ENTROPY SOLUTIONS FOR THE $p(x)$-LAPLACE EQUATION

MANEL SANCHÓN AND JOSÉ MIGUEL URBANO

ABSTRACT: We consider a Dirichlet problem in divergence form with variable growth, modeled on the $p(x)$-Laplace equation. We obtain existence and uniqueness of an entropy solution for L^1 data, extending the work of Bénilan et al. [5] to nonconstant exponents, as well as integrability results for the solution and its gradient. The proofs rely crucially on a priori estimates in Marcinkiewicz spaces with variable exponent.

AMS SUBJECT CLASSIFICATION (2000): 35J70; 35D05; 35D10; 46E35.

1. Introduction

Partial differential equations with nonlinearities involving nonconstant exponents have attracted an increasing amount of attention in recent years. Perhaps the impulse for this comes from the sound physical applications in play, perhaps it is just the thrill of developing a mathematical theory where PDEs again meet functional analysis in a truly two-way street.

The development, mainly by Růžička [28], of a theory modeling the behavior of electrorheological fluids, an important class of non-Newtonian fluids, seems to have boosted a still far from completed effort to study and understand nonlinear PDEs involving variable exponents. Other applications relate to image processing (cf. [8]), elasticity (cf. [31]), the flow in porous media (cf. [4] and [21]), and problems in the calculus of variations involving variational integrals with nonstandard growth (cf. [31], [27], and [1]). This, in turn, gave rise to a revival of the interest in Lebesgue and Sobolev spaces with variable exponent, the origins of which can be traced back to the work of Orlicz in the 1930’s. An account of recent advances, some open problems, and an extensive list of references can be found in the interesting survey by Diening et al. [14]. Meanwhile, among several other contributions, the introduction by Sharapudinov [29] of the Luxemburg norm and the work of Kováčik and Rákosník [23], where many of the basic properties of these spaces are established, were crucial developments.

Received January 25, 2006.

The research of the first author was partially supported by CMUC/FCT and MCYT grants BMF2002-04613-C03, MTM2005-07660-C02. The research of the second author was partially supported by CMUC/FCT and Project POCI/MAT/57546/2004.
In this paper, we consider a problem with potential applications to the modeling of combustion, thermal explosions, nonlinear heat generation, gravitational equilibrium of polytropic stars, glaciology, non-Newtonian fluids, and the flow through porous media. Many of these models have already been analyzed for constant exponents of nonlinearity (cf. [12], [10], [9], [18], [30], and the references therein) but it seems to be more realistic to assume the exponent to be variable.

Let \(\Omega \) be a smooth bounded domain in \(\mathbb{R}^N \) and consider the elliptic problem

\[
\begin{cases}
-\text{div}(a(x, \nabla u)) = f(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]

where \(f \in L^1(\Omega) \) and \(a : \Omega \times \mathbb{R}^N \to \mathbb{R}^N \) is a Carathéodory function (that is, \(a(\cdot, \xi) \) is measurable on \(\Omega \), for every \(\xi \in \mathbb{R}^N \), and \(a(x, \cdot) \) is continuous on \(\mathbb{R}^N \), for almost every \(x \in \Omega \)), such that the following assumptions hold:

\[
a(x, \xi) \cdot \xi \geq b|\xi|^{p(x)},
\]

for almost every \(x \in \Omega \) and for every \(\xi \in \mathbb{R}^N \), where \(b \) is a positive constant;

\[
|a(x, \xi)| \leq \beta(j(x) + |\xi|^{p(x)-1}),
\]

for almost every \(x \in \Omega \) and for every \(\xi \in \mathbb{R}^N \), where \(j \) is a nonnegative function in \(L^{p'(\cdot)}(\Omega) \) and \(\beta > 0 \);

\[
(a(x, \xi) - a(x, \xi')) \cdot (\xi - \xi') > 0,
\]

for almost every \(x \in \Omega \) and for every \(\xi, \xi' \in \mathbb{R}^N \), with \(\xi \neq \xi' \).

Hypotheses (2)–(4) are the natural extensions of the classical assumptions in the study of nonlinear monotone operators in divergence form for constant \(p(\cdot) \equiv p \) (cf. [26]).

Concerning the exponent \(p(\cdot) \) appearing in (2) and (3), we assume it is a measurable function \(p(\cdot) : \Omega \to \mathbb{R} \) such that

\[
p(\cdot) \in W^{1,\infty}(\Omega) \quad \text{and} \quad 1 < \text{ess inf}_{x \in \Omega} p(x) \leq \text{ess sup}_{x \in \Omega} p(x) < N.
\]

These assumptions allow us, in particular, to exploit the functional analytical properties of Lebesgue and Sobolev spaces with variable exponent (see section 2) arising in the study of problem (1).

By a weak solution of (1) we mean a function \(u \in W^{1,1}_0(\Omega) \) such that \(a(\cdot, \nabla u) \in L^1_{\text{loc}}(\Omega) \) and

\[
\int_{\Omega} a(x, \nabla u) \cdot \nabla \varphi \, dx = \int_{\Omega} f(x) \varphi \, dx, \quad \text{for all } \varphi \in C_0^\infty(\Omega).
\]
A weak energy solution is a weak solution such that $u \in W^{1,p}_{0}(\Omega)$.

The model case for (1) is the Dirichlet problem for the $p(x)$-Laplacian operator

$$
\Delta_{p(x)} u := \text{div}(\nabla |\nabla u|^{p(x)-2} \nabla u),
$$

for all $t>0$, $T_t(u) \in W^{1,p}_{0}(\Omega)$ and

$$
\int_{\Omega} a(x, \nabla u) \cdot \nabla T_t(u - \varphi) \, dx \leq \int_{\Omega} f(x) T_t(u - \varphi) \, dx,
$$

for all $\varphi \in W^{1,p}_{0}(\Omega) \cap L^{\infty}(\Omega)$.

A function u such that $T_t(u) \in W^{1,p}_{0}(\Omega)$, for all $t > 0$, does not necessarily belong to $W^{1,1}_{0}(\Omega)$. However, it is possible to define its weak gradient (see Proposition 5 below), still denoted by ∇u.

Let us introduce the following notation: given two bounded measurable functions $p(\cdot), q(\cdot) : \Omega \to \mathbb{R}$, we write

$$
q(\cdot) \ll p(\cdot) \quad \text{if} \quad \text{ess inf}_{x \in \Omega} (p(x) - q(x)) > 0.
$$
Our main result is

Theorem 1. Assume (2)–(5) and \(f \in L^1(\Omega) \). There exists a unique entropy solution \(u \) to problem (1). Moreover, \(|u|^{q(\cdot)} \in L^1(\Omega) \), for all \(0 \leq q(\cdot) \ll q_0(\cdot) \), and \(|\nabla u|^{q(\cdot)} \in L^1(\Omega) \), for all \(0 \leq q(\cdot) \ll q_1(\cdot) \), where

\[
q_0(\cdot) := \frac{N(p(\cdot) - 1)}{N - p(\cdot)} \quad \text{and} \quad q_1(\cdot) := \frac{N(p(\cdot) - 1)}{N - 1}.
\]

The proof of this result will be decomposed into several steps. First, we obtain \textit{a priori} estimates for entropy solutions in Marcinkiewicz spaces with variable exponent. Despite the fact that the theory of functional spaces with variable exponent is developing quickly, the extension of classical Marcinkiewicz spaces is, to the best of our knowledge, undertaken here for the first time. From these estimates, we derive uniform bounds in Lebesgue spaces of variable exponent for an entropy solution and its weak gradient (see Corollaries 1 and 2 in section 3). The uniqueness follows from choosing adequate test functions in the entropy condition (8) and using the \textit{a priori} estimates. Finally, the existence is obtained by passing to the limit in a sequence of weak energy solutions of adequate approximated problems.

