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Abstract—In Software-Defined Networking (SDN), the data
plane is defined by the switches which are connected to a set
of controllers defining the control plane. The intercontroller
connections have lacked the same focus in the literature as
the switch-controller connections, despite the set of logically
centralized controllers being the brain of the SDN network. In
this paper, we address a bi-objective joint optimization problem
involving the controller placement problem, geodiversity and
intercontroller availability guarantees. The availability guaran-
tees imply a subgraph whose links can be upgraded at a given
cost. The geodiversity constraints extend robustness to disaster-
based failures. To solve this NP-complete non-linear problem,
we employ a heuristic strategy based on the decomposition into
manageable subproblems.

Index Terms—SDN, controller placement, availability, heuris-
tics, integer linear programming, bi-objective

I. INTRODUCTION

Software-Defined Networking (SDN) has gained impor-
tance as a key enabler of more programmable and flexible
networks. The paradigm of decoupling the data and control
planes, where the data plane is composed of basic forwarding
switches and the control plane is composed by a set of
logically centralized controllers, allows for more manageable
network configuration and optimization. However, several
resiliency, security and scalability issues arise.

Inherent to SDN is the well-known controller placement
problem (CPP) [1], which determines how many controllers
should be placed in the network and where. The CPP is known
to be NP-hard and has been studied in many contexts taking
into account delay, availability, resiliency and scalability.

In this work, we consider the CPP focusing mainly on
intercontroller availability and resiliency [2]. Resiliency can
be achieved by path protection for the more frequent link
failures and can be extended to disaster-based failures by
using geodiverse routing.
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FEDER-029312. This work was also partially supported by FCT under
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Other works have addressed the CPP for resiliency pur-
poses. In [3], the CPP is studied for intercontroller resiliency
against single link failures using path protection. The authors
consider a Steiner tree for the intercontroller routing, but do
not consider any availability guarantees nor intercontroller
delay constraints. In [4], the CPP is studied guaranteeing
“five-nines” availability for switch-controller connections.
The authors show that some switches need at least two
backup controllers to achieve the desired availability. They do
not consider any other constraints such as delay constraints.
In [5], the capacitated CPP is addressed considering resiliency
against link failures and controller loss. Each switch can
connect to more than one controller, to prevent switch-
controller connectivity loss. The problem is formulated as an
integer linear programming (ILP) model aiming to minimize
controller deployment cost, while ensuring connectivity via
controller redundancy and protection routing. However, delay
constraints are not considered. In [6], the capacitated CPP
is addressed considering switch-controller delay constraints
and guaranteeing path protection to maximize availability.
Intercontroller delay constraints are not considered, and avail-
ability guarantees are not imposed. None of these works
consider geodiversity.

In [7], geodiversity is considered between the switches and
controllers. To increase availability, several paths are gener-
ated guaranteeing geographical separation between them. The
controller locations are known and delay constraints are not
considered. In [8], the CPP is addressed where each switch is
connected to a primary controller and a backup controller with
geodiverse paths. Neither delay constraints nor availability
guarantees were considered in this work.

Our approach considers delay constraints, availability guar-
antees and geodiversity constraints simultaneously. We em-
ploy a resolution strategy inspired in our previous work [9].
In this framework, to ensure control plane performance within
desired delay constraints, we use the well-known strategy
of imposing maximum switch-controller and intercontroller
delay bounds [9]–[11]. We further assume intercontroller



availability guarantees which can be accomplished to some
extent by path protection. However, it is not always pos-
sible to achieve desired availability target values with path
protection alone [4], [12]. Therefore, we adopt the spine
concept [13], where a set of links is selected for upgrade to
have improved availability, that can be achieved by reducing
the mean time to repair (e.g. by prioritizing the repair of these
links in detriment to others) [14] or alternatively by increasing
the mean time between failures (by making the link more
robust). Furthermore, we consider geodiversity constraints to
extend resiliency to disaster-based failures [8].

