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Abstract

Optimizing Cable-Stayed Bridges is a topic that has been gaining special atten-
tion in recent years, as multiple bridges of this type have been built. The opti-
mization process is often done by hand or with gradient-based techniques, which
require specific domain knowledge. Genetic Algorithms have been used to tackle
this problem and reduce the burden on civil engineers by requiring less domain
knowledge. Reducing the cost of these structures whilst keeping the structure
safe is of utmost importance, as even a slight reduction can be decisive for a com-
pany to get a contract.

The main goal of this work is to use Evolutionary Algorithms to automatically
create configurations for cable-stayed footbridges, defined by several configurable
parameters. Specifically, our focus is to study the performance of Quality Diver-
sity (QD) algorithms against more traditional approaches. QD algorithms are
more capable of finding several fit solutions within a single execution of the al-
gorithm. In practice, this diversity enables the user to select the desired bridge
configuration. The problem will be addressed as a black box optimization prob-
lem.

In our experiments, we employed a diverse range of algorithms, including single-
objective, multi-objective, and QD algorithms. By incorporating this heteroge-
neous set of algorithms, we aimed to comprehensively evaluate the capabilities
of QD algorithms. The results are favorable toward the QD algorithms, showcas-
ing their ability to discover a large number of diverse solutions while maintaining
the optimization performance. For example, one of the QD algorithms used dis-
covered cheaper structurally safe solutions than the baseline 19 times out of 20.
Additionally, 50% of the created individuals are significantly different from each
other. The results show that the search for diversity does not necessarily lead
to a degradation of the optimization performance and that it is possible to find
diverse and optimized solutions.

Keywords

Structural optimization of Cable-Stayed Bridges; Evolutionary Algorithms; Qual-
ity Diversity;
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Resumo

A otimização de Pontes de Tirantes é um tema que tem ganho especial atenção
nos últimos anos, já que várias pontes deste tipo foram construídas. O pro-
cesso de otimização muitas vezes é feito manualmente ou com técnicas baseadas
no gradiente, que exigem conhecimentos específicos do domínio. Algoritmos
Genéticos têm sido usados para resolver este problema e reduzir a carga sobre os
engenheiros civis, exigindo menos conhecimentos específicos do domínio. Re-
duzir o custo destas estruturas garantindo que são seguras é de extrema im-
portância, pois mesmo uma pequena redução pode ser decisiva para uma em-
presa conseguir um contrato.

O principal objetivo deste trabalho é usar Algoritmos Evolucionários para criar
automaticamente configurações para pontes de tirantes pedonais, definidas por
diversos parâmetros configuráveis. Especificamente, o nosso foco é estudar a per-
formance de algoritmos de Qualidade/Diversidade (QD) em relação a aborda-
gens mais tradicionais. Algoritmos QD são mais competentes a encontrar várias
soluções adequadas durante uma única execução do algoritmo. Na prática, esta
diversidade permite que o utilizador selecione a configuração de ponte que pref-
ere. O problema vai ser abordado como um problema de otimização black box.

Nas nossas experiências, nós utilizámos uma gama diversificada de algoritmos,
constituído por algoritmos de optimização para um único objectivo, multi-objectivo
e de QD. Ao usar este conjunto heterogéneo de algoritmos, o nosso objetivo é
avaliar de forma mais abrangente as capacidades dos algoritmos de QD. Os re-
sultados são favoráveis aos algoritmos de QD, demonstrando a sua competência
para encontrar um grande número de soluções diferentes, mantendo o desem-
penho de otimização. Por exemplo, um dos algoritmos QD usados descobriu
soluções estruturalmente seguras mais baratas que a solução base 19 vezes em 20.
Adicionalmente, 50% dos indivíduos criados são significativamente diferentes
entre si. Este resultado mostra que a procura de diversidade não leva necessari-
amente a um declínio de desempenho de otimização e que é possível encontrar
soluções diversas otimizadas.

Palavras-Chave

Otimização estrutural de Pontes de Tirantes; Algoritmos Evolucionários; Quali-
dade/Diversidade;
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Chapter 1

Introduction

The automation of engineering processes has been attracting interest over the
years with the aim of reducing the work to be performed by the engineer while
improving results. This way the engineer can choose the one that better satisfies
the needs and allows him to think about other parts of the problem.

For a few decades now, in civil engineering, there has been a focus on the uti-
lization of optimization algorithms to aid in the search for solutions to the design
variables of Cable-Stayed Bridges (CSBs) ([Martins et al., 2020]). These bridges
are particularly interesting, due to their ability to overcome large spans and unique
aesthetics. The optimization process used to be carried out by civil engineers that
had to, through a tedious iterative process, calculate every design variable to
guarantee structural safety as well as an acceptable construction cost. Therefore,
computational-based approaches that do not require the intervention of a user
(hands-free) while the optimization process is undergoing are valuable to reduce
the burden on civil engineers. Another important factor to consider is that the
level of optimization accomplished by machines is greater than the one accom-
plished by hand. In a world where having the best proposition, either in terms
of cost or aesthetics, is the deciding factor for getting a contract, the use of opti-
mization algorithms is a must.

Nevertheless, the optimization of these structures is particularly challenging, given
that the fitness landscape is deceptive. As such a small modification to the value
of a design variable can lead to massive deterioration in the quality of the bridge,
making a feasible solution into an unfeasible one.

The main objective of this work is to assess the performance of several Quality
Diversity (QD) algorithms in the structural optimization of CSBs. Specifically, we
aim to retrieve a collection of diverse high-performing solutions from a single ex-
ecution of the algorithm. This often is less time-consuming than multiple runs of
non-QD algorithms to accomplish such diversity, allowing the user or a poten-
tial client to choose the one that pleases him the most from the several computed
individuals.

We are approaching the problem as a black box optimization problem. This
means that we are going to rely on a toolbox to perform the computations to get
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the cost and the structural constraints of the bridges, that will guide the search.
We are also not concerned with the analyses of the dynamic characteristics of the
evolved structures, as we do not possess the required knowledge to do so. This
work is intended to aid experts and not replace them. We intend to facilitate the
optimization part, however, the real-world validity of the solutions found has to
be studied by the experts.

To fulfill the proposed work, the following steps will be conducted.

• Understand the state-of-the-art of QD algorithms;

• Research the literature on structural optimization of cable-stayed bridges;

• Search for existing open-source python frameworks that implement QD al-
gorithms;

• Implement the algorithms resorting to the frameworks found, adding re-
quired features if they are not implemented;

• Run the experiments with the selected algorithms;

• Analyse the data gathered from the experiments, comparing the selected
algorithms;

In terms of contributions, we enumerate the following: (i) application of a new
type of algorithm to the structural optimization of CSBs; (ii) comparison of a het-
erogeneous set of algorithms; (iii) demonstrate that there are QD algorithms capa-
ble of finding diverse individuals while maintaining optimization performance.

The remainder of this document is divided into 3 chapters. Chapter 2 will ad-
dress the search carried out regarding CSBs and their optimization, alongside the
explanation of a few optimization algorithms and multiple use cases of QD algo-
rithms. Chapter 3 focuses on the experimental part of this work, starting with the
problem definition, followed by implementation details, experimental setup, and
the results obtained from our experiments. Lastly, chapter 4 concludes the work
carried out, summarizing the document and presenting a few ideas regarding
future work.
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Background

In the present chapter, the reader will find information to get familiarized with
the terminologies used in the core concepts of this work. Section 2.1 briefly intro-
duces the concept of Cable-Stayed Bridges (CSBs), addressing the main compo-
nents and some design options that can be found in structures of this type. Then,
Evolutionary Algorithms (EAs) are presented in Section 2.2 in the form of Genetic
Algorithms (GAs) and Covariance Matrix Adaptation Evolution Strategy (CMA-
ES). Finally, section 2.3 addresses Quality Diversity (QD) algorithms, starting by
talking about Novelty Search (NS) and Novelty Search with Local Competition
(NSLC), with the latter being regarded as the first QD algorithm, and then we
present the more commonly utilized QD algorithm, Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites).

2.1 Cable-Stayed Bridges

Cable-Stayed Bridges (CSBs) have been widely utilized worldwide, with their
first appearance in the year 1823 in Geneva. Since then, cable-stayed bridges have
grown larger, being able to cover bigger distances, which, alongside their unique
aesthetics, is a deciding factor when choosing the type of bridge to be utilized.
CSBs are usually composed of three spans, two side spans with a larger one in
the middle.

These bridges utilize cables supported by towers (also called pylons) and anchor
blocks (or anchor piers) to hold the deck. It is possible to use different cable
arrangements, from the number of cables utilized to how they are connected to
the deck and positioned in the towers.

There are two main cable system designs for the connection of the cables to the
towers, one called the fan system and the other harp system. In the fan system, all
the cables radiate from the top of the towers, resembling a fan, thus the name (Fig.
2.1). In the harp system, the cables are parallel to each other, with connections
spreading throughout the entire tower (Fig. 2.3). Intermediate designs can also
be found, like the semi-fan system, where the cables are not derived from one
single point at the top of the tower but are slightly spread (Fig. 2.2).
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Figure 2.1: Simplistic example of a cable-stayed bridge with the fan cable system.

Figure 2.2: Simplistic example of a cable-stayed bridge with the semi-fan cable
system.

Figure 2.3: Simplistic example of a cable-stayed bridge with the harp cable sys-
tem.

When longer distances have to be covered, CSBs can be designed in a multi-span
configuration, which can be perceived as various smaller CSBs connected to each
other.

For a more interested reader in the subject of cable-stayed bridges, the book from
where the presented information was retrieved, Gimsing and Georgakis [2011],
is advised.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are metaheuristic optimization algorithms based
on Darwin’s theory of evolution, branched into several categories such as Ge-
netic Algorithms (GAs) and Evolutionary Strategies (ESs). These algorithms use
the ideas of genetic recombination, gene mutation, and natural selection. The ex-
ploration of the search space is stochastic, meaning that the results depend on the
random variables used, so it is not guaranteed that an optimum is reached. How-
ever, they are often capable of finding solutions near the optimum, while being
less time-consuming than a non-stochastic method for problems of considerable
dimension, when well parameterized.
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2.2.1 Genetic Algorithm

According to Charles Darwin, a population of individuals evolves by the com-
bination of mating and mutation, biased by the aptness of the individuals to the
environment that surrounds them, which in practice means that the more apt in-
dividuals live longer making them more likely to procreate, passing their genes
to the following generations.

The Genetic algorithm (GA) is a type of EA that aims to simulate this ideology,
by evolving a population of individuals, in the search for the best individual to
solve a problem, which can be seen as the population trying to adapt to the envi-
ronment that they are in. The aptness (fitness) of an individual is calculated with
a fitness function that needs to be specifically crafted for the problem at hand.
The aptness of each individual is then taken into consideration in the selection
process of the parents for the following generation. There are two common selec-
tion operators that the GA utilizes to simulate this process, tournament selection
and roulette wheel selection. The first creates multiple tournaments with a pre-
defined number (designated tournament size) of randomly sampled individuals
from the population and keeps only the winner of each tournament, which is the
one that has the highest fitness value. The second one uses the idea of a roulette
wheel, in which the slice corresponding to each individual is proportional to his
fitness value, which can be a problem for use cases that have negative values or
zero as possible fitness values.

Usually, the population is randomly initialized, to promote diversity and more
even coverage of the search space, however, when one knows the characteristics
of the fitness landscape, there are alternative methods that may be better suited.

The representation of an individual is flexible, in the sense that it can be a bi-
nary array or a string of characters. The algorithm’s designer is free to choose
the representation that better suits its use case, keeping in mind that the vari-
ation operators need to support it. There are two types of variation operators,
recombination and mutation, each with its specific functionality and probability
of application.

Recombination operators (also designated crossover operators), as the name sug-
gests, are responsible for emulating genetic recombination, where an offspring is
a product of a mix of its parents’ genes. It is considered a global search mecha-
nism, as the resultant individuals are rarely close to either of their parents, being
placed farther away from them in the search space.

On the other hand, mutation operators are local search mechanisms, charged with
the task of slightly modifying an individual, enabling the exploration of the sur-
rounding area of an individual in the search space. These operators emulate the
sporadic mutations found in nature, where an individual of a species presents a
characteristic not yet expressed in it. As in nature, a mutation can be beneficial or
not, resulting in a gain or loss in fitness.

The algorithm’s creator must consider the possibility of the variation operators
generating unfeasible individuals. This can be solved in different ways, for ex-
ample adding safeguards in the operators themselves so that the returned indi-
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vidual is feasible, or penalizing those unfeasible individuals in terms of fitness,
contributing to a lower chance of being selected to be parents in the following
generation, guiding the evolution towards feasible solutions.

Algorithm 1 shows a pseudocode of a generic GA. One can see the initialization
of the population, followed by the evolution loop, where the individuals’ fitness
is computed, the parents are selected, to whom the variation operators are ap-
plied, resulting in the offspring. Then, a new population is built, combining the
parents and the offspring, often resorting to elitism. Elitism ensures that a speci-
fied number of the best individuals (elite size) found by the evolutive process are
not lost by automatically allowing them to be featured in the new population, but
may lead to premature convergence.

Algorithm 1 Generic GA pseudocode.

1: procedure GENETIC ALGORITHM(n_generations, crossover_prob, muta-
tion_prob, pop_size)

2: pop = initialize_population(pop_size)
3: pop = fitness(pop)
4: pop = sort_by_fitness(pop)
5: gen = 1
6: while gen < n_generations do
7: parents = select_parents(pop)
8: offspring = crossover(parents, crossover_prob)
9: offspring = mutation(offspring, mutation_prob)

10: offspring = fitness(offspring)
11: offspring = sort_by_fitness(offspring)
12: pop = create_new_population(pop, offspring)
13: pop = sort_by_fitness(pop)
14: gen += 1
15: end while
16: return pop[0] ▷ return the best solution found.
17: end procedure

2.2.2 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a type of Evolu-
tionary Strategy (ES), which uses a multivariate normal distribution using a co-
variance matrix, sampling the new individuals in the most promising direction.
There are two different variants, (µ, λ) and (µ + λ), that differ from the way that
the update of the population is handled. In the "," variant, the previous popula-
tion is replaced by the new best µ individuals from the λ sampled, while in the
"+" variant the best µ individuals from both the previous population and the new
λ individuals are combined to build the new population.

The normal distribution is defined as N (m, σ2C), where m ∈ Rn is a mean vec-
tor, σ is the distribution’s step size and C ∈ Rn×n is a covariance matrix. These
parameters are updated every generation. The sampling from this distribution
can be regarded as the mutation operator in CMA-ES.
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The algorithm can be decomposed into four repeating parts: (1) individual sam-
pling from the normal distribution; (2) sorting the individuals in terms of fitness;
(3) assembly of the new population and (4) updating the algorithm’s parameters.
To start the algorithm, a centroid m0, σ0 and λ have to be defined. There are
other parameters that can be also set, or calculated based on the dimension of the
problem dimension (n) and λ, like µ.

After the sampling of the offspring and the creation of the new population, the
parameters of the algorithm need to be updated, starting with the calculation of
the new m, which can be seen as the selection and recombination mechanisms.
Only the best µ individuals from the population are used for the calculation of the
average (selection). The recombination is accomplished by the use of weights to
control the contribution of each selected individual, where one can decide to de-
fine the weights in such a way that more fit individuals contribute more than less
fit ones, resulting in a weighted average. Then, the new σ and C are computed,
considering their current values and population, either diverging to explore mul-
tiple regions with favorable fitness values or converging into a specific one.

Algorithm 2 presents a pseudo-code for the CMA-ES algorithm with the steps
previously described.

Algorithm 2 CMA-ES pseudo-code.

1: procedure CMA-ES(σ, m, λ)
2: Initialize µ, C = I, pop = [] ▷ I is the identity matrix
3: while not terminate do
4: offspring = sample_population(m, C, σ)
5: offspring = fitness(offspring)
6: offspring = sort_by_fitness(offspring) ▷ sort in descending order
7: pop = create_pop(pop, offspring) ▷ Depends on the CMA-ES variant
8: previous_m = m
9: m = update_m(pop)

10: σ = update_sigma(σ)
11: C = update_covariance(C)
12: end while
13: return pop[0] ▷ return the best solution found.
14: end procedure

An in-depth CMA-ES analysis can be found in Hansen and Ostermeier [2001] and
a comparison with similar evolution strategies in Hansen [2006].

2.3 Quality Diversity

Quality Diversity (QD) (Pugh et al. [2015, 2016]) is a fairly new optimization ap-
proach, gaining attraction in the last few years. Its main goal is to find a set
of high-performing, but also diverse, solutions in a single algorithm run. There
are two main QD algorithms, Novelty Search with Local Competition and MAP-
Elites, then branching to several variants, especially MAP-Elites, due to its sim-
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ple algorithm, being an easy base to build upon. In general, an archive has to
be maintained to assure the diversity of solutions, although other techniques can
be used, like neural networks as in Salehi et al. [2021]. Over the course of opti-
mization, less performing individuals will be stored in the archive, which may
not be good enough as solutions to the problem, but serve as stepping stones
for the finding of high-performing solutions. The fact that QD algorithms search
not only for fitness but also for diversity in the behavior space helps avoid local
optimum in the fitness landscape (Lehman and Stanley [2008]).

2.3.1 Novelty Search

Novelty Search (NS) (Doncieux et al. [2019]; Lehman and Stanley [2008]) was a
revolutionary approach to optimization because instead of guiding the search by
fitness, like traditional optimization algorithms until then, it uses a novelty metric,
also designated sparseness. A population is maintained alongside an archive, used
to store novel solutions while the population is evolved. Novelty here means
that a solution is significantly different from the previously seen. NS utilizes a
distance threshold and a neighborhood size, k, defined by the user to classify a
solution as being novel or not. It uses the K-Nearest Neighbors (KNN) algorithm
to then calculate the average distance of one individual to the k neighbors in the
rest of the population and the archive, Eq. 2.1. If the sparseness value, ρ(x), is
small, it means that there are a lot of solutions with similar behavior of x, oth-
erwise, it means that x is far from the others, thus, can be considered novelty,
considering the threshold defined by the user.

ρ(x) =
1
k

k

∑
i=1

dist(B(x), B(yi)) (2.1)

where B(..) is the mapping function from the genotypic space to the behavior
space and {y1, ..., yk} is the set of the k closest individuals to x in the behavior
space.

Since the search is not being done at the fitness level, the algorithm avoids local
optimums of the fitness landscape, because once an individual is found by the
algorithm and added to the archive, similarly behaving individuals will have a
low value of novelty assigned to them, meaning that the search will not pursue
their direction and instead follows the direction of more novel ones. This means
that one individual will have different values of novelty at different generations.