Our other theorem concerns weak solutions and extends the results obtained by Boccardo and Gallouët [6, 7] in the context of a constant \(p(\cdot) \equiv p \).

Theorem 2. Assume (2)–(5) and \(f \in L^1(\Omega) \). Let \(q_0(\cdot) \) and \(q_1(\cdot) \) be given by (9). If \(2 - 1/N \ll p(\cdot) \), then there exists a unique weak solution \(u \) of (1). Moreover, \(u \in L^{q(\cdot)}(\Omega) \), for all \(1 \leq q(\cdot) \ll q_0(\cdot) \), and \(u \in W^{1,q(\cdot)}_0(\Omega) \), for all \(1 \leq q(\cdot) \ll q_1(\cdot) \).

We remark that \(q_1(\cdot) \), defined in (9), equals one for \(p(\cdot) \equiv 2 - 1/N \), and hence, by Theorem 1, the entropy solution \(u \) belongs to \(W^{1,1}_0(\Omega) \) if \(2 - 1/N \ll p(\cdot) \).

In this paper we always assume that \(f \in L^1(\Omega) \); increasing the integrability of \(f \) one expects to obtain more regularity but, for variable exponents, most results in this direction are still missing.

A few comments about known regularity results for the constant exponent case, in terms of the integrability of the right hand side \(f \), are in order. Assume \(p(\cdot) \equiv p \) is constant, the right hand side \(f \in L^m(\Omega) \), for some \(m \geq 1 \), and let \(u \) be the unique solution of problem (1). Define the numbers

\[
\bar{m} := \frac{N}{N(p - 1) + 1} \quad \text{and} \quad \hat{m} := (p^*)' = \frac{Np}{N(p - 1) + p},
\]

where \(p^* = Np/(N - p) \) is the Sobolev exponent. The following assertions hold:
(A1): If $1 \leq m \leq \max(1, \bar{m})$ then u is an entropy solution, $|u|^q \in L^1(\Omega)$, for all $0 < q < q_0$, and $|\nabla u|^q \in L^1(\Omega)$, for all $0 < q < q_1$, where
\[
q_0 := \frac{Nm(p-1)}{N - mp} \quad \text{and} \quad q_1 := \frac{Nm(p-1)}{N - m}.
\]
(note that, when $m = 1$, these numbers coincide with the ones defined in (9), since we are assuming that $p(\cdot) \equiv p$ is constant).

(A2): If $\max(1, \bar{m}) < m < \tilde{m}$ then u is a weak solution and $u \in W^{1,q_1}_0(\Omega)$ (note that $q_1 > 1$).

(A3): If $\tilde{m} \leq m \leq N/p$ then u is a weak energy solution and $u \in W^{1,q_1}_0(\Omega)$ (note that $q_1 \geq p$).

(A4): If $m > N/p$ then u is a bounded weak energy solution.

The first and last assertions are proved by Alvino et al. [3]. The second one follows from the results of Boccardo and Gallouët [6, 7] and the third is a consequence of a result by Kinnunen and Zhou [22, Thm. 1.6]. It is also known that if $m > Np'$ then $u \in C^{1,\alpha}_{\text{loc}}(\Omega)$, a result due to DiBenedetto [10].

For a variable exponent $p(\cdot)$ much less is known. If $f \in W^{-1,p'(\cdot)}(\Omega)$ or, in particular, if $f \in L^{\tilde{m}(\cdot)}(\Omega)$, where $\tilde{m}(\cdot) := (p(\cdot)^*)'$, the existence and uniqueness of a weak energy solution to problem (1) is a straightforward generalization of the results obtained by Fan and Zhang [16] for the model problem (7).

Recently, Acerbi and Mingione [2] derived Calderón–Zygmund type estimates for (1), extending previous results of DiBenedetto and Manfredi [11] for the model problem (7) and $p(\cdot) \equiv p$ constant. Using their estimates it is easy to prove the following result.

Proposition 1. Assume (2)–(5) and $f \in L^{m(\cdot)}_{\text{loc}}(\Omega)$, where
\[
m(\cdot) := \frac{N p(\cdot) q}{N (p(\cdot) - 1) + p(\cdot) q} \quad \text{with} \quad q \geq 1.
\]
The unique weak energy solution u of (1) satisfies $|\nabla u|^{p(\cdot)} \in L^q_{\text{loc}}(\Omega)$.

We note that the function $m(\cdot)$ defined in (10) satisfies
\[
\tilde{m}(\cdot) < m(\cdot) < N, \quad \text{for all} \quad q > 1.
\]
As an immediate consequence, one obtains $u \in W^{1,r(\cdot)}_{\text{loc}}(\Omega)$, for all $r(\cdot) \in L^\infty(\Omega)$, if $f \in L^N_{\text{loc}}(\Omega)$. We note that, in the case of constant exponents, Proposition 1 states that for $f \in L^m_{\text{loc}}(\Omega)$, with $m \geq \tilde{m}$, we have $u \in W^{1,q_1}_{\text{loc}}(\Omega)$. Moreover, as a consequence of Sobolev embedding, it follows that $u \in C^{0,\alpha}_{\text{loc}}(\Omega)$ if $m > N/p$. We
thus recover local versions of assertions (A3) and (A4). Therefore, to obtain (A3) and
(A4) using this reasoning, it would be necessary to prove a global version of
Proposition 1 for a nonconstant \(q(\cdot) \).

Finally, since Theorem 1 guarantees the existence and uniqueness of an entropy
solution for (1), the extension of (A1) and (A2) for variable exponents only re-
quires \textit{a priori} estimates for such a solution. We feel that the techniques needed
to obtain such estimates are slight modifications of the ones used in section 3 in
the \(L^1 \) case but this extension remains open.

The paper is organized as follows. In section 2, we recall the definitions of
Lebesgue and Sobolev spaces with variable exponent and some of their properties.
Then, we introduce Marcinkiewicz spaces with variable exponent and establish
their relation with Lebesgue spaces. In section 3, we obtain \textit{a priori} estimates for
an entropy solution and its weak gradient. In section 4, we prove uniqueness of
entropy solutions. Finally, in section 5, we consider approximate problems and,
using the \textit{a priori} estimates, we establish the existence results.

2. Marcinkiewicz spaces with variable exponent

In this section, we define Marcinkiewicz spaces with variable exponent and in-
vestigate their relation with Lebesgue spaces. To the best of our knowledge, this
definition is considered here for the first time and the properties obtained are new.