A very closely related problem is our previous work [11],
where we studied a complementary problem. Therein, we
focused on availability and resiliency via geodiverse paths
between the switch-controller connections. he main differ-
ences between our previous problem and our current problem
are as follows. Firstly, in the previous problem, since every
switch must connect to at least one controller, the problem
becomes more manageable since we can use anycast routing
to model the connections, even without prior knowledge of
the controller loacations. This further allows us to assume
that the subgraph for improved availability is a spanning tree.
In our current problem, which focuses on the intercontroller
connections this cannot be assumed, making the problem
more difficult to model. Secondly, in the previous problem,
increasing the number of controllers generally leads to shorter
switch-controller paths which tends to a lower upgrade cost.
However, increasing the number of controllers may lead
to longer intercontroller paths in some cases, potentially
increasing the upgrade cost in our current problem. We
therefore expect a smaller range of trade-off solutions for the
intercontroller connections. Thirdly, to tackle the non-linear
availability constraints in our previous problem, we consid-
ered a pair of availability target values for the primary and
backup paths respectively, which were calculated to ensure
the final desired path pair availability guarantee. This strategy
is restrictive but allowed us to solve the joint optimization
problem as an ILP model.

Due to the complexity of our current problem which is
NP-complete, we consider a bi-objective heuristic approach
inspired by [9]. In this approach, the optimization problem
is divided into its constituent subproblems: (i) controller
placement; (ii) determination of a subgraph supporting the
primary paths; (iii) selection of the links in the subgraph to
be upgraded in order to achieve the path pair availability
guarantee. The approach aims to minimize two objectives:
(i) the number of controllers (so as to minimize intercontroller
communication overhead); (ii) and the link upgrade cost.

The main contribution of this paper is the bi-objective
heuristic approach inspired by [9] and adapted to include geo-
diversity. We compare the solutions for a range of geodiversity
distances and also compare them with the solutions obtained
without geodiversity imposition.

This paper is organized as follows. In Section II, we
describe the main joint optimization problem and explain
why we consider a decomposition approach to solve it. In

Section III, we present the CPP subproblem and formulate it
as an ILP model. In Section IV, we review the definition of
D-geodiversity and present the ILP model that guarantees
geodiverse routing between a pair of controllers. In Sec-
tion V, we revisit the link availability upgrade problem. In
Section VI, we describe the heuristic resolution approach.
In Section VII, the computational results are discussed and
finally in Section VIII, we draw some conclusions.

II. MAIN OPTIMIZATION PROBLEM

The main joint optimization problem addressed involves
several smaller optimization subproblems. Inherent to SDN,
we have the CPP aiming to minimize the number of con-
trollers while guaranteeing delay constraints, which is NP-
hard [1]. We assume switch-controller and intercontroller
maximum delay bounds: (i) the delay between each switch
and its primary controller cannot exceed a given value
Dsc > 0; (ii) the delay between any two controllers cannot ex-
ceed a given value Dcc > 0. Given that switches communicate
with controllers much more frequently than controllers among
themselves, we assume Dsc < Dcc. Another optimization
subproblem involves the determination of a subgraph S whose
links can be upgraded to have improved availability at a given
cost. This subgraph supports the intercontroller primary paths
and ensures that the intercontroller availability (achieved by
each pair of primary and backup paths) reaches the minimum
target λ. This problem aiming to minimize the upgrade
cost is NP-complete [13]. Hence, we have two objectives:
(i) minimizing the number of controllers and (ii) minimizing
the upgrade cost. We have a third optimization subproblem
which is guaranteeing that each pair of primary and backup
paths is D-geodiverse in order to extend resiliency to disaster-
based failures.

