FACULTY OF_SCIENCES AND CHNOLOGY
OF THE UNIVERSITY OF COIMBRA

INFORMATICS ENGINEERING
2015/2016

DISSERTATION (MSC)

Assessing the Behaviour of Service
Applications in the Presence of
Poor Quality Data

Supervisors:
Prof. Nuno Laranjeiro
Prof. Jorge Bernardino

Seyma Nur Soydemir
seyma@student.dei.uc.pt

2nd September 2016

FACULTY OF _SCIENCES AND TECHNOLOGY
OF THE UNIVERSITY OF COIMBRA

INFORMATICS ENGINEERING
2015,/2016

DISSERTATION (MSc)

Assessing the Behaviour of Service
Applications in the Presence of
Poor Quality Data

Supervisors:
Prof. Nuno Laranjeiro
Prof. Jorge Bernardino

Seyma Nur Soydemir
seyma@student.dei.uc.pt

Jury:
Main Opponent: Prof. Edmundo Monteiro
Opponent: Prof. Raul Barbosa

2nd September 2016

ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisors, Prof. Nuno Laranjeiro
and Prof. Jorge Bernardino, for the support provided during this master thesis,
without which I would not have been able to reach this point. Furthermore, I
would like to thank my family for the opportunity that they gave me to study
abroad, and the support throughout these years.

Also, I would like to thank my friend Frederico Cerveira who helped me
during my last years and was always available to give his opinion regarding my
work. I wish also to thank all my friends that made my stay in Coimbra more
pleasant, in particular to Ivano Alessandro Elia, Konstantia Barbatsalou and
Carlos Cortinhas. This accomplishment could not have been possible without
the support of many different people, too many to enumerate, to whom I whole-
heartedly thank their assistance.

- Seyma Nur Soydemir

Resumo

As aplicagbes baseadas em servigos constituem a base de muitas organizagoes,
devido a sua aptidao para suportar as mais variadas tarefas que contribuem para
o funcionamento da organizagao. Por esta razao, a confiabilidade das aplicagoes
baseadas em servigos afectam directamente o sucesso da organizacao, e podem
causar danos financeiros e de reputagdo em caso de avaria.

As aplicagoes baseadas em servicos normalmente recorrem a sistemas de
bases de dados para fornecer o seu servigo. Com o envelhecimento do sistema,
erro humano e falhas ambientais, entre outros, os dados armazenados estao
susceptiveis a perda de qualidade, e a partir daf ficando incorrectos. Um prob-
lema potencialmente grave consiste no uso dos dados pelas aplicagoes baseadas
em servigos sem que estes tenham sido verificados, o que pode causar avarias
capazes de afectar a propria organizagao.

Atualmente, os sistemas de gestdo de bases e dados disponibilizam véarias
ferramentas que ajudam a garantir a qualidade dos dados, ao nivel da base de
dados, no entanto, uma aplicacao baseada em servigos que seja bem desenvolvida
deve ser resistente independentemente dos componentes de que faz uso.

Durante esta tese, uma abordagem que permite a avaliagdo do comporta-
mento de uma aplicagao baseada em servigos sob o efeito de dados com baixa
qualidade foi desenvolvida. A abordagem consiste em interceptar os dados que
vém da base de dados para a aplicagao, e modificar esses dados de acordo com
uma mutacao, que é escolhida a partir de uma lista de mutagoes que represen-
tam problemas de qualidade de dados reais. Uma ferramenta que implementa
esta abordagem foi desenvolvida, e, de seguida, foram efectuadas experiéncias
que resultaram na descoberta de varios bugs de software numa famosa aplicagao
de codigo livre, a par de uma classificacao do seu comportamento.

Abstract

Service applications constitute the core of many organizations, due
to their aptitude to support the most varied tasks that contribute to the
operation of the organization. For this reason, the dependability of service
applications directly affect the success of the organization, and can cause
financial and reputation damages in case of failure.

Service applications often resort to database systems to fulfill their
purpose. With the aging of the system, human errors and environmental
faults, among others, the stored data is susceptible to the loss of quality,
thereafter becoming incorrect. A potentially serious problem occurs when
this data is used by the service applications without previous verification,
which can cause business-damaging failures.

Nowadays, database management systems provide several tools that
help ensure data quality, at the database-level, however, a well-designed
service application must be robust independently of the quality of the
data that it receives.

During this thesis, an approach has been developed to allow the eval-
uation of the behaviour of a service application under the presence of
poor data quality. The approach consists in intercepting the data coming
from the database to the service application, and modifying it according
to a type-specific mutation, which is chosen from a list of mutations that
represent real data quality problems. An usable tool that implements
the proposed approach was developed, and experiments were conducted,
which resulted in the discovery of several software bugs in a well-known
open-source application, along with a classification of its behaviour.

Keywords. Service application, dependability, poor data quality, testing, DBMS

Contents

1__Introductionl 1
[2_State of the Artl 5
2.1 Data Quality]o 5
2.1.1 Concepts of Data Quality|] 5

[2.1.2 Impacts of Poor Data] 6

2.1.3 ata Quality Dimensions| 8

2.1.4 Classification of Data Quality Problems| 10

2.2 Software Testing| L oo 13
2.2.1 Testing Service Applications|. 14

2.2.2 Automation Tools for Testing| 17

3 Approach 23
3.1 General Approach| o 0oL, 23
[3.2 _Implementation of a Poor Data Injector| 27
3.3 entifying Data Quality Problems| 31
B.4 Failure Classification| 36

4 __Experimental Evaluation| 39
.1 xperimental Setup| oo 39
B2 TestCases . . o o v v v v oo 40
4.3 Description of Experiments| 41

[Results and Analysis] 45
bl Overviewofresults| 45
.2 Service application behaviour| L0000 46
.3 Sottware defects uncovered during experiments| 52
[5.4 Distribution of exceptions| 60
5.0 Statistics regarding the experiments| 65
.6 Guidelines for robustness against poor data quality] 67

6 __Conclusions and Future Workl 69
6.1 Overall viewl. 69
6.2 Future Workl 69

A ppend 79
IA_Data Mutation Tables| 79
IB Activity Diagrams of Test Cases| 87
|IC Survey paper on Data Quality| 95

ID Conference paper| 107

List of Figures

11 General workflow to study service applications using poor quality |

Cdatal - oo 23
12 Usual Scenario of a Service Application| 24
] The three phases that make up an experiment run| 25
4 Scenario with a Service Application and our Data Mutation Tool 26
15 Basic algorithm of the Data Mutation Tool| 27
16 How the Data Mutation Tool integrates into the JDBC flow| . . . 30
|7 Activity Diagram for Test Case b - Create Product| 42
18 Flow of an experiment| 43
19 Example of a disabled button, during a Silent failure mode| . . . 52
10 Error message with shortcomings at the Design levell 56
11 rror message with shortcomings at the Security level] 56
IB.1 Activity Diagram for Test Case 2 - Create Organization| 88
IB.2 Activity Diagram for Test Case 3 - Create User| 89
IB.3 Activity Diagram for Test Case 4 - Create Role] 90
[B.4 _Activity Diagram for Test Case 5 - Create Product] 91

.5 Activity Diagram for Test Case 6 - Delete Product| 92
IB.6 Activity Diagram for Test Case 7 - Update Product| 93

IB.7 Activity Diagram for Test Case 8 - Export Product Categories to |

Spreadsheet| Lo Lo 94

List of Tables

1 Overview of different classifications for data dimensions| 9
12 Comparison of Automation Tools| 20
13 Mapping between our seli-defined groups, JDBC types and Java |
.................................. 31
4 Data Quality Problems mapped into Dimensions| 33
15 Mutations for String data types|. 35
16 Hardware and Software characteristics of the Experimental Setup| 40
|7 Test Cases and how they fit in the CRUD model] 41
18 Behavioural analysis of Openbravo according to adapted CRASH |
Cscald . o 46
9 Software bugs found in the service application|. 53
10 Software bugs found in the service application (Cont) 54
[[1__Classification of Software Defectsl 60
112 Exceptions that Openbravo threw during the experiments| 61
114 Amount of mutations grouped per data type| 65
[13__ Relation between kixceptions and other attributes|. 66
[[F__Number of Tuns for each test casel. 67
116 Amount of mutations performed in each Test Casel 67
|A.1 Mutations for Integer data types| 79
|A.2 Mutations for Time data types| 80
IA.3 Mutations for Date data types| 81
|A.4 Mutations for Timestamp data types| 82
|A.5 Mutations for Boolean data types|. 83
|A.6 Mutations for Decimal data types|. 83
|A.7 Mutations for Double data types| 84
IA.8 Mutations for Binary data types| 85
[A.9 Mutations for Object data types| 85

.10 Mutations for Reterence data types|. 86

List of Acronyms

ANSI
API
BSD
CRM
CRUD
DB
DBMS
DOM
ERP
ID
IEEE
ISO
Java EE
JDBC
JDO
JPA
JSON
JSP
LADC
LOC
MRP
OoDC
ORM
PDF
PoC
PRDC
RDFS
SDC
SOAP
SQL
WSDL
XML

American National Standards Institute
Application Program Interface

Berkley Software Distribution

Customer Relationship Management

Create Read Update Delete

DataBase

DataBase Management System

Document Object Model

Enterprise Resource Planning

IDentifier

Institute of Electrical and Electronics Engineers
International Organization for Standardization
Java Enterprise Edition

Java DataBase Connectivity

Java Data Objects

Java Persistence API

JavaScript Object Notation

JavaServer Pages

Latin-American Symposium on Dependable Computing
Lines Of Code

Material Requirements Planning

Orthogonal Defect Classification

Object Relational Mapping

Portable Document Format

Proof of Concept

Pacific Rim International Symposium on Dependable Computing
Resource Description Framework Schema
Silent Data Corruption

Simple Object Access Protocol

Structured Query Language

Web Service Definition Language

EXtensible Markup Language

1 Introduction

The increasing usage that service applications see in all kinds of organizations,
driven by their affinity and success in the most varied roles, such as providing
an easy-to-use, streamlined platform for client-to-company communication and
internal use, makes them an important piece in the success of the business. The
dependability of a service application now impacts the overall success of the
company, in the sense that a failure can bring sizable losses both financially and
in reputation.

Service applications, sometimes deployed as web applications, require testing
to ensure their dependable behaviour. These applications usually interact with
libraries, databases and the user to provide their service. Often the reason
behind the existence of a software bug is that the software developers did not
consider the possible problems that can arise when communicating with these
components, be it a user providing incorrect content or a library not performing
its intended function, both of which can cause the existence of poor data quality
in the system.

The widespread usage of databases by service applications increases the prob-
ability of software bugs, in part because of an higher amount of lines of code
(LOC) needed to implement this functionality [1I, 2], and also because of a new
external source of potentially unsafe and incorrect data. In fact, poor, invalid
data inside a database is always a possibility, either because of a hardware fault
that corrupts the data [3], a software fault in the myriad of code that lives in
the path between the user and the database [4], or because the user has, in-
tentionally or not, introduced incorrect data that is able to pass the validation
checks that might have been implemented [5].

For all these reasons, a truly robust software application must not rely on the
assumed reliability of other software components that it must interact with. If
this is the case, then, whenever the expected level of reliability is not provided by
the other components, the software application is able to continue its operation
unaffected, or in the worst case, to detect the error and terminate in a clean
mode.

Of the various components that can be harnessed by service applications,
databases are the most common and a key part in storing and retrieving data
that is essential to their function. Fortunately, database management systems
(DBMSs) have improved in the last years, and now all of the big players feature
tools that allow the user to establish rules and control data quality. Among
these features we can count not-null and foreign key constraints, triggers and
even stored procedures. Nevertheless, once again a well-designed and reliable
service application must be independent of the external components that it de-
pends on. The truth is that as with any other components, software, hardware
and operator faults are an ever-present threat. Furthermore, a decoupling from
the DBMS being used allows a wider range of choice, where criteria such as per-
formance, ease-of-use, familiarity and dependability can be balanced according
to the user’s needs.

Functional and non-functional testing of service applications and other soft-

ware products is an already common practice in modern software development.
Although this fast-paced cycle leads programmers to disregard non-functional
testing in favor of functional testing, recently, interest has been shown in us-
ing fault injection to test performance, availability and recovery time under the
presence of faults [6], or the security of the application [7]. However, little at-
tention has been given to testing the robustness of such applications to invalid
and incorrect input coming from the database, despite industry reports showing
that developers often trust the correctness of the data being handled by their
application, and when that assumption is wrong, big financial losses might occur
due to the presence of poor quality data.

This thesis directly addresses the need for a way to study the robustness
of service applications in the presence of poor quality data. We develop an
approach capable of testing a service application under the presence of poor
data quality, such as would happen if, for any reason (e.g., hardware, software,
incorrect content provided by the client), the data stored in the DBMS is of
poor quality (i.e., not fit for use). This approach works by mutating the content
coming from the database to the service application (e.g., via JDBC), according
to a predefined set of rules, and then analyzing the behaviour of the application.
To verify the effectiveness of this approach, a tool was developed and an initial
experimental evaluation was undertaken using a well-known open-source service
application. The fault model (i.e., the mutation tables for each data type) used
with the tool was designed after a throughout analysis of the state of the art
in the area of data quality and data problems that occur regularly. As proved
during the experiments, our approach is capable of uncovering programming
bugs not only in the service application itself, but also in middleware libraries.
Nevertheless, the main purpose of our approach is to classify the behaviour of
the application according to a predefined scale (e.g., CRASH scale).

During this thesis our work produced several contributions to the field, in
particular:

e A comprehensive survey about data quality, including the importance of
data quality and data quality dimensions and problems. It culminated in
the study of data mutations that are representative of what occurs in the
real world.

e Using an already existing basis, refined an approach for mutating data
that comes from database to service application, and implemented it into
a usable tool.

e Analysis of the behaviour of a well-known service application in the pres-
ence of mutated data, which also allowed to assess the effectiveness and
usefulness of the proposed approach and tool in performing their goals.