We start with a brief overview of the state of the art concerning Lebesgue spaces
with variable exponent, and Sobolev spaces modeled upon them. Given a measur-
able function \(p(\cdot) : \Omega \to [1, +\infty) \), we will use the following notation throughout
the paper:

\[
p_– := \text{ess inf}_{x \in \Omega} p(x) \quad \text{and} \quad p_+ := \text{ess sup}_{x \in \Omega} p(x).
\]

We define the Lebesgue space with variable exponent \(L_{p(\cdot)}(\Omega) \) as the set of all
measurable functions \(u : \Omega \to \mathbb{R} \) for which the convex modular

\[
\varphi_{p(\cdot)}(u) = \int_{\Omega} |u|^{p(x)} \, dx
\]

is finite. If the exponent is bounded, \textit{i.e.}, if \(p_+ < \infty \), then the expression

\[
\|u\|_{p(\cdot)} := \inf \{ \lambda > 0 : \varphi_{p(\cdot)}(u/\lambda) \leq 1 \}
\]

defines a norm in \(L_{p(\cdot)}(\Omega) \), called the Luxemburg norm. One central property of
\(L_{p(\cdot)}(\Omega) \) is that the norm and the modular topologies coincide, \textit{i.e.}, \(\varphi_{p(\cdot)}(u_n) \to 0 \)
if and only if \(\|u_n\|_{p(\cdot)} \to 0 \). The space \((L_{p(\cdot)}(\Omega), \| \cdot \|_{p(\cdot)})\) is a separable Banach
space. Moreover, if $p_- > 1$ then $L^{p(\cdot)}(\Omega)$ is uniformly convex, hence reflexive, and its dual space is isomorphic to $L^{p'(\cdot)}(\Omega)$, where $1/p(x) + 1/p'(x) = 1$. Finally, we have Hölder inequality:

$$\left| \int_{\Omega} uv \, dx \right| \leq \left(\frac{1}{p_-} + \frac{1}{p'_-} \right) \|u\|_{p(\cdot)} \|v\|_{p'(\cdot)},$$

(11)

for all $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{p'(\cdot)}(\Omega)$.

Now, let

$$W^{1,p(\cdot)}(\Omega) := \left\{ u \in L^{p(\cdot)}(\Omega) : |\nabla u| \in L^{p(\cdot)}(\Omega) \right\},$$

which is a Banach space equipped with the norm

$$\|u\|_{1,p(\cdot)} := \|u\|_{p(\cdot)} + \|\nabla u\|_{p(\cdot)}.$$

By $W^{1,p(\cdot)}_0(\Omega)$ we denote the closure of $C_0^\infty(\Omega)$ in $W^{1,p(\cdot)}(\Omega)$.

The proof of the following result can be found in [19].

Proposition 2 (Poincaré type inequality). Assume $1 < p_- \leq p_+ < +\infty$. There exists a constant C, depending only on Ω, such that

$$\int_{\Omega} |u|^{p(x)} \, dx \leq C \int_{\Omega} |\nabla u|^{p(x)} \, dx, \quad \text{for all } u \in W^{1,p(\cdot)}_0(\Omega).$$

(12)

Proposition 3 (Sobolev embedding). Let Ω be an open bounded set with a Lipschitz boundary and let $p(\cdot) : \Omega \to [1, \infty)$ satisfy (5). Then we have the following continuous embedding

$$W^{1,p(\cdot)}(\Omega) \hookrightarrow L^{p^*(\cdot)}(\Omega),$$

(13)

where $p^*(\cdot) = \frac{Np(\cdot)}{N-p(\cdot)}$.

This result still holds for a merely log-Hölder continuous $p(\cdot)$ (cf. [13]).

Now, we give a useful result in order to apply Sobolev inequality (cf. [15]).

Lemma 1. Let $p(\cdot)$ and $q(\cdot)$ be measurable functions such that $p(\cdot) \in L^\infty(\Omega)$ and $1 \leq p(x)q(x) \leq +\infty$, for a.e. $x \in \Omega$. Let $f \in L^{q(\cdot)}(\Omega)$, $f \neq 0$. Then

$$\|f\|_{p(\cdot)q(\cdot)}^{p_+} \leq \|f\|_{p(\cdot)}^{p_+}\|f\|_{q(\cdot)} \leq \|f\|_{p(\cdot)q(\cdot)}^{p_+}$$

if $\|f\|_{p(\cdot)q(\cdot)} \leq 1,$

$$\|f\|_{p(\cdot)q(\cdot)}^{p_-} \leq \|f\|_{p(\cdot)}^{p_-}\|f\|_{q(\cdot)} \leq \|f\|_{p(\cdot)q(\cdot)}^{p_-}$$

if $\|f\|_{p(\cdot)q(\cdot)} \geq 1.$

In particular, if $p(\cdot) \equiv p$ is constant then

$$\|f\|_{p^{pq}(\cdot)} = \|f\|_{pq(\cdot)}^p.$$
This closes our brief tour of Lebesgue and Sobolev spaces with variable exponent. Let’s now consider Marcinkiewicz spaces with variable exponent. To the best of our knowledge, the next definition is new.

Definition 2. Let \(q(\cdot) \) be a measurable function such that \(q_- > 0 \). We say that a measurable function \(u \) belongs to the Marcinkiewicz space \(M^{q(\cdot)}(\Omega) \) if there exists a positive constant \(M \) such that

\[
\int_{\{|u|>t\}} t^{q(x)} \, dx \leq M, \quad \text{for all } t > 0.
\]

We remark that for \(q(\cdot) \equiv q \) constant this definition coincides with the classical definition of the Marcinkiewicz space \(M^{q}(\Omega) \) (cf. [25]). Moreover, it is clear that \(u \in M^{q(\cdot)}(\Omega) \) if \(|u|^{q(\cdot)} \in L^1(\Omega) \). Indeed,

\[
\int_{\{|u|>t\}} t^{q(x)} \, dx \leq \int_{\Omega} |u|^{q(x)} \, dx, \quad \text{for all } t > 0.
\]

In particular, \(L^{q(\cdot)}(\Omega) \subset M^{q(\cdot)}(\Omega) \), for all \(q(\cdot) \geq 1 \).

For constant exponents it is straightforward to prove some sort of reciprocal: if \(u \in M^{r}(\Omega) \) then \(|u|^q \in L^1(\Omega) \), for all \(0 < q < r \). The following result extends this assertion to the nonconstant setting; unlike the constant case, the proof presents some difficulties.

Proposition 4. Let \(r(\cdot) \) and \(q(\cdot) \) be bounded functions such that \(0 \ll q(\cdot) \ll r(\cdot) \) and let \(\epsilon := (r - q)_- > 0 \). If \(u \in M^{r(\cdot)}(\Omega) \), then

\[
\int_{\Omega} |u|^{q(x)} \, dx \leq 2|\Omega| + (r_+ - \epsilon) \frac{M}{\epsilon},
\]

where \(M \) is the constant appearing in the definition of \(M^{r(\cdot)}(\Omega) \). In particular, \(M^{r(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega) \), for all \(1 \leq q(\cdot) \ll r(\cdot) \).