The NP-complete bi-objective joint optimization model can
be generally defined as:

min number of controllers

min upgrade cost

s.t.

switch-controller assignment

switch-controller and intercontroller delay constraints

geodiverse intercontroller protection routing

intercontroller availability guarantees

The switch-controller assignment constraints are non-linear
since the controller locations are not known a priori, but
can be linearized using decision variables that resort to
McCormick envelopes. In turn, the availability constraints
are also non-linear and to the best of our knowledge not
linearizable, since it involves a pair of paths. Note that
minimizing the number of controllers does not guarantee
that the upgrade cost is minimum. Therefore, we obtain a
set of solutions that represent the trade-off between the two
objectives, instead of a global optimum solution.



III. CONTROLLER PLACEMENT PROBLEM

Consider that the SDN data plane is represented by a graph
G = (N,E) where N is the set of nodes representing the
switches and E is the set of edges representing the links. Each
link is represented by its end nodes {i, j} ∈ E and has an
associated length `ij and an associated delay dij . Consider A
as the set of arcs or directed links, where each link {i, j} ∈ E
is represented by a pair of arcs (i, j) directed from i to j
and (j, i) from j to i. The delay between two nodes i and
j is proportional to the length of the path connecting them.
The controllers are placed in the network, co-located with the
switches (in-band control plane).

The CPP with delay constraints can be formulated as an
ILP model. Consider the following decision variables:
yi binary variable that is 1 if there is controller located in

node i, and 0 otherwise
The ILP model is given by:

min C =
∑
i∈N

yi (1)

s.t. ∑
j∈N :dij≤Dsc

yj ≥ 1 i ∈ N (2)

yi + yj ≤ 1 i, j ∈ N : dij > Dcc (3)
yi ∈ {0, 1} i ∈ N (4)

The objective function (1) aims to minimize the number of
controllers C, which is one of the objectives of the joint
optimization problem. Constraints (2) guarantee that for any
node i ∈ N , there is a controller placed with a delay
of at most Dsc from it. Constraints (3) guarantee that the
delay between any two controllers is at most Dcc. Finally,
constraints (4) are the variable domain constraints. Note that
Dsc directly influences the minimum number of controllers.
In turn, Dcc indirectly bounds the maximum number of
controllers that can be placed in the network.

IV. D-GEODIVERSITY

In this work, we consider path protection via a pair of
primary and backup paths between each pair of controllers.
To extend protection to disaster-based failures we also con-
sider geodiversity. It is possible to circumvent a regionally
delimited failure with a coverage diameter of at most D > 0,
by ensuring that the primary and backup paths between two
controllers are geographically separated at least D, as long as
the controllers themselves are not in the affected region. In
this way, if one of the paths transverses the affected region,
it is guaranteed that the other path does not. We adopt the
definition used in [8], that generalizes the notion in [15] to
consider link geodiversity including for the links incident to
the controllers.

Denote the geographical distance between two links
e1, e2 ∈ E as δe(e1, e2) and define it as the infimum
geographical distance between any point of e1 and any point
of e2, i.e.,

δe(e1, e2) = inf
w1∈e1
w2∈e2

δ(w1, w2) (5)

Therefore, adjacent links have zero geographical distance
between them, since they share an end node. The definition is
easily adapted to define the distance between a node n ∈ N
and a link e ∈ E, denoted as δne(n, e) and defined as the
infimum distance between node n and any point of edge e,
i.e.,

δne(n, e) = inf
w∈e

δ(n,w) (6)

Assume the controller placements are known and denote
the controller set as C, with |C| = C. Consider two controllers
c1, c2 ∈ C. The primary path pc1c2 and the backup path bc1c2
connecting both controllers are said to be D-geodiverse if any
link of pc1c2 that is not incident to c1 nor c2 is geographically
separated from any link of bc1c2 at least D, and vice-versa.
This is illustrated in Fig. 1(a). The links incident to the
controllers are considered to be special cases. Consider the
link in pc1c2 incident to c1 denoted as e1 = {c1, i} and
the link in bc1c2 incident to c1 denoted as e2 = {c1, j}.
The D-geodiversity is guaranteed here by considering that
the geographical distances between node i and link e2, and
between node j and link e1 are at least D. In other words,
the adjacent links to the controllers are D-geodiverse if each
link is geographically separated at least D of the opposite
end node of the other link, i.e., if δ′(e1, e2) defined as
δ′(e1, e2) = min{δne(i, e2), δne(j, e1)} is at least D. This
is illustrated in Fig. 1(b).

