Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/7757
DC FieldValueLanguage
dc.contributor.authorClementino, Maria-
dc.contributor.authorHofmann, Dirk-
dc.contributor.authorTholen, Walter-
dc.date.accessioned2009-02-17T11:17:36Z-
dc.date.available2009-02-17T11:17:36Z-
dc.date.issued2004en_US
dc.identifier.citationApplied Categorical Structures. 12:2 (2004) 127-154en_US
dc.identifier.urihttp://hdl.handle.net/10316/7757-
dc.description.abstractAbstract For a complete lattice V which, as a category, is monoidal closed, and for a suitable Set-monad T we consider (T,V)-algebras and introduce (T,V)-proalgebras, in generalization of Lawvere's presentation of metric spaces and Barr's presentation of topological spaces. In this lax-algebraic setting, uniform spaces appear as proalgebras. Since the corresponding categories behave functorially both in T and in V, one establishes a network of functors at the general level which describe the basic connections between the structures mentioned by the title. Categories of (T,V)-algebras and of (T,V)-proalgebras turn out to be topological over Set.en_US
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleOne Setting for All: Metric, Topology, Uniformity, Approach Structureen_US
dc.typearticleen_US
dc.identifier.doi10.1023/B:APCS.0000018144.87456.10en_US
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
obra.pdf193.84 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

48
checked on Nov 8, 2019

WEB OF SCIENCETM
Citations

50
checked on Nov 7, 2019

Page view(s) 50

354
checked on Nov 20, 2019

Download(s)

94
checked on Nov 20, 2019

Google ScholarTM

Check

Altmetric

Dimensions


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.