Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/28347
Title: Control Architectures for Robotic Assistance in Beating Heart Surgery
Authors: Dominici, Michel Olivier 
Orientador: Cortesão, Rui
Keywords: Beating Heart Surgery
Issue Date: 10-Feb-2016
Citation: DOMINICI, Michel Olivier - Control architectures for robotic assistance in beating heart surgery. Coimbra : [s.n.], 2016. Tese de doutoramento. Disponível na WWW: http://hdl.handle.net/10316/28347
Abstract: Doenças cardiovasculares são a primeira causa de morte no mundo. Todos os anos mais de 17 milhões de pessoas morrem, representando 29% do número total de mortes. As doenças coronárias são as mais críticas, atingindo mais de 7.2 milhões de mortes. Para reduzir o risco de morte, o "bypass" coronário é a intervenção cirúrgica mais comum. Atualmente este procedimento envolve uma esternotomia mediana e um "bypass" cardiopulmonar, permitindo que uma máquina externa implemente as funções de oxigenação e bombeamento de sangue. Contudo, esta máquina externa é fonte de muitas complicações pós-operatórias, incluindo a morte de pacientes. Estes problemas motivam o estudo e desenvolvimento de técnicas cirúrgicas sem parar o funcionamento do coração. Nestes casos, os batimentos cardíacos e a respiração representam as principais fontes de perturbação. Foram desenvolvidos estabilizadores mecânicos para diminuir localmente o movimento cardíaco. Colocado numa região de específica (por exemplo, na artéria coronária), estes estabilizadores limitam o movimento por pressão e sucção. Apesar dos melhoramentos feitos ao longo dos anos, ainda existe um movimento residual considerável, e o cirurgião tem que os compensar manualmente. Torna-se então natural incluir dispositivos robóticos para ajudar na prática médica, melhorando a precisão, segurançae conforto de tarefas cirúrgicas. O sistema cirúrgico da Vinci é atualmente o sistema robótico mais avançado para a prática médica, com elevado desempenho em tarefas de destreza, precisão e segurança, apesar de não fornecer soluções de realimentação táctil, nem de compensação automática de movimentos fisiológicos. O trabalho desta tese é na área da robótica para cirurgias cardíacas com o coração a bater. Baseada na realimentação da força, esta tese explora novas arquiteturas de controlo com compensação automática dos movimentos cardíacos. São feitos testes experimentais em cenários muito realistas, sem utilizar seres vivos. Um robô denominado "Heartbox" equipado com um coração real reproduz movimentos cardíacos, enquanto que outro robô manipulador aplica forças cirúrgicas nesse coração com batimento artificial. As forças de interação fornecem realimentação de contacto ao cirurgião. O principal desafio científico deste trabalho é a ligação de técnicas de compensação autónoma de movimentos fisiológicos com controlo de força e realimentação haptica.
Cardiovascular diseases are the first cause of mortality in the world. More than 17 million people die every year, representing 29% of all global deaths. Among these, coronary heart diseases are the most critical ones, reaching up to 7.2 million deaths. To reduce the risk of death the coronary artery bypass grafting (CABG) is the most common surgical intervention. Currently, the procedure involves a median sternotomy, an incision in the thorax allowing a direct access to the heart, and a cardiopulmonary bypass (CPB), where heart and lung functionalities are performed by an extracorporal machine. Unfortunately the heart-lung machine is the greatest source of complications and post-operatory mortality for patients. Problems involved have motivated beating heart surgery that circumvent CPB procedure. Heartbeats and respiration represent the two main sources of disturbances during off-pump surgery. Mechanical stabilizers have been conceived for locally decreasing heart motion. Placed around a region of interest (e.g., coronary artery), these stabilizers constraint the motion by suction or pressure. Despite many improvements done over the years, considerable residual motion still remains and the surgeon have to manually compensate them. Robotic assistance has the potential to offer significant improvements to the medical practice in terms of precision, safety and comfort. Theda Vinci surgical system is the most popular and sophisticated. Although it has considerably improved dexterity, precision and safety, no solution for restoring tactile feedback to the surgeon exists and physiological motion compensation still needs to be manually canceled by the surgeon. The work presented in this thesis focus on robotic assistance for beating heart surgery. Based on force feedback, we designed new control architectures providing autonomous physiological motion compensation. Experimental assessments have been performed through a realistic scenario. A Heartbox robot equipped with an \textit{ex vivo} heart reproduces heart motion and a robot arm generates desired surgical forces on the moving heart. Interaction forces provide the haptic feedback for the surgeon. Merging autonomous motion compensation techniques with force control and haptic feedback is a major scientific challenge that we tackle in this work.
Description: Tese de doutoramento em Engenharia Electrotécnica e de Computadores, no ramo de especialização em Automação e Robótica, apresentada ao Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Ciências e Tecnologia da Universidade de Coimbra
URI: https://hdl.handle.net/10316/28347
Rights: openAccess
Appears in Collections:FCTUC Eng.Electrotécnica - Teses de Doutoramento

Files in This Item:
File Description SizeFormat
Control Architectures for Robotic Assistance.pdf48.59 MBAdobe PDFView/Open
Show full item record

Page view(s) 50

420
checked on Apr 23, 2024

Download(s) 50

450
checked on Apr 23, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.