(a) (b)

Fig. 1. D-geodiverse paths between controllers c1 and c2. (a) D-geodiversity
guaranteed between the non-adjacent links of both paths. (b) D-geodiversity
guaranteed between the adjacent links incident to the controllers.

To define the geodiverse routing constraints between a pair
of controllers c1 and c2, consider the following parameters:

ζi parameter that is 1 if i = c1, -1 if i = c2, and 0 otherwise

and the following decision variables:

xc1c2ij binary variable that is 1 if arc (i, j) ∈ A belongs to the
primary path between c1 and c2

uc1c2ij binary variable that is 1 if arc (i, j) ∈ A belongs to the
backup path between c1 and c2

Moreover, consider set Pc1c2 as the set of incompatible link
pairs w.r.t. D-geodiversity between c1 and c2. Then Pc1c2
includes the pair of links e1, e2 ∈ E not incident to c1 nor c2
such that δe(e1, e2) < D. It also includes the pairs of adjacent
links e1, e2 ∈ E such that the common end node is either c1
or c2 and δ′(e1, e2) < D.

Since the path availability depends inversely on its length
(as will be explained in Section V), we are interested in
finding the pair of paths between c1 and c2 such that they
are D-geodiverse and such that the sum of their delays is



minimum. So the following ILP model is solved for each
pair of controllers c1, c2 ∈ C:

min
∑
{i,j}∈E

dij(x
c1c2
ij + xc1c2ji + uc1c2ij + uc1c2ji ) (7)

s.t.∑
j∈V (i)

(xc1c2ij − xc1c2ji ) = ζi i ∈ N (8)

∑
j∈V (i)

(uc1c2ij − uc1c2ji ) = ζi i ∈ N (9)

∑
{i,j}∈E

dij(x
c1c2
ij + xc1c2ji ) ≤ Dcc (10)

xc1c2ij + xc1c2ji + uc1c2ij + uc1c2ji ≤ 1 {i, j} ∈ E (11)
xc1c2ij + xc1c2ji + uc1c2lk + uc1c2kl ≤ 1

{{i, j}, {l, k}} ∈ Pc1c2 (12)
xc1c2ij , uc1c2ij ∈ {0, 1} (i, j) ∈ A (13)

The objective function (7) of this subproblem minimizes the
total delay of the primary and backup paths. Constraints (8)
and (9) guarantee a primary path and backup path between
c1 and c2, respectively. Constraint (10) guarantees that the
primary path satisfies the intercontroller delay constraint; this
constraint is relaxed for the backup path since it must be D-
geodiverse with the primary one and so if necessary may
have a longer delay (but the objective function avoids it
being longer than necessary). Constraints (11) ensure that
the paths are link disjoint. These constraints are needed
to complete (12) that together ensure that the primary and
backup paths are D-geodiverse. Note that considering D = 0
makes these constraints inactive, reducing the model to simply
guarantee link-disjoint path protection. In this case, there
is still, in general, some geographical separation between
the paths. Finally, constraints (13) are the variable domain
constraints.

If D is too large, it may not be possible to guarantee
the desired geodiversity between certain pairs of controllers.
For each pair of controllers c1, c2 ∈ C, there is a maximum
geographical distance Dc1c2

max beyond which we cannot guar-
antee a greater geodiversity of the path pair. These distances
can be determined in advance by solving an optimization
problem [16]. In those cases, we consider the geodiversity
distance to be D′c1c2 = min{D,Dc1c2

max}.

V. LINK AVAILABILITY UPGRADE

For the sake of self-containment, in this section we revisit
the link availability upgrade model already presented in [9].

