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Abstract

To achieve dependability, system designers often resort to fault-tolerance mechanisms.
The evaluation of these mechanisms requires the observation of failures, which typically
are relatively uncommon. To increase the failure rate, practitioners employ fault injection
techniques, resulting in an increased occurrence of failures and allowing the evaluation
of the systems dependability properties. While various fault injection tools exist for this
end, they are usually limited in scope, applicability and in their configuration abilities for
microservice applications.

We propose Defektor , a generalist and extensible tool capable of controlling a fault
injection campaign on multiple types of applications, particularly microservice-based appli-
cations, and compatible with various container orchestration technologies and fault injection
tools. The Defektor configuration follows an high-level approach, based on an injection
campaign plan specifying the instructions for the Defektor operation and the parameters
of the fault injection campaign. Defektor automates the entire workflow, consisting of
defining the campaign plan, generating a workload, specifying and injecting the faults, and
collecting data, aiding the experiment repeatability, improving the consistency of results,
and saving time.
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Microservices, Fault injection, Cloud-native
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Resumo

Para alcançar confiabilidade, os designers de sistemas costumam recorrer a mecanismos
de tolerância a falhas. A avaliação desses mecanismos requer a observação de avarias,
que normalmente são relativamente incomuns. Para aumentar a ocorrência de avarias,
são empregues técnicas de injeção de falhas, resultando num maior número de eventos de
avarias e permitindo a avaliação das propriedades de confiabilidade do sistema. Embora
existam várias ferramentas de injeção de falha para este fim, estas são geralmente limitadas
em extensão, aplicabilidade e na capacidade de configuração para aplicações baseadas em
micro-serviços.

Propomos o Defektor , uma ferramenta generalista e extensível capaz de controlar
uma campanha de injeção de falhas em vários tipos de aplicações, particularmente apli-
cações baseadas em micro-serviços, e compatível com várias tecnologias de orquestração
de contentores e ferramentas de injeção de falhas. A configuração do Defektor segue uma
abordagem de alto nível, com base num plano de campanha de injeção especificando as
instruções de como o Defektor deve operar bem como os parâmetros da campanha de
injeção de falha. O Defektor automatiza todo o fluxo de trabalho, consistindo em definir o
plano de campanha, gerar uma carga de trabalho, especificar e injetar as falhas e recolher
os dados, auxiliando na repetibilidade das experiências, melhorando a consistência dos
resultados e economizando tempo.

Palavras-Chave

Micro-serviços, Injeção de falhas, Cloud-native
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Chapter 1

Introduction

This document presents the final dissertation in the context of the Master in Informatics
Engineering, Specialization in Software Engineering advised by Prof. Filipe Araújo and
Prof. Raul Barbosa and presented to the Faculty of Sciences and Technology / Department
of Informatics Engineering.

1.1 Context

With the exponential growth of software systems, new challenges are imposed to
continue scaling services efficiently. For this purpose, new solutions and development
patterns were explored, studied, and developed. One procedure that has emerged in the last
decade has been to decouple the various components of an application (which until then were
all encapsulated in a single block) into interconnected small blocks, each one responsible
for performing specific functions. These components are known as microservices and have
become the dominant trend in large companies selling products/services based on computing
platforms. Even though this solution improves the system’s resilience and availability, this
architecture makes the observability and comprehension of failure propagation a more
challenging task.

Since the system’s various components are decoupled, where a larger cluster can have
hundreds or thousands of instances of microservices, traditional telemetry techniques are
unable to provide a complete picture of the system due to microservices’ complex relations
and dependency trees. To address this issue, new observability techniques must be employed
to mitigate this problem. Thus, dedicated engineering teams use monitoring, logging and
tracing to observe and maintain records of work performed in a microservice system.
Monitoring consists of measuring aspects related to the infrastructure where the system is
deployed, such as Central Processing Unit (CPU), memory, disk, latency, and others. The
logging provides an overview of a discrete triggered log per event. Tracing oversees the flow
of program execution, as requests go through the system’s various components.

One of the tracing forms, used mostly in distributed systems, is called distributed
tracing, and is characterized by monitoring applications even if their state is partitioned into
multiple services, machines, or geographical locations. Despite being a valuable technique
for improving system dependability, the frequency of failures, which is normally low, must
be increased in order for engineering teams to precisely pinpoint the source of the failures.

In order to find the system’s failures, a new discipline arose to act proactively against

1
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possible hidden threats in the system. This discipline is called Chaos Engineering, and
it has one single mission: make the system as resilient as possible. The pioneers of this
practice soon realized that the higher the failure rate, the more effective its detection and
mitigation was. Thus, effort should be allocated to proactively inject faults in the system to
collect relevant telemetry data. This data is then important to understand how the system
behaves when some of its components do not work properly.

The combination of the two presented disciplines gives to Site Reliability Engineering
(SRE) and Development and Operations (DevOps) teams enough tools and data on how
resilient the system is and on how much margin of improvement there is.

1.2 Goals

One of the limitations we discovered in our current work is a lack of systems capable
of controlling a fault injection campaign and providing useful data for the development of
analytic tools. To mitigate this problem, our team proposes a generalist and extensible
tool called Defektor that automates the entire injection campaign workflow and data
collection, facilitating experiment reproducibility, enhancing consistency of results, and
saving significant time. For example, the tool may purposefully delay one service’s response
to ingress requests in order to observe how it propagates to other services. Similarly, it
may switch off or drain computing resources from architectural parts to check if the overall
application can cope with the situation.

It is also our goal to give a simplified way of integration of our solution in the mainstream
container orchestrators, so the practitioner does not have to install and configure the essential
integrated components of Defektor manually.

One client User Interface (UI) will also be developed to agile the process of creating a
descriptive plan responsible to give detailed instructions on how Defektor ’s should perform
an injection campaign.

In short, it is expected that skills in distributed systems will be developed as well as a
good knowledge of the state of the art regarding telemetry and chaos within a cluster of
microservices. This thesis should culminate with a software artifact capable of utilizing
principles and methods from the project’s two primary disciplines: distributed tracing and
chaos engineering.

1.3 Research Contributions

From the work presented in this thesis, the following research contributions were made:

(communication) Gonçalo Baptista, Jaime Correia, André Bento, João Soares, António
Ferreira, João Durães, Raul Barbosa, and Filipe Araújo. Defektor: An Extensible Tool for
Fault Injection Campaign Management in Microservice Systems. INForum 2021.

(paper) Gonçalo Baptista, Jaime Correia, André Bento, João Soares, António Fer-
reira, João Durães, Raul Barbosa, and Filipe Araújo. Defektor: An Extensible Tool for
Fault Injection Campaign Management in Microservice Systems. Internation Parallel and
Distributed Processing Symposium (IEEE IPDPS 2022).

The latter contribution is still subject to review. The conference reviews will be sent
out to the authors on November 30, 2021.
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1.4 Document Structure

This document is structured as follows:

• Chapter 2 - aims to give a good understanding of the core concepts necessary to
understand what will be the proposed solution.

• Chapter 3 - the existing technologies and tools on the two core disciplines of this
thesis are presented and discussed.

• Chapter 4 - provided a brief description of the capabilities we envisioned for our
solution. To clarify it, some functional requirements are identified and well defined
using use cases.

• Chapter 5 - the architecture of our proposed solution is presented following the C4
Model.

• Chapter 6 - the tools and technologies used, and a detailed and rigorous overview of
the main components of the developed tool.

• Chapter 7 - provided a proof of concept by creating an experiment setup and analyse
the results.

• Chapter 8 - an analysis will be made of the planning of this project.

• Chapter 9 - aims to give some reflections on what was developed during the thesis
and what is planned to be implemented in future work.

3
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Chapter 2

Background

The current chapter aims to give a good understanding of the core concepts necessary to
understand what will be the proposed solution. To do so, the core concepts—Microservices
(section 2.1), Chaos Engineering (section 2.2) and Distributed Tracing (section 2.3)—are
presented and explained with evidence-based literature review.

2.1 Microservices

The term “Micro-Web-Services” was initially introduced in 2005 by Dr. Peter Rogers
at a cloud computing conference, the Web Services Edge conference. Two years later,
Juval Löwy expanded the idea of promising case studies about a granular use of services
in his book [42]. In 2011, during an event in Venice for software architects, the term
"microservices" was used to describe a prototype architectural style based on the granularity
of services. This term would be eventually be formally used to describe this Service-Oriented
Architecture (SOA) in 2012 [44, 46].

Microservices is an architectural style that structures an application as a set of small
independent services, interconnected through API’s, organized in order to implement rules
and business logic [59, 15].

The emergence of this architectural style arises from the empirical and technological
advances in computer science, more specifically in software engineering and cloud distributed
computing. In this regard, improvements in Application Programming Interface (API)
and several contributions in technology stack (virtualization and containerization), service
management and architecture setting both in proposed solutions and literature reviews [55].
Notwithstanding the scientific progress, the exponential growth of the codebases made too
difficult to make functional changes and maintain big applications. Thus, Software as a
Service (SaaS) approach is almost mandatory to continue scaling [71].

Microservices stand out for its minimal and small form with a well-defined single
responsibility. They provide increased resilience, scalability, maintainability and testability
when comparing to other architectural patterns. These attributes enable businesses to
optimize resources. On the one hand, teams tend to develop and deploy faster than other
approaches, leading to a faster time to market. On the other hand, decoupled small services
reduce infrastructure costs and minimize downtime [52].

Prior to the popularity of the microservice architecture pattern, the monolithic ar-
chitecture one was more in vogue. This pattern packages and deploys all components in
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one single unit application. For instance, a server-side application is commonly built as
a monolith because all features are bundled in the same package. Thus, any functional
change or bugfix demands compiling and deploying a new version.

Figure 2.1 provides a very clear representation of the main differences of both architec-
ture patterns.

Figure 2.1: Monolithic and Microservices architectural patterns [19].

These two approaches are both valid in the right context. For instance, a product
following the monolithic architectural pattern starts to show its weaknesses when the client
demands features either in large quantities or in complexity. Thus, this solution fits better
in simple applications that do not demand much scalability or business logic. Withal, as
this pattern’s components are usually very coupled and dependable to work correctly, the
number of developers allocated to such a project should be small.

Considering that a company owns a reasonable number of human resources and its
client demanded a very complex and scalable product. Even in this case, this monolithic
solution might still not be the most appropriate if among the developers there is no expertise
and know-how in microservices. Microservices demand well-qualified professionals, such as
DevOps, to leverage their business value properly [21].

Two areas where microservices tend to be problematic are monitoring and predicting
behaviour facing turbulent conditions, especially when the system takes large dimensions.
For this matter, a multitude of disciplines and techniques have been created to help
engineers mitigate these problems. Two of them will be covered in this document due
to their importance for fully understanding the proposed solution: chaos engineering
(Section 2.2) and distributed tracing (Section 2.3).

2.2 Chaos Engineering

As previously discussed, despite their many advantages, microservice-based platforms
are sometimes too complex to foresee the repercussions of unanticipated events such as a
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hardware failure, invalid parameters in runtime configuration, or abnormal usage of the
clients’ service. Although each microservice individually may be very focused and well
implemented, the increased interaction between many discrete components increases the
possibility of failures. Also, because the system is now distributed among many loosely
coupled components, fault localisation and causality analysis become very hard, making
the evaluation of the system’s dependability properties complex.

Fault tolerance mechanisms are an important aspect of modern systems, to handle
fault activation occurring in the operational phase and avoid or mitigate failures. Thus,
during development, it is very important to understand the system behaviour when some
components fail, in order to better design mitigation and recovery mechanisms. Because
the activation of hidden faults and consequent failures are relatively rare (otherwise those
faults would have been found and corrected), practitioners use fault injection techniques to
increase the rate of fault activation in order to observe failures and be able to characterise
the system’s behaviour.

One discipline that employs this principle (deliberately increase fault rate) is Chaos
Engineering. Formally, Chaos Engineering is “the discipline of experimenting on a system
in order to build confidence in the system’s capability to withstand turbulent conditions in
production” [58]. That is, arbitrary and intentional failures are introduces into production
environment to assess whether a malfunction on a service/instance triggers a chain of events
that can impact negatively the availability and the performance of the system.

This discipline was first introduced by Netflix when, in 2010, they intended to mi-
grate their services from their local infrastructure to Amazon Web Services (AWS) cloud
infrastructure. To validate if the cloud provider could guarantee their availability and relia-
bility quality attributes, Netflix engineers designed a resiliency tool called Chaos Monkey
that would abruptly terminate production instances. This practice may appear illogical,
especially because it is attempting to weaken the system in the production environment.
However, essential data was generated and gathered either about any critical weaknesses
present in the system or to validate implemented mitigation plans [73]. In the following
year, and inspired by the success of Chaos Monkey, new services (denominated with other
simian names) with new capabilities of inducing abnormal conditions in the system started
to be developed and put to use, increasing the resilience of their infrastructure [7, 51]. In
the subsequent years, other companies such as Microsoft [49], Google [10], Amazon [10]
and Facebook [66] started to realize the importance of this technique to test the resilience
of their own systems.

The formalization of this discipline consists in five fundamental principles [58]:

1. Build a Hypothesis around Steady State behaviour

2. Vary Real-world Events

3. Run Experiments in Production

4. Automate Experiments to Run Continuously

5. Minimize Blast Radius

In order to clarify these principles, the first step is to accurately and completely measure
relevant metrics such as throughput, latency and failure rate of packets with the system in
a steady state. Then, occurrences and events, generated in the production environment,
must be observed and prioritized by possible impact on the system and/or frequency of
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occurrence. The experiments carried out, such as abruptly ending arbitrary computational
instances, should be fully automated and executed in a production environment. This way,
it is possible to obtain real data through real interactions with the system. Finally, carrying
out experiments in this environment may cause potential unnecessary impacts on customers.
Although there must be a well-defined plan for possible short-term negative impacts, it is
the responsibility and obligation of the teams responsible for this process to ensure that the
consequences of these systemic tests are minimized, controlled and contained. It is worth
noting that during this process, the important thing is not to monitor and understand how
the system works, but if it works.

Based on the Chaos Engineering principles, a proposed solution [7] to run a experiment
may follow the next steps:

1. Start by shaping system’s ‘steady state’ with some measurable output that indicates
its nominal behaviour.

2. Hypothesize that this steady state will be verified either in control and experimental
group.

3. Introduce any kind of realistic malfunction in the system.

4. Try to refute the hypothesis comparing the behaviours between the experimental and
the control group.

The more difficult it is to disturb the system’s normal behaviour, the more confident
we are in our system’s ability to withstand turbulent situations. Any failures detected, on
the other hand, must be addressed as soon as possible before they reach the system and
severely damage the client experience.

These failures are only possible to be observed when analyzing the data generated
by employed observability and telemetry tools. One of the most reliable observability
technique used in microservices environments, as it was previously mentioned, is Distribute
Tracing. This subject will be addressed in the Section 2.3 to give a good understanding of
its purposes.

2.3 Distributed Tracing

Once the various components of the system are decoupled, the traditional logging
methods are not effective for fully comprehending the big picture of the system’s health
because they lack contextual metadata to troubleshoot a request as it travels through an
enormous dependability tree. Thus, to address this issue, teams often resort to Distributed
Tracing to enhance the system’s telemetry.

Distributed tracing "is a method used to profile and monitor applications, especially
those built using a microservices architecture" [54], which helps DevOps teams to pinpoint
system anomalies, diagnose steady state problems and have a good notion of resources
attribution [61].

Conceptually, distributed tracing services proposes a solution that assigns each external
request a unique ID, propagates the ID of that same request to all services involved in its
treatment. All the log messages must also include that ID and finally, record the information
(for instance, start and end timestamps, duration, HTTP status code, etc.) in a centralized
service [57].
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Multiple standards and tools have emerged since the early days of large-scale microser-
vices implementations, when each organization was developing their own solution. As a
result, there is no standard specification in place today as the various available solutions
have distinct formats for their components as well as varied annotation conventions. To
address this issue, multiple organizations (Google, Microsoft, IBM, and others) and people
have been working to build a standard for interoperability between tracing tools.

For instance, the OpenTracing specification [53] is done at the level of what is called a
trace. A trace represents an end-to-end request inside the system and it is composed by
building blocks that contain the same trace identifier, called spans. Spans represent work
done by a single service and its relevant metadata (e.g., duration, timestamps, etc.). As
the requests goes through the chain of services, spans are created with a span identifier
associated to its trace. This span identifier as well as a parent identifier are necessary
to represent parent/child relationships It may also occur that a request only targets one
service that is dependability free. Therefore, a trace only contains a span and we can say
that this trace is a span.

