 71% 76%

Table 8.6: Expected bandwidth utilization and minimum required

For most of the times, when the tenant count is increased, it is required to expand
the minimum resources required. It is thus important to weight how relevant are
these improvements considering the lost of performance.

8.2 Isolation tests

As proposed in the Non Functional Requirements, in 4.2, 100% of unauthorized
accesses to unauthorized data are prevented. Therefore, the purpose of these iso-
lation tests is to assure that a tenant has access to its own resources, guaranteeing
that no other can access it as well.

8.2.1 Database

In order to test the database, both test users, tenant 1 and tenant 2, are logged
into the database using their own credentials. This was done using dbeaver, a
software that provides an interface to a database. So, to test the isolation in the
database, the following tests were executed:

96

Tests

Action Expected output

db_1 Tenant fetches rows from its own
schema. The requested rows are returned.

db_2 Tenant fetches rows from an
unauthorized schema.

A permission denied error mes-
sage is returned.

db_3 Tenant creates an entry in a table
from its own schema.

Row is created in the table. A
same table in another schema
does not contain the newly cre-
ated row.

db_4 Tenant creates a row in an unau-
thorized schema.

An error message is shown. The
row is not created.

db_5 Tenant updates a record in its own
schema. Row is updated.

db_6 Tenant updates a row in a table
from another tenant’s schema.

An error message is shown. Row
is not updated.

db_7 Tenant deletes a row from its own
schema.

Row is deleted. A record in an-
other schema that fits the WHERE
condition is not deleted.

db_8 Tenant deletes a row from an
unauthorized schema.

An error message is shown. Row
is not deleted.

db_9 Tenant fetches a view from its
own schema. The requested rows are returned.

db_10 Tenant fetches a view from an-
other tenant’s schema. An error message is shown.

db_11 Tenant joins data from its own
schema.

Fetched data is the result of the
two joined tables.

db_12
Tenant joins data from its own
schema and another tenant’s
schema.

An error message is shown.

db_13 Different tenants fetch data from
their won schemas concurrently. Both fetch their own data.

db_14
A tenant fetches data from its own
schema while another tenant tries
to access the exact same data.

Tenant with authorization fetches
its own data. The other tenant re-
ceives a permission denied error.

db_15 Different tenants fetch each own
data.

Both receive a permission denied
error.

Table 8.7: Database Isolation tests

Test Results

Summarizing, the database isolation test results are the following:

Result Result Result
db_1 Passed db_2 Passed db_3 Passed

97

Chapter 8

Result Result Result
db_4 Passed db_8 Passed db_12 Passed
db_5 Passed db_9 Passed db_13 Passed
db_6 Passed db_10 Passed db_14 Passed
db_7 Passed db_11 Passed db_15 Passed

Table 8.8: Database Isolation results

In case of a successful operation, dbeaver displays the following log message 8.12:

Figure 8.12: Database successful message

However, when permission is denied, it returns the message 8.13:

Figure 8.13: Database permission denied

In conclusion, 100% of unauthorized accesses to the database are prevented. There-
fore, tenants can not access and interfere with one another’s messages and hence
privacy.

8.2.2 Kafka

In order to test the Kafka’s solution isolation, at least two users, Alice and Bob,
each part of a different tenant group, are logged into the cluster using their own
credentials. This was done by creating a Producer and a Consumer. So, to test the
isolation, the following tests were executed:

98

Tests

Action Expected output

kafk_1
Read/write permission is defined
and tenant can now read and
write to a topic.

Before, when trying to
read/write, permission is de-
nied. After permission, it can
retrieve and send events.

kafk_2
Read/write permission is re-
voked and tenant cannot read and
write to a topic.

Before, when trying to
read/write, it can retrieve and
send events. After, permission is
denied.

kafk_3 Tenant reads from topics from its
own namespace.

It consumes messages from the
topics.

kafk_4 Tenant reads from topics from an
unauthorized namespace.

A permission denied error mes-
sage is returned.

kafk_5 Tenant writes to topics from its
own namespace. It produces messages to the topic.

kafk_6 Tenant writes to topics from an
unauthorized namespace.

A permission denied error mes-
sage is returned.

kafk_7
Tenant does not have permission
to create topics (from its own or
other namespaces).

A permission denied error mes-
sage is returned.

kafk_8
Tenant does not have permission
to delete topics (from its own or
other namespaces).

A permission denied error mes-
sage is returned.

kafk_9 Tenant joins data from its own
topics.

Fetched data is the result of the
two joined topics.

kafk_10 Tenant joins data with other ten-
ant’s namespace.