The intercontroller availability is determined by the avail-
ability of the primary and backup path pairs. We impose that
each pair of paths must have an availability of at least λ.
In general, the target availability cannot be achieved without
link upgrade. Consider a subgraph S to support the primary
paths and whose links can be upgraded to have improved
availability at a given cost.

Consider that each link {i, j} ∈ E has a default availabil-
ity α0

ij that depends on its length `ij (see details in [11]).

Assume that each link of S can be upgraded incrementally
up to κ levels, where in each level the link unavailability
is decreased by a factor of ε ∈ (0, 1). Therefore, the
link upgrade availability in level k = 1, ..., κ is given by
αkij = αk−1ij + ε(1− αk−1ij ), at a cost given by [13]:

ckij = −`ij · ln

(
1− αkij
1− α0

ij

)
k = 1, .., κ (14)

The cost function increases exponentially as the link is
upgraded to the next level.

The availability of a path is given by the product of the
availability of its elements (links and nodes). To simplify
the model, we consider only the link availabilities, i.e., the
node availabilities are considered to be 1. Although this is
not totally realistic, it is known that the node availabilities
are typically much higher than the link availabilities [17].

Denote the primary and backup path availabilities between
controllers c1 and c2 as Ac1c2p and Ac1c2b , respectively. Then
the availability guarantee for that path pair is expressed as

1− (1−Ac1c2p )(1−Ac1c2b ) ≥ λ (15)

Since S supports the primary paths and its links are subject
to upgrade, the link availability improvement will be reflected
in the primary paths. Note that, however, some backup paths
can use links of S as long as the D-geodiverse constraints
are satisfied. Consider that the set of primary paths obtained
by the ILP model (7)-(13), between each pair of controllers,
forms the subgraph S. In other words, subgraph S is set of
links defined by S = {{i, j} ∈ E : xc1c2ij = 1, c1, c2 ∈ C}.

In the case where geodiversity is relaxed, i.e. D = 0,
we simply have link-disjoint path protection. This case was
studied in [9] where we considered S as the set of links of
the shortest paths or as a Steiner tree. We also considered
a downgrade level for link availability that is not considered
here.

To ensure the availability guarantees, consider the default
availability of the backup path bc1c2 which is given by
(see [11] for details):

Ac1c2b =
∏

{i,j}∈bc1c2

α0
ij (16)

and can be linearized in the following way:

log(Ac1c2b ) =
∑

{i,j}∈bc1c2

log(α0
ij) (17)

Then, the necessary availability of the primary path pc1c2 to
ensure (15) is given by:

Ac1c2p =
λ−Ac1c2b

1−Ac1c2b

(18)

Hence, the optimization subproblem to select the links of S
for upgrade can be formulated as an ILP model. Consider the
following decision variables:
zkij binary variable that is 1 if link {i, j} ∈ S is in level k,

with k = 0, 1, ..., κ, and 0 otherwise



The ILP model is then given by:

min
∑
{i,j}∈S

κ∑
k=1

ckijz
k
ij (19)

s.t
κ∑
k=0

zkij = 1 {i, j} ∈ S (20)

κ∑
k=0

∑
{i,j}∈pc1c2

zkij log(α
k
ij) ≥ log(Ac1c2p ) c1, c2 ∈ C (21)

zkij ∈ {0, 1} {i, j} ∈ S, k = 0, 1, ..., κ (22)

The objective function (19) minimizes the cost of upgrading
the links of S, and is the other objective function of the main
joint optimization problem. Constraints (20) guarantee that
each link {i, j} ∈ S is either not upgraded (k = 0) or is
upgraded to one of the levels k = 1, ..., κ (it cannot be in
more one level simultaneously). Constraints (21) guarantee
that the primary paths have the necessary availability Ac1c2p .
The path pair availability constraints (15) are not linearizable,
but using the approach in (16)-(18), it is possible to linearize
only the primary path availability constraints (21). Finally,
constraints (22) are the variable domain constraints.

