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Resumo

Sensivelmente um terço dos doentes epiléticos são incapazes de atingir o controlo das

crises através da administração de medicamentos antiepiléticos. Em situações em

que as crises epiléticas são imposśıveis de controlar, a previsão de crises desempe-

nha um papel fundamental no planeamento cĺınico e terapêutico, fornecendo novas

opções de tratamentos, como dispositivos de alerta ou de intervenção. Estes siste-

mas têm a potencialidade de melhorar a qualidade de vida dos doentes suscet́ıveis

à ocorrência súbita de crises.

No entanto, a falta de interpretabilidade e explicabilidade das abordagens utilizadas

nesta área constitui um obstáculo na aplicação cĺınica das metodologias de previsão

e sistemas de intervenção desenvolvidos. Os métodos atualmente utilizados na li-

teratura são maioritariamente baseados em sistemas complexos, dif́ıceis de serem

interpretados e de garantir a confiança dos cĺınicos.

O presente trabalho teve como objetivo o desenvolvimento de metodologias capazes

de prever crises epiléticas ao mesmo tempo que garantem a confiança dos cĺınicos,

cientistas de dados e doentes.

Foi desenvolvido um algoritmo para a previsão de crises epiléticas, considerando

40 doentes da base de dados EPILEPSIAE, resistentes à medicação antiepilética.

Através da metodologia proposta, foram obtidos resultados de 0,34 ± 0,35 para a

sensibilidade e de 1,78± 1,95 para o FPR/h. Sendo que 40% dos modelos desenvol-

vidos apresentaram uma performance estatisticamente significativa.

Posteriormente, diferentes estratégias de explicabilidade foram aplicadas de forma a

aumentar a confiança nas decisões do modelo. As explicações elaboradas basearam-

se nas cinco lições extráıdas de um trabalho previamente desenvolvido neste labo-

ratório. As curvas de regularização ao longo do tempo foram analisadas para todos

os doentes, e comportamentos t́ıpicos do modelo foram observados um número de

vezes estatisticamente significativo. Foi ainda avaliado o impacto de cada uma das

bandas espectrais sobre a capacidade de previsão do modelo, o que permitiu concluir
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que, em cenários espećıficos, diferentes conjuntos de caracteŕısticas podem provocar

comportamentos completamente distintos no classificador.

Com este estudo, foi posśıvel concluir que para algoritmos de previsão de crises

epiléticas, a explicabilidade não deve simplesmente explicar as decisões do classifica-

dor, é também necessário melhorar os modelos desenvolvidos, rever os pressupostos

e elaborar uma formulação mais completa do problema, de forma a garantir uma

maior confiança sobre as metodologias desenvolvidas.

Palavras-chave: Epilepsia, Machine learning, Previsão de crises, Interpretabili-

dade, Explicabilidade
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Abstract

Almost one-third of epileptic patients fail to achieve seizure control through antiepilep-

tic drug administration. In the scarcity of completely controlling a patient’s epilepsy,

seizure prediction plays a significant role in clinical management and treatment,

providing new therapeutic options such as warning or intervention devices. These

systems would attempt to improve the quality of life of patients who are susceptible

to the sudden occurrence of seizures.

However, the lack of interpretability and explainability of the seizure prediction ap-

proaches constitutes an obstacle to the clinical applicability of the proposed predic-

tion methodologies and intervention devices. The current state-of-the-art methods

are mainly based on complex models that are difficult to trust by domain experts.

The present work aimed to explore methodologies capable of predicting epileptic

seizures in ways that guarantee trust to data scientists, clinicians, and patients.

Considering 40 drug-resistant epilepsy patients from the EPILEPSIAE database, a

patient-specific seizure prediction algorithm was developed. The proposed method-

ology achieved 0.34± 0.35 for sensitivity and 1.78± 1.95 for FPR/h, where 40% of

patient models performed above chance.

Afterwards, different explaining strategies were employed to increase trust in the

models’ decisions. These explanations were based on five lessons extracted from

a prior work developed by the local research team. The patients’ time plots were

inspected, and typical model behaviors were found in a statistically significant num-

ber. The impact of each classical Electroencephalogram (EEG) spectral band over

the model prediction was also evaluated, and it was concluded that, in specific sce-

narios, different sets of features might produce an entirely distinct behavior in the

classifiers’ output.

With this study, it was possible to conclude that for seizure prediction algorithms,

explainability should not simply explain the model’s decision. It is necessary to

xii



Abstract

improve the developed models, review used assumptions, and create a completer

problem formulation to gain trust.

Keywords: Epilepsy, Machine learning, Seizure prediction, Interpretability, Ex-

plainability
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Introduction

1.1 Motivation

Epilepsy is one of the most common neurological diseases, affecting over 50

million people worldwide. This condition is expressed by atypical brain activity that

results in seizures or unusual behavior, sensations and sometimes loss of awareness.

This abnormal activity leads to different neurological, cognitive, psychological and

social consequences [12].

The first-line treatment for epilepsy is Anti-Epileptic Drugs (AEDs). Never-

theless, almost one-third of patients fail to achieve seizure control with medication

alone, being considered Drug-Resistant Epilepsy (DRE) patients [13, 14]. These

patients are at a higher risk of developing various psychological problems, such as

depression, anxiety, psychosis, and, in the worst scenario, premature death [14, 15].

Although epilepsy surgery is a well-established treatment for DRE patients, only a

small amount of patients are eligible for this therapy [15].

In the scarcity of completely controlling a patient’s epilepsy, seizure prediction

plays a significant role in clinical management and treatment. This approach im-

proves the quality of life of patients who are susceptible to the sudden occurrence

of seizures.

1.2 Context

1.2.1 General goal

The seizure prediction field aims to develop an algorithm capable of anticipat-

ing an epileptic seizure by raising an alarm before the seizure onset. This field has

been moving forward, assuming the existence of a preictal period that Electroen-

cephalogram (EEG) signals can capture. The preictal is a transitional period that

precedes the seizure, on which the entire seizure prediction area is grounded [6].
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The goal is to design a system able to read online data and properly notify the

patient regarding a seizure that will arise on a well-defined occurrence period (SOP)

with a predefined horizon (SPH), which must allow enough time to take action.

An accurate system may provide new therapeutic options such as warning devices

that enable the patient to avoid dangerous situations or even intervention devices

capable of controlling the seizure by delivering anticonvulsive drugs or triggering

electric stimuli [6, 16].

1.2.2 Seizure prediction limitations

Although the preliminary work on the seizure prediction field dates back to the

1970s, with improving advances over the years, current approaches present numerous

limitations which should not be neglected.

The EEG is a complex signal not fully understood by the scientific community.

Additionally, the EEG databases are mainly collected from patients during pre-

surgical monitoring, which does not reflect actual seizure activity. Long-term EEG

recordings, comprising several months or years, acquired in an everyday routine,

represent a step forward in the clinical viability of the designed methodologies [16–

18].

Concerning the preictal period, it is worth noting that it is the most difficult one

to determine and manually annotate by experts since it is associated with substantial

heterogeneity. Therefore, no standard or optimal value has yet been defined for the

duration of the preictal period. Indeed, there is evidence that this period may vary

among patients and between seizures from the same patient. Therefore, the complex

nature of this state represents a significant challenge for seizure prediction [17–19].

Class imbalance is another critical issue. In the context of seizure prediction,

seizures are relatively rare events, leading to a substantially longer interictal period

than the preictal. This issue may induce a specialization of the classifier over the

interictal class [17].

Concept drifts constitute another challenging problem. They occur as con-

founding factors in the EEG signal and may adversely impact the performance of

the seizure prediction models. The referred concepts comprise alterations in the

brain dynamics depending on exogenous and endogenous factors, such as changes

in behavior and mood, cognitive disturbances, circadian rhythm (sleep-wake cycle,

time of the day, week, month and year), medication, and others [6, 19–21].

Regarding the seizure prediction methodology, despite the existence of a broad

pipeline, there is a great variety of approaches due to the application of different
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methods and parameters.

The lack of interpretability and explainability of the seizure prediction ap-

proaches also constitutes an obstacle to the clinical applicability of the proposed

prediction methodologies and intervention devices.

1.2.3 The importance of explainability

Throughout the last decades, the appearance of more complex algorithms and

their deployment in sectors such as healthcare have led to the emergence of explain-

ability and interpretability areas. The most recent legislation is also responsible

for the increased interest in this field. In 2018, the European Union’s General

Data Protection Regulation (GDPR) forced the industries to explain any automatic

decision-making process [22, 23].

The deployment of ML models in healthcare has increased interest in optimized

systems at the performance level and other essential criteria, including safety, trust-

worthiness, fairness, robustness, and the right to explanations [8, 9].

Regarding the seizure prediction field, few predictive methodologies and inter-

vention devices have been clinically approved. A great skepticism respecting machine

learning models may result from the complexity of interpreting models’ decisions.

Indeed, models used in clinical trials, such as Neurovista advisory study [24] and

intervention devices like the RNS system [25], did not apply the most potent state-

of-the-art tools. It proves the skepticism regarding the most complex methodologies

and the need for human-understandable explanations.

Therefore, although a given methodology eventually makes incorrect decisions

(miss a seizure or raise a false alarm), it is still trustful if it is possible to explain its

errors. It is believed that an accurate methodology is the one that we trust.

1.3 Objectives

This project aims to explore methodologies capable of predicting epileptic seizures

in ways that guarantee trust to data scientists, clinicians, and patients. Towards this

purpose, using long-term EEG data and Machine Learning algorithms, the expected

contributions of this thesis are the following:

• Development of a patient-specific methodology for seizure prediction using

scalp EEG signals from the European Epilepsy Database (EPILEPSIAE).

• Development and evaluation of several explanations to explain and increase

trust in the model’s prediction decisions.
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1.4 Structure

Besides the introduction, the present document contains five more chapters

structured as follows.

Chapter 2 introduces background concepts related to Epilepsy, EEG, seizure

predictions, and explainability.

Chapter 3 presents state of the art concerning EEG-based seizure prediction

and explainability studies.

Chapter 4 describes the followed steps concerning the primary goal of the

present work.

Chapter 5 reports the results obtained from the proposed methodology, along

with their analysis and discussion.

Chapter 6 presents a conclusion and addresses future work in this field of study.
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2

Background Concepts

This chapter introduces the fundamental concepts required to understand this

document. Section 2.1 presents some definitions associated with epilepsy and its

classification. Section 2.2 introduces some concepts related to Electroencephalogram

(EEG) signal and its characterization. Section 2.3 includes some theoretical insights

into the seizure prediction field. Section 2.4 presents an overview of explainability,

including a brief description of some explainable methods.

2.1 Epilepsy

2.1.1 Definition

Epilepsy is one of the most common neurological diseases, affecting over 50

million people worldwide of all ages and sex. Epilepsy is characterized by atypical

brain activity that results in seizures or unusual behavior, sensations and sometimes

loss of awareness. This abnormal activity leads to different neurological, cognitive,

psychological and social consequences [12].

In 2005, a conceptual definition for epilepsy was formulated by the International

League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)

[26]: ”Epilepsy is a disorder of the brain characterized by an enduring predisposition

to generate epileptic seizures and by the neurobiological, cognitive, psychological,

and social consequences of this condition. The definition of epilepsy requires the

occurrence of at least one epileptic seizure.”. In turn, an epileptic seizure is defined

as ”a transient occurrence of signs and/or symptoms due to abnormal excessive or

synchronous neuronal activity in the brain.”

Later, in 2014, the ILAE commissioned a Task Force to establish a practical

clinical definition of epilepsy [27]. The operational definition was formulated to

bring clearness and clinical relevance to the diagnostic process. Epilepsy was then

considered a disease of the brain characterized by any of the following conditions:

1. ”At least two unprovoked (or reflex) seizures occurring > 24 h apart”;
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2. ”One unprovoked (or reflex) seizure and a probability of further seizures similar

to the general recurrence risk (at least 60%) after two unprovoked seizures,

occurring over the next 10 years”;

3. ”Diagnosis of an epilepsy syndrome”;

”Epilepsy is considered to be resolved for individuals who had an age-dependent

epilepsy syndrome but are now past the applicable age or those who have remained

seizure-free for the last 10 years, with no seizure medicines for the last 5 years.”

Conceptually, epilepsy was considered a disorder rather than a disease. How-

ever, in this practical view, epilepsy was referred to as a brain disease since the term

”disorder” suggests a functional disarrangement, not necessarily permanent, which

minimizes the serious nature of epilepsy and is not well understood by the public

[27].

Reflex epilepsies were also included in this revised practical definition. Reflex

epilepsy is a disorder in which seizures are triggered by specific factors such as

photic stimuli as opposed to unprovoked seizures that occur in the absence of any

precipitating factors [27].

2.1.2 Classification

In 2017, ILAE presented a revised framework for Classification of the Epilepsies

[1] which the principal intent was to implement a communication framework for

clinical use, understandable by patients and families and largely applicable to all

ages.

The classification framework comprises three distinct diagnosis levels (see Fig-

ure 2.1): seizure type, epilepsy type and epilepsy syndrome. At each stage of classi-

fication, it is also essential to identify the etiology of the patient’s epilepsy as well as

the presence of comorbidities, enabling early diagnosis and appropriate treatment

strategies [1].

Regarding the implications for epilepsy treatment, six etiologic groups have

been recognized: structural, genetic, infectious, metabolic, immune, and unknown

group. Besides, some comorbidities associated with epilepsy involve learning difficul-

ties, psychological and behavioral problems, and psychiatric features, which range

in type and severity [1].

A significant clinical heterogeneity characterizes epilepsy regarding types of

seizures, types of epilepsy and epilepsy syndromes. Appropriate classification is

critical to adjust treatment strategies and recognize associated comorbidities.
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Figure 2.1: ILAE 2017 framework for classification of epilepsies. *Denotes onset
of seizure. Adapted from: Sheffer et al. 2017 [1].

2.1.2.1 Seizure Type

The seizure type is the first level of the epilepsy classification framework. It

requires that a previous diagnosis of an epileptic seizure has already been made.

The ILAE classification of seizure types [2] is an operational classification, not

based on fundamental mechanisms. The classification chart, illustrated in Figure

2.2, is not hierarchically dependent, meaning that levels of classification can be

skipped without implicating the mention of the others.

Figure 2.2: The basic ILAE 2017 operational classification of seizure types.
1Definitions, other seizure types and descriptors are listed in the accompanying
paper and glossary of terms. 2 Due to inadequate information or inability to place
in other categories. Adapted from: Sheffer et al. 2017 [2].
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Seizure classification starts with determining its onset: focal, generalized or

unknown. Focal seizures involve networks restricted to just one hemisphere of the

brain, while generalized seizures arise in both hemispheres of the brain involving

bilaterally distributed networks. When it is hard to determine the onset with a

certain confidence level, the seizure type is described as an unknown onset [2, 28].

Nevertheless, unknown onset seizures may later become classified as either focal or

generalized onset when more information is available.

Concerning the person’s state of awareness, focal seizures can be subdivided

into two distinct categories: Aware and Impaired Aware. A seizure is classified as

focal onset aware seizure (FOA) when the patient is aware of themselves and the

surrounding environment during the seizure, even if immobile and unresponsive.

Whenever the person’s level of awareness alters during the seizure, it is promptly

classified as Focal Onset Impaired Awareness (FOIA) [2].

The type of prominent symptom the person experiences would help to further

characterize a seizure as motor or non-motor. Motor seizures lead to a change in

muscle activity, while non-motor seizures can induce modifications in one of the

senses [2, 28].

A particular seizure type that should be noticed is focal to bilateral tonic-clonic

that begins in a particular area on one side of the brain and spreads to engage

both sides. These seizures present muscles stiffening (tonic) and jerking movements

(clonic) [2, 28].

Often it is impossible to classify a seizure at all, either because of insufficient

information or the uncommon nature of the seizure. In these cases, the seizure is

called an unclassified seizure [2].

Furthermore, it is frequent and pertinent to analyze and specify other factors in

order to provide more context information. Therefore, common procedures include

inspecting the seizure onset localization in brain lobes and hemispheres or registering

the patient’s vigilance state during the seizure.

2.1.2.2 Epilepsy Type

The second level of the classification framework is the epilepsy type. It presumes

the patient has an epilepsy diagnosis as stated in the 2014 practical definition [27].

The determination of the epilepsy type is based on clinical grounds and supported

by EEG findings. As shown in Figure 2.1 the epilepsy types are organized into four

distinct classes [1]:

• Focal Epilepsy: includes unifocal and multifocal disorders and seizures involv-

ing one hemisphere. The interictal EEG generally displays focal epileptiform
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discharges. A variety of seizure types can be presented, including focal aware

seizures, focal impaired awareness seizures, focal motor seizures, focal non-

motor seizures, and focal to bilateral tonic-clonic seizures.

• Generalized Epilepsy: includes a range of seizure types such as absence, my-

oclonic, atonic, tonic, and tonic-clonic seizures. The EEG is typically charac-

terized by generalized spike-wave activity.

• Combined Focal and Generalized Epilepsy: includes both focal and generalized

seizures and is characterized by generalized spike-wave and focal epileptiform

discharges.

• Unknown: represents the cases when it is difficult to determine whether the

epilepsy type is focal or generalized due to the insufficient available informa-

tion.

It is relevant to emphasize the complexity of an epilepsy type since each category

comprises multiple seizure types [1].

2.1.2.3 Epilepsy Syndrome

The third level of the classification corresponds to an Epilepsy Syndrome diag-

nosis. An epilepsy syndrome is described by a cluster of features, including seizure

types, EEG findings, and imaging features which tend to occur together. Likewise,

features such as age at onset and remission, seizure triggers and diurnal variation

are regularly considered. Despite the presence of well-recognized syndromes, the

ILAE hasn’t established a formal classification of syndromes [1].

Determining epilepsy syndromes often provides information on what medica-

tions or other treatments will be most appropriate. It also may help predict if the

seizures will go into remission [29].

Temporal Lobe Epilepsy (TLE) is the most common epilepsy syndrome as well

as the most usual form of focal epilepsy. There are two types of TLE:

• Mesial temporal lobe epilepsy: involves the medial or internal structures of

the temporal lobe. Seizures often begin in the hippocampus or surrounding

area.

• Neocortical or lateral temporal lobe epilepsy: involves the outer part of the

temporal lobe.

This epilepsy syndrome often appears around age 10 or 20, and it is difficult

for TLE patients to become completely seizure-free with medicines, thus making

surgery the best option. Therefore, usually seizure prediction research focus on

these patients [30, 31].
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2.1.3 Seizure clusters

Seizure clusters are epileptic episodes characterized by an increased seizure fre-

quency. However, there is no consensus regarding the clinical definition. While

some studies describe seizure clusters as more than 2-3 seizures in 24 hours, others

consider it in 6-8 hours.

Seizure clusters affect people with epilepsy regardless of their sex or age and

are more frequent in patients with focal epilepsy but can also occur in generalized

epilepsy. It is unclear why this phenomenon occurs. However, it could be caused by

a failure to inhibit the epileptic discharge in the brain, which can occur for many

reasons [32].

There is evidence that seizures that occur within minutes or a few hours are

more likely to come from a concordant focus. Therefore, they may not be indepen-

dent of each other.

2.1.4 Treatment

The purpose of treatment for epilepsy is to achieve epilepsy freedom without

side effects as soon as possible. The first-line treatment for epilepsy is Anti-Epileptic

Drugs (AEDs). Nevertheless, almost one-third of patients fail to achieve seizure

control with medication alone, being considered Drug-Resistant Epilepsy (DRE)

patients [13, 14].

Epilepsy surgery is a well-established treatment for DRE patients. The objec-

tive of epilepsy surgery is to remove part of the epileptogenic cortex in order to make

a patient seizure-free [15].

However, only a small amount of patients are eligible for this therapy. Therefore,

an appropriate pre-surgical evaluation is required to select suitable patients likely to

become seizure-free after the surgical treatment. The main goal of the pre-surgical

evaluation is to identify the epileptogenic zone accurately and to determine whether

it can be removed without significant side effects. The referred process requires a

multimodality approach wherein each modality provides unique and complementary

information. The basic and additional modalities include clinical history, long-term

video-EEG recording, high-resolution MRI, neuropsychological evaluation, and in-

tracranial monitoring [13, 15].

During the pre-surgical monitoring, the patient must stay in the hospital for

several days. Therefore, some strategies are used to accelerate the process to reduce

patient discomfort and hospital costs. Some techniques, such as medication tapering

and sleep deprivation, are employed to increase the seizure frequency.
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For those patients that are not eligible for surgery, neurostimulation devices,

dietary therapies or clinical trials of new AEDs are alternative options [13].

In the scarcity of completely controlling a patient’s epilepsy, seizure prediction

plays a significant role in clinical management and treatment. This approach im-

proves the quality of life of patients who are susceptible to the sudden occurrence

of seizures.

2.1.4.1 Drug-Resistant Epilepsy (DRE)

In 2009, ILAE proposed a consensus definition for Drug-Resistant Epilepsy

(DRE) [33]. According to this, DRE is defined as: ”failure of adequate trials of two

tolerated and appropriately chosen and used AED schedules (whether as monothera-

pies or in combination) to achieve sustained seizure freedom”. Seizure freedom was

also characterized as: ”freedom from all types of seizures for 12 months or three

times the preintervention interseizure interval, whichever is longer”

Patients with drug-resistant epilepsy are at a higher risk of developing various

psychological problems, such as depression, anxiety, and psychosis. Furthermore,

the mortality rate is 5-10 times higher than that of the general population, includ-

ing accidental injury, cognitive decline and sudden unexpected death in epilepsy

(SUDEP) [14, 15].

2.2 Electroencephalogram (EEG)

2.2.1 Overview

The human brain is a complex system composed of millions of interconnected

neurons. They work together in a network to process and transmit information

through small electrical impulses. Therefore, it is possible to understand the brain

system from the measurements or signals obtained from it [3].

The EEG measures and records the brain’s electrical activity. It is a represen-

tation of voltage variations in space and time. The electrical potentials are derived

from the summation of excitatory and inhibitory postsynaptic potentials generated

by pyramidal cells in the cerebral cortex. To generate a large enough signal to

register on an EEG, thousands of neurons will have to be in synchrony [3, 34, 35].

This medical test reflects the global dynamics of the brain’s electrical activity

over time. Therefore, the EEG is a valuable tool in the study and diagnosis of

several abnormalities related to the improper function of the brain, like epilepsy.

Furthermore, this signal is capable of capturing fast changes in the brain due to its
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high temporal resolution making it a relevant tool for the research fields of predicting

and detecting seizures [3, 36].

Commonly, the potentials recorded with EEG can be classified into two distinct

categories (see Figure 2.3): oscillations and transient events. Oscillatory activity is

characterized by sustained rhythmic fluctuations or repetitive patterns in electrical

brain activity. In contrast, transient phenomena are expressed by sharp brain waves

lasting only one or two cycles. In turn, each referred type can be divided into

normal and abnormal activity [34]. An EEG waveform is considered abnormal when

it exhibits unusual characteristics which do not correspond to the person’s state of

awareness, age, and other factors [37].

The waveform frequency defines normal oscillations, so they are categorized

into different bands: delta (2-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz),

and gamma (>30Hz).

Abnormal oscillations are divided into seizures, and burst-suppression [34]. The

EEG pattern described by the term burst-suppression consists of a continuous in-

terchange between high-voltage slow waves and suppressed electrographic activity.

This motif is noticed in several conditions such as deep coma, drug intoxication, and

encephalopathies [38]. Regarding seizures, few or many EEG channels can present

synchronization, hyperexcitability and oscillations. However, these trends are merely

representative, often identified as a result of a pronounced change from background

activity. Indeed, there is no single ’epileptic’ EEG: fluctuations between patients,

between seizures in the same patient and within a single seizure are observed [3].

Normal transients cover a range of sleep potentials, as well as a variety of

artifacts, [34]. Sleep potentials may occur before and after the switch of the subject

state of alertness, essentially in stage 2 of NREM sleep [37]. Artifacts are noncerebral

electrical potentials that are detected with EEG. They are defined as noise and can

be physiological, including eye blinks, cardiac impulses, breathing, chewing, muscle

activity, or can be external as electromagnetic interference from the surrounding

environment and incorrect electrode placement [3, 34].

Abnormal EEG transients can be classified as epileptiform or non-epileptiform

potentials. The first transients are essential for the diagnosis of epilepsy, while the

second are indicators of several other encephalopathies [34].

As depicted, EEG is a medical tool widely used to detect and analyse epileptic

seizures. However, the non-linear and non-stationary nature of the EEG and the

presence of artifacts that are difficult to remove without affecting the measurement

of true brain activity make it a complex signal. Consequently, understanding the

morphology of the signal and its manual inspection are challenging [3, 39].
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Figure 2.3: Categorization of EEG activity.