A permission denied error mes-
sage is returned.

kafk_11 Different tenants fetch data from
their won topics concurrently. Both fetch their own data.

kafk_12
A tenant fetches data from its own
topic while another tenant tries to
access the exact same data.

Tenant with authorization fetches
its own data. The other tenant re-
ceives a permission denied error.

kafk_13 Different tenants fetch each own
data.

Both receive a permission denied
error.

Table 8.9: Kafka Isolation tests

Test Results

The following table 8.10 documents the results of these tests:

Result Result Result
kafk_1 Passed kafk_5 Passed kafk_9 Passed
kafk_2 Passed kafk_6 Passed kafk_10 Passed
kafk_3 Passed kafk_7 Passed kafk_11 Passed
kafk_4 Passed kafk_8 Passed kafk_12 Passed

99

Chapter 8

Result Result Result
kafk_13 Passed

Table 8.10: Kafka Isolation results

As seen, all tests are successful. In case of sending and receiving packets, it is
verified if all is sent and received correctly. When a permission denied error is
received, as expected, an exception is caught. 8.14 is an example of the exception.

Figure 8.14: Kafka permission denied example

These Kafka results prove that in all these cases data isolation between tenants
is guaranteed in the Kafka topics. Therefore, tenants can not access and interfere
with other tenant’s messages and hence privacy.

8.3 Discussion

The efficiency tests shows that, comparing with the current Alarm Manager ar-
chitecture, the new one offers slight improvements and therefore requires less
resources to provide multiple tenants simultaneously. As proposed in the non
functional requirements, it is expected that the system is able to process all events
without surpassing the 80% mark of resources usage. It is possible to host more
than one tenant in an instance without exceeding this mark and jeopardizing the
instance integrity. Therefore, the first non functional requirement, regarding
efficiency, is verified. However, as seen by the tests, this improvement is not
substantial and in most cases, the increment of the number of tenants leads to a
need to increase the available resources. For example, section in 8.1.4 it is shown
that, regarding CPU, only when adding a fourth tenant it was not required to add
more resources, and for the memory, when adding a third one.

The isolation tests, both at the database and Kafka level, verify confidentiality
between different tenant’s data. This means that a tenant’s access to other unau-
thorized data is barred. Therefore, also the non functional requirement regarding
tenant confidentiality is verified by these tests. And so, based on the analysis
of the executed tests, it can be observed that these fulfill the two proposed non
functional requirements.

The performance is deteriorated. From one to two simultaneous tenants, it is
noticeable a 30% increase in the process of an event parsing and processing. Re-
gardless, given these test conditions, it is not easy to predict how a tenant growth

100

Tests

can lead to a bigger performance degradation. This would require deeper tests
than those possible for this internship. Even so, it was possible to ascertain that
the improvements are below expectations and a multi-tenant solution as imple-
mented in this internship is not enough for the expected benefits. Nonetheless,
these initiate the process towards a complete multi-tenant AM, being Processing
the next step to follow.

101

Chapter 9

Conclusion

In conclusion, during the internship an investigation on the relevant theoretical
concepts such as Cloud Computing and Single and Multi-tenancy was carried
out, as well as the technologies associated with the current system that can be
used to develop a solution. Multi-tenancy, as seen, is a paradigm of resource
sharing between multiple tenants or clients. It is a widely used approach because
it allows companies to reduce the need for infrastructure while maximizing the
usage of the available resources. However, it also has drawbacks, such as com-
plexity, resource competition, and lack of isolation.

This work was focused on the study of multi-tenancy in the Alarm Manager. As
observed, it is a system capable of surveying, detecting, treating, and monitoring
alarms from a network, and it is composed of multiple independent layers that
communicate with each other through Kafka Streams. An analysis of the cost of
changing each layer towards a more multi-tenant system was done, in order to
understand which ones were more relevant, given the short internship time. And
so, the Kafka and processing layer, as well as the database, were chosen as the
layers with the highest priority. The requirements were gathered and a solution
for the database,the Kafka, and Processing layer was planned, considering their
complexity, gains, and cost.

The proposed solution was implemented for two tenants in the same Kubernetes
cluster, by sharing a database and a Kafka cluster, a docker container for the
Kafka solution, and two dashboards for monitoring. Finally, tests allowed to
understand how the system responds to different tenant usage. Although these
changes did not lead to significant improvements, these are architectural changes
necessary for a multi-tenant AM.