VI. RESOLUTION STRATEGY

Since the main optimization model is impractical to solve
(as explained in Section II), we employ an iterative decompo-
sition approach where its constituent subproblems are solved
sequentially in each iteration. This heuristic strategy is defined
as follows:

(i) The CPP is the first subproblem to be solved using the
ILP model given by (1)-(4), obtaining a set with the
minimum number of controllers.

(ii) Once the controller placement is obtained in step (i), the
intercontroller D-geodiverse path pairs are determined
using the ILP model given by (7)-(13), which is solved
for each pair of controllers.

(iii) Finally, S is defined as the set of links belonging to
the primary paths obtained in step (ii). The ILP model
given by (19)-(22) is solved, returning the minimum
upgrade cost for S.

Then the approach goes back to the CPP in step (i) to
determine a new set of controllers C, by adding constraints
that remove the previously obtained controller sets from the
search space. Assume that Cmin is the minimum number of
controllers given by the ILP model (1)-(4). Consider that the
set of controllers γ1, ..., γCmin was obtained. To obtain a new
set of controllers, the additional constraint

yγ1 + · · ·+ yγCmin
≤ Cmin − 1 (23)

is added to the ILP model. A similar constraint is added
for each previously obtained controller set with Cmin con-
trollers. Eventually, the new set of controllers will have an

incremented number of controllers C = Cmin + 1, in which
case, the set of constraints (23) changes to∑

i∈N
yi ≥ C (24)

yγ1 + · · ·+ yγC ≤ C − 1 (25)

Constraint (25) is added for each previously obtained con-
troller set with C controllers. The set of constraints is updated
accordingly as C is incremented.

The subproblems are solved sequentially obtaining an up-
grade cost for each controller set. The best trade-off solutions
are stored. A best trade-off solution sol is such that if any
other solution has a smaller number of controllers then its
cost is greater than that of sol, and vice-versa. The process is
repeated until one of the following stopping criteria is met:
(a) The upgrade cost is zero, i.e., the objective function (19)

is zero meaning that no links of S needed to be up-
graded. Since the controllers sets are generated with non-
decreasing C in the CPP model, there cannot be any new
solution with a lower cost and a lower C, so the heuristic
can be stopped.

(b) The CPP model becomes infeasible meaning that all con-
troller sets satisfying Dsc and Dcc have been obtained.

(c) A given maximum number M of consecutive solutions
are generated that do not improve the upgrade cost. This
criterium is useful when the CPP search space is too
large and the zero upgrade cost is not achievable.

In Fig. 2, the cost266 network from SNDlib [18] is
illustrated for given maximum Dsc and Dcc values. The
best solutions obtained for C = 2 controllers are shown for
link-disjoint path protection D = 0 (top network), and with
geodiversity D = 260 km (bottom network).

The two controller locations are represented as red circles.
The primary path is represented in red and the backup path in
blue. The primary path has all its links upgraded in order to
achieve λ = 0.99999, known as “five-nines” availability [4].

We considered κ = 4 levels of upgrade where ε = 0.5. In
the top network, one link is upgraded to level k = 3, while the
remaining three are upgraded to k = 4 (thicker links), with
a cost of 1402.7. In this case although geodiversity is not
imposed, the path pair is geographically separated 144 km
(the pair of edges inducing this separation is shown in the
graph by the arrows). In the bottom network, the geodiversity
guarantee is of 260 km, making the paths quite long. So to
achieve λ, all seven links composing the primary path are
upgraded to level k = 4, with a cost of 2617.8. The maximum
path geodiversity possible between this pair of controllers
Dc1c2

max is of 281 km which is greater than 260 km, meaning
that the geodiversity of 260 km is indeed guaranteed.

VII. COMPUTATIONAL RESULTS

For our computational results, we considered the following
networks: polska and cost266 from SNDlib [18], and spain
from [19]. The topological characteristics of the networks are
summarized in Table I, which shows the number of nodes,
the number of edges, the average node degree and the graph



Without geodiversity constraints

With geodiversity constraints: D = 260 km

Fig. 2. The best solutions for cost266 network with C = 2 without
geodiversity constraints (top) and with geodiversity D = 260 km (bottom).
The two controller locations are shown with red circles; the primary path is
shown in red with upgraded links; the backup path is shown in blue.

diameter Dg (longest shortest path between any two nodes)
for each network.