Proof: Noting that \(0 \ll q(\cdot) \leq r(\cdot) - \epsilon \), we define the a.e. differentiable function

\[
\varphi(t) := \int_{\{|u|>t\}} t^{r(x)-\epsilon} \, dx, \quad \text{for all } t > 0.
\]

Writing its derivative as

\[
\varphi'(t) = \int_{\{|u|>t\}} (r(x) - \epsilon) t^{r(x)-\epsilon-1} \, dx - \lim_{h \downarrow 0} \frac{1}{h} \int_{\{t-h<|u|\leq t\}} t^{r(x)-\epsilon} \, dx,
\]
we obtain
\[- \frac{d}{dt} \int_{\{|u|>t\}} |u|^{r(x)-\epsilon} \, dx = \lim_{h \to 0} \frac{1}{h} \int_{\{t-h<|u| \leq t\}} |u|^{r(x)-\epsilon} \, dx \]
\[\leq \lim_{h \to 0} \frac{1}{h} \int_{\{t-h<|u| \leq t\}} t^{r(x)-\epsilon} \, dx \]
\[= \int_{\{|u|>t\}} (r(x) - \epsilon) t^{r(x)-\epsilon-1} \, dx - \varphi'(t).\]

Using the previous inequality and remarking that 0 ≤ \(\varphi(t)\) ≤ \(M/t^\epsilon\), for all \(t > 0\), since \(u \in M^{r(\cdot)}(\Omega)\), we derive the estimate
\[
\int_\Omega |u|^{q(x)} \, dx \\
\leq |\Omega| + \int_{\{|u|>1\}} |u|^{r(x)-\epsilon} \, dx \\
= |\Omega| + \int_1^\infty \left(- \frac{d}{dt} \int_{\{|u|>t\}} |u|^{r(x)-\epsilon} \, dx\right) \, dt \\
\leq |\Omega| + \int_1^\infty \left(\int_{\{|u|>t\}} (r(x) - \epsilon) t^{r(x)-\epsilon-1} \, dx - \varphi'(t)\right) \, dt \\
\leq |\Omega| + (r^+ - \epsilon) \int_1^\infty \frac{1}{t^{\epsilon+1}} \left(\int_{\{|u|>t\}} t^{r(x)} \, dx\right) \, dt + \varphi(1) \\
\leq 2|\Omega| + (r^+ - \epsilon) \int_1^\infty \frac{M}{t^{\epsilon+1}} \, dt \\
= 2|\Omega| + (r^+ - \epsilon) \frac{M}{\epsilon}
\]
and the result follows.

3. A priori estimates

We start with the existence of the weak gradient for every measurable function \(u\) such that \(T_t(u) \in W^{1,p(\cdot)}_0(\Omega)\), for all \(t > 0\).

Proposition 5. If \(u\) is a measurable function such that \(T_t(u) \in W^{1,p(\cdot)}_0(\Omega)\), for all \(t > 0\), then there exists a unique measurable function \(v : \Omega \to \mathbb{R}^N\) such that
\[v \chi_{\{|u|<t\}} = \nabla T_t(u)\text{ for a.e. }x \in \Omega, \text{ and for all } t > 0,\]
where χ_E denotes the characteristic function of a measurable set E. Moreover, if u belongs to $W^{1,1}_0(\Omega)$, then v coincides with the standard distributional gradient of u.

Proof: The result follows from [3, Theorem 1.5], since $T_t(u) \in W^{1,p(\cdot)}_0(\Omega) \subset W^{1,p(\cdot)}_0(\Omega)$, for all $t > 0$.

The next result provides estimates in Marcinkiewicz spaces (and hence, by Proposition 4, in Lebesgue spaces) for an entropy solution of (1).

Proposition 6. Assume (2)–(5) and $f \in L^1(\Omega)$. If u is an entropy solution of (1) then, for every $\epsilon > 0$, there exist positive constants M, M', and γ, depending only on ϵ, $p(\cdot)$, N, and Ω, such that

$$\int_{\{|u| > t\}} t^{p^*(x)/p'(x)-\epsilon} \, dx \leq M \left(\frac{\|f\|_1}{b} \right)^\gamma + M', \quad \text{for all } t > 0.$$

Proof: Taking $\varphi = 0$ in the entropy inequality (8) and using (2), we obtain

$$b \int_\Omega |\nabla T_t(u)|^{p(x)} \, dx \leq \int_{\{|u| \leq t\}} a(x, \nabla u) \cdot \nabla u \, dx \leq \int_\Omega f(x) \, T_t(u) \, dx \leq t\|f\|_1,$$

for all $t > 0$. Therefore, defining $\psi := T_t(u)/t$, we have, for all $t > 0$,

$$\int_\Omega t^{p(x)-1} |\nabla \psi|^{p(x)} \, dx = \frac{1}{t} \int_\Omega |\nabla T_t(u)|^{p(x)} \, dx \leq M_1 := \frac{\|f\|_1}{b}. \quad (15)$$

On the other hand, using Sobolev inequality (13) and Lemma 1, we estimate

$$\int_{\{|u| > t\}} t^{p^*(x)/p'(x)} \, dx = \int_{\{|\psi| = 1\}} t^{p^*(x)/p'(x)} |\psi|^{p^*(x)} \, dx \leq \int_\Omega \left(t^{1/p'(x)} |\psi| \right)^{p^*(x)} \, dx \leq \|t^{1/p'(\cdot)} \psi\|_{p^*(\cdot)}^\alpha \leq C^\alpha \|\nabla (t^{1/p'(\cdot)} \psi)\|_{p(\cdot)}^\alpha \leq C^\alpha \left(\int_\Omega |\nabla (t^{1/p'(\cdot)} \psi)|^{p(x)} \, dx \right)^{\alpha/\beta}, \quad (16)$$
where

\[\alpha = \begin{cases} \ p^+ & \text{if } \|t^{1/p'(\cdot)}\psi\|_{p'(\cdot)} \geq 1 \\ p^* & \text{if } \|t^{1/p'(\cdot)}\psi\|_{p'(\cdot)} \leq 1 \end{cases} \quad \text{and} \quad \beta = \begin{cases} \ p^- & \text{if } \|\nabla(t^{1/p'(\cdot)}\psi)\|_{p(\cdot)} \geq 1 \\ p^+ & \text{if } \|\nabla(t^{1/p'(\cdot)}\psi)\|_{p(\cdot)} \leq 1. \end{cases} \]

Now, we note that

\[
\int_\Omega |\nabla (t^{1/p'(x)}\psi)|^{p(x)} \, dx \leq \int_\Omega \left(|\nabla t^{1/p'(x)}| |\psi| + t^{1/p'(x)} |\nabla \psi| \right)^{p(x)} \, dx \\
\leq 2^{p+1} \left(\int_\Omega |\nabla t^{1/p'(x)}| |\psi|^{p(x)} \, dx + \int_\Omega t^{p(x)-1} |\nabla \psi|^{p(x)} \, dx \right) \\
\leq 2^{p+1} (I + M_1),
\]

using (15) for the last inequality and defining

\[I := \int_\Omega |\nabla t^{1/p'(x)}|^{p(x)} |\psi|^{p(x)} \, dx. \]

Now, define

\[\tilde{p} := \text{ess sup}_{x \in \Omega} \left\{ \left(\frac{|\nabla p(x)|}{p(x)^2} \right)^{p(x)} \right\}, \]

which is finite due to (5), and note that, for \(\epsilon > 0 \), we have

\[(\log t)^{p(x)} \leq (\log t)^{p^+} \leq \left(\frac{\alpha p^+}{\epsilon \beta e} \right)^{p^+} t^{\epsilon \beta / \alpha}, \quad \text{for all } t \geq e. \]

