Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/79716
Título: Molecular Mechanisms of Glioblastoma Resistance: glioma stem-like and non-stem-like cells specific targets
Autor: Silva, Joana Balça Pinheiro da Costa e 
Orientador: Lopes, Maria Celeste Fernandes
Ribeiro, Ana Bela Sarmento Antunes Cruz
Palavras-chave: glioblastoma; PKC activation; ativação de PKC; cell heterogeneity; heterogeneidade celular; stem-like cells plasticity; heterogeneidade celular; stem-like cells plasticity; plasticidade de células do tipo estaminal; specific target drug delivery; plasticidade de células do tipo estaminal; specific target drug delivery; entrega específica do fármaco; resistance; resistência; targeted therapy; terapia alvo
Data: 22-Fev-2018
Citação: SILVA, Joana Balça Pinheiro da Costa e - Molecular mechanisms of glioblastoma resistance : glioma stem-like and non-stem-like cells specific targets. Coimbra : [s.n.], 2018. Tese de doutoramento. Disponível na WWW: http://hdl.handle.net/10316/79716
Projeto: SFRH / BD / 51993 / 2012 
PEst-C/SAU/LA0001/2013-2014 
Local de edição ou do evento: Coimbra
Resumo: Glioblastoma (GBM) is the most malignant primary tumor of the central nervous system. Despite all efforts, the median survival time for GBM patients remains approximately between 12 to 15 months under therapy. GBM is a diffuse astrocytoma, highly proliferative, angiogenic, and locally invasive, that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered part of the gold standard treatment. This limited success appears to be related with several mechanisms, namely: 1) the occurrence of gene mutations, that cause permanent activation and/or inhibition of several molecular signalling pathways involved in tumor growth and proliferation, such as protein kinase C (PKC) activation, cell survival, tumor suppressor genes and apoptosis; 2) the presence of a population of cells known to be chemo and radioresistant, the glioma stem-like cells (GSCs), that are responsible for generating tumor heterogeneity and recurrence after therapy, and; 3) the inexistence of a specific therapeutic target for non-GSCs and GSCs that would permit the development of more specific therapeutic approaches for this neoplasia. Therefore, in this work we aimed to: 1) study the PKC activation contribution to the aggressiveness of GBM, emphasizing the importance of combined therapeutic protocols, including TMZ with PKC inhibitors, namely tamoxifen (TMX); 2) characterize the GSCs and study their plasticity to understand glioma stem-like cells state and its differentiation properties, in order to contribute to the prevention of tumor recurrence; and 3) evaluate the potential of specific cell surface markers as therapeutic targets to non-GSCs and GSCs, allowing the accessibility of therapeutic agents most exclusively to the tumor niche, by a liposome-mediated drug delivery approach. First, using two GBM cell lines, the U87 and U118 cells, we observed that the combination of TMX and TMZ alters the phosphorylation status of PKC, by western blot. We found that TMX is an inhibitor of the p-PKC and that this combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, by flow cytometry, which presents a new therapeutic strategy in GBM treatment. We then concluded that the combination of TMX and TMZ seems to potentiate the effect of each other in GBM cell lines. In order to study the heterogeneity between GBM cells and further understand the variability in the chemotherapeutic response, we next isolated and characterized a human GBM cell line, termed GBM11, obtained by surgical biopsy from a patient bearing a recurrent GBM, and compared the effect of TMX in monotherapy and in combination with TMZ on this GBM cell line with that observed in U87 and U118 cell lines. We observed that the effect of TMX plus TMZ or with TMX alone on GBM11 cells proliferation, death or migration capability, by flow cytometry and scratch assays, was similar, suggesting that, for recurrent tumors, the best choice of second-line treatment may be TMX alone, which may also reduce putative side effects of combined treatment with TMZ. The chemo- and radioresistance of GBM are also due to GSCs which contribute to tumor growth and relapse, highlighting this cell population as a main focus for GBM therapeutic research. We considered that the understanding of GBM stem state plasticity is of utmost importance to identify the mechanisms involved in GSCs resistance to therapy, which may justify tumor recurrence and so, constitute a step forward to the identification of new approaches to treat GBM. Our results demonstrated that, in four GBM cell lines and in the respectively GSC lines, the plasticity of the GBM stem-like cell state is based on the modulation of