TABLE I
TOPOLOGICAL CHARACTERISTICS OF THE NETWORKS

Network #nodes #links avg deg Dg [km]
polska 12 18 3.00 811
spain 14 22 3.14 1034

cost266 37 57 3.08 4032

The heuristic approach was implemented in C/C++, using
CPLEX 12.9 Callable libraries for solving the ILP models.
The computational results were obtained on an Intel Core i7
laptop with 8 GB of RAM, running at 2.9 GHz.

The maximum delay values Dsc and Dcc are given as
percentages of the graph diameter Dg [1], [10], [20]. Two
sets of values were considered: set D1 where Dsc = 0.40Dg

and Dcc = 0.70Dg; and set D2 where Dsc = 0.45Dg

and Dcc = 0.75Dg . For the link upgrade, we consider
κ = 4 levels of upgrade with ε = 0.5, and consider the
intercontroller availability target of “five-nines” λ = 0.99999.

For geodiversity, we considered values between 100 km
and 260 km with steps of 40 km in-between, i.e., D =
{100, 140, 180, 220, 260} in km. We compare the results for

the different geodiversity values and also consider the case
when D = 0. Furthermore, we also consider the case when
S is the set of shortest paths between controllers (as done
in [9]) and compare the results with those for D = 0, since
in general the path pairs may be different. When D cannot be
guaranteed between some pair of controllers c1 and c2, then
Dmax
c1c2 is considered.
The trade-off solutions for C and the upgrade cost are

shown in Fig. 3 for polska, Fig. 4 for spain and Fig. 5 for
cost266. The top chart refers to the set of delay bounds D1,
while the bottom chart refers to the set D2. We note that in all
the tested cases the trade-off solutions obtained with D = 0
are the same as those obtained with the shortest paths.

For polska (Fig. 3) with set D1 of delay bounds (top chart),
we have obtained a global optimum with Cmin = 3 for
the different values of D. When geodiversity is not imposed
(D = 0), we obtain the ideal global optimum of zero upgrade
cost (blue circle). When imposing D = 100 km the cost is
increased to 85.2 (green diamond), and when D = 140 km
the cost is further increased to 111.7 (orange triangle). From
140 km onwards Dmax

c1c2 was considered for most controller
pairs, and therefore, there is no cost increase.

Fig. 3. Trade-off solutions between the number of controllers (x-axis) and
the upgrade cost (y-axis) for polska

Considering set D2 of delay bounds (bottom chart), we
have two trade-off solutions for the different values of D. In
all cases, there is the zero cost solution with C = 3 meaning
that despite the geodiversity imposed having 3 controllers is
enough to ensure the target availability λ. There is also a
trade-off solution for Cmin = 2. When D = 0 the cost of this
solution is 274.9 (blue circle), which is the same for D = 100
km (since the path pairs for D = 0 are already geographically



separated slightly more than 100 km). When D = 140 km the
cost is increased to 360.0 (orange triangle) and is the same for
D = 180 km. From 180 km onwards Dmax

c1c2 was considered
(so there is no change in the cost).

For spain (Fig. 4) with set D1 of delay bounds (top chart),
we have obtained two trade-off solutions for D = 0 which
are the same for D up to 140 km: one for Cmin = 4 with a
cost of 1031.4 and one for C = 5 with a cost of 771.5 (blue
circles). When D = 180 km the cost of C = 5 is increased
to 1713.6, making it no longer a trade-off solution (outlined
orange triangle), because we have a solution for D = 180
km with C = 4 and cost 1031.4 (orange triangle overlapping
blue circle). From 180 km onwards Dmax

c1c2 was considered.