Figure 2.2 represents a trace and gives an idea, with a simplified sample, on how spans
correlate within themselves and progress through time.

Span A

Span B

Span C

Span D

Span E

Time

Tr
ac

e

Spans

Figure 2.2: Sample trace over time.

In Figure 2.2 we can observe a trace composed by five spans, each one of them having
a parent span except the "Span A". This is the root span or also called an "orphan span".
In the other hand, only "Span A" and "Span B" possess child spans. We can also observe
that a span can be triggered by any span, as long as they are dependable of each other.

Looking at the factor time, we can observe that all the spans have a start time, an
end time and, therefore, a duration. It is expected that a parent span will start before any
child span and its duration will cover all its child spans’ durations. Thus, it is expected
that a trace only ends if no spans in its chain are still doing work.

It should also be noted, looking at Figure 2.2, that "Span A" has two direct dependable
spans—"Span B" and "Span E"—where the second one only starts after the first one ends.
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This is most likely scenario, yet it may occur that a parent span triggers two or more spans
at the same time. This is only possible in a scenario that the child spans do not depend on
each other and, therefore, can execute as parallel tasks.

These distributed tracing tools most often provide what is called a span tree. A span
tree represents, as a graph, all spans’ dependencies inside one trace. This gives a clearer
view of causality relationships among spans/services. This method abstracts the time factor
as it is not relevant for dependability purposes.

To elucidate this technique, we are using the Figure 2.2 sample trace to build its span
dependability tree, shown in Figure 2.3.

Span A

Span B Span E

Span C Span D

Figure 2.3: Span tree.

This technique can be extended from one trace to all traces gathered by a trace
collector. As one trace does not represent the wide range of shapes a trace can have in
a system, nor is it trivial to infer all service dependabilities based on the generated ones,
some distributed tracing tools provide what can be called the system architecture graph.
Recurring to the sample of traces gathered by the system, it is possible to infer what the
causality relationships between services are in the whole system, in multiple contexts.

Once all nuclear concepts are exposed and reviewed in the literature, the reader should
be equipped with an ability to understand the technologies that will be addressed in the
following chapter (Chapter 3) as well as the proposed solution of this thesis (Chapter 4 &
Chapter 5).
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State of the Art

In this chapter, we present and discuss a literature overview about fault injection subject
and the existing technologies and tools on the two core disciplines of this thesis—chaos
engineering and distributed tracing.

It is important to note that all tools are open-source and none of them serve the same
purpose as the solution presented later in the report. Many of them may even be integrated
into it. However, since our solution share principles and functionalities with these two
distributed computing disciplines, an enlightened view of the state of the art is essential.

The comparisons made between the various tools regarding their pros and cons will only
give an aggregate view of the characteristics that will be addressed in each tool subchapter.
Thus, this study do not have the purpose to rank them in order to choose one.

3.1 Fault injection

Testing a system’s resilience and fault tolerance is an essential element of the validation
process for distributed systems. This requires the observation of the system under evaluation
in the presence of faults. Fault activation, on the other hand, is typically an uncommon
occurrence. To address this, fault injection has been used to accelerate fault activation
by inserting artificial faults into a given component of the system to observe how other
components or the overall system behave. The object of the observation is not the target
itself but another part (or the entire system). Fault injection has been used for decades to
evaluate system dependability properties [30], [9], [72], [16] and risk assessment [47].

Early work of [4] and [5] proposed the initial frameworks defining the conceptual
components of a fault injection experiment: the set of faults (faultload), the set of operations
to activate the system (the workload), the set of raw measurements (system observation)
and the model to convert the raw measurements into meaningful properties concerning
the system behaviour. Fault injection experiments are controlled by a set of typical tools
which include the fault injector (actually inserts the intended faults into the target), the
workload generator (submits the work to the system), a monitor (observes the system), and
a controller (orchestrates the experiment), as described in the early work of [26].

Usually, the system is exercised first without any faults injected—the “golden run”—and
then again, one or more times, with faults injected in a given component according to
the faultload specification. Realistic faultloads representing real faults occurring in the
operational phase are particularly hard to define, and even harder for complex software
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systems, where it is very difficult not only to understand which faults are realistic, but also
how to inject them.

The fault injector is, by far, the most difficult component to implement, due to the
complex nature of the faults (software faults), and also due to to reachability and control
issues, which are technically very challenging, often having to bypass the normal semantics
and behaviour of the platform and operating system. Besides the technical challenges
involved in building fault injectors, another issue surrounding fault injection experiments
is the ratio of fault activation. Once inserted into the target system, the fault must be
activated to eventually cause an error (an internal wrong state in the system) that may
or may not cause a failure (the unwanted behaviour that is observed). In particular, for
software faults, to activate the fault, the workload must ensure that the execution path
covers the inserted fault. To overcome this difficulty, many fault injectors insert not a fault
but an error. The premise here is that the errors are a representative consequential state of
the intended fault.

Fault injection has been used for several decades both in academia and industry and
many early fault injectors were developed for more or less specific target types and scenarios.
Examples of early tools are: specific for hardware systems ([5], [32], [43], among many
others), specific for simulating hardware memory-related faults, such as bit-flips and stuck-at
faults (FIAT [60], FERRARI [29], FINE [31]), and specific for given target systems, such as
Online Transaction Processing (OLTP) systems [72] or web servers [16]. The specificity for a
given target system or experimental scenario ties the tools to specific platform mechanisms
and capabilities, limiting the fault models the tool is able to inject. Several initiatives
addressed this problem by proposing modular fault injection tools. Examples include
Xception [9], NFTAPE [65], Goofi [1]. The success of such modular tools is moderate
given that there remains some dependency from the underlying system or target and new
scenarios have become relevant for which these tools were simply not prepared to address,
such as microservice architectures.

3.2 Chaos Engineering

In this section, the most relevant chaos engineering tools explored—Litmus (sub-
section 3.2.1), Chaos Monkey (subsection 3.2.2) , and Istio (subsection 3.2.3)—will be
presented, introducing each one of them and comparing their pros and cons.

These tools all share one aspect in common: they can enforce failures in a service
belonging to an application based on a microservices architecture. However, they do not
automate a typical chaos engineering experiment, like the one presented in Section 2.2, as
it is a very specific task for every microservices cluster.

3.2.1 Litmus

Litmus is an open-source toolset for cloud-native applications created by MayaData in
2018 capable of doing Chaos Engineering. It provide tools to orchestrate chaos inside a
Kubernetes [11] microservices cluster at multiple levels: container [14] level, pod [38] level
or node [36] level.

It adopts Kubernetes ’ approach to define the desired chaos experiments in a declarative
manner, using manifests with custom resources. It also manages metrics for each chaos
experiment to custom durations or severities of each fault injector. All the fault injectors
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can be found in Litmus’ chaos experiments documentation [41]

Litmus is composed by four components:

• Chaos Operator

• Chaos Experiment

• Chaos Engine

• Target Application

The Chaos Operator is the core of the tool, and it is in charge of running the experiments
and report its results after the experiment is finished. These experiments, called "Chaos
Experiments," are the actual fault/chaos introduced in the system, e.g., killing a container
inside a pod, delete or drain Central Processing Unit (CPU) and memory resources in a
pod, or stress or restart a node.

The Chaos Engine is the linker between the Chaos Operator and the Target Application.
It is the component responsible for receiving any experiment parameters, such as duration
and the target. Finally, the Target Application is the actual target of the chaos experiment.
Some configurations are needed to be performed to enable the Chaos Operator to find the
target.

3.2.2 Chaos Monkey

Among all the Chaos Engineering tools, Chaos Monkey is one of the pioneers and
arguably the one that kickstarted Chaos Engineering’s usage outside large companies.
Netflix released it in 2012, and its major purpose was to randomly disable production
instances to give confidence that the system was resilient enough to this type of failure, so
the customers would not experience punctual malfunctions.

The project is open-source and it was initially prepared to only deal with AWS.
However, as the years went by, new supported cloud environments were added such as
Google Compute Engine (GCE) and Kubernetes.

Experiments with this tool were made in the middle of a business day, in a strictly
monitored environment with engineers standing by. Thus, any failures in the system could
either be contained and do not impact customers streaming experience but also be a learning
lesson to build automatic recovery mechanisms.

3.2.3 Istio

Istio is an open-source service mesh that controls how microservices share data with
each other. It uses sidecar proxies next to microservices to forward requests from/to other
services. It is also crucial to distributed tracing tools as they use this layer of abstraction
to get the data about the ingress and egress requests.

Even though this tool may be tagged as Chaos Engineering tool, it is in fact a service
mesh capable of doing chaos. It provides to those who setup their service mesh in a
microservices cluster two plugins to enforce failures inside the system: Hypertext Transfer
ProtocolHyperText Transfer Protocol (HTTP) delay fault and HTTP abort fault.

The way Istio enforces chaos is presented with an example in Figure 3.1.

13



Chapter 3

Service A

Proxy

Service C

Proxy

Service B

Proxy

3s delay HTTP 500

Figure 3.1: Sample of Istio injecting chaos.

As already discussed, this tool can control requests within the cluster. As we can see
in Figure 3.1, "Service A" sends a request to "Service B" with a 3-second delay. If "Service
B" does not timeout, it will send a bad request to "Service C", causing the request to fail.
Therefore, the requested operation will not be performed completely.

This parameters are provided using a manifest where it is possible to include how many
seconds an arbitrary service should delay a request to another arbitrary service. It can be
also included the probabilistic value of the fault to be injected, either in delay and in abort.

3.2.4 Comparison

In this subsection, a comparison of advantages and disadvantages between the various
covered tools will be presented. As already mentioned, it is not intended to make any sort
of ranking among them, but to have a clear idea where each one stands out from the others
and where it could be improved. This comparison is shown in Table 3.1.

Table 3.1: Chaos Engineering tools: pros and cons comparison.

Litmus [40, 41] Chaos Monkey [50] Istio [24]

Pros Open-source;
Disposes around fifty chaos
experiments (type of fault in-
jectors);
Web User Interface (UI)
that provides a dashboard
to monitor successful work-
flows;
Good documentation;

Open-source;
It has solid historical work-
ing proof;
Built into Spinnaker [63];
Encourages to prepare for
random instance failures;

Open-source;
Easy setup;
Can flag that a span was im-
pacted by the failure;
Platform (container orches-
trator) independent;

Cons Only works in Kubernetes;
Steep learning curve;
Hard troubleshooting;
Hard to manage permissions
based on what experimented
is desired;

Hard to control the experi-
ence as it is randomized;
Requires Spinnaker and
MySQL [48];
No UI;

Only provides two fault in-
jectors;
No UI;

3.3 Distributed Tracing

In this section, the most relevant distributed tracing tools explored during a research
phase will be presented, giving a introduction to each one of them and comparing their
pros and cons.

These tools aim to collect information about traces generated within a cluster of
microservices and present them to the user, DevOps, through an user interface . Yet, they

14



State of the Art

are not equipped to reveal to DevOps any symptoms that the system may not be operating
in its expected behaviour. This task have to be performed by a specialized team based on
the information generated by the distributed tracing tools.

The tools will be presented following the order of presentation and, at the end, a
comparison is made between the pros and cons of each one.

3.3.1 Zipkin

Zipkin is an open-source software based on Google Dapper design. It is Java-based
application and provides a number of distributed tracing functionalities. Its main goal is
to gather timing-based information about traces to troubleshoot latency problems in a
microservices environment.

This tool was adopted by large companies such as AirBnB and Uber. It supports
OpenTracing, OpenCensus and OpenTelemetry frameworks and provides an UI that no
only presents graphically traces’ data and spans’ metadata but also presents dependency
diagrams. The workflow/architecture is shown in Figure 3.2.

Figure 3.2: Zipkin architecture [75].

This tool can persist traces either in MySQL, Cassandra [2], Elasticsearch [17] and
an in-memory database. In addition, Zipkin provides transport mechanisms like, e.g.
RabbitMQ, HTTP, and Kafka, and a it provides libraries for most popular high-level
languages such as Java, and JavaScript.

3.3.2 Jaeger

Jaeger was created by Uber and was written in Google’s programming language, Go. It
is similar to Zipkin (in fact, it was designed based on Zipkin implementation), but there are
some differences: Jaeger provides dynamic sampling (Zipkin only provides fixed sampling),
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a REST API, a renewed ReactJS-based UI and it only as full support for OpenTracing
standard.

This tool’s architecture, shown in Figure 3.3.2, is more distributed and complex that
Zipkin’s. Yet, it leverages performance, readability and scalability.

Figure 3.3: Jaeger architecture [27].

3.3.3 Comparison

In this subsection, a comparison of advantages and disadvantages between the various
covered tools will be presented. As already mentioned, it is not intended to make any sort
of ranking among them, but to have a clear idea where each one stands out from the others
and where it could be improved. This comparison is shown in Table 3.2.

Table 3.2: Distributed Tracing tools: pros and cons comparison.

Jaeger Zipkin

Pros Open-source;
Dynamic sampling rate;
Renewed browser UI.

Open-source;
Provides multiple transport protocols;
Supports main distributed tracing speci-
fications;
Browser UI;

Cons Only supports two transport protocols
(Thrift and HTTP).
OpenTelemetry is not supported yet;

Fixed sample rate;

Now that the start of the art of tooling regarding distributed tracing and chaos
engineering is covered and the core concepts were also presented, we consider that the
reader is properly equipped to fully understand what will be exposed in the next chapters
regarding the proposed solution.
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Requirements

In this section, we present the main features of Defektor and explain the interaction of
the tool with the underlying systems to control the fault injection experiments and manage
the target application execution. To clarify it, we give a general description about our
proposed solution and discuss about Defektor ’s actors and architectural driver. Nevertheless,
some functional requirements are identified and well defined using use cases.

4.1 General Description

The product to be developed, called Defektor, a server application that exposes a
REpresentational State Transfer (REST) API used by a command line client to manage
injection campaigns.

Operation of Defektor requires a number of components: the application, an injection
plan, a workload generator, a fault injector and a data collector mechanism, to extract
the resulting data from a specified data storing systems. Defektor interacts with all the
involved tools to exercise and inject faults on the target application, while running on a
separate infrastructure, avoiding resource contention.

The workload generator can be instantiated on multiple slave computing instances
and the injection plan the details specifying this aspect. The integration of Defektor with
the other tools involved in the experiment, in particular the fault injection tools, is done
through adaptor plugins.

The user interacts with the command line client to provide an injection plan containing
high-level instructions to perform a fault injection campaign. Asynchronously, Defektor
server will inject a fault in the target application affecting its dependability of one or more
services and collects the data, leaving it available for the user to download later through
the command line client.

Regarding the injection plan, it describes all aspects of the campaign, including the
following information: system type, targets, fault injectors, workload generators, and data
collectors. Based on the plan it receives, the Defektor connects to the supporting platform
or infrastructure and allows the fault injector to manipulate the target application.

The user controls all aspects of the plan, however, typically, the plan will first define
a golden run, and then the run with faults. Thus, the behaviour of the system without
any fault or interference is observed beforehand, as is typical in the well established fault
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injection, robustness testing and, later, Chaos Engineering experiments [58]. For example,
a plan making two runs in addition to the golden run would be as follows:

1. Run workload generator for a predetermined amount of time;

2. Collect data (traces/metrics);

3. Apply fault 1 to a given target component A;

4. Run workload generator for a predetermined amount of time;

5. Collect data (traces/metrics);

6. Remove fault 1 injected on component A

7. Apply fault 2 to a second target component B;

8. Run workload generator for a predetermined amount of time;

9. Collect data (traces/metrics);

10. Remove fault 2 injected on component B.

4.2 Actors

Three actors were identified: System, User and Plugin Developer. The User is respon-
sible for giving detailed instructions and triggering all the functionalities system provides,
whereas the System is prepared to ingest user instructions and perform these tasks syn-
chronously or asynchronously. These System’s capabilities can be extended by the Plugin
Developer either by adding more fault injectors or to extend the injection campaign to
other microservice platforms.

4.3 Architectural Drivers

Enabling the use of a high-level plan and make Defektor extensible for different types
of microservice-based systems were the two main design drivers.

The tool is made generic by allowing extension by plugin, enabling the addition of new
fault injectors, data collectors and the ability to interact with new systems and platforms.
All these plugins are referenced in a generic fashion in the plan, keeping it focused on the
campaign definition, freeing both Defektor and the user from the implementations details.
For example, shutting down a machine may appear in the plan, but the details about how
that is done are encapsulated in the fault injector, which talks to the target system, by
means of a system connector plugin (refer to Section 5).