It is considered that the goals of the internship were met and completed: Solu-
tions for both Kafka and the database were studied, selected, and tested, allow-
ing to conclude that minor improvements were achieved and isolation is kept.
Regarding the Processing, even though it was decided not to proceed with its
changes, it is an essential step towards a multi-tenant AM, and the multiple tasks
required for its implementation were detailed and documented. Besides this, two
dashboards were developed for monitoring and testing purposes.

103

Chapter 9

The information gathered throughout the internship and contained in this docu-
ment was also summarized and documented in the product’s wikis, internal to
Altice Labs, so as to facilitate its access for the team.

9.1 Future Work

Regardless of the conclusion of the internship, the team can still decide to move
towards a multi-tenant architecture in the future, either due to necessity or up-
dates in the used technologies that can facilitate the transition. This work can still
serve as a foundation for a new and more adequate solution for the various Pro-
cessing components: the cache, REST API, Quartz, among others. The developed
dashboards will allow to test the implementation gains and drawbacks.

104

References

[1] Dockerfile reference. [Online; accessed October 12, 2022].

[2] Faq. [Online; accessed January 20, 2023].

[3] A guide to multitenancy in hibernate 6. [Online; accessed April 13, 2023].

[4] Overview. [Online; accessed October 12, 2022].

[5] The plaintext authenticator. [Online; accessed June 11, 2023].

[6] Salted challenge response authentication mechanism. [Online; accessed June
11, 2023].

[7] What is grafana? [Online; accessed April 23, 2023].

[8] Apache Kafka. Documentation. [Online; accessed October 29, 2022].

[9] Apache Kafka. Documentation. [Online; accessed January 20, 2023].

[10] Apache Kafka. Multi-tenancy. [Online; accessed October 29, 2022].

[11] Asana. Everything you need to know about creating a raid log, 2021. [On-
line; accessed December 19, 2022].

[12] AWS. Aws lambda. [Online; accessed January 11, 2023].

[13] AWS. Postgresql bridge model. [Online; accessed October 12, 2022].

[14] AWS. Postgresql pool model. [Online; accessed October 12, 2022].

[15] AWS. Postgresql silo model. [Online; accessed October 12, 2022].

[16] AWS. Tenant. [Online; accessed November 16, 2022].

[17] Azure. Cloud computing terms. [Online; accessed December 26, 2022].

[18] Azure. Multi-tenant saas database tenancy patterns. [Online; accessed Oc-
tober 12, 2022].

[19] Azure. Noisy neighbor antipattern. [Online; accessed December 28, 2022].

[20] Greg Boss, Padma Malladi, Dennis Quan, Linda Legregni, and Harold Hall.
Cloud computing, 2007.

105

Chapter 9

[21] Business Research Company. Alarm systems and equipment global market
report 2022. [Online; accessed November 15, 2022].

[22] Christopher M. Judd. Getting started with docker. [Online; accessed October
12, 2022].

[23] CloudFlare. What is the cloud? [Online; accessed September 16, 2022].

[24] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley Professional,
2000.

[25] Confluent. Kafka vs. pulsar vs. rabbitmq: Performance, architecture, and
features compared. [Online; accessed October 29, 2022].

[26] Docker. Docker overview. [Online; accessed October 12, 2022].

[27] Rajdeep Dua, A. Reddy Raja, and Dharmesh Kakadia. Virtualization vs con-
tainerization to support paas. pages 610–614. Institute of Electrical and Elec-
tronics Engineers Inc., 9 2014.

[28] Esat Erkec. Sql connection strings tips. [Online; accessed October 27, 2022].

[29] ET Money. What is compound annual growth rate (cagr)? [Online; accessed
November 15, 2022].

[30] Google Cloud. What are containers? [Online; accessed January 11, 2023].

[31] Harish Somasundar. Database multi tenancy. [Online; accessed November
27, 2022].

[32] Dong Huang, Bingsheng He, and Chunyan Miao. A survey of resource man-
agement in multi-tier web applications. IEEE Communications Surveys and
Tutorials, 16:1574–1590, 2014.

[33] IBM. Apache zookeeper. [Online; accessed October 29, 2022].

[34] IBM. User authentication and authorization in apache kafka. [Online; ac-
cessed October 29, 2022].

[35] IBM. What is virtualization? [Online; accessed December 26, 2022].

[36] IBM. Network file system, 2022. [Online; accessed December 11, 2022].

[37] Project Management Institute. A Guide to the Project Management Body of
Knowledge. Project Management Institute, Inc., 2008.

[38] Ishwarya M. Installing apache kafka without zookeeper: Easy steps 101,
2022. [Online; accessed December 21, 2022].

[39] J. Rao J. Kreps, N. Narkhede. Kafka: a distributed messaging system for log
processing.