2.2.2 Signal acquisition

Besides its high temporal resolution, the EEG has poor spatial resolution be-

cause records are restricted by the number and the placement of the electrodes and

the properties of the head.

The acquisition of the EEG signal can be made at different spatial scales. It is

possible to collect macroscopic measurements either non-invasively from the scalp

(Scalp EEG) or over surgical procedures that allow intracranial recording (intracra-

nial EEG (iEEG)). Both present advantages and disadvantages [3].

Scalp EEG

As referred above, scalp EEG signals are noninvasively acquired through elec-

trodes placed on the scalp. In order to reduce the impedance, an electroconductive

gel is used [36]. The signal must spread over a range of nonneuronal layers like

cerebrospinal fluid, skull, and scalp. As a result, scalp measurements are attenu-

ated, requiring much larger regions to be actively synchronized for an EEG signal

to record [3].

Standard systems for electrode placement are frequently used to make records

easily comparable between and within patients. This system is denominated as

the International 10-20 System. A ground and system reference electrode and 19
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recording electrodes are placed on the scalp area according to a computed percentage

of standard distances. In particular, they are situated at 10%, 20%, 20%, 20%, 20%,

and 10% from nasion to inion.

As depicted in Figure 2.4, electrodes are denoted with the prefix ”F”, ”Fp”, ”C”,

”T”, ”P” and ”O” accordingly to the electrode placement over frontal, frontalpolar,

central, temporal, parietal, or occipital regions, respectively. The assigned prefix is

followed by an odd number for electrodes placed on the left, an even number for

right electrodes or the letter ”z” for midline electrodes [3, 34, 36].

All EEG recorded signals are organized into channels that measure the voltage

difference between two electrodes. Electrodes can be arranged into either bipolar or

referential montages, depending on how a particular EEG electrode is referenced.

EEG signals may present different morphologies relying on the chosen montage [34].

Bipolar montages are frequently organized in straight-line chains of electrodes,

where the second input to each channel is the next electrode in the line. Therefore,

each channel measures the voltage difference between two adjacent electrodes. Al-

ternatively, in referential montages, the second input to each channel is a reference

electrode placed either on the scalp or in other body parts like ear lobes, mastoids

or nose. Clinically, one of the most used montages for scalp EEG recordings is the

anterior-posterior longitudinal montage, so-called ”double banana”, represented in

Figure 2.4 b) [34].

iEEG

Regarding iEEG, electrodes are implanted directly on the brain through a sur-

gical procedure. Electrodes can be placed on the exposed brain surface to record the

electrical activity of the cerebral cortex or into subcortical systems to record more

profound brain activity [3, 36].

There are two main types of invasive electrodes: strips or grids and depth

electrodes (see Figure 2.5). Subdural strips or grids are placed on the brain surface

and record electrical activity from many points, with the grids covering larger areas.

On the other hand, depth electrodes are thin wires that look like a needle and

contain several recording sites along each electrode. They are used if seizures may

arise in deeper brain areas instead of on the surface [40].

Intracranial records are often acquired for pre-surgical evaluation to determine

regions of the brain to be resected when non-invasive procedures cannot localize the

seizure onset zone [3]. The majority of time series databases used in research of

seizure prediction arise from this context [34].

14



2. Background Concepts

Figure 2.4: International 10-20 system for placement of scalp EEG electrodes. In
(a) is shown the standard positions and names of the electrodes. In (b) is represented
a bipolar montage and in (c) a referential montage. Adapted from: Varsavsky et al.
2011 [3].

Scalp EEG vs. iEEG

Noninvasive EEG recording is an easy and inexpensive diagnostic tool that is

frequently capable of supplying relevant information to physicians.

The scalp EEG signal also bears the advantage of covering a larger area than

the invasive one. However, this procedure has a range of limitations compared with

intracranial records, including extracranial artifacts, the inefficiency to accurately

register part of the activity in beta and gamma bands, and the inability to record

activity from the deep brain [3, 34]. Despite being less invasive, surface recordings

would arise constraints on the patient due to the inconvenience of wearing an EEG

cap if long acquisition periods are necessary [18]. Scalp-recorded EEG often consti-

tutes a preliminary step to more detailed intracranial EEG due to its inconclusive

results [3].

Intracranial EEG recordings have less contamination with artifacts and more

excellent proximity to onset zones, resulting in a higher signal-to-noise ratio and

a better spatial resolution [18, 34]. Nevertheless, the invasive recording presents a

superior risk of infection or hemorrhage [34]. Such a procedure also fails to meet a

standard for electrode placement since each decision is made on a patient basis [3].
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Figure 2.5: Different types of invasive electrodes. Extracted from: [4].

2.2.3 EEG seizure period division

In addition to differentiating epileptic patients from non-epileptic ones, EEG

signals also help distinguish the different seizure stages due to their patterns (see

Figure 2.6). Hence, a typical EEG record from an epileptic patient can be divided

into different periods: preictal (the period preceding the seizure), ictal (the period

corresponding to the seizure), postictal (the period after the seizure), and interictal

(the period between the postictal and preictal stage of two consecutive seizures) [39].

It is worth noting that the preictal state is the most difficult one to determine

and manually annotate by experts since it is associated with substantial hetero-

geneity. It can be justified by the diversity of seizure types and the presence of

discrepant onset mechanisms, resulting in distinct and complex preictal dynamics.

This diversity is present between patients as well as within seizures from the same

patient. Since the preictal state plays a significant role in seizure prediction, the

complex nature associated with this state represents a major challenge for ongoing

research [19, 39].

2.3 Seizure Prediction

The unpredictability of seizures is the main problem for patients with uncon-

trollable epilepsy and their families. Predicting epileptic seizures would effectively
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Figure 2.6: Different periods of an epileptic seizure annotated on the EEG signal.
All four states of ictal, preictal, ictal, postictal and interictal are colour coded.
Source: Moghim et al. [5].

improve their quality of life and safety. An accurate prediction at an early enough

stage before seizure onset would provide new therapeutic options such as warning

devices that enable the patient to avoid dangerous situations or even intervention

devices capable of controlling the seizure by delivering anticonvulsive drugs or trig-

gering electric stimuli [6].

A seizure prediction algorithm should be capable of anticipating an epileptic

seizure by raising an alarm before the seizure onset. The goal is to construct a system

able to read online data and adequately notify the patient regarding a seizure that

will arise on a well-defined occurrence period with a predefined horizon, which must

allow enough time to take action. Ideally, this should minimize the unpredicted

seizures and the false alarms in order to reduce interruption to an individual’s life

[6, 16].
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Seizure onset

A critical point in seizure prediction is determining the beginning of a seizure.

The onset time can be electrographic or clinical. The first type is detected from the

first clinical symptoms, whereas the second is determined from the first visible vari-

ations in the EEG. Considering clinical signs are often imperceptible and difficult

to recognize, especially in FOIA and non-motor seizures, and the EEG onset antic-

ipates the clinical onset, it is practical to estimate the beginning time of a seizure

from the electrographic onset [18, 41].

Lead seizure

In prediction studies, the seizures used must be independent events. Therefore,

it is necessary to manage seizure cluster episodes. When this phenomenon is present

in the data used in the study, the authors only use the first seizure of the cluster,

usually known as the lead seizure.

Since there is no agreement concerning the definition of a seizure cluster, a

range of values has been used in the literature as the minimum seizure-free interval

to consider a continuous set of seizures independent of each other.

Seizure detection

Seizure detection is a parallel research field whose algorithms aim to detect

the electrographic seizure onset, which may arise a few seconds before the first

clinical signs. In opposition to seizure prediction, which intends to identify the

preictal state sufficiently early before the EEG onset, seizure detection does not

provide enough time to take action. Aside from warning the patient that a seizure

is up-coming, this approach may supply clinicians with detailed seizure information

valuable for epilepsy management. Furthermore, when implemented within closed-

loop intervention systems it could be effective [18, 41].

Albeit seizure detection algorithms are superior in terms of performance, seizure

prediction algorithms are preferred for more promptly responses [17].

Seizure forecasting

Seizure forecasting is also an emerging parallel research field which aims to

determine periods of a high probability of seizure occurrence. As an alternative to

seizure prediction, which aims to distinguish between interictal and preictal periods,

seizure forecasting identifies the brain state in which a seizure is most likely to occur,
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the proictal period. The proictal state relates closely to cycles connected to EEG

activity, such as the circadian and multi-day rhythms [42].

2.3.1 Seizure prediction characterization

The preliminary work on the seizure prediction field dates back to the 1970s.

Since then, several algorithms to predict seizures using EEG data have been pro-

posed, showing promising results. Nevertheless, in the early 2000s, some publica-

tions found a less promising performance of the developed algorithms than those

previously reported [18].

Subsequently, in 2003, Winterhalder et al. [6] proposed the ”seizure prediction

characteristic” to evaluate and compare the different seizure prediction methodolo-

gies founded on clinical, behavioral, and statistical considerations. Therefore, two

crucial concepts were introduced: Seizure Prediction Horizon (SPH) and Seizure

Occurrence Period (SOP).

Ideally, a seizure prediction method would announce the exact onset time of a

seizure. However, some uncertainty is expected with EEG signal-based prediction

methods. Thus, it was suggested the use of SOP, defined as the time interval during

which the seizure is presumed to arise. Furthermore, to make any intervention

feasible, the existence of a minimum time interval between the raising of the alarm

and the beginning of the SOP is crucial. This time window is designated as SPH,

also known as Intervention Time (IT).

Figure 2.7: Visual representation of SPH and SOP. Adapted from: Winterhalder
et al. [6].

No optimal values have yet been found for SOP and SPH. Although, their choice

should be reasonable regarding patient and clinical considerations.

On the one hand, the SPH values should provide enough time to take preventive

actions. Whereas intervention devices may need only a few seconds to control the

imminent seizure, warning devices have to raise the alarm minutes before the seizure

onset, providing more time to avoid dangerous situations.
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On the other hand, the SOP values can range from minutes to hours. Interven-

tions like electrical stimulation and anticonvulsive drug-delivering should last the

whole seizure SOP. Therefore, longer window times may bring undesirable conse-

quences for such long interventions. Furthermore, in the case of warning systems,

longer SOPs increases the patient’s anxiety.

The values adopted for both parameters play an essential role in the perfor-

mance of the prediction algorithms.

2.3.2 Performance evaluation

The performance of a given algorithm is commonly evaluated by some metrics

such as Sensitivity (SS) and Specificity (SP). The confusion matrix is typically used

to define such measures in standard machine learning problems [43]. Considering

seizure prediction as a binary classification problem, where the positive class (class

1) is the preictal period and the negative class (class 0) is the interictal period, it is

possible to define the following confusion matrix (Table 2.1) regarding clinical and

predicted labels.

Table 2.1: Confusion matrix for evaluation of sample performance in Machine
Learning problems.

Clinical Label
Preictal Interictal

Predicted Label
Preictal TP FP
Interictal FN TN

While sensitivity expresses a classifier’s effectiveness in identifying the positive

labels, specificity characterizes how effectively a classifier identifies the negative ones

[43]. These metrics are calculated by Equations 2.1 and 2.2, respectively.

SSsample =
TP

TP + FN
(2.1)

SP sample =
TN

TN + FP
(2.2)

The metrics are computed based on sample classification, not offering informa-

tion regarding the number of correctly predicted seizures or false alarms. Thus, they

were adapted to be more informative in the seizure prediction field.

Therefore, the performance of a seizure prediction algorithm is frequently as-

sessed by Sensitivity and False Positive Rate per Hour (FPR/h) [6, 17, 34]. These
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measurements require the correct distinction between true and false alarms.

As illustrated in Figure 2.8, an alarm is expressed as a true alarm when the

seizure onset occurs during the established SOP. In opposition, if the seizure arises

outside the SOP time, the raised alarm is considered a false alarm [6].

Figure 2.8: Visual representation of true and false alarms in seizure prediction,
considering SPH and SOP.

Concerning the performance indices, sensitivity is the most adopted metric in

seizure prediction studies and measures the fraction of the correct predictions for all

seizures, as described by Equation 2.3 [6, 34].

SS =
Predicted seizures

All seizures
(2.3)

In turn, FPR/h represents an appropriate metric for specificity in the field of

seizure prediction, measuring the occurrence of false alarms during an hour [6, 17].

Furthermore, this metric gives more information to clinicians than specificity. Once

FPR/h translates the number of false alarms per hour, the clinician can adapt the

system to the most suitable application regarding the psychological and mental re-

silience of the patient. For instance, a system with a high value of FPR/h would

not be appropriate for interventions like anticonvulsive drug-delivering or electrical

stimulation since it must not be supplied several times in an hour. Thus the appli-

cability of the prediction systems would not be interpreted by the clinicians if the

specificity metric was used.

However, there is no agreement regarding its definition. In some studies, FPR/h

is determined by dividing the number of false alarms by the total duration of the
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analyzed recording, as described by Equation 2.4. Although, it must be taken into

account that there is a period during which the raised alarms are counted as true,

where false predictions cannot arise by definition. Furthermore, when an alarm is

fired, there may be a period during which it is impossible to raise a new alarm. This

time interval is called a refractory period and is equal to the sum of SOP and SPH

duration. Consequently, in other studies, the concept of corrected FPR/h is used,

taking into account the considerations mentioned above. Thus, it is defined as the

proportion between the number of false alarms and the period during which alarms

can actually be raised, as expressed by Equation 2.5 [18].

FPR/h =
False alarms

Total time analyzed
(2.4)

FPR/h =
False alarms

Interictal duration− False alarms× (SOP + SPH)
(2.5)

As expected, the ideal scenario would be where all seizures were correctly pre-

dicted and no false alarms were raised, expressed by a performance value of 100%

sensitivity and 0 FPR/h.

In order to approximate this utopian goal, a trade-off between both metrics

should be taken into account since they present a close interdependency relation:

an increase in sensitivity leads to an increase in FPR/h [6].

Excessive false alarms may lead to undesirable consequences of unnecessary

interventions and patients’ distrust of the warning systems. As a result, clinical

applications performing a high sensitivity at the cost of a high FPR/h are doubtful

regarding the patient’s quality of life. For this reason, a maximum value for false

positive rate must be defined, respecting the patient, chosen intervention system

and clinical considerations [6, 34].

A reasonable value for FPR/hmax may be based on the average seizure incidence.

On the one hand, in pre-surgical monitoring, the seizure frequency is uncommonly

elevated in response to the reduction of AEDs administration. The maximum av-

erage frequency reported is 3.6 seizures per day (0.15 seizures per hour). On the

other hand, DRE patients, under normal circumstances, have an average frequency

of around three seizures per month (0.0042 seizures per hour) [6].

Considering the majority of available databases of epilepsy recordings are from

pre-surgical monitoring data, an expected reasonable value for FPR/hmax would be

0.15. It indicates that, even if all seizures can be correctly predicted, 50% of the fired
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alarms would be deemed false alarms for patients during monitoring. Although, this

value increases to 97% for epileptic patients under normal conditions, which would

be improper [6].

To sum up, the performance of a seizure prediction algorithm is characterized

by the dependence of the Sensitivity (SS) on the False Prediction Rate (FPR/h),

Seizure Occurrence Period (SOP), and Seizure Prediction Horizon (SPH) [6].

2.3.3 Statistical Validation

Along with the characterization and performance assessment, statistical valida-

tion plays a fundamental role in the evaluation of seizure prediction algorithms as

well as in the comparison of distinct prediction models. It should be implemented

to confirm if the developed algorithms perform above chance level and identify the

preictal stage [6, 17, 18].

For the purpose mentioned above, several techniques have been suggested: com-

parisons with random and periodic predictors, analytical random and baseline pre-

dictors, comparisons with chance level by analyzing the areas under the receiver

operating curve (AUC), surrogate methods, and non-parametric methods [17]. The

most used methods are explained in the following subsections.

2.3.3.1 Analytical random predictor

Random prediction is one unspecific method in which alarms are raised com-

pletely randomly without any information included in the EEG data [6, 7, 44].

Schelter et al. [7, 44] presented an analytical random predictor founded on a

homogeneous Poisson process for false predictions. Hence, the probability of raising

an alarm at each sampling point extracted from a times series is defined by Equation

2.6.

PPoisson =
N false alarms

N samples

(2.6)

Considering now a period of duration equal to SOP, the probability of an alarm

being triggered within this interval for a given FPR/h can be approximated by

Equation 2.7. Although, this approximation is only valid if the product of the maxi-

mum false prediction rate by the occurrence period (FPR/h×SOP ) is significantly

smaller than one, guaranteeing that the patient is not under constant warning.

P ≈ 1 − e−FPR/h×SOP ≈ FPR/h× SOP (2.7)
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The probability P (Equation 2.7) constitutes the sensitivity of a random pre-

diction method, since it is defined as the probability of raising at least an alarm

during the SOP [6]. Furthermore, it comprises the basis for a significance level to

test whether the sensitivity of a prediction method is better than a random one.

Nevertheless, other factors must be taken into account in the significance level:

several seizures are usually investigated, and the dimension d of the extracted fea-

tures vector has to be considered since increasing the number of predictors increases

the probability of predicting seizures by chance. However, in ML models, a single-

dimension output (d=1) can be obtained even if multidimensional inputs are used.

Hence, the probability of randomly predicting at least k of K seizures can be

determined by the binomial distribution defined in Equation 2.8.

P binom(k,K,P ) = 1−

[
j≤k∑
0

(
K

j

)
P j(1− P )K−j

]d
(2.8)

Lastly, the critical value of sensitivity for a random predictor, considering a

specific significance level α, is given by Equation 2.9.

σrand =
argmaxk{P binom(k,K,P ) > α}

K
× 100% (2.9)

The main advantage of this statistical validation method is based on the analytic

expressions for its sensitivity which is simple and easy to apply. The presented

equations would provide information regarding the minimum number of seizures that

must be used to guarantee that performance above the chance level can be verified.

However, the analytical random predictor is implemented following the homogeneous

Poisson distribution for false predictions, which may not be appropriate. Moreover,

such a method might be too conservative from the statistical point of view and

slightly less powerful.

2.3.3.2 Surrogate seizure predictor

Alternatively to analytical random predictors, the surrogate seizure predictors

were suggested based on Monte Carlo simulations. They are generated by con-

strained randomizations of the original seizure predictor. These seizure-predictor

surrogates are designed to share specific aspects with the original predictor despite

being random. Accordingly, although computationally more complex, this approach

presents greater flexibility than analytical random predictors as it allows one to test

several null hypotheses based on particular assumptions and constraints. Therefore,

if the performance of the original seizure predictor outperforms the predictor sur-
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rogates, the underlying null hypothesis can be rejected. In this case, it means that

the developed algorithm performs above chance level [7, 17].

Andrzejak et al. [7, 45] introduced the seizure times surrogates method, which

replaces the original seizure times with artificial ones. As illustrated in Figure 2.9,

these artificial onset times are generated by randomly shuffling the original interic-

tal intervals, preserving the inter-seizure-interval distribution, the total number of

seizures and the original measure profiles. The prediction algorithm’s performance is

again calculated from the maintained measure profile regarding the seizure times of

the surrogates and compared with the predictive performance obtained for the origi-

nal seizure times. This approach can be applied to any type of analysis (algorithmic

or statistical), providing a high confidence level [7, 18]. Although, the practical

application of seizure-times surrogates can be challenging since only a few seizures

are sometimes included in the EEG recordings, which can also contain gaps. These

drawbacks can make it impossible to generate sufficient independent surrogates in

order to obtain significance [7].

Figure 2.9: Representation of the original seizure times and the surrogate times
bootstrapped from the inter-seizure intervals. The arbitrary onset times for the
surrogates are originated through a uniform distribution and are represented by the
dashed vertical lines. Source: Schelter et al. 2008 [7].
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2.3.4 Concept drift and class imbalance

In the real world, machine learning models deal with concepts of interest depen-

dent on some hidden context, not evidently present in predictive features. Variations

in the hidden context are frequent, leading to changes in the target concept or the

underlying data distribution. This problem is generally known as concept drift and

makes challenging the task of learning a model from data [20].

Concerning epilepsy, the referred variations comprise alterations in the brain dy-

namics depending on exogenous and endogenous factors, such as changes in behavior

and mood, cognitive disturbances, circadian rhythm (sleep-wake cycle, time of the

day, week, month and year), medication, and others [19]. Medication is a relevant

factor since the available databases are essentially constituted by pre-surgical moni-

toring data, in which patients are deprived of AEDs. As a result, an artificially high

seizure frequency is reported, which may not represent a common event. Despite

the medication tapering, its effect does not cease instantly, and the seizures become

more frequent over time. Furthermore, the activities of patients under pre-surgical

monitoring may be quite different from those of regular daily routine since they are

mostly seated or lying down. This altered state, along with sleep deprivation, may

promote notable variations in the data distribution, affecting the efficiency of the

trained prediction models [6, 19, 46].

Class imbalance is another critical issue in machine learning, characterized by

the underrepresentation of one class, generally the positive one, in the dataset. It

may lead to bias in the learning algorithm towards the majority class and challenging

interpretation [21].

In the context of seizure prediction, seizures are relatively rare events. The

interictal period (the negative class) is substantially more extended than the preictal

(the positive class). This issue may induce a specialization of the classifier over the

interictal class [17].

It is necessary to build robust models capable of handling changes in concepts

over time and data imbalance to overcome the referred problems. The implementa-

tion of ensemble techniques and the inclusion of exogenous variables have proven to

help with this purpose [20, 21].

2.4 Explainability

Throughout the last decades, the appearance of more powerful computing sys-

tems, advanced learning algorithms and accessible and more extensive databases has
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led to remarkable improvements in the field of Machine Learning (ML) [8]. Conse-

quently, it has been extensively adopted in different areas such as financial systems,

advertising, marketing and medicine [47].

However, along with the increased efficiency of the models, their complexity has

also grown. Therefore, understanding the mechanisms and rationale behind their

decisions has become challenging, and their predictions difficult to interpret [8].

Indeed, a definite trade-off between the efficiency of an ML model and its ca-

pacity to produce explainable and interpretable decisions is evident, as illustrated

in Figure 2.10. On the one hand, there are the commonly described white-box mod-

els whose results are easily interpretable and include linear and decision tree-based

models. However, their accuracy is outperformed by the black-box models, which

are complex machine learning models such as Support Vector Machines, Random

Forest, and Neural Networks [8, 47].

Figure 2.10: The trade-off between interpretability and accuracy of some relevant
ML models.

Machine learning users have difficulty trusting complex systems whose decisions

cannot be well-interpreted. It happens mainly in areas where moral and fairness

issues are naturally present, such as healthcare or self-driving cars. The deployment

of ML models in such sectors has led to an increased interest in optimized systems

not only at the performance level but also on the level of other essential criteria,

including safety, trustworthiness, fairness, robustness, and the right to explanations
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[8, 9].

Subsequently, it contributes to the arrival of the field of explainability, an area

responsible for understanding and interpreting the ML systems behavior [8].

Changes in policy, law and regulation are also responsible for the increased

interest in this field [48]. In 2018, the European Union’s General Data Protection

Regulation (GDPR) forced the industries to explain any automatic decision-making

process:”a right of explanation for all individuals to obtain meaningful explanations

of the logic involved” [23].

Explaining the real world involves many layers before it reaches humans (see

Figure 2.11). The world is captured by collecting data and is abstracted by learning

models to predict data for a specific task. Explainability is the last layer that helps

humans to understand the model and its decisions [10].

Figure 2.11: The big picture of explainable machine learning.

Explainability is still a very recent field of investigation. Therefore, there is

no consensus regarding many aspects, namely, how to organize and evaluate the

different explanations and define the terms of interpretability and explainability.

Interpretability and Explainability

The terms interpretability and explainability are closely related and are usually

used interchangeably. They lack a formal and rigorous mathematical definition,

although some non-mathematical descriptions have been proposed [8, 10]. Despite

not being the definitive ones, these definitions will be used throughout this thesis.

One of the most accepted definitions of interpretability is the one presented

by Doshi-Velez et al. [9], who defined it as ”the ability to explain or to present in

understandable terms to a human”. In turn, Miller et al. [49] have also proposed
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a definition for interpretability: ”the degree to which a human can understand the

cause of a decision”.

Based on the definitions mentioned above, interpretability is essentially related

to identifying the cause-effect relationship behind the outputs of a model. Its goal

is to describe the internals of a system in a human-understandable way. The higher

the interpretability of a system, the easier it is for humans to predict the model’s

output based on the data input [8, 10, 22].

On the other hand, explainability is associated with the model’s capacity to

present the reasons for its behaviour and provide insights about the causes of its

decision in human terms without requiring a complete understanding of its internal

mechanisms. [48].

Some authors defend that interpretability alone is insufficient and that the pres-

ence of explainability is also crucial. An interpretable model also needs to be com-

pleted with the capacity to defend their actions and provide relevant explanations.