4.4 Functional Requirements

Functional requirements are the defined functionalities that are intended to be present
in a system and its components. To present it, we assigned an id and a priority to each
one. The concept of priority represents the importance of each one to meet the product’s
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desired goal described in the previous section. Three priority levels were then used: High,
Medium, and Low. High priority requirements are mandatory for the system to work
properly. Without them, the system is not finished; medium priority requirements improve
the system significantly and are of utmost importance; low priority requirements will only
add value to functionalities already implemented.

The identified functional requirements are presented in 4.1 sorted by priority levels.

Table 4.1: Functional requirements specification.

ID Name Priority

FR-1 Add an Injection Plan High

FR-2 Validate an Injection Plan High

FR-3 List All Fault Injectors High

FR-4 List Available Target Types High

FR-5 List Target Instances High

FR-6 Apply Workload High

FR-7 Fault Injection High

FR-8 Data Collection High

FR-9 Manage Fault Injection Campaign High

FR-10 Fault Injection Extensibility High

FR-11 Target System Extensibility Medium

FR-12 Data Collector Extensibility Medium

FR-13 Delete an Injection Plan Medium

FR-14 List All Injection Plans Medium

FR-15 Get a Specified Injection Plan Medium

FR-16 Add Slave Machine Medium

FR-17 Delete Slave Machine Medium

FR-18 List All Slave Machines Medium

FR-19 Get a Specified Slave Machine Medium

FR-20 Test Parallelization Low

FR-21 Concurrent Injection Of Multiple Faults Low

FR-22 Syntactic Sugar Low

4.5 Use Cases

Use cases are a way of describing the system’s behaviour, capturing the intention
between the different actors and their interaction with the system, useful for properly
describe functional requirements. They can be defined both in simpler ways, with an
explanatory narrative, and in more complex and formal ways, detailing all its aspects and,
depending on the system and its purpose, the ideal format for presenting them can vary.
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Considering the complexity and the dimension of this project, we concluded that
using the simple use case template matches the necessities for a proper description of each
functional requirement. This template consists of an ID, the corresponding Actor, and a
Basic Flow that explains the flow of the use case and all errors that may occur with a brief
narrative.

The nineteen functional requirements that were identified in Table 4.1 are presented
and detailed in the Tables 4.2–4.23 as use cases.

Table 4.2: Add an injection plan use case.

Use Case FR-1 Add an Injection Plan

Actor User

Basic Flow User submits a previously validated injection plan to give de-
tailed instructions on how the system should operate the fault
injection campaign. To do so, the user should describe it in a
.json file and submit it via REST API endpoint. The manifest is
then scrutinized to find any invalid input or repeated persisted
plan. In the case of approbation, the plan is then persisted and
executed. In case it is not approved either due to invalid input
or repetitiveness, the system must be explicit about the reason.

Table 4.3: Validate an injection plan use case.

Use Case FR-2 Validate an Injection Plan

Actor User

Basic Flow User submits an injection plan in order to check any syntax error,
inconsistencies, or invalid input. To do so, the user describes
the injection plan in a .json file then submits it in the respective
REST API endpoint. It is returned either valid or not valid and
the reasons why.

Table 4.4: List all fault injectors use case.

Use Case FR-3 List All Fault Injectors

Actor User

Basic Flow User wants to get the information about all available fault
injectors system can use to force malfunction in the target
cluster. To do so, the user requests this information in the
respective REST API endpoint.
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Table 4.5: List available target types use case.

Use Case FR-4 List Available Target Types

Actor User

Basic Flow User wants to get the information about all available target types
(pods, nodes, containers, services, etc.) that can be subject to a
fault injection. To do so, the user requests this information in
the respective REST API endpoint.

Table 4.6: List target instances use case.

Use Case FR-5 List Target Instances

Actor User

Basic Flow User wants to get the information about all available target
instances that can be subject to an fault injection. To do so, the
user provides a valid target type in the respective REST API
endpoint. It is returned all available instances with that specific
target type present in the system.

Table 4.7: Apply workload use case.

Use Case FR-6 Apply Workload

Actor System

Basic Flow System uses an artificial workload to exercise the target applica-
tion. To do so, Defektor gathers the necessary properties from
the submitted plan to properly orchestrate an arbitrary number
of worker machines. These worker machines resort to config-
urable Docker containers [45] to exercise the target application
for a requested duration and a degree of severity.

Table 4.8: Fault injection use case.

Use Case FR-7 Fault Injection

Actor System

Basic Flow System injects faults with different characteristics, severities,
and target types, resorting to third-party fault injectors if they
are available. To accomplish this, the injection plan describes
the necessary properties, i.e., injector plugin, target instance,
and some relevant parameters, e.g., the identifier of a process to
kill.
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Table 4.9: Data collection use case.

Use Case FR-8 Data Collection

Actor System

Basic Flow System has a data collection mechanism allowing the user to
extract the resulting data from a specified data store of the
target system.

Table 4.10: Manage fault injection campaign use case.

Use Case FR-9 Manage Fault Injection Campaign

Actor System

Basic Flow System must be capable of orchestrate all of the different compo-
nents of the campaign. This components are plan management,
the state store, the workload generation, the fault injection, and
the data collection.

Table 4.11: Fault injection extensibility use case.

Use Case FR-10 Fault Injection Extensibility

Actor System

Basic Flow System’s fault injection capabilities must be extended via plugins.
To do so, the system must load any package file that can apply
some malfunction in a cluster. Thus, the system is not only
more extensible and has a well better-defined purpose for each
component but also new injectors can be integrated without
recompiling the core of the application.

Table 4.12: Target system extensibility use case.

Use Case FR-11 Target System Extensibility

Actor User

Basic Flow As there are multiple container orchestrators available in the
market, our application intends to cover the most variety of them.
Thus, the injection plan must include the proper instructions
to identify and detail the supported target system type where
injection campaign will be performed.
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Table 4.13: Data collector extensibility use case.

Use Case FR-12 Data Collector Extensibility

Actor User

Basic Flow As there are telemetry tools available for different target systems
available in the market, our application intends to cover the
most variety of them. Thus, the injection plan must include
the proper instructions to identify and detail the data collection
system where injection campaign will be performed.

Table 4.14: Delete an injection plan use case.

Use Case FR-13 Delete an Injection Plan

Actor User

Basic Flow User specifies a persisted injection plan to be deleted. To do so,
the user identifies what injection plan he wants to delete and
then submits his intention in the respective REST API endpoint.
In case the injection plan identifier provided does not meet any
persisted plan, it is returned an error to the user. Otherwise, it
is successfully deleted.

Table 4.15: List all injection plans use case.

Use Case FR-14 List All Injection Plans

Actor User

Basic Flow User wants to get the information about all persisted injection
plans. To do so, the user requests this information in the
respective REST API endpoint.

Table 4.16: Get a specified injection plan use case.

Use Case FR-15 Get a Specified Injection Plan

Actor User

Basic Flow User wants to get the information about a specific persisted
injection plan. To do so, the user has to preemptively know the
plan’s identifier he wants to get the information and submit it
in the respective REST API endpoint. If this identifier meets
any persisted one, the information is returned. If not, an error
is returned.
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Table 4.17: Add slave machine use case.

Use Case FR-16 Add Slave Machine

Actor User

Basic Flow User wants to add a salve machine in order to perform the fault
injection campaign from external sources. Thus, the data is
more reliable because it deals with the network infrastructure
where the cluster is deployed. To do so, the user describes all
detailed information in a .json and submits it to the respective
REST API endpoint. The manifest is then validated in order to
find any valid input or any existing equal slave machine.

Table 4.18: Delete slave machine use case.

Use Case FR-17 Delete Slave Machine

Actor User

Basic Flow User specifies a slave machine to be deleted from the available
slave machine list. To do so, the user identifies what injection
plan he wants to delete and submits it in the respective REST
API endpoint. If the identifier is valid, the target slave machine
will be deleted. If it is not, it is returned an error.

Table 4.19: List all slave machines use case.

Use Case FR-18 List All Slave Machines

Actor User

Basic Flow User wants to get the information about all persisted slave
machines. To do so, the user requests this information in the
respectiveREST API endpoint.

Table 4.20: Get a specified slave machine use case.

Use Case FR-19 Get a Specified Slave Machine

Actor User

Basic Flow User wants to get the information about a specific persisted
slave machine. To do so, the user has to preemptively know the
slave machine’s identifier he wants to get the information and
submit it in the respective REST API endpoint. If this identifier
meets any persisted one, the information is returned. If not, an
error is returned.
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Table 4.21: Test parallelization use case.

Use Case FR-20 Test Parallelization

Actor System

Basic Flow System must be able to perform parallel testing with multiple
similar clusters in order to leverage more resources and scale
horizontally. To do so, system must receive that instruction and
the access information for all the cluster to perform injection
campaigns in parallel.

Table 4.22: Concurrent injection of multiple faults use case.

Use Case FR-21 Concurrent Injection Of Multiple Faults

Actor System

Basic Flow System must be able to perform multiple fault injections in
the same injection campaign. Although it does add complexity
to results analysis, it may be convenient to push even harder
system’s reliability testing.

Table 4.23: Syntactic Sugar use case.

Use Case FR-22 Syntactic Sugar

Actor System

Basic Flow System must be able to make it easy to succinctly describe
multiple runs with different parameterisations i.e., improve the
syntax for accepting vector parameters (e.g., slaves: [1, 10,
100]).

Quality attributes and legal or technical restrictions were not identified. Thus, with
that said, the architecture of the application has the necessary basis to be developed. This
subject will be addressed in the next chapter.
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Chapter 5

Architecture

In this Chapter, the architecture is presented following the C4 Model defined by Simon
Brown [6]. This model consists in four diagrams: 1 - Context Diagram, 2 - Container
Diagram, 3 - Component Diagram and 4 - Code Diagram. Here, we present the first three
diagrams as the last one closely resembles the source code structure. To complete this
chapter, we clarify and introduce some concepts related to Defektor and approach what we
envision for our Plugin system.

Defektor is meant to be a generic, high-level, extensible fault injection campaign
management tool that can be adapted, through plugin addition, to interact with and inject
faults on any system and application. It is designed according to a client-server paradigm
so that the process of managing a campaign is asynchronous to the practitioners and does
not depend on the state of their local machine.

5.1 Concepts

To make the architecture easier to understand, this subsection lists and explains the
concepts and abstractions used by Defektor .

• Defektor : a generic, high-level, extensible fault injection campaign management
tool, designed according to a client-server paradigm.

• dfk: the command line client used to control Defektor .

• Plan: a high level description of the injection campaign, containing a list of injection
steps, and respective parameters.

• Injection: each individual injection step, where a fault is injected with an Injektor
and the application exercised with a Workload generator.

• Injektor: a plugin that implements the fault injection logic, or connects to an
external fault injector.

• Workload Generator: a docker container encapsulated, application-specific, work-
load generator used to exercise the target application.

• Slave Machine: a generic, docker-enabled machine, used to run the Workload
Generator and exercise the target application.
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5.2 Context Diagram

In this section the Context Diagram is presented. This diagram has the least scope
of detail, nevertheless it is extremely important because it represents our system as a big
box with all the relationships with users and external systems. Therefore it gives a clear
view of all the external dependencies that the system must manage. Figure 5.1 shows the
interaction between Defektor and two classes of users and two external systems.
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Plugin
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Uses

User

[Person]

C
ontrols

R
uns cam

paign

Defektor

[Software System]


A tool to exercise and
inject faults in systems

Target Application

[Software System]


Target for the fault
injection campaign

Exercises

Set of Slave Machines

[Infrastructure]


Slave machines to
exercise the target

Figure 5.1: Context diagram.

Figure 5.1, it is possible to notice that our tool, named Defektor , interacts with
two persons and with two external systems. The User is the practitioner deploying and
starting fault injection campaigns, while the Plugin Developer is the person responsible for
developing and maintaining plugins enabling fault injections, connection to new system
types and data collection from different data stores. Once every configuration is ready,
Defektor may run an injection campaign targeting the Target Application. To make the
experiment more reliable, our application can use a set of Worker Machines, to generate
load and exercise the Target Application.

5.3 Container Diagram

In this section the Container Diagram is presented. This diagram decomposes the
big box that represented our system in the previous diagram in interrelated containers.
Each container represents an executable and deployable sub-system. This provides a
better understating of the shape of our software, at a high-level, and the distribution of
responsibilities and dependencies across the main modules of the system. The Figure 5.2
presents this diagram to our proposed solution.

Figure 5.2 shows the components within our application. Starting from top to bottom,
we have a console application, dfk that, with a minimalist interface, provides the User some
abstraction and helpful hints regarding the interaction with Defektor ’s REST API. This API
is encapsulated in a container that we called Defektor Daemon. This component contains
the core of the program and all attributes that were described in the formal requirements.
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Figure 5.2: Container diagram.

To persist the crucial data, Defektor uses two different databases: one to persists its state
(injection plans, slave machines information, status of an experiment, etc.), and the other
to store traces to make these tracing data more disposable and organized to the User.

5.4 Component Diagram

This diagram gives a more zoomed-in view of the system, decomposing every decom-
posable container in a group of related functionalities encapsulated behind a well-defined
interface. The Figure 5.3 portrays a more detailed vision of Defektor Daemon.

The plugins are the components that deserve the most emphasis are the plugin ones.
We designed Defektor with two main principles in mind: make the tool agnostic to the cloud
system and avoid recompiling the core, whenever a new type of target system is added. To
achieve these goals, we designed Defektor following a plugin architecture. This system can
be split into two different groups: core and plugins. The core parts are statically loaded and
are responsible for generic functions, like serving the API, handling plans and managing
and orchestrating the plugin modules. The plugins are run-time loadable, stand-alone
components that provide specialized functionalities, such as fault injectors and connectors,
to interface with supporting systems and platforms. This plugin architecture will be further
detailed in the next subsection.

29



Chapter 5

Defektor Daemon

Dfk

[Console Application]


Allows user to interact
with Defektor

Orchestrates Orchestrates

OrchestratesOrchestrates

Defektor Core

[Spring Boot Services]


Receives and executes
fault injection campaign

State Store

[Database]


State of
Defektor

Result Store

[Database]


Campaign
results

Target Application

[Software System]


Target for the fault
injection campaign

Exercises

Set of Slave Machines
[Infrastructure]

Slave machines to
exercise the target

Submits work

Workload Generator

[Spring Boot Service]


Applies load to target
application

Collects data

Data Collector

[Plugin]


Collects experiments
result data and stores it

Comunicates through

Injektor

[Plugin]


Injects faults into desired
system targets

Interacts

System Connector

[Plugin]


Interfaces with custom
systems or platforms

Figure 5.3: Component diagram.

5.5 Plugin System

We use the following types of plugins:

• Injektors, which are responsible for implementing the fault injection logic.

• System Connectors, which are responsible for interfacing with the platforms supporting
the Target Application; this may for example be the Operating System (OS), an
hypervisor, or a container orchestration system, such as Kubernetes.

• Data Collector plugins, which provide the specialized logic to extract the resulting data
from the Target Application; common examples would be Prometheus, OpenZipkin
or other data stores typically used for monitoring data.

Even though they are designed to be independent modules, Injektor plugins require
System Connector plugins to interface with the system where the target application is
running. The choice of splitting injection and system connection in two different types of
plugins, comes from the expectation of having multiple injectors per system type, thus
preventing the duplication of logic. In this fashion, when the interface for a system type
changes, only the respective System Connector will require update.

Once a plugin is imported, its functionalities become available to be used by Defektor .
The communication between both components must follow an abstract interface that must
be implemented by the plugin.
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A final, but not less important, consideration is usability. Since plans will have to
differ based on the plugins used, each plugin should implement the necessary functions for
inspection. As examples, from the dkf command line, the user should be able to determine
which are the valid targets for a specific type of injection, or which targets are provided by
a given system connector, as well as which configurations are needed by each injection type.

5.5.1 System Connector Plugins

The System Connector type plugin is a bridge between Defektor and the target
application or its supporting platform, i.e., OS, hypervisor or Kubernetes. The Defektor
Core can query the System Connector, to get information of the Target Application, while
the Injektor type plugin uses it to inject failures. This plugin must implement the following
interface:

• help: returns a brief introduction and some details on the plugin interaction with
the Target Application and how Injektor plugins should send their instructions to be
performed.

• configure: a function that can be called to assign some configuration parameters to
the plugin object.

• getTargetTypes: returns a list of all target types the connector can interface with,
i.e., machine, virtual machine, container, pod or process.

Nevertheless, some functions must be added to the plugin to properly connect and
interact with the target application. For instance, to perform a fault injection in a single
Virtual Machine (VM), the first question to arise would be: “How can I interact with
the Target Application?”. As an example, one could write an Secure SHell (SSH) System
Connector that would need to be parameterised with the appropriate SSH credentials, by
means of the configure function. Once the connection is established, there should be a
function (i.e., called sendSSHCommand) that could be used by an Injektor plugin, to send
commands to the Target Application, to force its malfunction.

5.5.2 Injektor Plugins

The Injektor type plugin is responsible for injecting faults in the Target Application.
Injektor plugins depend on System Connector plugins, to mediate the interaction with the
Target Application. The latter plugins encapsulate the system, by allowing the interface to
stay unchanged, while encouraging sharing of the same System Connector code.

Injektor plugins must implement the following interface:

• performInjection: receives injection parameters and performs the injection.

• stopInjection: stops or removes the failure injection.

• getTargetTypes: this returns a list of targets where this particular injector can
perform a fault injection.

• getTargetInstancesByType: it returns all the instances, with an identifier, of a type
where this particular injector can perform a fault injection.
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• getInjectionStatus: returns the status of the injection (running, stopping, or
stopped).

Following the same environment that was previously given as an example, the VM, we
can assume that a user wants to perform the most basic failure injection: shutdown the
instance.

Considering that virtually all cloud-native system instances are running some Linux
distribution, and having the plugin access to the System Connector sendSSHCommand
function, it becomes trivial to achieve this goal, by sending the string sudo shutdown to
the Target Application via SSH.

5.5.3 Data Collector Plugins

The Data Collector plugin is responsible for collecting the data generated during each
run. Effectively, this is the portion of the system that returns the data for analysis. As
data is system, application and purpose specific, the tool returns it in some generic format,
i.e., an array of bytes or file, and it is up to the practitioner to interpret and analyse it.
The plugin must implement the following interface:

• configure: a function that can be called to assign some configuration parameters to
the plugin object.

• getData: function that returns data or some Uniform Resource Identifier (URI) to it.

As an example, since Jaeger is a widely used data store for traces, a Data Collector
could be written for it that would return user-selected metrics for each run.
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Implementation

In this section we present what tools and technologies as well as the job that has been
done regarding our three main software components: Defektor Daemon, dfk and Defektor
plugins.

6.1 Tools and Technologies

In this section we present the tools and frameworks that were utilized to build our
server application, our client interface and the plugin system.

6.1.1 Languages

The programming language we chose to develop Defektor Daemon and its plugins
was Java. This choice was due to a number of reasons. Firstly, Java offers the capability
of runtime class loading. This aspect turns out to be convenient for a proper plugin
architecture implementation. Thus, whenever new plugins are added there is no need to
recompile the Defektor core. The second reason is Java reflection. This feature allows us to
inspect or modify runtime attributes of classes. This comes handy because the different
types of plugins (injektors, system connector, and data collectors) can be implemented
having different shapes and behaviors. The last reason has to do with the fact that Java
contain multiple frameworks for REST API implementation. The chosen framework will be
addressed later in this subsection.

Python was picked to develop dfk. Since Swagger [67], the software used to generate
our client and server stubs, is compatible with a number of programming languages, Python
was picked owing to personal preference.

Other languages were employed in Defektor development process. We used two markup
languages: JavaScript Object Notation (JSON) and YAML Ain’t Markup Language (YAML).
The former was used to represent the injection plan. The latter was used to elaborate the
OpenAPI specification.

6.1.2 Development Environment

Defektor was developed under Ubuntu [8], a Linux distribution. We also used a minimal
Ubuntu image for our slave machines instances.

33



Chapter 6

We employed IntelliJ IDEA by Jetbrains as our Integrated Development Environment
(IDE) due to personal preference. This IDE provides intelligent coding assistance for Java
Virtual Machine (JVM). Nevertheless, it is the most popular IDE for Java development [62].

To build and manage the Java project, we used Maven [3]. Furthermore, we used a
maven plugin to generate the server stub from the OpenAPI specification.

Finally, we used Git [20] for version-control. Both Defektor , OpenAPI specification,
and dfk projects are available in public repositories, at [68], [69], and [70], respectively.

6.1.3 Frameworks

As previously said, Java provides multiple frameworks for web applications. One that
stands out for its popularity is Spring Boot [64]. Spring Boot was the chosen framework
to implement our server-side for two reasons: the main reason is familiarity with the
framework; the second reason is that Swagger supports creating a Spring server stub from
the OpenAPI specification.

In what regards state storing, we opted for an unconventional approach. No relational
databases were used because we assumed that would be an overkill solution. Instead, we
used MapDB [28] framework that stores in regular system files any kind of representational
data, having the performance compared to in-memory solutions.

6.2 Defektor Daemon

In this section we will address the main components of Defektor Daemon and explain
with detail how we approached and implemented every one of them.

6.2.1 Plan

The injection plan is one of the components that we have put more work and attention
because it is arguably one the most important components of this project. We needed to
assure that all the components that act in the injection campaign had enough freedom for
customization. Thus, Defektor expects different types of configurations or parameterisations
depending what plugin it refers to.

We opted to represent it in JSON format since that is the language that our REST
API handles objects to be serialized/deserialized. Listing 1 presents the Plan structure. To
conserve space in the document and adding the fact that JSON and YAML are convertible
into each other, we present Plan in YAML format.

We can observe that Plan contains three properties: name, system, and injektions.
Property name, which is a string, represents an arbitrary descriptive name of the Plan
i.e., if the injection campaign is set to inject an HTTP Abort in cart service with a
fault activation probability of 100%, one possible name could be HttpAbortCart100percent.
Property system is an object that specifies what system the Target Application is deployed
on. This object contains a name field that specifies with a string the name of the system
i.e., if the practitioner has its Target Application deployed in Kubernetes this property
should be set to "kubernetes". Furthermore, at least one configuration of the desired
system must be preemptively available to Defektor ’s system configuration repository. The
property injektions is an array of injektion type object. Each injektion contains the number
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of replicas that the injection campaign will be run with the same parameterisation. It
also contains an ijk (injektor) property that represents what fault injector and with which
parametrization Defektor should apply in the Target Application. Other property present
in the injektion type object is workload. This parameter contains an (Docker) image object
that represents the conventional way to specify a Docker image: user/name:tag. The cmd
field defines a command to be executed by the slave machine when it starts its job, whereas
the env field sets environment variables for the slave machine. Moreover, it specifies how
many Slaves will be employed to create load in the Target Application and how much
replicas (Docker containers) will be deployed per Slave. Lastly, regarding workload object,
it is parameterisable the duration of each run, the golden run and the fault injection run.
To finish our describing of all parameters, we have a dataCollector property that specifies
what Data Collector plugin will be used as well as the parameters to configure the data
extraction.

1 name: <string>
2 system:
3 name: <string>
4 injektions:
5 - replicas: <number>
6 ijk:
7 name: <string>
8 params:
9 ...

10 workload:
11 image:
12 user: <string>
13 name: <string>
14 tag: <string>
15 cmd: <string>
16 env:
17 ...
18 slaves: <number>
19 replicasPerSlave: <number>
20 duration: <number>
21 dataCollector:
22 name: <string>
23 params:
24 ...

Listing 1: Injection plan structure.

It is worth nothing nothing that the ellipsis present in Listing 1 refers to objects that
are dynamic, depending what plugin it refers to. This nuances will be addressed later in
this section for each plugin.

6.2.2 REST API

Defektor exposes a REST [74] API used by a command line client to manage injection
campaigns. This API was described in an OpenAPI specification document, available in
Appendix 9. Furthermore, we employed a tool called Swagger to generate a Spring server
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stub.

Defektor exposes twenty one endpoints grouped in six categories: plan, slave machine,
target, plugin, system config, and campaign. To conserve space we omitted complex objects
that may be included in POST operations. These can be found in the Appendix 9.

Plan

Defektor supports creation, syntax validation, deletion, and listing all or just one
specific Plan. It does not support PUT operations since there is no logical reason to alter a
valid Plan once it has been submitted because the injection campaign is already running or
it has already finished.

Table 6.1 presents all the endpoints available to manage the resource Plan.

Table 6.1: Resource Plan REST endpoints.

Endpoint Description

GET /plan List all plans.

GET /plan/{planId} Gets a plan.

POST /plan Creates a plan.

POST /plan/validate Validates a plan.

DELETE /plan Deletes a plan.

Slave Machine

Defektor supports creation, and deletion and listing all or just one specific Slave. Even
if is not good practice to expose an endpoint that can delete all entries of a resource, we
consider that it may be exhausting to delete one by one a respectable amount of Slave
Machines.

Table 6.2 presents all the endpoints available to manage the resource Slave Machine.

Table 6.2: Resource Slave Machine REST endpoints.

Endpoint Description

GET /slave List all slaves.

GET /slave/{slaveId} Gets a slave.

POST /slave Adds a slave.

DELETE /slave Deletes all slaves.

DELETE /slave{slaveId} Deletes a slave.

Target

Defektor supports listing all target types, and all target instances given a target type.
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Table 6.2 presents all the endpoints available to manage the resource Target.

Table 6.3: Resource target REST endpoints.

Endpoint Description

GET /target List all targets.

GET /target/{target} List target instances.

Plugin

Defektor supports listing all available Injektor, System Connector, and Data Collector
plugins. Make a new plugin available to Defektor is not done via REST API. This will be
addressed later in the report.

Table 6.4 presents all the endpoints available to list the resource Plugin.

Table 6.4: Resource Plugin REST endpoints.

Endpoint Description

GET /plugin/ijk List all injektors (ijk) .

GET /plugin/sysconnector List all system connectors.

GET /plugin/datacollector List all data collectors.

System Config

Defektor supports listing persisted system types configurations as well as adding new
ones. The desired system configuration that hosts the Target Application must be available
to Defektor before the plan is submitted. For example, if the practitioner describes that
he wants to perform a fault injection in a SSH-enabled linux machine, there must be at
least one configuration of that system type when the plan is submitted in order to Defektor
start the injection campaign.

Table 6.5 presents all the endpoints available to manage the resource System Config.

Table 6.5: Resource System Config REST endpoints.

Endpoint Description

GET /system/config Lists all system configurations.

GET /system/config/{systemName} Lists all systems configurations of one type.

POST /system/config Adds a system config.

Campaign

Defektor supports deletion and listing all or just one specific Campaign. The Campaign
represents the work done by Defektor regarding one submitted plan. It contains relevant
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information about the injection campaign i.e., running status (running, finished, abnormally
interrupted), start and finish timestamps, as well as the data collection output.

Table 6.6 presents all the endpoints available to manage the resource Campaign.

Table 6.6: Resource Campaign REST endpoints.

Endpoint Description

GET /campaign List all campaigns.

GET /campaign/{planId} Gets a campaign.

DELETE /campaign/{planId} Deletes a campaign.

6.2.3 Workload Generator

As it was previously presented, a workload generator aims at exercising a target
application. Any load generator contains some core parameters. Firstly, any workload
generator must have a host which is the target for the load e.g., http://host:8080/. Any
load generator should also have a parameter that defines its severity e.g., numberOfClients
= 10 or requestsPerSecond = 25. Finally, some unnecessary parameters may be included
e.g., insert errors in the requests or set a duration for exercising the target application.

To make Defektor capable of handling any application-specific workload generator,
we decided that the best approach would be to use Docker. Thus, the practitioner should
deliver his workload generator application encapsulated in a Docker image [13]. This
Docker image is a file containing the application code, libraries, dependencies and other files
needed to build a Docker container. By using Docker containers, Defektor does not need to
manage its deployment and runtime issues since it is handled outside of the application
itself. Furthermore, this approach is compatible with any OS. Therefore, a Slave machine
can run in any machine as long as it can be controlled via SSH and it has Docker installed.

1 workload:
2 image:
3 user: 'robot-shop'
4 name: 'rs-load'
5 tag: 'latest'
6 cmd: 'sh shesellsshellsbytheseashore.sh'
7 env:
8 host: 'https://wwww.robot-shop.com'
9 numClients: 10

10 silent: 1
11 error: 1
12 replicasPerSlave: 1
13 slaves: 1
14 duration: 600

Listing 2: Workload sample parameters.

In Listing 2, we present a sample parameterisation using a Docker image (robot-shop/rs-
load:latest) provided by Instana to specifically exercise one of its microservice application,
Stan’s Robot Shop.
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The explanation about every parameter present in this listing will be skipped since it
has already been done in subsection 6.2.1. However, some deeper clarification about this
component should be addressed.

Considering that the practitioner desires an n amount of Slave machines to exercise,
n Slave machines configurations must be available to Defektor . Listing 3 displays the
configuration parameters needed to provide a new Slave machine to Defektor work with.

1 address: 192.168.1.1
2 port: 22
3 credentials:
4 username: slave
5 key: "~/.ssh/id_rsa"

Listing 3: Slave machine configuration.

Once the n desired Slave machines are available, Defektor assesses how many replicas
the practitioner desires for each Slave. The number of replicas indicates to Defektor how
many workload generator Docker containers will be exercising the Target Application in
each single Slave machine. This dynamic between Defektor , set of Slave machines, and the
Target Application is presented in Figure 6.1.

Slave 1

...

Defektor Daemon

Submits work

Target Application

Slave 2

...

Slave n

...

Exercises

- Docker container

...

Figure 6.1: Workload workflow.

Here we can observe both slaves and replicas per slave (Docker containers in the figure
above) scale horizontally. The number of slaves can be virtually infinite. Nonetheless, the
amount of replicas may be constrained due to slave instances available hardware.
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Defektor orchestrates all Slave machines using two different commands: docker run—to
build and run the Docker container -, and docker stop—to stop a running Docker container.
The docker run command is built with the given parameters. If we consider the parameters
present in Listing 2, the resulting command would be:

docker run --name="some_container_name" -e host=https://wwww.robot-shop.com -e
numClients=10 -e silent=1 -e error=1 robotshop/rs-load:latest

To execute docker stop command, one simple parameter is needed:

docker stop "some_container_name"

It starts by sending a docker run command and, after the set time duration has passed,
it sends a docker stop, finishing the golden run. For the fault injection run, it executes the
same commands, in the same order, separated by the same time duration.

Being R the number of replicas per Slave, S the number of Slave Machines, and C
the number of artificial clients, we can use Equation 6.1 to calculate the total number
of artificial clients, TC, exercising the Target Application in each run (golden and fault
injection runs) during an injection campaign:

TC = S ·R · C (6.1)

6.2.4 State Store

Defektor needs a mechanism to persist its state. As previously discussed, we referenced
the reasons why we leveraged MapDB Java framework to serve as Defektor state storing
mechanism. This mechanism would have to persist different types of resources: campaign,
plan, slave, sysconfig. Each one of them contains a list of its specific resource.

1 public class DefektorRepository<T> {
...
20 public void save(T t, String dbFilePath) {
21 DB db = DBMaker.fileDB(dbFilePath).make();
22 List<T> tList = (List<T>) db.indexTreeList("list",

Serializer.JAVA).createOrOpen();↪→

23
24 tList.add(t);
25 db.commit();
26 db.close();
27 }

...
89 }

Listing 4: MapDB add new object operation.

As a side note, all resources except campaign must be delivered by the practitioner
via Defektor REST API. The campaign resource is generated by Defektor asynchronous
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process during one injection campaign and then persisted to expose to the practitioner
relevant data such as timestamps, and output files.

The persisted objects are stored in binary .db files. Listing 4 displays a small code
example on how to persist a new object to a repository. We can notice how simple is to
manage this resources with this framework by looking at line 21 and 22. Once line 22 is
executed, the resource is managed as if it were a regular java.List.

Since there are four different types of resources to persist its state, we employed Java’s
generic capabilities with type parameter, T, so it can handle any of them with the same
generic class. The only parameter that differs across all of the resources is the string
dbFilePath, because each one has a unique .db file. This parameter points to either one of
the four files inside the /state directory, depending what resource is being managed.

/
defektor.jar
state

campaign.db
plan.db
slave.db
sysconfig.db

...

Figure 6.2: Defektor state directory tree.