Although NS is better at avoiding local optimums at the fitness level, it still can
lead to premature convergence at the archive level. For example, the convergence
can appear in different ways: (1) imagine that the individuals from the archive are
never removed. Since the archive has a limited size, due to performance (KNN is
computationally expensive) and memory constraints, there will be a time when
the archive is full and no other individual is ever added to it; (2) now, imagine
that by using a mechanism, some individuals are eventually removed from the
archive. Even in this scenario, which apparently would not suffer from conver-
gence at the archive level, convergence can still exist. Since the novelty of an
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individual is calculated considering its distance to its neighbors, we can have an
archive constructed in such a way, that no other individual, but the one that was
already there, can be added to it. This is a limit scenario, possibly mitigated by
increasing the rate of removal of individuals from the archive.

However, the removal of individuals from the archive comes with its own set of
issues, like which mechanism to use for the individual removal and cycling in
the behavior space (Salehi et al. [2021]). For the removal of individuals from the
archive, a mechanism simulating time can be used, using the generation number
at which the individual was added to the archive, being removed from it if a pre-
determined number of generations have passed. A mechanism considering the
density of individuals in the archive can also be used, removing individuals from
zones with a high number of individuals (basically recomputing the novelty of
the individuals in the archive, if a zone is too crowded, the novelty of those indi-
viduals will decrease), allowing others to be added, possibly from a completely
different area of the search space.

The cycling in the behavior space is an emergent phenomenon from the removal
of individuals from the archive. The archive is used so that an inventory of pat-
terns (individuals) is kept, as a way of knowing what was already found, enabling
the search for novelty. When a pattern is removed from the archive, if again found
by the algorithm can be classified as novelty once more. This can lead to individ-
uals being removed and added in a cycling manner, thus the name cycling in the
behavior space, never reaching actual novelty again.

Even though diversity is desirable, more often one wants several quality solu-
tions rather than simply diverse ones, and that is something that NS does not
search for. For that Novelty Search with Local Competition (NSLC) (Lehman and
Stanley [2011]) can be used. In addition to calculating the novelty of the individu-
als considering their neighborhood, it also computes a metric to assert the quality
of an individual in relation to his neighbors, called local competition. Both these
metrics are combined to guide the search in a multi-objective optimization al-
gorithm like Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al.
[2002]), forming a Pareto-front of both the diversity and the local competition
ranking.

The idea of local competition arises from what happens in nature, where the apt-
ness of a species is not affected by others if they are not related to each other, for
example as prey or predator, instead, there is competition in each of the species.
The local competition emulates this intra-species competition by assigning to an
individual the count of neighbors in his neighborhood that are beaten by him in
terms of fitness. This metric can then be used as a way to quantify one individ-
ual’s quality.

Combining the two objectives seems to be advantageous, with NSLC presenting
diversity levels similar to NS and values of fitness close to the ones of fitness-
based search (Lehman and Stanley [2011]).

9



Chapter 2

2.3.2 MAP-Elites

Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) was introduced in
Mouret and Clune [2015] and is a QD algorithm that draws inspiration from
NSLC. Its objective is also to find several high-quality diverse individuals, how-
ever, it accomplishes it without resorting to KNN to compute the novelty of an
individual and also does not use the local competition mechanism. NSLC utilizes
an archive to store the novel individuals and evolves a population, but MAP-
Elites maintains only an archive. The search is not conducted in the genotypic
space but in a feature space defined by the user, called Behavior Characterization
(BC). A mapping function that given the genes of an individual, returns his fea-
ture values, designated Behavior Descriptor (BD), is required. To assure diversity
MAP-Elites uses a grid in the feature space, dividing it into cells, each for a com-
bination of a certain value of each feature, instead of calculating the distance be-
tween individuals, therefore the algorithm is less computationally expensive. The
granularity of the grid can be defined by the user and can be changed throughout
the algorithm run, enabling a finer search in the feature space by increasing the
archive granularity.

Algorithm 3 shows the MAP-Elites pseudo-code. The algorithm starts by ini-
tializing the archive, X and P, for the solution and the performance respectively.
Then, for a pre-determined number of iterations, generates individuals randomly,
to populate the archive. After those initial iterations, until the termination crite-
ria is reached, the sampling is done in the archive, selecting randomly one of the
stored solutions, to which are applied variation operators (crossover and/or mu-
tation). A behavior descriptor and the performance of the new solution, either
randomly generated or a variation from one sampled from the archive are calcu-
lated and the new solution is then added to it if the respective cell is empty, or if
the performance of the new one is higher than the current stored solution. For a
more thorough review of MAP-Elites, the reader is advised to look at Mouret and
Clune [2015].

MAP-Elites, due to the discretization of the archive, is not suitable for problems
with high dimensional BC, because the number of bins (cells in the BC) grows
exponentially. With this in mind, a variation of MAP-Elites called Centroidal
Voronoi Tesselations MAP-Elites (CVT-MAP-Elites) was introduced in Vassili-
ades et al. [2018], where instead of discretizing every BC dimension, the BC is
divided into k regions defined by a centroid inspired by the Centroidal Voronoi
Tesselations (CVT). A solution is then assigned to the closest centroid in the BC.
This way, the number of bins in the archive is independent of the dimension of
the BC. The results presented by the authors show that the CVT-MAP-Elites in
low dimensions achieves similar performance to the regular MAP-Elites, but the
performance does not degrade in high dimensions.

In Fontaine et al. [2019b] the algorithm Covariance Matrix Adaptation MAP-
Elites (CMA-ME) was introduced, aiming to get the optimization power of CMA-
ES and the diversity of MAP-Elites. The results demonstrate that CMA-ME is an
improvement over MAP-Elites, obtaining higher coverage of the behavioral space
whilst reaching similar fitness values of CMA-ES, which is purely an optimizer.
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Algorithm 3 MAP-Elites pseudo-code.

1: procedure MAP-ELITES(number_iterations, iterations_threshold)
2: X, P = create_archive() ▷ store solutions in X and their performance in P
3: iter = 0
4: while end_criteria(iter, number_iterations) do ▷ until the end criteria is

reached
5: if iter < iterations_threshold then
6: x’ = random_solution()
7: else
8: x = random_selection(X) ▷ select from the archive
9: x’ = apply_variation(x’)

10: end if
11: b’ = feature_descriptor(x’) ▷ compute x’ feature descriptor
12: p’ = performance(x’) ▷ compute x’ performance (fitness)
13: if P(b’) is empty or P(b’) < p’ then ▷ Add or update b’ entry
14: P(b’) = p’
15: X(b’) = x’
16: end if
17: iter += 1
18: end while
19: return X, P ▷ return the archive
20: end procedure

Three types of emitters were tested, random direction, optimizing and improve-
ment, differing in the way that the parameters of the CMA-ES are updated, di-
rectly impacting the generated solutions. Random direction emitters induce the
algorithm to search for individuals in a defined direction until it stops generating
solutions that improve the archive. If that happens, the emitter is restarted with a
different elite from the archive and a new direction bias. The optimizing emitter
is very similar to CMA-ES with restarts, but instead of restarting from the best in-
dividual discovered, it uses one of the elites from the archive. The improvement
emitter ranks the solutions by their improvement, instead of fitness. For solutions
that fill an empty cell a rank equal to their fitness is assigned, while for solutions
that are replacing an existing elite the difference between fitnesses is assigned,
thus, moving the search towards the discovery of solutions that fill new cells or
better-fit ones.

Later, in Cully [2020], Multi-Emitter MAP-Elites (ME-MAP-Elites) was introduced,
stating that it is a direct extension of CMA-ME, improving its quality, diversity
and data efficiency. It also utilizes emitters, but, instead of a homogeneous set of
emitters, it utilizes a heterogeneous set of emitters. The authors used the three
types of emitters of CMA-ME and introduced a fourth, random emitter, inspired
by the selection operator of MAP-Elites. A batch of randomly selected individu-
als from the archive is modified by a variation operator. The emitters are selected
from a pool of emitters with a bandit algorithm, considering the number of times
the emitter was selected and the number of solutions generated by it that were
added to the archive of elites. All the emitter types have the same number of
instances and the active pool of emitters (the emitters that were selected) has
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the same size. Thus, ME-MAP-Elites enables the active pool to be comprised of
emitters of the same type, at which point it becomes CMA-ME. The fact that the
emitter selection is adaptive, enables the algorithm to choose the ones that are
more suited for the current search state. The results showed that ME-MAP-Elites
either outperformed or was in pair with the various QD algorithms tested.

2.4 Related Work

Early works that studied the optimization of Cable-Stayed Bridges (CSBs) consid-
ered a fixed geometry, meaning that the number of cables and tower sizes were
pre-defined. In Baldomir et al. [2010], only the optimization of the cross-section
of the cables was considered. In Qin [1992], the cable stretching during construc-
tion was studied. The post-tensioning cable forces were addressed in Sung et al.
[2006]. Later in Hassan [2010, 2013], similar problems were studied but a Genetic
Algorithm (GA) was added into the optimization process used.

The optimization of CSBs to withstand the vibrations caused by earthquakes is
of the most importance, particularly in countries that are greatly affected by this
natural phenomenon, given that these are expensive structures that take a consid-
erable time to be constructed and may greatly affect the lives of the surrounding
population. Works like Ferreira and Simoes [2011]; Simões and Negrão [1999]
have taken into consideration this phenomenon during the optimization process
of cable-stayed bridges. In a similar fashion, strong winds can also lead to catas-
trophic failures in structures of this type, in Baldomir et al. [2013]; Jurado et al.
[2008]; Nieto et al. [2011] wind aerodynamics are studied in the case of cable-
stayed bridges. The usage of control devices to limit the vertical and horizontal
vibrations of Cable-Stayed Brigdes has been addressed in Ferreira and Simões
[2012, 2019a,b].

In Hassan et al. [2015], a database of optimal values for the number of cables, py-
lon (tower) and girder (deck) dimensions for CSBs with two or four lanes across
a wide range of bridge lengths is presented. To reach the shown results, a com-
bination of a GA to evolve bridge configurations and finite element models of
each of the evolved bridges are produced to assess their fitness, aiming to dis-
cover the least expensive bridge. More recently, in Correia and Ferreira [2020];
Correia et al. [2020], GAs have been used to find the optimum configuration for
controlled cable-stayed footbridges.

Since the optimization of CSBs has become a popular research theme, review
works that summarize the contributions and advancements in the field have been
created, for example, Martins et al. [2020]; MARTINS et al. [2022].

When Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) was first in-
troduced in Mouret and Clune [2015], it was utilized to evolve neural networks,
outperforming fitness-based algorithms and Novelty Search with Local Competi-
tion (NSLC), in terms of raw performance, as well as in coverage of the behavior
space. Tests with simulated soft locomotion robot morphologies are also shown,
with MAP-Elites presenting by far the best coverage of the space and a similar
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performance to the compared algorithms. The algorithm is also tested in the evo-
lution of real soft arm controllers, and once again shows the best coverage of the
space and the best performance in terms of fitness. The most interesting factor is
that MAP-Elites is able to return a set of high-performing solutions from a single
algorithm run, allowing us to understand how the fitness is spread in the fea-
ture space, beating the best solutions found by pure fitness-based approaches. In
Pugh et al. [2016] MAP-Elites was used to solve robot maze navigation problems
inspired by the ones presented in Lehman and Stanley [2008], showing promising
results.

Since its introduction MAP-Elites has been adopted by researchers from the field
of robotics. In Fontaine and Nikolaidis [2020] it was used to generate a vast num-
ber of testing scenarios for a robot being operated by a human and a shared auton-
omy algorithm, in which a high-performing scenario is one that leads the robot to
fail in reaching the goal. This is important because knowing the scenarios where
a robot fails allows us to study and evolve the robot to reduce its failure rate.
Results show that the Quality Diversity (QD) approach is superior at generating
scenarios compared to Monte Carlo and CMA-ES. MAP-Elites was also applied
to evolve controllers for robots to recover from damage online in Allard et al.
[2022]. There are also works concerned with evolving controllers for large-legged
robots, which are particularly interesting due to their capacity of traversing rough
terrain, for example in Howard et al. [2020]. Differing from the previous works, in
Nordmoen et al. [2020], the authors use MAP-Elites to evolve both the control and
the morphology of modular robots to adapt to changes in the environment. The
evolved populations of the different approaches utilized were tested in two envi-
ronments to understand if the diversity brought by QD algorithms is impactful
in the adaptation of the robots to the new adversities. The results demonstrated
that the QD approach was superior, finding individuals with higher fitness and
assembling a more diverse collection of solutions.

In the field of games, MAP-Elites has been adopted in Pérez-Liébana et al. [2021]
to evolve diverse competitive play styles in a strategy game framework called
Tribes, by evolving arrays of weights that influence the scripts (a series of ac-
tions) that will be used by a player controlled by a modification of Monte Carlo
Tree Search (MCTS). The results of the simulations are then used to compute the
features that define the behavior characterization space of MAP-Elites and as-
sert the fitness of the constructed array of weights. The results are promising,
demonstrating that MAP-Elites was able to produce diverse play styles. In War-
riar et al. [2019] it was used to design levels for 2D platform games. The authors
of Fontaine et al. [2019a] present a new MAP-Elites variation designated MAP-
Elites with Sliding Boundaries and use it to create card decks in Hearthstone.
In this variation, the cells of the grid are not uniformly spaced in the behavior
space, instead, they are spaced based on the underlying distribution of the be-
havior space, uniformly placed at some percentage marks of the distribution. In
Fontaine et al. [2019b], instead of generating the card decks, the goal is to search
for diverse strategies to play Hearthstone with a deck built by a human, and
a variation called Covariance Matrix Adaptation MAP-Elites (CMA-ME) is pre-
sented and compared with the regular MAP-Elites and Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES), displaying good results.
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MAP-Elites was used to tackle the problem of workforce scheduling and rout-
ing problems (WSRPs) in Urquhart and Hart [2018], yielding promising results
compared to a traditional EA, while, by design, enabling the user to choose the
solution that pleases him the most, giving that one route might be more inter-
esting than other due to traffic conditions or simply preference, even with lower
fitness values.

Some works on constrained optimization problems, Fioravanzo and Iacca [2019],
and noisy domains, Flageat and Cully [2020]; Justesen et al. [2019], have used
MAP-Elites. For the latter, variations of the algorithm to cope with the particu-
larities of the problem domain have been presented, like Deep Grids MAP-Elites
(DG-MAP-Elites) and MAP-Elites with adaptive sampling and drifting elites.

When Novelty Search (NS) was introduced in Lehman and Stanley [2008], it was
utilized to solve robot maze navigation problems, demonstrating promising re-
sults when compared to fitness-based approaches, due to the deceptive nature of
the search space. Since then, NS has been used in several areas, such as the cre-
ation of game levels in Liapis et al. [2013a,b], automatic bug repair in Villanueva
et al. [2020] and GANs co-evolution in Vinhas et al. [2016]. However, there are
problems where searching just for novelty is not enough to achieve acceptable
results (functional solutions), the fitness of the individuals also needs to be con-
sidered. NSLC, introduced in Lehman and Stanley [2011], considered to be the
first QD algorithm, addresses this concern, considering both novelty and local
fitness. In this work, the authors show the results of applying this algorithm to
evolve locomoting virtual creatures and it was able to find creatures functionally
diverse and not just diverse.

QD techniques have also been utilized in economics in Zhang et al. [2020], im-
age generation in Costa et al. [2020] and configuration of urbanization layouts in
Galanos et al. [2021].

2.5 Summary

Based on the literature, we selected the following algorithms: GA, CMA-ES,
MAP-Elites, Multi-Emitter MAP-Elites (ME-MAP-Elites), CMA-ME, Non-dominated
Sorting Genetic Algorithm II (NSGA-II) and a Hybrid algorithm from Vinhas
et al. [2016].

The GA was selected because it is the algorithm chosen in various works, for
example, Correia and Ferreira [2020]; Correia et al. [2020]; Hassan [2010]; Hassan
et al. [2015]; Hassan [2013]. CMA-ES was chosen because it demonstrated good
results in a previous experiment on this problem. The results were documented
in an article for Evostar 2023 (Fernandes et al. [2023]). We chose MAP-Elites due
to its versatility, demonstrating good results in various domains, for example, in
Mouret and Clune [2015]; Nordmoen et al. [2020]; Pérez-Liébana et al. [2021]. ME-
MAP-Elites and CMA-ME were chosen, because they are two new approaches
built on top of MAP-Elites and CMA-ES, aiming to get the best of both worlds.
The Hybrid algorithm from Vinhas et al. [2016] is a hybrid approach (GA with

14



Background

an archive) that combines both diversity and fitness in its search. It was selected
because it is a GA with mechanisms to search for diversity. Since we want to
optimize the cost and the structural constraints of the bridges, we also selected
NSGA-II.
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Experimental Work

This chapter is divided into four pieces. Section 3.1 explains the problem defi-
nition and the characteristics of the problem. Then, in section 3.2, certain imple-
mentation alternatives are covered, including the Python libraries used and some
specific components that have an impact on all of the algorithms tested. The con-
figurations of the algorithms, including the parameters and operators chosen are
shown in section 3.3. Finally, the results gathered from the experiments with the
selected algorithms are discussed in section 3.4.

3.1 Problem Definition

We are evolving cable-stayed footbridge configurations in an effort to develop
bridges that are both economical and structurally secure. We aim to keep the cost
of the structure as low as possible while keeping safety standards.

The problem studied in this work is the same as presented in Ferreira and Simões
[2019], but as a black-box optimization problem, only interested in the process
of evolving configurations of factors that then are used by a Matlab toolbox to
create the structures. In concrete, we are evolving arrays of factors that then are
used to compute the design variables presented in the work cited above. The tool
expects an array of 21 float variables, the number of cables, and the bridge’s total
length, and returns the resulting bridge cost along with the structural constraints
values. We use the returned values to compute the fitness of the array of factors,
guiding the search toward better-performing bridges. The inner functions of the
toolbox in use and the way the cost and the structural constraints are computed
are out of the scope of this work. This toolbox allows for the creation of bridges
with two towers with a variety of configurable parameters, such as the number of
cables, positioning of the cables in the towers and the deck, and distance between
towers, for example.

Considering the requirements of the Matlab toolbox, the individuals of the evo-
lutionary approaches used in this study are defined as an array of 22 variables:
one integer corresponding to the number of cables, and twenty-one floating point
numbers for the other design variables. Their domains and the description can
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be seen in Table 3.1. Between parentheses, we show the name of the variables
from Ferreira and Simões [2019] that each of our design variables contributes to.
Additionally, a few fixed parameters are defined in Table 3.2, like the length of
the bridges.

For NSGA-II, a problem minimizing both the cost and the structural constraints
value was defined. These values are used to rank the individuals and create the
Pareto Fronts used in the creation of the population. However, even though it is
not used for the search, we still computed the fitness of the individuals to com-
pare their performance with the individuals from the other algorithms.