Hence, regarding machine learning systems, interpretability does not necessarily

imply explainability or vice versa. [8, 22].

Not all machine learning systems need to be interpretable or explainable. In

some cases, it is not critical to understanding the reason behind a decision. It is

enough to ensure that the prediction is accurate. Some models may not require

explanations because they are applied in a low-risk environment, meaning mistakes

have no significant consequences. Additionally, methods that have already been

extensively studied and evaluated do not require explanations since it is trusted

even if it is not perfect [9, 10].

Doshi-Velez et al. [9] believe that the necessity for interpretability arises from

incompleteness in the problem definition, raising a potential obstacle to optimization

and evaluation.

Explainable and interpretable models fight the incompleteness of machine learn-

ing systems, capturing validation and trust from the scientific community and gen-

eral society. They provide explanations of their predictions which contribute to

the trust problem by enabling domain experts (e.g. clinicians) to ensure that the

model makes the right and the wrong predictions for the right reasons. Furthermore,

proper explanations are crucial to getting insights into how this model is working

and help to improve its performance [47].
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2.4.1 Taxonomy

The landscape of interpretability methods is viewed from various perspectives.

They can be analyzed according to diverse concepts (see Figure 2.12) [8].

A significant split of interpretability methods could happen based on the way

that interpretability is achieved: by restricting the complexity of the machine learn-

ing model (intrinsic) or by applying interpretation methods after model training

(post-hoc). Intrinsic interpretability is associated with white-box models, which

are considered interpretable due to their simple architecture. Post-hoc methods are

usually applied to more complex models, although they can also be employed to

intrinsically interpretable models [8, 10].

It is also possible to distinguish the methods regarding their ability to produce

explanations independently of the model (model-agnostic) or restricted to a single

model or group of models (model-specific) [8, 10, 47].

Additionally, the methods can be divided according to the scale of interpreta-

tion. If the technique explains only one specific instance, it is defined as local, and

if the method explains the overall model, it is described as global [8, 10, 47].

Finally, one crucial factor that should be taken into account is the different

result types. It is possible to examine summaries of the features’ characteristics

through statistics or graphic plots. It is also possible to understand the model’s

internals, for example, by outputting the linear weights or the structure of the

trees, as it happens with intrinsic interpretability. Furthermore, the explanations

can also be produced by studying the samples of the dataset and finding specific

characteristics to compare new data points to their dynamics [10].

2.4.2 Evaluation

It is unclear how to measure the interpretability in machine learning models,

although there is some initial research and an attempt to formulate some procedures

for evaluation [10].

Doshi-Velez et al. [9] proposed three levels to evaluate the interpretability of

an ML model: application, human and function level evaluation, as illustrated in

Figure 2.13.

Application-grounded evaluation involves human experiments on real applica-

tions. The most reliable way to show that a new research product will work is to have

it tested by the end-user. This approach measures how efficiently human-produced

explanations help other humans to complete a particular task. Application-level

evaluation is the most direct way to assess the system’s objective. However, it is not
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Figure 2.12: Taxonomy mind-map of Machine Learning Interpretability Tech-
niques. Adapted from: Linardatos et al. [8].

the most accessible metric. It requires a high cost and time since these experiments

are carried out with domain experts, which are challenging to get in touch with and

have to be monetarily compensated for their work [9, 10, 22].

Human-grounded evaluation carries out simplified-human experiments that main-

tain the core of the end application. This evaluation can be accomplished by laypeo-

ple, making the experiments cheaper and easier to find testers since it does not

require domain experts. The human-level assessment depends on the quality of the

explanations and can be applied, for instance, by asking the testers to choose the

best one between a set of explanations [9, 10, 22].

Functionally-grounded evaluation employs some formal definition of interpretabil-

ity as proxies or simplified tasks to analyze the quality of the explanations. This

approach is appealing because it does not involve human experiments and, conse-

quently, does not require additional time and cost as the other evaluation levels.

The function-level evaluation is more appropriate when the class of models used

has already been validated by human experiments. The challenge inherent to this

evaluation method is to choose the most suitable proxy [9, 10, 22].
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Figure 2.13: Taxonomy of evaluation approaches for interpretability. Adapted
from: Doshi-Velez et al. [9].

2.4.3 Explainability methods

As mentioned before, it is possible to distinguish the methods that produce

explanations by their capability to be applied in any model (model-agnostic) or

only to a specific family of models (model-specific). The most significant advantage

of model-agnostic interpretation methods over model-specific ones is their flexibility.

It is easier to work with model-agnostic explanations since it allows ML developers

to develop any machine learning model and to compare different ML models in terms

of interpretability.

Model-agnostic methods create explanations by generating feature summaries

related to their importance degree and the interaction between them. These inter-

pretation methods can also be distinguished between global and local methods.

An alternative to model-agnostic interpretation methods is implementing only

intrinsically interpretable models such as linear and logistic regressions, decision

trees and decision rules. Although, it has the disadvantage that predictive perfor-

mance is lost compared to more complex models and limits the developer to one

type of ML model.

Another choice is to use model-specific interpretation methods. However, it also

restricts the developer to only one type of ML model and is not easy to exchange to

another application.

Example-based explanations can also be considered model-agnostic since they

render any machine learning model more interpretable. This method selects specific

dataset instances to describe the behavior of ML models.

Even if it is possible to use model-agnostic explanations to make deep learn-

ing models more interpretable, more specific interpretation methods are needed to

interpret the behavior and predictions of neural networks.
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2.4.3.1 Global model-agnostic methods

Global methods characterize the average behavior of a machine learning model.

They are appropriate to understand the general mechanisms in the data or debug

the model. In this section, some examples of such techniques are described.

Partial Dependence Plot (PDP)

Partial Dependence Plot is a global method that helps to interpret complex

models by plotting the impact of specific features or a subset of features on a model’s

prediction. It shows how a particular set of features influences the average predicted

value by marginalizing the remaining features [8, 10].

In mathematical terms, the partial dependence function (f̂S) is defined by equa-

tion 2.10 [10].

f̂S(xS) = EXC

[
f̂(xS, XC)

]
=

∫
f̂(xS, XC)dP (XC) (2.10)

Where the xS are the features for which we want to know the effect on the

prediction and XC are the remaining features used in the machine learning model.

In Figure 2.14, there is an example where it is possible to visualize the influence

of weather features (temperature, humidity and wind speed) on the predicted num-

ber of bikes rented on a given day. Observing the plots, it is possible to conclude

that the temperature shows the most significant differences: the hotter, the more

bikes are rented until it is too hot, which conducts to a decrease in the rented bikes

[10].

Figure 2.14: PDP for the prediction count model of bicycle renting of weather
features (temperature, humidity and wind speed). Source: Molnar et al. [10].
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This interpretation method is intuitive and straightforward since it is easy for a

layperson to understand the idea of PDP. Furthermore, it can often provide helpful

information and is computationally easy to implement. However, PDPs are usually

simplistic and do not consider all different feature interactions. It assumes that

the features used to compute the partial dependence are not correlated with oth-

ers. Consequently, PDPs may not provide an accurate approximation to the real

relationships between variables. Additionally, this method can only analyse two

features simultaneously and shows only the average marginal effects, which might

hide heterogeneous effects [8, 10].

A faster and unbiased alternative to PDP is Accumulated Local Effects (ALE)

plot. It describes how features influence the model by calculating the average differ-

ences in predictions based on the conditional distribution of the features, instead of

average predictions based on marginal distributions, as in PDP. Thus, ALE plots try

to address the most critical shortcoming of PDPs, the assumption of independence

between features. However, the implementation of this method is more intricate

[8, 10].

Feature Interaction

The main goal of the feature interaction method is to understand how the

relationship between features affects the final prediction. This global interpreta-

tion method measures the interaction strength between features using Friedman’s

H statistics. It evaluates the existence and extent of the interaction between two

features or between a feature and the remaining ones.

H-statistics can be interpreted meaningfully and have the advantage of being

dimensionless, which allows comparison across features and even models. Addition-

ally, the statistics identify all types of interactions, regardless of their nature, which

is a suitable method to use before creating PDP for relationships of interest. How-

ever, the procedure is computationally expensive, and there is no standard threshold

from which the interaction is strong enough to be considered relevant [10].

Permutation Feature Importance

Permutation feature importance is a global interpretation method that esti-

mates the importance of a feature by computing the growth in the model’s predic-

tion error after permuting the feature’s values. A feature is considered ”important”

if a change in its value increases the model error since the model relies on the feature

to make predictions. Otherwise, the feature is considered ”unimportant”. Permuta-

tion feature importance is a straightforward method that gives global insights into
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the model’s behavior, considering all interactions between features. However, this

method can be biased by unrealistic data instances [10].

Global Surrogate

The global surrogate method aims to approximate the predictions of a black-

box model as accurately as possible using simple interpretable ML models. The

global surrogate is considered a model-agnostic method since it does not require any

information about the inner workings of the opaque model. It is applied after the

model’s training phase and only needs access to data and the prediction function.

The main advantage of the surrogate model method is its flexibility since any

interpretable machine learning model can be used. This approach is also very in-

tuitive and easy to implement. However, it is still unclear how well the surrogate

model should approximate the black-box model to be trusted. It is also important

to note that the conclusions are related to the model and not the data since the

surrogate model does not have information about the real outcome [10, 47].

Prototypes and Criticisms

A prototype is a representative instance of all the data. Data instances that

are inadequately represented by the prototype set are considered criticisms. It can

provide insights into complex data distribution together with prototypes, especially

for data points not well represented by the latter. Figure 2.15 shows a simulated

data distribution and the chosen instances for prototypes and criticisms.

These two concepts can be combined in a single framework by the Maximum

Mean Discrepancy (MMD)-critic approach. It employs the MMD statistic to mea-

sure the similarity between points and potential prototypes and accurately selects

prototypes that maximize the statistic. Additionally, MMD-critic picks criticisms

samples applying a regularized witness function score.

Apart from helping to understand the data distribution, MMD-critic can also

be used to create an interpretable model or to make a black-box model interpretable.

This technique is easy to implement and works with any data and machine

learning model. But it does not consider irrelevant features, and the distinction

between prototypes and criticisms depends only on the chosen number of prototypes

[10, 50].
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Figure 2.15: Prototypes and criticisms for a data distribution with two features.
Source: Molnar et al. [10].

2.4.3.2 Local model-agnostic methods

Local interpretation methods provide explanations for individual predictions.

Some examples of such techniques are described in this section.

Individual Conditional Expectation (ICE) plots

The Individual Conditional Expectation (ICE) plot is the equivalent to a PDP

for individual data instances, being, therefore, a local method. An ICE plot displays

the dependence of the prediction on a feature for each sample, producing one line per

instance. As a result, ICE curves can uncover the heterogeneity of the relationships

unlikely to PDPs. Although, it can only display one feature at a time in a meaningful

way. Furthermore, it might be challenging to distinguish relevant characteristics

since the plot can become overcrowded if many ICE curves are drawn [8, 10].

Considering the bicycle rental prediction example, we can conclude, observing

Figure 2.16, that ICE curves present the same effects as PDPs. Therefore, the partial

dependence plot is a good summary of the relationships between the weather features

and the predicted number of rented bikes [10].
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Figure 2.16: ICE plots for the prediction count model of bicycle renting of weather
features (temperature, humidity and wind speed). Source: Molnar et al. [10].

Local Surrogate (LIME)

The local surrogate method aims to explain individual predictions of black-box

machine learning models by training interpretable models. The idea of Local In-

terpretable Model-agnostic Explanations (LIME) is quite intuitive. It tests what

happens to the predictions when data variations are supplied to the machine learn-

ing model. A new dataset is generated, consisting of perturbed samples and the

corresponding predictions of the black-box model. Then, LIME fits an interpretable

model, weighted based on the nearness of the sampled instances to the instances

of interest. The trained model should be a good approximation of the ML model

locally but not globally.

LIME is an up-and-coming method since it produces short and straightforward

explanations and is easy to use. However, it still has many drawbacks that need to

be solved to be safely applied [8, 10, 47].

Scoped Rules (Anchors)

The anchors method explains single predictions of any black-box machine learn-

ing model by creating decision rules that sufficiently determine (”anchors”) the local

prediction. It means that changes to other feature values do not impact the predic-

tion value. Like the LIME method, the anchors method implements a perturbation-

based procedure to generate local explanations for predictions of opaque models.
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Although, instead of surrogate models, the local explanations are represented as

IF-THEN rules, called anchors.

The anchors approach produces explanations easy to interpret, even by laypeo-

ple. However, it suffers from a highly configurable and impactful setup, and also,

many cases need discretization as otherwise, results will be too specific [8, 10]

Shapley Values

Shapley value is a local interpretation method based on game theory. This

method produces explanations by assuming, for each instance, that each feature is a

”player” and the prediction is the ”payout”. The main idea of the Shapley value is

for a given feature in the instance to be explained, evaluating its contribution across

all possible coalitions (sets) of features. It aims to distribute the payout fairly among

them.

This approach requires much computing time since the number of coalitions

increases exponentially with the number of features. Furthermore, when variables

are correlated, it can include unrealistic data instances.

It should be stressed that the Shapley value is the average contribution of a

feature to the model prediction across different coalitions and not the difference in

prediction when the feature is removed from the model [10, 47].

Considering the bicycle renting example, Figure 2.17 displays the Shapley values

of each feature regarding an instance. For this instance, it is possible to observe

that weather and humidity had the most significant negative contribution to the

prediction, while temperature had the most critical positive contribution. The sum

of Shapley values renders the difference between actual and average prediction (-

2108) [10].

Counterfactual Explanations

Counterfactual explanations can be used to explain predictions of individual

instances. It describes the slightest possible change to the feature values that alter

the prediction to a predefined output. Thinking in counterfactuals requires creating

a hypothetical situation that contradicts the observed facts. The goal of this ap-

proach is not to reveal the model’s inner workings but to identify the factors that

can be changed to produce the desired outcome.

This method is relatively easy to implement, and its explanations are easy to

understand by humans. The counterfactual method does not require access to the

data or the model and works with systems that do not employ machine learning.
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Figure 2.17: Shapley values regarding an instance from the prediction count model
of bicycle daily renting. Source: Molnar et al. [10].

However, it may not be appropriate and sufficient in specific scenarios. Furthermore,

for each instance, multiple counterfactual explanations can be found [8, 10].

2.4.3.3 Example-based methods

Example-based methods, as mentioned before, explain the behavior of ML mod-

els or the underlying data distribution, selecting particular instances of the dataset.

Some of the methods presented above are example-based, including counterfactual

explanations, prototypes and criticisms. Other methods are K-Nearest Neighbors

(KNN) model, an interpretable ML model, and the influential instances method

described in this section.

Influential Instances

This technique aims to identify influential training instances that considerably

change the parameters or predictions of the model when deleted from the training

data, as illustrated by Figure 2.18.

One popular technique is deletion diagnostics, in which individual training in-
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Figure 2.18: Representation of a linear model with one feature. Trained once with
the full data and once without the influential feature. Source: Molnar et al. [10].

stances are omitted one at a time, and the model is retrained repeatedly. Then,

the parameters or predictions of the original model are compared with those of the

retrained model. However, this technique may be problematic regarding computing

time since the model needs to be retrained for each training instance. Another pos-

sible approach is influence functions, which use robust statistics to approximate how

much the model changes when the weight of the sample is increased. This method

helps to comprehend the model behavior, debug the model and identify errors in

the dataset. However, it requires access to the loss gradient regarding the model

parameters, which is only possible for a specific group of ML models [10].

2.4.3.4 Deep Learning interpretation

Although deep learning models are not implemented in this thesis, a brief

overview of deep learning interpretation methods is presented in this section. Most

studies on interpretability and explainability in the seizure prediction field are con-

ducted using deep learning models, as shown in the state-of-the-art chapter.

Deep learning has acquired popularity over the years since it can outperform

state-of-the-art accuracy, frequently exceeding human-level performance. Subse-
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quently, many real-world problems in diverse fields are being addressed by deep

learning models. However, explaining and interpreting their predictions and be-

havior is a challenging task. These networks include several layers and weights

through non-linear transformations that provide high complexity to their internal

mechanisms. As a result, interpretation methods produced particularly for neural

networks are needed. In the first place, neural networks learn features and concepts

in their hidden layers that universal models may not uncover. Secondly, the gradi-

ent can be used to implement interpretation methods that are more efficient than

model-agnostic ones, that only consider the model from the outside [10].

The deep learning interpretation methods are usually designed with distinct

principles [51]:

• underlining the features on which the deep model mainly relies, with gradients,

perturbations, or explainable proxy models;

• analyzing the inside of deep models to understand the logic mechanisms;

• evaluating the contributions of each training data instance for interpreting the

inner mechanism.

2.4.4 Grounded Theory (GT)

Explanations are social interactions where beliefs are exchanged. People may

have different criteria to identify a proper explanation [10]. As a result, evaluating

explanations produced by the presented methods can be challenging, especially on

a quantitative level. On that account, the developed decision explanations can be

presented to domain experts and evaluated at the human-grounded level. In order

to arrive at theoretical explanations, the impressions given by specialists should be

rigorously analyzed using tools such as Grounded Theory (GT), the procedure most

widely used in scientific research.

Grounded theory is an inductive research methodology designed to provide

hypotheses and theoretical explanations about social phenomena for which slight

theory has been developed. The theory is grounded in the systematic collection

and analysis of data that are mainly, but not exclusively, qualitative. The survey

participants’ experiences conduct the research, and the results reflect patterns in

these experiences. Researchers must avoid preconceived assumptions and adopt an

impartial view regarding the topic under debate since GT aims to develop a theory

or explain a process, not test or verify an existing hypothesis [52, 53].

The grounded theory employs an interactive approach that implicates cycles of

simultaneous data collection and analysis, in which the emerging results of the data
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analysis are used to inform subsequent data collection. The process continues until it

achieves theoretical saturation, which identifies the point where no new information

is obtained in the data collection, as represented in Figure 2.19 [52].

The data is commonly acquired in grounded theory studies by interviews or

observational fields. Since the goal of data collection is to obtain an appropriately

wide range of perspectives and experiences relevant to the research questions, the

data sampling must provide information that would confirm, challenge or expand an

arising theory. Therefore, the data sources are selected as the data analysis progress

until saturation is achieved. In GT, having a large number of interviews or data is

not crucial, but it is essential to have the correct quantity to ensure saturation [52].

The analytical procedure is based on the constant comparison of the data and

consists of four stages [54].

In the first stage, recognized incidents are compared against other examples for

similarities and differences. Similar incidents are grouped into large categories using

a procedure known as open coding. At this point, data is split, labelled and placed

into the appropriate categories [54]. The themes are constantly redefined, through

systematic comparisons that rename and reorganize the categories, according to the

ongoing data collection [52]. While comparing instances and coding, researchers

write in memo forms possible patterns identified in and between codes. It helps to

organize and formulate emergent theory at progressive levels [52, 53].

In the second stage, connections and properties are attempted to be established

within each category. It is achieved by axial coding that groups the initial themes

into key elements [54].

In the third stage, similar categories are grouped into highly conceptual themes,

and hypotheses are generated until saturation is reached [54].

In the last stage, the writing of the theoretical formulations takes place. The

analytical process is considered complete when the theory produces understandable

explanations of the social phenomenon under study [52, 54].
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Figure 2.19: Grounded Theory (GT) flow chart.

2.5 Summary

Epilepsy is one of the most common neurological diseases expressed by ab-

normal brain activity resulting in seizure events. It is characterized by significant

heterogeneity concerning types of seizures, epilepsy, and epilepsy syndromes. A

seizure can also be categorized by its initial manifestations/symptoms, awareness

and epileptic focus localization involving lobes and/or hemispheres.

Patients with DRE, who cannot control seizure activity through medication,

are the main focus of seizure prediction studies. This group of patients is often

subjected to pre-surgical monitoring for long periods to evaluate their condition,

constituting most of the databases used in epileptic seizure prediction studies.

The EEG is a medical tool widely used in detecting and analyzing epileptic

seizures since it can measure and record the brain’s electrical activity. Two different

methods can be used to acquire the signal: scalp EEG and iEEG. While iEEG

recordings present a higher signal-to-noise ratio, scalp EEG recordings can capture

low-frequency activity more accurately. A typical EEG record from an epileptic

patient can be divided into preictal, ictal, postictal and interictal.

The goal of seizure prediction is to correctly anticipate a seizure by detecting the

preictal period providing a well-defined occurrence period (SOP) with a predefined

horizon (SPH). However, this transitional stage differs between patients and seizure

episodes, presenting a significant challenge.

Sensitivity and FPR/h are the gold standard metrics to evaluate the seizure

prediction algorithms’ performance. Furthermore, statistical validation plays a fun-

damental role in the evaluation of seizure prediction algorithms as well as in the

comparison of distinct prediction models. A proper methodology must involve an
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adequate SPH duration, long enough for patients to take preventive actions and

assess performance for a range of SOP values, which should not be too long since

it may contribute to increasing the patient’s anxiety. Finally, robust models should

handle the existence of concept drifts and data imbalance.

The deployment of ML models in sectors such as healthcare has led to an

increased interest in optimized systems not only at the performance level but also

on the level of other relevant criteria, including safety, trustworthiness, fairness,

robustness and the right to explanations. The explainability field aims to combat

skepticism regarding the clinical application of machine learning models and enhance

patient and clinician trust. However, as explainability is still a very recent field

of investigation, there is no consensus regarding many aspects, namely, how to

organize and evaluate the different explanations and how to define the terms of

interpretability and explainability.
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State of the art

An overview of seizure prediction and explainability studies is presented in this

chapter. Section 3.1 describes the general framework underlying EEG seizure predic-

tion algorithms. Section 3.2 presents some recent studies about the explainability

of EEG-based models. In Section 3.3, the main ideas of the state of the art are

summarized.

3.1 Seizure Prediction

The epileptic seizure prediction field has a brief but rich history of speculation,

debate and accomplishments. However, it is still a challenging area that has earned

attention from the most diverse disciplines.

The preliminary work on the seizure prediction field dates back to the 1970s.

At first, seizure prediction studies relied on statistical methods. With the growth

in technology, the capacity to record and develop machine learning models has ex-

panded. Then, with the rapid increase in computing power and computer stor-

age, more complex prediction algorithms have been applied to continuous multi-day

EEG recordings, such as deep learning approaches. Therefore, the most diversified

research approaches, dataset considerations, evaluation parameters, and implemen-

tation techniques have been used since the inception of the seizure prediction field

[16, 18, 19].

3.1.1 Framework overview

Most seizure prediction studies follow a series of general steps regarding sig-

nal processing, machine learning and post-processing (see Figure 3.1). Despite the

existence of this general framework, there is a considerable variety of studies with

different approaches regarding used parameters and methods.

Regarding EEG signals, statistical analysis, and ML approaches, each step can

be summarized as follows:
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• Signal acquisition: data collection to be used in the study.

• Pre-processing: signal preparation for adequate feature extraction - artifacts

removal, signal-to-noise ratio improvement and data segmentation through

sliding window analysis.

• Feature extraction: extraction of descriptive characteristics from the EEG

signal.

• Feature selection: selection of the most relevant features to discriminate each

epileptic state.

• Classification: training ML models to identify preictal changes using the se-

lected features.

• Post-processing: regularization methods to smooth the classifier output and

give temporal meaning to the consecutive independent predictions.

• Performance evaluation: assessment of the algorithm performance applying

the appropriate metrics.

Figure 3.1: General framework of seizure prediction studies. Adapted from:
Rasheed et al. [11].

Over the years, various seizure prediction studies have employed classical ma-

chine learning approaches. These classification algorithms rely on handcrafted fea-

tures obtained from traditional signal processing methods. However, the feature

extraction process and all the inherent steps require extensive computational time

and can discard information from the signal which may be relevant for prediction.

Therefore, it is a challenging task to automatically extract informative characteris-

tics from the raw signal concerning the final goal of the study.

On the other hand, deep learning algorithms can automatically learn more dis-

tinct and robust features than traditional methods. It is an evolved ML technology

capable of rigorously learning patterns from extensive data collections. Further-

more, the capability of deep learning models to produce more accurate results has

influenced the researchers to tackle the seizure prediction problem by employing DL
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techniques.

However, once these models present more parameters to be trained, the risk of

overfitting is higher, requiring larger datasets. Nevertheless, less data is available to

train such models with the evolution of patient-specific algorithms. Furthermore, its

lack of interpretability has raised some skepticism regarding its clinical applicability

[11, 55].

Therefore, as depicted in Figure 3.1, the leading adaptations introduced by DL

models in the seizure prediction framework are related to feature extraction, feature

selection and classification steps. These stages can be pooled together since deep

learning techniques can handle raw data.

3.1.2 Signal acquisition

Signal acquisition and data selection are the first steps in seizure prediction

studies. The database used for research plays a significant role in the performance

of the designed approach.