6.2.5 Plugin Management System

Defektor leverages a plugin system to extend its capabilities, either in the systems it
can connect, the fault injectors it can invoke, or the data collectors it can employ. Thus,
Defektor must have a built-in plugin management system. This management consists in
three steps: installation, loading, and instantiation.

Installation

Defektor will be distributed with some available plugins, which will be listed later
in this report. Nevertheless, if the practitioner develops himself a plugin, the installation
process is very trivial. After he packages his plugin code in a .jar file, the practitioner
should place it in the corresponding /plugins/lib subfolders. To give a more accurate picture
of Defektor directory tree, we display it graphically in Figure 6.3.

/
defektor.jar
plugins

libs
data collector
injektor
system connector

...

Figure 6.3: Defektor plugin directory tree.
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After the new plugins have been correctly installed in the appropriate folders, Defektor
must be restarted for them to be loaded. The loading process will be addressed in the next
subsection.

Loading

The plugin management system’s loading phase is responsible to load the installed
plugins into the Defektor environment. As of right now, Defektor only do performs this
process when it boots up. We plan for future work that Defektor may be capable of loading
plugins without rebooting the application.

Defektor starts by scanning the directories where plugins are installed and inspects all
the .jar files. This .jar files must meet two requirements: have the implemented plugin
Java class and a JAR Manifest File containing the plugin name (PluginName) and the
canonical name of the plugin Java class (PluginClass).

Listing 5 shows a what could be a manifest file for the Kubernetes System Connector
plugin.

1 Manifest-Version: 1.0
2 PluginName: kubernetes
3 PluginClass:

pt.uc.sob.defektor.plugins.sysconnector.kubernetes.KubernetesSystemPlug↪→

Listing 5: Kubernetes plugin MANIFEST.MF.

The canonical name (the name of the class along with the package) is needed so
Defektor knows what class to look for inside the .jar package. Once that plugin class is
properly loaded, Defektor is ready to instantiate one object of the added plugin. This
instantiation process will be addressed in the next subsection.

Instantiation

The plugin management system must be capable of instantiating objects. Thus,
Defektor can instantiate its loaded plugins by their PluginName. In fact, when a Plan is
added, the desired System Connector, Injektor and Data Collector names must exactly
match the PluginName assigned to each loaded plugin.

6.3 dfk

A previously referenced, dfk is a Python command line client used to control Defektor .
We employed click which is a Python package that allows one to create a command line
interface in composable way [56]. To make dfk interact with Defektor , we created package
named defektor api that is generated by Swagger given Defektor OpenAPI specification
(available in Appendix 9). This REST client package gives dfk the means to access Defektor
endpoints.

To setup dfk, the practitioner should have Python and pip installed. To aid in dfk
installation process, we deployed it PyPI [18]. Thus, to install dfk, user must execute the
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following command:

$ pip install dfk

After the installation process is completed, the pratictioner can access dfk main menu.
This main menu is displayed in Figure 6.4.

Figure 6.4: dfk main menu.

We can observe that it contains seven different commands. To start using dfk, the
practitioner should provide the Defektor Uniform Resource Locator (URL), otherwise none
of the other commands can be executed. To do so, the user must run the command:

$ dfk login <defektor_url>.

To give a deeper demonstration of dfk, we will show how to add and list Slave machines.
Figure 6.5 portrays the available commands to manage Slave machines.

Figure 6.5: dfk slave menu.

43



Chapter 6

Figure 6.6 displays adding two new Slave machines.

Figure 6.6: dfk slave add.

Figure 6.7 shows listing the available Slave to Defektor . In this case, the response
contains the newly added Slave machines.

Figure 6.7: dfk slave list.

6.4 Plugins

In this section we present all plugins that were developed for Defektor .

6.4.1 The System Connector Plugins

This section presents the developed System Connector plugins. It is important to
note that the plugins showed in the next two subsections all share the methods presented
in section 5.5.1. However, because these plugins interact with a variety of systems, new
system-specific methods must be built to offer Injektors with methods that are appropriate
for their purposes.

Two plugins were developed to attend two different system types: Kubernetes and
SSH-enabled linux machines.

Kubernetes

Kubernetes is a widely known container orchestrator in the distributed computing
industry, well suited for microservice-based applications [11]. Additionally, Kubernetes
has complementary tools, like service meshes, which provide control and observability
mechanisms. This is the case of Istio [24], an open-source service mesh, which has been one
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of the most used service meshes both for evaluation and production purposes [12]. Among
other functionalities, Istio provides two primitive fault injection mechanisms that we may
leverage for our own case: HTTP delay and HTTP abort faults [25]. Thus, we considered
that would be relevant to develop some Injektors and a Kubernetes System Connector
plugin to demonstrate our solution.

This Kubernetes System Connector plugin provides two methods in order to establish
a bridge between the Target Application and its supported Injektors:

• applyManifest: is equivalent to a kubectl apply -f <filename> command [33] which
accepts an .yaml or .json file in order to create or update a resource in the cluster
where the Target Application is deployed.

• removeManifest: is equivalent to a kubectl delete -f <filename> command [34] which
deletes an existing resource in the cluster.

As the configuration to access a Kubernetes cluster can contain an excessive number of
parameters, we opted for the traditional kubectl mechanism [37]. Thus, Defektor externalized
this configuration, not overloading the system configuration.

Two plugins were developed for this System Connector : HTTP Delay and HTTP
Abort. These will be further explained in the subsections 6.4.2 and 6.4.2, respectively.

SSH-enabled linux machine

Linux machines are the most used to host servers and applications, including microser-
vice applications. For that reason, we decided that it would be relevant to develop a System
Connector capable of controlling any Linux instance via SSH.

This plugin offers one method to enable its supported Injektors to send commands to
Target Application:

• sendSSHCommand: redirects one or more string commands from the Injektor to the
Target Application.

In order to establish a SSH connection, some parameters must be passed to this plugin
object via its configuration method. The Listing 6 displays the configuration parameters
needed to be passed to Defektor .

1 configs:
2 username: "goncalo"
3 host: "192.168.1.1"
4 port: 22
5 privateKey: "~/.ssh/id_rsa"
6 systemType:
7 name: "ssh-enabled-linux-machine"

Listing 6: SSH-enabled linux machine configuration parameters.

Two plugins were developed for this System Connector : Instance Shutdown and Process
Terminator. These will be further explained in the subsections 6.4.2 and 6.4.2, respectively.
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6.4.2 The Injektor Plugins

This section presents the developed Injektors plugins. It is important to note that the
plugins showed in the next two subsections all implement the methods presented in section
5.5.2.

Four plugins were developed capable of inject faults in two different system types: HTTP
Abort and HTTP Delay for Kubernetes and Instance Shutdown and Process Terminator
for SSH-enabled linux machines.

HTTP Delay

This fault injection inserts a delay in HTTP packets for a target service. For example,
if this failure is injected in Service B and Service A requests something from Service B, there
is a probability P (D) that Service B will delay its response x seconds. The practitioner
may parameterise both, the probability and x in the injection plan as it is displayed in
Listing 7.

1 ijk:
2 name: httpdelay
3 params:
4 namespace: robot-shop
5 service: cart
6 fixedDelay: 5s
7 faultOccurrence: 100

Listing 7: HTTP Delay injektor (ijk) parameters.

This sample parameterisation describes that the service [39] cart deployed in the
robot-shop namespace [35] has 100% probability to delay the response to its ingress requests
by five seconds.

HTTP Abort

This fault injection enables the possibility to insert an error in HTTP packets destined
for a specific service. For instance, if this failure is introduced in Service B and Service A
requests something from Service B, there is a customisable probability that Service B will
respond with a configurable HTTP code. For example, if we want to cause a failure in the
target service, sending 5xx HTTP status code as a response to a request will be handled as
an error by the service that requested the faulty service. The practitioner may configure
both the failure probability and the HTTP status in the injection plan as it is portrayed in
Listing 8.
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1 ijk:
2 name: httpabort
3 params:
4 namespace: robot-shop
5 service: ratings
6 httpStatus: 555
7 faultOccurrence: 75

Listing 8: HTTP Abort injektor (ijk) parameters.

This sample parameterisation describes that the service cart deployed in the robot-shop
namespace has 100% probability to delay the response to its ingress requests by five seconds.

Instance Shutdown

The goal of this plugin is to terminate any SSH-enabled Linux Machine. Some
requirements must be met i.e., the user that was connected via SSH must have permissions
to execute some sudo commands.

Process Terminator

The main purpose of this plugin is to kill a process. It can take either a Process
IDentification (PID) or a process name as the argument. If it receives the former, as it is
displayed in Listing 9, the plugin kills the process corresponding the specified PID. If it
receives the latter, as it is portrayed in Listing 10, the plugin kills all the processes that
match the given process name.

1 ijk:
2 name: processterminator
3 params:
4 pid: 9999

Listing 9: Process Terminator PID pa-
rameterisation.

1 ijk:
2 name: processterminator
3 params:
4 processName: "find"

Listing 10: Process Terminator process
name parameterisation.

6.4.3 The Data Collector Plugin

This sections presents the developed Data Collector plugins. It is important to note that
the only plugin that will be introduced implements the methods presented in section 5.5.1.

Jaeger

This Data Collector is capable of collecting traces of one or more services from the
Jaeger software. This plugin only expects two arguments, as it displayed in Listing 11.
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1 dataCollector:
2 name: jaeger
3 params:
4 host: http://www.example.com:16686
5 service: all

Listing 11: Jaeger parameterisation.

The first parameter, host, specifies where the Jaeger system exposes its API. The
second parameter, service, specifies which service’s traces should be collected. As of right
now, Defektor can work with a single service—specifying the exact name of the service—or
with all services—assigning this parameter with the keyword ‘all’. For future work, we plan
to also accept a [vector] of services.
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Experimental Results and Analysis

We now present and the experiment setup and will analyse the results of the experiments.
This results serve somewhat as a Defektor proof concept.

7.1 Target Application

The design of Defektor gives the practitioner the ability to perform consistent fault
injection campaigns on different microservice-based applications. As we mentioned before,
to achieve this goal in a fully generic manner, Defektor resorts to plugins, to interface with
the supporting infrastructure and platforms, collect data, and to implement fault injection
mechanisms.

To run our experiments, we needed an application compatible with the plugins we
had already created. We thus required an open-source Kubernetes-based microservice
application with the Istio service mesh enabled. We found two applications that met these
criteria: Stan’s Robot Shop, by Instana [22] and Bookinfo Aplication, by Istio [23]. The
latter was developed with the goal of serving as a sample application for testing out all of
Istio’s features. It is, however, a very basic application with only four services bearing little
resemblance to any real-world product.

Stan’s Robot Shop, on the other hand, is an e-commerce sample application with a
higher degree of complexity and a closer resemblance to a real-world deployable product. It
depends on eleven containerized services running on Kubernetes: cart, catalogue, dispatch,
mongodb, mysql, rabbitmq, ratings, redis, shipping, user, and web. These are in charge of
handling user actions, such as logging in, browsing the catalogue, adding items to the cart,
paying, and shipping the desired products. Given the size and contents of the application,
we selected Stan’s Robot Shop to perform the experimental evaluation. Furthermore, Instana
provides a load generator to exercise its own application. We can take advantage of this
generator for our own experiments.

7.2 Experiment Setup

For our experiment setup, we selected the two Kubernetes injektors plugins: HTTP
Delay and HTTP Abort because the chosen Target Application is deployed in Kubernetes.

For the HTTP Delay fault, we want to analyse what happens to the average response
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time of the server, while for the HTTP Abort fault, we want to analyse what happens to
the failure rate and if this fault propagates to other services.

In the HTTP Delay and HTTP Abort experiments we target the cart service. The
time for each run (golden run and fault injection run) was set to 600 seconds and the load
generator was configured with one client exercising the system, by performing arbitrary
tasks in the e-commerce website.

For each experiment setup, we will display the injektion Plan that produced those
results.

7.3 Results

In this section we present the results that demonstrate that Defektor can, in fact,
manage a fault injection campaign with its available plugins.

7.3.1 HTTP Delay

To start this experiment, we started the injection campaign described in the Plan
displayed in Listing 12. This plan sets 600 seconds for the golden run and the fault injection.
During the fault injection run, a five seconds delay is injected in all cart service’s ingress
requests with a fault activation probability of 100%.

1 name: DelayCart5sec100Percent
2 system:
3 name: kubernetes
4 injektions:
5 - replicas: 1
6 ijk:
7 name: httpdelay
8 params:
9 namespace: robot-shop

10 service: cart
11 fixedDelay: 5s
12 faultOccurrence: 100
13 workload:
14 image:
15 user: robot-shop
16 name: rs-load
17 tag: latest
18 env:
19 host: http://system.example.com/
20 numClients: 10
21 silent: 1
22 error: 0
23 slaves: 1
24 replicasPerSlave: 1
25 duration: 600
26 dataCollector:
27 name: jaeger
28 params:
29 host: http://www.example.com:16686
30 service: all

Listing 12: Injection plan used in to generate results in Figure 7.1.
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Figure 7.1 shows the average response time of the entire system when the above Plan
was injected.
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Figure 7.1: Sample HTTP Delay injection campaign, with typical injection stages: Run
(W)orkload; (C)ollect Data; Inject (F)ault.

It starts the load generator at x = 0, exercising the target application. At x = 600,
Defektor stops the load generator and cools down the system to collect data without
interference. The time interval x ∈ [0, 600] represents the golden run. At x ∈]600, 689] the
system uses the Jaeger data collector plugin to extract the traces and metrics generated by
the golden run and store the data in Jaeger [27]. Due to the infrastructural limitations on
writing and reading this data on storage, this process takes more time than usual.

The time interval x ∈]689, 1289] represents the fault injection run. The HTTP Delay
injection starts at x = 690. From this instant until x = 1289 the system is again exercised
and the cart service will take exactly 5 seconds to respond every single request it receives.
During this run, we can observe that the average response time of the entire application
dramatically increases, indicating that the failure was successfully deployed.

To determine the impact of a slow service on the overall application or to exercise
a load balancer or some fault-tolerance mechanism, one could exercise varying levels of
delay in this same cart service. This would involve carrying out multiple experiments, with
different fault activation probabilities. We set these fault activation probabilities to {0%,
25%, 50%, 75%, 100%}, still in the cart service, and display the results in Figure 7.2.
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Figure 7.2: HTTP Delay injections campaigns for different failure activation probabilities.

For visualization purposes, we omitted the golden run phase in all experiments and
kept only the fault injection run in the interval x ∈ [680, 1280] (for a total of 10 minutes
per run). The plots show that the higher the fault activation probability is, the higher the
total average response time is. This demonstrates that Defektor is capable of injecting this
fault with varying degrees of severity in the application.

7.3.2 HTTP Abort

We now discuss the experiments with HTTP Abort faults. These faults affect 100% of
the requests to the cart service. We study Defektor ’s capability to manage an HTTP Abort
fault campaign and its impact on the system’s overall failure rate, whenever a service is
responding with HTTP error status codes to other services.

To start this experiment, we started the injection campaign described in the Plan
displayed in Listing 13. This plan sets 600 seconds for the golden run and the fault injection.
During the fault injection run, an 555 HTTP code is injected in all cart service’s ingress
requests with a fault activation probability of 100%.
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1 name: DelayCart5sec100Percent
2 system:
3 name: kubernetes
4 injektions:
5 - replicas: 1
6 ijk:
7 name: httpabort
8 params:
9 namespace: robot-shop

10 service: cart
11 httpStatus: 555
12 faultOccurrence: 100
13 workload:
14 image:
15 user: robot-shop
16 name: rs-load
17 tag: latest
18 env:
19 host: http://system.example.com/
20 numClients: 10
21 silent: 1
22 error: 0
23 slaves: 1
24 replicasPerSlave: 1
25 duration: 600
26 dataCollector:
27 name: jaeger
28 params:
29 host: http://www.example.com:16686
30 service: all

Listing 13: Injection plan used in to generate results in Figure 7.3.

Figure 7.3 portrays an injection campaign sample (simple moving average n=30). This
figure shows the number of requests the application serves per second. We may compare
Figure 7.3 to Figure 7.1, as it covers the entire experiment, first in the golden run, then in
the faulty run. It starts the load generator at x = 0, exercising the target application in
the golden run. At x = 600 Defektor stops the load generator. At x ∈]600, 682] the system
uses the Jaeger data collector plugin, to extract the traces and metrics generated by the
golden run. The time interval x ∈]682, 1282] represents the fault injection run. The HTTP
Abort injection is injected at x = 683. From this moment until x = 1282 the system is
again exercised and the cart service returns the 555 HTTP status code for 100% of the
requests it receives. During the golden run, we can observe that the entire system does not
have failures, but that these start as soon as the abort failure is injected.
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Figure 7.3: Sample HTTP Abort injection campaign, with typical injection stages: Run
(W)orkload; (C)ollect Data; Inject (F)ault.