Several outputs were created as the result of the thesis, in particular:

e A data quality survey that was submitted and presented in a top confer-
ence in the area of Dependable Computing (PRDC 2015).

e A practical experience report that was submitted to a conference, Latin-
American Symposium on Dependable Computing (LADC 2016), and has
since then been accepted (at the moment, a camera-ready version is being
prepared for delivery).

e A freely available fault model containing mutations that are representative
of data quality issues.

e A tool, including source-code, available online and capable of intercepting
the JDBC calls between service application and database, and mutating
its content according to the previous fault model. This tool rigorously
implements the approach presented in this thesis, and was used to perform
the experimental evaluation.

The rest of this thesis is structured as follows. In the following section, the
state of the art of the topics that are related to the core theme of this thesis are
presented. In Section [2] a review of the state of the art in the areas perpendic-
ular to the topic of this work is given. In Section [3] the developed approach is
presented and discussed. Section [4] has a more thorough description of the ex-
perimental setup that was used in our experimental evaluation, including details
about the implementation of the tool and the test cases that were designed to
test the service application. In Section [f] the results of the experimental evalua-
tion are presented, including a listing of the software bugs that were uncovered,
a classification of the application behaviour, and a set of guidelines to prevent
the occurrence of the various programming bugs that were reported. Finally,
Section [6] contains the conclusion of this thesis, and sets the plan for the future
work.

2 State of the Art

In this section, the state of the art of the areas related with this work is pre-
sented. The literature review of this thesis is grouped in two main groups of
research: Data Quality, particularly the impacts and problems caused by poor
data quality, which provides the validity and justification for testing a service
application using poor data, and Service Application Testing, where an intro-
duction is given to the various kinds of testing of software applications, with
a special emphasis to testing service applications. Furthermore, a presentation
and comparison of automation tools is included, fueled by the need of such tool
in our experimental evaluation and the overall usefulness that automation tools
have in real world testing.

2.1 Data Quality

The interest and value that data has acquired in an array of areas, such as statis-
tics, data mining, and big data, where it plays a key part supporting in their
existence, increases the demand for data quality. In other words, organizations
strive to possess data with the highest possible quality, in order to maximize the
return from their processes. Incidentally, poor data quality can have disastrous
consequences and must therefore be taken very seriously.

In this section, a detailed overview regarding the state of the art in Data
Quality is provided, which includes the concepts, the impacts of poor data, data
quality dimensions, data quality problems and, finally, as a link with the main
topic of this thesis, data quality in service applications.

As a side note, the terms used by each author to identify the concepts of
data quality (e.g., data quality dimensions, data quality problems) by them
proposed are also used in this section (and sub-sections), but are not modified
(i.e., the names of the concepts are used as they appear in the original papers
where they were first presented), otherwise the original essence of their work
would risk being damaged.

2.1.1 Concepts of Data Quality

Data quality can be defined in many diverse ways as is deeply described in [§].
In ISO 9000:2015 [9] it is defined as "the degree to which a set of characteristics
of data fulfills requirements". Data quality takes into consideration whether
data meets implicit or explicit expectations of data users [10], such as why data
is needed and if it can be used as intended. Therefore, high quality data is
"data that is fit for use by data consumers" [11]. Data quality dimensions guide
the process of evaluating data quality. These dimensions are attributes that
represent "a single aspect or construct of data quality" [12].

According to the above definitions, poor data quality can be defined as the
the amount to which the properties of data do not fulfill their requirements. By
not fulfilling all the requirements in order to be fit for use by data consumers, it

is prone to cause impacts that can affect the entities involved (e.g., a company
or a customer).

2.1.2 Impacts of Poor Data

To comprehend the importance of data quality, one must focus on the impacts
of poor data. The literature presents different categorizations of data quality
impacts. To understand and improve the data quality, Wang and Strong [12]
focused on the meaning of data quality from the consumer’s perspective and
noted the substantial social and economical impacts of poor data. There is
strong evidence that data quality problems affect many organisations [I3]. It
causes loss of profit, because profit is related with providing customers’ needs
and poor quality data hinders this service.

The awareness of poor data quality that enterprises should possess was taken
into consideration when classifying the impacts that are presented in [14], which
can be classified as Operational, Tactical or Strategic [14]. Enterprises provide
many services to the customers and carry out internal processes that ensure the
well-functioning of the organization. While executing these operations, poor
quality data may cause unexpected problems, referred to as Operational impacts,
which ultimately will affect the effectiveness of these operations. Furthermore,
in the everyday life of a company, many decisions must be taken which guide
the future of the organization. These decisions are strongly based on the data
that is available to the decision-makers (e.g., CEO). Therefore, if this data is
of poor quality, the strategic decisions will suffer significantly, leading to severe
consequences. These consequences, called as Tactical Impacts, can range from
planned improvements that are impossible to be put into effect, to crippled
services and, at a higher level, lower trust in the ability of the organization.
Finally, companies need a well-defined strategy that defines their future plans
and ensures the success of the organization. The existence of poor data leads to
Strategic Impacts, which can be inaccurate decisions when defining the strategy
and difficulties in the execution of these strategies.

A straightforward approach to analyse the degree to which poor data quality
limits business success depends on the categorization of business impacts, as is
presented in [I5]. These negative impacts that affect businesses can be grouped
into Financial, Confidence and Satisfaction-based, Productivity and Risk and
Compliance. Financial impacts are the result of poor data in businesses at the
financial level. Poor data causes unexpected cost in the operation of the enter-
prise and decreases the income, and may even cause extra charges. Confidence
and Satisfaction-based impacts occur when poor data affects the main areas of
the enterprise, such as decision making or reporting, and as an outcome the loss
of organizational trust and satisfaction ensues. Productivity impacts occur when
poor data directly affects the performance of the processes needed to ready a
product, for example affecting the product quality or processing time. Risk and
Compliance impacts results from poor data causing the enterprise to disobey
certain rules (e.g., laws, company policies, standards), or to mis-evaluate the
risk taken when performing a certain investment or acquiring credit.

Even if all these impacts belong to different areas and are classified in differ-
ent ways, they all inevitably lead to higher costs for organizations. Managing
data quality comes with its own costs, which must be assessed and compared
to the potential loss due to damaged data [I6]. Data warehouses’ projects fail-
ures are often related with poor quality data, such as not being able to relate
data coming from different sources, having missing or wrong values, having non-
standardized usage of data fields (i.e., using different representations for dates,
representing weights in different metrics), among others [I7]. In order to pre-
vent failures, it is better listen and answer data consumers’ data quality needs
[12]. To show its importance, a few examples of the failures caused by poor data
quality in the real world are listed below:

e The advisory firm Gartner has estimated, in 2014, that the costs per year
due to poor data on organizations to be on average $8.8 million dollars [I8§].

e In 2013, the US Postal Service reached the conclusion that around 6.8
billion mail letters could not have been successfully delivered due to poor
data. In monetary terms, this lead to the postal service spending at least
$1.5 billion in handling these mail letters [19].

e In 2011, a consulting firm announced that poor data costs $3.1 Trillion to
the U.S [20].

e In 1978, U.S company Prudential lost almost $93 million due to a miss-
ing comma and zeros (the amount that Prudential claimed from a loan
changed from $93 million to $93,000) [21].

e Rocket scientists at NASA had to abort the $80 million mission "Mariner
I" because of a missing hyphen in a mathematical operation [4].

e In 1999, a data quality problem at a NASA mission caused a costly crash
and made headlines all over the world, when the $125 million "Mars Cli-
mate Orbiter" flew off course and disintegrated because the engineers for-
got to convert from Ibf x s to N xs [4].

As a consequence of data quality impacts, the high cost caused by poor data
quality is analyzed in several research with different classifications [I6]. The
United States’ Department of Defense produced the data quality guidelines
present in [I6], where the cost of poor data quality is divided into two main
groups: Direct data quality cost and Indirect data quality cost. Direct data
quality cost is related with the impact of poor data in a process and the cost
of improving and correcting the poor data. It includes controllable costs,
that are due to the management of data quality such as prevention appraisal,
resultant costs, which are costs caused by the impact of poor data quality,
(e.g., internal-error and external-error costs), and equipment and training
costs, such as costs with acquiring specific hardware and software, and training
on how to prevent, assess and fix data quality. Indirect data quality costs are
related with the loss of credibility and customer satisfaction due to poor data
quality.

Another research about data quality costs studies and categorizes potential
costs related with low quality data under two major types [22]: Improvement
costs and costs due to low data quality. Improvement costs are closely linked
with the process of ensuring data quality, which includes prevention of poor data
(e.g., training and monitoring), detection of poor data, and repair. Costs due to
poor quality data can be quantified according to how easy they are to measure
and the impact that they cause, this yields two classes: direct and indirect
costs. Direct costs are the cost that are more directly associated with poor data
quality, and include the cost of verifying where the poor data is and re-entering
it correctly. Indirect costs are caused by poor data quality but as a result of its
effects on the organization, for example, costs due to a lower reputation, wrong
decisions taken based on poor data, and lost investment opportunities.

As described in this section, the impacts of poor data (or in other words,
when data does not meet expectations) have a strong effect on organizations
and business. In the next section we present data quality dimensions extracted
from diverse literature, and which can be used to measure data quality.

2.1.3 Data Quality Dimensions

In order to determine the value of information and how to improve it, measuring
data quality is a key activity. However, before an evaluation can be done,
an agreement on what (and how) should be measured has to be reached [23].
With the goal of identifying measurable aspects of data quality, data quality
dimensions are identified and organized using very different measurements [24],
as described in this section.

The data quality dimensions proposed in the work of Thomas Redman [25]
are grouped under 3 main categories, which are Conceptual View, Value, and
Representation of Data. The author listed the dimensions belonging to Concep-
tual View of Data under 6 subjects, which are "content, scope, level of detail,
composition and view consistency" [25], all of them related to abstract notions.
The Value of Data dimensions are, as implied in the name, dimensions that de-
fine quality in the value of data. They present 4 dimensions under this category,
which are "accuracy, completeness, currency and value consistency" [25]. The
third and final category is the Representation of Data, for which Redman pro-
poses "appropriateness, interoperability, portability, format precision, format
flexibility, ability to represent null values, efficient usage of recording media,
and representation consistency" [25].

Data quality dimensions are a deeply researched topic in literature, given
the importance of data quality as a study subject. However, the proposed
dimensions often vary according to the research area or categories (e.g., data
model, value, domain, presentation and information policy). In Table [1, we
present a comparison between the data dimensions used in different research
papers.

Table 1:

A Hierarchical Approach to
Improving Data Quality

4 Categories, 20 Dimensions

Overview of different classifications for data dimensions

Accuracy of data/Intrinsi
Accuracy, Objectivity, Believability, Reputation.

Relevancy of data/Contextual:
Value-Added, Relevancy, Timeliness, Completeness, Appropri-
ate Amount of Data.

Representation of data/Representational:
Interpretability, Ease of Understanding, Representational Con-
sistency, Concise Representation.

Accessibility of data/Accessible:
Accessibility, Access Security

A Data Quality Handbook
for a Data Warehouse [27]

5 Dimensions

Correctness, Completeness, Consistency, Currency, Accessibility

DoD Guidelines on Data
Quality Measurement [16]

6 Characteristics

Accuracy, Completeness, Consistency, Timeliness, Uniqueness,
Validity

A New Method for Database
Data Quality Evaluation at
the Canadian Institute for
Health Information (CIHI)

5 Categories

Accuracy, Timeliness, Comparability, Usability, Relevance

24 Characteristics

Over-coverage, Under-coverage, Simple response variance, Reli-
ability, Correlated response variance, Collection and capture,
Unit non-response, Item non-response, Edit and imputation,
Processing, Estimation, Timeliness, Comprehensiveness, Inte-
gration, Standardization, Equivalency, Linkage-ability, Product
comparability, Historical comparability, Accessibility, Documen-
tation, Interpretability, Adaptability, Value.

Enterprise Knowledge Man-
agement [29]

5 Categories, 31 Character-
istics

Data Quality of Data Models:

Clarity of definition, Comprehensiveness, Flexibility, Ro-
bustness, Essentialness Attribute Granularity, Precision of
Domains, Homogeneity, Naturalness, Identifiability, Obtain-
ability, Relevance, Simplicity, Semantic Consistency, Structural
Consistency.

Data Quality of Data Values:
Accuracy,Null values, Completeness, Consistency, Currency/-
timeliness.

Data Quality of Data Domains:
Enterprise agreement of usage, Stewardship, Ubiquity.

Data Quality of Data Presentation:

Appropriateness, Correct Interpretation, Flexibility, Format
Precision, Portability, Representation Consistency, Representa-
tion of Null values, Use of storage.

Data Quality of Information Policy:
Accessibility, Metadata, Privacy, Redundancy, Security, Unit
Cost.

The Practitioner’s Guide to
Data Quality Improvement

3 Categories, 10 Character-
istics

Intrinsic Dimensions: Accuracy, Lineage, Semantic, Struc-
ture.

Contextual Dimensions: Completeness, Consistency, Cur-
rency, Timeliness, Reasonableness and Identifiability.

Qualitative Dimensions

Data quality assessment [30]

16 Dimensions

Accessibility, Appropriate Amount of Data, Believability, Com-
pleteness, Concise Representation, Consistent Representation,
Ease of Manipulation, Free-of-Error, Interpretability, Objectiv-
ity, Relevancy, Reputation, Security, Timeliness, Understand-
ability, Value-Added.

Data Quality: The Guide

Field [31]

9 Categories, 51 Dimensions

Accessibility/Delivery:
Availability, Protocol, Security.

Quality of Content

Attribute Granularity, Comprehensiveness, Essentialness,
Flexibility, Appropriate Use, Areas Covered, Homogeneity,
Naturalness, Obtainability, Precision of Domains, Robustness,
Semantic Consistency, Structural Consistency, Simplicity, Clear
Definition, Identifiability, Source, Relevancy.

Quality of Values:
Accuracy, Completeness, Timeliness, Consistency.

Presentation Quality:
Appropriateness, Format Precision, Use of Storage.

Flexibility:
Portability, Representation Consistency, Null Values, Formats,
Language, Ease of Interpretation.

Improvement
Feedback, Measurement, Track Record.