specific markers expression associated with this state, such as SOX2 or as Connexin 46 and 43, through immunofluorescence, western blot and PCR real time assays. Moreover, by immunohistochemistry analyses, we observed that this dynamic expression is in accordance with the upregulation of these stem-like cell markers in human samples of higher glioma grades, namely GBM, compared to lower grades, suggesting a direct correlation with the poor prognosis of GBM patients. As so, due to the plasticity of the stem-like cells status, the strategy of targeting both GSCs and non-GSCs may represent a promising approach in order to overcome tumor aggressiveness, and eventually to avoid the known chemotherapeutic side effects, which could improve the survival time and quality of life of GBM patients. In this regard, we next evaluate the potential of the cell surface nucleolin (NCL), described as overexpressed in cancer cells, as a target to specifically recognize non-GSCs and GSCs, taunting a possible therapeutic target for drug delivery in two different GBM cell lines. For that, we used a previously designed F3-peptide-targeted sterically stabilized pH-sensitive liposome (SLpH), which specifically recognizes nucleolin, as a tool to target overexpressed-nucleolin cells. Overall, we showed that NCL overexpression ensures an efficient drug delivery in both cells with stem-like and non-stem-like phenotypic characteristics, by flow cytometry assays, which could validate NCL as a potential therapeutic target in GBM. Altogether, our results showed: 1) a synergistic effect of TMX and TMZ in GBM cell lines and a more efficient effect of TMX alone in recurrent GBM compared to the combined therapy; 2) the plasticity of stem-like cell state through the reversibility of stem-like cell markers expression, and the identification of putative markers associated with this reversibility, the SOX2 and Cx46 and 43, which constitutes a step closer to the understanding of stem cell behaviour; and 3) that the success of targeting both non-GSCs and GSCs, through the nucleolin target, may be the basis for developing a specific treatment for GBM.
O Glioblastoma (GBM) é o tumor primário mais maligno do sistema nervoso central. Apesar de todos os esforços, o tempo médio de sobrevivência para doentes com GBM permanece aproximadamente entre os 12 a 15 meses sob terapia. O GBM é um astrocitoma difuso, altamente proliferativo, angiogénico e localmente invasivo, que desenvolve resistência aos agentes alquilantes utilizados na quimioterapia, como a temozolomida (TMZ), que é considerada parte do tratamento padrão. Este sucesso limitado parece estar relacionado com vários mecanismos, tais como: 1) a ocorrência de mutações genéticas que causam ativação permanente e / ou inibição de várias vias de sinalização molecular envolvidas no crescimento e proliferação de tumores, como a ativação da proteína cínase C (PKC), na sobrevivência celular, na inibição de genes supressores de tumores e apoptose; 2) a presença de uma população de células conhecidas como quimio- e radiorresistentes, as células de glioma do tipo estaminal (GSCs), que são responsáveis ​​pela heterogeneidade tumoral e recorrência após a terapia e; 3) a inexistência de um alvo terapêutico para não-GSCs e GSCs que permita o desenvolvimento de abordagens terapêuticas mais específicas para esta neoplasia. Assim, neste trabalho, objetivámos: 1) estudar a contribuição da ativação da PKC para a agressividade do GBM, enfatizando a importância de protocolos terapêuticos combinados, incluindo a TMZ com inibidores de PKC, nomeadamente o tamoxifeno (TMX); 2) caraterizar as GSCs e estudar a plasticidade das propriedades destas células estaminais do GBM, no sentido de compreender o estado estaminal do glioma e, consequentemente, entender as propriedades de diferenciação, contribuindo para a recorrência do tumor; e 3) avaliar o potencial de marcadores de superfície celular específicos, como alvos terapêuticos para as não-GSCs e GSCs, a fim de permitir a acessibilidade de agentes terapêuticos mais exclusivamente ao nicho do tumor, por meio de uma abordagem de administração de fármacos mediada por lipossomas. Inicialmente, usando duas linhas celulares de GBM, a U87 e a U118, observámos que a combinação de TMX e TMZ altera o estado de fosforilação da PKC, por western blot. Descobrimos que o TMX é um inibidor da p-PKC e que esta combinação é mais eficaz na redução da proliferação e no aumento da apoptose do que cada fármaco em monoterapia, através de ensaios de citometria de fluxo, o que pode representar uma nova estratégia terapêutica no tratamento do GBM. Concluímos, então, que a combinação de TMX e TMZ potencializa o efeito entre si nas linhas celulares de GBM. No sentido de estudar