The fitness function utilized is shown in Eq. 3.1. C(x) and S(x) are the cost
and the structural constraint value of individual x, respectively. S(x) calculates
all the security and structural constraints and returns the maximum value of all
structural constraint variables considered in Ferreira and Simões [2019]. The cost
returned is in the tens of thousands of euros.

The function is divided into three branches. The first branch produces values
from 0 to 1 and the reasoning behind it is to guide the search towards individ-
uals that have a more acceptable cost, specified by the cost reference constant,
cr. The second branch produces values from 1 to 2 and aims to guide the search
from individuals with just an acceptable cost into individuals that also respect
the structural constraints, which guarantee that the bridge is structurally safe. In
practice, we force the cost of the individuals to be lower than the cost reference
constant while rewarding the ones that have structural constraints values closer
to 1. Lastly, feasible structures are the ones that are qualified to enter the third
branch, given that they respect the structural constraints and have a price lower
than cr. The aim of this case is to reward the configurations that present lower
cost or lower structural constraints values. The fitness values obtained from the
third branch are all bigger than 3. This is a maximization problem due to how the
fitness function is constructed, however, we want to minimize the cost and the
value of the structural constraints.

A visual representation of the fitness function can be seen in Fig. 3.1. The function
is not continuous and one can easily see the three branches of the function in
action. The first branch is being used for values of C(x) greater than cr = 150
independently of the S(x) (black region). Once we have a cost lower than the
cost reference constant, we can see the second branch being used, considering the
value of S(x) (purple region). Finally, the third branch is utilized for cost values
under cr and structural constraints values of at most 1 (orange/yellow region). In
this branch, fitness increases with decreases from C(x) and S(x).

In our previous work, Fernandes et al. [2023] (Appendix B, section B.1), the values
of the structural constraints were forced to be close to 1. This means that we are
being more lenient in the allowed amount of play that the structure can have
while maintaining its safety, often leading to cheaper structures. However, in
this work, we intend to assess the feasibility of the usage of Quality Diversity
algorithms to gather a diversified set of fit configurations. With this in mind, we
found it reasonable to drop the idea of forcing the algorithms to search in that
area and instead allowed the minimization of S(x), ultimately enabling a more
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Table 3.1: Cable-stayed bridges design variables description and domain values.

Variable Type Description Domain Values
Discrete
dv0 (Ncables) Number of cables 3,4,5,6,7
Geometry
dv1 (LCentral) Central span (tower to tower distance)

of the structure
[0.9, 1.2]

dv2 (x1) Distance between the first and second
cables anchorage

[0.7, 1.3]

in the lateral span of the deck
dv3 (x2) Distance between the tower and the

first cable in the
[0.7, 1.3]

central span
dv4 (x3) Distance between the last cable

anchorage and the
[0.7, 1.3]

bridge symmetry axis
dv5 (z1) Height of the towers [0.1, 2.0]
dv6 (z2) Distance where the cables are

distributed in the
[0.1, 4.0]

top of the towers
dv7 (y2) Distance between the top of each

tower
[0.1, 1.3]

dv8 (y1) Distance between each tower at the
base

[0.1, 1.13]

Control
dv9 (ky) Transversal stiffness of the tower-deck

connection
[0.001, 1000]

dv10 (kz) Vertical stiffness of the tower-deck
connection

[0.001, 1000]

dv11 (cy) Transversal damping of the
tower-deck connection

[0.001, 1000]

dv12 (kz) Vertical damping of the tower-deck
connection

[0.001, 1000]

Sectional and tensioning
dv13 (hslab) Added mass of the concrete slab [0.1, 7.0]
dv14 (Hdeck) Deck section [0.1, 80.0]
dv15 (Bdeck) Deck section (triangular section) [0.5, 1.3]
dv16 (B2,tower) Tower section (rectangular hollow

section)
[0.4, 1.5]

dv17 (B2,tower) Tower section (rectangular hollow
section)

[0.1, 20.0]

dv18 (B1,tower) Tower section (rectangular hollow
section)

[0.3, 20.0]

dv19 (H1,tower) Tower section (rectangular hollow
section)

[0.3, 9.0]

dv20 (C.s and C.c prestress) Cables pre-stress [0.7, 3.0]
dv21 (C.s and C.c area) Cables cross section [0.5, 9.0]

Table 3.2: Values for the fixed parameters.

Bridge Length (LTotal) 220 meters
Bridge Width 4 meters
Tower Height below deck 10 meters
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Figure 3.1: 3D representation of the fitness function.

free search. This new approach is also better in our understanding, due to the
fact that it is not known for sure that the least expensive structures are in fact the
ones that have structural constraints closer to 1.

f (x) =





cr/C(x), if C(x) > cr

1 + 1/S(x), if C(x) < cr ∧ S(x) > 1.0
1 + 1/S(x) + cr/C(x), if C(x) < cr ∧ S(x) ≤ 1.0

(3.1)

To aid us in understanding our results, we are using a baseline solution obtained
by the approach from Ferreira and Simões [2019], which has a cost of 91.354× 104

AC and a maximum structural constraints value of 0.9962. This baseline is cru-
cial because it gives us an understanding of how effective a solution discovered
through any of the used methodologies actually is.

The QD algorithms require a feature space (behavior characterization space) to
characterize each individual according to certain behaviors that one wants to
study in their solutions. The diversity is handled at the feature space level, mean-
ing that what is important is not gene diversity but behavior diversity.

To create a feature space we need to take into account the number of features,
and the discretization factor. Both choices influence memory usage and affect the
analysis of the individuals stored in the archive. Imagine that we have a pool of 10
behaviors to select from and two scenarios: in A we choose all 10 behaviors, and
in B choose only 4. Now we need to define the level of granularity that we want
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in each feature, directly impacting the analysis that can be done by looking into
the archive. If one of the behaviors is speed (m/s), we can define the granularity
of speed in A as 2 (slow, fast) and in B as 4 (0-10, 10-20, 20-30, and 30-40 assuming
that the bounds for speed are 0 and 40 m/s), for example. The archive of A will
have 102 = 100 cells and the archive of B 44 = 16 (assuming that all the features
have the same discretization factor). It is easily understood that the one with
more cells can potentially occupy more memory. Another important point is that
in scenario A we can only say "I found a fast/slow individual.", while in B we can
say "I found an individual that travels at less than 10 m/s" etc. The information
obtained is completely different because in A we are condensing into the same
category individuals that move from 0 to 20 m/s (classified as slow), which can
be extremely different. By using scenario B, only in terms of speed (because they
do not have the same number of features), we can still classify individuals as slow
or fast, but from scenario A we cannot say that the individual in the slow cell has
a speed of 0-10 m/s (we lost information). All of this is to say that often a higher
discretization factor is more informative than a small one, however, it can lead to
higher usage of memory, depending on the number of features in use.

We were not able to find features to characterize the bridge configurations, so we
opted to use some of the genes (design variables) as features to create the feature
space. Considering all 22 genes as features was unfeasible because we would
need to have a low discretization factor to keep the archive size reasonable. Since
we wanted to use a considerable discretization factor, we had to select some of
the genes to act as features. We conducted a study of the distribution of the in-
dividuals for each gene and selected the ones that presented values more evenly
spread over the entire interval. This study was conducted with the last 100 000 in-
dividuals of each of the 60 runs from the preliminary experiments with CMA-ES
and GA. From these 6 000 000 (30× 100000× 2) individuals, only the unique ones
were considered and then filtered, based on their structural constraints value and
cost (1 and 150 respectively), because we wanted to consider only feasible struc-
tures, hence the structural constraints value of at most 1 and a cost of less than
150 × 104 AC. The histograms can be seen in Fig. 3.2.

Looking at Fig. 3.2, one quickly observes that various dvs tend to be located in
one region of the interval. We did not consider dv0 to be a feature because it is
represented by integers and would force us to choose a maximum discretization
factor equal to the maximum number of possible cables for the resultant feature.
Dvs 2 to 12 and 14 to 19 are concentrated in one part of the interval. This left us
with dvs 1, 13, 20, and 21, which were the ones that we chose to act as features,
alongside a discretization factor of 50 for all features, resulting in an archive with
504 = 6250000 cells.
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Figure 3.2: Histograms of the design variables (dv), using the unique entries of
the last 100 000 individuals from every run of the preliminary experiments. 30
runs from CMA-ES and 30 runs from the GA.
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3.2 Implementation Details

The main goal of this work is to evaluate QD algorithms, as such we decided
to use well established Python libraries that have already implemented the algo-
rithms that we want. We started by using QDpy (Cazenille [2018]), given that it
appeared to have all the QD algorithms that we needed. Soon after some prob-
lems arose, the examples of how to use the library were few, and some of them
did not work out of the box. Some modifications were made to the library code,
fixing the issues that we were having, and a couple of algorithms were imple-
mented with it. However, it seems that the library has not been updated in a long
time, which led us to change the focus towards using Pyribs (Tjanaka et al. [2021])
instead.

Pyribs was used to implement MAP-Elites, ME-MAP-Elites, CMA-ME and CMA-
ES. NSGA-II was implemented with Pymoo (Blank and Deb [2020]). The GA
and the Hybrid were implemented with Distributed Evolutionary Algorithms in
Python (DEAP) (Fortin et al. [2012]).

The individuals from Pyribs and Pymoo are defined by arrays while the ones
from DEAP are objects. To enable the use of the same functions across all algo-
rithms, we transform all individuals into DEAP individuals prior to computing
fitness and logging.

Since some algorithms utilize KNN to calculate the novelty of the individuals, we
decided to map all the genes from the intervals shown in Table 3.1 into intervals
from 0 to 1. This mapping is utilized in every algorithm, to neutralize any advan-
tage that this operation might give. The mapping is accomplished by using the
mechanism presented in Alg. 4, with the first gene requiring special attention,
because it is an integer in the original mapping, so we apply the Python round
function to the mapped value.

Algorithm 4 Mapping mechanism from 0,1 to the original intervals.

1: lb ▷ Array with the lower bounds for every gene.
2: ub ▷ Array with the upper bounds for every gene.
3: new_x = x
4: for i do in range(len(x)):
5: new_x[i] = (ub[i] - lb[i]) * x[i] + lb[i]
6: end for
7: new_x[0] = round(new_x[0])

All the individuals used to start the algorithms are randomly sampled from a uni-
form distribution between 0 and 1. The algorithms that utilize CMA-ES simply
need a centroid, a single individual. MAP-Elites requires a set of n solutions to
populate the grid archive and enable the random sampling of elites from it, and
for the rest, a set of solutions with the same size as the population is created.

Due to the way that the algorithms are designed, there is a chance of getting
unfeasible bridge configurations, individuals whose genes are outside of the re-
quired intervals, so, to solve it, we check all the individuals to guarantee that their
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genes are within the correct bounds. If it is not the case, new genes are randomly
sampled from a uniform distribution between 0 and 1 to replace the ones outside
of the required bounds. Other correction mechanisms could have been used, like
clipping the unfeasible values to the bounds of the allowed intervals.

3.3 Experimental Setup

Table 3.3 contains all the parameters used by all the algorithms in our experi-
ments. The cells occupied by "-" mean that the respective algorithm does not
use that parameter. The GA was executed with a population size of 10 individ-
uals. The crossover operator used was uniform crossover, with a probability of
being used of 1 (cxpb), and every gene has a probability of 0.5 (cxp_aux) of being
swapped. We utilized a per gene replacement mutation operator where each gene
is replaced by a random value from a uniform distribution between 0 and 1 with
a probability of 0.1. The parents are chosen with tournament selection with size 3
(tourn size). The best individual from the current generation is passed untouched
into the next one (elite size).

CMA-ES was parameterized with a λ of 50 and µ of 25, with an initial step size
(σ) of 0.1 and an elite of size 1, meaning that the best individual from the run
until then is placed within the 25 that will be used to update the parameters of
the strategy. The init size of 1 is the initial centroid used to start the algorithm.

The archive of MAP-Elites is initialized with 1000 individuals (init size) and then
the new individuals are created by random sampling an elite from the archive
and altered by a normal distribution centered in 0 and scaled by 0.1 (σ).

The parameters of CMA-ME were the same ones of CMA-ES. Because CMA-
ME utilizes the concept of emitters, which can be several instances of CMA-ES
but we use just one objective emitter. Like this, CMA-ME is almost just an in-
stance of CMA-ES, but with a grid archive, used to store the solutions that it finds
and when no individuals are added to the archive in a generation, the emitter is
restarted with a randomly sampled elite from the archive. This experiment was
done, with the intent of seeing the impact of the archive and restart functionality
added to CMA-ES.

ME-MAP-Elites is very similar to CMA-ME, with the difference being that not all
the emitters have to be used in every iteration. The Upper Confidence Bound - 1
algorithm (UCB1) is utilized to sort the emitters by their potential and the ones
ranked highest are selected. It all depends on the way it is parameterized because
it can also behave just like CMA-ME, if the pool size is equal to the number of
active emitters. In our experiment we only allow one emitter to be activated per
iteration, with the emitter pool being composed by three emitters, one objective
emitter, one random direction emitter and an improvement emitter, all using the
same parameters as CMA-ES.

The Hybrid algorithm, consisting of a GA with a distance based archive, uses a
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hybrid system, where depending on the current state of the algorithm (in terms
of diversity), different metrics are used to rank the parents in the tournament.
If the percentage of individuals that are above f_min is higher than t_max the
tournament considers both the fitness and the novelty of the individual, using the
concept of Pareto fronts to rank the individuals in the tournament, and then one
of the first front is randomly selected to be the winner. On the other hand, if the
percentage of individuals that have a fitness higher than f_min is less than t_min,
a tournament considering only the fitness is used. Individuals that have a fitness
above f_min and a novelty (dissimilarity) higher than dissim_min are added to
the archive, with the novelty being computed as the average sum of the squared
euclidean distances between the individual and the k nearest neighbors in the
archive, and then this value is divided by the maximum possible distance, which
is computed using the lower and upper bounds so that the resultant novelty value
is between 0 and 1. The number of neighbors used might not be equal to k, in the
case that the amount of stored solutions in the archive is less than k.

For the Hybrid, we decided to use the same parameters used in Martins et al.
[2019] where they used a population of 100 individuals and an elite of 10. The
crossover operator was a two-point crossover, with a probability of 0.8 (cxpb)
and a probability of 0.5 (cxpb_aux) inside the operator to choose if something
should be swapped. Gaussian mutation was used, with mean 0 (mut_mean) and
scaled by 0.1 (mut_std), called with a probability of 0.5 (mutpb) and a probability
of adding the Gaussian noise to each gene of 0.5 (mutpb_aux). The selection of
parents was made by tournament selection with size 5.

The value of dissim_min was a result of a study using the best individuals of 30
runs from a previous experiment with CMA-ES. In this study, the novelty of each
individual was calculated for k ranging from 1 to 29 and the minimum value for
each k was saved. These values would be the minimum required for each k, so
that all the individuals in the test would be considered novel and, as a conse-
quence, added to the archive. We selected a value slightly lower than the value of
k = 4, however, we observed that the number of individuals being added to the
archive was low and settled on using the value for k = 3, maintaining k = 4.

The parameters used by NSGA-II are the default in Pymoo. A population o 100
was used, a probability of performing crossover (simulated binary crossover, sbx)
of 0.9 and an eta of 15 were utilized, and for the mutation operator (polynomial
mutation) a probability of 0.4 and an eta of 20 were used. The tournament type,
"comp_by_rank_and_crowding" was chosen instead of the default. The two ob-
jectives, in this case, were the cost (C(x)) and the structural constraints value
(S(x)), which are the same used to compute the fitness value by our fitness func-
tion.

Since the different algorithms use different population sizes, to provide a fair
comparison, all were run for 400 000 evaluations (calls to the fitness function).
During the execution of the algorithms, the created individuals are stored in csv
files by iteration. These logs are used to create the plots and compute the statistics.
The plots are presented in terms of evaluations, to more easily compare plots from
one experience to another.
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Table 3.3: Parameters used in the algorithms. ME stands for MAP-Elites and ME-
ME for ME-MAP-Elites.

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
generations 40 000 8 000 400 000 8 000 8 000 4 000 4 000
pop size 10 - 1 - - 100 100
init size 10 1 1000 1 1 100 100
cxpb 1 - - - - 0.8 0.9
cxpb_aux 0.5 - - - - 0.5 -
cx_npoints 2 - - - - 2 -
cx_eta - - - - - - 15
mutpb 1 - - - - 0.5 0.4
mutpb_aux 0.1 - - - - 0.5 -
mut_mean - - - - - 0 -
mut_std - - - - - 0.1 -
mut_eta - - - - - - 20
f_min - - - - - 2.0 -
dissim_min - - - - - 0.0006 -
t_min - - - - - 0.05 -
t_max - - - - - 0.15 -
k - - - - - 4 -
archive size - - - - - 5000 -
tourn size 3 - - - - 5 -
µ - 25 - 25 25 - -
λ - 50 - 50 50 - -
σ - 0.1 0.1 0.1 0.1 - -
elite size 1 1 - - - 10 -
cr 150 150 150 150 150 150 150
num evals 400 000 400 000 400 000 400 000 400 000 400 000 400 000
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3.4 Experimental Results

In the following pages, the results from each algorithm concerning optimization
and diversity performance are presented separately. In the end, a comparison
between all the algorithms is performed.

3.4.1 Genetic Algorithm Results

Fig. 3.3 shows the fitness of the best individual in blue and the average fitness
of the population in orange. The lines in full are averages of 20 algorithm execu-
tions. The shading is the average ± the standard deviation, used to gain insight
into the amount of variability between executions. In the figure, it can be seen that
the fitness is going up, first increasing rapidly, but slowing down as the execu-
tion of the algorithm continues, but never stagnating. The population’s average
fitness also tends to increase throughout the algorithm’s execution, even though
the line is full of spikes, which indicates that the average fitness has a high varia-
tion. The average fitness values are far from the maximum, which suggests that
the population has a diverse set of individuals.

Fig. 3.4 shows how the value of the structural constraints of the best individual
evolves over time. The plot is limited in the y axis to allow for a better look
near 1. This can give the impression that there are no values for some number
of evaluations, but they do exist, they just cannot be seen in the plot. The line
in full is the average of the 20 runs executed and the shaded area is the average
± standard deviation. In this figure, we can see that the structural constraints
value is being optimized getting closer to 1. The plot can be divided into three
separate parts: one where the structural values are very high; then the values
begin to decrease approaching 1; and finally, we have values below 1. These
parts can be mapped into the three branches of the fitness function. First only the
cost matters so we are not optimizing the structural constraints value, allowing
it to be large. Then, once the cost has reached reasonable values, the structural
constraints optimization begins, lowering its value. Lastly, we reach the third
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Figure 3.3: GA fitness per evaluation. The lines in full are averages of 20 seeds
and the shaded is the average ± standard deviation.
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Figure 3.4: Structural constraints value achieved by the GA. The line in full is the
average of 20 runs and the shaded is the average ± standard deviation of the best
individual per evaluation. The maximum y value was limited.

branch, where we force the structural constraints to be at most 1.