Using the definition of \(\psi \), (19), (12), and (15), we arrive at

\[
I = \frac{1}{t} \int_\Omega \left(\frac{|\nabla p|}{p^2} \right)^{p(x)} (\log t)^{p(x)} |T_t(u)|^{p(x)} \, dx \\
\leq \frac{\tilde{p}}{t} \left(\frac{\alpha p^+}{\epsilon \beta e} \right)^{p^+} t^{\epsilon \beta / \alpha} \int_\Omega |T_t(u)|^{p(x)} \, dx \\
\leq \frac{\tilde{p}}{t} \left(\frac{\alpha p^+}{\epsilon \beta e} \right)^{p^+} t^{\epsilon \beta / \alpha} C' \int_\Omega |\nabla T_t(u)|^{p(x)} \, dx \\
\leq M_1 M_2 t^{\epsilon \beta / \alpha},
\]

for all \(t \geq e \), where \(C' \) is a constant depending only on \(\Omega \), and

\[M_2 := \tilde{p} \left(\frac{\alpha p^+}{\epsilon \beta e} \right)^{p^+} C'. \]
From (17) and (20), we obtain
\[\int_{\Omega} \left| \nabla \left(t^{1/p'(x)} \psi \right) \right|^{p(x)} \, dx \leq 2^{p-1} M_1 t^{\epsilon \beta / \alpha} \left(M_2 + \frac{1}{t^{\epsilon \beta / \alpha}} \right), \quad \text{for all } t \geq e. \]
Finally, from (16) and the last inequality,
\[\int_{\{ |u| > t \}} t^{p^* \prime(x)/p'(x) - \epsilon} \, dx \leq C^\alpha \left(2^{p-1} M_1 \left(M_2 + \frac{1}{t^{\epsilon \beta / \alpha}} \right) \right)^{\alpha / \beta} \]
\[\leq C^\alpha \left(2^{p-1} \frac{\|f\|_1}{b} \left(\tilde{p} \left(\frac{\alpha p_+}{e \beta} \right)^{p_+} C' + \frac{1}{e^{\epsilon \beta / \alpha}} \right) \right)^{\alpha / \beta} \]
\[\leq M \left(\frac{\|f\|_1}{b} \right)^\gamma, \quad \text{for all } t \geq e, \quad (22) \]
with \(M = (C + 1)^{p_+} \left(2^{p-1} \left(\tilde{p} \left(\frac{p^*_+ p_+}{e p_-} \right)^{p_+} C' + 1 \right) \right) \]
\[\gamma = \begin{cases} \frac{p^*_+}{p_-} & \text{if } \|f\|_1 \geq b \\ \frac{p^*_+}{p_+} & \text{if } \|f\|_1 < b. \end{cases} \]
For \(0 < t < e \), we have
\[\int_{\{ |u| > t \}} t^{p^* \prime(x)/p'(x) - \epsilon} \, dx \leq |\Omega| e^{(p^*/p')^- \epsilon} =: M', \]
and, combining both estimates, the result follows.

Remark 1. Recalling from (9) that
\[q_0(\cdot) = \frac{N(p(\cdot) - 1)}{N - p(\cdot)} = \frac{p(\cdot)^*}{p(\cdot)^r}, \]
Proposition 6 yields \(u \in M^{q(\cdot)}(\Omega) \), for all \(0 \ll q(\cdot) \ll q_0(\cdot) \). We note that for \(p(\cdot) \equiv p \) we have that the constant \(M_2 \) defined in (21) is zero, and hence, from (22), one obtains \(u \in M^{q_0}(\Omega) \), with
\[q_0 = \frac{N(p - 1)}{N - p} = \frac{p^*}{p^r}, \]
recovering the result obtained in [5]. For the nonconstant case, it remains an open problem to show that \(u \in M^{q_0(\cdot)}(\Omega) \).

Remark 2. We stress that the dependence of the constants \(M \) and \(\gamma \) on \(p(\cdot) \) occurs solely through the constants \(p_-, p_+, \) and \(\tilde{p} \) given by (18).
As a consequence of Proposition 4 and Proposition 6 we obtain the following result.

Corollary 1. Assume (2)–(5) and \(f \in L^1(\Omega) \). Let

\[
q_0(\cdot) = \frac{N(p(\cdot) - 1)}{N - p(\cdot)} = \frac{p^*(\cdot)}{p'(\cdot)}. \tag{23}
\]

If \(u \) is an entropy solution to problem (1), then \(u \in L^{q(\cdot)}(\Omega) \), for all \(q(\cdot) \) such that \(0 \ll q(\cdot) \ll q_0(\cdot) \). Moreover, there exist constants \(M_0, M_1, \) and \(\gamma \), depending only on \(p(\cdot), q(\cdot), N, \) and \(\Omega \), such that

\[
\int_\Omega |u|^{q(x)} \, dx \leq 2|\Omega| + M_0 \left(\frac{\|f\|_1}{b} \right)^\gamma + M_1. \tag{24}
\]

Proof: Let \(0 \ll q(\cdot) \ll q_0(\cdot) \) and define \(\delta := (q_0 - q)_- > 0 \). By Proposition 6,

\[
\int\{ \{u > t\} \} t^{q_0(x)-\delta/2} \, dx \leq M \left(\frac{\|f\|_1}{b} \right)^\gamma + M', \quad \text{for all } t > 0,
\]

where \(M, M' \), and \(\gamma \) are positive constants, depending only on \(\delta, p(\cdot), N, \) and \(\Omega \). From Proposition 4, we have

\[
\int_\Omega |u|^{q(x)} \, dx \leq 2|\Omega| + (q_0 - \delta) + \frac{2}{\delta} \left\{ M \left(\frac{\|f\|_1}{b} \right)^\gamma + M' \right\},
\]

since \((q_0 - \delta/2 - q)_- = \delta/2 > 0 \); estimate (24) now follows with

\[
M_0 = 2(q_0 - \delta) + \frac{M}{\delta} \quad \text{and} \quad M_1 = 2(q_0 - \delta) + \frac{M'}{\delta}.
\]

Now, we prove *a priori* estimates in Marcinkiewicz spaces for the weak gradient of an entropy solution.

Proposition 7. Assume (2)–(5) and \(f \in L^1(\Omega) \). Let \(u \) be an entropy solution of (1). If there exists a positive constant \(M \) such that

\[
\int\{ \{u > t\} \} t^{q(x)} \, dx \leq M, \quad \text{for all } t > 0, \tag{25}
\]

then \(|\nabla u|^{\alpha(\cdot)} \in M^{q(\cdot)}(\Omega) \), where \(\alpha(\cdot) = p(\cdot)/(q(\cdot) + 1) \). Moreover,

\[
\int\{ \{\nabla u|^{\alpha(\cdot)} > t\} \} t^{q(x)} \, dx \leq \frac{\|f\|_1}{b} + M, \quad \text{for all } t > 0.
\]
Proof: Using (25), the definition of $\alpha(\cdot)$, and (15) which still holds in this setting, we have
\[
\int_{\{\nabla u|^{\alpha(x)} > t\}} t^{q(x)} \, dx \leq \int_{\{\nabla u|^{\alpha(x)} > t\} \cap \{|u| \leq t\}} t^{q(x)} \, dx + \int_{\{|u| > t\}} t^{q(x)} \, dx \\
\leq \int_{\{|u| \leq t\}} t^{q(x)} \left(\frac{\nabla u|^{\alpha(x)}}{t} \right)^{p(x)/\alpha(x)} \, dx + M \\
= \frac{1}{t} \int_{\{|u| \leq t\}} \nabla T_t(u)^{p(x)} \, dx + M \\
\leq \frac{\|f\|_1}{b} + M, \quad \text{for all } t > 0.
\]

As a consequence of Proposition 4, Proposition 6, and Proposition 7, we obtain the following result.