Various hospitals and research centres have published different databases over

the years. The main differences between databases are related to the EEG recording

mechanisms used, the number of subjects used, and the number of channels used.

Regarding these aspects, Table 3.1 presents an overview of the EEG databases used

in seizure prediction studies over the past ten years.

Databases

The most widely used databases in the EEG seizure prediction studies are

the European Database on Epilepsy (EPILEPSIAE) [56–63, 66, 75, 80, 85], the

Children’s Hospital Boston database (CHB-MIT) [64, 67, 69–71, 74–77, 79, 81–84]

and the Freiburg database [65, 72, 73, 75, 78, 82].

The EPILEPSIAE database is the most significant accessible from pre-surgical

monitoring, comprising EEG recordings lasting 165 hours (on average) from 275

DRE patients. Additionally, it includes standardized annotation and extensive

metadata.

On the other hand, the NeuroVista database created by Cook et al. [24] is

the largest one regarding recording duration per patient. It comprises data from 15

patients who were followed for up to two years outside monitoring units. Therefore,

this database is a good representation of real-life data and should benefit from

concept drift and promote clinical translation.

Freiburg Hospital’s database is one of the substantial databases which contains
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Table 3.1: Overview of the signal acquisition aspects underlying EEG seizure
prediction studies over the past 10 years.

Study Database Number of Patients Electrodes EEG Type
Teixeira et al. [56]

(2012)
EPILEPSIAE 10

6 covering the scalp,
3 focal and 3 afocal

Scalp EEG

Bandarabadi et al. [57]
(2012)

EPILEPSIAE 12 3 focal and 3 afocal Scalp EEG, iEEG

Cook et al. [24]
(2013)

NeuroVista 15 16 iEEG

Rasekhi et al.[58]
(2013)

EPILEPSIAE 10 3 focal and 3 afocal Scalp EEG, iEEG

Rabbi et al. [59]
(2013)

EPILEPSIAE 1 2 focal iEEG

Alvarado-Rojas et al. [60]
(2014)

EPILEPSIAE 53 - iEEG

Teixeira et al. [61]
(2014)

EPILEPSIAE 278
6 random,

6 covering the scalp,
3 focal and 3 afocal

Scalp EEG, iEEG

Rasekhi et al. [62]
(2015)

EPILEPSIAE 10 3 focal and 3 afocal Scalp EEG, iEEG

Bandarabadi et al. [63]
(2015)

EPILEPSIAE 24 3 focal and 3 afocal Scalp EEG, iEEG

Usman et al. [64]
(2017)

CHB-MIT 24 23 Scalp EEG

Aarabi et al. [65]
(2017)

Freiburg 10 3 focal and 3 afocal iEEG

Dieito et al. [66]
(2017)

EPILEPSIAE 216
6 random,

6 covering the scalp,
3 focal and 3 afocal

Scalp EEG, iEEG

Khan et al. [67]
(2017)

MSSM,
CHB-MIT

28, 22 22 Scalp EEG

Kiral-Kornek et al.[68]
(2018)

NeuroVista 10 16 iEEG

Tsiouris et al. [69]
(2018)

CHB-MIT 24 18 Scalp EEG

Usman et al. [70]
(2018)

CHB-MIT 24 23 Scalp EEG

Kitano et al. [71]
(2018)

CHB-MIT 9 23 Scalp EEG

Yuan et al. [72]
(2018)

Freiburg 21 3 focal iEEG

Yang et al. [73]
(2018)

Freiburg 19 6 iEEG

Daoud et al. [74]
(2019)

CHB-MIT 8 23 Scalp EEG

Truong et al. [75]
(2019)

CHB-MIT,
Freiburg,

EPILEPSIAE
13, 13, 30

16,
3 focal and 3 afocal,

19
Scalp EEG, iEEG, Scalp EEG

Zhang at al. [76]
(2019)

CHB-MIT 23 18 Scalp EEG

Gabara et al. [77]
(2020)

CHB-MIT 6 23 Scalp EEG

Stojanović et al. [78]
(2020)

Freiburg,
Epylepsyecosystem

5, 3 31-122, 16 iEEG

Tamanna et al. [79]
(2021)

CHB-MIT 10 23 Scalp EEG

Pinto et al. [80]
(2021)

EPILEPSIAE 19 19 Scalp EEG

Usman et al. [81]
(2021)

CHB-MIT 22 23 Scalp EEG

Peng et al. [82]
(2022)

CHB-MIT,
Freiburg

16, 20
23,

3 focal and 3 afocal
Scalp EEG, iEEG

Singh et al. [83]
(2022)

CHB-MIT 24 23 Scalp EEG

Liang et al. [84]
(2022)

CHB-MIT,
Kaggle (American
Epilepsy Society)

12,
5 dogs and
2 patients

23,
16 (dogs), 15 depth (pat1),

24 subdural (pat2)
Scalp EEG, iEEG

Pinto et al. [85]
(2022)

EPILEPSIAE 93 19 Scalp EEG
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intracranial EEG recordings of 21 subjects with around 88 seizures. Still, lately, it

has been integrated into the EPILEPSIAE database to provide larger datasets. The

database from the Center of Epilepsy at Children’s Hospital, Boston, includes scalp

EEG recordings from 23 patients divided into seizure and non-seizure recordings.

Additionally, some studies [84] have incorporated epileptic animals such as dogs

included in the Kaggle American Epilepsy Society database.

More recently, new databases have started appearing with long-term data and

acquisition methods that are more comfortable for patients. For instance, Attia et

al. [86] used ultra-long-term subcutaneous EEG data in their study. New subcu-

taneous EEG recording systems have shown promise in enabling continuous moni-

toring with a modest burden to the patient. On the other hand, Nasseri et al. [87]

used ultra-long-term recordings from a noninvasive wrist-worn multimodal sensor.

Accelerometry (ACC), blood volume pulse (BVP), electrodermal activity (EDA),

temperature (TEMP) and heart rate (HR) signals were recorded by the wearable

device and used in a seizure forecasting system.

Recording type and channels selection

Regarding the type of EEG recording, both intracranial and scalp EEG have

been commonly used. Indeed, some studies [56–58, 61–63, 66, 75, 82, 84] employed

the two recording types and analyzed the impact on the results. However, non-

significant discrepancies were reported.

Distinct strategies have been used regarding electrode selection. While some

researchers work with all available electrodes, others select a given number of elec-

trodes from specific or random locations. Choosing all available electrodes can be

intuitive since it contains all the information. However, the large number of elec-

trodes may lead to high computational costs and patient discomfort.

The location selection is determined by different assumptions concerning the

seizure generation process. The random electrode choice [61, 66] is based on the pre-

sumption that seizure generation can be captured in any brain region. Otherwise,

choosing electrodes only from the focal area [59, 72] presumes that the most discrim-

inative traces are given by those placed near the seizure focus. When the electrodes

are chosen from the focal and far from the focal regions [56–58, 61–63, 65, 66, 75, 82],

it is assumed that the preictal stage is adequately represented by relating the most

discriminative traces with information of the general brain state provided by afocal

electrodes. Moreover, to capture generalized brain electrical activity, electrodes can

be chosen to maximize coverage of the scalp [56, 61, 66].
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3.1.3 Signal pre-processing

Pre-processing is a crucial procedure in raw EEG signals. It aims to remove

noise and artifacts in order to reduce their influence in feature extraction and conse-

quently improve the classification performance of the designed algorithm. Numerous

techniques have been employed to minimize the impact of unwanted artifacts and

noise and prepare the signal for feature extraction [11, 88].

Typical strategies include artifact removal and filtering, data segmentation per-

formed by sliding window analysis, and definition of Seizure Occurrence Period

(SOP) and Seizure Prediction Horizon (SPH) duration. Although these two periods

can be defined right before the model training, they must be selected during the

initial steps according to the application system, as explained in Section 2.3.1, and

not based on the model’s performance. Therefore, their definition was incorporated

in the signal pre-processing phase.

Table 3.2 presents an overview of the pre-processing procedures adopted in

seizure prediction studies over the past ten years.

Filtering and artifact removal

This step involves the removal of environmental noise, high-frequency content,

and artifacts such as eye movements, muscle activity and cardiac signals.

The power-line interference is commonly removed with a notch filter of 50 Hz

[56, 58, 61–63, 65, 80, 85] or 60 Hz [59]. Band-pass filters are also frequently im-

plemented [24, 59, 60, 65, 66, 75, 76, 80, 82–84], although their cut-off frequencies

depend on the bands of interest that differ among studies. Typically, low-frequency

components below 0.5 Hz are removed since they are considered breathing artifacts.

However, high-frequency components which involve environmental noise are harder

to delimit. The most frequent strategy is filtering with Infinite Impulse Response

(IIR) and Finite Impulse Response (FIR) digital filters.

Despite artifact removal being considered an essential step in classical ML ap-

proaches, it can be viewed as risky since helpful information from the signal can be

discarded along with the artifacts [55].

Data segmentation

The EEG recordings should be segmented into smaller windows to extract rel-

evant features from the signal. Most importantly, in a real scenario, the data seg-

mentation allows online analysis, permitting decisions in short periods.

These windows are supposed to comprise similar characteristics significant to
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Table 3.2: Overview of the pre-processing procedures adopted in the EEG seizure
prediction studies over the past 10 years.

Study
Denoising, Filtering,
Artifact Removal

Sliding Window
Length (seconds)

Pre-ictal period
(minutes)

SPH

Teixeira et al. [56]
(2012)

50 Hz Notch 5 10, 20, 30, 40 -

Bandarabadi et al. [57]
(2012)

- 5 10, 20, 30, 40 -

Cook et al. [24]
(2013)

Octave-wide digital and Notch filters
8 Hz - 128 Hz

5 - -

Rasekhi et al. [58]
(2013)

50 Hz Notch 5 10, 20, 30, 40 -

Rabbi et al. [59]
(2013)

0.5 - 100 Hz Butterworth,
60Hz Notch

10
(50% overlap)

15, 30, 45 -

Alvarado-Rojas et al. [60]
(2014)

8th-order Butterworth filter in bands
of interest from 0.5Hz to 140 Hz,

Hilbert transform
60 10, 30, 60 -

Teixeira et al. [61]
(2014)

50 Hz Notch 5 10, 20, 30, 40 -

Rasekhi et al. [62]
(2015)

50 Hz Notch 5 10, 20, 30, 40 -

Bandarabadi et al. [63]
(2015)

50 Hz Notch 5 10, 20, 30, 40 -

Usman et al. [64]
(2017)

- 8 - -

Aarabi et al. [65]
(2017)

0.5 - 100 Hz Butterworth,
50 Hz Notch

10 30, 50 10 s

Direito et al. [66]
(2017)

48 - 52 Hz Butterworth 5 10, 20, 30, 40 10 s

Khan et al. [67]
(2017)

128 Hz low-pass filter 1 10 -

Kiral-Kornek et al. [68]
(2018)

- - 15 -

Tsiouris et al. [69]
(2018)

- 5 15, 30, 60, 120 -

Usman et al. [70]
(2018)

CSP, EMD 1 - -

Kitano et al. [71]
(2018)

- 4 10 -

Yuan et al. [72]
(2018)

- 4 30, 50 10 s

Yang et al. [73]
(2018)

Notch filter 5 - -

Daoud et al. [74]
(2019)

- 5 60 -

Truong et al. [75]
(2019)

Band-pass filters: 47 - 53 Hz and 97 - 103 Hz
or 57 - 63 Hz and 117 - 123 Hz,

DC removed
28 30 5 min

Zhang at al. [76]
(2019)

5 - 50Hz Butterworth 5 30 -

Gabara et al. [77]
(2020)

- 4 -

Stojanović et al. [78]
(2020)

Parks-McClellan optimal equiripple FIR
filter, Butterworth IIR filter

20
(50% overlap)

5, 60 30 s, 5 min

Tamanna et al. [79]
(2021)

- 30 (Preictal/ictal) -

Pinto et al. [80]
(2021)

50 Hz Notch,
0.1 - 20 Hz bandpass

5 40, 50, 60 10 min

Usman et al. [81]
(2021)

EMD 29 - -

Peng et al. [82]
(2022)

Band-pass filters:
(CHB) 57 - 63 Hz and 117 - 123 Hz,
(FSP) 47 - 53 Hz and 97 - 103 Hz

5 30 0

Singh et al. [83]
(2022)

0.1 - 127 Hz Butterworth
5, 10, 15,
20, 25, 30

30 5 min

Liang et al. [84]
(2022)

Band-pass filters:
57 - 63 Hz and 117 - 123 Hz,

DC removal

30
(S samples overlap),

30
- -

Pinto et al. [85]
(2022)

0.5 Hz high-pass filter,
50 Hz Notch filter

5 30-75 10 min
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EEG analysis. Therefore, the window size and the percentage of overlap between

consecutive windows should be defined considering the compromise between the

capacity to capture specific patterns and stationary assumptions [17].

As outlined in Table 3.2, the window length varies between 5 and 30 seconds,

with or without overlap, commonly with an overlap percentage of 50%. Even so,

it is evident that 5-second windows without overlaps are more frequently adopted

[24, 56–58, 61–63, 66, 69, 73, 74, 76, 80, 82, 83, 85].

Pre-ictal period, SOP and SPH duration

No standard or optimal value has yet been defined for the duration of the

preictal period. Therefore, the variety of values used in the literature is immense.

As shown in Table 3.2, various preictal times have been adopted, ranging from 5

minutes to 2 hours. Some studies adopted a fixed preictal period [67, 68, 71, 74–

76, 82, 83], while others considered several values for the preictal period [56–63,

65, 66, 69, 72, 80, 85]. The heterogeneity regarding the preictal duration makes it

difficult to compare and evaluate different seizure prediction approaches.

Regarding SPH duration, there is also no standard or optimal value since it

may vary depending on the final application. In the literature, SPH ranges from 10

seconds to 10 minutes, as shown in Table 3.2. In most studies, SPH is not mentioned,

and it is assumed that this period is dismissed. However, it represents an unrealistic

scenario as real-life applications require some time for intervention to be initiated.

The adopted preictal period involves the duration of the SOP and SPH. Hence,

when the SPH period is not considered, the SOP time corresponds to the preictal

period.

3.1.4 Feature Extraction

The feature extraction step aims to capture the most appropriate discriminant

measures that characterize the EEG signal. This step is remarkably heterogeneous

due to the immense diversity of features suggested and adopted by researchers.

However, no optimal feature type has been identified.

Feature extraction is a crucial factor in the algorithm performance and the

prediction model’s interpretability and explainability. Consequently, this procedure

plays a fundamental role in the trustworthiness and acceptance of seizure prediction

algorithms since features with some biological/medical meaning are easily under-

stood by clinical experts.

A feature can be considered univariate or multivariate based on the number
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of EEG channels. While univariate features are derived from one single electrode,

multivariate features involve information from two or more electrodes. Addition-

ally, the extracted characteristics can be described as linear or non-linear according

to the linearity of the captured signal dynamics. Considering both classifications,

features can be grouped into four classes: univariate linear, univariate non-linear,

multivariate linear and multivariate non-linear, as illustrated in Figure 3.2.

Figure 3.2: EEG features most commonly used in seizure prediction studies, cat-
egorized in terms of number of channels and linearity.

Table 3.3 presents an overview of the features type adopted by seizure prediction

studies over the past ten years.

It is possible to observe that univariate linear features are widely used in the

literature [24, 56–58, 61, 62, 64, 66, 70–72, 77, 79, 80, 83, 85]. The predominance of

this feature type may be due to its simplicity, as it is computationally lighter and

easier to interpret by clinicians.

It is also important to note that various studies which adopt deep learning

models have chosen to apply automatic feature engineering techniques using the raw

data as input [69, 74]. However, some still perform traditional feature engineering

[71, 83] or transformations to frequency or time-frequency domain [67, 68, 75, 76,

81, 82, 84] using techniques, such as Fourier transform or wavelet decomposition,

which are used as input for the classification model. Comparatively, handcrafted

features are more interpretable than automatically extracted ones.
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Table 3.3: Overview of the features type used in EEG seizure prediction studies
over the past ten years.

Univariate Multivariate
Study

Linear Non-Linear Linear Non-Linear
Other

Teixeira et al. [56]
(2012)

X X

Bandarabadi et al. [57]
(2012)

X X

Cook et al. [24]
(2013)

X X X

Rasekhi et al. [58]
(2013)

X

Rabbi et al. [59]
(2013)

X X

Alvarado-Rojas et al. [60]
(2014)

X

Teixeira et al. [61]
(2014)

X

Rasekhi et al. [62]
(2015)

X X

Bandarabadi et al. [63]
(2015)

X

Usman et al. [64]
(2017)

X

Aarabi et al. [65]
(2017)

X X

Direito et al. [66]
(2017)

X

Khan et al. [67]
(2017)

Wavelet transformed EEG

Kiral-Kornek et al. [68]
(2018)

Spectogram transformation

Tsiouris et al. [69]
(2018)

Raw data

Usman et al. [70]
(2018)

X

Kitano et al. [71]
(2018)

X

Yuan et al. [72]
(2018)

X

Yang et al. [73]
(2018)

X

Daoud et al. [74]
(2019)

Raw data

Truong et al. [75]
(2019)

From raw data to STFT

Zhang at al. [76]
(2019)

From raw data to CSP

Gabara et al. [77]
(2020)

X

Stojanović et al. [78]
(2020)

Nonnegative Matrix Factorization

Tamanna et al. [79]
(2021)

X X

Pinto et al. [80]
(2021)

X

Usman et al. [81]
(2021)

From raw data to STFT

Peng et al. [82]
(2022)

From raw data to STFT

Singh et al. [83]
(2022)

X

Liang et al. [84]
(2022)

(CHB-MIT) From raw data to STFT
(Kaggle) From raw data to

frequency-domain and time domain
by FFT and PCA

Pinto et al. [85]
(2022)

X
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3.1.5 Feature Selection

In an attempt to encompass brain dynamics during the transition between

states, prediction algorithms usually combine numerous features, which may result

in high dimensional feature space. Therefore, it is fundamental to select the most

discriminative features that will allow the detection of preictal states. It is a crucial

step since irrelevant or redundant features can lead to model overfitting or degrade

the classifier performance [17].

Diverse feature selection techniques have been applied in seizure prediction

studies, such as maximum Difference Amplitude Distribution of histogram (mDAD)

[57, 63], minimum Redundance Maximum Relevance (mRMR) [57, 62, 63], mini-

mum normalized difference of percentiles, ReliefF and Principal Component Analy-

sis (PCA) [17]. Genetic Algorithms (GAs) can also be used in this step [80, 85] and

attempt to reproduce the principles of biological evolution: from a random initial

population, the strongest one will recombine to survive and adapt to the external

environment. When using DL techniques, some authors employ convolution layers

[75, 81] or autoencoders [74, 82] to reduce the dimensionality of the feature space.

3.1.6 Classification

Based on the extracted and selected features, a classification algorithm is used

to train a model capable of distinguishing the preictal from the interictal period.

After the training phase, the model must be employed to unseen data.

Various algorithms have been used in the literature, from simpler to more com-

plex. While earlier studies adopted thresholding [60, 64, 65] and classical machine

learning techniques, later studies started to introduce deep learning approaches

[56, 67–69, 74–76, 81–84]. As outlined in Table 3.4, the most commonly used classifi-

cation models are Support Vector Machines (SVM) [56–58, 61–64, 66, 73, 77–79, 82]

and Convolutional Neural Networks (CNNs) [67, 68, 74–76, 81, 83, 84]. The LSTM

models are also used in a few studies [69, 74, 81].

Partitioning

To evaluate the actual performance of a prediction algorithm is compulsory

to test it on out-of-sample data, which were not used in the training phase. Fur-

thermore, a test should not be associated with the same events (seizures) that the

training data did. Therefore, partitioning methods are required to divide the data

into training, and testing sets [18].
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Table 3.4: Overview of the classification, regularization and performance evalua-
tion characteristics used in EEG seizure prediction studies over the past ten years.

Study Partition Methods Classifier Regularlization Performance
Statistical
Validation

Teixeira et al. [56]
(2012)

Training: first 3 seizures
Testing: remaining seizures

SVM
Firing Power,
Kalman Filter

SS(FP)=77%
SS(KF)=84%

FPR/h(FP)=1.51
FPR/h(KF)=0.20

-

Bandarabadi et al. [57]
(2012)

Training: 3 seizures
Testing: the remaining

SVM Firing Power
SS=76.09%
FPR/h=0.15

-

Cook et al. [24]
(2013)

Training: first 4 months
Testing: remaining duration

KNN,
Decision Tree

Smoothing SS=61%
Time-matched

predictor
Rasekhi et al. [58]

(2013)
Training: first 3 seizures

Testing: remaining seizures
SVM Firing Power

SS=73.9%
FPR/h=0.15

-

Rabbi et al. [59]
(2013)

Training: 2 seizures
Testing: the remaining

ANFIS -
SS=80.0%

FPR/h=0.46
-

Alvarado-Rojas et al. [60]
(2014)

Training: first 2-4 seizures
Testing: the remaining

Thresholding Kalman Filter
SS=46.55%
FPR/h=0.94

Random
Predictor

Teixeira et al. [61]
(2014)

Training: first 3 seizures
Testing: remaining seizures

ANN, SVM Firing Power
SS=70.61%
FPR/h=0.34

-

Rasekhi et al. [62]
(2015)

Training: first 3 seizures
Testing: remaining seizures

SVM Firing Power
SS=60.90%
FPR/h=0.11

Random
Predictor

Bandarabadi et al. [63]
(2015)

Training: first 3 seizures
Testing: remaining seizures

SVM Firing Power
SS=75.6%

FPR/h=0.10
Random
Predictor

Usman et al. [64]
(2017)

10-fold cross-validation SVM - SS=92.23% -

Aarabi et al. [65]
(2017)

Testing: 1 seizures
Training: the remaining

Thresholding -
SS=89.80%
FPR/h=0.12

Random
Predictor

Direito et al. [66]
(2017)

Training: 2-3 seizures
Testing: the remaining

SVM Firing Power
SS=38.47%
FPR/h=0.20

Random
Predictor

Khan et al. [67]
(2017)

Testing: 1-3 seizures
Training: the remaining

CNN -
SS=87.80%

FPR/h=0.142
Random
Predictor

Kiral-Kornek et al. [68]
(2018)

Training: first 2 months
Testing: remaining duration

CNN -
SS=69.0%
TiW=27.0%

Random
Predictor

Tsiouris et al. [69]
(2018)

10-fold cross-validation LSTM -
SS=99.0%

FPR/h=0.02
-

Usman et al. [70]
(2018)

- Thresholding - - -

Kitano et al. [71]
(2018)

- SOM - SS=98% -

Yuan et al. [72]
(2018)

Training: 1-2 seizures
Testing: the remaining

BLDA
Moving average

filter,
thresholding

SS(SOP:30)=85.11%
SS(SOP:50)=93.62%

FPR/h=0.08
-

Yang et al. [73]
(2018)

- SVM
Two-step

firing power
SS=94.0%

FPR/h=0.111
-

Daoud et al. [74]
(2019)

Leave-One-Out seizures
CNN,

Bi-LSTM
-

SS=99.72%
FPR/h=0.004

-

Truong et al. [75]
(2019)

Leave-One-Out seizures
GAN,

CNN, NN
-

AUC(CHB)=77.68%
AUC(FSP)=75.47%
AUC(EPI)=65.05%

Random
Predictor

Zhang at al. [76]
(2019)

Leave-One-Out seizures CNN Kalman Filter
SS=92.2%

FPR/h=0.12
-

Gabara et al. [77]
(2020)

Training: 70% of the data
Testing: 30% of the data

SVM -
SS=95.7%

ACC=96.2%
-

Stojanović et al. [78]
(2020)

Training: 70% of the data
Testing: 30% of the data

SVM -

SS=95.2%
SP=99.4%
SS=69.0%
SP=78.67%

-

Tamanna et al. [79]
(2021)

Training: 80% of the data
Testing: 20% of the data

SVM K-of-n method
ACC=96.38%
FPR/h=0.19

-

Pinto et al. [80]
(2021)

Training: first 60% seizures
Testing: the remaining

LogReg Firing Power
SS=37.0%

FPR/h=0.19
Surrogate
Predictor

Usman et al. [81]
(2021)

k-fold cross validation CNN+LSTM -
SS=93.0%
SP=92.5%

-

Peng et al.[82]
(2022)

Leave-One-Out seizures
MMD-AAE
+ SVM

-

SS(CHB)=73%
FPR/h(GHB)=0.24

SS(FSP)=76%
FPR/h(FSP)=0.19

-

Singh et al.[83]
(2022)

Training: 90% of the data
Testing: 10% of the data

CNN -
SS=98.0%
SP=96.6%

-

Liang et al. [84]
(2022)

(CHB-MIT)
Leave-One-Out seizures

CNN
(CHB-MIT)

K-of-n method

SS(CHB)=88.3%
FPR/h(CHB)=0.04
AUC(Kaggle)=0.86

-

Pinto et al. [85]
(2022)

Training: first 3 seizures
Testing: remaining seizures

LogReg Firing Power
SS=16.0%

FPR/h=0.21
Surrogate
Predictor
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No standard guidelines have been defined regarding partitioning methods. As

seen in Table 3.4, there is considerable heterogeneity between studies.