The cost of the best individual over time is shown in Fig. 3.5. The plot is limited in
the y axis to show how the algorithm behaves in the feasible price range (less than
150). This can give the impression that there are no values for some number of
evaluations, but they do exist, they just cannot be seen in the plot. The line in full
is the average of the 20 runs executed and the shaded area is the average ± stan-
dard deviation At the beginning of the optimization process we have really ex-
pensive structures, which is expected, given that the search starts from randomly
sampled individuals. However, we quickly start to find structures with a more
favorable cost. Looking at the plot, it is possible to see that the cost decreases at
the beginning of the evolutionary process. However, after a few generations, it
increases. This is again due to how the fitness function is defined, which starts by
seeking bridges that are below a certain cost but might not satisfy the structural
constraints. The cost increase takes place when the focus of the search changes,
since the lowering of the structural constraints might require using different ma-
terials that impact the cost of the overall structure. However, looking at the line
of the average cost, it can be seen that the lowering of the cost is the trend. When
we combine the information in the cost plot and the structural constraints plot,
we can observe that the structural constraints value is being maintained below
1 (after the 200 000 evaluations mark), while the cost is decreasing, resulting in
bridges that are cheaper and still safe.

The boxplots in Fig. 3.6 show how the 20 best individuals are distributed in terms
of fitness, cost, and structural constraints. We can see that some runs performed
poorly when looking at the fitness boxplot (Fig. 3.6a), given that we have runs
where the best individual could not even reach a fitness of 2, meaning that in
those runs, the structural constraints value was not optimized to values below 1.
The best individuals from the majority of the runs are concentrated in the fitness
range of 3 to 3.5, which means that those individuals have a structural constraint
value of less than 1 and a cost of less than 150k AC. The boxplot for the structural
constraints (Fig. 3.6b) corroborates this, showing that some runs were not able
to reduce the structural constraints to values below 1. The boxplot for the cost
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Figure 3.5: Cost achieved by the GA in the tens of thousands of euros. The line in
full is the average of 20 runs and the shaded is the average ± standard deviation
of the best individual per evaluation. The maximum y value was limited.
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Figure 3.6: Boxplots created with the best individual of each of the 20 GA runs.
The cost is presented in the tens of thousands. The red line in the cost boxplot
is the cost of the baseline solution and in the structural constraints plot is the
threshold of safety (1).

(Fig. 3.6c) is particularly helpful, informing us that all the runs were at least able
to find individuals with a cost lower than cr = 150. In this boxplot, we can also
see that the baseline was not surpassed by any of the discovered solutions.

Taking into account these results, the GA can optimize solutions for this prob-
lem to a certain degree. The best individual found in the 20 runs has a cost of
114.147 × 104 AC and a structural constraints value of 0.8527. The structural con-
straints value is significantly lower than the one of the baseline but the cost is
larger. This individual has the highest value of fitness, but it is not the cheapest
individual discovered. The cheapest safe individual has a cost of 108.352 × 104

AC and a structural constraint of 0.9915. A graphical comparison of the geometry
of these two bridges and the baseline is shown in Fig. 3.7. We can see that the
evolved solutions have a harp cable system, while the baseline has a fan cable
system.
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Figure 3.7: Graphical comparison of the baseline (blue), the best (pink), and the
cheapest (red) from the GA.

The purpose of studying this problem with QD algorithms was trying to find a
diverse set of fit solutions. However, we need a way to observe the diversity,
which in algorithms that are based on MAP-Elites is accomplished by using a
grid archive, then plotted as fitness heatmaps. With this in mind, we decided to
build grid archives for all the approaches being tested, even if the archive does
not take part in the optimization process. The archives are constructed with the
help of the log files that were written by the algorithms during execution. Every
run produces an archive, which means that we have 20 archives per algorithm,
resulting in a large quantity of charts. Thus we only show the fitness heatmaps
and activity plots for the best run of the algorithm. An example of these types of
plots can be observed in Fig. 3.8, while the rest for this specific seed are presented
in Appendix A, section A.1.

Since the archives have four dimensions (feature space with four features), we
are not able to represent it in a figure all at once, so we make a fitness heatmap
for every pair of features, resulting in 6 plots. These plots are projections of the
grid archive into the pair of features being used, so one cannot infer the coverage
of the grid archive as a whole because we can have an archive filled with points
scattered all over and still get a projection that looks full. Even though these
heatmaps do not give us an entire picture of the coverage of the archive, they still
give us some insights. For instance, it is possible to see if there is an individual
that has a feature that falls in a particular cell, or if all the fittest individuals have
values for a certain feature, falling into the same projected cell. The features are
labeled as feature_i, with i ranging from 0 to 3, which are mapped into dv1, dv13,
dv20, and dv21, respectively. We also build activity plots, similar to the fitness
heatmaps, but instead of fitness, we use the number of individuals found during
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(b) Fitness heatmap.

Figure 3.8: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best GA seed. On the
left side, we have an activity plot that provides insights into the regions that were
more explored. The activity plot employs a logarithmic scale with a base of 10.

the search that would be mapped to that cell. This gives us an idea of the areas
of the space that were more visited. Since they are projections, we can have a
case where the number of hits in one cell is 2 with those 2 individuals filling two
different cells, due to having different values for the other two features. However,
we can also have the case of those 2 individuals being mapped into the same exact
archive cell. The scale of the activity plots is logarithmic of base 10, to allow us to
see differences along regions that were less explored, which would otherwise be
unnoticeable.

By examining Fig. 3.8b, one can see the fitness levels of individuals stored in the
archive for features 0 and 1. The better individuals are mostly located in the first
half of each feature interval, that is the bottom left corner. However, the space
seems to be more or less evenly covered (the cells, in general, have a similar
value of fitness, not too distant from the maximum value found). Additionally,
a pattern can be observed among higher fitness individuals, which, for the most
part, is the same pattern depicted in the activity plot of Fig. 3.8a. Although not
always the case, regions with higher activity tend to exhibit better fitness values
than less-explored areas.

To get a deeper understanding of the state of the archive, we present its evolution
over time in terms of the number of occupied cells and how the stored individu-
als are distributed in terms of fitness at the end of the algorithm’s execution. The
plot in Fig. 3.9a shows us that the algorithm is adding new individuals to the
archive over time, which means that it is continuously finding individuals that
are different than the previous ones. We can see that, on average, after the 400
000 evaluations around 40 000 individuals were added to the archive (see Table
3.4). It is important to note that this number of elites accounts only for roughly
10% of the created individuals, meaning that 90% were mapped to already occu-
pied cells. These results are not surprising since the GA is a pure optimization
algorithm and our implementation has no mechanisms to search for diversity. By
examining the histogram of Fig. 3.9b we observe that most of the individuals
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Figure 3.9: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.

added to the archive are not feasible (fitness values below 3). The majority of
the stored individuals comply with the cost restriction (because they have fitness
above 1), but do not respect the structural constraints restriction.

To complete the information displayed in Fig. 3.9, we present Table 3.4 with the
data for each algorithm execution (seed). Column f stands for the number of
unique feasible individuals (cost of less than 150 and structural constraints of at
most 1) discovered throughout the run. Column f_arch is the number of unique
feasible individuals in the archive at the end of the run. Similarly, b_b stands for
the number of unique individuals that beat the baseline (cheaper but still safe)
that were discovered throughout the run. Column b_b_arch is the number of
unique individuals that beat the baseline in the archive at the end of the run.
The number of elites is the number of occupied cells in the archive, the cover-
age is the number of elites divided by the total number of evaluations and the
qd_score is the sum of the fitness of all the elites in the archive. Since we only
have 400 000 evaluations, in the optimal case we would have a coverage value
of 400000/504 = 0.064 and this would mean that every created individual would
land on a different cell. With this in mind, we think that a better metric is to use
the percentage of individuals added as the coverage. The seeds are sorted by
fitness in descending order, and at the end, we add the average of all rows.

When taking a closer look at Table 3.4 we can see that the GA was able to find,
on average, more than 20 000 unique feasible individuals per run. However, only
roughly 1 000 of those are significantly distinct, that is, present different behaviors
to be added to the archive, the rest converge into occupied cells and lose in terms
of fitness.
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Table 3.4: Diversity statistics for each of the 20 GA seeds. Floating point values
are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
2854977859 46566 0.116 57927.693 36196 2118 0 0
1040632194 40510 0.101 50107.453 34251 1486 0 0
1489817794 39818 0.100 46936.426 24334 1186 0 0
88083431 50510 0.126 57726.650 25021 1243 0 0
200205028 41372 0.103 47311.033 16604 563 0 0
3487363715 43239 0.108 52511.647 30400 1693 0 0
1592410486 48766 0.122 53775.147 21307 1131 0 0
781805057 47040 0.118 49364.718 11585 673 0 0
3262362994 40714 0.102 44868.671 36750 2459 0 0
3591128469 35058 0.088 43426.325 42409 1789 0 0
2849255314 48261 0.121 51901.839 7210 384 0 0
1406242007 34486 0.086 43036.254 40187 1449 0 0
3113515005 43635 0.109 42373.790 18634 730 0 0
2624447050 36573 0.091 36973.438 24777 1333 0 0
2631223479 43956 0.110 47889.517 23629 877 0 0
4197906329 49785 0.124 51764.948 3771 373 0 0
271943135 44125 0.110 47770.769 18299 481 0 0
3105602047 50125 0.125 47023.327 0 0 0 0
1766430675 43050 0.108 40931.500 0 0 0 0
2620038020 41999 0.105 39845.338 0 0 0 0
mean 43479.400 0.109 47673.324 20768.200 998.400 0 0

3.4.2 Covariance Matrix Adaptation Evolution Strategy Results

By looking at the fitness lines in Fig. 3.10 we can see that we reach high fitness
values rapidly, at around 50 000 evaluations. From this point forward the evo-
lution seems to stagnate. The line of best fitness never gets worst because the
algorithm was implemented with elitism. The average fitness at first reaches val-
ues very close to the maximum and then drops off to values around 2, fluctuating
throughout the algorithm’s execution. This supports the idea that the best indi-
viduals are found at the beginning of the run and from there on we mostly find
individuals that are significantly less fit than the best. Analyzing the data that we
have, it appears that, from a pure optimization point of view, there is no reason
to run the algorithm for more than 100 000 evaluations. Observing the fitness
boxplot in Fig. 3.13a we can see that most of the runs reach values of fitness well
above 3, but then two of the runs underperformed, pushing the average of the
maximum fitness towards 3.

In Fig. 3.11 one can see that the value of the structural constraints of the best
individual quickly reaches values close to 1. The line sits above 1 which, at first
glance, suggests that the algorithm was not capable of minimizing this objective.
However, if we look at the boxplot of Fig. 3.13b we can see that what is causing
the mean to be above 1 are two runs with considerably large values of structural
constraints. The other 18 runs were able to minimize this objective.

By looking at the line of the cost of the best individual in Fig. 3.12 we first see
a drop in the cost of the bridges, followed by a slight increase. In this case, the
increase is followed by a steep decrease until around the 70 000 evaluations, and
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Figure 3.10: CMA-ES fitness per evaluation. The lines in full are averages of 20
seeds and the shaded is the average ± standard deviation.
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Figure 3.11: Structural constraints value achieved by CMA-ES. The line in full is
the average of 20 runs and the shaded is the average ± standard deviation of the
best individual per evaluation. The maximum y value was limited.
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Figure 3.12: Cost achieved by CMA-ES in the tens of thousands of euros. The line
in full is the average of 20 runs and the shaded is the average ± standard devia-
tion of the best individual per evaluation. The maximum y value was limited.
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Figure 3.13: Boxplots created with the best individual of each of the 20 CMA-ES
runs. The cost is presented in the tens of thousands. The red line in the cost
boxplot is the cost of the baseline solution and in the structural constraints plot is
the threshold of safety (1).

from there the price decreases are very subtle, showing that past the 100 000 eval-
uations, we are not getting significant improvements. However, resorting to the
boxplot in Fig. 3.13c, we can see that the algorithm was able to find several in-
dividuals below the 100 × 104 AC mark and that at least one is cheaper than the
baseline.

The best individual obtained by CMA-ES has a cost of 87.339 × 104 AC and struc-
tural constraints of 1.000. This individual beats the cost of the baseline in 4.015 ×
104 AC, while still being safe. The graphical comparison of the geometry of both
structures is presented in Fig. 3.14. We can see that the both structures are using
a fan cable system, but the structure evolved is taller than the baseline.

By looking at the fitness heatmap and the activity plot of Fig. 3.15 we can see
a pattern in the most searched areas and the areas of higher fitness. This run
showed a particular focus on optimization and found the best individual out of
all the other CMA-ES runs, but it did not find individuals for many combinations
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Figure 3.14: Graphical comparison of the baseline (blue) and the best from CMA-
ES (pink).

of features, resulting in many empty (white) cells. The remaining plots regarding
this seed are presented in Appendix A, section A.2.

Regarding the archives of the 20 runs, Fig. 3.16a shows that only an average of
around 45,000 individuals (11%) are added to the archive, which accounts for 11%
of the 400,000 individuals created. However, the shaded area increases through-
out the execution, indicating a high level of variability in the number of elites
added to the archive between runs. Most of the elites added to the archives have
low fitness, easily seen by the two large peaks in the histogram of Fig. 3.16b.
Once more, we are faced with a very small portion of feasible elites.

The data in Table 3.5 effectively highlights the disparity in the number of elites
added to the archive across different runs (column num_elites), which accounts
for the noticeable size of the shaded area in Fig 3.16a. For instance, seed 1529642067
saved 119 997 elites to the archive, while seed 3853914723 only added 8 208 elites.
CMA-ES discovered on average more than 16 000 solutions that are more cost-
effective than the baseline, however, this number is highly influenced by one of
the runs, with 16 out of the 20 runs not being able to find at least an individual
that surpasses the baseline (column b_b). We also can observe that from the indi-
viduals that beat the baseline, only a small portion ends up in the archive. This
means that the majority of these individuals are mapped to the same archive cells,
not being significantly different in the feature space.
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(b) Fitness heatmap.

Figure 3.15: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best CMA-ES seed.
On the left side, we have an activity plot that provides insights into the regions
that were more explored. The activity plot employs a logarithmic scale with a
base of 10.
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Figure 3.16: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.
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Table 3.5: Diversity statistics for each of the 20 CMA-ES seeds. Floating point
values are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
1961415599 10833 0.027 10834.563 337098 1266 311107 52
265866547 37082 0.093 27991.795 33738 1323 8753 15
921333072 98768 0.247 63501.597 59620 2040 0 0
134371839 56858 0.142 55145.321 48217 3162 3 3
3864806146 14406 0.036 16940.478 200385 2009 0 0
3458633712 64555 0.161 52679.862 42567 1664 0 0
2230458389 32014 0.080 30248.440 13123 2076 0 0
953075784 53408 0.134 46039.115 129376 1554 5947 2
4096528757 61670 0.154 36435.490 56612 799 0 0
1517680419 57691 0.144 47258.291 32074 1470 0 0
415886967 98737 0.247 63978.253 52655 1178 0 0
1529642067 119997 0.300 83126.045 51275 1270 0 0
3181050477 23744 0.059 22183.984 343954 1653 0 0
2091038421 39768 0.099 25872.586 49384 1369 0 0
459054007 68870 0.172 64063.742 21923 885 0 0
1649963927 9854 0.025 10747.097 378620 1484 0 0
786905057 19506 0.049 15801.130 13128 1192 0 0
3338455042 29625 0.074 23461.752 317991 1379 0 0
3625157141 18076 0.045 12049.710 0 0 0 0
3853914723 8208 0.021 6151.508 0 0 0 0
mean 46183.500 0.115 35725.538 109087 1388.650 16290.500 3.600

3.4.3 Multi-dimensional Archive of Phenotypic Elites Results

In Fig. Fig. 3.17, the fitness of the best and the average fitness of the population
is presented. In this case, since the population has a size of 1, the average is equal
to the best. By examining the figure we see that MAP-Elites presents poor results
in terms of optimization. The fitness values are low, ultimately rendering the
discovered individuals completely unusable. The plots regarding the cost and
the structural constraints of the best show that these objectives were never close
to being minimized (the average lines can never be seen in the limited plots). The
boxplots of Fig. 3.20 clearly show us that the algorithm was not able to minimize
the structural constraints. These results could be due to poor parameterization,
bad luck with the seeds used (it is very unlikely) or the algorithm may not be
suited for this type of problem.

We decided not to present a comparison with the baseline, since the algorithm
was not capable of finding at least one feasible configuration.

Since there is no optimization occurring, the fitness heatmap of Fig. 3.21b is
mostly covered in black with a few purple points. In terms of search activity,
we can see in Fig. 3.21a that the algorithm focused its search on the cells located
in the diagonal. Aside from the diagonal, the search of the space seems very uni-
form over the feature space. The remainder of the fitness heatmaps and activity
plots concerning this seed are shown in Appendix A, section A.5.

What MAP-Elites lacks in optimization power, excels in terms of diversity, being
able to consistently add around 95% of the created individuals into the archive
(Table 3.6, column coverage, and Fig. 3.22a), which is very impressive. However,

38



Experimental Work

Figure 3.17: MAP-Elites fitness per evaluation. The lines in full are averages of 20
seeds and the shaded is the average ± standard deviation. Since the population
size is 1, the best is the same as the average, so the lines are overlapped.

(a) Structural constraints limited
in the y axis.

(b) Structural constraints not limited
in the y axis.

Figure 3.18: Structural constraints value achieved by MAP-Elites. The line in full
is the average of 20 runs and the shaded is the average ± standard deviation
of the best individual per evaluation. The same data was used for both plots,
however, on the left, the maximum y value was limited.

this diversity came at a cost of performance, given that almost all individuals
have a fitness lower than 0.25, as can be seen in the histogram of Fig. 3.22b.

39



Chapter 3

(a) Cost limited in the y axis. (b) Cost not limited in the y axis.

Figure 3.19: Cost achieved by MAP-Elites in the tens of thousands of euros. The
line in full is the average of 20 runs and the shaded is the average ± standard
deviation of the best individual per evaluation. The same data was used for both
the right and left plots, however, on the left, the maximum y value was limited.
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Figure 3.20: Boxplots created with the best individual of each of the 20 MAP-
Elites runs. The cost is presented in the tens of thousands. The red line in the cost
boxplot is the cost of the baseline solution and in the structural constraints plot is
the threshold of safety (1).
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(b) Fitness heatmap.

