Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/89471
DC FieldValueLanguage
dc.contributor.authorGratton, Serge-
dc.contributor.authorRoyer, Clément W-
dc.contributor.authorVicente, Luís Nunes-
dc.date.accessioned2020-06-05T15:40:25Z-
dc.date.available2020-06-05T15:40:25Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/10316/89471-
dc.description.abstractIn order to be provably convergent towards a second-order stationary point, optimization methods applied to nonconvex problems must necessarily exploit both first and second-order information. However, as revealed by recent complexity analyses of some of these methods, the overall effort to reach second-order points is significantly larger when compared to the one of approaching first-order ones. On the other hand, there are other algorithmic schemes, initially designed with first-order convergence in mind, that do not appear to maintain the same first-order performance when modified to take second-order information into account. In this paper, we propose a technique that separately computes first and second-order steps, and that globally converges to second-order stationary points: it consists in better connecting the steps to be taken and the stationarity criteria, potentially guaranteeing larger steps and decreases in the objective. Our approach is shown to lead to an improvement of the corresponding complexity bound with respect to the first-order optimality tolerance, while having a positive impact on the practical behavior. Although the applicability of our ideas is wider, we focus the presentation on trust-region methods with and without derivatives, and motivate in both cases the interest of our strategy.pt
dc.language.isoengpt
dc.publisherSpringer-Verlagpt
dc.relationUID/MAT/00324/2013pt
dc.rightsembargoedAccesspt
dc.titleA decoupled first/second-order steps technique for nonconvex nonlinear unconstrained optimization with improved complexity boundspt
dc.typearticle-
degois.publication.firstPage195pt
degois.publication.lastPage222pt
degois.publication.titleMathematical Programmingpt
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10107-018-1328-7pt
dc.peerreviewedyespt
dc.identifier.doi10.1007/s10107-018-1328-7pt
degois.publication.volume179pt
dc.date.embargo2020-12-31*
uc.date.periodoEmbargo365pt
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.fulltextCom Texto completo-
item.languageiso639-1en-
crisitem.author.orcid0000-0002-5021-2357-
crisitem.author.orcid0000-0003-1097-6384-
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
decoupled.pdf469.79 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

5
checked on Apr 15, 2024

WEB OF SCIENCETM
Citations 10

5
checked on Apr 2, 2024

Page view(s)

186
checked on Apr 23, 2024

Download(s)

176
checked on Apr 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.