The majority of the studies present in Table 3.4 consider that the seizure gen-

eration mechanism is different between patients. Thus, patient-specific methods are

commonly used in the literature, in which a specific model is trained and tested

within each patient’s data. Additionally, while some studies don’t consider the ex-

istence of concept drift, neglecting the order in which seizures occur, others assume

there is a time dependence by using earlier seizures to train and later ones to test

the models [24, 56, 58, 60–63, 68, 80, 85].

Moreover, class imbalance also constitutes a severe issue in seizure prediction

studies. While some authors have handled this problem in the training phase by

undersampling (discarding some interictal samples) [58, 61, 63, 66], others have

addressed this by artificially generating new preictal samples [75].

Support Vector Machines (SVM)

Support Vector Machines (SVM) are supervised machine-learning methods widely

used in seizure prediction studies. It is characterized by a good generalization ca-

pability and a few optimized parameters. The model aims to identify an optimal

separating hyperplane that maximizes the distance between the closest training

points from distinct classes. When classes are not linearly separable, SVMs can

produce non-linear decision boundaries by using non-linear kernel functions such as

the radial basis function (RBF) [17, 66].

Convolutional Neural Network (CNN)

A convolutional neural network is a deep learning model capable of building

high-level representations and automatically learning key features directly from the

raw data. This method is designed to handle data presented as multiple arrays, such

as images and time-series data. Concerning seizure prediction studies, CNNs can

capture short-term temporal dependencies from the EEG signal and automatically

extract relevant features.

Regarding the architecture, this network generally comprises several convolu-

tional layers capable of producing feature maps via filtering operations with kernels.

Then pooling layers can learn features from these feature maps. Following these

layers, it is possible to implement classification layers [67].
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Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) network is considered an evolution over the

Recurrent Neural Networks (RNNs), capable of handling long-term dependencies.

The innovative part of LSTM networks compared to traditional RNNs is the incor-

poration of “gates” to control more rigorously what information needs to be kept in

their memory and what must be discarded. By including the three gates (i.e. input

gate, forget gate and output gate), the LSTM network can improve the adjustment

to extensive sequences of data series compared to other deep learning techniques.

Regarding the seizure prediction problem, the LSTM networks bear the advan-

tage of learning temporal characteristics of the brain activity during different states

while maintaining long-time dependencies [69].

Occasionally, CNN and LSTM networks are used together. In these cases,

CNN is used to process and extract the features, which the LSTM then employs for

classification, leading to their temporality [81].

3.1.7 Regularization

Considering the output of the classifiers as a good alarm generator may be

unrealistic since it is unlikely that it will classify all samples correctly, and the

model can be susceptible to noise contained in the data. Furthermore, the data is

handled as independent windows, which do not correspond to reality. Therefore, an

action is also needed to give meaning to the temporality of the algorithms’ decisions.

As a result, after the classification, a regularization step should be conducted

to reduce the number of false alarms and improve the specificity of the classifier.

The regularization functions smooth the classifier’s output taking into account its

temporal dynamics. As shown in Table 3.4, the most commonly adopted methods

are the Kalman filter [56, 76] and firing power [56–58, 60–63, 66, 73, 80, 85].

The firing power method quantifies the relative number of samples classified

as preictal using a sliding window of equal length to the pre-ictal period. If this

measure exceeds a normalized threshold, an alarm is raised. Although many studies

have used firing power, no optimal threshold has been identified [17].

The Kalman filter idea is based on the state estimation of a linear dynamic

system. It is a uni-modal, recursive estimator since it only requires the state from

the previous time step and current measurement to predict the current state. An

alarm is generated when the filter output crosses a given threshold [56].

Teixeira et al. [56] compared both regularization methods. They reported that

the firing power measure was more conservative in raising alarms since it presents
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a more extended memory of classification dynamics. Though the Kalman filter still

generates more false alarms, its sensitivity is relatively better.

3.1.8 Performance evaluation

The final step is to assess the proposed methodology according to a given set of

metrics. In seizure prediction studies, the standard performance metrics are sensi-

tivity and False Positive Rate per Hour (FPR/h), along with statistical validation,

as discussed in Section 2.3.2. The performance evaluation must be reported con-

cerning the testing phase. However, as outlined in Table 3.4, other metrics have also

been used, such as Area Under the Curve (AUC), sample sensitivity and specificity,

and time under warning. Furthermore, the majority of the presented studies lack

statistical validation.

It is possible to observe there is significant heterogeneity of results, with FPR/h

values ranging from 0.004 to 1.51. It is worth noting that various studies obtained

FPR/h values below 0.15, which is considered reasonable in the pre-surgical moni-

toring context.

It is important to note that a proper comparison between studies is difficult due

to the distinct methods used and decisions made throughout the entire pipeline.

3.2 Explainability

Despite being an emerging field of study, explainability is not, in fact, a novel

area and has been widely used over the years. Due to safety reasons and skepticism,

some authors have tried to employ simple models with few but discriminant features

to produce human-understandable results. However, no definition or concept had

been attributed to this process until recently.

Throughout the last decades, the appearance of more complex algorithms, the

deployment of these methodologies in sectors such as healthcare, and the most recent

legislation have led to the emergence of explainability and interpretability areas.

A variety of explainability methods are presented in this section.

3.2.1 Intrinsically interpretable models

Implementing interpretable models with only a subset of relevant features is the

most straightforward way to achieve interpretability. Over the years, many authors

have used simple methodologies to generate human-understandable results.
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Thresholding-based methods are the simplest and most interpretable ones. Us-

man et al. [70] have proposed a simple seizure prediction algorithm applying a

threshold on the extracted univariate features. Based on the obtained results, it

was possible to identify the start of the pre-ictal state in the patient’s EEG record-

ings. Aarabi et al. [65] have also applied a simple thresholding procedure to the

time profile of the extracted features. This strategy aims to determine significant

modifications in the values of the selected features in comparison with a baseline,

described as a reference period remote in time from any seizure.

Pinto et al. [85] proposed a simple Evolutionary Algorithm to search for dis-

criminative features considering the best trade-off between seizure prediction per-

formance and patient discomfort. The methodology provides patient-specific inter-

pretable insights that could lead to an improved understanding of seizure genera-

tion processes and the underlying decisions made by the algorithm. Furthermore,

a logistic regression classifier, an intrinsically interpretable model, was used in the

classification step. Despite the apparent complexity of the Evolutionary Algorithm,

the final result is an interpretable classifier applied to a small subset of features.

In logistic regression, the interpretation of the coefficients gives insights into

which features are the most discriminative. Hence, it is necessary to transform the

coefficients (natural logarithms of the odds ratio) into the odds ratio. After the

transformation, the odds ratio can be analyzed to find out which features are the

most important: while an odds ratio with a value around 1 is the less influential, a

higher or lower one has more impact on prediction.

3.2.2 Non-interpretable models

3.2.2.1 Explainability in Epilepsy studies

This section presents not only explainability methods in seizure prediction stud-

ies but also in seizure detection and seizure classification. This search was carried

out using Google Scholar and the following search strings: ”explainability in seizure

prediction” and ”interpretability in seizure prediction”. Most of the encountered

research studies on this topic are related to deep learning models, not implemented

in this thesis. Table 3.5 summarizes the research results.

Deep learning models have lately emerged as a state-of-the-art tool in epilepsy

studies. Such models can compute complex nonlinear representations of EEG sig-

nals, achieving higher performances when compared to algorithms that rely on hand-

crafted features. However, due to the lack of the medical/biological meaning of the

extracted features and its ”black-box” nature, DL models may be poorly trusted
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by clinicians. Consequently, it has led to a growing interest in the explainability of

deep neural networks in epilepsy studies.

Observing Table 3.5, it is possible to note the prominence of the attention

mechanisms in the explainability of DL models. Attention is a powerful concept in-

troduced in the deep learning field that attempts to reproduce cognitive attention,

which permits humans to focus on a few relevant aspects when large amounts of

information are being processed. As a network architecture component, it aims to

enhance the most relevant part of the input data. Consequently, besides improv-

ing the model’s performance, the attention mechanisms constitute a valuable tool

to produce trustworthy, and human-understandable explanations for the model’s

predictions [89–91].

Priyasad et al. [92], Baghdabi et al. [93], and Zhang et al. [94], proposed

interpretable deep learning techniques to classify and detect epileptic seizures using

raw EEG signals. In these approaches, attention-based weighting mechanisms, op-

erating over temporal and channel-wise data, were introduced to ensure that only

salient information is passed to the classifier. Furthermore, the attention mechanism

increases the interpretability of the models by enabling the exploration of the impor-

tance of each EEG channel based on the learned attention weights. Consequently, it

is possible to capture the relevance of each brain region in the diagnosis of epileptic

seizures. On the other hand, Hsieh et al. [95] introduced a novel modular architec-

ture with two attention modules: variable and temporal attention modules. On the

one hand, the variable attention module attributes weights to variables according to

their significance in classification. On the other hand, the temporal attention mod-

ule specifies the time intervals during which the variables identified by the variable

attention module impact the classifier output. Mansour et al. [96], presented an

attention-based deep learning algorithm for seizure detection. The weights of the

attention module were used to explain the relevance of each feature on the output.

SHapley Additive exPlanations (SHAP) is a visualization tool used to interpret

the individual predictions of the Machine Learning models. This method aims to

explain the prediction of an instance by computing the Shapley values (see section

2.4.3.2) for each feature, representing its impact on the classification [10]. As shown

in Table 3.5, SHAP is also used in some epilepsy studies. Namely, Gabeff et al. [97]

used SHAP values to visualize relevant features to the ictal class by comparing the

output difference between a baseline EEG signal and a given input and propagating

this difference back to the input signal. In his turn, Dissanayake et al. [98] applied

the SHAP explainable method to evaluate the contribution of each EEG channel.

In order to achieve high accuracy and interpretability, Wang et al. [99] proposed
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an epilepsy detection framework employing rule-based classifiers. This study used an

ensemble learning approach to extract comprehensible rules from the SVM model,

providing understandable explanations related to the model’s predictions.

Guidice et al. [100] presented a deep learning pipeline for interictal EEG dis-

crimination of epileptic seizures vs. psychogenic non-epileptic seizures patients. To

analyze the behavior of the proposed algorithm, features maps from the intermedi-

ate levels were extracted and compared with the input. Permutation Entropy (PE)

was used here to inspect the separability of the extracted feature maps in the inter-

mediate transformations and to prove its discriminative power growth throughout

the network’s depth. The PE is a tool for analyzing complex and chaotic systems

to interpret time series behavior in the classification with deep learning models.

Naze et al. [101] created an interpretable pipeline for seizure classification by

applying the permutation feature importance method (see Section 2.4.3.1). The

importance of each spectral band was assessed by permuting the feature value and

retraining the model. Then comparing the original and retrained models, a drop in

performance indicates that features are relevant.

Dissanayake et al. [102] introduced a novel Graph Neural Network-based deep

learning framework for subject-independent epileptic seizure prediction. This study

used qualitative evaluations and data visualization to understand the hidden pat-

terns that lead to the graphs generated by the deep learning models. Additionally,

Tang et al. [103] proposed a graph-based modeling approach for seizure detection

and classification. Occlusion-based interpretability analyses were also implemented.

Occlusion maps represent the relative change in the model output when a given EEG

channel is dropped. It can be crucial to determining the course of seizure treatment

since it evaluates the model’s capability to localize the seizure. When comparing

the original and retrained models, a drop in performance indicates that features are

relevant.

Thomas et al. [55] presented a deep learning-based algorithm for seizure detec-

tion. This study also aims to demonstrate the capability of the algorithm to encode

signal features known from medical research to be relevant for seizure detection, such

as power band features. For this purpose, a canonical correlation analysis (CCA)

was computed to evaluate the correlation between the power band features of the

EEG signal and the representation obtained by the deep model.

Uyttenhove et al. [104] suggested a deep learning solution for automatically

diagnosing epilepsy in routine EEG data. In this research Gradient - the weighted

Class Activation Mapping (Grad-CAM) technique is applied to explain the model’s

prediction. It is frequently used to introduce transparency, especially in CNN mod-
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els, since they rely on the convolutional layers’ characteristic of maintaining the

spatial information present in the input data. The gradient flowing from the target

class into the last convolutional layer is then used to weigh the relevance of each neu-

ron. The result is a heat map highlighting the input data segments that positively

influenced the classification.

Hossain et al. [105] proposed a deep CNN model for seizure detection, able to

extract spectral and temporal features from EEG data. This study uses interpreta-

tion techniques to evaluate which features from which layers are used by the CNN

model. Thus, correlation maps are used to analyze how the algorithm learns from

spectral amplitude features. The correlation maps were introduced by Schirrmeister

et al. [106] to understand how CNNs learn to solve different tasks. This study aims

to understand how Convolutional Networks of distinct architectures can be designed

and trained for end-to-end learning of EEG recorded in human patients, and how

appropriate visualization methods can improve their interpretability.

Cook et al. [24] developed the first-in-man study to evaluate the clinical fea-

sibility of a long-term implanted seizure advisory system created to predict seizure

likelihood. The sixteen best-performing features during the training were used as in-

put for classification. The employed algorithm was based on characteristics of both

a decision tree and a k-nearest neighbor (kNN) classifiers, which are intrinsically

interpretable. However, a given feature vector could be classified through a collec-

tion of decision surfaces, which resulted in a division of the feature space into 210

partitions. Therefore, the classifier cannot be considered intrinsically interpretable

due to the high dimensionality of the feature space.

Decision trees are like a rule system, starting in the root node and following

the path for a record to a leaf node where it is possible to see the prediction. In

tree-based models, the data is split according to specific cutoff values in the features.

The interpretation of the tree structure is undoubtedly simple since it has a natural

visualization, with nodes and edges, easier to understand than points on a multi-

dimensional hyperplane, creates good explanations, and is optimal for capturing

interactions between features in the data. It is more challenging to interpret when

the tree has a higher depth, being humanly incomprehensible from a given depth

[10].

On the other hand, the k-nearest neighbor method uses the nearest neighbors

of a data instance for prediction, assigning to the data point the most common

class. Hence, this model is an instance-based learning model. It is only necessary to

retrieve the k neighbors used for the prediction to provide good explanations. An

instance, however, may not be interpreted if it contains hundreds or thousands of
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features [10].

Moghaddam et al. [107] proposed a robust algorithm to predict seizures based

on the assumption that the coherence across the brain regions changes from interictal

to preictal. Studying these changes can indicate a pattern to distinguish between

these two states. Therefore, in contrast to neural networks, this work provided high

performance without compromising interpretability.

3.2.2.2 Explainability in other EEG studies

In addition to the above-presented works, some research was done in order to

identify the explainability methods used in other studies related to EEG decoding

or classification.

A brief overview of the encountered studies is presented in this section and is

summarized in Table 3.5.

To explain a CNN implemented for automated sleep stage classification, Ellis

et al. [108] introduced a novel local spectral explainability approach. This method

was applied to demonstrate how the importance of frequency bands changes over

time and to provide spectral insight into a classifier trained on raw EEG data. The

data samples were converted to the frequency domain, perturbed, and back to the

time domain. The percent change in classification probability from the original to

the modified data was calculated for each sample to evaluate the importance of the

frequency bands.

Briden et al. [109] presented a multimodal fusion architecture to classify neu-

rological events and determine regions of the brain that influence the model’s pre-

diction. The WaveFusion SE employs Lightweight CNN (LWCNN) sub-models,

trained independently for extracting localized time-frequency features, and Squeeze

and Excitation Network (SEN), an attention module used to classify and identify

the influential regions of the brain in the final classification.

Andreotti et al. [110] proposed a simple CNN framework for automated sleep

scoring using Continuous Wavelet transformed EEG, EOG and EMG recordings as

input. Further, Guided Gradient-weighted Class Activation Maps (Guided Grad-

CAM) were applied to provide insights into the networks’ classification mechanisms.

This approach is a valuable tool for determining the relevant features in the model’s

prediction since it can generate fine-grained activation maps in the time-frequency

domain for each signal.

Attention mechanisms are also frequently applied in other EEG studies. Jia et

al. [111] presented the SalientSleepNet, a multimodal salient wave detection deep

network for sleep scoring. This model integrates a multi-scale extraction module
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to capture transition rules among sleep stages and a multimodal attention module

to identify the relevant features for certain sleep stages. On the other hand, Phan

et al. [112] introduced the SleepTransform network, an automatic sleep staging

model. Furthermore, this approach addresses the interpretability of sleep staging

by evaluating the scores of the self-attention module.

Vilamala et al. [113] proposed a framework capable of accurately classifying

sleep stages and providing a visual interpretation of the model’s prediction. Sensi-

tivity maps are calculated to identify the most influential features in the network,

providing highly interpretable images of the model behavior. Analyzing the gen-

erated maps can provide interpretable patterns that enhance communication and

interaction with the domain experts.

Al-Hussaini et al. [114] presented an interpretable sleep staging model (SLEEPER),

which combines deep learning architectures with expert-defined rules, specifically

sleep scoring rules, via a prototype learning framework. This approach produces

simple interpretable models such as logistic regression and decision trees.

3.3 Summary

The general seizure prediction framework comprises several steps, including

EEG collection, signal pre-processing, feature extraction, feature selection and clas-

sification, followed by a regularization step and performance evaluation. Despite

the existence of this general pipeline, there is a great variety of approaches due to

the application of different methods and parameters. Regardless of reaching encour-

aging results, current seizure prediction approaches present numerous issues which

should not be neglected.

The databases represent one of the most prominent limitations since they are

mostly collected from patients during pre-surgical monitoring, which does not reflect

real seizure activity. Long-term EEG recordings, comprising several months or years,

acquired in an everyday routine, represent a step forward in the clinical viability of

the designed methodologies.

On the other hand, the lack of proper evaluation using relevant metrics, such as

sensitivity and FPR/h, as well as the absence of statistical validation, is prevalent

in numerous studies. These problems, along with the results presented only for the

optimal SOP and not for a range of values, cause bias and make comparisons among

studies difficult.

The lack of interpretability and explainability of the seizure prediction ap-
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Table 3.5: Studies associated with explainability in Epilepsy and EEG decoding
and classification.

Author, year Problem in study Data type Classifier Explainability Methods

Wang et al., 2016 [99] Detection of Epilepsy EEG
SVM, RF, C4.5,

SVM+RF, SVM+C4.5
Rule-based explanations

Schirrmeister et al., 2017 [106]
EEG Decoding

and Visualization
EEG

Deep, Shallow, Hybrid
and Residual ConvNet

Network correlation maps
(visualization)

Vilamala et al., 2017 [113]
Automated Sleep
Stage Scoring

EEG
CNN (VGGNet),
Transfer learning

Sensitivity maps

Andreotti et al., 2018 [110]
Automated Sleep
Stage Scoring

PSG CNN
Guided Gradient-weighted
Class Activation Maps
(Guided Grad-CAM)

Al-Hussaini et al., 2019 [114]
Automated Sleep
Stage Scoring

PSG
Deep prototype
learning method

Interpretable models

Hossain et al., 2019 [105] Seizure Detection EEG Deep CNN model
Network correlation maps

(visualization)

Uyttenhove et al., 2020 [104] Detection of Epilepsy EEG
Tiny Visual Geometry Group

(t-VGG) CNN

Gradient-weighted Class
Activation Mapping

(Grad- CAM)

Thomas et al., 2020 [55] Seizure Detection EEG
DNN

(Bottleneck Network
Architecture)

Analysis of latent features

Zhang et al., 2020 [94] Seizure Detection EEG
Adversarial learning

framework
Attention mechanisms

Mansour et al.,2020 [96] Seizure Detection EEG CNN, BiLstm, FCNN Attention mechanisms

Hsieh et al., 2021 [95] Seizure Detection EEG
Explainable Convolutional

Attention network
Attention mechanisms

Baghdadi et al., 2021 [93]
Seizure Detection
and Classification

EEG Attention-based Deep LSTM Attention mechanisms

Priyasad et al., 2021 [92] Seizure Classification EEG
Deep learning architecture

with attention-driven
data fusion

Attention mechanisms

Dissanayake et al., 2021 [98] Seizure Prediction EEG CNN, Siamese network SHAP

Naze et al., 2021 [101] Seizure Classification EEG
SVM (linear and RBF),
RF and Decision tree

Feature importance

Gabeff et al., 2021 [97] Seizure Detection EEG CNN Gradient ascendent, SHAP

Jia et al., 2021 [111]
Automated Sleep
Stage Scoring

PSG

U2 structures, Multi-scale
extraction and multimodal

attention modules,
Segment-wise classification

Multimodal attention module

Ellis et al., 2021 [108]
Explain a CNN trained

for sleep stage classification
EEG CNN

Novel Local Spectral
Explainability Approach

Briden et al., 2021 [109]
Classifying subjects’

anxiety levels
EEG

Squeeze-and-Excitation
network

Attention scores

Phan et al., 2022 [112]
Automated Sleep
Stage Scoring

EEG Seq2Seq model Attention scores

Giudice et al., 2022 [100]

Discrimination of Subjects
with Epileptic Seizures

vs. Psychogenic
Non-Epileptic Seizures

EEG CNN Permutation Entropy

Dissanayake et al., 2021 [102] Seizure Prediction EEG
GCL

(Geometric Deep Learning)
Graph visualization

Tang et al., 2022 [103]
Seizure Detection
and Classification

EEG
GNN

(Graph Neural Network)
Occlusion maps

Moghaddam et al., 2022 [107] Seizure Prediction EEG SVM Spatial coherence

proaches also constitutes an obstacle to the clinical applicability of the proposed

prediction methodologies and intervention devices. Over the past years, several

studies have been surging to solve the absence of explainability in machine learning

approaches.

Explainability methodologies range from the simplest intrinsically interpretable

models such as thresholding procedures, readily understood by humans, to more

complicated models such as the SVM classifier, which already requires some method-

ology to support its interpretation. The most intricate ones, such as deep learning

models, require specific methods due to their complexity and ”black box” nature.
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Present strategies are mainly directed to deep learning techniques, which try

to provide brain region significance, patterns of brain connectivity, and correlations

with band-waves activity. However, more accessible and understandable explana-

tions for clinicians are necessary.

On the other hand, despite recent advances in the explainability field, the ex-

planations lack a formal evaluation. They must be evaluated according to the trust

and knowledge they transmit to the domain experts.

Significant developments in the explainability field were made for general prob-

lems. However, more specific studies and explorations are required to develop proper

and suitable explanations for seizure prediction problems, considering their complex

nature.
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Methodology

This chapter describes the followed steps concerning the development of expla-

nations for epileptic seizure prediction algorithms. First, an overview of the entire

pipeline is presented in Section 4.1. Then, the developed seizure prediction model

is described in Section 4.2. Finally, the steps undertaken to produce and evaluate

explanations regarding the model’s decision are reported in Section 4.3.

4.1 Pipeline Overview

The present work aims to develop explanations of EEG-based algorithms for

epileptic seizure prediction to increase trust in the models’ decisions and decrease

the skepticism of clinicians regarding the application of such models in healthcare.

For this, a patient-tailored algorithm for epileptic seizure prediction was de-

signed based on the most common framework presented in the state-of-the-art. Af-

ter evaluating the constructed model, several explanations were created to explain

the models’ decisions. Afterwards, the produced explanations were tested and val-

idated. This process was grounded on five lessons from a previous work developed

by the local research team.

Figure 4.1: General overview of the proposed pipeline.
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4.2 Seizure Prediction

4.2.1 Data

For the present study, 40 Drug-Resistant Epilepsy (DRE) patients (17 females

and 23 males, with a mean age of 41.4 ± 15.7 years) were selected from the European

Database on Epilepsy (EPILEPSIAE). The selected EEG data was collected by the

University Medical Center of Freiburg, in Germany, from patients containing seizures

localized in the temporal lobe. The data consists of EEG scalp recordings acquired

with a sampling rate of 256Hz during pre-surgical monitoring. It covers 19 EEG

electrodes placed according to the International 10-20 System with the following

channels: FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz,

Cz, and Pz. Table 4.1 presents information about each patient (gender and age)

and their seizures (number of seizures, seizure classification, seizure activity pattern,

state of vigilance at seizure onset and recording time).

The selection of the 40 patients was based on the number of independent

seizures. Only patients with at least four lead seizures, separated by at least 4

hours, were selected to avoid analyzing clustered seizures. As a result, 224 of 375

seizures were considered suitable for analysis.

Table 4.1: Information for the 40 studied patients.