To better understand the impact of service failures (i.e., services returning an 5xx
status code), practitioners could vary the fault activation probability. We carried out four
experiments with fault activation probabilities of {25%, 50%, 75%, 100%} in the cart
service, displayed in Figure 7.4. This figure shows, for each probability of cart service
failure, the quartiles, median, maximum, minimum and outliers. An experiment like this
demonstrates the dependency of the overall application on a specific service, for a given
mixture of requests. As our experiment revealed, the observed failure rate is not linear with
respect to the fault activation probability. Given the set M of all mean error rates Ma, for
a given activation probability a, if we normalise around the 100% activation probability or
a = 1, following Equation 7.1, we get {36.8%, 66.1%, 86.4%, 100%}, shown as a percentage.
This step is necessary because we are injecting a single service, cart, but the workload
exercises the whole system, diluting the failure rate.

M ′
a =

Ma

max(M)
, ∀ a (7.1)

This shows that for activation probabilities under 100% we see a higher failure rate than
expected, which can be explained by failure propagation. As an example, a product is
added to the cart and then another request is made that depends on it; that new request
now has a reduced probability of success, as it is conditioned by the success of the former
i.e., it might fail as the result of the injected fault or it might fail because the insertion
request failed, and the product is not on the cart.
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Figure 7.4: Observed system failure rate, when cart service is injected with HTTP Abort
fault with different activation probability.
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Chapter 8

Planning

In this chapter an analysis will be made of the planning of this project. For now, only
the first semester will be approached with a describing planning analysis.

8.1 First Semester Planning

This section will analyse the tasks planned and developed during the first semester of
this project. To support it, a Gantt diagram, in Figure 8.1 will then be presented containing
information on the planned tasks and the tasks performed during the first semester.

Figure 8.1: First semester Gantt diagram

In the diagram shown in Figure 8.1, it is possible to find, in grey, the expected tasks
and, in blue, the corresponding tasks that were realistically performed. The first half of
the project started September 16, 2020 and it has its ending in 18 January, 2021.

During this time four main tasks were performed:

• Study of the existing work and microservice application;

• Define the set of failures to inject;

• Define requirements for the analytic tools;

• Write intermediate report;
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The first task was mainly about getting used to terminologies and tools of microser-
vices and distributed systems. It was used Kubernetes to overcome this steep learning
process. However, due some background with other container orchestrators, that task was
accomplished earlier that was planned.

As the first task was about to be finished, an investigation about chaos engineering
and distributed traces’ tools and techniques were performed. The duration was similar to
the one planned. Yet, there was no overlay between the first and second tasks.

The identification of requirements and the designing of the architecture were done in
simultaneous with the second task. This was because December was a month with a busy
agenda in terms of assignments. Therefore, there was the need to try to fit this investigation
part and still learning about the tooling necessary for the project.

Lastly, the intermediate report was started to be written later than it was expected to
the same reasons enunciated in last paragraph. Nevertheless, all the tasks were completely
accomplished, yet with some deviations according to what was the initial planning.

8.2 Second Semester Planning

This section will analyse the tasks planned and developed during the second semester of
this project. To support it, a Gantt diagram, presented in Figure 8.2, contains information
on the planned tasks and the tasks performed during the second semester.

Figure 8.2: Second semester Gantt diagram

In the diagram shown in Figure 8.2, it is possible to find in grey the expected tasks,
in blue the corresponding tasks that were realistically performed, and in green the tasks
that were not planned but were completed due to the delayed report submission. The first
half of the project started February 12, 2021 and it has its ending in 31 of October, 2021.

During this time eleven main tasks were performed:

• Setup development environment

• Development dfk

• Development Defektor State Store
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• Development Defektor Plugin Management System

• Development system connector plugins

• Development injektors

• Development data collectors

• Extract results

• Write INForum paper

• Write IPDPS paper

• Write final report

The first task was mainly about setting up the IDE for our project and deploy and
configure a Kubernets cluster to test some Defektor functionalities during their development.

The next three tasks were about to develop the three main Defektor components: dfk,
state store, and plugin management system.

After these tasks were performed, the plugins started to be developed. Here we can
note that some problems appeared. We can highlight that the task "Development injektors"
took much longer time than expected. This circumstance was beyond our control, since
we lost the connection to the infrastructure where our Kuberentes cluster was deployed. It
took several weeks to find an alternative. However, the alternative we found had too many
security constraints that made the development of some features impossible. Finally, we
had the connection back to the first infrastructure and resumed the work normally.

Since the thesis submission was delayed, we decided it would be interesting to write
two papers.

Lastly, the final report was started to be written. Nevertheless, all the tasks were
completely accomplished, yet with some deviations according to what was the initial
planning.
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Chapter 9

Conclusion and Future Work

This Chapter aims to give some reflections on what we did, what was developed during
this project, and what future work seems to be promising.

It was crucial to get some background knowledge and review the literature about
fault injection, microservices, chaos engineering, and distributed tracing. We learnt that
microservices tend to be complex in terms of their telemetry and predicting behavior when
a failure event occurs in one specific service. Thus, two disciplines could be employed to
mitigate these problems: distributed tracing—for telemetry—, and chaos engineering—for
predicting behavior in a failure occurrence.

In what regards development, we presented Defektor , a tool for fault injection campaign
management, its requirements, main architectural drivers, and its architecture. In addition,
we presented a experimental setup and results analysis of its application to a microservice-
based application.

By using plugins, Defektor is extensible, thus being able to target a large spectrum
of systems, including microservice architectures, a paradigm where industry leaders rely
heavily on fault injection for resiliency testing. Defektor departs from the previous state
of the art, by automating the fault injection workflow, reducing the human element, and
leveraging a plugin-based extension system that allows integration with third-party tools,
speeding up data collection, and ensuring consistency among runs.

So far, for validation purposes, we have implemented two System Connectors, for
Kubernetes and SSH-enabled Linux machines, as well as four Injektors, Process Terminator,
Machine Shutdown, HTTP Delay and HTTP Abort. The tool and plugins are currently
available as open source in a public repository [68].

As future work, we plan to write Injektor plugins for state-of-the-art fault injectors
as well as improve the syntax for accepting vector parameters (e.g., workers: [1, 10,
100]), making it easy to succinctly describe multiple runs with different parameterisations.
Furthermore, we will move towards making the plans more expressive, allowing, for example,
the concurrent injection of multiple faults.
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Appendix

Appendix A

1 openapi: 3.0.0
2 servers:
3 - description: SwaggerHub API Auto Mocking
4 url: https://virtserver.swaggerhub.com/jaimelive/defektorOpenAPISpec ⌋

/1.0.0↪→

5 info:
6 description: defektor controll aplication interface
7 version: 1.0.0
8 title: defektor OpenAPI Specification
9 contact:

10 email: sob@dei.uc.pt
11 paths:
12 /slave:
13 get:
14 summary: list slave machines
15 operationId: slaveList
16 description: List available slave machines
17 responses:
18 '200':
19 description: slaves listed
20 content:
21 application/json:
22 schema:
23 type: array
24 items:
25 $ref: '#/components/schemas/Slave'
26 post:
27 summary: add slave machine
28 operationId: slaveAdd
29 description: Add slave machine
30 responses:
31 '201':
32 description: slave created
33 content:
34 application/json:
35 schema:
36 $ref: '#/components/schemas/Slave'
37 '400':
38 description: invalid input, object invalid
39 '409':
40 description: slave already exists
41 requestBody:
42 required: true
43 content:
44 application/json:
45 schema:
46 $ref: '#/components/schemas/Slave'
47 description: Added Slave
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48 delete:
49 summary: delete all slaves
50 operationId: slaveDeleteAll
51 description: Delete all slaves
52 responses:
53 '200':
54 description: all slaves deleted
55 /slave/{slaveId}:
56 get:
57 summary: slave machine info
58 operationId: slaveGet
59 description: Get slave machine information
60 parameters:
61 - in: path
62 name: slaveId
63 description: Slave machine identifier
64 required: true
65 schema:
66 type: string
67 format: UUID
68 example: d290f1ee-6c54-4b01-90e6-d701748f0851
69 responses:
70 '200':
71 description: slave information
72 content:
73 application/json:
74 schema:
75 $ref: '#/components/schemas/Slave'
76 '400':
77 description: slave does not exist
78 delete:
79 summary: delete slave machine
80 operationId: slaveDelete
81 description: Delete slave machine
82 parameters:
83 - in: path
84 name: slaveId
85 description: Slave machine identifier
86 required: true
87 schema:
88 type: string
89 format: UUID
90 example: d290f1ee-6c54-4b01-90e6-d701748f0851
91 responses:
92 '200':
93 description: slave deleted
94 '400':
95 description: slave does not exist
96 /target:
97 get:
98 summary: list targets
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99 operationId: targetList
100 description: List available targets
101 responses:
102 '200':
103 description: slaves listed
104 content:
105 application/json:
106 schema:
107 type: array
108 items:
109 $ref: '#/components/schemas/TargetType'
110 /target/{target}:
111 get:
112 summary: list target instances
113 operationId: targetGet
114 description: List available targets
115 parameters:
116 - in: path
117 name: target
118 description: target type
119 required: true
120 schema:
121 type: string
122 responses:
123 '200':
124 description: slaves listed
125 content:
126 application/json:
127 schema:
128 type: array
129 items:
130 $ref: '#/components/schemas/Target'
131 /ijk:
132 get:
133 summary: list ijk (injektors)
134 operationId: ijkList
135 description: List available injektors
136 responses:
137 '200':
138 description: list of injektors
139 content:
140 application/json:
141 schema:
142 type: array
143 items:
144 $ref: '#/components/schemas/Ijk'
145 /plan:
146 get:
147 summary: list plans
148 operationId: planList
149 description: List plans
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150 responses:
151 '200':
152 description: list of plans
153 content:
154 application/json:
155 schema:
156 type: array
157 items:
158 $ref: '#/components/schemas/Plan'
159 post:
160 summary: add plan
161 operationId: planAdd
162 description: Add plan
163 responses:
164 '201':
165 description: plan created
166 content:
167 application/json:
168 schema:
169 $ref: '#/components/schemas/Plan'
170 '400':
171 description: invalid input, object invalid
172 '409':
173 description: plan already exists
174 requestBody:
175 required: true
176 content:
177 application/json:
178 schema:
179 $ref: '#/components/schemas/Plan'
180 description: Added Plan
181 delete:
182 summary: delete all plans
183 operationId: planDeleteAll
184 description: Delete all plan
185 responses:
186 '200':
187 description: all plan deleted
188 /plan/validate:
189 post:
190 summary: validate plan
191 operationId: planValidate
192 description: Validate plan
193 responses:
194 '200':
195 description: plan is valid
196 content:
197 application/json:
198 schema:
199 $ref: '#/components/schemas/Plan'
200 '400':
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201 description: invalid input, object invalid
202 requestBody:
203 required: true
204 content:
205 application/json:
206 schema:
207 $ref: '#/components/schemas/Plan'
208 description: Validated Plan
209 /plan/{planId}:
210 get:
211 summary: plan info
212 operationId: planGet
213 description: Get plan information
214 parameters:
215 - in: path
216 name: planId
217 description: Plan identifier
218 required: true
219 schema:
220 type: string
221 format: UUID
222 example: d290f1ee-6c54-4b01-90e6-d701748f0851
223 responses:
224 '200':
225 description: plan information
226 content:
227 application/json:
228 schema:
229 $ref: '#/components/schemas/Plan'
230 '400':
231 description: plan does not exist
232 delete:
233 summary: delete plan
234 operationId: planDelete
235 description: Delete plan
236 parameters:
237 - in: path
238 name: planId
239 description: Plan identifier
240 required: true
241 schema:
242 type: string
243 format: UUID
244 example: d290f1ee-6c54-4b01-90e6-d701748f0851
245 responses:
246 '200':
247 description: plan deleted
248 '400':
249 description: plan does not exist
250 /system/config:
251 get:
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252 summary: list system configs
253 operationId: systemConfigList
254 description: List available system configs
255 responses:
256 '200':
257 description: list of system configs
258 content:
259 application/json:
260 schema:
261 type: array
262 items:
263 $ref: '#/components/schemas/SystemConfig'
264 post:
265 summary: Submit system and its configurations
266 operationId: systemTypeConfigure
267 description: Submits a system type and its configuration
268 requestBody:
269 required: true
270 content:
271 application/json:
272 schema:
273 $ref: '#/components/schemas/SystemConfig'
274 description: Configure system
275 responses:
276 '200':
277 description: submits a system type
278 content:
279 application/json:
280 schema:
281 $ref: '#/components/schemas/SystemConfig'
282 /campaign:
283 get:
284 summary: list campaigns
285 operationId: campaignList
286 description: List campaigns
287 responses:
288 '200':
289 description: list of campaigns
290 content:
291 application/json:
292 schema:
293 type: array
294 items:
295 $ref: '#/components/schemas/Campaign'
296 /campaign/{campaignId}:
297 get:
298 summary: campaign info
299 operationId: campaignGet
300 description: Get campaign information
301 parameters:
302 - in: path
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303 name: campaignId
304 description: Campaign identifier
305 required: true
306 schema:
307 type: string
308 format: UUID
309 example: d290f1ee-6c54-4b01-90e6-d701748f0851
310 responses:
311 '200':
312 description: campaign information
313 content:
314 application/json:
315 schema:
316 $ref: '#/components/schemas/Campaign'
317 '400':
318 description: campaign does not exist
319 delete:
320 summary: delete campaign
321 operationId: campaignDelete
322 description: Delete campaign
323 parameters:
324 - in: path
325 name: campaignId
326 description: Campaign identifier
327 required: true
328 schema:
329 type: string
330 format: UUID
331 example: d290f1ee-6c54-4b01-90e6-d701748f0851
332 responses:
333 '200':
334 description: campaign deleted
335 '400':
336 description: campaign does not exist
337 components:
338 schemas:
339 TargetType:
340 required:
341 - name
342 properties:
343 name:
344 type: string
345 example: container
346 Target:
347 required:
348 - type
349 - name
350 properties:
351 type:
352 $ref: '#/components/schemas/TargetType'
353 name:
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354 type: string
355 example: istio_ingress_2314234h21345
356 SSHCredentials:
357 required:
358 - username
359 - key
360 properties:
361 username:
362 type: string
363 example: debian
364 key:
365 type: string
366 example: ooooohhhh this is a super secret private key...
367 Slave:
368 required:
369 - address
370 - port
371 - credentials
372 properties:
373 id:
374 type: string
375 format: UUID
376 example: d290f1ee-6c54-4b01-90e6-d701748f0851
377 address:
378 type: string
379 example: example.org
380 port:
381 type: integer
382 format: int32
383 default: 22
384 example: 22
385 credentials:
386 $ref: '#/components/schemas/SSHCredentials'
387 Ijk:
388 required:
389 - name
390 - params
391 properties:
392 name:
393 type: string
394 example: HoleyBoat
395 params:
396 type: array
397 items:
398 $ref: '#/components/schemas/KeyValue'
399 DockerImage:
400 properties:
401 user:
402 type: string
403 example: sob
404 name:
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405 type: string
406 example: mangodb
407 tag:
408 type: string
409 example: latest
410 WorkLoad:
411 required:
412 - image
413 properties:
414 image:
415 $ref: '#/components/schemas/DockerImage'
416 cmd:
417 type: string
418 example: sh shesellsshellsbytheseashore.sh
419 env:
420 type: array
421 items:
422 $ref: '#/components/schemas/KeyValue'
423 replicas:
424 type: integer
425 format: int32
426 default: 1
427 example: 1
428 slaves:
429 type: integer
430 format: int32
431 default: 1
432 example: 1
433 duration:
434 type: integer
435 format: int32
436 default: 120
437 example: 120
438 description: Duration of the workload in seconds. If the

container terminates earlier it gets restarted.↪→

439 DataCollector:
440 properties:
441 name:
442 type: string
443 configs:
444 type: array
445 items:
446 $ref: '#/components/schemas/KeyValue'
447 Injektion:
448 required:
449 - ijk
450 - target
451 properties:
452 totalRuns:
453 type: integer
454 ijk:
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455 $ref: '#/components/schemas/Ijk'
456 workload:
457 $ref: '#/components/schemas/WorkLoad'
458 target:
459 $ref: '#/components/schemas/Target'
460 Plan:
461 required:
462 - name
463 - system
464 - injektions
465 properties:
466 id:
467 type: string
468 format: UUID
469 example: d290f1ee-6c54-4b01-90e6-d701748f0851
470 name:
471 type: string
472 example: Order 66
473 system:
474 $ref: '#/components/schemas/SystemType'
475 injektions:
476 type: array
477 items:
478 $ref: '#/components/schemas/Injektion'
479 SystemType:
480 properties:
481 name:
482 type: string
483 example: kubernetes
484 SystemConfig:
485 properties:
486 configs:
487 type: array
488 items:
489 $ref: '#/components/schemas/KeyValue'
490 systemType:
491 $ref: '#/components/schemas/SystemType'
492 SystemTarget:
493 required:
494 - name
495 - type
496 properties:
497 name:
498 type: string
499 example: kubernetes
500 targetTypes:
501 type: array
502 items:
503 $ref: '#/components/schemas/TargetType'
504 KeyValue:
505 properties:
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506 key:
507 type: string
508 value:
509 type: string
510 Campaign:
511 properties:
512 id:
513 type: string
514 format: UUID
515 currentRun:
516 type: integer
517 totalRuns:
518 type: integer
519 status:
520 type: string
521 message:
522 type: string
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Defektor: An Extensible Tool for Fault Injection
Campaign Management in Microservice Systems

[Omitted for Double-blind Review]

Abstract—To achieve dependability, system designers often
resort to fault-tolerance mechanisms. The evaluation of these
mechanisms requires the observation of failures, which typically
are rare events. To increase the failure rate, practitioners use
fault injection techniques, leading to an increased occurrence of
failures and allowing the assessment of the systems dependability
properties. While many fault injection tools exist for this end,
they are usually limited in scope, applicability and in their
configuration abilities for microservice applications.