Corollary 2. Assume (2)–(5) and $f \in L^1(\Omega)$. Let
\[
q_1(\cdot) = \frac{N(p(\cdot) - 1)}{N - 1}.
\]
If u is an entropy solution of problem (1) then $|\nabla u|^{q(\cdot)} \in L^1(\Omega)$, for all $q(\cdot)$ such that $0 \ll q(\cdot) \ll q_1(\cdot)$. Moreover, there exist constants M_2, M_3, M_4, and γ, depending only on $p(\cdot)$, $q(\cdot)$, N, and Ω, such that
\[
\int_\Omega |\nabla u|^{q(x)} \, dx \leq 2|\Omega| + M_2 \left(\frac{\|f\|_1}{b} \right)^{\gamma} + M_4. \tag{26}
\]

Proof: Let $0 \ll q(\cdot) \ll q_1(\cdot)$ and define $\varrho := (q_1 - q)_- > 0$. Since
\[
q_1(\cdot) = \frac{p(\cdot)}{q_0(\cdot)} q(\cdot),
\]
with $q_0(\cdot)$ given by (23), we have that $r(\cdot)$ defined by
\[
q(\cdot) = \frac{p(\cdot)}{q_0(\cdot) - \varrho + 1} r(\cdot), \quad \text{satisfies } (q_0 - r)_- > \varrho.
\]

By Proposition 7 (and using also Proposition 6), we have $|\nabla u|^{\alpha(\cdot)} \in M^{q_0(\cdot) - \varrho}(\Omega)$, with $\alpha(\cdot) = p(\cdot)/(q_0(\cdot) - \varrho + 1)$, and
\[
\int_{\{\nabla u|^{\alpha(\cdot)} > t\}} t^{q_0(x) - \varrho} \, dx \leq \frac{\|f\|_1}{b} + M \left(\frac{\|f\|_1}{b} \right)^{\gamma} + M', \quad \text{for all } t > 0,
\]
where M, M', and γ are positive constants, depending only on ϱ, $p(\cdot)$, N, and Ω. From Proposition 4, we have, since $(q_0 - r - \varrho)_- > 0,$

$$
\int_{\Omega} |\nabla u|^{q(x)} \, dx = \int_{\Omega} |\nabla u|^{\alpha(x)r(x)} \, dx
\leq 2|\Omega| + \frac{q_0 - (q_0 - r)}{(q_0 - \varrho - r)_-} \left\{ \frac{\| f \|_1}{b} + M \left(\frac{\| f \|_1}{b} \right)^\gamma + M' \right\},
$$

and the result follows with

$$
M_2 = \frac{q_0 - (q_0 - r)}{(q_0 - \varrho - r)_-}, \quad M_3 = MM_2, \quad \text{and} \quad M_4 = M'M_2.
$$

4. Uniqueness of entropy solutions

In this section we establish the uniqueness of an entropy solution, extending the result obtained in [5] for a constant exponent.

Theorem 3. Assume (2)–(5) and $f \in L^1(\Omega)$. If u and v are entropy solutions of (1) then $u = v$, a.e. in Ω.

Proof: Let $h > 0$. We write the entropy inequality (8) corresponding to the solution u, with T_hv as test function, and to the solution v, with T_hu as test function. Upon addition, we get

$$
\int_{\{|u - T_hv| \leq t\}} a(x, \nabla u) \cdot \nabla (u - T_hv) \, dx + \int_{\{|v - T_hu| \leq t\}} a(x, \nabla v) \cdot \nabla (v - T_hu) \, dx
\leq \int_{\Omega} f(x) \left(T_t(u - T_hv) + T_t(v - T_hu) \right) \, dx. \quad (27)
$$

Define

$$
E_1 := \{|u - v| \leq t, \ |v| \leq h\},
E_2 := E_1 \cap \{|u| \leq h\}, \quad \text{and} \quad E_3 := E_1 \cap \{|u| > h\}.
$$

We start with the first integral in (27). Using assumption (2), we obtain

$$
\int_{\{|u - T_hv| \leq t\}} a(x, \nabla u) \cdot \nabla (u - T_hv) \, dx \geq \int_{E_1} a(x, \nabla u) \cdot \nabla (u - v) \, dx
\geq \int_{E_2} a(x, \nabla u) \cdot \nabla (u - v) \, dx - \int_{E_3} a(x, \nabla u) \cdot \nabla v \, dx. \quad (28)
$$
By assumption (3) and Hölder inequality (11), we estimate the last integral in the above expression as follows
\[
\left| \int_{E_3} a(x, \nabla u) \cdot \nabla v \, dx \right| \leq \beta \int_{E_3} \left(j(x) + |\nabla u|^{p(x)-1} \right) |\nabla v| \, dx
\]
\[
\leq 2\beta \left(\|j\|_{p'()} + \|\nabla u|^{p(x)-1}\|_{p'(), \{h<|u|\leq h+t\}} \|\nabla v\|_{p()}, \{h-t<|v|\leq h}\right). \tag{29}
\]
The last expression converges to zero as \(h \) tends to infinity, by Proposition 6, inequality (14), and the following bound for an entropy solution \(w \)
\[
\int_{\{|h|\leq h+t\}} |\nabla w|^{p(x)} \, dx \leq \frac{1}{b} \int_{\{|h|\leq h+t\}} a(x, \nabla w) \cdot \nabla w \, dx \leq \frac{t}{b} \|f\|_1,
\]
which follows from taking \(\varphi = T_h(w) \) as test function in the entropy inequality (8). Therefore, from (28) and (29), we obtain
\[
\int_{\{|u-T_hv|\leq t\}} a(x, \nabla u) \cdot \nabla (u - T_hv) \, dx \geq I + \int_{E_2} a(x, \nabla u) \cdot \nabla (u - v) \, dx, \tag{30}
\]
where \(I \) converges to zero as \(h \) tends to infinity. We may adopt the same procedure to treat the second integral in (27) and obtain
\[
\int_{\{|v-T_hu|\leq t\}} a(x, \nabla v) \cdot \nabla (v - T_hu) \, dx \geq II - \int_{E_2} a(x, \nabla v) \cdot \nabla (u - v) \, dx, \tag{31}
\]
where \(II \) converges to zero as \(h \) tends to infinity.

Next, we consider the right hand side of inequality (27). Noting that
\[
T_t(u - T_hv) + T_t(v - T_hu) = 0 \quad \text{in} \quad \{ |u| \leq h, |v| \leq h \},
\]
we obtain
\[
\left| \int_{\Omega} f(x) \left(T_t(u - T_hv) + T_t(v - T_hu) \right) \, dx \right|
\leq 2t \left(\int_{\{|u|>h\}} |f| \, dx + \int_{\{|v|>h\}} |f| \, dx \right).
\]
Since, both meas \(\{|u| > h\} \) and meas \(\{|v| > h\} \) tend to zero as \(h \) goes to infinity (by Proposition 6), the right hand side of inequality (27) tends to zero as \(h \) goes to infinity. From this assertion, (27), (30), and (31) we obtain, letting \(h \to +\infty \),
\[
\int_{\{|u-v|\leq t\}} (a(x, \nabla u) - a(x, \nabla v)) \cdot \nabla (u - v) \, dx \leq 0, \quad \text{for all} \ t > 0.
\]
By assumption (4), we conclude that \(\nabla u = \nabla v \), a.e. in \(\Omega \).
Finally, from Poincaré inequality (12), we have
\[\int_{\Omega} |T_t(u - v)|^{p(x)} \, dx \leq C \int_{\Omega} |\nabla (T_t(u - v))|^{p(x)} \, dx = 0, \quad \text{for all } t > 0, \]
and hence \(u = v \), a.e. in \(\Omega \).

