Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/4630
DC FieldValueLanguage
dc.contributor.authorAzenhas, Olga-
dc.contributor.authorMamede, Ricardo-
dc.date.accessioned2008-09-01T11:35:33Z-
dc.date.available2008-09-01T11:35:33Z-
dc.date.issued2005en_US
dc.identifier.citationLinear Algebra and its Applications. 401:(2005) 221-275en_US
dc.identifier.urihttp://hdl.handle.net/10316/4630-
dc.description.abstractLet M be the set of all rearrangements of t fixed integers in {1, ... , n}. We consider those Young tableaux , of weight (m1, ... , mt) in M, arising from a sequence of products of matrices over a local principal ideal domain, with maximal ideal (p),where [Delta]a is an n × n nonsingular diagonal matrix, with invariant partition a, and U is an n × n unimodular matrix. Given a partition a and an n × n unimodular matrix U, we consider the set T(a,M)(U) of all sequences of matrices, as above, with (m1, ... , mt) running over M. The symmetric group acts on T(a,M)(U) by place permutations of the tuples in M. When t = 2, 3, the action of the symmetric group on the set of Young tableaux, having the set T(a,M)(U) as matrix realization, is described by a decomposition of the indexing sets of the Littlewood-Richardson tableau in T(a,M)(U), afforded by the matrix U. This description, in cases t = 2, 3, gives necessary and sufficient conditions for the existence of an unimodular matrix U such that T(a,M)(U) is a matrix realization of a set of Young tableaux, with given shape c/a and weight running over M. If is the tableau arising from the sequence of matrices, above, when a = 0, it is shown that the words of the tableaux and are Knuth equivalent. The relationship between this action of the symmetric group and the one described by A. Lascoux and M.P. Schutzenberger [Noncommutative structures in algebra and geometric combinatorics, (Naples, 1978), Quaderni de La Ricerca Scientifica, vol. 109, CNR, Rome, 1981; M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002], on words, is discussed.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6V0R-4D9DF94-1/1/07aba674cccc7bf1e457950b80a7a06cen_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectCombinatorics on tableauxen_US
dc.subjectMatrix theoryen_US
dc.subjectPlactic monoiden_US
dc.subjectSymmetric groupen_US
dc.titleAction of the symmetric group on sets of skew-tableaux with prescribed matrix realizationen_US
dc.typearticleen_US
uc.controloAutoridadeSim-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
crisitem.author.deptFaculdade de Ciências e Tecnologia, Universidade de Coimbra-
crisitem.author.parentdeptUniversidade de Coimbra-
crisitem.author.researchunitCenter for Mathematics, University of Coimbra-
crisitem.author.orcid0000-0001-7718-7158-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file2721aa4f545d414bbe1fd993ab18567e.pdf677.68 kBAdobe PDFView/Open
Show simple item record

Page view(s)

290
checked on Oct 14, 2020

Download(s)

78
checked on Oct 14, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.