Privacy:
Consumer Privacy, Privacy of Others, Security.

Commitment:
‘Warning, Help, Special Requests, Commitment.

Architecture:
Library /Documentation, Logical Structure, Physical Structure,
Naming, Rules, Redundancy, Unit Cost.

9

2.1.4 Classification of Data Quality Problems

In this section, we discuss research that deals with Data Quality Problems, i.e.,
the specific poor data issues that affect services and organizations which, to
some extent, rely on data for their operations.

Problems caused by poor data quality have been studied in previous research
belonging to various different areas, due to the fact that these problems have
effects in a vast range of information systems. The different research areas
(e.g., data cleaning, data quality tools, fault injection) led to the existence
of many different classifications. For example, a research about data cleaning
presented a classification of data quality problems [32], where the problems
are classified as single-source and multi-source problems, both in schema level
and in instance level. Multi-source problems occur when the data is integrated
from multiple data sources, and commonly consist of different representations,
overlaps and contradictions, which cause structural and naming conflicts |33
34, [35]. Single-source problems depend on schema and integrity constraints.
Schema-related problems occur due to data model and schema design defects,
while instance level problems are related with errors and inconsistencies that
cannot be prevented even when using the appropriate integrity constraints or a
better schema.

Single-source problems can be sub-divided into Schema Level and Instance
Level. Some examples of Schema Level problems are values that do not obey
constraints or dependencies. Examples of Instance Level problems are values
that are missing or contain small typos or the usage of abbreviations.

Multi-source problems can also be sub-divided into Schema Level and In-
stance Level. Examples of these Schema Level problems are when the same
name is used among the different sources to refer to different entities, or, in the
opposite side, when different names are used to refer to the same entity, and
when the same entity is represented using a different structure (e.g., different
data types, different fields) in the various sources. Examples of Instance Level
problems can include the same Instance Level problems of Single-source but are
also extended by cases such as when data can refer to different points in time
(e.g., one source refers to 1 week ago, and the other two 1 month ago).

The research presented in [36] primarily classified poor data into 2 cate-
gories, which are "missing data" and "not missing data". Missing data can
quite simply be divided according to whether a not-null constrained exists in
the schema (i.e., if the missing data is allowed to exist according to the schema,
or if despite existing, the schema does not allow it). Not-missing data is grouped
into "wrong data" and "not wrong but unusable" data. Wrong data has further
sub-divisions depending on whether integrity constraint can be implemented
or not. Not wrong but unusable data can occur because of problems during
database integration or problems when receiving data from the user. For exam-
ple, data may be inserted with different values for the same entity in different
databases, or there is a lack of context that does not allow the available data to
be correctly interpreted (e.g. homonyms, abbreviations, which unit was used,
different representations of dates).

10

Another classification of data quality problems is presented in [37]. Ac-
cording to the authors, the data problems can be distinguished at fours levels,
namely, level of attribute/tuple, level of a single relation, level of multiple rela-
tions and level of multiple data sources, which mimics the usual model of data
found in organizations. Each level has a different granularity (i.e., the amount
of detail and context that is available), with the level of attribute/tuple being
the one with the lowest granularity, and the level of multiple data sources having
the highest granularity.

The problems at the level of attribute/tuple are the most specific and de-
tailed, and include problems such as values that are missing or incorrect, values
that are outside the expected domain, the existence of synonyms, homonyms
and duplicated values, or the violation of a functional dependecy (e.g., the age
and birth year do not match). Each time that the level is increased (i.e., we
move to a level with a higher granularity), the problems become more general,
high-level and abstract. For example, at the level of a single relation, a possi-
ble problem are duplicate tuples. At the level of multiple relations, problems
can be incorrect references (e.g., an entity points to a certain Postcode, but
this Postcode is not present in the table that keeps all the postcodes of the
Country), circular references (e.g., Megane is a car from Renault, and Renault
is a sub-model of Megane), or different representations for the same type of
data (e.g., different representation for dates). Finally, possible problems at the
level of multiple data sources are the presence of homonyms and synonyms or
different representations for the same type of data.

A classification of data anomalies is presented in [38], where the authors
classify the anomalies into syntactical, semantic and coverage anomalies:

e Syntactical anomalies
— Lexical errors: when the structure of the data does not match the
expected format.

— Domain format errors: when the data value is outside the expected
domain.

— Irregularities: when units and abbreviations are used in an inconsis-
tent manner.

e Semantic anomalies

— Integrity constraint violations: when a value or a group of values do
not agree with a predefined integrity constraint (e.g., the value of
WEIGHT has to be non-negative).

— Contradictions: when two values that have an implicit dependency
on each other disagree (e.g., when the city of birth disagrees with the
country).

— Duplicates: when there are two or more rows referring to the same
entity, but one row would suffice.

11

— Invalid tuples: when a group of values does not feature the previously
mentioned anomalies, yet it still is not able to correctly represent
reality.

e Coverage anomalies

— Missing values: when values are missing in a row, usually due to
deficiencies in the data collection process, which means that only an
incomplete view of reality is available.

— Missing tuples: when one or more entire rows are missing, therefore
entities that exist in reality are not represented in the database.

In a survey of data quality tools [39], the authors present a classification
of data quality problems similar to previous research [36], but following the
clustering of [32], which divides data quality problems into schema level prob-
lems (that can be avoided by an improved schema design) and instance level
problems (errors and inconsistencies of data that are not visible or avoidable by
schema level, and cannot be prevented by a better schema definition). Addition-
ally, schema level problems were grouped into two types: Avoided by DBMS,
and not-avoided by DBMS. Instance level data quality problems were divided
into two groups of problems, concerning single data records and multiple data
records.

The data quality problems that are supported by DBMS in schema level are
presented as "missing data, wrong data type, wrong data value, dangling data,
exact duplicate data and domain constraint violation" [39]. These data quality
problems can be avoided by using integrity constraints. For example, missing
data means that a data field is empty, which can be avoided by using a not-
null constraint. Wrong data type means that certain data is being represented
using an incorrect data type, which can be fixed by defining and enforcing
the exact type of each field. Wrong data values, in particular values that are
outside the expected domain, can be prevented by defining a valid data range
and applying it as a constraint. Dangling data occurs when multiple tables have
references to each other that do not agree, this can be solved by using foreign
keys. Duplicated data means that more than one entry exists for the same
entity, and can be easily solved by defining unique or primary key constraints.
Domain constraint violation can be solved by defining and enforcing constraints
regarding the domain of data.

At the schema level, the data quality problems that cannot be avoided by
relational databases are listed as "wrong categorical data, outdated temporal
data, inconsistent spatial data, name conflicts, and structural conflicts" [39].

This research defines instance level problems as those that cannot be avoided
at the schema level (e.g., by using constraints or a certain schema design).
This kind of problems was further divided into "single record" and "multiple
record" problems. While in single record problems, their source is limited to
that record itself, in multiple record problems, the cause is problems between
multiple records. Examples of single record problems are dummy values used as

12

a way to represent missing data (when there is a not-null constraint) or wrong
data (e.g., because of typos). Examples of multiple record problems can be when
there are duplicated entries for the same entity, or various entries that refer to
the same entity but have different content (i.e., they contradict themselves).

In the next subsection, we will discuss the various software testing ap-
proaches, paying particular focus to techniques that can be applied to service
applications and that can be used to emulate data faults.

2.2 Software Testing

Testing can be defined as the execution of a program with the objective of
finding errors (e.g., software bugs) [40]. Although an apparently easy task, the
design of test cases should be performed with the purpose to test both correct
and incorrect scenarios. An unexperienced tester might choose to create test
cases that have a high chance of passing (expected inputs), and shy away from
creating useful cases with inputs that the program is not expecting, therefore
failing to uncover the existing software bugs and accomplish the goal of testing.

A software bug is a concept that is harder to define than would be expected.
However, its definition is an essential step before the term can be used unam-
biguously. In general, a software bug occurs when the implemented software
disagrees with the product specification (e.g., the software does not implement
part of the specification, the software does something that the specification for-
bids, the software does something that is not defined in the specification) [41].
Furthermore, a software bug can also refer to whenever, in a somewhat subjec-
tive manner, the software is slow, difficult to use, or, in general, does not work
as expected [41].

A possible classification of testing techniques groups them in two main
methodologies, according to the access to internal structure (e.g., source code)
that is required and the aspects of the system that are studied: black-box and
white-box.

Black-box testing is a type of testing where the internal structure of the
program is ignored, instead focusing solely on finding occurrences where the
program does not behave according to its specifications. An usage of the black-
box approach to finding errors in the program is to perform a comprehensive
test using all the possible (valid and invalid) combinations [40]. Some black-box
testing methods are:

e Functional testing tests to ensure the functionality required by the pro-
gram, by comparing the output during testing with the expected output.

e System testing tests the entire system to ensure its compliance and
workability in various different environments of its non-functional and
functional specifications.

e Stress testing tests the stability of the system when put under stress at
and beyond the limits of what is expected.

13

e Performance testing tests the conformity of a system or component
with the specified performance requirements.

e Usability testing is performed to evaluate the system regarding its ease
of use by the client (i.e., if it is easy-to-use or not).

e Acceptance testing is used to determine whether the finished product
obeys the customer’s requirements or specification.

White-box testing, also known as structural testing, studies the internal
structure of the program. The test cases for white-box testing are created by
analyzing the program logic [40], according to certain test design techniques
(e.g., control flow testing, data flow testing). The goal of this technique is to
cover (i.e., execute) all or a certain percentage of the instructions (or another
metric) of the program. Some important white-box testing techniques extracted
from literature are briefly described below:

e Control flow testing uses the control flow graph of the program to
ensure a set of test cases that is capable of covering the whole code of the
program (or a certain percentage) is created [42]. The control flow graph
shows all the paths through the program, where each node represents a
block of linear code (i.e., without any jumps) and each vertex represents
a jump instruction (e.g, if, for) [43].

e Branch testing is similar to control flow testing, but aims to execute
each branch (e.g., loops, if statements) at least once in the produced set
of test cases.

e Data flow testing is a white-box testing method that also uses the con-
trol flow graph to create a set of test cases based on the initialization
and access of data objects (e.g., ensure that every data object has been
initialized and used at least once) [44].

e Loop testing is used to validate the loops of a program, and consists
in creating a set of test cases that ensure that every loop is not entered,
entered once and entered multiple times.

2.2.1 Testing Service Applications

Given the effects that data quality has in service applications, fault injection
started to be widely used to introduce data quality faults. Fault injection is
a technique used to study the dependability of systems under the presence of
a fault [45]. Onme of the definitions of Dependability is "the ability to deliver
service that can justifiably be trusted" [46]. This definition is based strongly
on the definition of trust. An alternate definition is "the ability to avoid service
failures that are more frequent and more severe than is acceptable" [46]. This
definition shows that the concept dependability depends on the requirements of
each system. The concept of dependability is composed by many attributes, in
particular, Availability, Reliability, Safety, Integrity and Maintainability [46].

14

Fault injection techniques can be implemented through hardware or soft-
ware based techniques. Fault injection implemented by software, as opposed
to implemented by hardware, can be further classified in two main groups:
compile-time and run-time injection. While compile-time injection requires the
modification of the executable before execution, as to introduce the faults, the
latter works by dynamically injecting the faults during program execution. Be-
cause of the different approaches, run-time injection carries a higher overhead
associated with the mechanisms needed to inject the fault, while compile-time
injection does not present this run-time overhead, but it requires more time
during preparation phase to instrument the executable or source-code.

Another popular way of testing service applications is to perform robust-
ness testing. Robustness testing is the process of assessing the robustness of a
system, by trying to activate faults or vulnerabilities (e.g., software bugs) that
the system already possesses, and that lead to incorrect behaviour (so called,
robustuness failures) [47].

Robustness is a secondary specialized attribute of dependability [46]. It is
defined, according to ANSI/IEEE [48], as "the degree to which a system or
component can function correctly in the presence of invalid inputs or stressful
environmental conditions". Avizienis et al. define it as "dependability with
respect to external faults, which characterizes a system reaction to a specific
class of faults" [46].

The term robustness testing was first coined by Koopman et al., for the
Ballista project, and has since then been used by numerous other researchers.
In the Ballista project [49], a tool was developed that is capable of modifying
the parameters of system calls, in order to study the response of the operating
system. This tool was then applied to 15 different operating systems, with sur-
prising results, including a few system crashes. Given the pioneering nature of
this work, the same authors also presented their own classification schema to
be used when performing robustness testing (particularly, robustness testing of
operating systems), the CRASH scale [50]. This scale has also seen significant
use from other researchers, and, in fact, as will be explained later in this thesis,
it is also the schema adopted for the classification of our results. As an example
of another robustness testing tool, MAFALDA [51] can be used to assess the
failure modes of microkernels under the presence of injected faults (internal and
external), in particular, faults in the parameters of the system calls. Further-
more, it can also be used to evaluate the effectiveness of wrappers designed to
improve these failure modes.

Fault injection can be used to implement robustness testing, by emulating
the effects of hardware-related faults. In this scenario, fault injection can be used
to test the ability of a certain component to handle faults in the interaction with
other components. Another approach to conduct robustness testing is to feed
the inputs of the system under study with random data (fuzzy testing), or by
having predefined valid and invalid inputs, which can vary according to the data
type, and feeding combinations of them as input. In fact, the boundary between
fault injection and robustness testing can sometimes be difficult to draw, given
their similarities in purposes and implementations.

15

The same can be said of mutation testing and fault injection of software
faults, which follow a very similar approach, but study different topics. Mu-
tation testing is a white-box testing technique which is used to obtain a score
that represents the effectiveness of a certain test set in detecting software bugs.
It works by adding specific software bugs to the code, according to mutation
operators, thereby creating mutant programs, and then running the predefined
tests and verifying if the tests are able to detect the presence of the injected
software bug [52]. It can be considered a similar technique to the injection of
software faults, since both consist in the modification of the source code of pro-
grams by adding faults, but whereas software fault injection is used to assess
the resiliency of a system and its fault handling mechanisms, mutation testing
is aimed at the assessing the effectiveness of test cases rather than focusing on
the code. One example where mutation testing is used for testing web services
is [53], where mutation operators are presented for the WSDL specification of
web services.