[40] Dean Jacobs and Stefan Aulbach. Ruminations on multi-tenant databases.

106

References

[41] Jason Garman. Kerberos: The definitive guide. [Online; accessed June 11,
2023].

[42] JDBC PostgreSQL. Initializing the driver. [Online; accessed January 10,
2023].

[43] John Downs. Tenancy models to consider for a multitenant solution, 2022.
[Online; accessed September 10, 2022].

[44] Michael Kavis, editor. Architecting The Cloud. John Wiley Sons, Inc., 1 2014.

[45] Kevin Cameron. How do alarm systems work? [Online; accessed November
15, 2022].

[46] Kubernetes. Kubernetes. [Online; accessed March 20, 2023].

[47] Kubernetes. Kubernetes components. [Online; accessed September 30, 2022].

[48] Kubernetes. Overview. [Online; accessed September 30, 2022].

[49] Lucid Content Team. The 4 phases of the project management life cycle.
[Online; accessed November 22, 2022].

[50] Michael Cobb, StephanieMann. Oauth.

[51] Michael Seifert. Multi-tenancy data models in kafka. [Online; accessed Oc-
tober 30, 2022].

[52] Mountain Goat Software. User stories. [Online; accessed October 23, 2022].

[53] Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and
Surajit Chaudhuri. Sqlvm: Performance isolation in multi-tenant relational
database-as-a-service.

[54] Todd Palino Neha Narkhede, Gwen Shapira. Kafka: The Definitive Guide.
O’Reilly Media, Inc., 9 2017.

[55] Oleksii Glib. How to build scale a multi-tenant saas application: Best prac-
tices, 2022. [Online; accessed September 10, 2022].

[56] Orbit Analytics. Multi-tenant. [Online; accessed October 27, 2022].

[57] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2:24–31, 5 2015.

[58] PostgreSQL. Row security policies. [Online; accessed October 28, 2022].

[59] PostgreSQL Documentation. pgdump. [Online; accessedJanuary10, 2023].

[60] Prometheus. Alertmanager. [Online; accessed June 16 , 2023].

[61] Prometheus. Client libraries. [Online; accessed June 16 , 2023].

[62] Prometheus. Prometheus. [Online; accessed June 16 , 2023].

107

Appendix

[63] Prometheus. Prometheus pushgateway. [Online; accessed June 16 , 2023].

[64] RedHat. What is saas? [Online; accessed November 16, 2022].

[65] Samuel Scott. What is docker? a revolutionary change in cloud computing. [On-
line; accessed October 12, 2022].

[66] Tal Perry. Database multi-tenancy for saas. [Online; accessed October 12, 2022].

[67] Wei Tek Tsai, Xiao Ying Bai, and Yu Huang. Software-as-a-service (saas): Perspec-
tives and challenges. Science China Information Sciences, 57:1–15, 5 2014.

[68] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: State-of-the-art and
research challenges. Journal of Internet Services and Applications, 1:7–18, 5 2010.

108

Appendices

109

	Introduction
	Motivation
	Context
	Objectives
	Contributions
	Document Structure

	Background Concepts and Related Work
	Cloud Computing
	Virtualization technologies
	Software-as-a-Service

	Single-Tenancy
	Multi-Tenancy
	Considerations when choosing Multi-tenancy
	Multi-Tenancy in Databases

	Technologies
	Docker
	Kubernetes
	Kafka
	Prometheus and Grafana

	Alarm Manager
	Actors
	am's Architecture
	Alarm Procedures
	am Layers
	Protocol Adapter
	Processing
	Web Layer

	Layers Complexity and Resource Cost

	Requirements
	Functional Requirements
	Non Functional Requirements
	Risk Analysis
	Risks
	Assumptions
	Issues
	Dependencies

	Multi-tenancy Analysis
	Analysis of the different layers
	Database
	Database Models Overview
	am Considerations
	Models comparison
	Schema isolation as a Solution

	Kafka
	Kafka solutions overview
	am Considerations
	Solutions comparison
	Dedicated namespaces as a Solution

	Processing Layer
	Shared Processing
	Dedicated processing
	Solutions comparison
	Dedicated instances as a solution

	Development plan
	Lifecycle
	Planning for the first semester
	Planning for the second semester

	Implementation
	Required Tools
	Kubernetes
	Configure Overlay
	Monitoring

	Kafka Docker
	Authentication
	Authorization
	Monitoring

	Other developments

	Tests
	Performance tests
	Idle mode
	Resources evolution
	System performance
	System scalability

	Isolation tests
	Database
	Kafka

	Discussion

	Conclusion
	Future Work