Figure 3.21: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best MAP-Elites seed.
On the left side, we have an activity plot that provides insights into the regions
that were more explored. The activity plot employs a logarithmic scale with a
base of 10.

(a) Number of elites.

0.00 0.25 0.50 0.75 1.00 1.25
fitness

0

2

4

6

co
un

t

1e6 MAP-Elites

(b) Fitness distribution.

Figure 3.22: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.
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Table 3.6: Diversity statistics for each of the 20 MAP-Elites seeds. Floating point
values are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
977503172 380647 0.952 5162.759 0 0 0 0
3211678240 381202 0.953 5661.815 0 0 0 0
3928983013 380388 0.951 5609.315 0 0 0 0
857742291 380558 0.951 5185.294 0 0 0 0
2714227225 379905 0.950 5969.032 0 0 0 0
3790900665 379966 0.950 5877.189 0 0 0 0
1100567897 380135 0.950 5535.930 0 0 0 0
2723373142 379786 0.949 5622.072 0 0 0 0
3867363402 380383 0.951 5735.830 0 0 0 0
1290171389 381468 0.954 5605.492 0 0 0 0
2309899029 380164 0.950 5391.221 0 0 0 0
1354215289 380345 0.951 4998.696 0 0 0 0
3852609653 380549 0.951 5398.884 0 0 0 0
3885547211 380820 0.952 5490.403 0 0 0 0
2814991318 380405 0.951 5589.959 0 0 0 0
816692951 380195 0.950 5186.647 0 0 0 0
4240765728 380364 0.951 5478.891 0 0 0 0
2160711787 380007 0.950 5309.213 0 0 0 0
1860587127 380682 0.952 4764.029 0 0 0 0
3602535396 379182 0.948 5816.020 0 0 0 0
mean 380357.550 0.951 5469.435 0 0 0 0

3.4.4 Covariance Matrix Adaptation Multi-dimensional Archive
of Phenotypic Elites Results

Fig. 3.23 displays the fitness evolution plots for the CMA-ME. Looking at the re-
sult one can see that during the optimization process, the fitness varies. This is
due to the fact that the algorithm does not use elitism. Under the hood CMA-ME
is using instances of CMA-ES (emitters), in our case just one. The differentiat-
ing factor is that when one emitter fails to produce at least one individual that
ends up being added to the archive in the current generation, it is restarted. This
restart defaults all parameters to the initially defined ones apart from the cen-
troid. A randomly sampled elite from the grid archive is used as the new strategy
centroid. With this in mind, the drops in fitness that are observed on both plots
of Fig. 3.23 are due to the restart of the emitter. An interesting aspect to notice
is that the average fitness values are much closer to the maximum value than in
the GA and CMA-ES. Since the values in these plots are averages, we also show
the fitness of the best individual found by each run in a boxplot in Fig. 3.26a. By
looking at it, it is easy to realize that most of the runs were able to find individuals
with high fitness, given that all are above 3.5.

Since the fitness is computed considering both the cost and the structural con-
straints values, it is only natural that the lines concerning the two also exhibit
high variability. By looking at Fig. 3.24 we see that the average line of the struc-
tural constraints of the best never reaches values close to 1, which may bear an
indication that the algorithm failed in optimizing this objective. This is due to the
variability presented by the algorithm between runs and the absence of elitism.
Since the desired values for this objective are small, it may take only one run at a
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Figure 3.23: CMA-ME fitness per evaluation. The lines in full are averages of 20
seeds and the shaded is the average ± standard deviation.

0 1 2 3 4
evaluations 1e5

1

2

3

4

5

st
ru

ct
ur

al
 c

on
st

ra
in

ts

CMA-ME

Figure 3.24: Structural constraints value achieved by CMA-ME. The line in full is
the average of 20 runs and the shaded is the average ± standard deviation of the
best individual per evaluation. The maximum y value was limited.

particular time to produce a best with poor performance to greatly influence this
average. By looking at the boxplot in Fig. 3.26b we can see that the algorithm was
capable of minimizing this objective. In fact, the best individual from each of the
20 algorithm executions have all structural constraints of at most 1.

Similarly to the structural constraints, the average cost of the best individuals
presented in Fig. 3.25 shows high variability throughout the execution. There is
also a high variability between runs, perceived by the large standard deviation
values. Looking at the boxplot of Fig. 3.26c we can see that only 1 out of the 20
seeds failed to beat the baseline, and even then it was only by 0.605 × 104 AC.

The individual with the highest fitness found by CMA-ME costs 87.652 × 104 AC
and 0.9914 of structural constraints, which effectively beats the baseline solution
by 3.702 × 104 AC. However, this is not the cheapest feasible structure that this
algorithm reached. That one has a price of 87.390× 104 AC and a value of structural
constraints of 0.9994, which is a saving of 3.964× 104 AC compared to the baseline.
The geometry of both structures is compared with the geometry of the baseline
solution in Fig. 3.27. We can see that the individuals evolved are similar. They
are taller and have the towers placed further away from the center of the bridge.
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Figure 3.25: Cost achieved by CMA-ME in the tens of thousands of euros. The
line in full is the average of 20 runs and the shaded is the average ± standard de-
viation of the best individual per evaluation. The maximum y value was limited.
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Figure 3.26: Boxplots created with the metrics of the best individual of each of
the 20 CMA-ME runs. The cost is presented in the tens of thousands. The red
line in the cost boxplot is the cost of the baseline solution and in the structural
constraints plot is the threshold of safety (1).
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Figure 3.27: Graphical comparison of the baseline (blue), the best (pink), and the
cheapest (red) from CMA-ME.

The fitness heatmap of Fig. 3.28b shows that the algorithm was able to find many
feasible individuals (fitness higher than 3) with various combinations of feature_0
and feature_1. The coverage of these individuals, although not uniform, is spread
among almost all of the possible values of each feature, which suggests that there
could be feasible individuals with every possible value of the interval. Once
more, the activity plot (Fig. 3.28a) shows a similar pattern of search activity to
the one of the fitness, making it more and more reasonable to think that if the
algorithm had spent more time searching a region of lower fitness it would end
up discovering better individuals. The remainder of the fitness heatmaps and
activity plots concerning this seed are shown in Appendix A, section A.3.

Looking at the line of the number of elites in the archive from Fig. 3.29a we ob-
serve that 50% of the generated individuals consistently enter the archive, main-
taining a steady population growth rate (represented by an almost straight-line).
Notably, the algorithm demonstrates a high level of consistency across runs, as
indicated by the narrow shaded area. This consistency implies that the values
obtained from different seeds are highly similar at each time point.

This result presents a significant advantage compared to pure optimization al-
gorithms, showcasing the capability of this QD algorithm to discover a more di-
verse range of configurations. Examining the fitness distribution in Fig. 3.29b,
it becomes apparent that this improvement in diversity does not come at the ex-
pense of fitness performance. In fact, the proportion of feasible individuals in the
archives has increased compared to the GA and CMA-ES. However, the majority
of elites in the archives are unfeasible.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure 3.28: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best CMA-ME seed.
On the left side, we have an activity plot that provides insights into the regions
that were more explored. The activity plot employs a logarithmic scale with a
base of 10.
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Figure 3.29: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.
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Table 3.7: Diversity statistics for each of the 20 CMA-ME seeds. Floating point
values are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
1501731213 204308 0.511 245683.084 109832 26424 1420 82
665875114 184764 0.462 231673.454 121105 26443 3333 167
143348516 205277 0.513 233916.111 101806 22843 3669 127
2212182297 218030 0.545 254073.207 95190 24102 2995 139
1872887387 204251 0.511 261241.410 124602 29779 2816 148
4202634575 191506 0.479 240150.265 132265 30242 3301 167
223019384 198062 0.495 239225.156 112205 27091 2933 106
3160294597 196483 0.491 226626.981 116538 24092 2747 139
387715579 201324 0.503 241148.173 109282 25568 1577 55
2477021820 199682 0.499 240990.551 117695 23921 2561 126
1740708445 197157 0.493 244925.523 131041 30041 1731 122
3671252546 205756 0.514 237485.411 104004 25087 1528 117
2771474702 207411 0.519 244161.625 123205 27281 2702 99
1939868274 207622 0.519 249587.755 97215 25813 941 33
3049757501 209264 0.523 242647.721 122071 25970 1983 94
1404091650 202843 0.507 239610.895 119625 25217 85 13
2579782080 212033 0.530 249293.118 115593 26799 876 59
3356617878 214647 0.537 258046.850 110824 25819 271 32
3024264489 203675 0.509 230191.350 111099 24024 6 6
3639591557 199059 0.498 220571.290 101896 19993 0 0
mean 203157.700 0.508 241562.496 113854.650 25827.450 1873.750 91.550

Table 3.7 confirms the consistent performance of CMA-ME, with metrics showing
remarkable similarity across runs. It also highlights the algorithm’s effectiveness,
as it outperformed the baseline in 19 times out of 20 (only one 0 in column b_b).
Another interesting aspect is that of all the individuals that beat the baseline, on
average, more than 91 were significantly different from each other at the feature
space level, resulting in their addition to the archive.

3.4.5 Multi-Emitter Multi-dimensional Archive of Phenotypic Elites
Results

Looking at the fitness lines of the best and the average of the population in Fig.
3.30 we can see a rapid increase in fitness, followed by a considerable decrease
with good individuals found before the 100 000 evaluations mark. This algorithm
was not implemented with elitism, so the fluctuation in the fitness values is com-
pletely expected. Considering this, the decrease is normal, because it takes only
a few examples with poor performance in one generation to greatly impact the
average line of the best. The plots of figures 3.31 and 3.32, regarding the struc-
tural constraints and the cost respectively, also feature the high variability of the
fitness, since the fitness is a result of the combination of these two objectives.

From a pure optimization perspective, in addition to the performance over time,
one is interested in the best individuals found by the algorithm, and for that, we
present a boxplot in Fig. 3.33a. This plot shows how the best individuals from
the 20 runs are distributed in terms of fitness. We can see that the algorithm
consistently discovered individuals with fitness higher than 3.5. When we look
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Figure 3.30: ME-MAP-Elites fitness per evaluation. The lines in full are averages
of 20 seeds and the shaded is the average ± standard deviation.
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Figure 3.31: Structural constraints value achieved by ME-MAP-Elites. The line in
full is the average of 20 runs and the shaded is the average ± standard deviation
of the best individual per evaluation. The maximum y value was limited.

at the structural constraints boxplot of Fig. 3.33b, we observe that the algorithm
was capable of finding bridges that are safe in every single run, with some having
this objective around 0.9. Concerning the cost, by analyzing the boxplot of Fig.
3.33c we observe that most of the best individuals cost less than 100 × 104 AC.

The best individual found by ME-MAP-Elites costs 92.422 × 104 AC, with a struc-
tural constraints value of 0.9876. However, this was not the cheapest feasible
configuration discovered. That has a cost of 91.908 × 104 AC and a structural con-
straints value of 0.9983, but it is not enough to beat the baseline. A graphical
comparison of the baseline against these two structures is presented in Fig. 3.34.
The structures discovered by ME-MAP-Elites are taller than the baseline and the
towers are further away from the center of the bridge.

By looking at the fitness heatmap in Fig. 3.35b, we can see that the feasible struc-
tures discovered by the algorithm are all located in the top right corner of the
fitness heatmap. The feasible region (fitness higher than 3) is significantly large,
indicating that the algorithm was capable of finding several distinct feasible solu-
tions. The activity plot of Fig. 3.35a shows us that the algorithm spent more time
searching in the second half of the intervals of feature_0 and feature_1. Once
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Figure 3.32: Cost achieved by ME-MAP-Elites in the tens of thousands of euros.
The line in full is the average of 20 runs and the shaded is the average ± standard
deviation of the best individual per evaluation. The maximum y value was lim-
ited.
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Figure 3.33: Boxplots created with the best individual of each of the 20 ME-MAP-
Elites runs. The cost is presented in the tens of thousands. The red line in the cost
boxplot is the cost of the baseline solution and in the structural constraints plot is
the threshold of safety (1).
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Figure 3.34: Graphical comparison of the baseline (blue), the best (pink), and the
cheapest (red) from the ME-MAP-Elites.

more, we can see a pattern in the regions of more activity and higher fitness.
The remainder of the fitness heatmaps and activity plots concerning this seed are
shown in Appendix A, section A.4.

In terms of elites added to the archive (Fig. 3.36a), ME-MAP-Elites consistently
added close to 300 000 individuals to the archive, at a very constant rate through-
out the algorithm’s execution. This means that 75% of the created individuals in
each run are added to the archive, telling us that the algorithm is searching in
different regions of the feature space most often than not. Resorting to the fitness
histogram of Fig. 3.36b, we get the confirmation that most of the individuals in
the archive are not feasible, with a large number of configurations having a lit-
tle more than 1 of fitness. We also have a considerable amount of individuals in
the 3 plus fitness range, which tells us that the algorithm was capable of finding
various feasible individuals.

Table 3.8 corroborates what was previously said about the performance of the
algorithm in terms of diversity, given that the average number of elites in the
archive at the end of the execution of the algorithm is higher than 300 000. We
can see that run 2900709671 was the one that had the fittest archive because it
achieved the higher qd_score of all the seeds, even though it is one of the runs
with the least elites in the archive. This is due to the fact that from the 290904
elites in the archive, 86854 were feasible, pushing the qd_score up. Another inter-
esting point is that, on average, almost 70% of the feasible solutions created were
significantly different in behavior.

50



Experimental Work

0.0 0.2 0.4 0.6 0.8 1.0
feature_0

0.0

0.2

0.4

0.6

0.8

1.0
fe

at
ur

e_
1

1.0

1.5

2.0

2.5

3.0

(a) Activity plot.
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(b) Fitness heatmap.

Figure 3.35: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best ME-MAP-Elites
seed. On the left side, we have an activity plot that provides insights into the
regions that were more explored. The activity plot employs a logarithmic scale
with a base of 10.
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(b) Fitness distribution.

Figure 3.36: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.
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Table 3.8: Diversity statistics for each of the 20 ME-MAP-Elites seeds. Floating
point values are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
4234418804 306854 0.767 382189.719 30925 24054 0 0
1348952993 306459 0.766 411657.422 43037 29506 0 0
2900709671 290904 0.727 525237.801 128612 86854 0 0
1360480637 300557 0.751 388336.003 27412 20957 0 0
2829501598 294816 0.737 446029.423 74610 50777 0 0
1511567270 292839 0.732 490383.830 111340 74076 0 0
3187816561 302894 0.757 424243.415 52458 35882 0 0
3571708301 304598 0.761 452983.731 70172 49343 0 0
4287285846 307569 0.769 394860.832 34357 26828 0 0
1847013518 302954 0.757 366948.821 16353 11705 0 0
204662516 301165 0.753 384624.533 24184 17441 0 0
477761632 305921 0.765 375931.615 12413 9651 0 0
4077363031 305964 0.765 403111.899 42957 31857 0 0
3071960880 312273 0.781 419452.484 43187 32468 0 0
439834480 282594 0.706 520554.371 149426 95048 0 0
3998953568 288258 0.721 471174.065 89850 60099 0 0
1360000300 306826 0.767 369089.778 17724 14185 0 0
2201719119 304069 0.760 415315.466 39169 29627 0 0
4095548407 302326 0.756 415991.069 46892 30552 0 0
618737211 305208 0.763 388083.716 25127 17946 0 0
mean 301252.400 0.753 422310 54010.250 37442.800 0 0

3.4.6 Hybrid Results

Looking at Fig. 3.37 one can see that the fitness of the best tends to increase during
the algorithm’s execution, and since the Hybrid uses elitism, it never decreases.
The average fitness, although slowly, also increases throughout the run. This
means that the population is getting filled by individuals with better fitness.

Fig. 3.38 shows us that on average, the algorithm is capable of finding structurally
safe bridges within 150 000 evaluations, given that after that the line stays very
close to 1 with low variability. By looking at the boxplot presented in Fig. 3.40b
and column f of Table 3.9 one can see that in 19 of the runs, the algorithm was
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Figure 3.37: Hybrid fitness per evaluation. The lines in full are averages of 20
seeds and the shaded is the average ± standard deviation.
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Figure 3.38: Structural constraints value achieved by the Hybrid. The line in full
is the average of 20 runs and the shaded is the average ± standard deviation of
the best individual per evaluation. The maximum y value was limited.
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Figure 3.39: Cost achieved by the Hybrid in the tens of thousands of euros. The
line in full is the average of 20 runs and the shaded is the average ± standard de-
viation of the best individual per evaluation. The maximum y value was limited.

able to minimize this objective.

By analyzing the plot in Fig. 3.39 we can see that the cost of the best individual
quickly reaches acceptable values (below cr = 150). Similarly to what happens
in the GA, we witness a drop in the price, followed by a slight increase, and
then from there on it decreases until the end of the execution of the algorithm.
The boxplot concerning the cost, Fig. 3.40c, shows us that the baseline was not
surpassed and that there is relatively high variability in the prices of the best
individuals.

The individual with the best fitness found by the Hybrid costs 111.021 × 104 AC
and has a structural constraints value of 0.8500. This is not the cheapest safe
configuration that the algorithm reached, that one costs 105.288 × 104 AC and has
a structural constraints value of 0.981. The graphical comparison of the geometry
of these bridges against the baseline is shown in Fig. 3.41. The evolved solutions
are using a harp cable system while the baseline uses a fan cable system. The
towers of the evolved structures are closer to the center of the bridge than the
ones on the baseline.
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Figure 3.40: Boxplots created with the best individual of each of the 20 Hybrid
runs. The cost is presented in the tens of thousands. The red line in the cost
boxplot is the cost of the baseline solution and in the structural constraints plot is
the threshold of safety (1).

Figure 3.41: Graphical comparison of the baseline (blue), the best (pink), and the
cheapest (red) from the Hybrid.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure 3.42: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best Hybrid seed. On
the left side, we have an activity plot that provides insights into the regions that
were more explored. The activity plot employs a logarithmic scale with a base of
10.

This time we cannot see a clear correspondence between more searched areas
and higher values of fitness. The spots of high activity in the activity plot of Fig.
3.42a are more sparse throughout the feature space. The individuals of higher
fitness are mostly located in the bottom left corner of the fitness heatmap (Fig.
3.42b), which is not commonly the case. The majority of the fitness heatmaps
show higher levels of fitness at the top right corner of this projection of the feature
space. The space seems to be illuminated in a more uniform manner than in the
ones shown by ME-MAP-Elites and CMA-ME, closer to what happened with the
GA. The remainder of the fitness heatmaps and activity plots concerning this seed
are shown in Appendix A, section A.6.