Below we will provide an introduction to some practical examples of the
above techniques applied to service applications. Web services, a way to deploy
service applications, are programs that implement a certain functionality and
offer their service over the Internet to other programs, such as other web services
or web applications [54]. With the usage of Web services applications to extract
and integrate data in heterogeneous business systems, data quality started to be
an important issue regarding on how to provide accurate, complete, consistent,
and correct information in Web services [55]. With the aim of providing infor-
mation quality in web services, recent research worked on possible data quality
problems caused by web services [56l 57, 58| 59].

Rychly and Zouzelka [60] present fault injection as a means of performing
robustness testing of web services, by injecting faults that mutate the commu-
nication between services. Examples of the proposed faults are replacing parts
of a string, replacing with empty message, replacing with null, adding new or
non-printable characters, and delaying messages.

The research paper in [61] explores the usage of Perturbation-Based testing
applied to web services. The proposed approach consists on the application
of perturbation operators to SOAP messages, in order to assess how the web
services handle the presence of incorrect data in these messages. The operators
build upon other works, and represent common faults that can happen in real
systems. Examples of these operators are "set to null", "delete a node from
the message" and "add a whitespace". The authors note that they are restrict-
ing their approach to SOAP messages, but the WSDL specification of the web
services can be another place where to inject faults.

A tool for robustness testing of Web services, WebSob, is presented in [62].
This tool automatically generates and executes web-service requests, given a
service provider’s Web Service Description Language (WSDL) specification, and
is capable of revealing robustness problems without the need of any previous
insight into the underlying web service implementation.

Another tool, WS-FIT [63], harnesses fault injection of faults in the network
to perform robustness testing of SOAP-based web services, by modifying these

16

messages.

Laranjeiro et al. [64] address robustness testing in web services, by proposing
a robustness testing approach for web services, along with the respective tool
and experimental evaluation of various web services. This approach is based
on wrong call parameters, which consists of exceptional and valid values after a
predefined set of rules is applied according to the data type of each parameter.
The mutation operators focus on creating limit cases, such as null values, lower
or higher than acceptable values, values with special characters, and malicious
values (e.g., SQL injection). To classify the behaviour of the web service, the
authors adapt the well-known CRASH scale for usage in web services, by defin-
ing solely 3 possible classifications: Correct, Crash and Error. As a proof to
their concept, the authors performed robustness testing of several web services,
and prove that their approach and tool is capable of finding valuable software
bugs.

The research that serves as the basis for this thesis is [59], which presents a
general approach to testing the behaviour of service applications in the presence
of poor data quality, along with a basic fault model (i.e., mutation table) for the
String data type. The proposed approach can be considered somewhat similar
to robustness testing, in the sense that it attempts to study the robustness of the
service application by trying to activate faults or vulnerabilities that it might
have, however it differs from most uses of robustness testing because instead
of mutating the values passed as inputs to calls of the system, it mutates the
data that comes from calls to database and is then going to be used by the
application. At the same time, the authors justify their interest in this subject
by providing a justification for the validity and importance of this valuable, yet
rarely studied topic, which given the widespread presence of service applications
in nowadays organizations, and their abundant use of databases to store and
retrieve business-critical data, deserves a more in-depth study.

This thesis answers that call and looks to build upon the proposed and
abstract approach by further refining it, extending the fault model with more
data types and data mutations that are obtained from the study of data quality
and real-world data quality problems, implementing a tool and evaluating the
behaviour of an open-source service application in the presence of poor data
quality.

2.2.2 Automation Tools for Testing

Most of the testing methods (e.g., regression, acceptance) require interaction
between the human testers and the GUI, in order to verify the GUT’s visual
behaviour. These testing methods require the multiple repetition of a sequence
of steps. Considering the huge size of many software projects, testing a project
using traditional (i.e., manual) approaches incurs a great cost, in part due to
the long time and high human effort required.

Another problem that comes with manual testing is that possible human er-
rors reduce the efficiency of testing [65], as well as having high time consumption
because of repeating the same test cases over and over.

17

Automated testing was developed to overcome these limitations, and to al-
low shorter development cycles and an overall quicker, easier and more effective
testing process. Many automated testing tools are available, some are com-
mercial, while others are open-source, some require user experience in testing
software applications, others are more user-friendly [66, [67].

Each automation testing tool has different properties, depending on their
mode of operation. According to this criteria, the three main types of automa-
tion testing tools are [68]:

e Recorder: During the test case creation, a recorder tracks the mouse and
keyboard actions of the tester. After the record is complete, the tester is
able to playback, and manually edit the existing test case.

e GUI aware: This kind of automation tools record and play program-
matically according to GUI elements. They use the internal structures,
GUI elements and their features, to guide their operation. It requires
knowledge and a close connection with the application being tested.

e Visually: These tools snapshot the screen areas during the test case
creation, and then try to match these snaps to the contents currently on-
screen. In this case, there is no need for application-specific knowledge.

It should be noted that sometimes automation tools can operate in more
than one category at the same time (e.g., being mostly "Visually" but also
having "Recorder" features).

We studied some of these automation tools, in order to choose the tool
that best fits our needs (during the experimental phase of this thesis). The
automation tools studied are the following:

e Selenium [69] is a package of tools to perform or aid software testing and
test automation. At the time of its conception, Selenium was a pioneer of
test automation and presented a novel approach to solve the problem of
performing repetitive actions, such as is common in the setting of software
testing. The tools included in the package are Selenium (the engine itself),
Selenium IDE and Selenium Grid. Selenium 2, also known as Selenium
WebDriver, is the newest version of the test automation engine and was
developed to provide a better support for dynamic web pages that are
able to change the elements without reloading web page. The previous
version of Selenium (the engine) is Selenium 1, or Selenium RC. At the
moment Selenium 1 is considered obsolete, hence Selenium 2 became the
default choice. One big downside of Selenium is the precarious support
for dynamically created webpages, which can be a strong deterrent to its
usage with certain websites. It can be considered to be a "GUIl-aware"
automation tool, due to its need to understand the internal structure (i.e.,
DOM) of the webpage.

e SikuliX [70] is a visual automation tool capable of executing on Windows,
Mac and some Linux/Unix-based operating systems. It makes use of im-
age recognition, aided by the well-known library OpenCV, to compare

18

screenshots inside a test case with the contents currently being displayed
on screen. When it finds a match it performs the desired action (e.g., click,
mouse over) over a specific point of the screen. The advantage inherent
to this approach (i.e., visually matching the contents) is the decoupling
from the GUTI’s internals and the source code of the application. This
property makes SikuliX a visual automation tool that is easily adaptable
to different projects and GUIs. SikuliX supports test cases written in var-
ious scripting languages, namely in Python 2.7 (using Jython), Ruby 1.9
and 2.0 (using JRuby), Java, and in general, any other language that is
Java-aware (e.g., Scala, Clojure). Other functionalities consist of support
for text recognition (OCR), which is provided by Tesseract and support
for multi-monitor environments and remote systems.

Watir [71] is an open-source (BSD license) automation tool for web
browsers, which allows the development of tests that are easy to main-
tain and read. This tool emulates the same actions as a human, such as,
clicking links, pressing buttons or filling forms. According to the previous
classification, it is a "GUI aware" tool because it depends on the knowl-
edge about the structure of the web page under test. It consists of a set
of Ruby libraries, but can be used with service applications developed in
any language. Currently, Watir, in itself, has limited support in Windows,
where it only works with Internet Explorer. However, Watir-Webdriver
extends the support to multiple browser, namely, Chrome, Firefox, In-
ternet Explorer, Opera and HTMLUnit. The tests are written in Ruby,
which in one hand makes it difficult for a beginner if he is not familiar
with the language or programming, but on the other hand, provides a very
high degree of freedom and functionality. For example, the choice of Ruby
allows information stored in files or databases to be used in the test cases
themselves.

Sahi [72] is a paid automation tool targeted at service applications, which
is available for any browser and operating system. The Sahi Controller,
a part of the package, provides a visual interface to writing tests through
recording the user actions in a browser, and playing back already cre-
ated tests, among other less important features. Another component,
the "Smart Accessor Identification", is used to identify these elements in
a dependable manner, even in applications that make heavy use of dy-
namic Javascript and variable IDs. It features a scripting language, Sahi
Script, which is heavily based on Javascript and is able to interact with
the filesystem, CSV and Excel files, and databases. It also supports the
calling of Java code to implement more advanced functionalities. It is a
"GUI aware" automation tool with "Recording" features.

HP QuickTest Professional (QTP) [73] is an automation tool, which
is commonly used to aid in automated regression testing that is employed
to diagnose software errors by comparing the actual results against the
expected results. QTP uses Visual Basic Scripting (VBScript) as the

19

scripting language for the test cases. However, it provides two ways of
creating these test scripts, one directed at beginners, which involves mod-
ifying fields of a table, and another aimed at experts, which allows the
direct modification of the test cases’ VBScript. It can be classified as a
"GUI aware" automation tool. A disadvantage in comparison to some of
its competition is that it is limited to the Windows operating system and,
a proof of its age, still relies in obsolete technologies (e.g., ActiveX and
VBScript). Furthermore, not every browser is supported, as is the case
with Opera. High licensing costs also make it prohibitive to use (a single
seat licensing is around $7500 and does not include various extras) and
even higher than other commercial options.

Ranorex [74] is a proprietary application that provides a very user-
friendly interface and easy approach to creating tests. It is a "Recorder"
automation tool, which allows the user to perform various actions in his
computer while Ranorex records them for posterior playback. For the
more advanced user, it features an API for VB.NET and C+#, instead of
having its own standalone scripting language. There is no restriction in
the type of application that Ranorex can record and test, and works in
desktop, web and mobile platforms. The authors promise the most robust
and reliable object recognition technology available (the so called Ranor-
eXPath). However, a problem when using the recording functionality is
that the system will suffer a significant slowdown while Ranorex attempts
to identify the actions of the user.

Table 2] shows a comparison between the above mentioned automation tools,
with a view to choosing the most adequate tool to use during this thesis.

Table 2: Comparison of Automation Tools

License Open-Source | Open-Source |Open-Source |Open-Source & Commercial | Commercial
(Apache 2.0) | (MIT) (BSD) Commercial
GUI-Aware + . GUI-Aware + Recording +
Type Recording Visual GUI-Aware Recording GUI-Aware GUI-Aware
Target Applications Web General Web Web General General
Python + e .
Language Selenese Ruby,Java,... Ruby Sahi Script VBScript C#, VB.NET
Ease of Use 4/5 5/5 2/5 4/5 3/5 5/5
Functionalities 3/5 2/5 4/5 3/5 4/5 5/5
Support for different systems |5/5 5/5 4/5 4/5 1/5 3/5

The classifications of "Ease of Use", "Functionalities" and "Support for dif-
ferent systems", are subjective and given by us, according to the obtained in-
formation and a brief hands-on experience with each tool.

Ranorex received a 3 out of 5 classification in the "Support for different
systems" component, because, despite working with any type of application
(web-based, desktop, mobile), it is only available in Windows.

20

Watir received a 2 out of 5 classification in "Ease of Use", because it requires
the user to know how to operate and program in Ruby. A 4 out of 5 rating was
given in "Support for different systems", solely because Watir, in itself, only
supports Internet Explorer in Windows, however, Watir-Webdriver compensates
for this weakness.

The 4 out of 5 classification given to Watir in the "Functionalities" compo-
nent is due to the wide range of actions that it implements, and the fact it can
harness the functionalities of Ruby (e.g., use data stored in files or database).

QTP received a 1 out of 5 classification in "Support for different systems"
because it lags behind in supporting new browsers, and its usage of obsolete
technologies creates a strong dependency with Windows.

The choice for the automation tool to be used during this thesis fell over
SikuliX, despite not being as complete as other tools, it has all the required
functionalities, is very easy to use and the test cases can be created and modified
quickly, requires no need to know the scripting language before hand, is open-
source and does not carry significant performance overhead. Another good
option would have been Selenium, however its shortcomings in dealing with
very dynamic webpages were deemed too grave.

21

3 Approach

In this section, the approach for mutating data coming from database developed
during this thesis is explained as generally as possible. This section presents the
general approach, compares it with other viable approaches, provides the justifi-
cation for our choice and states the key implementation details, such as the fault
model that was used and how it was obtained. Other details of the approach,
such as the methodology used to intercept the data, are also presented.

3.1 General Approach

The main aim of this thesis is to study how a service application that makes
use of a database responds to the existence of poor data quality, and thereby to
understand the impact and influence of poor data quality.

This study, in a general way, can be accomplished by following the steps
shown in Figure

I Identify data types I

| Define mutations for each data type (fault model) |

| Implement the approach into a tool |

| Build thorough and representative Test Cases |

Execute the Test Cases while mutating the data coming from database

I Analyse results I

Figure 1: General workflow to study service applications using poor quality data

Using the diagram to guide our work, an approach was developed, which will
be detailed below, that allows data to be mutated between the database and
the service application.

The knowledge of the structure of a typical service application is essential
in the development of this thesis. Once again it is helpful to remember that the
objective is to be able to feed the service application with poor quality data, as if
it had come directly from the data tier (database). A usual service application

23

follows a three-tier architecture with a separation between the presentation,
logic and data tiers. A client’s request usually follows a path from the moment
that the client performs its request, for example, by interacting with a browser,
until a response arrives. First the client uses the graphical user interface of the
web application, shown in a browser, to request an action. The browser will
then send the corresponding request over the network until it reaches the logic
tier in the server. At this point, the request is processed by the logic tier, and if
needed this tier can communicate with the data tier in order to fulfill the client’s
demand. When the logic tier has finished processing, it sends the response back
to the client over the network, and the browser displays it to the user. Figure[2]
has a representation of this process.

Request SQL Query

Service
L— Application

Database Server | Datn aocass

Response Result

Client
Figure 2: Usual Scenario of a Service Application

It is not difficult to understand that for this purpose the most straightforward
solution is to directly change the data that we desire in the database itself.
While this is a valid solution, it presents a few disadvantages that severely
limit its usefulness. Firstly, it would require experiments that would take a
long time because of having to change the desired value in the database, and,
after the experiment is finished, restore it to the original value. Secondly, it
would require the precise and hard to obtain knowledge that a certain value
in the database would be used by our test cases. Without this information we
risk that a mutation would in reality never be used by the web application,
simply because, for that test case, the web application never reads it from
the database. Thirdly, while modern DBMS have a set of tools (e.g., foreign
keys, triggers, not null constraints) capable of preventing some integrity issues,
the web application should not assume that this functionality will always be
available. The web application, if it wishes to be robust independently of which
DBMS it works with, it must implement its own basic data quality checks.
Therefore, by tying our approach to a specific DBMS and its tools, we would
be limiting the mutations that we can be performed without modifying the
database schema (e.g., if the DBMS has not-null constraints, and the schema
of the service application uses it, we cannot perform a mutation that changes a
certain value to null, because the DBMS will refuse performing that action, as it
would violate the constraint). Fourthly, this approach calls for access with write
permissions on database, which cannot be attained in certain scenarios. Finally,
once again we are unnecessarily associating our experiments with a DBMS and
thereby becoming less portable.

A more suitable approach, and which was the one chosen for this thesis, is
to mutate the value while in transit from the database. This allows for a higher

24

abstraction and independence from the DBMS (e.g., MySQL, PostgreSQL, Or-
acle) that is being used, and also foregoes the need for having any access to the
database. It is also much quicker and easier to perform mutations that would
otherwise conflict with the in place DBMS’ constraints. Furthermore, we can be
sure that the mutated value will be fed to the application (i.e., we only mutate
data that the application requests from the database), and may later be used.
However there is a downside to this approach: the implementation of permanent
data mutations (i.e., values in database that will keep the same mutated value
constantly) is very hard and slow to do. Instead this approach injects non-
persistent data mutations. Depending on the configuration, two database reads
to the same location will return different results because of different mutations
(the same cell suffered two mutations). While this is not the most desirable
behaviour, it is enough to test the web application’s handling mechanisms, and
only occurs when a value is read more than once.

To control the approach, a mechanism capable of starting and stopping mu-
tation of the data access calls at request of the user must be developed. Our
proposal is to use a simple file in the system storage, which holds a binary value
(i.e., 0 or 1) according to whether mutations should be performed or not. The
user, or any other program, is then able to change this value at will, which an
intercepted data access call must check before proceeding with a mutation.

To allow the study of a service application under the influence of poor data
quality, another mechanism must be implemented, which allows certain muta-
tions to be skipped, according to certain factors, such as the location of the
instruction of the service application that is calling the database. This mech-
anism is an essential part of this approach because it allows operation after
the service application has crashed or blocked (i.e., could not handle poor data
quality), by skipping the mutations that cause the problem (after an analysis
has been carried out).

When looking at each experiment run of our approach, the flow inside each
run can be grouped into 3 consecutive phases, represented in Figure [3] which
have a well-defined purpose.

Preparation Mutation Analysis p

Experiment Run Experiment Run Experiment Run

Time
Figure 3: The three phases that make up an experiment run

An experiment run starts with the "Preparation" phase, where the appli-
cation is warmed-up for the next steps. This phase commences by starting the

25

web server and sending requests (e.g., obtain home page, perform login) to the
service application, in order to prepare the system for the following steps.

The next phase is "Mutation", where the tool is allowed to mutate the data
coming from database (by changing a file in the system storage), at the same
time that a workload is being executed. At the moment, this phase continues
until the application is not capable of responding to the actions of the user.
However we admit that different termination conditions could exist, such as for
example, stopping after a certain percentage of database accesses have been
mutated. This phase may vary in time depending on the number of database
accesses and user requests, or if the application fails to work prematurely. It
can also be considered the most important phase of the approach, because it is
here where the application is really put under test.

The last phase is "Analysis", which is where the results obtained during
the "Mutation" phase are analyzed, in order to prepare the next experiment
run. It starts with exporting and manually analyzing the log file and extracting
information such as in which part of the code the mutation happened, what was
the original value, and what is the new mutated value. The main objective of
this phase is to be able to identify the reason behind the application failure,
and to identify which mutation must be skipped in the next run, so that the
application can execute further. When the application’s code is being analyzed,
if a software bug is detected, it should be noted.

As shown in Figure[d] the Data Mutation Tool is located between the Service
Application and the Database Server, and mutates the query’s results that are
sent from the Database Server to the Service Application.

Request SQL Query
)

Service eTy— —

Application Result Database Server :[JEL

A ¥ |
Client T

|

—

Data Mutation Tool
Figure 4: Scenario with a Service Application and our Data Mutation Tool

The algorithm inside the Data Mutation Tool, which executes whenever a
data access is made during the "Mutation" phase, is described in Figure [f]

26

Data Mutation Tool

4,

2. 3. !
Analyze Data Type Choose Mutation Apply g‘;{‘:ﬂon to
I 5.
Intercept Data Resume Flow of

Access Call Data

\
e | I >

Figure 5: Basic algorithm of the Data Mutation Tool

Our concept is generic, therefore the approach can be applied to a wide range
of programming languages and data access drivers. In this thesis, we focused in
applying our approach to a Java environment, where one of the available data
access drivers is JDBC (Java Database Connectivity). We opted to implement
our approach by instrumenting this driver to mutate the data coming from the
database.

3.2 Implementation of a Poor Data Injector

To put into practice the theoretical approach, delineated in Section [3.1] we pro-
ceeded to develop our own implementation that could suit our needs for future
experiments. Two ways of tackling this problem were considered, modifying the
exchanged network packets between the service application and the database to
modify the responses, and, instrument the JDBC driver that provides the con-
nection between them. The first adversity that must be handled is that service
application and database are forced to communicate over the network, even if
they reside in the same physical machine, the possibility of local communica-
tion not allowed. This fact introduces an artificial restriction into the setup, and
leads to lower performance and higher latency without adding any benefit. The
other problem is that capturing network packets is difficult to do if we consider
that we must know which packets are coming from the database to the service
application, which of them are responses (because at the moment SQL queries
are not of our interest), where the data is located inside the packet and what
data type it is.

Another approach is to modify the responses of JDBC calls, which is a more
suitable and effortless way to apply mutations into the data. This approach
supports both local and non-local communication between service application
and database. For this purpose the JDBC driver which provides the connec-
tion between application and database can be instrumented. In our case we
opted to use Aspect]J [75] and define an Around annotation around JDBC’s
getString(), getInt(), and similar functions that can be used to read the results
from database. An AspectJ Around annotation allows the interception of every
function call that obeys a certain rule. When a function call is intercepted,

27

[y

O © 00O Uk W

the code that has the annotation is called instead of the original function. The
annotated code is then free to perform the actions that it desires, which in-
cludes calling the intercepted function and using or changing its return value.
For our specific case, in this annotation we added code that would receive the
value sent by the database, and then according to certain variables, perform a
data mutation and return this value instead of the one originally sent by the
database.

In Listing [I} an example is provided of how this instrumentation could be
done using AspectJ.

Listing 1: Example of the use of AspectJ to instrument the JDBC driver

@Around ("execution(*_java.sql.ResultSet.getDouble(..))")
public synchronized Object logAroundDouble(ProceedingJoinPoint
joinpoint) throws Throwable{

Object result = null;
result = joinpoint.proceed();
Double resultDouble = (Double) result;

return resultDouble;

3

The first line of the code listing contains the AspectJ annotation that states
that whenever a function that matches the supplied rule is called (in our case,
whenever java.sql. ResultSet.getDouble is called, independently of the passed pa-
rameters), the function below must be called before. Inside the logAroundDouble
function, we can see that it receives a ProceedingJoinPoint. By calling the pro-
ceed function of this object, we allow the execution flow to continue, and receive
the resulting output. Armed with the result of java.sql. ResultSet.getDouble, we
can later modify its value and return the modified value to the service applica-
tion.

The use of AspectJ brings many advantages over manually modifying and
recompiling the JDBC driver. For instance, it can easily be applied to any
JDBC driver (e.g., driver for MySQL, Oracle, PostgreSQL), because it depends
only on the JDBC specification that must be implemented by all drivers.

At the same time, our proposed approach logs various information that is
essential for later analysis in two distinct places, which are the data mutation
tool itself and the Servlet Filter (which will be explained later). The data
mutation tool logs all the mutations that have been performed, along with
details about their time, original and modified value, mutation that was applied
and the stack-trace of the code that received the mutated value.

In Listing [2] we present a sample of how an entry in the log of the performed
mutations looks like. The log starts by presenting the time when the mutation
occurred and then presents the stack-trace containing the hierarchical tree of
functions called until the mutation occurred. The log also keeps the input value
which corresponds to the original data value before mutation, the mutation

28

(which includes the data type) and the output value, which is the result of
mutation after it is concluded. In this particular example a moveSubstring
mutation was performed over a string (571).

Listing 2: Sample of a log file with mutations

Time: 2016-03-31 02:24:19.362
Stack-Trace of Mutation caller
java.lang.Exception: Stack-Trace
C vt)
at org.hibernate.loader.Loader.dolist (Loader. java:2533)
at org.hibernate.loader.Loader.listIgnoreQueryCache (Loader. java:2)
at org.hibernate.loader.Loader.list(Loader. java:2271)
at org.hibernate.loader.hql.QueryLoader.list (QueryLoader. java:452)
C vt)
Input (before mutation): 571
Used Mutation: String_mll_moveSubstring
Output (after mutation): 517

We developed a Servlet Filter that resides at the entry of the service appli-
cation and logs the requests that the client makes, corresponding to the second
and final location in our approach where a log is created. While this component
is not an essential part of the proposed approach, and therefore is not described
in Section [3.1] it allows an higher degree of control over the requests that enter
the system, which will prove useful in the experiments that will be performed.
We consider each request to be an User Action, and we enforce a policy that only
allows one concurrent request at any time (by using the synchronized keyword
in the filter), in order to easen the analysis of the results when attempting to
obtain all the mutations that occurred during the window of a certain request.
This filter has a data logging function but can also be used to start and stop
the data mutation process, according to certain criteria (e.g., one data mutation
per User Action).

The previous explanation of the individual components is complemented,
in Figure [6] with the flow inside the system and the interactions between the
components,

29

‘ Servlet Filter

|

‘ Service Application

|

‘ JDBC API

[

‘ Driver Manager ‘

Storage

Data Mutation
Tool

AspectJ

JDBC Driver

‘ Database Server ‘

|
L=

Figure 6: How the Data Mutation Tool integrates into the JDBC flow

The Servlet Filter is located between the Service Application (running in the
Server) and the Browser (of the Client), and intercepts the network requests that
the Browser performs. These requests are then stored in the Storage. In some
occasions the Servlet Filter is also capable of communicating with the Mutation
Tool to start and stop the mutation process.

The Mutation Tool stays between the Service Application and the Database
(DBMS) and is capable of writing logging information to the Storage, and read-
ing files that act as an interface to control the operation of the Data Mutation
Tool.

To mutate the data coming from database in a representative manner it is
necessary to know which data quality issues can occur in the real world. This
knowledge is however not readily available in the literature. To produce these
essential assets, a study of data quality was performed in order to extract as

30

much information as possible to aid the process of creating these mutations.

3.3 Identifying Data Quality Problems

In the process of implementing our approach into a tool, the first step was the
creation of the available mutations for each of the various data types (i.e., fault
model). Because of having opted by instrumenting JDBC as a way to intercept
all data access calls, we have become restricted to the internal data types of
JDBC. For this reason, a comparison between the JDBC [76], SQL and Java
native types was required before equivalence classes that serve as the data types
of our fault model could be formed. The mapping between the data types is
presented in Table

Table 3: Mapping between our self-defined groups, JDBC types and Java types

Equivalence Class | JDBC Type Java Type
CHAR
VARCHAR String
String LONGVARCHAR
CLOB Clob
DATALINK java.net.URL
Decimal gggﬁfig java.math.BigDecimal
BIT
Boolean BOOLEAN boolean
TINYINT byte
Integer SMALLINT 'ShOI't
INTEGER int
BIGINT long
REAL float
Double FLOAT double
DOUBLE double
BINARY
Binary VARBINARY byte]]|
LONGVARBINARY
BLOB Blob
Date DATE java.sql.Date
Time TIME java.sql. Time
Timestamp TIMESTAMP java.sql. Timestamp
Object JDjisfiJF&Ilg%rgECT (Depends on Object)
Reference REF Ref

Overall, there are 11 different groups of data types and each group can
aggregate more than 1 JDBC or Java data type. Sometimes different JDBC
types translate to the same type in Java. For each of these 11 groups, a set of

31

applicable mutations was built, and then implemented in Java code for usage
in our tool. It should be noted that the fault model used in our tool includes
only the mutations that can be implemented in Java. Mutations that despite
being possibly valid but due to limitations of the programming language or of
the data type cannot be done are not presented here (e.g., it is impossible to
have an empty Java int variable, but the user is free to leave the input empty
in the user interface). In practice, this fact should not limit the effectiveness
of the proposed fault model, because the service application, if written in Java,
would suffer from the exact same limitations in the presence of such mutations,
and would have to somehow deal with them (e.g., using the previous example, a
possible approach would be for the user interface to complain and not proceeded
with an empty field, or for a default value to be assigned to the variable).

As the basis of our work, we reused the mutations for Strings proposed in [59],
but then proceeded to carry out an extensive survey about data quality, with
particular attention given to the data quality problems that occur in practice, so
that we could justify the mutations proposed by Ivaki et al [59] and complement
the original model with more mutations, including mutation operators for all
the other data types.

As presented in the survey paper that resulted from our study of data quality,
across the literature there is a common and recurrent group of data quality
problems. Table 4] which was extracted from our survey paper [77], presents
these data quality problems, grouped according to source and level [32], and
associates each problem with the data quality dimensions that it can affect.

