Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/4619
DC FieldValueLanguage
dc.contributor.authorCardoso, João R.-
dc.contributor.authorSilva Leite, F.-
dc.date.accessioned2008-09-01T11:35:22Z-
dc.date.available2008-09-01T11:35:22Z-
dc.date.issued2006en_US
dc.identifier.citationApplied Numerical Mathematics. 56:2 (2006) 253-267en_US
dc.identifier.urihttp://hdl.handle.net/10316/4619-
dc.description.abstractIn this paper we give bounds for the error arising in the approximation of the logarithm of a block triangular matrix T by Padé approximants of the function f(x)=log[(1+x)/(1-x)] and partial sums of Gregory's series. These bounds show that if the norm of all diagonal blocks of the Cayley-transform B=(T-I)(T+I)-1 is sufficiently close to zero, then both approximation methods are accurate. This will contribute for reducing the number of successive square roots of T needed in the inverse scaling and squaring procedure for the matrix logarithm.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6TYD-4G5BJ9P-2/1/398a212a906943d2474a2cd6166c1d31en_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectMatrix logarithmen_US
dc.subjectInverse scaling and squaringen_US
dc.subjectPadé approximants and Gregory's seriesen_US
dc.titlePadé and Gregory error estimates for the logarithm of block triangular matricesen_US
dc.typearticleen_US
item.grantfulltextopen-
item.languageiso639-1en-
item.fulltextCom Texto completo-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file078603c44c834115af9c9ba0f358beb7.pdf145.34 kBAdobe PDFView/Open
Show simple item record

Page view(s)

135
checked on Oct 21, 2020

Download(s)

90
checked on Oct 21, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.