Patient

ID
Age Sex

Number of

seizures

(train/test)

Seizure

classification

Seizure

activity

pattern

Vigilance at

seizure onset

Recording

duration (h)

402 55 f
3

2

FOIA, FBTC, FOIA

FBTC, FOIA

t, t, t

t, t

A, A, A

A, A

103.81

29.66

8902 67 f
3

2

UC, FOIA, FOIA

FOIA, FOIA

a, b, a

m, a

A, A, A

A, A

133.91

22.5

11002 41 m
3

1

UC, FOIA, FOIA

FOIA

?, s, a

t

A, R, A

A

97.16

11.7

16202 46 f
3

4

UC, FBTC, UC

FOIA, FOIA, FOIA, FOIA

r, ?, r

r, r, ?, r

A, A, A

A, A, A, A

201.32

34.45

21902 47 m
3

1

UC, FOIA, FOIA

FOIA

t, t, t

b

A, A, A

R

67.08

9.76

23902 36 m
3

2

FOA, FOA, FOA

FOA, FOA

t, t, t

d, t

A, A, A

A, A

70.74

33.95

26102 65 m
3

1

FOIA, FOIA, FOIA

FOIA

m, t, t

t

A, A, A

A

60.65

22.58

30802 28 m
3

5

FOA, FOA, FOA

FOA, FOA, FOA, FOA, FOA

t ,t ,t

t, t, t, t, t

R, A, 2

A, A, R, 2, 2

87.57

61.71

32702 62 f
3

2

FOIA, FOIA, FOIA

FOIA, FOIA

t ,t ,t

r, a

A, A, A

A, A

117.38

20.49

45402 41 f
3

1

FOIA, FOIA, FOA

FOIA

t, t, t

t

A, A, A

A

71.98

22.31

46702 15 f
3

2

FOA, FOIA, FOIA

FBTC, FOIA

a, a, t

b, t

A, 2, A

2, A

47.46

12.6

50802 43 m
3

2

FOIA, UC, UC

FOIA, FBTC

t, t, t

t, t

A, 2, 2

2, A

165.93

35.6

52302 61 f
3

1

UC, FOA, UC

UC

?, ?, d

t

A, A, 1

A

76.45

6.85

53402 39 m
3

1

FOA, FOA, FOA

FOIA

?, ?, ?

t

A, 2, A

A

70.31

13.73

55202 17 f
3

5

FOIA, FOIA, FOA

UC, UC, FOA, UC, FOIA

t, d, t

t, t, t, r, r

A, A, A

A, A, A, A, A

47.05

65.37
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Table 4.1: Information for the 40 studied patients.

Patient

ID
Age Sex

Number of

seizures

(train/test)

Seizure

classification

Seizure

activity

pattern

Vigilance at

seizure onset

Recording

duration (h)

56402 47 m
3

1

UC, UC, UC

FBTC

t, ?, ?

a

A, A, A

A

184.22

20.25

58602 32 m
3

3

FOIA, FOIA, FOIA

FOIA, FOIA, FOIA

r, t, t

r, r, t

A, R, A

A, A, 2

96.94

23.34

59102 47 m
3

2

FOA, FOIA, FOIA

FOIA, FOA

?, t, t

t, t

A, A, A

A, A

65.83

82.22

60002 55 m
3

3

FOIA, FOIA, FOIA

UC, FOIA, FOIA

d, c, t

t, d, d

1, A, A

R, R, 1

208.11

152.4

64702 51 m
3

2

FOA, FBTC, FBTC

FBTC, FBTC

?, m, t

t, t

A, A, A

A, 2

75.91

31.59

75202 13 m
3

4

FOA, FOA, UC

FOA, FOA, FOA, FOA

t, t, t

t, t, ?, t

2, 2, A

A, A, A, A

100.94

52.63

80702 22 f
3

3

FOIA, FOIA, UC

FOIA, FBTC, FOIA

b, b, ?

c, c, c

A, A, A

A, A, A

49.4

29.55

85202 54 f
3

2

FOIA, FOIA, UC

UC, UC

m, c, m

m, m

2, A, A

A, A

53.49

20.42

93402 67 m
3

2

FBTC, FOIA, FOIA

UC, UC

t, t, t

t, t

2, 2, 2

2, 2

98.0

54.07

93902 50 m
3

3

FOA, FOIA, FBTC

FOIA, FOIA, UC

t, t, d

d, d, d

A, A, 2

A, 2, A

370.83

20.29

94402 37 f
3

4

FOA, UC, FOIA

UC, FOA, UC, FOA

?, d, b

t, ?, b, ?

A, A, A

2, A ,2, A

120.23

30.37

95202 50 f
3

4

FBTC, FOIA, FOIA

FOIA, UC, FOIA, UC

b, b, b

m, b, b, t

2, 2, 2

2, 2, 2, 2

57.6

89.53

96002 58 m
3

4

FOIA, FOIA, FOIA

FOIA, UC ,FOIA, FOIA

t, t, t

d ,a ,t ,a

A, A, A

A, A, A, A

48.4

82.2

98102 36 m
3

2

FOA, UC, UC

UC, FBTC

?, ?, ?

?, ?

A, A, A

A, A

108.61

45.68

98202 39 m
3

5

FOIA, FOIA, FOIA

FBTC, FOIA, FOIA, FOIA, UC

t, a, t

t, t, t, t, t

A, A, A

A, A, A, A, A

111.33

49.88

101702 52 m
3

2

FOIA, FOIA, FOIA

FOIA, FOIA

t, t, t

r, r

A, A, A

2, A

28.41

23.83

102202 17 m
3

4

FOA, UC, FOIA

UC, FOA, FOIA, UC

b, ?, t

?, t, t, t

2, A, 2

A, A, 2, A

57.45

51.41

104602 17 f
3

2

FOIA, FBTC, FBTC

FBTC, UC

t, a, t

t, d

A, 2, 2

2, 2

87.87

15.25

109502 50 m
3

1

FOIA, FOIA, UC

UC

t, t, t

t

A, A, A

A

76.8

41.94

110602 56 m
3

2

FOIA, FOIA, FOIA

FOIA, FOA

t, t, t

t, t

A, A, A

A, A

89.63

25.92

112802 52 m
3

3

UC, FOIA, UC

FOIA, FOIA, UC

t, t, t

t, t, t

A, A, A

A, A, A

71.58

111.5

113902 29 f
3

3

UC, FOIA, FOIA

FOIA, UC, FOIA

t, d, t

t, t, t

A, A, 2

A, 2, A

61.98

22.73

114702 22 f
3

5

FOIA, FOIA, UC

FOIA, FOIA, FOIA, FOIA, FOIA

t, t, t

t, d, t, d, t

A, A, A

A, A, A, A, A

68.39

34.04

114902 16 f
3

4

FOA, FOIA, FOIA

FBTC, UC, FOIA, FOIA

s, b, s

t, r, a, t

A, A, A

2, A, A, A

26.55

50.66

123902 25 f
3

2

FBTC, FBTC, FOIA

FOIA, FOA

t, t, t

t, t

2, 2, R

A, A

152.11

30.15

Gender: female (f), male (m); Seizure classification: unclassified (UC), Focal Onset Aware (FOA), Focal Onset Impaired (FOIA),

Focal to Bilateral Tonic-Clonic (FBTC); Seizure activity pattern: unclear (?),rhythmic sharp waves (s), alpha waves (a),

rhythmic delta waves (d),rhythmic theta waves (t), rhythmic beta waves (b), repetitive spiking (r), cessation of interictal

activity (c), amplitude depression (m); Vigilance state: awake (A), REM sleep stage (R), Non-REM sleep stage I (1),

Non-REM sleep stage II (2).

4.2.2 Pre-processing

The EEG data used in the present study was pre-processed using an EEG

artifact removal model based on deep convolutional neural networks (DCNN). The

model was proposed by Lopes et al. [115] to automatically and quickly remove

artifacts from EEG signals, such as eye blinks, eye movements, muscle activity,

cardiac activity, and electrode connection interferences, in a similar way to that
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performed by experts.

This approach was developed using EEG segments manually pre-processed and

labelled by experts. These segments were used to train the deep learning model in

order to reproduce the experts’ behavior during the manual data pre-processing. It

was evaluated by comparing denoised portions with the target segments. Experi-

mental results suggested that the proposed model was able to attenuate the influence

of the artifacts in the EEG signals without human intervention, making it suitable

to be employed in long-term real-time scenarios such as epileptic seizure prediction.

Moreover, the fact that the used data were long-term EEG recordings from epileptic

patients available in the EPILEPSIAE database and are included in the data used

in the present work makes it a significant contribution to the current study.

4.2.3 Feature Extraction

After the pre-processing phase, the EEG signals were segmented into windows

of 5s without overlap to extract relevant features from the data. The window length

was selected according to state of the art in seizure prediction. A 5s window was

considered adequate to characterize EEG variations since it is a reasonable window

regarding the stationarity, temporal and spectral resolution.

Univariate linear features were extracted because they present a relatively lower

computational power. Furthermore, all available electrodes were used since different

brain areas can be involved in the seizure generation process.

As a result, 59 linear univariate features in the time and frequency domains

were computed from each window on 19 EEG electrodes using a sliding window

analysis. Regarding the frequency domain, the following bands were considered:

delta (0.5-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and four gamma

sub-bands - gamma band 1 (30-47Hz), gamma band 2 (53-75Hz), gamma band 3

(75-97Hz), and gamma band 4 (103-128 Hz) [18]. The first two gamma sub-bands

represent slow gamma bands, and the last two fast gamma bands. The frequency

ranges of 47 to 53 Hz and 97 to 103 Hz are excluded to remove power line noises

(harmonics of 50 Hz) [116].

Gamma waves are fast oscillations usually found during conscious perception.

They are underestimated and not widely investigated compared to other slow brain

waves once they present small amplitude and high contamination by muscle artifacts.

However, gamma activity is involved in psychiatric disorders such as epilepsy [117].

An increase in gamma activity has been reported shortly before and during an

epileptic seizure [118]. Notably, a review article about the occurrence of gamma
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activity in epilepsy suggests that epileptic brain activity is a straightforward response

to excessive growth in gamma activity [119]. Moreover, during epileptic seizures,

gamma activity can be detected in human EEG whenever a muscle spasm occurs,

as further evidence of this functional correlation [120].

Time-frequency domain features were also extracted by performing wavelet de-

composition with the db4 mother wavelet. The extracted features are listed in the

Figure 4.2. A more detailed description of each feature and its expected behavior

can be consulted in Appendix A.

Figure 4.2: List of the linear univariate features extracted from the EEG in this
work. A total of 59 features in the time and frequency domains were computed from
each window on 19 EEG electrodes.

4.2.4 Data Splitting

For each patient, the feature set was split into two distinct groups: the training

set, constituted by the first three seizures and used for parameters optimization

and classifier training; the test set, composed of the remaining seizures and used to

evaluate the classifier.

The existence of concept drifts and time dependence is assumed by using earlier

seizures to train and later ones to test the models. Furthermore, the chronological

division allows a real seizure prediction scenario, where the model is trained based

on the initially collected seizures and then applied online to upcoming data.

As a result, 120 seizures were used in the training phase, and 104 were applied

in the testing phase.
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Figure 4.3: Procedure applied to prepare data for train and test.

4.2.5 Training

4.2.5.1 Class labeling

Regarding the seizure prediction problem, the samples of the feature sets were

labelled into two distinct classes: preictal and interictal. The preictal class comprises

the period before the seizure onset and corresponds to the total duration of the SOP

and SPH.

The SPH value was set to 10 min since it is considered a suitable time interval

for patients to prepare for the coming seizure. For instance, considering an alarm

system in which, ideally, the patient would have time to take some medication

before the seizure, such as rectal diazepam, it would take 5 to 10 minutes to work.

Rectal diazepam is an anticonvulsant medication approved by the Food and Drug

Administration (FDA) and used to stop a cluster of repeated seizures. Therefore,

a 10-minute interval was considered appropriate for the intervention time. The

samples corresponding to this period were removed from the dataset [121].

On the other hand, several values were analyzed for the SOP duration: a 10-

minute minimum duration was established based on the most commonly used values

in seizure prediction state of the art, and a 50-minute maximum duration was defined

since patients often prefer preictal periods shorter than one-hour [122]. Therefore,

several values were studied and tested for each patient: 10, 15, 20, 25, 30, 35, 40,

45, and 50 minutes.

4.2.5.2 Class balancing

As seizures are relatively rare events, there is a significant imbalance between

interictal and preictal samples. A class balancing procedure was implemented during

the training phase to avoid bias and specialization of the classifier over the majority

class.

Therefore, systematic random undersampling was performed to obtain an equal

number of samples from each class (see Figure 4.4). This method was applied

in each seizure, preserving the sequential chronology of the events. During the

process, the interictal set was divided into n groups, corresponding to the total
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length of the preictal class, and one sample was randomly selected from each group.

The methodology used allowed for handling data imbalance while maintaining the

representativeness of the data.

Figure 4.4: Random undersampling of interictal class respecting the sequential
chronology of samples. Red colored samples correspond to interictal samples ran-
domly chosen from each group. Only one hypothetical seizure with 10 preictal
samples is illustrated.

4.2.5.3 Feature Standardization

After the class balancing stage, a standardization step was performed to nor-

malize the range of independent features extracted from the raw data. Thus, the

employed method was the z-score normalization used to standardize every value in

a dataset such that the mean of all values is 0 and the standard deviation is 1.

4.2.5.4 Feature Selection

The most discriminative features were selected in this step using a filter-based

method. These methods choose subsets of features based on their relationship with

the target. Filter methods are simple, faster, and less computationally expensive

when compared with other feature selection procedures.

The metric employed was the ANOVA (Analysis of Variance) f-test that eval-

uates the level of linear dependency between each feature and the target. This

method returns the ranking features according to the dependence degree, allowing

the selection of the k most discriminative features.

Regarding the most suitable number of features to be selected (k), a grid-search

procedure was applied to tune this parameter.

4.2.5.5 Classifier

The classifier used in this work was the SVM since it has been widely used

in the seizure prediction literature, presenting promising results. Furthermore, this

model involves a few parameters to optimize.
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The kernel selected was linear as it is simpler and computationally lighter,

showing similar performances to more complex ones [66]. The parameter C (cost)

controls the trade-off between smooth decision boundaries and correct training point

classification [65]. A high value of C generates more intricate decision curves to fit

all the points, which may lead to overfitting. The C parameter was tuned using a

grid-search procedure to achieve a balanced curve.

Due to the stochasticity intrinsic to the random undersampling performed dur-

ing the class balancing, an ensemble learning approach was implemented. In this

procedure, 31 SVM classifiers were trained with different data samples. This num-

ber was selected in order to achieve statistical significance. Furthermore, it was

considered an odd number of classifiers to avoid ties in the testing phase.

4.2.5.6 Grid-Search

A grid-search strategy was adopted to find the optimal parameters to train

the SVM classifier. It included the search for the most suitable number of features

(k), the appropriate value for the SVM hyperparameter (C ), and the most suitable

preictal period (SOP). For parameter k, it was considered four different values (10,

20, 30, and 40 features), and for C, eleven distinct values (2-10, 2-8, 2-6, 2-4, 2-2, 20,

22, 24, 26, 28, 210). As a result, 44 combinations (k, C ) were evaluated for each SOP

value (defined in Section 4.2.5.1).

As illustrated in Figure 4.5, the Leave-One-Out Cross-Validation (LOOCV)

strategy was implemented to find the optimal parameters. Therefore, considering

the training set, two seizures were used to train the classifier, and the remaining one

was utilized as the validation set to evaluate the classifier. For each combination (k,

C ), all training seizures were used precisely once to validate the model, resulting in

three iterations of the LOOCV technique. This partitioning strategy ensures that

training and validation sets contain samples from preictal and interictal classes.

A performance metric that transmits a trade-off between SSsample (Equation 2.1)

and SPsample (Equation 2.2) was selected to evaluate the model:
√

SSsample × SPsample.

An ensemble learning method was also applied, and each iteration was executed 31

times. Therefore, for each combination (k, C ), the final performance corresponded

to the average metric value obtained for the 31 classifiers trained for all 3 LOOCV

iterations.

Following the evaluation of all combinations (k, C ), the one with the highest

metric was selected as the optimal. Finally, an ensemble of 31 classifiers was trained

using the best parameters and the entire training set (3 seizures). This procedure

was applied to all SOP values, and the one with the best metric performance was
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considered the final SOP. Nevertheless, the testing phase was applied to all assessed

SOP values.

Figure 4.5: Grid-search procedure implemented to select the optimal training
parameters for each preictal period.

4.2.6 Testing

After training the model, an out-of-sample classification was applied in the

testing set to make predictions. As depicted in Figure 4.6, the procedure applied

to the testing data was the same as the training set, excluding the class balancing.

Thus, the testing set was standardized, using the z-score parameters of the training

set, and the most relevant features identified in training were selected. Finally, the

SVM classifier was employed to determine the output.

This procedure was executed for each of the 31 trained classifiers, resulting in

31 predictions per sample. Therefore, a voting system strategy was employed. For

a given instance, the most predominant class in all predictions was assigned to the

final output.

4.2.7 Post-processing

After the classification, a regularization step was performed to reduce the num-

ber of false alarms and noise and to give some connotation to the consecutive inde-

pendent outcomes of the classifier, considering the output’s temporal dynamics.

The selected method was the Firing Power (see Figure 4.7), computed for each

epoch according to the process described in section 3.1.7. After that, an alarm was
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Figure 4.6: Procedure applied to train an test the seizure prediction model.

triggered when the Firing Power value exceeded a predefined threshold and was

separated at least one refractory period from the last generated one. The threshold

value was defined as 0.5 [63], and the refractory period corresponds to the total

duration of the preictal (SOP + SPH).

The refractory period was considered in order to minimize consecutive alarms

during the same seizure and reduce the patient’s stress and anxiety.

Figure 4.7: Visual representation of the firing power technique implemented. Given
a certain threshold (dashed line), an alarm is only triggered when the firing power
exceeds its value and is at least one refractory period separated from the last gen-
erated one. Two false alarms and one true alarm are illustrated.
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4.2.8 Performance Evaluation

The performance of the seizure prediction model was evaluated using the stan-

dard metrics: sensitivity (Equation 2.3) and False Positive Rate per Hour (Equation

2.5), described in Section 2.3.2. Along with the performance assessment, a statistical

validation strategy was also performed using the seizure-times surrogates method,

characterized in Section 2.3.3.2.

Concerning the statistical validation, the seizure-times surrogates method was

implemented to confirm if the developed algorithm performs above the chance level.

This procedure randomly shifted the original onset time to another location within

the interictal period. It was carried out seizure by seizure to guarantee that the

artificial seizure times respect the seizure distribution over time. The surrogate

times (new labels) were then used to calculate the sensitivity.

This process was executed 30 times, and the resulting average sensitivity was

compared against the sensitivity calculated for the proposed methodology. The

developed algorithm performs better than chance if its sensitivity is higher than the

surrogate one and statistically significant. A one-sample t-test was used to evaluate

this, considering a statistical significance of 0.05 under the following null hypothesis:

”the sensitivity of the proposed methodology is not superior to the sensitivity of the

surrogate predictor”.

4.3 Explainability

The methods employed to produce explanations regarding the seizure prediction

algorithm were defined based on a prior work developed by the local epilepsy research

team.

4.3.1 Prior work

In the previous work, three different pipelines were developed and evaluated:

• a logistic regression;

• an ensemble of 15 Support Vector Machines;

• an ensemble of three Convolutional Neural Networks.

These methodologies were selected, considering different levels of complexity and

transparency.

After evaluating each prediction methodology, patients with specific perfor-

mances were selected to explain the model’s decision. Thus, it was chosen patients
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with: high sensitivity and very low FPR/h, high sensitivity and high FPR/h, low

sensitivity and high FPR/h, and low sensitivity and low FPR/h.

Behind choosing the most suitable cases, several explanations were produced

and presented to data scientists and clinicians. Concerning clinical information,

some details were provided: onset times, seizure type classification, annotated EEG

patterns by clinicians, and vigilance state at seizure onset.

On the feature level, it was presented explanations of methods described in

section 2.4.3: beeswarm summary plots of SHAP Values, Partial Dependence Plots

(PDPs), Individual Conditional Expectation (ICE), and logistic regression coeffi-

cients, when the methodology under study concerned the logistic regression. The

most crucial features were also discussed regarding their expected behavior and the

selected electrodes. Furthermore, calibration curves were presented to provide expla-

nations regarding the features. A calibration curve is a visual method that evaluates

how well-calibrated the classifier is.

The time-series aspect of predicting seizures was the focus of the remaining

explanations. The classifier output over time was plotted along with the sleep/awake

model, the interictal and preictal periods, and the raised alarms. It may allow

understanding the classifier dynamics regarding concept drifts such as circadian

and sleep-wake cycles. Furthermore, counterfactual explanations were provided for

interesting points. They were computed by finding the slightest change in feature

values that alters the prediction.

For CNN models, Local Interpretable Model-agnostic Explanations (LIME)

were also used to reveal the EEG points that support the neural network window

classification as preictal. This explanation was only presented to clinicians since

data scientists do not have the essential background to evaluate this question.

Afterwards, the developed explanations were presented to ML experts (data

scientists that work on clinical problems) and clinicians (neurologists and EEG tech-

nicians that work in an epilepsy refractory center), followed by open-ended question

interviews. The answers were analyzed with the qualitative research tool, Grounded

Theory (GT), which allowed for the extraction of emergent topics and ideas cru-

cial to better understanding model explanations and their importance within the

EEG seizure prediction research field. Based on these findings, five lessons were

formulated to provide insights into the development of explanations.

One of the lessons highlights the importance of dividing the explanations into

several levels according to a sort of granularity:

• Feature level: show and examine the obtained features, namely their signal

characteristic measure, time window, and correspondent electrode;
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• Model level: demonstrate how well the model distinguishes independent data

samples;

• System function over time: provide a visual overview of the system output,

supplying more information, namely the distribution of false alarms and firing

power over time. It is also possible to provide additional information, such as

the sleep/wake cycle, which might help to interpret the classifier’s decisions;

• System function over specific moments: provide deeper explanations regarding

strategic moments. When all recorded hours before the seizure are analyzed,

it is impossible to inspect in detail all the signals. Therefore, paying more

attention to false alarms, not predicted seizures, or even firing power peaks

that do not lead to seizures is crucial.

It is also recommended to present the explanations according to the granularity

order.

The second lesson emphasizes the importance of discussing features, namely

their behavior over time and clinical details.

Another critical point is intimately related to the system function over time:

time plots are the most intuitive explanations. Their inspection may reveal patterns

in the model decision over time, and it is possible to formulate hypotheses as expla-

nations to present to domain experts. These hypotheses based on physiological facts

and the model’s behavior should help to develop a complete problem formulation

and increase robustness. It is important to note that since these explanations are

mere inferences, they must be verified and tested.

The fourth finding is that it is essential to understand the differences in concepts

between data scientists and clinicians. Regarding interictal and preictal concepts,

the Machine Learning (ML) experts assume the existence of the preictal period

as a gradual and slow transition from regular activity to a seizure. However, for

clinicians, the preictal period is seen as a fast spontaneous phenomenon that might

occur in a period shorter than one second, arising some seconds before the seizures.

Finally, the fifth lesson demonstrates how to explain an ML model decision to

clinicians when its physiological groundings are not yet established. Therefore, this

lesson states that the goal of explainability is to strategically find forms of making

and testing conjectures based on the developed explanations. If they stand against

these strategies, the models gain trust. If they fail, the study assumptions should

be reviewed and methods redesigned, leading to a completer problem formalization.

Then, new explanations are developed, and the loop continues until the models are

trustworthy.

This finding is strictly associated with the legacy of Karl Popper’s known falsi-
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fication principle. Popper suggested that for a theory to be considered scientific, it

must be able to be tested and possibly proven false if its predictions are shown to be

wrong. For instance, observing a black swan can falsify the premise that ”all swans

are white.”. According to Karl Popper, science should try to discredit a theory

rather than sustain theoretical hypotheses continuously [123–125].

Furthermore, it was possible to conclude that model transparency is not one of

the most crucial aspects of explaining a model decision for seizure prediction. Results

also revealed that the used explainability methods are insufficient to understand

brain dynamics since they produce technical and redundant information suitable for

ML experts but not clinicians.

4.3.2 Adopted Methodology

The adopted methodology was grounded on the five lessons extracted from the

previous work. It is believed that, for seizure prediction, the goal of explainability

is not merely to explain but rather to develop hypotheses based on physiological

mechanisms. Therefore, the behavior of the classifier over time was examined, and

several hypotheses were formulated.

