Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/95663
DC FieldValueLanguage
dc.contributor.authorKawula, M.-
dc.contributor.authorBinder, T. M.-
dc.contributor.authorLiprandi, S.-
dc.contributor.authorViegas, R.-
dc.contributor.authorParodi, K.-
dc.contributor.authorThirolf, P. G.-
dc.date.accessioned2021-08-20T16:02:18Z-
dc.date.available2021-08-20T16:02:18Z-
dc.date.issued2021-07-02-
dc.identifier.issn0031-9155-
dc.identifier.issn1361-6560-
dc.identifier.urihttp://hdl.handle.net/10316/95663-
dc.description.abstractIn this work, we present the development and application of a convolutional neural network (CNN)-based algorithm to precisely determine the interaction position ofγ-quanta in large monolithic scintillators. Those are used as an absorber component of a Compton camera (CC) system under development for ion beam range verification via prompt-gamma imaging. We examined two scintillation crystals: LaBr3:Ce and CeBr3. Each crystal had dimensions of 50.8 mm × 50.8 mm × 30 mm and was coupled to a 64-fold segmented multi-anode photomultiplier tube (PMT) with an 8 × 8 pixel arrangement. We determined the spatial resolution for three photon energies of 662, 1.17 and 1.33 MeV obtained from 2D detector scans with tightly collimated137Cs and60Co photon sources. With the new algorithm we achieved a spatial resolution for the CeBr3 crystal below 1.11(8) mm and below 0.98(7) mm for the LaBr3:Ce detector for all investigated energies between 662 keV and 1.33 MeV. We thereby improved the performance by more than a factor of 2.5 compared to the previously used categorical average pattern algorithm, which is a variation of the well-established k-nearest neighbor algorithm. The trained CNN has a low memory footprint and enables the reconstruction of up to 104events per second with only one GPU. Those improvements are crucial on the way to future clinicalin vivoapplicability of the CC for ion beam range verification.pt
dc.description.sponsorshipThis work was supported by the DFG Cluster of Excellence MAP (Munich-Centre forAdvanced Photonics).pt
dc.language.isoengpt
dc.publisherIOPpt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectCompton camerapt
dc.subjectBeam range monitoringpt
dc.subjectHadron therapypt
dc.subjectMonolithic scintillatorpt
dc.subjectNeural networkspt
dc.subjectRadiation detectionpt
dc.subjectSpatial resolutionpt
dc.titleSub-millimeter precise photon interaction position determination in large monolithic scintillators via convolutional neural network algorithmspt
dc.typearticlept
degois.publication.firstPage135017pt
degois.publication.issue13pt
degois.publication.titlePhysics in Medicine & Biologypt
dc.peerreviewedyespt
dc.identifier.doi1361-6560-
dc.identifier.doi34062523-
dc.identifier.doi10.1088/1361-6560/ac06e2-
degois.publication.volume66pt
dc.date.embargo2021-07-02*
dc.identifier.pmid34062523-
uc.date.periodoEmbargo0pt
dc.identifier.eissn1361-6560-
item.fulltextCom Texto completo-
item.languageiso639-1en-
item.grantfulltextopen-
Appears in Collections:I&D CFis - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Kawula_2021_Phys._Med._Biol._66_135017.pdf945.25 kBAdobe PDFView/Open
Show simple item record

Page view(s)

67
checked on Oct 22, 2021

Download(s)

8
checked on Oct 22, 2021

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons