Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11325
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConn, Andrew R.-
dc.contributor.authorScheinberg, Katya-
dc.contributor.authorVicente, Luís Nunes-
dc.date.accessioned2009-09-08T09:30:44Z-
dc.date.available2009-09-08T09:30:44Z-
dc.date.issued2006-
dc.identifier.citationPré-Publicações DMUC. 06-49 (2006)en_US
dc.identifier.urihttp://hdl.handle.net/10316/11325-
dc.description.abstractIn this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points.en_US
dc.description.sponsorshipCentro de Matemática da Universidade de Coimbra; FCT under grant POCI/59442/MAT/2004en_US
dc.language.isoengen_US
dc.publisherCentro de Matemática da Universidade de Coimbraen_US
dc.rightsopen accesseng
dc.subjectTrust-region methodsen_US
dc.subjectDerivative-free optimizationen_US
dc.subjectNonlinear optimizationen_US
dc.subjectGlobal convergenceen_US
dc.titleGlobal convergence of general derivative-free trust-region algorithms to first and second order critical pointsen_US
dc.typepreprinten_US
Appears in Collections:FCTUC Matemática - Vários

Files in This Item:
File Description SizeFormat 
Global convergence of general derivative-free trust-region algorithms.pdf240.23 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.