32

Table 4: Data Quality Problems mapped into Dimensions

Problem types

Source

Level

Data quality problems

Accessibility

Accuracy

Completeness

Consistency

Currency

Single

Instance

Missing data

Incorrect data

Misspellings

Ambiguous data

Extraneous data

Outdated temporal data

Misfielded values

Incorrect references

Duplicates

Schema

Domain violation

Violation of functional dependency

Wrong data type

Referential integrity violation

Uniqueness violation

Multiple

Instance

Structural conflicts

Different word orderings

Different aggregation levels

Temporal mismatch

Different units

Different representations

Schema

Use of synonyms

Use of homonyms

Use of special characters

Different encoding formats

The data quality problems stated above are mostly general and not tied
to any data type. However, our research showed some of these data quality
problems can have different representations according to the data type being
considered (e.g., although Incorrect Data is a general problem that can affect a
multitude of data types, it occurs differently in a String type than in an Integer).

For this reason, a study about these particularities ensued.

When focusing on the String data type, the possible reasons (spelling errors)
for strings are discussed in a wealth of papers [78, [79]. The widely agreed

33

classification of spelling errors defines four main groups, which are omission,
insertion, substitution and transposition. Errors of omission, where a letter is
left out, constitute 30 - 40% of the errors; errors of insertion, where an extra
letter is added, constitute 25-35% of the errors; errors of substitution, where
an incorrect letter is substituted for the correct letter, constitute 15-20% of
the errors; errors of transposition, where two adjacent letters are interchanged,
constitute 10-15% of the errors. Estimations about the occurrence of these four
error types are presented in [80], where the authors note that these four type
of errors constitute 80% of all misspelling errors, and in [8I], where this value
rises to about 95%. In addition to these four types, another paper[82] proposes
the use of two more types: Added space and Dropped space. This addition is
justified with the non negligible percentage of occurrences of these two errors
(7.12%).

Literature regarding other data types is less prevalent, but nevertheless can
be found. This lack of information is minimized by the fact that plenty of data
formats (e.g., integer, date) can be represented as a String, and share the same
entry mode (e.g., keypad), therefore making it possible to share some string-
specific mutations among data types. This observation is based in plenty of
anecdotal evidence [83] [84].

Errors in Dates are mentioned in [85], where the authors conclude that a
notorious error often found in their dataset was the incorrect and abusive use
of the default value.

When talking about integer and decimal data, Thimbleby et al [86] introduce
what they call a standard class of error: the miskeying of a decimal point or zero.
The paper also presents other common problems in a very practical approach,
by stating an incorrect value or invalid key combination and presenting the
final output in a variety of systems, ranging from spreadsheets, pumps, mobile
phone apps, search engines, handheld calculators to office software. The authors
also highlight the importance that errors such as dropping a decimal separator,
ignoring the integer part of a decimal number or miscounting the number of
digits (with special emphasis to the digit ’0’) in a very large number can have.

The data mutations that were created and used during this thesis are dis-
played in Appendix [A] As an example, the mutations for the String data type
are presented in Table[5] where the string "John Smith" was used as the example
input.

34

Table 5: Mutations for String data types

1 | Replace by null value - - null
2 | Replace by empty string - - “
3 | Replace by same size string - - Aks9DLM34q
Prefix \u0010John Smith
4 | Addrandom nonprintable Position Middle (Random position) John\u0010 Smith
characters to string Suffix John Smith\u0010
Length Random between 1 and string's original size -
Replace by same size Number of Random quantity of characters between 1 and the total number of alphabetic characters i
5 alphanumeric string characters minus 1. Randomly distributed among the available position Jo3n Smixh
Prefix 0158John Smith
6 Add random numeric Position Middle (Random position) John01 S4miSth
characters to string Suffix John Smith544
Length Random between 1 and string's original size - string's maximum size -
First character john Smith
Last character John SmitH
. Random position John sMITH
7 Convert alphabetic 5 Position First character of each word john smith
characters to opposite case
Last character of each word JohN SmitH
Random position in each word JOHN sMith
Length Random between 1 and string or word original size minus Position -
Leading John Smith
8 | Insert whitespace Position Trailing John Smith
Random position between words John Smith
Quantity The amount of consecutive white space characters to insert -
Prefix ooJohn Smith
Position Middle (Random position) John Shhhmith
9 | Add characters to string Suffix John Smithii
. Random between 1 and the string's original size. The new characters to add must be
Quantity present in original string.)
Begin From 0 to the string's original size minus 1. -
Length From 1 to the string's original size minus Begin. -
10 | Add substring to string Prefix ohnJohn Smith
New Position Middle (Random position) Johnohn Smith
Suffix John Smithohn
Begin From 0 to the string's original size minus 1. -
Length From 1 to the string's original size minus Begin. -
11 | Move substring Prefix ohnJ Smith
New Position | Middle (Random position) J Sohnmith
Suffix J Smithohn
. Begin From 0 to the string's original size minus 1.)
12 | Remove substring - — - - " J Smith
Length From 1 to the string's original size minus Begin.
Leading John Smith
13 | Remove whitespace Position Trailing John Smith
Random position between words JohnSmith
- Begin From 0 to the string's original size minus 2. John Shtim
14 | Delimited reverse — - - "
Length From 2 to the string's original size minus Begin
Replace by predefined SQL Dictionary based: replace the string by a keyword or symbol such as SELECT, FROM, INSERT,
15 | string - DELETE, UPDATE, ', ", SELECT
16 | Replace with symbols - The string is replaced by a random symbol S
Replace one word by a misspelled word (Dictionary-based) or in case of no match being
17 | Misspelling - found, use a random single edit operation (insertion; deletion; substution of a single John Smtih
character or transposition of two adjacent characters) over a randomly selected word
Java's UTF maximum size -
18 | Replace with a limit size Size 0 " -
Java's UTF maximum size +1 -
19 Replace with an imprecise . Dictionary based: Chooses a single random word and replaces it by the respective acronym 1. Smith
value or abbreviation
20 Replace by specific type R Replage value with apother data types (e.g., numeric, date, time, timestamp, boolean 30
string mutations, to be defined)
21 | Replace whitespaces by - Replaces all the white spaces by symbols (_, ., %, S, €) John_Smith, John%Smith
. Before PhD John Smith
22 | Add extraneous data Position "
After John Smith CEO
23 | Replace by homonyms - Replaces one word by its homonym, when possible. allowed -> aloud
24 | Replace by synonyms - Replaces one word by its synonym, when possible. happy -> cheerful

35

3.4 Failure Classification

In order to make sense of the information obtained during our experiments, a
way of classifying it must be used. Only then the content of interest contained
in the results can be obtained.

One of the objectives of performing data mutation tests is to study the be-
haviour of the application in the presence of bad quality data. The behaviour of
the application can differ because of the occurrence of a failure in the applica-
tion, and this can perceptible from the user’s point of view or from the server’s
internal view. To classify the different behaviours that a service application can
have, a classification scale had to be defined.

The CRASH scale [50], which is a classification originally designed for the
robustness of operating systems, soon appeared to be a good choice. However
there were some limitations because the scale was not aimed at the study of
service applications, but rather operating systems.

Since the experiments done during this thesis focus on service applications,
the CRASH scale had to be slightly modified to fit our needs, but without
modifying the original rationale. Below is the minimally modified CRASH scale
that we used for each classification.

e Catastrophic: A catastrophic failure occurs whenever a failure is not
contained within the user action where it occurred and affects the entire
system, causing the service application to stop working completely and all
current and newer user actions to fail. It requires the restart of the service
application or webserver to recover from it.

e Restart: This classification is given whenever an user action hangs, i.e., it
becomes unresponsive to inputs and does not provide any visual indication
of progress. This failure does not propagate to the system and can usually
be recovered from by reattempting the same user action. To detect its
occurrence a timeout mechanism is implemented that detects if a certain
user action has stopped providing any response since a certain amount of
time.

e Abort: This failure mode occurs whenever an user action interrupts its
execution abruptly, usually accompanied by some sort of error message
that indicates to the user that a problem has occurred.

e Silent: This failure mode occurs whenever the service application fails to
behave according to what would be expected from it, yet does not display
any visual message or error log that can indicate this situation.

e Hindering: The provided error message or exception is incorrect and
hinders the correct diagnosis of problem.

We use this version of the CRASH scale to classify the behaviour of the
service application under test in the Results section. When comparing the
original CRASH scale with our proposal, the differences amount only to an

36

adaption from the reality of an operating system to what is present in a service
application. For example, the original scale uses the return codes of the system
calls as a means to classify the failures, however this feature is not available in a
service application, instead being replaced with visual messages and error logs.

37

38

4 Experimental Evaluation

This section deals with the specific characteristics of the experiments that were
carried out during this thesis to: verify the applicability, effectiveness and use-
fulness of the approach detailed in Section [3] and obtain a study of a real-world
service application in the presence of poor quality data. This section is sub-
divided into three parts: Exzperimental Setup (Section 7 which has the
details about the hardware and software where the experiments were carried
out; Test Cases (Section , which describes the test cases that were used
and why; Description of Experiments(Section , which has the details of the
experimental process.

4.1 Experimental Setup

To test the effectiveness of our approach a setup needed to be found that was
representative of the real-world usage of service applications and that made use
of a database system. Many open-source service applications were considered
for taking a part in the experimental setup, among which were OpenCMS and
DotCMS, two of the leading CMS solutions. In the end the choice was to use
Openbravo€ 3.0, because of the high number of supported DBMS, size of the
code base and wide variety of functionalities.

Openbravo is a commercial open source ERP business solution for Small,
Medium and Large enterprises. It allows companies to manage their entire
business solution, and supports the following processes: Sales, Manufacturing,
Procurement, Projects, MRP, and Finance. Furthermore, it has functionalities
like creating and exporting reports in several formats, including Microsoft Excel
and PDF [87]. With its all-purpose ideology, Openbravo reached high market
penetration, holds a very high place in Open Source solutions of this area [8§],
and has a series of publicized success histories [89].

Openbravo has built-in compatibility with five different database systems:
Oracle, MySQL, PostgreSQL, Apache Derby and HSQLDB. In the experimental
setting, we opted to pair Openbravo with PostgreSQL 9.3. PostgresSQL [90] is
a powerful open-source object-relational database system with plenty of features
and a significant share in various real-world scenarios [91], [92].

In order to run the chosen service application (Openbravo), a web server that
supports the Java EE technologies (e.g., Java Servlet, JavaServer Pages) must be
used. Nowadays, there is a good number of open-source projects available that
can fulfill this role. For the experimental setup, we opted for Apache Tomcat
7.0.68, in part because of the familiarity that had already been acquired with
it, but also because of the decent market share that Apache Tomcat has [93].

All of our experiments took place in the same physical machine, which meant
that the server and the client resided in the same machine. The setup of the
client tried to emulate one of the many possible combinations that can be seen
in real-world.

Openbravo is a trademark of Openbravo S.L.U. and is used under license.

39

For the browser we opted to use Mozilla Firefox 45.0.2, a well-known name
with a significant share of the browser market [94] and therefore likely to be
found in the wild. The browser is used in our experiments to provide the
interface with the service application.

Because of the need for automating our testing process as much as possi-
ble, we used SikuliX 1.1.0 [70], a versatile visual automation tool which can
reproduce clicks and other actions that a human user can do.

The experiments were executed in a ASUS N55SL laptop, equipped with a
Intel Core i7-2670QM processor running at up to 3.10GHz, 8GB of memory and
a 1TB hard drive. The Operating System was Windows 7 64-bits.

The experimental setup can be seen in a condensed format in Table [6]

Table 6: Hardware and Software characteristics of the Experimental Setup
CPU Intel i7-2670QM @3.10GHz
Memory 8 GB
Hardware Hard Drive 1TB
Operating System Windows 7 (64 bits)
Service Application | Openbravo 3.0
Server | Web Server Apache Tomcat 7.0.68
Software DBMS Postgres 9.3
Client Web Browser Mozilla Firefox 45.0.2
Visual Automation | SikuliX 1.1.0

The above configuration, in terms of software choices, is representative of a
normal commercial installation that can be found in the real world. In terms of
hardware, we were limited by the available options, and therefore instead of a
more professional system, a personal laptop had to be used.

4.2 Test Cases

Various test cases were developed to exercise the multiple components that
make up Openbravo. Since Openbravo is a complex application and very time
consuming to thoroughly test, just a limited number of test cases, able of being
performed inside the timeframe of this thesis, were designed. The test cases took
into consideration the CRUD model [95] which represents the four basic opera-
tions that can be performed in a persistent storage (e.g., database): CREATE,
READ, UPDATE and DELETE. These four operations can easily be mapped to
their corresponding SQL statement: INSERT, SELECT, UPDATE, DELETE.
By using this model when creating the test cases it becomes easy to ensure that
all basic operations are represented by the tests. A brief list of all test cases

accompanied by the CRUD dimensions that each test features is presented in
the Table [1

40

Table 7: Test Cases and how they fit in the CRUD model

Test Case 1 Login READ
Test Case 2 Create Organization CREATE
Test Case 3 Create a new User CREATE
Test Case 4 Create a new Role CREATE
Test Case 5 Create Product CREATE
Test Case 6 Delete Product DELETE
Test Case 7 Update Product UPDATE
Test Case 8 Export Product Categories to Speadsheet READ

All the chosen test cases are relatively complex and also perform read opera-
tions (e.g., visualize a detailed list of the content that already exists). However
the classification was given according to the main purpose of each test case.

For each test case, the corresponding activity diagram was drawn. Figure[7]
shows the activity diagram for the "Create Product" test case (Test Case 5).
The remaining diagrams can be seen in Appendix [B] The test case starts with
the steps that must be performed to browse until the window that allows the
creation of a new product, which starts in "Click in ’Application’" and finishes
in "Click in 'New Product’ icon". At this point the user must perform certain
steps, which consist of data entry, without the need of following a specific order.
When all these steps are done, the user can then finish the test case by saving
the new product and exiting from that window.

4.3 Description of Experiments

Each experiment exercises different areas of the service application, yet all exper-
iments share the same flow, only differing in the test case that will be executed.
A visual representation of this flow is shown in Figure [§] and a connection is
made with the three phases of our approach (Preparation, Mutation, Analysis)
by assigning a certain color to each step.