Looking at the plot concerning the number of elites added to the archive over
time in Fig. 3.43a we can see that on average the Hybrid is capable of finding 100
000 distinct individuals in the feature space. Nonetheless, we can see that there is
a noticeable difference in the number of elites in the archives from different runs,
perceived by the size of the shaded area. By looking at the fitness histogram in
Fig. 3.43b we gain some insight into the fitness level of the individuals in the
archives at the end of the execution of the algorithm. We can see that the large
majority of the individuals are unfeasible and that the feasible portion is small.

Table 3.9 helps us see some aspects that were already stated. The average number
of unique feasible solutions discovered by the Hybrid (column f) is slightly over
3 000, which is low considering the numbers registered by ME-MAP-Elites. The
percentage of elites added to the archive (column coverage) is noteworthy, with
on average 25% of the created individuals being added to the archive, beating
CMA-ES and the GA, for example. Only 1 out of the 20 runs was not able to find
a feasible individual (seed 3093707613).
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Figure 3.43: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.

Table 3.9: Diversity statistics for each of the 20 Hybrid seeds. Floating point val-
ues are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
3312140771 100193 0.250 75516.964 3994 873 0 0
3904300547 58530 0.146 45285.664 604 149 0 0
3632522327 108938 0.272 81169.749 3668 596 0 0
1615975349 111617 0.279 84361.641 4567 888 0 0
339781825 112224 0.281 88575.836 6013 1300 0 0
2167276161 107932 0.270 80298.632 3187 749 0 0
2843920188 120148 0.300 98236.185 5492 1297 0 0
4292015115 112594 0.281 87278.825 4551 1160 0 0
4283489550 99145 0.248 74219.072 3491 838 0 0
4192130457 94017 0.235 70998.009 3335 576 0 0
2296412008 108845 0.272 86096.757 3131 793 0 0
3751734061 80710 0.202 59769.505 1677 353 0 0
2436285545 108710 0.272 76271.915 3413 544 0 0
380819443 118614 0.297 85976.895 4033 983 0 0
2361473753 121551 0.304 90869.093 3990 863 0 0
2429895707 111386 0.278 82723.653 3317 680 0 0
3350892851 114776 0.287 88929.175 4261 821 0 0
4273106102 59943 0.150 45372.794 470 109 0 0
1225867867 117052 0.293 88984.052 3532 679 0 0
3093707613 50151 0.125 37372.135 0 0 0 0
mean 100853.800 0.252 76415.328 3336.300 712.550 0 0
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3.4.7 Non-dominated Sorting Genetic Algorithm II Results

By analyzing the fitness plot of Fig. 3.44, it can be seen that the fitness of the best
increases rapidly at the beginning of the optimization, then decreases until the
100 000 evaluations mark, stabilizing a little over 2 of fitness. Close to the 400
000 evaluations mark, we can see a slight increase in fitness. The average fitness
of the population is slowly increasing for the most part of the execution of the
algorithm but remains at values considerably lower than the best, which means
that the population is mostly filled with individuals with low fitness.

The structural constraints plot of Fig. 3.45 presents some fluctuations and shows
that the performance of the algorithm is highly irregular, due to the large shaded
area and the constant spikes in the average line. By observing the plot concerning
the cost of the best in Fig. 3.46 we can see that at the start it rapidly decreases,
reaching values around 125 × 104AC at the 50 000 evaluations mark. From there
on, the cost stabilizes.

By examining the boxplots of Fig. 3.47 we see that NSGA-II was able to find feasi-
ble bridge configurations in between runs. This is supported by the values shown
in column f of Table 3.10, concerning the number of unique feasible individuals
that were discovered by each seed. Only 4 seeds failed to find feasible structures,
and 2 others found less than 5 during the entire run.

The baseline was not surpassed by any of the structures evolved by NSGA-II. The
best individual has a price of 102.660 × 104 AC and a structural constraints value
of 0.8963, rendering it 11.306 × 104 AC more expensive. The cheapest solution
discovered costs 98.114 × 104 AC and has a structural constraints value of 0.9972,
resulting in an additional cost of 6.76 × 104 AC. The graphical comparison of the
geometry of these three structures is depicted in Fig. 3.48. We can see that the
NSGA-II structures are taller than the baseline and have a different cable system.
The baseline uses a fan cable system, while the evolved bridges use a semi-fan
cable system.
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Figure 3.44: NSGA-II fitness per evaluation. The lines in full are averages of 20
seeds and the shaded is the average ± standard deviation.
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Figure 3.45: Structural constraints value achieved by NSGA-II. The line in full is
the average of 20 runs and the shaded is the average ± standard deviation of the
best individual per evaluation. The maximum y value was limited.
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Figure 3.46: Cost achieved by NSGA-II in the tens of thousands of euros. The line
in full is the average of 20 runs and the shaded is the average ± standard devia-
tion of the best individual per evaluation. The maximum y value was limited.
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Figure 3.47: Boxplots created with the best individual of each of the 20 NSGA-
II runs. The cost is presented in the tens of thousands. The red line in the cost
boxplot is the cost of the baseline solution and in the structural constraints plot is
the threshold of safety (1).
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Figure 3.48: Graphical comparison of the baseline (blue), the best (pink), and the
cheapest (red) from the NSGA-II.

The activity plot (Fig. 3.49a) tells us that the algorithm spent most of the time
in the same regions, which resulted in a poor exploration of the feature space,
seen by a large amount of empty (white) cells. Despite the low exploration, the
algorithm was still able to discover several distinct feasible individuals, seen by
the orange/yellow portion of the filled cells in the fitness heatmap of Fig. 3.49b.
The remainder of the fitness heatmaps and activity plots concerning this seed are
shown in Appendix A, section A.7.

The plot concerning the number of elites in the archive over time, Fig. 3.50a, is
particularly interesting because it differs the most from the similar plots for the
other approaches in terms of shape. The line is shaped in a logarithmic style,
instead of the straight line style, indicating that the algorithm was reaching its
peak in terms of diversity. We can also see that there is some variability between
runs, by the increasing of the shaded area towards the end of the evolution. Aside
from the shape differences, we also see that the average number of elites in the
archive is very low, in concrete, only around 3 000 individuals out of the 400
000 created were saved in the archive. By analyzing the fitness distribution of
Fig. 3.50b we notice that from the few individuals stored in the archive, most are
unfeasible solutions (fitness below 3).

By examining the information in Table 3.10 we can see that the algorithm had
difficulty finding feasible solutions and the ones that it managed to find are not
competitive with the baseline. The individuals added to the archive account for
less than 1% of the created individuals.
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(a) Activity plot.

0.0 0.2 0.4 0.6 0.8 1.0
feature_0

0.0

0.2

0.4

0.6

0.8

1.0

fe
at

ur
e_

1

0

1

2

3

4

(b) Fitness heatmap.

Figure 3.49: On the right side, we present a projection of features 0 and 1 from the
grid archive, showcasing the fitness results obtained by the best NSGA-II seed.
On the left side, we have an activity plot that provides insights into the regions
that were more explored. The activity plot employs a logarithmic scale with a
base of 10.
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Figure 3.50: Plots concerning only the individuals added to the grid archive. On
the left, the number of elites in the archive is shown per evaluation. The line
in full is the average of the 20 seeds and the shaded is the average ± standard
deviation. On the right, we present a histogram of the distribution of fitness in
the archives at the end of the executions of the algorithm. All the fitness values in
the 20 archives were grouped together and then utilized to create the histogram
with 50 bins.
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Table 3.10: Diversity statistics for each of the 20 NSGA-II seeds. Floating point
values are rounded to 3 decimal points.

seed num_elites coverage qd_score f f_arch b_b b_b_arch
1498273391 3796 0.009 4581.014 1455 353 0 0
566925520 3587 0.009 4050.353 1035 287 0 0
412576734 3827 0.010 3889.529 838 242 0 0
1430896779 2534 0.006 2624.701 1714 199 0 0
841651272 2217 0.006 2135.847 1349 111 0 0
1487410694 3385 0.008 3175.047 490 139 0 0
2866475345 2448 0.006 2463.373 758 142 0 0
3821237647 3217 0.008 3050.584 450 164 0 0
1953163308 4116 0.010 4475.543 689 335 0 0
426689665 2365 0.006 1775.064 105 30 0 0
1715958619 2894 0.007 2332.767 78 36 0 0
3407815407 2916 0.007 2340.034 101 45 0 0
188789644 3744 0.009 3466.366 112 55 0 0
2578609284 1930 0.005 1300.834 30 18 0 0
3071952282 2502 0.006 1713.484 2 2 0 0
2639351381 3644 0.009 2956.873 1 1 0 0
745460049 3108 0.008 2369.038 0 0 0 0
538106981 2724 0.007 1912.609 0 0 0 0
2943103388 2311 0.006 1532.266 0 0 0 0
1314091562 1986 0.005 1350.948 0 0 0 0
mean 2962.550 0.007 2674.814 460.350 107.950 0 0

3.4.8 Results Combined

Now that we already analyzed the performance of the algorithms separately, we
are going to see how they compare with each other. For that, we will analyze
how the algorithms performed in terms of the best individuals found. When we
examine the boxplot of Fig. 3.51 we can divide the algorithms into three groups.
The first group is solely comprised by the MAP-Elites variant because it exhibits
the worst level of optimization. Since we are using the best individuals from each
run, we can see that MAP-Elites was not able to find even one feasible solution,
that is, an individual with a cost below cr = 150 and a structural constraints value
of at most 1.

The second group includes the Hybrid, the GA, and the NSGA-II. These algo-
rithms show a decent amount of optimization in most of the runs executed but
do not reach the level of the remaining algorithms.

The third group contains the remaining three algorithms, CMA-ME, ME-MAP-
Elites, and CMA-ES. All use instances of CMA-ES under the hood, indicating
that the optimization capabilities of CMA-ES is the deciding factor. Within the
high-performant algorithms, we can still see that CMA-ME basically ties up with
the best individuals discovered by CMA-ES but is more consistent, with all the
individuals (the best) scoring higher than 3.5 fitness. ME-MAP-Elites is as consis-
tent as CMA-ME, but falls a little short in raw performance.

The structural constraints values of the best individuals from each algorithm are
presented in the boxplots of Fig. 3.52. By looking at the boxplot of Fig. 3.52a
we see that the worst algorithm is MAP-Elites, not being able to minimize this
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Figure 3.51: Boxplots created with the fitness of the best individuals found in each
of the 20 runs executed by the algorithms.

objective. The remaining algorithms were all capable of minimizing it, however,
we can see that NSGA-II, GA, CMA-ES, and the Hybrid failed to optimize it in
some runs. In the close up of this boxplot, Fig. 3.52b, we can see that the outlier
in CMA-ME is from a run that was also able to minimize this objective. Similarly
to CMA-ME, ME-MAP-Elites optimized the structural constraints value in all 20
executions of the algorithm but presents higher variability.

If we had only the cost boxplot from Fig. 3.53, we would assume that MAP-
Elites was a somewhat competent option, but we showed that this is not the case,
we also need to consider the structural constraints values. This only means that
MAP-Elites was able to find some individuals priced under cr, however, they do
not meet the structural constraints in order for the bridge to be safe. Besides the
case of MAP-Elites we can once again separate the algorithms into groups, but
this time in terms of cost. We can see that NSGA-II, the GA, and the Hybrid are
able to discover reasonably priced structures, but they fail to beat the cost of the
baseline solution. The approaches utilizing instances of CMA-ES demonstrate
the best results in terms of cost. CMA-ES by itself has some runs in which it sur-
passed the baseline, but it is not consistent in doing it. ME-MAP-Elites, although
more consistent, failed at finding cheaper bridges than the baseline. CMA-ME on
the other hand, only failed to beat the baseline in one instance.

Table 3.11 presents the cost and structural constraints values of the best individ-
uals and the least expensive individuals from all the algorithms that found fea-
sible solutions. Then the differences between these values and the counterparts
from the baseline are added to demonstrate how they compare. Since MAP-Elites
failed to find feasible solutions, its row is empty. For CMA-ES the best individ-
ual is also the cheapest, so only one row was added. Additionally, the column
beat_baseline was included to inform the reader how the algorithms performed
between runs in terms of beating the baseline.
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(a) Structural constraints not limited in the y axis.
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Figure 3.52: Boxplots created with the structural constraints of the best individ-
uals found in each of the 20 runs executed by the algorithms. The red line is the
threshold of safety (1). A close up was added to shown the behavior of the algo-
rithms around 1.
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Figure 3.53: Boxplots created with the cost of the best individuals found in each of
the 20 runs executed by the algorithms. The cost is presented in tens of thousands.
The red line is the cost of the baseline solution.

We see again that only CMA-ES and CMA-ME were capable of beating the base-
line solution. The configurations in question present a saving of around 4 × 104

AC, which is a considerable amount. The best individuals from the GA and the
Hybrid are considerably safer than the baseline. Still, they are much more ex-
pensive than it, redeeming their selection almost out of option in most cases, due
to the preference for the least expensive options. Graphical comparisons of the
structures featured in the table with the baseline are shown in the subsection of
the respective algorithm.

Even though CMA-ES was able to surpass the baseline, Table 3.12 shows us that
on average the algorithm is relatively far from the baseline cost, losing to ME-
MAP-Elites, an algorithm that failed to beat the baseline in the 20 runs of our
experiment. This is supported by the variability demonstrated by CMA-ES in the
boxplot of Fig. 3.53. CMA-ME, as previously shown in the cost boxplot, easily
surpassed the baseline, with the average cost of the best individuals being lower
than the one of the baseline. The Hybrid and the GA are very similar, however,
the Hybrid found on average the safest structures while still beating the average
cost of the GA.

An important part of this work is the study of the diversity presented by each
of the approaches tested. By looking at Fig. 3.54 and Table 3.13 we can see that
the worst algorithm in terms of diversity is NSGA-II, storing on average in the
archive less than 1% of the 400 000 individuals created per run. The number
of elites in the grid archive by evaluation presented by the GA and CMA-ES are
very similar on average, however, the latter has a significant amount of variability
between runs, perceptible by the size of the respective shaded area. Then we have
the Hybrid, which consistently added around 25% of the total individuals into the
archive. This makes it the worst performing QD algorithm from the ones tested.
From the 400 000 individuals created, CMA-ME and ME-MAP-Elites store 50%
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Table 3.11: Cost and structural constraints value of the cheapest and best individ-
uals found by each algorithm. The rows in bold represent the cheapest solutions.
Floating point values are rounded to 3 decimal points. S(x) is the structural con-
straints value and C(x) is the cost, which is presented in the tens of thousands.
The beat_baseline column shows how many of the runs had a solution that sur-
passed the baseline (cheaper but still safe).

algorithm C(x) diff C(x) S(x) diff S(x) beat_baseline

GA 114.147 22.793 0.8527 -0.1435 0/20108.352 16.998 0.9915 -0.0047
CMA-ES 87.339 -4.015 1.000 0.0038 4/20

CMA-ME 87.652 -3.702 0.9914 -0.0048 19/2087.39 -3.964 0.9994 0.0032

ME-ME 92.422 1.068 0.9876 -0.0086 0/2091.908 0.554 0.9983 0.0021

Hybrid 111.021 19.667 0.85 -0.1462 0/20105.288 13.934 0.981 -0.0152

NSGA-II 102.66 11.306 0.8963 -0.0999 0/2098.114 6.760 0.9972 0.0010
ME - - - - 0/20

Table 3.12: Averages of the fitness, cost (C(x)) and structural constraints value
(S(x)) for each algorithm, considering the best individual from each run. Floating
point values are rounded to 3 decimal points.

algorithm fitness C(x) S(x)
GA 3.144 129.930 0.912
CMA-ES 3.376 104.519 1.224
ME 1.188 139.006 5.908
CMA-ME 3.688 89.150 0.995
ME-ME 3.591 97.657 0.950
Hybrid 3.315 127.911 0.851
NSGA-II 3.061 131.487 1.066
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Figure 3.54: The number of elites in the archive during the execution for each
algorithm. The line in full is the average of the 20 seeds and the shaded is the
average ± standard deviation.

and 75% in the archive in a very consistent manner. However, the best algorithm
is MAP-Elites, with an impressive 95% of the created individuals being added
to the archive, which means that almost all of the individuals were significantly
different from each other.

Another important aspect is understanding the fitness distribution of the indi-
viduals stored in the archives. For that we created fitness histograms for all the
algorithms, using the aggregation of all the fitness values from the individuals
stored in the 20 different archives of each algorithm. These histograms are shown
in Fig. 3.55. In Fig. 3.55a we show the histograms from all the algorithms. It can
be seen that the archives from MAP-Elites were filled by mostly individuals with
fitness close to 0. We then, in Fig. 3.55b, show the same plot but without the data
from MAP-Elites, to better demonstrate the results from the other algorithms.
Aside from MAP-Elites, all the algorithms present a very similar behavior, sum-
marized by two large peaks near 0 and 1 fitness, and then a small peak after 3 of
fitness, which accounts for the feasible portion of the stored individuals. We can
see that the algorithms that added more feasible solutions into the archives were
CMA-ME and ME-MAP-Elites. The portions of feasible solutions of the remain-
ing options are considerably smaller.

In Table 3.13 we present the average diversity statistics for each of the algorithms.
The average number of unique feasible configurations for CMA-ES is a large
number, that does not translate into a high qd_score. This is due to what hap-
pened in one of the runs, where more than 300 000 individuals found were feasi-
ble and considered different in the search space (meaning that the array of genes
is different), but are all mapped into a few cells in the feature space, easily per-
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Figure 3.55: Plots concerning the individuals in the archive at the end of the run.
The data from every run of each algorithm was grouped and then used to create a
histogram. The resulting histograms are then stacked on top of each other. Figure
(a) shows the data from the 7 algorithms, while figure (b) omits the results from
MAP-Elites, to better show the results from the remaining algorithms.
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Table 3.13: Averages of the diversity statistics for all the algorithms. Floating
point values are rounded to 3 decimal points.

algorithm coverage qd_score f f_arch b_b b_b_arch
GA 0.109 47673.324 20768.200 998.400 0.000 0.000
CMA-ES 0.115 35725.538 109087.000 1388.650 16290.500 3.600
ME 0.951 5469.435 0.000 0.000 0.000 0.000
CMA-ME 0.508 241562.496 113854.650 25827.450 1873.750 91.550
ME-ME 0.753 422310.000 54010.250 37442.800 0.000 0.000
Hybrid 0.252 76415.328 3336.300 712.550 0.000 0.000
NSGA-II 0.007 2674.814 460.350 107.950 0.000 0.000

ceived by the low number of feasible individuals in the archive. The qd_scores
of CMA-ME and ME-MAP-Elites are, as expected by observing the fitness his-
tograms, the highest. The latter is able to achieve a higher qd_score than the first,
even though it found less feasible solutions. This tells us that ME-MAP-Elites
found more diverse individuals in the feature space and not only in the search
space, leading to a higher number of high-fit individuals saved in the archive.
CMA-ME stands out because on average is able to find more than 90 significantly
different solutions in the feature space that are structurally safe and cheaper than
the baseline while having a coverage of 50%.