We propose a generalist and extensible tool named “Defektor”
capable of controlling a fault injection campaign on different
types of applications, especially suited for microservice-based
applications, compatible with different container orchestration
technologies and different fault injection tools. The Defektor
configuration follows a high-level approach, based on an injection
campaign plan specifying the instructions for the Defektor
operation and the parameters of the fault injection campaign.
Defektor automates the entire workflow, consisting of defining
the campaign plan, generating a workload, specifying and in-
jecting the faults, and collecting data, aiding the experiment
repeatability, improving the consistency of results, and saving
a considerable amount of time.

Index Terms—Fault injection, Microservices, Cloud-native

I. INTRODUCTION

Microservice-based architectures are currently a very rel-
evant design strategy that breaks down applications into
many small and focused components—the microservices. This
paradigm offers many advantages including increased scalabil-
ity, platform independence, load balancing and redundancy-
based dependability. Each microservice is designed to provide
a very specific functionality, thus being simpler, possibly better
implemented.

Despite its many advantages, microservice-based archi-
tectures pose difficult problems related to verification and
validation. Although each microservice individually may be
very focused and well implemented, the increased interaction
between many discrete components increases the possibility of
integration issues. Also, because the system is now distributed
among many loosely coupled components, fault localisation
and causality analysis becomes very hard, making the evalua-
tion the system dependability properties very hard.

Fault tolerance mechanisms are an important aspect of
modern systems, to handle fault activation occurring in the
operational phase and avoid or mitigate failures. Thus, during
development, it is very important to understand the system be-
haviour when some components fail, in order to better design
mitigation and recovery mechanisms. Because the activation
of hidden faults and consequent failures are relatively rare
(otherwise those fault would have been found and corrected),

practitioners use fault injection techniques to increase the rate
of fault activation in order to observe failures and be able to
characterise the system behaviour.

Several large companies using microservice-based systems
developed their own tools for fault injection, such as Simian
Army [25]. These tools support different fault models and
follow diverse injection strategies, but are mainly based on
the idea of interfering with processes, resources, network
connections, and containers to achieve the goal of causing
failures.

These tools can help system developers to fine-tune fault
detection, diagnosis and fault tolerance actuation. However, the
entire process is, as far as we know, mostly manual, being up
to developers to manualy execute many of the necessary steps,
such as preparing the system, running it for a specified amount
of time, collecting the data, and injecting faults or errors using
specialised tools. Moreover, these tools are typically inde-
pendent from one another and have heterogeneous interfaces
and control logic, further increasing the difficulty and work
necessary to run fault injection experiments. This is especially
true in microservices, because their intrinsic diversity implies
the need for more tools.

To automate the entire process and help integrating and
dealing with the diversity of the tools involved, we propose
the Defektor tool. Defektor is configurable for different types
of systems, failures and data sources and can interface with
diverse injectors. Defektor uses a high level language for
experiment configuration where the user specifies the set of
components, such as plugins, third-party tools, and Docker
containers that connect to the target system. The tool is
responsible the orchestrations of these components in the
correct order and collect data from the experiments.

Defektor serves as a meta-tool, reusing other already avail-
able tools, and automating the entire fault-injection experi-
ment, helping developers and integrators to identify weak parts
of the system, guiding their efforts for a faster development
cycle of detection, diagnosis, and correction. Defektor is well
suited for microservice-based architectures, making it up-to-
date with the current trends in industry. We show the feasibility
and usefulness of Defektor using this tool in a case-study
involving a microservice-based application.

The remainder of this paper is organised as follows: we
present the key concepts of fault injection and related work
in section II. In section III we show an overview of Defektor
and Section IV describes the architecture of Defektor. The
case study is presented in V and in Section VI we show and
discuss the results. We conclude the paper in Section VII.

1



II. CONCEPTS AND RELATED WORK

Testing robustness and fault tolerant properties of systems
is an important part of the validation of said systems. This
requires the observation of the system under evaluation in
the presence of faults. However, fault activation are usually
rare events. To address this, fault injection has been used
to accelerate fault activation by inserting artificial faults into
a given component of the system to observe how other
components or the overall system behave. The object of the
observation is not the target itself but another part (or the entire
system). Fault injection has been used for decades to evaluate
system dependability properties [16], [7], [28], [10] and risk
assessment [24].

Early work of [3] and [2] proposed the initial frameworks
defining the conceptual components of a fault injection experi-
ment: the set of faults (faultload), the set operations to activate
the system (the workload), the set of raw measurements
(system observation) and the model to convert the raw mea-
surements into meaningful properties concerning the system
behaviour. Fault injection experiments are controlled by a set
of typical tools which include the fault injector (actually inserts
the intended faults into the target), the workload generator
(submits the work to the system), a monitor (observes the
system), and a controller (orchestrates the experiment), as
described in the early work of [15]. Usually, the system is
exercised first without any faults injected—the “golden run”—
and then again, one or more times, with faults injected in
a given component according to the faultload specification.
Realistic faultloads representing real faults occurring in the
operational phase are particularly hard to define, and even
harder for complex software systems, where it is very difficult
not only to understand which faults are realistic, but also how
to inject them.

The fault injector is, by far, the most difficult component
to implement, due to the complex nature of the faults (e.g.,,
software faults), and also due to to reachability and control
issues, which are technically very challenging, often having to
bypass the normal semantics and behaviour of the platform and
operating system. Besides the technical challenges involved
in building fault injectors, another issue surrounding fault
injection experiments is the ratio of fault activation. Once
inserted into the target system, the fault must be activated
to eventually cause an error (an internal wrong state in the
system) that may or may not cause a failure (the unwanted
behaviour that is observed). In particular, for software faults, to
activate the fault, the workload must ensure that the execution
path covers the inserted fault. To overcome this difficulty,
many fault injectors insert not a fault but an error. The premise
here is that the errors are a representative consequential state
of the intended fault.

Fault injection has been used for several decades both in
academia and industry and many early fault injectors were
developed for more or less specific target types and scenarios.
Examples of early tools are: specific for hardware systems
([2], [19], [22], among many others), specific for simulating

hardware memory-related faults, such as bit-flips and stuck-
at faults (FIAT [26], FERRARI [17], FINE [18]), and spe-
cific for given target systems, such as Online Transaction
Processing (OLTP) systems [28] or web servers [10]. The
specificity for a given target system or experimental scenario
ties the tools to specific platform mechanisms and capabilities,
limiting the fault models the tool is able to inject. Several
initiatives addressed this problem by proposing modular fault
injection tools. Examples include Xception [7], NFTAPE [27],
Goofi [1]. The success of such modular tools is moderate
given that there remains some dependency from the underlying
system or target and new scenarios have become relevant for
which these tools were simply not prepared to address, such
as microservice architectures.

Microservice-based architectures have become relevant in
the industry and several initiatives proposed fault injectors
addressing these architectures. Following the approach of fault
injection and borrowing some ideas from robustness testing,
Chaos Engineering is a recent discipline that evolved from
fault injection and is aimed at proactively discover possible
hidden problems in microservice systems [5]. It follows the
general approach of fault injection and helps improving the
resilience of systems by creating adverse operational condi-
tions and errors allowing developers and integrators to observe
the system behaviour and proactively identify locations where
improvement is needed.

The Gremlin framework [12] is a systematic resilience
testing tool that allows the operator to design and execute tests
by manipulating inter-service messages. The use of this tool
is subject to a fee. The Simian army [25] is a comprehensive
set of tools to cause errors and failures in services to assess
the resilience of distributed applications following the ideas of
Chaos Engineering [4]. Each tool is specialised on a specific
type of failure (e.g.,, message delay—delay monkey, avail-
ability zone drop—Chaos Monkey, etc.). Wu et al. present an
extensible fault tolerance testing framework for microservice-
based cloud applications [29]. This framework acts mainly
over the Hypertext Transfer Protocol (HTTP) communication
between the services, including changing the HTTP status
codes and delaying messages. Litmus is a modern multi-type
fault injection tool for cloud-native systems [21]. This tool
supports several types of failures related to distributed systems
(e.g., pod deletion, pod CPU exhaustion, container shut down,
etc.) and can collect results from experiments, however it is
specifically tied to the Kubernetes orchestrator.

Modern tools improved support for microservices scenarios,
however a completely platform-independent tool for resilience
testing of distributed systems is not available.

III. DEFEKTOR OVERVIEW

In this section, we present the main features of Defektor
and explain the interaction of the tool with the underlying
systems to control the fault injection experiments and manage
the target application execution.
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A. General Description

Defektor consists of a server application that exposes a
REpresentational State Transfer (REST) Application Program-
ming Interface (API) used by a command line client to
manage injection campaigns. Operation of Defektor requires
a number of components: the application, an injection plan,
a workload generator, a fault injector and a data collector
mechanism, to extract the resulting data from a specified
data storing systems. Defektor interacts with all the involved
tools to exercise and inject faults on the target application,
while running on separate infrastructure, avoiding resource
contention. The workload generator can be instantiated on
multiple worker machines and the plan supports the details
specifying this aspect. The integration of Defektor with the
other tools involved in the experiment, in particular the fault
injection tools, is done through adaptor plugins.

The user interacts with the command line client to provide
an injection plan containing high-level instructions to perform
a fault injection campaign. Asynchronously, Defektor server
will run that plan and collect the data, leaving it available for
the user to download later through the command line client.
The plan describes all aspects of the campaign, including the
following information: system type, targets, fault injectors,
workload generators, and data collectors. Based on the plan it
receives, the Defektor connects to the supporting platform or
infrastructure and allows the fault injector to manipulate the
target application.

The user controls all aspects of the plan, however, typically,
the plan will first define a golden run, and then the run with
faults. Thus, the behaviour of the system without any fault or
interference is observed beforehand, as is typical in the well
established fault injection, robustness testing and, later, Chaos
Engineering experiments [8]. For example, a plan making two
runs in addition to the golden run would be as follows:

1) Run workload generator for a predetermined amount of
time;

2) Collect data (traces/metrics);
3) Apply fault 1 to a given target component A;
4) Run workload generator for a predetermined amount of

time;
5) Collect data (traces/metrics);
6) Remove fault 1 injected on component A
7) Apply fault 2 to a second target component B;
8) Run workload generator for a predetermined amount of

time;
9) Collect data (traces/metrics);

10) Remove fault 2 injected on component B.

B. Architectural Drivers

Enabling the use of a high-level plan and make Defektor
extensible for different types of microservice-based systems
were the two main design drivers.

The tool is made generic by allowing extension by plugin,
enabling the addition of new fault injectors, data collectors
and the ability to interact with new systems and platforms.
All these plugins are referenced in a generic fashion in the

plan, keeping it focused on the campaign definition, freeing
both Defektor and the user from the implementations details.
For example, shutting down a machine may appear in the plan,
but the details about how that is done are encapsulated in the
fault injector, which talks to the target system, by means of a
system connector plugin (refer to Section IV).

C. Functionality Overview

Defektor was developed with a fairly large number of
functional requirements in mind in order to maximise its
usefulness. We briefly present here a list of Defektor func-
tionalities. To conserve space we focus on the most important
functionalities, which are the plan management, the state store,
the workload generation, the fault injection, and the data
collection:
• Plan Management: the tool receives, validates, stores

and deploys the injection plan, orchestrates the necessary
steps for its execution and returns the resulting data to the
user. Furthermore, since the user interacts with the tool
in an asynchronous fashion, it allows the user to query
the plan and its state.

• State Store: to keep the data about submitted plans
and plan execution, Defektor employs some state store
mechanism. For example, the state store can keep track
of access and credential information of worker machines
used for workload generation. The state store can also
enable Defektor to resume an injection campaign after a
crash.

• Workload Generation: the system uses an artificial
workload to exercise the target application. To do so,
Defektor gathers the necessary properties from the sub-
mitted plan to properly orchestrate an arbitrary number
of worker machines. These worker machines resort to
configurable Docker containers [23] to exercise the target
application for a requested duration and severity.

• Fault Injection: Defektor injects faults with different
characteristics, severities, and target types, resorting to
third-party fault injectors if they are available. To ac-
complish this, the injection plan describes the necessary
properties, i.e., injector plugin, target instance, and some
relevant parameters, e.g., the identifier of a process to
kill.

• Data Collection: the data collection mechanism allows
the user to extract the resulting data from a specified
data store of the target system. To enable Defektor to
interact with any data store and fetch the information
in an arbitrary format, our tool accesses data through
plugins.

IV. ARCHITECTURE

We present the Defektor architecture following Simon
Brown’s C4 Model [6]. This model specifies the architecture
in up to 4, progressively finer detailed diagrams: 1 - Context
Diagram, 2 - Container Diagram, 3 - Component Diagram and
4 - Code Diagram. Here, we present the first three diagrams
as the last one closely resembles the source code structure.
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Fig. 1: High-level architecture, C1 and C2 diagrams.

Defektor is meant to be a generic, high-level, extensible
fault injection campaign management tool that can be adapted,
through plugin addition, to interact with and inject faults on
any system and application. It is designed according to a client-
server paradigm so that the process of managing a campaign
is asynchronous to the practitioners and does not depend on
the state of their local machine.

A. Concepts

To make the architecture easier to understand, this subsec-
tion lists and explains the concepts and abstractions used by
Defektor.

• Defektor: a generic, high-level, extensible fault injection
campaign management tool, designed according to a
client-server paradigm.

• dfk: the command line client used to control Defektor.

• Plan: a high level description of the injection campaign,
containing a list of injection steps, and respective param-
eters.

• Injection: each individual injection step, where a fault
is injected with an Injektor and the application exercised
with a Workload generator.

• Injektor: a plugin that implements the fault injection
logic, or connects to an external fault injector.

• Workload Generator: a docker container encapsulated,
application-specific, workload generator used to exercise
the target application.

• Worker Machine: a generic, docker-enabled machine,
used to run the Workload Generator and exercise the
target application.

B. Context Diagram
The context diagram has the least scope of detail. It provides

an high-level view of our system, including the relationships
with users and external systems. It thus provides a clear
view of all the external dependencies that the system must
manage. Figure 1a shows the interaction between Defektor
and two classes of users and two external systems. The
User is the practitioner deploying and starting fault injec-
tion campaigns, while the Plugin Developer is the person
responsible for developing and maintaining plugins enabling
failure injections, connection to new system types and data
collection from different data stores. Once every configuration
is ready, Defektor may run an injection campaign targeting the
Target Application. To make the experiment more reliable, our
application can use a set of Worker Machines, to generate load
and exercise the Target Application.