Fig. 4. Trade-off solutions between the number of controllers (x-axis) and the
upgrade cost (y-axis) for spain (filled-in markers indicate trade-off solutions,
while outlined ones indicate they are no longer trade-off solutions)

Considering set D2 of delay bounds (bottom chart), we
have obtained a global optimum with Cmin = 3 for the
different values of D. When D = 0 up to 100 km, we obtain
the ideal global optimum of zero upgrade cost (blue circle).
When imposing D = 140 km the cost is increased to 530.3
(orange triangle). Imposing higher geodiversity distances does
not affect the upgrade cost, although Dmax

c1c2 is only considered
from 220 km onwards.

For cost266 (shown in Fig. 5) with set D1 of delay
bounds (top chart), we have obtained a global optimum with
Cmin = 2 for the different values of D. When D = 0
the cost of this solution is 4136.1 which is the same up to
D = 220 km (blue circle). Imposing D = 260 km the cost
increases to 5173.9 (orange triangle). There was no need to
use Dmax

c1c2 , since D could be guaranteed for all path pairs.
This case is the one illustrated in Fig. 2 where for D = 0 the

path pair is geographically separated 144 km. When imposing
geodiversity up to 220 km the best solution is with the same
primary path and same upgraded link levels, although the
backup path changes to ensure the desired geodiversity, but
still guaranteeing the path pair availability of at least λ. When
imposing D = 260 km both paths need to change increasing
the upgrade cost.

Fig. 5. Trade-off solutions between the number of controllers (x-axis) and
the upgrade cost (y-axis) for cost266

Considering set D2 of delay bounds (bottom chart), we
have also obtained a global optimum with Cmin = 2 for the
different values of D. When D = 0 the cost of this solution
is 1402.7 (blue circle) which is the same up to D = 220
km (because of a similar behaviour as the previous case).
Imposing D = 260 km the cost increases to 2617.8 (orange
triangle). There was no need to use Dmax

c1c2 .
Finally, Fig. 6 shows the runtimes of the heuristic approach

for the two sets D1 and D2 and for the three networks. The
runtimes are shown for the different values of D and also
when S is the set of shortest paths (for the case without
geodiversity imposition). At first glance, the runtimes of the
heuristic for the shortest paths are much smaller, significantly
highlighted for the two larger networks. This is expected since
the shortest paths are obtained much more efficiently than
solving the ILP model (7)-(13) with D = 0.

For polska and spain, the runtimes are higher for set D2 of
delay bounds since the search space of the CPP sets increases
significantly in relation to D1, while for cost266 the search
space does not increase so much. Moreover, the runtimes
for the different values of D do not change significantly,
meaning that the complexity of the ILP model for finding
a pair of geodiverse paths is not particularly sensitive to D.



Fig. 6. Runtimes (in seconds) for he heuristic approach with different values
of D and for the shortest paths

The runtimes are higher for the larger network, as expected,
but still below 14 seconds.

VIII. CONCLUSIONS

In this paper, we presented the bi-objective optimization
problem aiming to minimize both the number of controllers
and the upgrade cost, while dealing with delay, availability
and geodiversity constraints. Due to its complexity we have
proposed a heuristic approach inspired by our previous work
and adapted to include geodiversity. The best trade-off solu-
tions were obtained and discussed.

The computational results show that the best trade-off
solutions for D = 0 are the same as using the shortest
paths for the primary paths, although in general this may
not happen. As expected, the runtimes for the shortest paths
are much lower. Moreover, when D = 0 and geodiversity is
not imposed the path pairs are nevertheless separated by some
distance D′, meaning that the solution is valid for geodiversity
values up to D′. It can still be valid for greater geodiversity
values if only the backup paths need to change to satisfy
the constraints. In the case, where the paths do change to
accommodate the necessary geodiversity, the upgrade cost
will increase because the paths will be longer. We note that,
based on our previous work [9], the cost for the case without
geodiversity imposition can be lower if trees are used instead
of the shortest paths.
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