To check if the results from the algorithms are significantly different we per-
formed a statistical analysis in terms of fitness, cost (C(x)), structural constraints
(S(x)), coverage, f_arch (number of feasible individuals in the archive at the end
of the execution), and b_b_arch (number of individuals that beat the baseline in
the archive at the end of the run). The first three will help us understand if the
algorithms differ in terms of raw optimization, and the others are used to gain
insight into the magnitude of the differences observed in terms of diversity.

First, we verified if the assumptions for the employment of parametric tests were
met by our data, which did not hold. With this in mind, we used the Kruskal-
Wallis test for the multiple comparisons. This test’s results told us that there are
significant differences for all the cases, so we followed it with a post-hoc analysis
with the Mann-Whitney test and Bonferroni correction. A significance level of
0.05 was used for every statistical test, however, it was corrected for the post-hoc
analysis.

The effect sizes of the pairwise one-tailed Mann-Whitney tests are presented in
separate tables, each one concerning one of the aspects of the study mentioned
previously. The null hypothesis, H0, is that one is no better than the other, and
the alternative hypothesis, H1, is that one is better than the other. In our case,
the test is used between the algorithm in the row against the algorithm in the
column, which means that if there are significant differences, the algorithm of the
row is statistically better than the other. The effect sizes are only calculated for the
pairs in which there are significant differences, that is, the statistical test rejected
the null hypothesis, and so, the ones in which this is not verified are represented
as blank cells in the tables. The effect sizes were computed with the formulas
presented in equations 3.2 and 3.3. The values of the effect sizes are presented in
the following notation (the negative effect sizes follow the same rules, but with
the negative values and use the symbol "-" instead):
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Table 3.14: Mann-Whitney effect sizes for the fitness.

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
GA +++
CMA-ES +++ +++ +++ +++
ME
CMA-ME +++ +++ +++ +++ +++ +++
ME-ME +++ +++ +++ +++
Hybrid +++
NSGA-II +++

Table 3.15: Mann-Whitney effect sizes for the cost.

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
GA
CMA-ES +++ +++ +++ +++
ME
CMA-ME +++ +++ +++ +++ +++ +++
ME-ME +++ +++ +++ +++
Hybrid
NSGA-II

• "+" - small effect size (<= 0.3)

• "++" - medium effect size (> 0.3 & <= 0.5)

• "+++" - large effect size (>= 0.5)

Z =
U − n1∗n2

2√
n1∗n2∗(n1+n2+1)

12

(3.2)

r = Z/
√

n (3.3)

where U is the test statistic, r the effect size, n1 and n2 are the number of ob-
servations of from each sample, and n is the sum of all observations, that is,
n = n1 + n2.

Before, in the analysis of the fitness boxplots, we mentioned that the algorithms
could be separated into three groups. By examining Table 3.14 we can see that
those three groups hold up for the most part. The GA, the Hybrid, and the
NSGA-II do not present significant differences between each other but do with
the rest. MAP-Elites significantly differs from all others, cementing itself as the
worst algorithm in terms of optimization. Then in the top performer group, we
see that ME-MAP-Elites and CMA-ES are not significantly different. CMA-ME is
significantly different from every other algorithm. All the differences presented
have a large effect size.

In terms of cost, we observe that CMA-ES and ME-MAP-Elites are significantly
better than the GA, the Hybrid and the NSGA-II, however, they are not signifi-
cantly different from each other. CMA-ME is better than all other algorithms.

The statistical results for the structural constraints shown in Table 3.16 are some-
what different. MAP-Elites was not capable of minimizing this objective while
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Table 3.16: Mann-Whitney effect sizes for the structural constraints.

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
GA +++ +++ +++
CMA-ES +++
ME
CMA-ME +++
ME-ME +++ +++
Hybrid +++ +++ +++ +++
NSGA-II +++

Table 3.17: Mann-Whitney effect sizes for the coverage, which is the ratio between
the number of elites and the number of individuals created in total (400 000).

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
GA +++
CMA-ES +++
ME +++ +++ +++ +++ +++ +++
CMA-ME +++ +++ +++ +++
ME-ME +++ +++ +++ +++ +++
Hybrid +++ +++ +++
NSGA-II

the remaining could, and the statistical tests confirm that all the algorithms are
better than it. For the most part, the algorithms do not present significant dif-
ferences between each other. The Hybrid is better than CMA-ES, CMA-ME and
ME-MAP-Elites. The GA is significantly better than CMA-ME and ME-MAP-
Elites. These results also show that ME-MAP-Elites is better than CMA-ME at
optimizing this objective.

The statistical tests from Table 3.17 confirm what we could already observe in
Fig. 3.54. MAP-Elites is significantly better than the remaining algorithms. Then
comes ME-MAP-Elites, CMA-ME, the Hybrid, and CMA-ES and the GA. NSGA-
II is the worst algorithm in this matter.

In the case of the number of feasible solutions in the archive at the end of the
execution of the algorithm, Table 3.18 tells us that MAP-Elites is worst than every
other algorithm, as expected, given that it did not find a single feasible solution.
The second worst algorithm is NSGA-II, only beating MAP-Elites. ME-MAP-
Elites and CMA-ME are better than the remaining but not better than each other.
CMA-ES, besides the two worst algorithms in this matter, also beats the Hybrid.

Table 3.18: Mann-Whitney effect sizes for f_arch, which is the number of unique
feasible individuals in the archive at the end of the run.

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
GA +++ +++
CMA-ES +++ +++ +++
ME
CMA-ME +++ +++ +++ +++ +++
ME-ME +++ +++ +++ +++ +++
Hybrid +++ +++
NSGA-II +++
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Table 3.19: Mann-Whitney effect sizes for b_b_arch, which is the number of
unique individuals that beat the baseline in the archive at the end of the run.

GA CMA-ES ME CMA-ME ME-ME Hybrid NSGA-II
GA
CMA-ES
ME
CMA-ME +++ +++ +++ +++ +++ +++
ME-ME
Hybrid
NSGA-II

Since only CMA-ES and CMA-ME were able to beat the baseline, we are only
interested in the tests concerning these two algorithms. By looking at Table 3.19
we can see that, even though CMA-ES was able to beat the baseline it was not
enough for it to be considered significantly different that the others. CMA-ME
however, differed significantly from the rest.

To conclude, CMA-ES was able to find the least expensive bridge but lacks con-
sistency. On the other hand, MAP-Elites presented the best results in terms of
diversity but at the expense of the optimization performance. The GA, NSGA-II,
and the Hybrid demonstrated similar mediocre results in terms of optimization
and diversity. ME-MAP-Elites and CMA-ME are the best all-rounders but the
first is better at finding diversity and the second at optimizing the structures.
Overall, CMA-ME seems to be the best option, consistently succeeding at beat-
ing the baseline while maintaining very acceptable levels of diversity. These two
QD algorithms show that one can search for diversity without compromising the
optimization performance.
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Conclusion

In this work, we addressed the structural optimization of Cable-Stayed Bridges
(CSBs), more specifically cable-stayed footbridges, with Quality Diversity (QD)
algorithms. The optimization of these types of structures is challenging, due to
the fact that the design variables are not independent of each other, meaning that
a modification of one of them can cause the value of another to become unfit,
which may result in an unfeasible individual. With the utilization of QD tech-
niques, we aim to create a set of diverse bridge configurations, thus possibly re-
ducing the time that it takes to discover novel solutions when compared with
non-QD approaches. This would more rapidly allow the user to choose the con-
figuration that better suits his preferences.

One of the goals was to research what has been done in the fields of Quality
Diversity and structural optimization of Cable-Stayed Bridges. We concluded
that QD algorithms have been successfully utilized in a variety of tasks and that
the optimization of CSBs is mainly done through gradient-based approaches and
Genetic Algorithms (GAs). This indicates that experimenting with this type of
algorithm in this problem is reasonable.

Based on our research, we selected the following QD algorithms: Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites), Covariance Matrix Adaptation MAP-
Elites (CMA-ME), Multi-Emitter MAP-Elites (ME-MAP-Elites) and a Hybrid al-
gorithm from [Vinhas et al., 2016]. The GA and Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) were used as control samples, to help us under-
stand the significance of the results gathered with the QD algorithms. We added
Non-dominated Sorting Genetic Algorithm II (NSGA-II) because it is a multi-
objective algorithm and since we are minimizing two objectives, we wanted to
see how it fares against the other algorithms.

Concerning optimization performance alone, CMA-ES was able to find the least
expensive feasible structure, closely followed by CMA-ME, however, it lacked
consistency in finding individuals that beat the baseline in between runs. MAP-
Elites was the best algorithm in terms of diversity, on average adding 95% of the
created individuals to the grid archive, but the performance of those individuals
is very poor. It ended up not being able to find even one feasible individual in the
20 runs combined. The GA and CMA-ES demonstrated similar results in terms of
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diversity, adding around 10% of the created individuals into the archive. When
compared to the GA, CMA-ES achieved better results, as it surpassed the base-
line in 4 different runs, while the GA could not. The NSGA-II and the Hybrid
demonstrated similar optimization results to the GA, but the first was the worst
algorithm in terms of diversity, adding less than 1% of the created individuals
to the archive, whilst the Hybrid added on average 25%. From the algorithms
evaluated, two stood out, namely ME-MAP-Elites and CMA-ME, showing con-
sistently good results both in diversity and optimization. While ME-MAP-Elites
presented more diversity (75% against 50%), CMA-ME presented higher levels
of optimization, surpassing the baseline in 19 instances, while ME-MAP-Elites
failed to do so. With this in mind, we conclude that CMA-ME was the best algo-
rithm, finding better individuals than the baseline while showing a good level of
diversity.

In future work, one may want to extend this study by using a different feature
space for the QD algorithms. It would also be interesting to develop a parametric
study. For instance, increasing the number of emitters used by CMA-ME and ME-
MAP-Elites, and verifying how this change impacts their performances. Also,
using a different configuration for the bridges would be helpful to assess how
this approach generalizes. This could be achieved through the optimization of
structures of different lengths or with more options for the number of cables.
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(a) Activity plot.

0.0 0.2 0.4 0.6 0.8 1.0
feature_0

0.0

0.2

0.4

0.6

0.8

1.0

fe
at

ur
e_

2

0

1

2

3

4

(b) Fitness heatmap.

Figure A.1: On the right we have a projection of features 0 and 2 of the grid
archive for the best GA seed. On the left is the activity plot, to help us understand
the areas that were more searched. The activity plot uses a logarithmic scale of
base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.2: On the right we have a projection of features 0 and 3 of the grid
archive for the best GA seed. On the left is the activity plot, to help us understand
the areas that were more searched. The activity plot uses a logarithmic scale of
base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.3: On the right we have a projection of features 1 and 2 of the grid
archive for the best GA seed. On the left is the activity plot, to help us understand
the areas that were more searched. The activity plot uses a logarithmic scale of
base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.4: On the right we have a projection of features 1 and 3 of the grid
archive for the best GA seed. On the left is the activity plot, to help us understand
the areas that were more searched. The activity plot uses a logarithmic scale of
base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.5: On the right we have a projection of features 2 and 3 of the grid
archive for the best GA seed. On the left is the activity plot, to help us understand
the areas that were more searched. The activity plot uses a logarithmic scale of
base 10.

A.2 Covariance Matrix Adaptation Evolution Strategy
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.6: On the right we have a projection of features 0 and 2 of the grid
archive for the best CMA-ES seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.7: On the right we have a projection of features 0 and 3 of the grid
archive for the best CMA-ES seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.8: On the right we have a projection of features 1 and 2 of the grid
archive for the best CMA-ES seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.9: On the right we have a projection of features 1 and 3 of the grid
archive for the best CMA-ES seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.10: On the right we have a projection of features 2 and 3 of the grid
archive for the best CMA-ES seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.

A.3 Covariance Matrix Adaptation Multi-dimensional
Archive of Phenotypic Elites
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.11: On the right we have a projection of features 0 and 2 of the grid
archive for the best CMA-ME seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.12: On the right we have a projection of features 0 and 3 of the grid
archive for the best CMA-ME seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.13: On the right we have a projection of features 1 and 2 of the grid
archive for the best CMA-ME seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.14: On the right we have a projection of features 1 and 3 of the grid
archive for the best CMA-ME seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.15: On the right we have a projection of features 2 and 3 of the grid
archive for the best CMA-ME seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.

A.4 Multi-Emitter Multi-dimensional Archive of Phe-
notypic Elites
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.16: On the right we have a projection of features 0 and 2 of the grid
archive for the best ME-MAP-Elites seed. On the left is the activity plot, to help
us understand the areas that were more searched. The activity plot uses a loga-
rithmic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.17: On the right we have a projection of features 0 and 3 of the grid
archive for the best ME-MAP-Elites seed. On the left is the activity plot, to help
us understand the areas that were more searched. The activity plot uses a loga-
rithmic scale of base 10.
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(a) Activity plot.

0.0 0.2 0.4 0.6 0.8 1.0
feature_1

0.0

0.2

0.4

0.6

0.8

1.0

fe
at

ur
e_

2

0

1

2

3

4

(b) Fitness heatmap.

Figure A.18: On the right we have a projection of features 1 and 2 of the grid
archive for the best ME-MAP-Elites seed. On the left is the activity plot, to help
us understand the areas that were more searched. The activity plot uses a loga-
rithmic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.19: On the right we have a projection of features 1 and 3 of the grid
archive for the best ME-MAP-Elites seed. On the left is the activity plot, to help
us understand the areas that were more searched. The activity plot uses a loga-
rithmic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.20: On the right we have a projection of features 2 and 3 of the grid
archive for the best ME-MAP-Elites seed. On the left is the activity plot, to help
us understand the areas that were more searched. The activity plot uses a loga-
rithmic scale of base 10.

A.5 Multi-dimensional Archive of Phenotypic Elites
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.21: On the right we have a projection of features 0 and 2 of the grid
archive for the best MAP-Elites seed. On the left is the activity plot, to help us
understand the areas that were more searched. The activity plot uses a logarith-
mic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.22: On the right we have a projection of features 0 and 3 of the grid
archive for the best MAP-Elites seed. On the left is the activity plot, to help us
understand the areas that were more searched. The activity plot uses a logarith-
mic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.23: On the right we have a projection of features 1 and 2 of the grid
archive for the best MAP-Elites seed. On the left is the activity plot, to help us
understand the areas that were more searched. The activity plot uses a logarith-
mic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.24: On the right we have a projection of features 1 and 3 of the grid
archive for the best MAP-Elites seed. On the left is the activity plot, to help us
understand the areas that were more searched. The activity plot uses a logarith-
mic scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.25: On the right we have a projection of features 2 and 3 of the grid
archive for the best MAP-Elites seed. On the left is the activity plot, to help us
understand the areas that were more searched. The activity plot uses a logarith-
mic scale of base 10.

A.6 Hybrid
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.26: On the right we have a projection of features 0 and 2 of the grid
archive for the best Hybrid seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.27: On the right we have a projection of features 0 and 3 of the grid
archive for the best Hybrid seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.28: On the right we have a projection of features 1 and 2 of the grid
archive for the best Hybrid seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.29: On the right we have a projection of features 1 and 3 of the grid
archive for the best Hybrid seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.30: On the right we have a projection of features 2 and 3 of the grid
archive for the best Hybrid seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.

A.7 Non-dominated Sorting Genetic Algorithm II
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.31: On the right we have a projection of features 0 and 2 of the grid
archive for the best NSGA-II seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.32: On the right we have a projection of features 0 and 3 of the grid
archive for the best NSGA-II seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.33: On the right we have a projection of features 1 and 2 of the grid
archive for the best NSGA-II seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.34: On the right we have a projection of features 1 and 3 of the grid
archive for the best NSGA-II seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.
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(a) Activity plot.
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(b) Fitness heatmap.

Figure A.35: On the right we have a projection of features 2 and 3 of the grid
archive for the best NSGA-II seed. On the left is the activity plot, to help us un-
derstand the areas that were more searched. The activity plot uses a logarithmic
scale of base 10.

104



Appendix B

Conference Paper

B.1 Reducing the Price of Stable Cable Stayed Bridges
with CMA-ES

B.1.1 Remarks

In this paper, the cost of the bridges is said to be in the thousands of euros (k AC),
but in fact the cost is in the tens of thousands. The analysis of the results still
holds because this mistake is verified in all the cost values.
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Abstract. The design of cable-stayed bridges requires the determina-
tion of several design variables’ values. Civil engineers usually perform
this task by hand as an iteration of steps that stops when the engineer is
happy with both the cost and maintaining the structural constraints of
the solution. The problem’s difficulty arises from the fact that changing
a variable may affect other variables, meaning that they are not indepen-
dent, suggesting that we are facing a deceptive landscape. In this work,
we compare two approaches to a baseline solution: a Genetic Algorithm
and a CMA-ES algorithm. There are two objectives when designing the
bridges: minimizing the cost and maintaining the structural constraints
in acceptable values to be considered safe. These are conflicting objec-
tives, meaning that decreasing the cost often results in a bridge that is
not structurally safe. The results suggest that CMA-ES is a better op-
tion for finding good solutions in the search space, beating the baseline
with the same amount of evaluations, while the Genetic Algorithm could
not. In concrete, the CMA-ES approach is able to design bridges that
are cheaper and structurally safe.

Keywords: Genetic Algorithm · CMA-ES · Optimization · Cable Stayed
Bridges

1 Introduction

Bridges are critical components of every transportation network infrastructure.
They must be designed to be safe, robust and durable and simultaneously cost-
effective and, sometimes, aesthetic pleasing, which are often competing objec-
tives [18, 17, 27, 3]. The restrictions on the structural design standards vary from
country to country and specify the requirements that bridges must satisfy, such
as safety versus heavy vehicle loads, high-velocity winds and earthquakes. The
bridge must also be within serviceability requirements which specify the maxi-
mum deflections, stresses and oscillations when subject to dynamic actions, such
as pedestrians’ movements. Each bridge is planned by a structural design firm
or a consortium of several companies. The process usually starts with a tender
for the services, in which the choice of the company is based on a set of eval-
uation criteria where, usually, the best commercial proposal (the lowest price)
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wins. Design firms must deliver a solution using the lowest possible resources
(man-hours). For this reason, structural designers do not have the time to eval-
uate all possible solutions, even with simpler designs. As such, any technique
or mechanism to help automate and optimize the design of bridges is, therefore
very valuable as even a small percentage of optimization (without compromising
the bridge safety and requirements) constitutes large sums of money saved for
the public treasury.