C. Container Diagram
The container diagram, in Figure 1b, further details our

system, breaking the single box in the previous diagram
into different containers, each representing an executable
and deployable sub-system. From top to bottom, we have a
console application, dfk, providing the user some abstraction
and helpful hints regarding the interaction with the Defektor
REST API. This API is encapsulated in a container that we
called Defektor Daemon. This component contains the core
of the program. To persist the crucial data, Defektor uses two
different databases: one persists Defektor state (injection plans,
worker machines information, status of an experiment, etc.),
while the other stores the injection campaign results, making
them available to the user.

D. Component Diagram
This diagram gives a more detailed view of the system,

decomposing every container into a group of related function-
alities encapsulated behind a well-defined interface. Figure 2
portrays a more detailed vision of Defektor Daemon.

The plugins are the components that deserve the most
emphasis are the plugin ones. This is because

We designed Defektor with two main principles in mind:
make the tool agnostic to the cloud system and avoid re-
compiling the core, whenever a new type of target system is
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added. To achieve these goals, we designed Defektor following
a plugin architecture. This system can be split into two
different groups: core and plugins. The core parts are statically
loaded and are responsible for generic functions, like serving
the API, handling plans and managing and orchestrating the
plugin modules. The plugins are run-time loadable, stand-
alone components that provide specialized functionalities, such
as fault injectors and connectors, to interface with supporting
systems and platforms. This plugin architecture will be further
detailed in the next subsection.

E. Plugin System

We use the following types of plugins:
• Injektors, which are responsible for implementing the

fault injection logic.
• System Connectors, which are responsible for interfacing

with the platforms supporting the target application; this
may for example be the Operating System (OS), an
hypervisor, or a container orchestration system, such as
Kubernetes.

• Data Collector plugins, which provide the specialized
logic to extract the resulting data from the target system
or application; common examples would be Prometheus,
OpenZipkin or other data stores typically used for mon-
itoring data.

Even though they are designed to be independent modules,
Injektor plugins require System Connector plugins to interface
with the system where the target application is running. The
choice of splitting injection and system connection in two
different types of plugins, comes from the expectation of
having multiple injectors per system type, thus preventing the
duplication of logic. In this fashion, when the interface for a

system type changes, only the respective System Connector
will require update.

Once a plugin is imported, its functionalities become avail-
able to be used by Defektor. The communication between both
components must follow an abstract interface that must be
implemented by the plugin.

A final, but not less important, consideration is usability.
Since plans will have to differ based on the plugins used,
each plugin should implement the necessary functions for
inspection. As examples, from the dkf command line, the user
should be able to determine which are the valid targets for a
specific type of injection, or which targets are provided by a
given system connector, as well as which configurations are
needed by each injection type.

1) System Connector Plugins: The System Connector type
plugin is a bridge between Defektor and the target application
or its supporting platform, i.e., OS, hypervisor or Kubernetes.
The Defektor Core can query the System Connector, to get
information of the target system, while the Injektor type plugin
uses it to inject failures. This plugin must implement the
following interface:
• help: returns a brief introduction and some details on the

plugin interaction with the target system and how injektor
plugins should send their instructions to be performed.

• configure: a function that can be called to assign some
configuration parameters to the plugin object.

• getTargetTypes: returns a list of all target types
the connector can interface with, i.e., machine, virtual
machine, container, pod or process.

Nevertheless, some functions must be added to the plugin
to properly connect and interact with the target application.
For instance, to perform a fault injection in a single Virtual
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Machine (VM), the first question to arise would be: “How
can I interact with the target system?”. As an example, one
could write an Secure Shell Protocol (SSH) System Connector
that would need to be parameterized with the appropriate SSH
credentials, by means of the configure function. Once the
connection is established, there should be a function (i.e.,
called sendSSHCommand) that could be used by an Injektor
plugin, to send commands to the target system, to force its
malfunction.

2) Injektor Plugins: The Injektor type plugin is responsible
for injecting faults in the target system. Injektor plugins de-
pend on System Connector plugins, to mediate the interaction
with the target system. The latter plugins encapsulate the
system, by allowing the interface to stay unchanged, while
encouraging sharing of the same System Connector code.

Injektor plugins must implement the following interface:
• performInjection: receives injection parameters

and performs the injection.
• stopInjection: stops or removes the failure injec-

tion.
• getTargetTypes: this returns a list of targets where

this particular injector can perform a fault injection.
• getTargetInstancesByType: it returns all the in-

stances, with an identifier, of a type where this particular
injector can perform a fault injection.

• getInjectionStatus: returns the status of the in-
jection (running, stopping, or stopped).

Following the same environment that was previously given
as an example, the VM, we can assume that a user wants
to perform the most basic failure injection: shutdown the
instance.

Considering that virtually all cloud-native system instances
are running some Linux distribution, and having the plugin
access to the System Connector sendSSHCommand function,
it becomes trivial to achieve this goal, by sending the string
sudo shutdown to the target system via SSH.

3) Data Collector Plugins: The Data Collector plugin is
responsible for collecting the data generated during each run.
Effectively, this is the portion of the system that returns the
data for analysis. As data is system, application and purpose
specific, the tool returns it in some generic format, i.e., an array
of bytes or file, and it is up to the practitioner to interpret and
analyse it. The plugin must implement the following interface:
• configure: a function that can be called to assign some

configuration parameters to the plugin object.
• getData: function that returns data or some Uniform

Resource Identifier (URI) to it.
As an example, since prometheus is a widely used data store

for monitoring data, a Data Collector could be written for it
that would return user-selected metrics for each run.

V. CASE STUDY

In this section we illustrate the kind of experiment one
could perform with Defektor. By doing this, we demonstrate
that Defektor can integrate with third-party fault or failure

injection tools. We also show the ability of Defektor to apply
and remove injections according to a declarative plan; manage
a swarm of workers to generate load for the application; and
collect data from the experiments, with and without failures.

Since Kubernetes is a widely known container orchestrator,
well suited for microservice-based applications [20], we devel-
oped some Injektors and a System Connector plugin for Ku-
bernetes to demonstrate our solution. We opted for Kubernetes
primarily due to its relevance for the industry. Additionally,
Kubernetes has complementary tools, like service meshes,
which provide control and observability mechanisms. This is
the case of Istio, an open-source service mesh, which has been
one of the most used service meshes both for evaluation and
production purposes [9]. Among other functionalities, Istio
provides two primitive fault injection mechanisms that we may
leverage for our own case: HTTP delay and HTTP abort faults.

A. The System Connector Plugin

The System Connector plugin includes two functions, to
provide Injektors the means to operate the target application
environment. As an example, it provides the primitives apply-
Manifest and removeManifest, to add and remove resources
via YAML Ain’t Markup Language (YAML) declarative man-
ifests. These manifests will be generated by the Injektor
plugins, and will contain instructions to parameterize and
toggle the Istio fault injection mechanisms. Some example
parameters may namespace, target service, fault occurrence
probability, or request delay.

B. The Injektor Plugins

The Injektor plugins control the system through the System
Connector Plugin. In our case study, we resort to delay and
abort faults, because Istio offers both types of faults out of the
box.

1) HTTP Delay Fault: This fault injection inserts a delay in
HTTP packets for a target service. For example, if this failure
is injected in Service B and Service A requests something
from Service B, there is a probability P (D) that Service B will
delay its response x seconds. The practitioner may configure
both, the probability and x in the injection plan.

2) HTTP Abort Fault: This fault injection enables the
possibility to insert an error in HTTP packets destined for
a specific service. For instance, if this failure is introduced in
Service B and Service A requests something from Service B,
there is a customisable probability that Service B will respond
with a configurable HTTP code. For example, if we want to
cause a failure in the target service, sending 5xx HTTP status
code as a response to a request will be handled as an error by
the service that requested the faulty service. The practitioner
may configure both the failure probability and the HTTP status
in the injection plan.

C. Application

The design of Defektor gives the practitioner the ability
to perform consistent fault injection campaigns on different
microservice-based applications. As we mentioned before, to

6



achieve this goal in a fully generic manner, Defektor resorts
to plugins, to interface with the supporting infrastructure
and platforms, collect data, and to implement fault injection
mechanisms.

To run our experiments, we needed an application com-
patible with the plugins we had already created. We thus
required an open-source Kubernetes-based microservice ap-
plication with the Istio service mesh enabled. We found two
applications that met these criteria: Stan’s Robot Shop, by
Instana [13] and Bookinfo Aplication, by Istio [14]. The latter
was developed with the goal of serving as a sample application
for testing out all of Istio’s features. It is, however, a very basic
application with only four services bearing little resemblance
to any real-world product.

Stan’s Robot Shop, on the other hand, is an e-commerce
sample application with a higher degree of complexity and a
closer resemblance to a real-world deployable product. It de-
pends on eleven containerized services running on Kubernetes:
cart, catalogue, dispatch, mongodb, mysql, rabbitmq, ratings,
redis, shipping, user, and web. These are in charge of handling
user actions, such as logging in, browsing the catalogue,
adding items to the cart, paying, and shipping the desired
products. Given the size and contents of the application,
we selected Stan’s Robot Shop to perform the experimental
evaluation. Furthermore, Instana provides a load generator to
exercise its own application. We can take advantage of this
generator for our own experiments.

D. Experiment setup

In our case study, we ran injection campaigns, setting
parameters for both injectors, HTTP Delay and HTTP Abort,
in the injection plan.

This use-case is exemplified in Listing 1. A plan can have
a list of different fault injections but for brevity the listing
only shows one of them, HTTP Abort, in the injektions
array on line 4. Note that even though we only specify 1 run,
Defektor will automatically do a “golden run” without any
faults; it then injects a fault that stays active until the end of
the run. In the end, the faults are removed and the application
returns to its normal state. We collect data at the end of each
run.

In the Delay and Abort experiments we target the cart ser-
vice. The time for each run (golden run and fault injection run)
was set to 600 seconds and the load generator was configured
with one client exercising the system, by performing arbitrary
tasks in the e-commerce website.

For the HTTP Delay fault, we want to analyse what happens
to the average response time of the server, while for the HTTP
Abort fault, we want to analyse what happens to the failure
rate and if this fault propagates to other services.

VI. RESULTS

We now present and analyse the results of the experiments
for the delay and abort faults.

1 name: AbortCart100Percent
2 system:
3 name: kubernetes
4 injektions:
5 - totalRuns: 1
6 ijk:
7 name: httpabort
8 params:
9 namespace: robot-shop

10 service: cart
11 host: cart.robot-shop.svc.clust c

er.local↪→

12 httpStatus: '555'
13 faultOccurrence: '100'
14 workLoad:
15 image:
16 user: robotshop
17 name: rs-load
18 tag: latest
19 env:
20 host: http://system.example.com/
21 numberClients: '1'
22 silent: '1'
23 error: '1'
24 replicasPerWorker: 1
25 workers: 1
26 duration: 600
27 dataCollector:
28 name: jaeger
29 params:
30 host: http://example.com:16686

Listing 1: HTTP Abort Failure Injection Campaign Plan.

A. HTTP Delay

We start by evaluating if the injector is operating properly.
For this, we delay the responses of the cart service. Figure 3
shows an injection campaign sample, where the delay occurs
100% of times. It starts the load generator at x = 0, exercising
the target application. At x = 600, Defektor stops the load
generator and cools down the system to collect data without
interference. The time interval x ∈ [0, 600] represents the
golden run.

At x ∈]600, 689] the system uses the Jaeger data collector
plugin to extract the traces and metrics generated by the golden
run and store the data in Jaeger [11]. Due to the infrastructural
limitations on writing and reading this data on storage, this
process takes more time than usual.

The time interval x ∈]689, 1289] represents the fault injec-
tion run. The HTTP Delay injection starts at x = 690. From
this instant until x = 1289 the system is again exercised and
the cart service will take exactly 5 seconds to respond every
single request it receives. During this run, we can observe that
the average response time of the entire application dramatically
increases, indicating that the failure was successfully deployed.
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Fig. 3: Sample HTTP Delay injection campaign, with typi-
cal injection stages: Run (W)orkload; (C)ollect Data; Inject
(F)ault.
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Fig. 4: HTTP Delays injection campaigns for different failure
activation probabilities.

To determine the impact of a slow service on the overall ap-
plication or to exercise a load balancer or some fault-tolerance
mechanism, one could exercise varying levels of delay in this
same cart service. This would involve carrying out multiple
experiments, with different fault activation probabilities. We
set these fault activation probabilities to {0%, 25%, 50%, 75%,
100%}, still in the cart service, and display the results in
Figure 4.

For visualization purposes, we omitted the golden run phase
in all experiments and kept only the fault injection run in the
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Fig. 5: Sample HTTP Abort injection campaign, with typi-
cal injection stages: Run (W)orkload; (C)ollect Data; Inject
(F)ault.

interval x ∈ [680, 1280] (for a total of 10 minutes per run). The
plots show that the higher the fault activation probability is, the
higher the total average response time is. This demonstrates
that Defektor is capable of injecting this fault with varying
degrees of severity in the application.

B. HTTP Abort

We now discuss the experiments with HTTP Abort faults.
These faults affect 100% of the requests to the cart service.
We study Defektor’s capability to manage an HTTP Abort
fault campaign and its impact on the system’s overall failure
rate, whenever a service is responding with HTTP error status
codes to other services.

Figure 5 portrays an injection campaign sample (simple
moving average n=30). This figure shows the number of
requests the application serves per second. We may compare
Figure 5 to Figure 3, as it covers the entire experiment, first
in the golden run, then in the faulty run. It starts the load
generator at x = 0, exercising the target application in the
golden run. At x = 600 Defektor stops the load generator. At
x ∈]600, 682] the system uses the Jaeger data collector plugin,
to extract the traces and metrics generated by the golden run.
The time interval x ∈]682, 1282] represents the fault injection
run. The HTTP Abort injection is injected at x = 683. From
this moment until x = 1282 the system is again exercised
and the cart service returns the 555 HTTP status code for
100% of the requests it receives. During the golden run, we
can observe that the entire system does not have failures, but
that these start as soon as the abort failure is injected.

To better understand the impact of service failures (i.e.,
services returning an 5xx status code), practitioners could
vary the fault activation probability. We carried out four
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Fig. 6: Observed system failure rate, when cart service is
injected with HTTP Abort fault with different activation prob-
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experiments with fault activation probabilities of {25%, 50%,
75%, 100%} in the cart service, displayed in Figure 6. This
figure shows, for each probability of cart service failure,
the quartiles, median, maximum, minimum and outliers. An
experiment like this demonstrates the dependency of the
overall application on a specific service, for a given mixture
of requests. As our experiment revealed, the observed failure
rate is not linear with respect to the fault activation probability.
Given the set M of all mean error rates Ma, for a given
activation probability a, if we normalise around the 100%
activation probability or a = 1, following Equation 1, we get
{36.8%, 66.1%, 86.4%, 100%}, shown as a percentage. This
step is necessary because we are injecting a single service,
cart, but the workload exercises the whole system, diluting
the failure rate.

M ′a =
Ma

max(M)
, ∀ a (1)

This shows that for activation probabilities under 100% we see
a higher failure rate than expected, which can be explained by
failure propagation. As an example, a product is added to the
cart and then another request is made that depends on it; that
new request now has a reduced probability of success, as it
is conditioned by the success of the former i.e., it might fail
as the result of the injected fault or it might fail because the
insertion request failed, and the product is not on the cart.

VII. CONCLUSION

In this paper, we presented Defektor, a tool for fault
injection campaign management, its main architectural drivers
and its architecture. In addition, we present a case-study of
its application to a microservice-based application. By using
plugins, Defektor is extensible, thus being able to target a large
spectrum of systems, including microservice architectures, a
paradigm where industry leaders rely heavily on fault injection

for resiliency testing. Defektor departs from previous state of
the art, by automating the fault injection workflow, reducing
the human element, and leveraging a plugin-based extension
system that allows integration with third-party tools, speeding
up data collection and ensuring consistency among runs.

So far, for validation purposes, we have implemented two
System Connectors, for Kubernetes and SSH-enabled Linux
machines, as well as four Injektors, Process Terminator, Ma-
chine Shutdown, HTTP Delay and HTTP Abort. The tool and
plugins are currently available as open source in a public
repository [Omitted for Double-blind Review].

As future work, we plan to write Injektor plugins for
state of the art fault injectors as well as improve the syntax
for accepting vector parameters (e.g., workers: [1, 10,
100]), making it easy to succinctly describe multiple runs
with different parameterisations. Furthermore, we will move
towards making the plans more expressive, allowing for ex-
ample for concurrent injection of multiple faults.
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