4.3.2.1 Analysis and hypotheses formulation

Firstly, based on the system function overtime lesson, detailed analyses were

performed on all patients regarding the clinical information and the firing power

plots over time. Several patterns were identified through this analysis, and diverse

hypotheses were presented. During the plot inspection, the following aspects were

evaluated:

• Classifiers with false alarms but a good regularization curve: cases in which

the false alarms or firing power peaks above the alarm threshold occur near

the seizure onset. It was considered a maximum period of 1h before the seizure

began since this is the highest value considered during the train for the preictal

period.

• Comparison with a circadian forecasting algorithm: cases in which the seizures

occurred at the same daily time, and the onset time might be sufficient to pre-

dict seizures. And also patients in which seizures occurred during the night

period and were correctly predicted. The night period was considered from 10

pm to 10 am. Furthermore, a seizure risk model was developed to understand

the influence of the seizure onset time. This algorithm only employs the cir-

cadian seizure information and is compared with the model under study that
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uses the EEG information.

• Vigilance state: cases in which the prediction model behavior was inaccurate,

but it was possible to observe a sleep-wake transition in the preictal period

that suggests a causality.

• Circadian-cycle influence on the classifier: cases in which it is possible to

identify rhythms of false alarms occurring within similar day periods and in

which the seizure may occur later, suggesting a circadian-cycle effect.

• Wrong output: cases in which the classifier output is entirely incorrect, without

or with only a few raised alarms.

The selected features were also analyzed using beeswarm summary plots of

SHAP Values and evaluating the relative selection frequency of each feature and

electrode.

4.3.2.2 Statistical validation

After the described examination, typical model behaviors were identified, and

some hypotheses were formulated. As suggested in the fifth lesson of the prior work,

some strategies were employed to test and verify the proposed ideas.

One of the drawn strategies was to test the developed hypotheses employing

the binomial distribution. The binomial distribution is a standard distribution that

models the probability of obtaining one of two outcomes in an experiment or survey

repeated multiple times.

The binomial distribution was considered since the problem under study presents

two possible outcomes: success and failure, in which success is the occurrence of a

given phenomenon mentioned above. It can occur in one or more patients. This

method was used to evaluate whether or not the observation of an identified char-

acteristic occurred by chance.

Regarding the problem under study, the binomial distribution was considered

for testing the following null hypothesis: the phenomenon under study was observed

by chance. Therefore, it was computed to obtain the probability of, by chance,

observing at least x times a given pattern in n observations. The null hypothesis

is rejected if the probability of x is inferior to the significance level defined. This

validation aims to prove that the recognized patterns give some meaning to the

classifier’s behavior and are not merely results of chance.

Depending on the phenomenon in evaluation, one or two binomial distributions

might be used (see Figure 4.8). Two consecutive binomial distributions are necessary

if the phenomenon is evaluated for at least one seizure in each patient. On the other
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hand, if the pattern is considered at the patient level, only one binomial distribution

is required.

Figure 4.8: Representation of the distinction between the statistical evaluation
with one and two binomial distributions.

Two binomial distributions

It was identified the patients for each at least one seizure presented one of the

following cases:

• A particular seizure could not be predicted, but it is possible to trust model

behavior when inspecting the firing power curve over time. It includes the

cases where the true alarm was not raised due to the refractory time or where

a firing power peak occurred near the seizure onset time.

• A particular seizure could not be predicted, but it was possible to observe a

sleep-wake transition in the preictal period that suggests a causality.

Two consecutive binomial distributions were taken into account to evaluate

these two characteristics. Two successive distributions were considered since each

seizure from each patient was examined (see Figure 4.9).

Therefore, the probability of at least one seizure presenting a given factor was

estimated for each patient, considering the corresponding number of testing seizures

and a probability of 0.05. Then, the average value for all patients was calculated.

The result shows that the likelihood that, by chance, there will be at least one

seizure with a given characteristic is 0.123.

Then this probability was used to find the possibility of having, by chance, N

patients (out of 40) with at least one seizure with the characteristic under study. In

this situation, the complement of the cumulative binomial distribution was used, and

the factor was considered statistically valid from the number of observations which

have a probability of occurring by chance below the significance level considered.
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Figure 4.9: Procedure applied for statistical validation when two binomial distri-
butions are used.

The significance level was obtained in this case based on the Bonferroni correc-

tion. Although this method is used for multiple comparisons, it was employed to

turn this evaluation more rigorous as two binomial distributions were considered,

and the probability for the first one was an assumption. As a result, a significance

level of α = 0.05/2 = 0.025 was used.

It was concluded that until nine patients, the observed characteristic is consid-

ered to be occurred by chance. Therefore, when the factor is observed in more than

nine patients, the null hypothesis is rejected, and the phenomenon is assumed to be

statistically valid.

One binomial distribution

The patients in which the circadian cycles were present were also counted and

statistically validated. The same strategy was applied to the situations where the

circadian forecasting algorithm performed worst and better than the seizure predic-

tion model under study.

For these characteristics, only one binomial distribution was taken into account

since it did not evaluate each seizure but the general scenario for each patient (see

Figure 4.10). Therefore, the probability of having N patients (out of 40) with a

determined characteristic was assessed, considering a probability of 0.05. Regarding

this context, a significance level of 0.05 was used. It was figured that the character-

istics are significant when the factor is observed in more than four patients.
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Figure 4.10: Procedure applied for statistical validation when one binomial distri-
bution is used.
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Results and Discussion

This chapter presents the results obtained from the proposed methodology,

along with their analysis and discussion. Section 5.1 focuses on the proposed seizure

prediction methodology, while Section 5.2 focuses on developing explanations and

individual evaluation.

5.1 Seizure Prediction

The methodology described in the previous chapter (Section 4.2) was applied

to the 40 Drug-Resistant Epilepsy (DRE) patients from the EPILEPSIAE database

selected for this study.

Even though several Seizure Occurrence Period (SOP) values were consid-

ered and tested, the results presented in this section contain only one SOP du-

ration for each patient, which was selected according to its best metric performance

(
√
SSsample × SPsample).

5.1.1 Training phase

During the training phase, a grid search procedure was implemented, and a

patient-tailored model for epileptic seizure prediction was trained, considering the

first three seizures of each patient.

Table 5.1 summarizes, for each patient, the selected training parameters during

the grid-search procedure (SVM cost and the number of features) together with the

validation results (sample sensitivity and sample specificity). Furthermore, average

values of sample sensitivity and specificity considering all patients are also presented.

The results reveal a tendency to select ten features and a hyperparameter cost

of 10. Furthermore, it is visible that the SOP values chosen vary considerably

between patients, ranging from the minimum (10 minutes) to the maximum duration

considered (50 minutes). Although, a tendency for values such as 10, 15, and 50

minutes is visible.
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Table 5.1: Training parameters and performance obtained for each patient.

Patient SOP k C SSsample SPsample

402 10 20 2-10 0.41 0.71
8902 20 30 2-10 0.87 0.84
11002 15 10 22 0.46 0.70
16202 15 40 2-4 0.64 0.83
21902 10 40 2-10 0.66 0.60
23902 50 40 2-10 0.68 0.52
26102 50 40 20 0.32 0.62
30802 50 30 2-10 0.90 0.79
32702 15 10 2-10 0.76 0.69
45402 15 40 2-10 0.72 0.56
46702 40 40 22 0.22 0.67
50802 15 10 2-4 0.83 0.83
52302 50 10 22 0.69 0.71
53402 45 10 2-10 0.48 0.67
55202 10 30 20 0.51 0.73
56402 10 10 22 0.73 0.70
58602 10 10 22 0.30 0.70
59102 15 10 2-10 0.64 0.45
60002 15 10 24 0.56 0.72
64702 30 30 2-10 0.42 0.68
75202 30 30 2-8 0.72 0.83
80702 35 40 20 0.39 0.76
85202 15 30 210 0.45 0.67
93402 50 10 28 0.54 0.53
93902 40 30 28 0.60 0.57
94402 10 40 210 0.42 0.66
95202 10 10 2-10 0.74 0.66
96002 40 10 20 0.82 0.64
98102 35 10 210 0.49 0.53
98202 10 10 28 0.29 0.70
101702 10 10 24 0.51 0.59
102202 50 10 210 0.34 0.66
104602 30 40 26 0.38 0.69
109502 10 10 2-8 0.55 0.55
110602 50 10 2-2 0.56 0.60
112802 10 20 2-10 0.56 0.57
113902 45 30 2-8 0.41 0.55
114702 35 20 20 0.29 0.70
114902 20 10 24 0.50 0.62
123902 10 40 2-6 0.79 0.85

- - - 0.55 ±0.18 0.67 ±0.10

k: number of features; C: SVM cost; SSsample: sample
sensitivity; SPsample: sample specificity.
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The average sample sensitivity and specificity values correspond to 0.55± 0.18

and 0.67±0.10 respectively. Despite the slight discrepancy, specificity was relatively

higher than sensitivity, implying a better classification of the interictal samples.

It would be expected that the classifiers would be able to better distinguish

between interictal and preictal samples. However, it will only be possible to infer

their real predictive power in the testing phase with unseen data. The relatively low

training performance highlights the complexity of the seizure prediction problem.

5.1.2 Testing phase

During the testing phase, the developed patient-specific models were evaluated,

considering the remaining seizures of each patient. Therefore, sensitivity and False

Positive Rate per Hour (FPR/h) were assessed according to Equations 2.3 and

2.5, respectively. Along with the performance assessment, a statistical validation

strategy was also performed using the seizure-times surrogates method.

Table 5.2 summarizes the seizure prediction results obtained for each patient.

As depicted in the table, the number of evaluated seizures varies between pa-

tients, ranging from 1 to 5. Therefore, the comparison of the sensitivity values

between patients may be difficult. For instance, when only one seizure is consid-

ered, the sensitivity is limited to 0 (seizure not predicted) or 1 (seizure correctly

predicted). On the other hand, several sensitivity values can be obtained when five

seizures are evaluated. Therefore, a sensitivity value of 1 in a patient with one test-

ing seizure has not the same meaning as the sensitivity value of 1 in a patient with

five evaluated seizures. Indeed, observing the table, it is visible that the sensitivity

value of 1 is obtained when only one seizure is considered, except for patient 8902,

which has a sensitivity of 1 with two evaluated seizures. Consequently, it could be

viewed as a limitation of the present study, which would only be possible to overcome

with the availability of more extensive data per patient.

Regarding the classifier performance, the average sensitivity and FPR/h values

obtained across the 40 patients correspond to 0.34 ± 0.35 and 1.78 ± 1.95, respec-

tively. The relatively low average sensitivity makes it perceptible that the developed

classifier has an insufficient capacity to predict seizures correctly. On the other hand,

the elevated FPR/h value may lead to questioning the applicability of the developed

system in real life since the high rate of false alarms per hour may bring consequences

to the patient’s health.

Regarding the number of predicted seizures, the patients with more true alarms

were 30802 (with three predicted seizures), 8902, 55202, and 113902 (with two pre-
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Table 5.2: Testing performance obtained for each patient.

Patient
Evaluated
seizures

SOP SS FPR/h
SS

Surrogate
p-value

Statistically
valid

402 2 10 0.50 5.42 0.33 ±0.30 0.00 ●

8902 2 20 1.00 0.16 0.12 ±0.21 0.00 ●

11002 1 15 1.00 0.57 0.23 ±0.42 0.00 ●

16202 4 15 0.00 0.07 0.03 ±0.08 0.96
21902 1 10 0.00 1.43 0.17 ±0.37 0.99
23902 2 50 0.00 2.95 0.70 ±0.36 1.00
26102 1 50 1.00 1.49 0.43 ±0.50 0.00 ●

30802 5 50 0.60 0.43 0.39 ±0.14 0.00 ●

32702 2 15 0.00 0.45 0.05 ±0.15 0.96
45402 1 15 0.00 3.40 0.33 ±0.47 1.00
46702 2 40 0.50 1.77 0.48 ±0.38 0.41
50802 2 15 0.00 0.43 0.08 ±0.19 0.99
52302 1 50 0.00 2.87 0.83 ±0.37 1.00
53402 1 45 1.00 0.87 0.47 ±0.56 0.00 ●

55202 5 10 0.40 2.28 0.30 ±0.20 0.01 ●

56402 1 10 1.00 5.55 0.37 ±0.48 0.00 ●

58602 3 10 0.00 2.14 0.16 ±0.22 1.00
59102 2 15 0.50 9.72 0.55 ±0.30 0.81
60002 3 15 0.00 0.99 0.22 ±0.26 1.00
64702 2 30 0.50 0.91 0.23 ±0.25 0.00 ●

75202 4 30 0.00 0.11 0.07 ±0.11 1.00
80702 3 35 0.33 1.31 0.29 ±0.21 0.13
85202 2 15 0.00 0.17 0.02 ±0.09 0.84
93402 2 50 0.50 3.88 0.80 ±0.31 1.00
93902 3 40 0.33 0.46 0.14 ±0.22 0.00 ●

94402 4 10 0.25 3.04 0.23 ±0.19 0.24
95202 4 10 0.25 1.07 0.12 ±0.15 0.00 ●

96002 4 40 0.25 2.00 0.55 ±0.26 1.00
98102 2 35 0.50 0.25 0.12 ±0.21 0.00 ●

98202 5 10 0.00 0.00 0.00 ±0.00 -
101702 2 10 0.00 1.97 0.25 ±0.25 1.00
102202 4 50 0.25 0.31 0.11 ±0.12 0.00 ●

104602 2 30 0.50 0.50 0.20 ±0.31 0.00 ●

109502 1 10 1.00 3.37 0.20 ±0.40 0.00 ●

110602 2 50 0.50 1.28 0.43 ±0.31 0.13
112802 3 10 0.33 4.39 0.29 ±0.27 0.19
113902 3 45 0.67 2.69 0.59 ±0.22 0.03 ●

114702 5 35 0.00 0.20 0.14 ±0.16 1.00
114902 4 20 0.00 0.16 0.06 ±0.12 0.99
123902 2 10 0.00 0.00 0.00 ±0.00 -
Average - - 0.34 ±0.35 1.78 ±1.95 0.28 ±0.25 - 16
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dicted seizures). Although evaluating the number of false alarms per hour, patient

8902 was the one that presented the best performance, with an FPR/h value of

0.17, which is very close to the maximum value considered adequate for a real-life

application (FPR/h=0.15).

Finally, considering the statistical validation, the sensitivity of the surrogates

method averaged at 0.28±0.25, where 16 patients (40%) achieved performance above

the chance level.

5.1.3 Comparative analysis with other studies

Concerning the seizure prediction pipeline, the obtained results can be com-

pared with the performances of prior studies presented in Chapter 3. With this goal,

four works that employed the EPILEPSIAE database and implemented statistical

validation were selected. Table 5.3 shows the performance of the best approaches of

the considered studies and the developed methodology in the present work.

Table 5.3: Seizure prediction performance for studies under comparison.

Study Number of patients SS FPR/h Validated patients
Alvarado-Rojas et al. [60] (2014) 53 0.47 0.94 13.21%

Rasekhi et al. [62] (2015) 10 0.61 0.11 80%
Bandarabadi et al. [63] (2015) 24 0.76 0.1 100%

Direito et al. [66] (2017) 216 0.38 0.2 11.11%
Developed methodology 40 0.34 1.78 40%

By observing the performances of the selected studies, it is notable that superior

sensitivity values were achieved compared to the developed methodology. Although,

the value obtained by Direito et al. [66] was slightly more significant than in the

present work. Regarding the rate of false alarms per hour, it is visible that the

proposed methodology presents the highest value for the FPR/h metric, followed

by the Alvarado-Rojas et al. [60] study, which showed an FPR/h value of 0.94.

Concerning both metrics, Alvarado-Rojas et al. [60] is the work that presented

results more similar to the developed methodology.

The random predictor was used in all four selected studies to perform the statis-

tical validation. Bandarabadi et al. [63] presented a statistical validation of 100%,

i.e. all the evaluated patients performed better than chance, and Rasekhi et al.

[62] performed above chance for 80% of the patients. However, Alvarado-Rojas et

al. [60] and Direito et al. [66] only attained performance above the chance level

for 13.21% and 11.11% of the patients, respectively, a relatively lower percentage

compared to the developed pipeline (40%).
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Similarly to the proposed methodology, in the selected studies, a range value

of SOP was used, and the best duration was determined for each patient. While

in the present study, the selection was based on the defined training metric, in the

Bandarabadi et al. [63], and Rasekhi et al. [62], this choice was made according

to the best testing performance. However, it may lead to a bias in the presented

results and an impeding of real-life applications once the model parameters are

chosen based on the test results that are unknown a priori. Furthermore, Direito et

al. [66] considered an SPH duration of 10 seconds, which is improper for a warning

system since it does not provide enough time for the patient to take preventive

actions.

It is worth noting that the comparison between studies is a challenging task

once there is significant heterogeneity regarding the choice of the patient set and

the enormous diversity of available parameters and options incorporated throughout

the methodology.
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5.2 Explainability

5.2.1 Time analysis

As stated before, after analyzing the metric performances, all patients’ firing

power plots were examined, and distinct aspects were evaluated. The detailed anal-

ysis and all patients’ plots can be consulted on GitHub1 .

Classifiers with false alarms but a good regularization curve

The number of false alarms occurring near the seizure onset was inspected since,

despite false alarms, the classifier’s behavior may be considered normal regarding

the preictal period assumptions and its duration.

By visualizing seizure #4 from patient 8902 (see Figure 5.1), it is possible to

observe that the firing power curve presents a relatively small peak at 1 pm that

was far from raising the alarm. A monotonically increasing tendency follows it until

reaching a maximum peak value of 1.0 in the preictal period and then decreasing.

Additionally to the true alarm, a false alarm was also raised when the firing power got

a value superior to 0.5. Despite being a false alarm, this behavior may be considered

normal regarding the preictal period assumption: it is assumed the existence of a

gradual and slow transition from regular activity to a seizure that can be captured

from an EEG background analysis. Therefore, the following hypothesis can be

presented: the system raised a false alarm because it may have caught the brain’s

slow and gradual transition from regular activity to a pre-seizure one. Several other

cases were identified with a similar pattern.

In seizure #6 from patient 93902 (see Figure 5.2), despite the firing power

curve presenting a value superior to 0.5 during the preictal period, a true alarm

was not raised. This situation occurred due to the refractory period during which

it is impossible to raise alarms. Consequently, the seizure was not predicted since it

was impossible to trigger the alarm during the preictal period due to the refractory

time. Furthermore, the pattern described above in the 8902 case is also visible in

this patient.

In other patients, such as patient 114902 (see Figure 5.3a), despite the seizures

not being predicted, a firing power peak with values superior to the alarm threshold

is visible until one hour before the seizure onset. It was assumed one hour since it

is the highest value considered during the train for the preictal period. These cases

1https://github.com/JoanaFBatista/On-the-clinical-acceptance-of-EEG-seizure-p

rediction-methodologies.git

93

https://github.com/JoanaFBatista/On-the-clinical-acceptance-of-EEG-seizure-prediction-methodologies.git
https://github.com/JoanaFBatista/On-the-clinical-acceptance-of-EEG-seizure-prediction-methodologies.git


5. Results and Discussion

Figure 5.1: Plot of the ensemble of SVMs’ decisions over time for patient 8902
seizure #4. Each SVM decision is in grey and the ensemble voting system is in
black. The vigilance state is also represented.

may lead to the thought that if it was considered higher values of SOP, the seizure

might be predicted. Indeed, analyzing Figure 5.3b, it is visible that if an SOP equal

to or superior to 40 minutes were chosen instead of 20 minutes, the seizure would

be predicted. Furthermore, evaluating the general scenario for patient 114902 (see

Figure 5.3c), it is notable that if an SOP of 25 minutes were chosen instead of 20

minutes, the sensitivity would increase from 0 to 0.25. However, this growth in the

number of true alarms is not linearly correlated with the increase in the SOP value.

This situation is visible when a 30-minute SOP is selected, in which the sensitivity

is null. It happens because the growth of SOP duration implies the augmentation

of the refractory time, which means fewer alarms will be triggered per hour, and the

seizure cannot be predicted.

These two last examples demonstrate how controversial the selection of the most

suitable SOP value can be and the critical role it plays in classifier performance.

Additionally, in both cases, despite the seizures not being predicted, it is possible

to trust its behavior when inspecting the firing power curve over time.
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Figure 5.2: Plot of the ensemble of SVMs’ decisions over time for patient 93902
seizure #6. Each SVM decision is in grey, and the ensemble voting system is in
black. The rectangle drawn in the figure represents the refractory time to illustrate
why no true alarm was raised during the preictal period. The vigilance state is also
represented.

Comparison with a circadian forecasting algorithm

In the previous work, clinicians raised some skepticism regarding a possible bias

in the classifier performance in patients in which seizures occur during the night

since, in this period, the EEG is less prone to artifacts and noise. Therefore, the

seizure onset time of each patient was analyzed, and those patients whose seizures

happened during the night (from 10 pm to 10 am) were also evaluated. Although,

only in 2 of these patients all the testing seizures were correctly predicted.

All patient seizures were also analyzed to evaluate if there was a pattern re-

garding the seizure onset time. It was noticed in several patients that some seizures

occurred approximately at the same time. Notably, it was observed that some test-

ing seizure onsets occur roughly at the same time as training seizures, which may

lead to the question of whether the classifier has considered the training seizures

onset to predict the testing seizure. However, the testing seizure was correctly pre-

dicted in only 3 of the 8 cases of this type, where the testing seizure onset coincided

with a training seizure onset.
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(a)

(b) (c)

Figure 5.3: (a) Plot of the ensemble of SVMs’ decisions over time for patient
114902 seizure #7. Each SVM decision is in grey, and the ensemble voting system
is in black. The vigilance state is also represented. (c) Plot of the model decisions
over time for patient 114902 considering all SOPs. (c) Testing performance (SS,
FPR/h) for patient 114902 considering each SOP.
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Concerning this last situation, the seizure prediction model was evaluated by

comparing it with a circadian forecasting algorithm that did not use EEG data. This

new model evaluates the seizure risk considering only circadian information, more

precisely, the training seizures onset time. A seizure risk alarm was defined from 30

minutes before to 30 minutes after each seizure training onset time. A given testing

seizure was predicted if its onset occurred during the 1-hour seizure risk interval, as

illustrated in Figure 5.4.

Figure 5.4: Visual representation of the circadian forecasting model implemen-
tation. One testing seizure is predicted if its onset occurs during the seizure risk
interval.

The sensitivity and the time under warning were analyzed for both models, and

the results are presented in Table 5.4.

The outcome showed that in four patients, the circadian forecasting model

outperformed the model under study, offering a superior sensitivity value and a

lower time under warning. On the other hand, despite the SVM model presenting

a better sensitivity in several patients, it only performed better for three patients

considering both metrics since the time under warning is generally superior for

this approach. Indeed, it is notable that the circadian model presents a shorter

time under warning for most cases (27 patients) than the model under study. This

approach offers a significant advantage in real-life applications since it reduces the

patient’s stress and anxiety.

The analysis of the reported results may raise the question if there is any advan-
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Table 5.4: Sensitivity and time under warning for circadian forecasting model, and
respective comparison with the approach under study for each patient.

Sensitivity Time under warning Circadian Circadian
Patient

Training
Seizures

Testing
Seizures

Circadian
model

SVM
model

Circadian
model

SVM
model

better than
SVM

worse than
SVM

402 3 2 0 0.50 3:00:00 9:53:15
8902 3 2 0.50 1.00 2:47:50 1:10:20 ●

11002 3 1 0 1.00 3:00:00 1:30:15 ●

16202 3 4 0 0 2:31:03 0:20:55
21902 3 1 0 0 3:00:00 2:18:30
23902 3 2 0 0 2:59:58 18:54:15
26102 3 1 0 1.00 2:40:55 9:21:30
30802 3 5 0 0.60 2:18:52 17:03:55
32702 3 2 0 0 2:09:34 1:35:35
45402 3 1 1.00 0 3:00:00 7:41:50 ●

46702 3 2 0.50 0.50 3:00:00 5:08:15
50802 3 2 0 0 3:00:00 4:03:40
52302 3 1 0 0 3:00:00 2:58:20
53402 3 1 0 1.00 3:00:00 3:08:00
55202 3 5 0.40 0.40 3:00:00 18:12:45
56402 3 1 0 1.00 2:56:16 9:47:50
58602 3 3 0.33 0 3:00:00 4:34:05 ●

59102 3 2 0 0.50 3:00:00 2 days 8:49:45
60002 3 3 0 0 2:22:06 10:25:55
64702 3 2 0 0.50 3:00:00 10:02:50
75202 3 4 0 0 3:00:00 1:51:20
80702 3 3 0.33 0.33 3:00:00 10:48:45
85202 3 2 0 0 3:00:00 0:41:20
93402 3 2 0 0.50 3:00:00 1 day, 13:57:30
93902 3 3 0 0.33 3:00:00 4:19:35
94402 3 4 0 0.25 3:00:00 8:44:20
95202 3 4 0 0.25 2:07:15 17:08:20
96002 3 4 0 0.25 2:36:08 1 day, 13:30:40
98102 3 2 0 0.50 3:00:00 5:44:15
98202 3 5 0 0 3:00:00 0:00:00
101702 3 2 0.50 0 3:00:00 6:39:35 ●

102202 3 4 0.50 0.25 3:00:00 8:09:15 ●

104602 3 2 0 0.50 3:00:00 1:42:50 ●

109502 3 1 1.00 1.00 3:00:00 17:08:35
110602 3 2 0 0.50 3:00:00 11:48:55
112802 3 3 0 0.33 3:00:00 2 days, 4:11:25
113902 3 3 0.33 0.67 3:00:00 13:08:00
114702 3 5 0.40 0 3:00:00 1:15:55
114902 3 4 0 0 3:00:00 1:45:55
123902 3 2 0 0 2:14:27 0:00:00

Average SS Average time Relative frequency
- - 0.15 0.34 02:52:06 10:50:27 0.1 0.75

tage of developing complex models using the EEG information when a simple seizure

risk model that uses circadian seizure information presents a better performance for

a superior number of patients.