Cable-stayed bridges (CSB) are one of the most complex type of bridges to
design, due to the fact that they are highly static indeterminate. Thanks to the
progress that we have seen in computational technologies, we can now build
CSBs that are longer but, at the same time, safer.

In this work, we extend the study conducted in [5, 4] which uses an Evolution-
ary Computation based approach to tackle the problem of designing CSBs. In
concrete, the authors propose the use of a standard Genetic Algorithm (GA)[20]
using a representation based on real numbers to represent each parameter that
one most optimise to design a bridge. The results attained by the proposed ap-
proach were encouraging since the GA was able to optimize this type of bridge
(with some variables fixed) in terms of the structural constraints. However, it
was not able to reduce the costs when compared to a hand design without re-
sorting to some tuning. For this work, we use the Covariance Matrix Adaptation
Evolution Strategy algorithm (CMA-ES)[13] to see if it is able to surpass the
results attained by the GA with the same amount of evaluations as well as the
baseline solution.

In terms of contributions, we enumerate the following: (i) a study of a more
complex problem, due to the number of cables being also evolved, instead of
being static; (ii) a comparison between two optimization algorithms, GA and
CMA-ES; (iii) the results suggest that a standard GA might not be enough to
find efficient solutions.

Additionally, the CMA-ES algorithm was able to discover a bridge with a cost
that is 4.656k AC less than the one of the baseline solution. Taking into account
that the solution was discovered automatically, without any human input, the
result is impressive and opens for further application of evolutionary approaches
in the automatic design of bridges.

The remainder of the paper is divided as follows. Section 2 briefly presents
the related work. In Section 3, the problem is defined and in Section 4, it is
explained how the GA and CMA-ES experiments were modelled. The obtained
results are shown in section 5, and our conclusions are listed in Section 6.

2 Related Work

The first works on the optimum design of CSBs focused on addressing the cable
tensioning problem with fixed geometry and structural sections [23, 26, 1]. More
recently, Genetic Algorithms (GA) have also been used to tackle this problem
[14, 16].
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Including dynamic loads creates additional constraints for the design prob-
lem. Previous researches have focused on earthquakes [25, 8], wind aerodynamics
[2, 19, 22] and pedestrian induced action in cable stayed footbridges [9–11]. These
dynamic loads may cause the bridge to vibrate, which is something that is detri-
mental. To mitigate this problem, there are some options, such as: (i) improve
the sturdiness of the bridge by increasing its mass. This is something that is not
desirable due to the potential increase in cost and the possibility of the resul-
tant bridge not being as aesthetically pleasing as one might want; (ii) Including
control devices like the ones used to retrofit the London Millennium Footbridge,
[7, 6], for example, viscous dampers or tuned mass dampers (TMDs).

Gradient-based optimization techniques have been used to optimize the bridge’s
geometry, sizing and cable tensioning [21, 24]. GAs have also been used to opti-
mize simultaneously these bridge properties [15], although with simpler models
than the ones found in this and in the works on which this article is based [5,
4]. These are based on the works of Ferreira and Simões [10, 11], from where
an already optimized solution (not necessarily a global optimum) was retrieved
and then used as a baseline to help us understand if a given solution is in fact
good. The literature tells us that gradient-based approaches are able to achieve
more rapidly good results than the GA ones. However, compared to a GA, a
gradient-based solution is far harder to parameterize, requiring more time and
effort, while a GA is easier to get up and running.

As far as we know, there are no works applying CMA-ES to CSB design op-
timization. The CMA-ES ability to explore the search space via the exploitation
of co-variance matrix properties of the genotype holds the potential to further
optimize CSBs, beyond existing GA approaches.

3 Problem Definition

In this work, we are evolving configurations for cable-stayed footbridges, mini-
mizing the overall cost of the structure while guaranteeing its structural safety.
The structural safety of the bridge is accomplished when the values of the struc-
tural constraints are at most 1. For an in-depth explanation of this problem, the
reader is advised to read [10].

Each individual is defined by an array composed of 22 variables, whose de-
scriptions and domains can be seen in Table 2. These variables are then utilized
to calculate the price of the bridge and the respective values for the structural
constraints. Given that for a bridge to be considered secure, all of the constraints
need to be less or equal to 1, we resort to using the maximum value of these con-
straints instead of the individual values. In addition to the variable parameters,
the bridges also have fixed ones, which are presented in Table. 1.

In our experiments, we compare our results to a baseline solution, a bridge
configuration optimized by the same approach used in Ferreira’s et al. work [10]
with the same fixed parameters. This bridge has a cost of 91.354 kAC and a
maximum of structural constraints of 0.9962.
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Table 1. Values for the fixed parameters.

Bridge Length (LTotal) 220 meters
Bridge Width 4 meters
Tower Height below deck 10 meters

Table 2. Cable-stayed bridges design variables description and domain values.

Variable Type Description Domain Values
Discrete
DV0 Number of cables 3,4,5,6,7
Geometry
DV1 Central span (tower to tower distance) of the structure [0.9, 1.2]
DV2 Distance between the first and second cables anchorage [0.7, 1.3]

in the lateral span of the deck
DV3 Distance between the tower and the first cable in the [0.7, 1.3]

central span
DV4 Distance between the last cable anchorage and the [0.7, 1.3]

bridge symmetry axis
DV5 Height of the towers [0.1, 2.0]
DV6 Distance where the cables are distributed in the [0.1, 4.0]

top of the towers
DV7 Distance between the top of each tower [0.1, 1.3]
DV8 Distance between each tower at the base [0.1, 1.13]

Control
DV9 Transversal stiffness of the tower-deck connection [0.001, 1000]
DV10 Vertical stiffness of the tower-deck connection [0.001, 1000]
DV11 Transversal damping of the tower-deck connection [0.001, 1000]
DV12 Vertical damping of the tower-deck connection [0.001, 1000]

Sectional and tensioning
DV13 Added mass of the concrete slab [0.1, 7.0]
DV14 Deck section [0.1, 80.0]
DV15 Deck section (triangular section) [0.5, 1.3]
DV16 Tower section (rectangular hollow section) [0.4, 1.5]
DV17 Tower section (rectangular hollow section) [0.1, 20.0]
DV18 Tower section (rectangular hollow section) [0.3, 20.0]
DV19 Tower section (rectangular hollow section) [0.3, 9.0]
DV20 Cables pre-stress [0.7, 3.0]
DV21 Cables cross section [0.5, 9.0]
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4 The Approach

To have a fair comparison with the previous works, we replicated the experiments
conducted with the GA. The parameters used for the algorithm are almost the
same as in [5], apart from the number of generations, and can be seen in Table
3.

The novelty that we add to this problem with this work is by experiment-
ing with CMA-ES, implemented with Distributed Evolutionary Algorithms in
Python (DEAP) framework [12]. The parameters used can be seen in Table 3.
Since the sizes of the population are different, we ensure that the same number
of evaluations is used, so that the results can be compared.

The initial individuals used to start the evolutionary process are created
by uniformly sampling the domain intervals of each variable. This idea is also
utilized in the mutation operator used in the Genetic Algorithm, meaning that
when a gene is chosen to be mutated, the new value is also uniformly sampled
from the domain of the specific variable. In order to deal with the unfeasible
solutions generated by CMA-ES, we correct the specific variable to the minimum
value of the domain if it is lower than it or to the maximum if it is greater than the
maximum value. This process is not performed in the GA, because the variation
operators ensure that the values of the variables are within the required domains,
given that the crossover does not alter the values and the mutation operator,
as previously stated, samples the new value from the domain. In CMA-ES, this
correction is necessary because it is not guaranteed that the generated values
are within the domain boundaries.

The fitness function used for both algorithms is presented in Eq. 1. C(x)
and S(x) are the cost and the structural constraint value of individual x, re-
spectively. The price returned by C(x) is based on pre-determined pricing of the
materials, and S(x) returns the maximum value of the structural constraints of
the individual [10]. In practice, we need to guarantee that the returned value of
S(x) is at most 1.0.

f(x) =





cr/C(x), if C(x) > cr

1 + 1/S(x), if C(x) < cr ∧ S(x) > 1.0

2− (1.0− S(x)) + cr/C(x), if C(x) < cr ∧ S(x) ≤ 1.0

(1)

The fitness function aims to guide the population towards individuals that
have a structural constraint of at most 1.0 and the lowest cost possible. First, by
reducing the cost to a more acceptable value (cr, it is fixed in our experiments,
see Table 3, but can be changed), then search for individuals that are feasible
structurally by rewarding individuals that have S(x) values closer to 1.0, and
finally find individuals that are both feasible and cost-effective (we want the
lowest cost possible). Although we aim to minimize the cost of the structures, it
is important to notice that we want to maximize the fitness value, thus defining
this problem as a maximization problem. In the first branch, the fitness ranges
from 0 to 1, in the second, from 1 to 2, and in the third, it is greater than 2.
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Table 3. Algorithm’s Parameters.

Parameter Value
GA
Generations 40 000
Population size 10
Tournament size 3
Crossover operator Uniform Crossover
Crossover rate (per gene) 0.5
Mutation operator per gene replacement
Mutation rate per gene 0.1
CMA-ES Value
Generations 8 000
µ 25
λ 50
σ 0.5
Common Value
Number of Runs 30
Elite size 1
cr fitness constant 150
Number of evaluations 400 000

5 Experimental Results

The performance of the best individuals during the evolutionary process for the
structural constraints S(x) are presented in Fig. 1. Fig. 3 presents the results
regarding the cost C(x), whilst Fig. 5 presents the results for the fitness function,
f(x). Results are averages of 30 independent runs.

Looking at Fig.1, one can see that both approaches gradually improve the
values of the structural constraints, by gradually getting close to the upper limit
value of 1. Looking at the right panel, one can see that the GA has a steep
descent in the value of the structural constraint, whilst CMA-ES performs a
more slow descent. By the end of the optimization process, both approaches
have reached approximately the same structural constraint values. To better
understand the differences between the approaches we presented a boxplot of
the results regarding the structural constraint for the best individuals. Looking
at Fig. 2 one can see that CMA-ES is capable of optimizing this objective, but
it has some runs where it fails by a relatively bigger margin, leading to a large
mean value. The GA also fails (1 seed out of the 30), but by less. Both curves
converge close to 1.0, which is the desired behavior, meaning that the structural
safety of the bridge is being optimized.

In what concerns the cost, the results are depicted in Fig. 3. Looking at
the results, one can see that during the first 1500 generations, the CMA-ES
(left panel) does not seem to improve the values of the initial solutions. In fact,
looking at the graph, one can see that it slightly increases cost. However, after
generation 1500, the approach starts to rapidly improve the cost of the bridge.
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Fig. 1. Mean structural constraint values of the best individuals of 30 runs for CMA-ES
(on the left) and for the GA (on the right) starting from generation 100 until generation
7 999 and 39 999 generations, respectively. We can see that CMA-ES stabilizes around
the 4 800 generations mark and 28 000 for the GA. The first 100 generations ([0 : 100[)
were not plotted due to the fact that the values of cost and structural constraints in
these generations are extremely large, making the plots unreadable.
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Fig. 2. Boxplot of the structural constraint of the best individual of each run (30 in
total) for CMA-ES (on the left) and the GA (on the right).
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The curve stabilizes around generation 6000, which might be an indication that
the CMA-ES reaches an optimum. The GA (right panel) exhibits roughly the
same behavior in what concerns the optimization trend. These results might be
explained by the fact that both approaches, in the first generations, focus on
obtained bridges that have a good value in terms of structural constraints. After
having such bridges the approaches start to reduce the cost, without compro-
mising the integrity and safety of the bridge.
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Fig. 3. Mean cost values of the best individuals of 30 runs for CMA-ES (on the left)
and for the GA (on the right) starting from generation 100 until generation 7 999 and
39 999 generations, respectively. We can see that CMA-Es is able to achieve lower
values of cost, however, it presents a higher variability between runs. It also appears to
be stabilizing (we address this topic in the Experimental Results section). It appears
that the GA is the opposite, continuing to optimize the cost even after the 40 000 gen-
erations. The explanation of why the first 100 generations are not plotted is presented
in the caption of Fig.1.

Another interesting result is that by the end of the evolutionary process, the
best solutions obtained by the CMA-ES have a much lower cost than the ones
discovered by the GA. To help with this analysis, we created a boxplot of the
cost values for both approaches and show them in Fig. 4. Whilst CMA-ES is not
as good as the GA at optimizing the structural constraints, it reaches brilliant
results in terms of cost. In fact, one can see that the CMA-ES approach can
not only find bridges with lower costs but also finds them consistently given the
lower variance obtained when compared to the GA.

We also show the fitness plots, Fig.5 and 6, to show the results for the f(x)
that combines both the cost C(x) and the structural constraint S(x).

Finally, Table 6 summarises the results. Looking at the values, it seems that
CMA-ES, on average, does not differ that much from the GA. Even though the
curves for the structural constraints are similar and the curves of the cost are
very different, it appears that our fitness function is not very good at stretching
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Fig. 4. Boxplot of the cost of the best individual of each run (30 in total) for CMA-ES
(on the left) and the GA (on the right).
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Fig. 5. Mean fitness values of the best individuals of 30 runs for CMA-ES (on the left)
and for the GA (on the right) starting from generation 100 until generation 7 999 and
39 999 generations, respectively. It can be seen that CMA-ES is able to reach higher
values of fitness, however, there is more variability between runs. The GA seems to be
a more consistent algorithm, not showing as much variability. The explanation of why
the first 100 generations are not plotted is presented in the caption of Fig.1.

Appendix B

114



10 G. Fernandes et al.

the fitness values when the structural constraints are already satisfied, leading
to similar values (but different) of fitness for candidate solutions that have a
relatively different cost. For the optimization itself, it still classifies a better
individual with higher fitness, however, when plotted, the difference is not very
evident.
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Fig. 6. Boxplot of the fitness of the best individual of each run (30 in total) for CMA-
ES (on the left) and the GA (on the right).

To understand if there are meaningful differences between the two approaches,
we performed a statistical analysis. Since the samples do not follow a normal dis-
tribution, we used the Mann-Whitney non-parametric test with a significance
level of α = 0.05. The effect sizes are presented in Table 4, and it can be observed
that there is a large effect size in all the metrics, meaning that the differences
between both approaches are significant.

Table 4. Results of the statistical analysis using the Mann Whitney U test with a
significance level α = 0.05.

Feature Effect Size
fitness -0.510
C(x) 0.510
S(x) -0.702

Table 5 presents the cost and the value of the structural constraint of the
best solution for every approach. CMA-ES was able to achieve multiple solutions
that beat the baseline (see Improvement Rate in Table 4) (with a good level of
diversity, because the solutions have different numbers of cables), while the GA
could not do it once (see Table 6). With the help of the differences, one can see
that both the approaches optimized the structural constraints, however, CMA-
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ES was able to reduce the cost of the bridge by more than 4 kAC, which is a
substantial amount.

Fig. 7. Baseline bridge (black), versus the bridges optimized by the GA (pink) and by
CMA-ES (blue).

Fig.7 shows how the best bridges evolved by the two algorithms compare to
the baseline and to each other. We can see that the CMA-ES is visually distinct
from the baseline solution due to its height, but the one evolved by the GA is
significantly different from the rest because it uses 3 cables, while the others use
4.

Table 5. Best solution of every approach and the difference between cost and structural
constraints against the baseline approach. The best values for both the cost and the
structural constraints are in bold.

Baseline(B) diff(B, GA) best GA diff(B, CMA-ES) best CMA-ES
C(x) 91.354 -10.840 102.194 4.656 86.698
S(x) 0.996 -0.004 1.000 -0.004 1.000
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CMA-ES finds really good solutions to this problem but appears to be a little
extreme, meaning that when it is able to find a good solution it is really good,
but when it is not able to, the result is not satisfactory, being expensive and not
even structurally safe.

Table 6 further cements what was previously said, showing that, on average,
CMA-ES is worse in optimizing S(x) but is able to greatly reduce the cost of
the structures when compared to the GA. However, the GA is more consistent,
presenting less variability, seen by the standard deviation values.

Table 6. Stats from the experiments. Mean(...) is the average of the 30 runs and
Improvement Rate is the rate of runs that were able to beat the baseline. The average
values are presented along with the respective standard deviation.

Mean(fitness) Mean(C(x)) Mean(S(x)) Improvement Rate
CMA-ES 3.225 (± 0.862) 104.005 (± 23.042) 1.282 (± 0.652) 11/30
GA 3.181 (± 0.296) 123.987 (± 13.124) 1.01 (±0.059) 0/30

We decided to include Fig.8 because we wanted to show how much CMA-ES
improved the cost in relation to the one of the baseline. For this image, only the
results of the 11 seeds that beat the baseline were included. We do not present
a figure for the structural constraints, because, as previously stated, we are only
using the results of the seeds that beat the baseline, meaning that the values of
the structural constraint are all at most 1.0, given the inverse nature between
the cost and the structural constraint.
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Fig. 8. Boxplot of the cost of the best 11 seeds of CMA-ES plotted with the baseline
cost. This better highlights how much the CMA-ES was able to beat the baseline. All
of the solutions that beat the baseline have a structural constraints value of at most
1.0, so these values are not plotted here because they would be basically all the same.
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6 Conclusions

The design of Cable-stayed bridges (CSB) is one of the most complex designs
in bridge engineering since they are highly static indeterminate and cannot be
calculated by hand in a short amount of time. This task is mostly handled man-
ually by Civil Engineers, where most of the research on CSB employs gradient-
based optimization techniques which require programming the sensitivities of
the problem. In this work, we perform a comparison of the performance of two
evolutionary approaches, a standard GA and CMA-ES, in terms of cost and
structural constraints. We further complement this analysis by comparing the
results of both with a previously gradient-based optimized solution found in the
literature.

In our results, CMA-ES was able to achieve a cost value of 86.698 kAC, beating
the baseline and GA costs, 91.354 kAC and 102.194 kAC respectively, while main-
taining the structural constraints in acceptable values according to the safety
codes. The behaviour of the GA and CMA-ES approach was analyzed in 30
different seeded runs. Under the same budget of evaluations, the GA was not
able to beat the baseline solution not even once in terms of cost, despite being
more consistent at optimizing the structural constraints when compared with the
CMA-ES. The CMA-ES was able to beat the baseline 11 times by a significant
margin. Statistical tests were performed with the results of the 30 runs of each
algorithm, and the differences between the two were significantly different. The
results suggest that CMA-ES performs better, under this setup, for this problem
than a standard GA.

In future work, we intend to use quality-diversity algorithms, optimizing both
the objective and exploring distinct solutions, to expand our knowledge of the
search space as well as being able to retrieve multiple high-performing solutions
from a single run and avoid local optimums that may exist.
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