Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/10276
DC FieldValueLanguage
dc.contributor.authorHellman, A.-
dc.contributor.authorBaerends, E. J.-
dc.contributor.authorBiczysko, M.-
dc.contributor.authorBligaard, T.-
dc.contributor.authorChristensen, C. H.-
dc.contributor.authorClary, D. C.-
dc.contributor.authorDahl, S.-
dc.contributor.authorHarrevelt, R. van-
dc.contributor.authorHonkala, K.-
dc.contributor.authorJonsson, H.-
dc.contributor.authorKroes, G. J.-
dc.contributor.authorLuppi, M.-
dc.contributor.authorManthe, U.-
dc.contributor.authorNørskov, J. K.-
dc.contributor.authorOlsen, R. A.-
dc.contributor.authorRossmeisl, J.-
dc.contributor.authorSkúlason, E.-
dc.contributor.authorTautermann, C. S.-
dc.contributor.authorVarandas, A. J. C.-
dc.contributor.authorVincent, J. K.-
dc.date.accessioned2009-06-23T11:19:25Z-
dc.date.available2009-06-23T11:19:25Z-
dc.date.issued2006-09-14-
dc.identifier.citationThe Journal of Physical Chemistry B. 110:36 (2006) 17719-17735en_US
dc.identifier.issn1520-6106-
dc.identifier.urihttps://hdl.handle.net/10316/10276-
dc.description.abstractHere, we give a full account of a large collaborative effort toward an atomic-scale understanding of modern industrial ammonia production over ruthenium catalysts. We show that overall rates of ammonia production can be determined by applying various levels of theory (including transition state theory with or without tunneling corrections, and quantum dynamics) to a range of relevant elementary reaction steps, such as N2 dissociation, H2 dissociation, and hydrogenation of the intermediate reactants. A complete kinetic model based on the most relevant elementary steps can be established for any given point along an industrial reactor, and the kinetic results can be integrated over the catalyst bed to determine the industrial reactor yield. We find that, given the present uncertainties, the rate of ammonia production is well-determined directly from our atomic-scale calculations. Furthermore, our studies provide new insight into several related fields, for instance, gas-phase and electrochemical ammonia synthesis. The success of predicting the outcome of a catalytic reaction from first-principles calculations supports our point of view that, in the future, theory will be a fully integrated tool in the search for the next generation of catalysts.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsopenAccesseng
dc.titlePredicting Catalysis: Understanding Ammonia Synthesis from First-Principles Calculationsen_US
dc.typearticleen_US
dc.identifier.doi10.1021/jp056982h-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.fulltextCom Texto completo-
item.languageiso639-1en-
crisitem.author.researchunitCQC - Coimbra Chemistry Centre-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.orcid0000-0003-1501-3317-
Appears in Collections:FCTUC Química - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Predicting Catalysis Understanding Ammonia Synthesis.pdf708.27 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

185
checked on Apr 1, 2024

WEB OF SCIENCETM
Citations 1

165
checked on Apr 2, 2024

Page view(s) 50

387
checked on Apr 16, 2024

Download(s) 50

816
checked on Apr 16, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.