Please use this identifier to cite or link to this item:
http://hdl.handle.net/10316/4654
Title: | The invariant polynomials degrees of the Kronecker sum of two linear operators and additive theory | Authors: | Caldeira, Cristina Silva, J. A. Dias da |
Keywords: | Additive number theory; Derivations; Invariant polynomials | Issue Date: | 2000 | Citation: | Linear Algebra and its Applications. 315:1-3 (2000) 125-138 | Abstract: | Let G be an abelian group. Let A and B be finite non-empty subsets of G. By A+B we denote the set of all elements a+b with a[set membership, variant]A and b[set membership, variant]B. For c[set membership, variant]A+B, [nu]c(A,B) is the cardinality of the set of pairs (a,b) such that a+b=c. We call [nu]c(A,B) the multiplicity of c (in A+B). | URI: | http://hdl.handle.net/10316/4654 | DOI: | 10.1016/S0024-3795(00)00125-7 | Rights: | openAccess |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
file4beb5885b18e4c9dbda4311820fde8f2.pdf | 114.9 kB | Adobe PDF | View/Open |
WEB OF SCIENCETM
Citations
3
checked on Aug 2, 2022
Page view(s) 20
650
checked on Aug 18, 2022
Download(s) 50
309
checked on Aug 18, 2022
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.