5. Existence of weak and entropy solutions

Let \((f_n)_n \) be a sequence of bounded functions, strongly converging to \(f \in L^1(\Omega) \) and such that
\[\|f_n\|_1 \leq \|f\|_1, \quad \text{for all } n. \]
(32)

We consider the problem
\[
\begin{cases}
-\text{div}(a(x, \nabla u)) = f_n(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}
\]
(33)

It follows from a standard modification of the arguments in [16, Theorem 4.2] that problem (33) has a unique weak energy solution \(u_n \in W^{1,p(x)}_0(\Omega) \). Our aim is to prove that these approximate solutions \(u_n \) tend, as \(n \) goes to infinity, to a measurable function \(u \) which is an entropy solution of the limit problem (1). We will divide the proof into several steps and use as main tool the a priori estimates for \(u_n \) and its gradient obtained in section 3. Much of the reasoning is based on the ideas developed in [7], [5], and [3]; although some of the arguments are not new, we have decided to present a self-contained proof for the sake of clarity and readability.

We start by proving that the sequence \((u_n)_n \) of solutions of problem (33) converges in measure to a measurable function \(u \).

Proposition 8. Assume (2)–(5), \(f \in L^1(\Omega) \), and (32). Let \(u_n \in W^{1,p(x)}_0(\Omega) \) be the solution of (33). The sequence \((u_n)_n \) is Cauchy in measure. In particular, there exists a measurable function \(u \) such that \(u_n \to u \) in measure.

Proof: Let \(s > 0 \) and define
\[E_1 := \{|u_n| > t\}, \quad E_2 := \{|u_m| > t\}, \quad \text{and} \quad E_3 := \{|T_t(u_n) - T_t(u_m)| > s\}, \]
where \(t > 0 \) is to be fixed. We note that
\[\{|u_n - u_m| > s\} \subset E_1 \cup E_2 \cup E_3, \]
and hence,
\[\text{meas} \, \{|u_n - u_m| > s\} \leq \text{meas} \, (E_1) + \text{meas} \, (E_2) + \text{meas} \, (E_3). \]
(34)
Let $\epsilon > 0$. Using (32) and the uniform bound given by Proposition 6, we choose $t = t(\epsilon)$ such that
\[
\text{meas } (E_1) \leq \epsilon/3 \quad \text{and} \quad \text{meas } (E_2) \leq \epsilon/3.
\] (35)

On the other hand, taking $\varphi = 0$ in the entropy condition (8) for u_n, yields
\[
\int_{\Omega} |\nabla T_t(u_n)|^{p(x)} \, dx \leq \frac{\|f\|_1}{b} t, \quad \text{for all } n \geq 0,
\] using (2) and (32). Therefore, we can assume, by Sobolev embedding (13), that $(T_t(u_n))_n$ is a Cauchy sequence in $L^{q(\cdot)}(\Omega)$, for all $1 \leq q(\cdot) \ll p^*(\cdot)$. Consequently, there exists a measurable function u such that
\[
T_t(u_n) \rightarrow T_t(u), \quad \text{in } L^{q(\cdot)}(\Omega) \text{ and a.e.}
\]
Thus,
\[
\text{meas } (E_3) \leq \int_{\Omega} \left(\frac{|T_t(u_n) - T_t(u_m)|}{s} \right)^{q(x)} \, dx \leq \frac{\epsilon}{3}
\]
for all $n, m \geq n_0(s, \epsilon)$.

Finally, from (34), (35), and the last estimate, we obtain that
\[
\text{meas } \{|u_n - u_m| > s\} \leq \epsilon, \quad \text{for all } n, m \geq n_0(s, \epsilon),
\] (37)
i.e., $(u_n)_n$ is a Cauchy sequence in measure.

In order to prove that the sequence $(\nabla u_n)_n$ converges in measure to the weak gradient of u we need two technical lemmas. The first one, is an extension of Lemma 6.1 in [5].

Lemma 2. Let $(v_n)_n$ be a sequence of measurable functions. If v_n converges in measure to v and is uniformly bounded in $L^{q(\cdot)}(\Omega)$, for some $1 \ll q(\cdot) \in L^\infty(\Omega)$, then $v_n \rightarrow v$ strongly in $L^1(\Omega)$.

Proof: Note first that $L^{q(\cdot)}(\Omega) \subset L^{q-}(\Omega)$, and hence we may assume $(v_n)_n$ to be uniformly bounded in $L^{q-}(\Omega)$. Using this fact and Hölder inequality, we obtain
\[
\int_{\Omega} |v_m - v_n| \, dx = \int_{\{|v_m - v_n| \leq s\}} |v_m - v_n| \, dx + \int_{\{|v_m - v_n| > s\}} |v_m - v_n| \, dx
\leq |\Omega| s + \text{meas}(\{|v_m - v_n| > s\})^{1/q-} \|v_m - v_n\|_{q-}
\leq |\Omega| s + C \text{ meass}(\{|v_m - v_n| > s\})^{1/q-},
\] (38)
for all $s > 0$.

Taking s small enough in (38) and using the convergence in measure of $(v_n)_n$, we obtain that, for all $\varepsilon > 0$, there exists $n_0 = n_0(\varepsilon)$ such that $\|v_m - v_n\|_1 < \varepsilon$, for all $m, n \geq n_0(\varepsilon)$.

The second technical lemma is a standard fact in measure theory (cf. [20]).

Lemma 3. Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X) < +\infty$. Consider a measurable function $\gamma : X \to [0, +\infty]$ such that

$$\mu(\{x \in X : \gamma(x) = 0\}) = 0.$$

Then, for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\mu(A) < \varepsilon, \quad \text{for all } A \in \mathcal{M} \quad \text{with} \quad \int_A \gamma \, d\mu < \delta.$$

We can now prove the convergence in measure of the weak gradients, the last ingredient in the proof of existence.

Proposition 9. Assume (2)–(5), $f \in L^1(\Omega)$, and (32). Let $u_n \in W^{1,p(\cdot)}_0(\Omega)$ be the solution of (33). The following assertions hold:

(i) ∇u_n converges in measure to the weak gradient of u.

(ii) $a(x, \nabla u_n)$ converges to $a(x, \nabla u)$ strongly in $L^1(\Omega)$.

(iii) $a(x, \nabla u) \in L^{q(\cdot)}(\Omega)$, for all $1 \leq q(\cdot) \ll N/(N - 1)$.

(iv) u and ∇u satisfy (24) and (26).

