Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorHenriques, Carla-
dc.contributor.authorOliveira, Paulo Eduardo-
dc.identifier.citationPré-Publicações DMUC. 08-14 (2008)en_US
dc.description.abstractWe prove convergence rates for the Strong Laws of Large Numbers (SLLN) for associated variables which are arbitrarily close to the optimal rates for independent variables. A rst approach is based on exponential inequalities, a usual tool for this kind of problems. Following the optimization e orts of several authors, we improve the rates derived from exponential inequalities to log2 n n1=2 . A more recent approach tries to use maximal inequalities together with moment inequalities. We prove a new maximal order inequality of order 4 for associated variables, using a telescoping argument. This inequality is then used to prove a SLLN convergence rate arbitrarily close to log1=4 n n1=2 .en_US
dc.description.sponsorshipCentro de Matemática da Universidade de Coimbra; Fundação para a Ciência e Tecnologia; POCTIen_US
dc.publisherCentro de Matemática da Universidade de Coimbraen_US
dc.subjectConvergence ratesen_US
dc.subjectExponential inequalitiesen_US
dc.subjectMaximal inequalitiesen_US
dc.titleConvergence rates for the strong law of large numbers under associationen_US
item.fulltextCom Texto completo-
item.languageiso639-1en- - Centre for Mathematics of the University of Coimbra-
Appears in Collections:FCTUC Matemática - Vários
Files in This Item:
File Description SizeFormat
Convergence rates for the strong law.pdf154.7 kBAdobe PDFView/Open
Show simple item record

Page view(s)

checked on Sep 29, 2022


checked on Sep 29, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.