Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11145
Title: The inverse eigenvalue problem for Hermitian matrices whose graphs are cycles
Authors: Fernandes, Rosário 
Fonseca, C. M. da 
Keywords: Inverse eigenvalue problem; Periodic Jacobi matrix; Eigenvalues; Multiplicities; Graphs; Cycle
Issue Date: 15-Dec-2008
Publisher: Taylor & Francis
Citation: Linear and Multilinear Algebra. (2008) iFirst
Abstract: In 1979, Ferguson characterized the periodic Jacobi matrices with given eigenvalues and showed how to use the Lanzcos Algorithm to construct each such matrix. This article provides general characterizations and constructions for the complex analogue of periodic Jacobi matrices. As a consequence of the main procedure, we prove that the multiplicity of an eigenvalue of a periodic Jacobi matrix is at most 2.
URI: http://hdl.handle.net/10316/11145
ISSN: 0308-1087
DOI: 10.1080/03081080802187870
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
The inverse eigenvalue problem for Hermitian matrices.pdf122.02 kBAdobe PDFView/Open
Show full item record

WEB OF SCIENCETM
Citations 5

16
checked on Jul 2, 2022

Page view(s) 50

529
checked on Aug 18, 2022

Download(s) 50

617
checked on Aug 18, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.