Proof: (i) We claim that $(\nabla u_n)_n$ is Cauchy in measure. Indeed, let $s > 0$, and consider

$$E_1 := \{|\nabla u_n| > h\} \cup \{|\nabla u_m| > h\}, \quad E_2 := \{|u_n - u_m| > t\},$$

and

$$E_3 := \{|\nabla u_n| \leq h, |\nabla u_m| \leq h, |u_n - u_m| \leq t, |\nabla u_n - \nabla u_m| > s\},$$

where h and t will be chosen later. We note that

$$\{ |\nabla u_n - \nabla u_m| > s \} \subset E_1 \cup E_2 \cup E_3. \quad (39)$$

Let $\varepsilon > 0$. By Proposition 7, we may choose $h = h(\varepsilon)$ large enough such that $\text{mes}(E_1) \leq \varepsilon/3$ for all $n, m \geq 0$. On the other hand, by Proposition 8 (see (37)), we have that $\text{mes}(E_2) \leq \varepsilon/3$ for all $n, m \geq n_0(t, \varepsilon)$. Moreover, by assumption (4), there exists a real valued function $\gamma : \Omega \to [0, +\infty]$ such that $\text{mes}\{x \in \Omega : \gamma(x) = 0\} = 0$ and

$$(a(x, \xi) - a(x, \xi')) \cdot (\xi - \xi') \geq \gamma(x), \quad (40)$$
for all $\xi, \xi' \in \mathbb{R}^N$ such that $|\xi|, |\xi'| \leq h$, $|\xi - \xi'| \geq s$, for a.e. $x \in \Omega$ (cf. [7]). Let $\delta = \delta(\epsilon)$ be given from Lemma 3, replacing ϵ and A by $\epsilon/3$ and E_3, respectively. Using (40), the equation, and (32), we obtain

$$\int_{E_3} \gamma(x) \, dx \leq \int_{E_3} (a(x, \nabla u_n) - a(x, \nabla u_m)) \cdot \nabla (u_n - u_m) \, dx \leq 2\|f\|_1 t < \delta,$$

choosing $t = \delta/(4\|f\|_1)$. From Lemma 3, it follows that $\text{meas}(E_3) < \epsilon/3$. Thus, using (39) and the estimates obtained for E_1, E_2, and E_3, it follows that $\text{meas}\{|\nabla u_n - \nabla u_m| \geq s\} \leq \epsilon$, for all $n, m \geq n_0(s, \epsilon)$, proving the claim.

As a consequence, $(\nabla u_n)_n$ converges in measure to some measurable function v. Finally, since $(\nabla T_t u_n)_n$ is uniformly bounded in $L^{p(\cdot)}(\Omega)$, for all $t > 0$, it converges weakly to $\nabla (T_t u)$ in $L^1(\Omega)$. Therefore, v coincides with the weak gradient of u (see Proposition 5).

(ii) – (iii) By part (i) and Nemitskii Theorem (cf. [24, p. 20]), we obtain that $a(x, \nabla u_n)$ converges to $a(x, \nabla u)$ in measure. Moreover, using (3) we have

$$|a(x, \nabla u_n)| \leq \beta \left(j(x) + |\nabla u_n|^{p(x)-1}\right),$$

with $j \in L^{p(\cdot)}(\Omega) \subset L^{q(\cdot)}(\Omega)$, for all $1 \leq q(\cdot) \ll N/(N-1)$. By Corollary 2 applied to u_n and (32), we have that $(|\nabla u_n|^{p(\cdot)-1})_n$ is uniformly bounded in $L^{q(\cdot)}(\Omega)$, for all $1 \leq q(\cdot) \ll N/(N-1)$. Hence, using Lemma 2, we obtain that $a(x, \nabla u_n)$ converges to $a(x, \nabla u)$ strongly in $L^1(\Omega)$, and $a(x, \nabla u) \in L^{q(\cdot)}(\Omega)$, for all $1 \leq q(\cdot) \ll N/(N-1)$.

(iv) It follows taking the limit as $n \to +\infty$ in Corollaries 1 and 2 applied to u_n and using (32).

We finally proof the main theorems in this paper.

Proof (Theorem 1). Fix $t > 0$, $\varphi \in W_0^{1,p(\cdot)}(\Omega) \cap L^\infty(\Omega)$, and choose $T_t (u_n - \varphi)$ as a test function in (6), with u replaced by u_n, to obtain

$$\int_{\Omega} a(x, \nabla u_n) \cdot \nabla T_t (u_n - \varphi) \, dx = \int_{\Omega} f_n(x) \, T_t (u_n - \varphi) \, dx.$$

We note that this choice can be made using a standard density argument. We now pass to the limit in the previous identity. Concerning the right hand side, the convergence is obvious since f_n converges strongly in L^1 to f and $T_t (u_n - \varphi)$ converges weakly-* in L^∞, and a.e., to $T_t (u - \varphi)$.

\end{proof}
Next, we write the left hand side as
\[
\int_{\{|u_n - \varphi| \leq t\}} a(x, \nabla u_n) \cdot \nabla u_n \, dx - \int_{\{|u_n - \varphi| \leq t\}} a(x, \nabla u_n) \cdot \nabla \varphi \, dx \tag{41}
\]
and note that \(\{|u_n - \varphi| \leq t\}\) is a subset of \(\{|u_n| \leq t + \|\varphi\|_\infty\}\). Hence, taking \(s = t + \|\varphi\|_\infty\), we rewrite the second integral in (41) as
\[
\int_{\{|u_n - \varphi| \leq s\}} a(x, \nabla T_s(u_n)) \cdot \nabla \varphi \, dx.
\]
Since \(a(x, \nabla T_s(u_n))\) is uniformly bounded in \((L^{p'\prime}(\Omega))^N\) (by assumption (3) and (36)) and Proposition 9 (i), we have that it converges weakly to \(a(x, \nabla T_s(u))\) in \((L^{p'\prime}(\Omega))^N\). Therefore the last integral converges to
\[
\int_{\{|u_n - \varphi| \leq t\}} a(x, \nabla u_n) \cdot \nabla u_n \, dx.
\]

The first integral in (41) is nonnegative, by (2), and it converges a.e. by Proposition 9. It follows from Fatou lemma that
\[
\int_{\{|u_n - \varphi| \leq t\}} a(x, \nabla u_n) \cdot \nabla u_n \, dx \leq \liminf_{n \to +\infty} \int_{\{|u_n - \varphi| \leq t\}} a(x, \nabla u_n) \cdot \nabla u_n \, dx.
\]
Gathering results, we obtain
\[
\int_{\Omega} a(x, \nabla u) \cdot \nabla T_t(u - \varphi) \, dx \leq \int_{\Omega} f(x) T_t(u - \varphi) \, dx,
\]
i.e., \(u\) is an entropy solution of (1).

The uniqueness follows from Theorem 3 and the regularity properties from Corollaries 1 and 2.

Proof (Theorem 2). Let \(u_n \in W^{1,p(\cdot)}_0(\Omega)\) be the solution of (33) and \(u\) given by Proposition 8. Using Proposition 9 (ii) and the strong convergence in \(L^1\) of the \(f_n\) to \(f\), we obtain (6) passing to the limit in
\[
\int_{\Omega} a(x, \nabla u_n) \cdot \nabla \varphi \, dx = \int_{\Omega} f_n(x) \varphi \, dx,
\]
for all \(\varphi \in C_0^\infty(\Omega)\). From Corollary 2,
\[
u \in W^{1,q(\cdot)}_0(\Omega), \quad \text{for all } 1 \leq q(\cdot) \ll \frac{N(p(\cdot) - 1)}{N - 1},
\]
since \(2 - 1/N \ll p(\cdot)\).
The uniqueness follows from Theorem 3 and the integrability of u from Corollary 1.

References

ENTROPY SOLUTIONS FOR THE $p(x)$-LAPLACE EQUATION

MANEL SANCHÓN
CENTRO DE MATEMÁTICA, UNIVERSIDADE DE COIMBRA, 3001-454 COIMBRA, PORTUGAL
E-mail address: msanchon@mat.uc.pt

JOSÉ MIGUEL URBANO
DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE COIMBRA, 3001-454 COIMBRA, PORTUGAL
E-mail address: jmurb@mat.uc.pt