The purpose of the Preparation phase is to execute all the necessary steps
needed to prepare the system to execute the remaining phases. At this point no
data coming from database has been mutated. The first step of the experimental
process is to fire up Apache Tomcat and wait for it to fully load. After the
web server has started, a new browser instance is launched and used to browse
to Openbravo’s login page. At this point, two different paths can be taken,
depending on the test case that is being executed. In most test cases, the flow
is to log-in into Openbravo using the "administrator" account, and waiting for
the main page to load. However there is one test case (Test Case 1 - Login),
aimed specifically at testing the login mechanism, where the Preparation phase
ends right after Openbravo’s main page has loaded.

After the Preparation phase has finished, we commence the Mutation phase

41

1ONPOIJ 99edI)) - G 9SBY) 1S9, 10 WRISRI(] ANAIY :J 9IS

i

U031, 8S0|D) PUE SAES,, Ul Y

i

[

uonduasap adAL

J |

uojezueBio 350040 g ﬁ

abew peojdn

g ﬁ fioBajed 1anpoid 350040 g

ﬁ 19npoid jo sWeu sy sdAL E

i yueas adAL

H

UD31,1INPOI4 MBN,. Ul

Janpoid, Ul N0

Juawabeu!
Eleq JaISEW, U110

LUonednddy, uag

13npoid siEsI)

42

(Start)

Launch Firefox
instance

Browse to
Openbravo
main page

Login as

i 2
administrator Executing Test Case 17

'Wait for main page

Start mutating

Run Test Case
in SikuliX

Wait for
completion

Stop Tomcat and
extract logs

no
Test Case passed

Launch
Apache Tomcat

Add mutation
that caused
exception

>/ Analyze results

with success?

Figure 8: Flow of an experiment

43

by signaling the tool that it can start mutating the data coming from database,
through the modification of a binary value stored in a pre-defined file in the sys-
tem’s hard drive. With the mutation tool enabled, SikuliX is used to accurately
reproduce the steps of the test case, which can take some minutes. Along the
way we take note of the behaviour that Openbravo exhibits by taking screen-
shots. When the test case has finished executing, Tomcat is stopped and the
various logs produced by Openbravo, Apache Tomcat and our mutation tool are
obtained.

At this point we enter the Analysis phase. Armed with the information
obtained until this point, it is possible to understand how the application’s
behaviour was affected by data with poor quality. If the test case has completed
successfully (the application showed the expected behaviour), this experiment
has finished. However if the test case failed (application had an unexpected
behaviour) the flow returns to the first step, but only after analyzing the log files
to understand which mutation caused it to fail, and then adding this mutation
to a file that keeps track of all. When a mutation is put in this file, it will not
occur anymore, because next time the data mutation tool will detect and skip
it. By doing this we are sure that in the next run the same mutation cannot
cause that exception (thereby the same exception will not happen again, unless
it is caused by another different mutation). This last step allows us to proceed
with our tests, while finding problems inside Openbravo that can later be fixed
by proposing changes to the source code. The experiment stops only when the
test case passes successfully, until then we repeat the above procedure.

44

5 Results and Analysis

The results presented in this section include a classification of the behaviour of
Openbravo under the presence of poor quality data, as well as various software
defects in Openbravo and in two libraries (Hibernate and PostgreSQL JDBC
driver). In second plan, an analysis of the exceptions that occurred during the
experiments and statistics relating to the experiments is included, with a view
to better characterize the nature of our experiments. At the end of this section,
the obtained knowledge is summarized and simple programming guidelines that
can prevent the witnessed programming flaws are presented.

5.1 Overview of results

The analysis of the results provided by the experimental evaluation lead to var-
ious observations. In this introductory subsection, we present a brief overview
of the key points that will help the reader digest the following subsections.

One of the main goals behind the experiments was to characterize the be-
haviour of the service application under poor quality data, according to a prede-
termined scale (in our case, an adapted CRASH scale). This analysis returned
the failure modes that happened in each test case, and a posterior analysis was
made to retrieve the reason behind them.

The most common failure mode was Abort, which means that the applica-
tion was unable to finish executing a certain task. One particularly interesting
example of this failure mode is when a ClassNotFoundException occurs, which
means that Openbravo has failed to dynamically load a certain class, and, there-
fore, the functions of that class have become unavailable. To the user this means
that a part of the functionality is not present. This specific problem can only be
solved by logging out and then logging in again, to force Openbravo into reload-
ing the failed class. Otherwise the functionalities will always stay disabled for
the current session.

Another noteworthy occasion, which is also the only Catastrophic occurrence
witnessed during the experiments, occurred because a certain mutated value was
stored in the browser’s session, which lead to a service terminating exception
appearing every time an attempt was made to access Openbravo, until a different
browser or private session was used, or until Apache Tomcat was restarted.

Furthermore, a few occurrences of the Restart failure mode were also de-
tected, which, after analysis, were attributed to two different causes. The first
cause is the fact that, occasionally, the user interface did not reflect the unex-
pected termination of a task (e.g., by showing an error message), and transmit-
ted an everlasting loading screen instead. The other situation occurs when the
user is forced to log out (e.g., Openbravo detects that the session has expired),
but this action takes an excessive amount of time, and the timeout limit used
in the experiments (3 minutes) is exceeded by far, hence a Restart classification
being attributed.

Finally, it should be noted that we witnessed occurrences of the Silent failure
mode, which were caused by a mutated value that did not raise any exception,

45

went by unnoticed, but still was able to affect the logic flow of the application.

An important conclusion reached during these experiments was the confir-
mation that the approach and respective tool are capable of discovering software
faults in different components of the system, such as the service application itself
and the middleware libraries that it uses. Several software bugs were discovered,
some of which share big similarities regarding their cause, which allowed their
aggregation into a group ("Null Pointer bugs").

The most common software bugs belong to the so-called "Null Pointer bugs”
group, which occur whenever Openbravo receives an unexpected null value from
the database and fails to detect its presence. Later, when Openbravo continues
its execution, it will attempt to call a function from this null variable (i.e.
null.function()) and thereby cause a NullPointerException to be thrown.

Particularly interesting software bugs were also uncovered outside of the
service application, in the code of Hibernate and the PostgreSQL JDBC driver.

Furthermore, A potential security vulnerability, second-order SQL injection,
due to the dynamic creation of SQL queries using inputs received from database
and without any validation, was discovered. A would-be attacker could possibly
exploit this vulnerability by modifying the specific cells in database, or by in-
tercepting the connection between database and service application (as is done
by our tool). Less noteworthy flaws were also found in the design of the user
interface when displaying error messages.

Finally, from the knowledge obtained in the results, we design and present
programming guidelines aimed at helping developers avoid the same mistakes
that we detected.

5.2 Service application behaviour

The foremost result to extract from this study is the characterization of the
application behaviour under poor data quality, which reflects the ability of the
application to withstand mutated data and asserts its possible failure modes. As
explained in Section to perform this evaluation we used a slightly adapted
CRASH scale. We present in Table [8] the failure modes that were witnessed
in each test case (each capital letter refers to one of the failure modes in the
CRASH acronym).

Table 8: Behavioural analysis of Openbravo according to adapted CRASH scale

Login C,AR
Create Organization A
Create a New User AR,S
Create a new Role AR
Create Product AR, S
Delete Product AR
Update Product AR
Read Export Product Categories to Spreadsheet | A, R, S

46

The first observation that can be taken is that the most prevalent failure
mode was Abort. When analyzing the information contained in the logs we
inferred that this failure mode can be caused by most mutations and exceptions,
and, because of that, we are unable to find a specific well-defined pattern. In
fact, as long as the failure is severe enough to stop the execution of the current
task, this failure mode will very likely appear (later in this section we provide
an example where the stoppage of a task leads to a Restart failure mode).

However, it must not go without notice that a particular occurrence had very
interesting contours. This interesting example of an Abort failure is described
below and causes a ClassNotFoundException to be thrown. From studying
Openbravo’s functioning we have already inferred that moderate usage of dy-
namic class loading is done to load classes that implement certain functionalities
at run-time. A ClassNotFoundFEzxception occurs precisely because a mutation
has changed the class name and Openbravo fails to find and load that class. If
a class is not loaded, then the functions that it provides cannot be used. We
studied a specific run where the above scenario occurred, and discovered that a
failure at loading a class means that its functionality is disabled during a time
period, i.e., we found that a failure of this kind implies that the class cannot
be loaded until a log-out and log-in has been done. After a log-out/log-in is
done, then Openbravo will attempt to load the class again, and if successful the
functionality is restored.

In contrast to the prevalence of the Abort failure mode, the Catastrophic
failure mode had only one occurrence. The analysis of this occurrence revealed
that the culprit was a mutation (in this particular case, a mutation that adds
whitespaces) that affected the "userId" value (i.e., the ID in the database of
the user that we are currently logged in as). This mutation changed the correct
value of "100" (which corresponds to the created-by-default Openbravo account)
with "100 ". This incorrect value would cause a NullPointerFException in JSP
code of the index page (index.jsp), because a SELECT query to the database
would return null since it could not find any user by this ID. The JSP code
lacked any protection against this possibility, and, immediately after, attempted
to call a function from this variable. The obvious outcome is the raising of a
NullPointerException and the immediate interruption of the task. However, the
interesting part, and the reason that separates it from a regular Abort, is that
the mutated and incorrect "userld" value is stored in the browser session after
the first use, and therefore, will permanently be used each time that an attempt
is made to access Openbravo, and without fail lead to an exception. The only
solution is to use a new browser (or open a Private Browsing session), or to
restart Openbravo and Apache Tomcat.

The JSP code that tries to use the "userld" to get an item from database,
and then throws the NullPointerExzception is shown in Listing [3]

47

—_

O © 00O Uk Wi+

Listing 3: Excerpt of code where Catastrophic failure mode can occur

final VariablesSecureApp varsl = new VariablesSecureApp(request, false);
OBContext.set AdminMode();
try{
String roleld =varsl.getRole();
Role role;
if (roleld==null || roleld.equals("")){
role=0OBDal.getInstance().get(User.class, userld).getDefaultRole();
telse{
role = OBDal.getInstance().get(Role.class, varsl.getRole());

}

The database access is done in line 7, by using userld as a parameter. The
database will return null, which will then be used to call "getDefaultRole", which
throws the exception.

As a reminder, a Restart classification is given when the application hangs
or takes more time than expected to execute the test case (timeout). In the
experiments, we consider the consecutive amount of time that the browser shows
no signs of operation to the user (i.e., visually there are no significant changes) as
the way to measure the timeout, and choose a timeout value of 3 minutes. Two
different causes for a Restart failure mode were detected during the analysis
of the results. One of the cases took place in a portion of code which is called
periodically to check if the user’s session is valid (in DB), and therefore, if
the user is logged in. What occurred was that a mutation was performed to
the results coming from database (in this case, a replace-by-null mutation),
which replaced a numeric value ("1", but represented as a String) with a null
value. This null value would later have an attempt to be accessed, which caused
a NullPointerException. Because of this exception, the value of the variable
"loggedOK " is never changed, and keeps the default value (false). The function
will eventually return false, which will indicate Openbravo that the user should
not be logged in. Openbravo will then proceed to redirect the user to the login
page. However, from a user perspective all of these steps give the appearance
that the application has hanged, partly because of no visual feedback (e.g. error
message or other kind of information) and also because of the fact that until
the user is successfully redirected to the login page, more than 5 minutes (value
used solely as an example and limited to our specific setup) are spent. Due
to the timeout limit (in our case, we opted to use 3 minutes) being exceeded
before any visible indicator of action is displayed, we classified this occurrence
as a Restart, despite the fact that if enough time is allowed, Openbravo will
eventually redirect the user to the login page. The most important parts of the
code of the "loggedOk" function is shown in Listing [

48

0O Uik Wi

SR R R O W Lo LD W W W W W NN DN NN DNDNDNDN e e e e e
W OO0 IDDUU WN R OO IDDUlk WP O OO0 Uk W~ O o

Listing 4: Excerpt of code where Restart failure mode can occur

public static boolean loggedOK(ConnectionProvider connectionProvider,

String adSessionld) throws ServletException {

String strSql = "";

strSql = strSql + "SELECT_COUNT (x)_AS_TOTAL_" +
"FROM_AD SESSION_WHERE_AD SESSION ID_=_7_" +
"AND_SESSION ACTIVE_=_Y’_" +
"AND_ISACTIVE_=_Y"";

boolean boolReturn = false;

PreparedStatement st = null;

int iParameter = 0;

try {

()

ResultSet result = st.executeQuery/();
if (result.next()) {
boolReturn = 1UtilSql.get Value((ResultSet)result,
(String)"total").equals("0");
}

result . close ();

catch (SQLException e) {
log4j . error ((Object)("SQL_error_in_query:_" + strSql +
"Exception:" + e));
throw new ServletException("@CODE=" +
Integer . toString (e. getErrorCode()) +
"Q" + e.getMessage());
}
catch (Exception ex) {
log4j . error ((Object)("Exception_in_query:_" + strSql +
"Exception:" + ex));
throw new ServletException("@CODE=@Q" + ex.getMessage());
}
finally {

try {
connectionProvider.releasePreparedStatement(st);
}
catch (Exception ignore) {
ignore. printStackTrace();
}

return boolReturn;

49

The parts of interest in the above listing are lines 17 and 18 , where the
NullPointerEzception happens, and lines 8 and 42, where the variable "boolRe-
turn” is initialized to false, and where the function returns, respectively. If we
imagine that a NullPointerEzception occurs in line 18, it is easy to understand
that the function will return the default value of "boolReturn”, which is false
and means that the user is logged out.

The other Restart case that was analyzed and had a different origin hap-
pened when a new page is loading, and a NullPointerException occurs (once
again because of a replace-by-null mutation), which forces the task to stop. At
the same time, there is no error message being shown to the user. In fact,
the only thing that the user can see is a "loading" bar that keeps moving, and
thereby giving a false sense of work. Once again this case was classified as a
Restart instead of an Abort, because of the false impression of constant loading
that is provided to the user, and which will ultimately make the user wait until
its patience has been exceeded.

The Silent failure mode is assigned when the application does not show any
visible error message neither in the server log files nor in the client’s browser,
but it is not able to perform the necessary functionality or does not allow the
user to execute the required steps to completes his desired functions.

