Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/4654
Title: The invariant polynomials degrees of the Kronecker sum of two linear operators and additive theory
Authors: Caldeira, Cristina 
Silva, J. A. Dias da 
Keywords: Additive number theory; Derivations; Invariant polynomials
Issue Date: 2000
Citation: Linear Algebra and its Applications. 315:1-3 (2000) 125-138
Abstract: Let G be an abelian group. Let A and B be finite non-empty subsets of G. By A+B we denote the set of all elements a+b with a[set membership, variant]A and b[set membership, variant]B. For c[set membership, variant]A+B, [nu]c(A,B) is the cardinality of the set of pairs (a,b) such that a+b=c. We call [nu]c(A,B) the multiplicity of c (in A+B).
URI: http://hdl.handle.net/10316/4654
DOI: 10.1016/S0024-3795(00)00125-7
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
file4beb5885b18e4c9dbda4311820fde8f2.pdf114.9 kBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations

3
checked on Dec 2, 2020

Page view(s) 20

612
checked on Dec 3, 2020

Download(s) 50

252
checked on Dec 3, 2020

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.