Vigilance state

The vigilance state was also examined. In several cases, the prediction model

behavior was inaccurate, but a transition in the vigilance state in the preictal period

was noticed.
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By visualizing seizure #6 from patient 94402 (see Figure 5.5), it is possible

to observe that the firing power curve presents several peaks with values superior

to the alarm threshold, generating several false alarms. Following this and right

before the preictal period, the firing power curve decreases, and the seizure is not

predicted. However, an awake-sleep transition is visible near the beginning of the

preictal period, which suggests the presence of a causality.

Figure 5.5: Plot of the ensemble of SVMs’ decisions over time for patient 94402
seizure #6. Each SVM decision is in grey and the ensemble voting system is in
black. The vigilance state is also represented.

Circadian-cycle influence on the classifier

The presence of cyclicity in the firing power curve was also evaluated. It was

noticed some clusters of false alarms occurred within similar day periods, suggesting

a circadian-cycle influence. It may lead to the hypothesis that these false alarm

clusters may indicate the existence of periods of brain susceptibility to seizures,

which may not occur. Or on the other hand, some daily actions may generate

distinct EEG patterns that can be recognized as preictal activity by the classifier,

causing false alarms.
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Observing the firing power curve of patient 112802 (see Figure 5.6), it is possible

to identify several clusters of false alarms within the same day period from 6-8 am

to 10-11 pm. Considering this daily period, it is possible to speculate that such

false alarm clusters may occur when the patient wakes up and falls asleep, which

might cause distinct EEG patterns that can be identified as preictal activity by the

classifier.

Figure 5.6: Plot of the model decisions over time for patient 8902 considering
all seizure. Only the ensemble voting system is depicted in black. The dashed
orange line represents the preictal period of each seizure.The vigilance state is also
represented.

Furthermore, it was noticed that the three testing seizures occurred within that

interval. However, only the second seizure was predicted, and the last one was not

predicted due to the refractory time. Additionally, four more patients (59102, 93402,

95202, 109502) were found with similar behavior.

Wrong output

Finally, the cases in which the classifier output was entirely incorrect were also

inspected. Several patients presented some seizures that were not predicted, and

a few false alarms were triggered. Although in patients 98202 and 123902, it was

verified that no alarm was raised, the classifier was entirely incorrect, as illustrated
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in Figure 5.7.

Figure 5.7: Plot of the ensemble of SVMs’ decisions over time for patient 98202
seizure #4. Each SVM decision is in grey and the ensemble voting system is in
black. The vigilance state is also represented.

5.2.1.1 Statistical validation

After the detailed analysis, some prominent patterns were identified, and the

number of patients where a given condition is verified was counted (see Table 5.5).

After that, a statistical validation was performed for each characteristic under study,

as explained in Section 4.3.2.2. The parameters used in the statistical evaluation

and the final results are presented in Table 5.6.

As reported in Table 5.5, 21 patients presented at least one seizure that was not

predicted, but the firing power curve was trustful. On the other hand, 12 patients

presented at least one seizure that was not predicted but was noted by a sleep-

wake transition. For both phenomena to be statistically significant, at least nine

occurrences are required since two binomial distributions were employed. In this

way, it was verified that both characteristics are statistically significant and are not

merely results of chance (see Table 5.6).
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Table 5.5: Analysis of the presence of the identified patterns in each patient.

Patient
Seizure is not predicted but the
firing power curve is trustful

Seizure detected by
sleep-wake transition

Circadian cycles

402 ●

8902
11002
16202
21902
23902 ●

26102
30802 ● ●

32702 ●

45402 ●

46702 ●

50802 ●

52302
53402
55202 ● ●

56402
58602 ●

59102 ● ●

60002 ●

64702 ●

75202 ●

80702 ●

85202 ● ●

93402 ●

93902 ●

94402 ● ●

95202 ● ●

96002 ●

98102 ●

98202 ●

101702 ●

102202 ●

104602 ●

109502 ●

110602 ●

112802 ● ● ●

113902
114702
114902 ● ●

123902
Total 21 12 5

Regarding the circadian cycle influence, five patients presented repetitive pat-

terns in the regularization curve (see Table 5.5). Therefore, it is possible to conclude

that this characteristic is statistically significant since the number of occurrences is

superior to four, the significative number of events for one binomial distribution (see

Table 5.6).

Finally, considering the circadian forecasting model, the number of cases for

which this model performed better and worse than the model under study was val-
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idated. As mentioned in Section 5.2.1, the circadian model outperformed the SVM

model in four patients, while the SVM model only outperformed the circadian model

in three patients. However, none of the situations is statistically significant once the

number of observations is not superior to four (see Table 5.6). Therefore, there are

no conditions to raise the question related to the advantage of developing complex

models using the EEG information when a simple seizure risk model that uses cir-

cadian seizure information presents a better performance for a superior number of

patients. Furthermore, it would be complex and controversial to discuss since the

EEG databases used in seizure prediction studies present several limitations. The

EEG signals are mainly collected from patients during the pre-surgical monitoring

and comprise a few hours/days of record, which is insufficient to extract definite

conclusions, especially those that include circadian cycles.

Table 5.6: Parameters used in the statistical validation, the total number of oc-
currences of each phenomenon, and the final result (statistically valid or not).

Seizure is not predicted
but the firing power
curve is trustfull

Seizure detected
by sleep-wake
transition

Presence of
circadian
cycles

Circadian
model better
than SVM

Circadian
model worse
than SVM

p = 0.123 p = 0.05
n = 40 n = 40

Binomial
distribution
parameters x = 0:40 x = 0:40
Significance

level
α = 0.025 α = 0.05

Statistically
valid

N > 9 patients N > 4 patients

Total number
of occurrences

21 12 5 4 3

Result Valid! Valid! Valid! Invalid! Invalid!

5.2.2 Feature analysis

The features selected for each patient were evaluated. However, in general, no

conclusion was obtained regarding the selected measures since, in most cases, there

weren’t predominant feature types, expecting for patient 8902.

As seen in Section 5.1.2, patient 8902 presented the best performance, with

a sensitivity of 1 and an FPR/h of 0.16. Nevertheless, it was verified that for

this patient, the algorithm selected only gamma-related features (see Figure 5.8).

Regarding the electrode selection, all of them were chosen more frequently than

others.

A beeswarm summary plot of SHAP Values was also produced to assess the

influence of the most critical features on the model’s output. The ten most significant

features are presented for patient 8902 (see Figure 5.9). Notably, all shown features

influence the model’s behavior similarly: in general, the higher feature values have a
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Figure 5.8: Relative frequency of the selected features and channels for patient
8902.

positive impact on the model’s output, which means that when the shown features

present high values, the model tends to classify the instance as preictal period. On

the other hand, the lower feature values have a negative impact on the model’s

output, tending to the interictal classification.

Figure 5.9: Beeswarm summary plot of Shap Values for patient 8902.

This situation may raise some skepticism once the scalp EEG does not entirely

capture gamma rhythms, and thus, these features might involve muscle artifacts.

Therefore, the following hypothesis can be formulated: the patient might present

muscle jerks resulting from pre-seizure dynamics captured by gamma-related char-
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acteristics.

The best way to corroborate this hypothesis might be using the video-EEG of

the patient to confirm the muscular activity before the seizure or using iEEG since

it presents a much higher signal-to-noise ratio and is less susceptible to muscular

artifacts. However, this data is not available. Another form to validate this idea

would be visually inspecting the EEG windows where gamma spectral-band power is

significant to verify this activity. Nonetheless, it may be a time-consuming task for

which an EEG specialist would be necessary to analyze several windows. It would

also be possible to employ advanced tools to categorize signal epochs into artifacts,

noise, or EEG-related phenomena, which would even take time. Consequently, a dif-

ferent strategy was applied: train new models in which the gamma-related features

were discarded from the features extraction process. Furthermore, five new models

were retrained to understand each spectral-band influence, using only spectral-band

features from each band separately (gamma, delta, theta, beta, and alpha).

The results obtained for the new models are present in Table 5.7. It is visi-

ble that the performance worsens when the gamma-related features are eliminated.

When only gamma-related features are used, the model’s performance is the same,

which would already be expected. It is also important to note that the optimal

SOP can differ for a distinct feature set. In this case, the optimal SOP of the

gamma-related model is the same as the all-feature algorithm (20 minutes), and the

remaining models present an optimal SOP of 15 minutes. All the retrained models

are still statistically valid, i.e. perform above chance.

By comparing each time plot (see Figure 5.10), it is possible to comprehend

the model’s behavior. Observing seizure #4 from patient 8902 makes it possible to

verify that the model based only on gamma-related features shows a matching firing

power dynamic with the pipeline under study. In contrast, the remaining models

present similar relative morphology with differences in their intensities. The delta

band raised more false alarms than the others.

Regarding seizure #5, it is notable that the delta and alpha bands present the

most distinct behavior and more false alarms. On the other hand, the beta and

theta bands and the model without gamma-related features show a similar dynamic

and fewer false alarms than the all-feature and gamma-related models.

With these results, we can relieve some of the skepticism from the gamma-band

features once the same patterns appear in most new models, indicating a general

EEG background transition due to pre-seizure dynamics.

The same procedure was applied to three other patients to evaluate if the

model’s behavior presented some alterations relatively to the pipeline under study.
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(a) (b)

Figure 5.10: Firing power time plots of patient 8902 for different models con-
sidering distinct sets of features. The black line represents the original model, the
remaining concern SVM models trained with only a determined spectral band or
without gamma band. All the testing seizures are represented ((a), and (b)).

The following patients were used:

• 94402: a case in which the prediction model behavior was inaccurate, but it

was possible to observe a sleep-wake transition in the preictal period.

• 98202: a case in which the classifier output is entirely incorrect without raised

alarms.

• 112802: a case in which it is possible to identify a circadian-cycle influence.

By analyzing the results for patient 94402, presented in Table 5.7, it is possible

to verify that all new models, except the beta and gamma-related models, had a

better performance than the algorithm under study. In these cases, the number of

predicted seizures is not superior, but the number of false alarms is smaller. Being

the most reduced FPR/h obtained to the approach without gamma-related features.

However, even the models with better performances are still not statistically valid.

It is also visible that the beta band could not predict any seizure. The optimal SOP

value is only different for the theta and without gamma approaches (50 minutes)

compared to the initial model (10 minutes).

The reduced FPR/h value of the without gamma model can be explained by

the high SOP value (50 minutes), which leads to fewer false alarms per hour or the

absence of gamma-related features. To better understand this situation, the firing

power plots of both approaches were compared (see Figure 5.11).
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Figure 5.11: Firing power time plots of patient 94402 for different models consid-
ering distinct sets of features: all-feature model (left column), gamma-related model
(middle column), and without gamma features model (right column). All the testing
seizures are represented.
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Notably, the model without gamma-related features presents much lesser firing

power peaks superior to the threshold than the gamma model, being more evident in

seizures 6 and 7. It may lead to the hypothesis that the gamma-related features may

comprise muscle artifacts which influence the classifier to raise more false alarms.

Indeed, it is visible that the false gamma alarms are superior during the daily period

to during the night, which the presence of muscular artifacts can explain.

Furthermore, comparing the initial model (with all features) with the other

two, it is evident that the first one has a firing power dynamic very similar to the

gamma-related model, which shows the influence of this type of feature in the model

classification. On the other hand, when the gamma-related measures are eliminated

from the features set, the classifier presents an entirely different behavior with fewer

firing power peaks. This analysis proves the presence of artifacts in the gamma-

related features, leading to a higher FPR/h in the all-feature approach.

Finally, the firing power curve over time (see Figure 5.12) shows that, generally,

the dynamic is identical through all approaches. It is worth noting that while theta,

gamma, delta, alpha, and all features models predicted the seventh seizure, the

model without gamma-related features predicted the sixth seizure.
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(a) (b)

(c) (d)

Figure 5.12: Firing power time plots of patient 94402 for different models con-
sidering distinct sets of fetaures. The black line represents the original model, the
remaining concern SVM models trained with only a determined spectral band or
without gamma band. All the testing seizures are represented ((a), (b), (c) , and
(d)).

Regarding patient 98202, except for the delta band approach, all the new models

present worst performance than the initial one once they raised more false alarms.

The delta-related model predicted one of the seizures, raising relatively few false

alarms. Its FPR/h value is 0.17, which is very close to the maximum value considered

adequate (FPR/h=0.15). Furthermore, this approach is statistically valid contrary

to the others. The optimal SOP’s value is only different for the theta model.

Analyzing the firing power curve of all approaches (see Figure 5.13), it is notable

that the gamma band produces a significant quantity of false alarms, followed by

theta and beta bands that also raised several false positives.
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(a) (b)

(c) (d)

(e)

Figure 5.13: Firing power time plots of patient 98202 for different models con-
sidering distinct sets of features. The black line represents the original model, the
remaining concern SVM models trained with only a determined spectral band or
without gamma band. All the testing seizures are represented ((a), (b), (c) , (d),
and (e)).
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It is also possible to observe that the delta-related model predicted the seventh

seizure. Visually, it is notable that this patient presents an entirely different firing

power dynamic when other feature sets are considered.

Finally, for patient 112802, the theta and beta-related models performed better

than the initial one since they predicted more seizures and presented a lower FPR/h

value. Furthermore, beta, theta and alpha band approaches are statistically signif-

icant, with the beta showing the best performance. Despite offering a much lower

FPR/h value, the theta model did not predict any seizure. The optimal SOP only

changes for the delta-related model (35 minutes).

Visually inspecting the firing power plots (see Figure 5.14), verifying the pres-

ence of the false alarm clusters even in the new models is possible. Therefore, the

circadian cycle influence is still present independently of the approach implemented.

Figure 5.14: Firing power time plots of patient 112802 for different models con-
sidering distinct sets of fetaures. The black line represents the original model, the
remaining concern SVM models trained with only a determined spectral band or
without gamma band. All the seizures are represented.
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Table 5.7: Testing performance obtained for each patient considering all ap-
proaches.

Patient
Evaluated

Seizures
Approach SOP

Predicted

Seizures

False

Alarms
SS FPR/h

Statistically

valid

All features 20 2 3 1.00 0.16 ●

Alpha 15 1 6 0.50 0.33 ●

Beta 15 1 3 0.50 0.15 ●

Delta 15 1 9 0.50 0.53 ●

Gamma 20 2 3 1.00 0.16 ●

Theta 15 1 2 0.50 0.10 ●

8902 2

Without Gamma 15 1 3 0.50 0.15 ●

All features 10 1 43 0.25 3.04

Alpha 10 1 37 0.25 2.38

Beta 10 0 41 0.00 2.81

Delta 10 1 38 0.25 2.48

Gamma 10 1 46 0.25 3.58

Theta 50 1 17 0.25 1.72

94402 4

Without Gamma 50 1 13 0.25 1.04

All features 10 0 0 0.00 0.00

Alpha 10 0 0 0.00 0.00

Beta 10 0 25 0.00 0.69

Delta 10 1 7 0.20 0.17 ●

Gamma 10 0 98 0.00 7.09

Theta 20 0 23 0.00 0.71

98202 5

Without Gamma 10 0 0 0.00 0.00

All features 10 1 192 0.33 4.39

Alpha 10 2 225 0.67 6.80 ●

Beta 10 2 175 0.67 3.62 ●

Delta 35 0 73 0.00 1.43

Gamma 10 1 193 0.33 4.42

Theta 10 2 185 0.67 4.10 ●

112802 3

Without Gamma 10 1 174 0.33 3.54
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Conclusion

The present work aimed to explore methodologies capable of predicting epileptic

seizures in ways that guarantee trust to data scientists, clinicians, and patients.

Towards this purpose, a patient-specific seizure prediction algorithm was devel-

oped based on the most common pipeline in the literature. The seizure prediction

methodology achieved results of 0.34±0.35 for sensitivity and 1.78±1.95 for FPR/h,

where 40% of patient models performed above chance.

Afterwards, different explaining strategies were employed to increase trust in

the models’ decisions. These explanations were based on five lessons extracted from

a prior work developed by the local research team. Explaining seizure prediction

models was challenging as it led to each case scenario being considered individually.

Specific hypotheses were formulated and tested for each patient.

When all patients’ time plots were inspected, typical model behaviors were

found in a statistically significant number. This variety of patterns may represent

epilepsy’s clinical heterogeneity. Regarding the comparison between the circadian

forecasting model, and the SVM model, it was verified that none of both models

outperformed the other in a statistically significant number of patients. Finally, the

impact of each spectral band over the model prediction was also evaluated, and it

was concluded that, in specific scenarios, different sets of features might produce an

entirely distinct behavior in the classifiers’ output.

Further, patient 8902 might have been a rare case as no similar performance

was achieved for any other patient. It would have been crucial to analyze more

similar scenarios.

With this study, it was possible to conclude that for seizure prediction algo-

rithms and other healthcare ML-related problems, where physiological groundings

are not well established a priori, explainability should not simply explain the model’s

decision. It is necessary to improve the developed models, review used assumptions,

and create a completer problem formulation to gain trust.

Additionally, it was notable that the evaluation of the output’s classifier dy-

113
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namic was one of the most intuitive explanations. There is the habit of merely

analyzing the performance metrics of a given method. However, the present study

proved that analyzing the regularization curve could provide more insights into the

model’s performance and decisions.

Since data from pre-surgical monitoring was used, it is noteworthy that the

present study can only perform as a proof of concept. Furthermore, providing ex-

tensive examples of conjectures regarding the designed methodology is challenging

once many of the developed explanation hypotheses require new testing data and

extensive recording periods to capture a significant number of occurrences of a given

phenomenon. For instance, despite being supported by the literature, the available

data is insufficient to reinforce the hypothesized possible influence of the concept

drifts’ such as circadian and sleep-wake cycles.

In future work, to overcome the referred limitations, the developed methodology

should be replicated in ultra-long term data collected from daily life conditions, such

as those performed by Cook et al. [24]. By employing these data, finding other case

scenarios and validating the suggested ones might be possible. Moreover, a long-

term analysis will supply a definitive evaluation of these explanation methods as

they must prevail effective and intuitive when examining days and months of records.

Interviewing patients must also be considered to understand their perspectives and

relation to devices and guarantee trust.

114



Bibliography

[1] I. E. Scheffer, S. Berkovic, G. Capovilla, M. B. Connolly, J. French, L. Guil-

hoto, E. Hirsch, S. Jain, G. W. Mathern, S. L. Moshé, et al., “Ilae classification
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[78] O. Stojanović, L. Kuhlmann, and G. Pipa, “Predicting epileptic seizures using

nonnegative matrix factorization,” PloS one, vol. 15, no. 2, p. e0228025, 2020.

[79] T. Tamanna, M. A. Rahman, S. Sultana, M. H. Haque, and M. Z. Parvez,

“Predicting seizure onset based on time-frequency analysis of eeg signals,”

Chaos, Solitons & Fractals, vol. 145, p. 110796, 2021.

[80] M. Pinto, A. Leal, F. Lopes, A. Dourado, P. Martins, C. A. Teixeira, et al., “A

personalized and evolutionary algorithm for interpretable eeg epilepsy seizure

prediction,” Scientific reports, vol. 11, no. 1, pp. 1–12, 2021.

[81] S. M. Usman, S. Khalid, and Z. Bashir, “Epileptic seizure prediction using

scalp electroencephalogram signals,” Biocybernetics and Biomedical Engineer-

ing, vol. 41, no. 1, pp. 211–220, 2021.

122



Bibliography

[82] P. Peng, Y. Song, and L. Yang, “Seizure prediction in eeg signals using stft

and domain adaptation,” Frontiers in Neuroscience, p. 1880, 2021.

[83] K. Singh and J. Malhotra, “Predicting epileptic seizures from eeg spectral

band features using convolutional neural network,” Wireless Personal Com-

munications, pp. 1–18, 2022.

[84] D. Liang, A. Liu, C. Li, J. Liu, and X. Chen, “A novel consistency-based

training strategy for seizure prediction,” Journal of Neuroscience Methods,

vol. 372, p. 109557, 2022.

[85] M. Pinto, T. Coelho, A. Leal, F. Lopes, A. Dourado, P. Martins, and C. Teix-

eira, “Interpretable eeg seizure prediction using a multiobjective evolutionary

algorithm,” Scientific reports, vol. 12, no. 1, pp. 1–15, 2022.

[86] T. Pal Attia, P. F. Viana, M. Nasseri, J. Duun-Henriksen, A. Biondi, J. S.

Winston, I. P. Martins, E. S. Nurse, M. Dümpelmann, G. A. Worrell, et al.,
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A

Features Description

Here are present some details regarding the extracted features. Linear features

are mathematical measures that capture linear dynamics from the signal, using its

phase/frequency and amplitude information. The EEG signal is assumed as quasi-

stationary within each time window when this type of feature is extracted.

A.1 Statistical Moments

Statistical moments are widely used in seizure prediction studies to characterize

the signal’s amplitude distribution. The four moments are mean, variance, skew-

ness, which measures the degree of asymmetries of the amplitude distribution, and

kurtosis, which measures the relative flatness or peakedness of the amplitude distri-

bution. The preictal period has been associated with considerable changes in these

measures compared to the interictal period. In particular, a decrease in variance

and an increase in kurtosis were observed in the preictal phase [18, 61, 65, 66, 126].

A.2 Hjörth Parameters

The Hjörth parameters consider standard deviations to quantify the dynamical

signal properties. These are three time-domain measures of brain activity: activity,

a measure of mean power, mobility, a measure of root-mean-squared frequency, and

complexity, a measure of root-mean-square frequency spread. With the proximity

to the seizure onset, an increase in mobility and complexity measures is observed

[18, 58, 61, 66, 126].

A.3 Decorrelation Time

The decorrelation time is described as the first zero crossing of the autocorre-

lation function. It is an estimator of the data periodicity and the strength of linear

131



A. Features Description

correlations. The lower its values, the less the signal is correlated. Before seizures,

a decrease in the decorrelation time has been reported [61, 66].

A.4 Relative Spectral Power

The spectral power quantifies the signal power associated with specific frequency

ranges. It is possible to compute the power spectral density (PSD) by applying the

Fast Fourier Transform (FFT) to the EEG time series and then average the squared

coefficients of the frequency range of interest.

In turn, the relative spectral power is characterized as the power of a given

frequency band divided by the total power of the EEG signal. A normalized spectral

power provides a more robust measure since there is more power in low frequencies

than at high frequencies. Some authors have reported a transference of power from

the lower to higher frequencies before the seizure onset [58, 61, 66, 126].

A.5 Spectral Edge Frequency and Power

Spectral Edge Frequency (SEF) is commonly described as the minimum fre-

quency below which a given percentage of the total power of the signal is contained.

The Spectral Edge Power (SEP) is the value of the power existing below the defined

threshold.

Regarding the EEG signal, most of the spectral power is comprised in the

0.5–40Hz band, and SEF 50 and SEP 50 are commonly used. SEF 50 is the frequency

below which 50% of the total power of the signal up to 40 Hz is located, and SEP

50 is the corresponding power below the spectral edge frequency. Thus, SEF may

be capable of capturing the dynamics mentioned above during the preictal [61, 66].

A.6 Wavelet Coefficients Energy

The Discrete Wavelet Transform (DWT) is a time-frequency domain transform

that can be an alternative to the Fast Fourier Transform (FFT). It is capable of re-

vealing the spectral and temporal properties of the signal. The wavelet transform

decomposes the signal in different resolution levels according to specific frequency

components. The first decomposition levels are associated with higher frequencies,

while the last levels represent the lower frequencies. After the signal decomposition,

it is possible to compute discriminant measures from distinct frequency bands by

applying the wavelet coefficients. The quantification of the energy in different fre-
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quency ranges is an example of a feature that can be obtained using the wavelet

transform [61, 66].
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