a heterogeneidade entre células de GBM e compreender melhor a variabilidade da resposta à quimioterapia, isolámos e caracterizámos uma linha celular de GBM humana, denominada GBM11, obtida através de uma biópsia cirúrgica de um doente com glioblastoma recorrente, e comparámos o efeito do TMX em monoterapia e em combinação com a TMZ, nesta linha celular, com o observado nas linhas celulares U87 e U118. Na verdade, observámos que o efeito do TMX e TMZ ou do TMX sozinho nas células de GBM11 sobre a proliferação celular, morte ou capacidade de migração, através de ensaios de citometria de fluxo e migração, era semelhante, o que pode sugerir que, para os tumores recorrentes, como o caso do GBM11 previamente tratado com TMZ, a melhor escolha do tratamento de segunda linha pode ser apenas TMX, a fim de reduzir os efeitos secundários putativos do tratamento combinado com TMZ. A quimio- e a radiorresistência do GBM devem-se, também, à existência de GSCs, que contribuem para o crescimento tumoral e recorrência destacando-se, assim, esta população celular como o foco principal da investigação terapêutica no GBM. Consideramos que a compreensão da plasticidade do estado estaminal no GBM é de extrema importância para identificar os mecanismos e fatores envolvidos na resistência das GSCs à terapia, o que pode justificar a recorrência do tumor e, portanto, constituir um progresso na identificação de novas abordagens terapêuticas. Os nossos resultados demonstraram, em quatro linhas celulares de GBM e nas respetivas linhas de GSCs, a plasticidade do estado estaminal com base na modulação da expressão de marcadores específicos associados, tais como o SOX2 e outros marcadores como a Conexina 46 e 43, através de ensaios de imunofluorescência, western blot e PCR em tempo real. Além disso, através de ensaios de imunohistoquímica, verificámos que essa expressão dinâmica está de acordo com a regulação positiva destes marcadores celulares em graus superiores de amostras humanas de glioma, nomeadamente no GBM, comparativamente a graus inferiores, sugerindo uma correlação direta com o mau prognóstico de doentes com GBM. Assim, devido à plasticidade do estado estaminal, a estratégia de atingir designadamente ambas as GSCs e não-GSCs pode representar uma abordagem importante no sentido de diminuir a agressividade do tumor e, eventualmente, evitar os efeitos colaterais quimioterapêuticos conhecidos, o que pode melhorar o tempo e a qualidade de vida de doentes com GBM. Neste sentido, avaliámos o potencial da nucleolina (NCL) de superfície celular, descrita como estando sobre-expressa nas células tumorais, como um alvo terapêutico para o reconhecimento específico de ambas as não-GSCs e GSCs, contribuindo para a entrega direcionada de fármacos encapsulados em nanopartículas, em duas linhas celulares de GBM. Para isso, utilizámos um lipossoma previamente desenhado, sensível ao pH e estericamente estabilizado, contendo na sua constituição um péptido F3, capaz de reconhecer especificamente a nucleolina constituindo, assim, uma ferramenta- alvo para as células com sobre-expressão de nucleolina. Em suma, demostrámos que a sobre-expressão de nucleolina per se pode identificar ambas as não-GSCs e GSCs, através de ensaios de citometria de fluxo, mediando a entrega direcionada intracelular, o que pode validar a NCL como um potencial alvo terapêutico no GBM. Em conclusão, o presente estudo demonstrou: 1) um efeito sinergístico do TMX e TMZ em linhas celulares de GBM e um efeito mais eficiente do TMX em monoterapia numa situação de GBM recorrente em comparação com a terapia combinada; 2) a plasticidade do estado estaminal através da reversibilidade da expressão dos marcadores de células do tipo estaminal e a identificação de dois marcadores putativos associados a essa reversibilidade, o SOX2 e a Cx46 e 43, constituindo um passo mais próximo na compreensão do comportamento das células estaminais; e 3) que o sucesso em atingir especificamente células não-GSCs e GSCs, através da sobre-expressão de nucleolina, poderá ser a base de desenvolvimento de um tratamento específico para o GBM.
Descrição: Tese de doutoramento do Programa Interuniversitário de Doutoramento em Envelhecimento e Doenças Crónicas, apresentada à Faculdade de Medicina da Universidade de Coimbra
URI: https://hdl.handle.net/10316/79716
Direitos: embargoedAccess
Aparece nas coleções:FMUC Medicina - Teses de Doutoramento

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
Molecular Mechanisms of Glioblastoma Resistance.pdf14.52 MBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Visualizações de página 50

398
Visto em 26/mar/2024

Downloads

59
Visto em 26/mar/2024

Google ScholarTM

Verificar


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.