A example for this case, which occurred in more than one Test Case, is
where a specific button was grayed out and disabled (i.e., impossible to be
clicked in order to access its functionality). Specifically, the disabled button
corresponded to the "Create New Item" button. When analyzing the reason
behind this odd behaviour, we found that a certain mutation (in particular,
the mutation that adds a random numeric character) was being called in a
function named "hasReadOnlyAccess”. As the name suggests, the objective of
this function is to distinguish between a user that has Read-Only access to
a certain area of the application, and one that has Read-Write access. The
original, un-mutated value would assign us with Read-Write privileges, but the
mutation changed the value in a way that Openbravo believes that we have
Read-Only privileges (the original value was "0" and the mutated value became
"03"). An excerpt of the code for the function that calls "hasReadOnlyAccess”
is shown in Listing |5 while a partial Java code corresponding to the important
parts of the "hasReadOnlyAccess” is shown in Listing [6}

50

© 00 O Uk Wi+

0O Ui Wi

I I I N R N N T N e O e e e S S e e e
DU WD O OO Tk WwNn—E OO

Listing 5: Excerpt of code where Silent failure mode can occur (1)

for (Tab tab : window.getADTabList()) {

final boolean readOnlyAccess = org.openbravo.erpCommon.utility

.WindowAccessData.hasReadOnly Access(dalConnectionProvider,
roleld, tab.getld ());

String uiPattern = readOnlyAccess 7 "RO" : tab.getUIPattern();

// window should be read only when is assigned with

// a table defined as a view

if (I"RO".equals(uiPattern) && ("T".equals(windowType) ||
"M".equals(windowType)) && tab.getTable().isView()) {

Listing 6: Excerpt of code where Silent failure mode can occur (2)

public static boolean hasReadOnlyAccess(ConnectionProvider

connectionProvider, String adRoleld, String adTabld)
throws ServletException {

boolean boolReturn = false;

()

PreparedStatement st = null;

int iParameter = 0;

try {
st = connectionProvider.getPreparedStatement(strSql);
QueryTimeOutUtil.getInstance().setQuery TimeOut((Statement)st,
SessionInfo . getQueryProfile());

()

ResultSet result = st.executeQuery();

if (result.next()) {
boolReturn = 1UtilSql.get Value((ResultSet)result,
(String)"total").equals("0");

()

return boolReturn;

The lines that should be paid attention to are 20 and 21 of Listing [6] where
it can be seen that "hasReadOnlyAccess" will return true (i.e., the user has
read-only access) if the result coming from database is different than "0".

The graying-out of the button, shown in Figure[d} is solely the visual feedback

o1

of Openbravo to show that we do not have permissions.

Figure 9: Example of a disabled button, during a Silent failure mode

Because this mutation is not enough to cause an exception or other major
problem, it goes by unnoticed in the system and does not raise any problem
possible of being logged. It can be compared to a Silent Data Corruption (i.e.,
data corruption that is not detected by the existing mechanisms).

Finally, it must be stated that, to the best of our knowledge, there was no
occasion where Hindering occurred. However its assessment is difficult due to
the fact that an assessment must be made regarding the truth of a certain error
log.

5.3 Software defects uncovered during experiments

During our experiments, we were able to classify the behaviour of a service
application under the effect of poor data quality, as presented in Section
However, the mutation of data being sent to the service application can also
uncover software defects (i.e., a deficiency in the product that causes it to
deviate from the specification, can be a software bug) that could normally go
unnoticed in "traditional" testing approaches. During our experiments, a good
amount of software bugs were discovered both in Openbravo and in two libraries
that provide support for database access, Hibernate and PostgreSQL JDBC
driver. Tables[]and [I0] provide a detailed description of all the bugs uncovered,
and include a brief explanation of why they occur, a possible solution, and
information relative to the mutation, input and output that triggered their
occurrence in our experiments.

The most common experienced software bug was recurrent enough to have
its own group, "Null Pointer bugs", which refers to bugs that end in java.lang.
NullPointerException and are always caused by the lack of verification after
data is read from database, which allows null values to stay unnoticed. When
variables that have these null values try to be accessed, the operation fails by
throwing a java.lang. NullPointerEzception. In general, the solution consists in
verifying the values obtained from database, to at least ensure that they are not
null.

Entry 19 is connected to one of the peculiarities of Openbravo, its ability to
dynamically create SQL queries from other smaller SQL parts that are stored
in database. The problem in this approach resides in the fact that if there is
no appropriate validation of the content obtained from database, as is the case,
the occurrence of SQL injection is a possibility. For example, a malicious user
with access to the tables in database where these values are stored, or capable of

92

‘uoiedll
1NOYJIM PasN S| pue UOIIUNY JaYIoue 03 passed SI |INU SIYL *||NU SUIN}aL

uondaox3

Ardwsa si 3ulis ayi Ji y23Yd pinoys aleulaqiy

ng ‘Suiis e jo (0 uonisod) Ja1oeIeYd 1541} BY) SSIIIE 0] S3LI} A1RUIAqIH

BusAiidwzAgeoe|das zw Bulis

xapu|3ulis 3ue|-eael

*8uisn aJojaq ||nujou si , 810uaded,, J1 P9y pue sjiej 31 3ng 399[qo ue yum @| 3yl Yydlew o3 sai) oAeiquadQ assym JYIHM 0 SulsToSAgadedas gTw Buls o104 1NN Suel-enel 8
‘(£ "ON Ul SB) J9AI3S DY) 0 JUII|D dY} WOJ) SIWOD SN|BA SIY] “JUSI|D AUIOdIINN"SUEY Enes
0} @3edgam SuiAe|dsip uaym pajeinwi s uoneziuediQ ue Jo q| ayL
(sodund uo anjen sy Suidueyd jo
3|qe S| JU3I|D 3y} 240J2J43Y) PUE ‘UOILIASUI JO JUBWOW dY) 1e oAelquadQ
: . _ [eileCh}
|InU 30U S1 UOIEZIUESIO PaULEIGO Y} 01 1ual|d 3yl Aq passed si aweu siy) :930u) ‘uoindadxa ayl asned Jaje| SNILNNODDV Suunoae oM [eSaT 352933150ddOMIAU0I™/ W BULIYS c 13d90X3 /
JIIM ya1ym [|nu uiniad |jim Asanb Jey | aweu jeyy sayoiew (Ajasidaid) 1NOHLIM VD3| Jaqu10d|INNBue| eael
1ey) uoneziuesiQ ayl Jo | 9Yl dA3113J JouUURD 3 3sSNeI(|1ej Aanb
€Q 24NNy e 3eW ||Im uoneziuesiO ay3 JO 1531 dY3 JO UoleINW dY |
‘way) 8uisn au0jaq ||nu ‘1 AJlI9A 01 S|1e) OARIQUDdQ pue - o uondaox3
A d 3
j0U aJe anjeA’[i]elep pue [1]eiep 1eyi }osyd ‘lInu 8q 03 ,anjeA‘[1jeiep, 4o ,[1]eiep, JO an|eA sy} sasned uoneInw vy finu ONILYYLS 10 INNAGSLICRL T SULS J91u10d||INNBue|-eael 9
'si919wesed se sa|qelien omy Jaylo ayj Suissed fqdwa
*Buisn aioyeq AQ 9@ WoJj paulelqo i ,[9AS7TSSII.,, JO dN|EA BY) 3SNEIA(SINID0 fadws 1deaxe Auy 0870008 X | A13191dWi09 3 Bupjew 1da9%e 4ndul uondaox3 as
|INU 10U SI ,[9ASTSSDI9.,, B|GBLIEA JI 393YD) SIyL M U2Iym ‘uoneinw J21u10d||INN"Sue| enef
) a3 sayipow ydIym uonenw Auy
e Jayns ued , adAyojuissepd,, *0JU|SSEJd,, SB|RLIEA 3] JO BUQD
n a1ojaq ‘95|12 aJaymawos suaddey _ uondaix3
|Inu € InNAgaoe|das Tw Sulns eg
JInu J0U SI, |9A3SS2008,, B|qREA JI 323YD | UOIIeINW 3y} Ing "30e|d dWies 3y} Ul SIN220 uoidadXD BY] "qg Se dwes J31u10d||NN"Sue| enef
‘8uisn auojaq) Suisn o uondaox3
. . . |Inu unowy Sulpuadsaq Ag INnNAgaoe|das” Tw ™ 8ulns .) v
|Inujou si 1xa1°[1]e1e@IXa], B|qeIBA JII3YD | 240jaq }I3Yd SnolAaid ou SI 3J3Y3 Ing ‘||nu sI ,1xa) [1]eIeQIxal,, d|qelien J21ul0d||INN"Sue| enel
{{ana:, Axundagsjou,‘
|oAaTssadoe, ¢, 1 Jewuogaieq|bs, ..
al
uoIssasqp ud
11248sN,°,11NV43Q,,1, PUBWIWOD, /1, BSNO
"} 8uisn ‘pasn jnu yalem, ‘0:, uoneziuesio, ,68€85529309L IINNAgeoe|dai Tw ™ BuLls uondadxz ¢
910J3q ||NU 10U S| ,3N|BA,, 3|GRLIEA JI }23YD 111 940J3q ||NU JOU S 12U} 24NSUS 0 SHI3YD OU SeY ,aN[eA,, d|qeliep 07962/9%43695/56SIET,,: U J21ul0d||INNSue| enel
D00€03052/\dWOoD00E0INST US 2B}
uuasn-oaelquador8io/\a| B
1U0D5592044"8ulinpayas oaeiquado-sio, }
"JEWLIOY D11B]S B Ul } 9ABY Jaylel Ing “gq *sse|d 1ey) peo| AjjeaiweuAp o1 |iej ||Im oAeiquadQ AnuenpgadA uewogjewpaadia o uondsaxgpun
3y ul s9s5e|2 papeo| Aj|edlweuAp Jo sweu 95NeI3Q UMOJY] 29 ||IM UOIdaIX3 Ue ‘SaWEeU 3$3Y] JO BUO Ul SIN2J0 (8uns Aydwiz) BusAiidwizAgeoe|das zw Bulis 4
adAjulewop-|apow aseq-oreiquado-8io o410Nsse|D 8ue| eael
3y3 2AES J0U 0] 24N1I3)IYdIe By dSuUeY) | UOIEINW B §| "9Seqelep ul 1da)| S SISSe|d papeo| dIWeuAp JO dweu 3y
an|eA ||nu e uoy ‘umouy} st uondadxa pajoadxaun ue Aydwsa si Sulis SurjadssiwZTw ™ 8uls Jo uo
$329y2 Apeadje 11 Jey) Aem swes ayj ul ‘you Jo Y3 J| s1y3 192dxa Jou sa0p eusaqiH pue ‘Axdwa aq 3ysiw Sulis 1eyy (8uns Aydwiz) WN, 40 AL Sulsqnganowas” zTw 8uls Jo | 11dadx3spunogioino T

uoryestjdde 901AI9s 91[) UI PuUNO} s8Nq 9IRM)JOS 6 S[R],

33

“Juawa|dwi 0} 9|qises) aq shem|e

J0u 81w yoeoudde ise| siy3 1Y) pueISIIpPUN
M J9AIMOH *dseqelep WoJj pead si 1ey)

BIEP WO PaIeasd AjlediweuAp ag ued salsanb
219ym walsAs e Wouy AeMe aAOW 0} 3g P|NOM

(uonew.oyul

BAI}ISUSS UIeIqO 01 UOIRI3[UI TS Woad ued Jaydene ayy “8-9)
‘wa)sAs ay3 Jo A1undas ayy aulwuapun Ajjennualod ued pue sags|iald
s5,0ABIqUAAQ YIIM UnJ ||IM Jey) AJanb TOS Jayjoue pjing pue sanjea

uondasx3To

yoeoudde Jayjouy ‘pasn aq 03 3|qeiydasoe 9say Ajipow 01 ‘(wajqoud Ayljenb eyep e 031 anp Ajdwis Ajaund “1o) ° ° uoneinw Auy Sd'|an|bsaigisod 810 61
2.Je SaN|BA PUE SIIORIRYD YDIYM Jwi| Jaxoe13e snopdijew e 1oy 3|qissod Si 3| "9ARY dSEgeIep Ul PaJ0ls San|eA
03 9|qissod ‘siyy ulop Ag "aseqejep wouj 953y 1ey3 UoidR04d JO oe| By Ul SapIsal wajqold ay] ‘sauenb TOS
paulelqo elep sy || 9zI}IUES pue d1epljeA J3Y30 Bulp|Ing J21e| Joj PaAaLIIal S 1eY) 90 Ul BIEp S301S OARIQUIDO
01 51 AJIjigeJaU|NA SIY3 350J0 0} Aem BuQ
‘pua ay) Ja3e a2e|d auo sI 1eyy uonisod e ssadde 03 1dwiane
Ue S| 3|NSaJ pUa 3Y1 pue ‘InolAeyaq siy) 103dxa 10U S0P 1Y) 1YSIsiano
oLeusas 3|qissod S1u3 JUNoaze o3l Buiwwesdoud e sey ‘JaAlIp 3y ul 9pod Jo Med Jayjoue JaASMOH ‘Sulils
ay) Jo pua ay) se AJanb ay) ul JaoeIRYD ISB| 9Y) JO UoNIsod ay) SuIN}al
Ie3.03 pasuey 24 pinoys 3pod ulutewsas 1 ‘@3onb 3|8uis uisojd ay) puly 01 S|ie) UOIDUNY SIYY UBYAN “910nb uo
3Y3 puy ‘pua ue pulj 03 pajie} 3l 1eyl e 8UIS SUISO B3 pulj 03 S|1E3 UORIUN SIY3 UBUM "3 ws,N,=Asewwnss| N,=Aewwnss| | Suuiso]siardeseyoppe”sw Sulls | 1ndadx3spunogjoino | 8T
9|8uis Suisod ayy puly 03 saL13 3ey) uonduny ayl Aq pasagsiyy 8nq suo
Sunesipul ‘anjea ayenbape ue uinjas pjnoys xapujAessy-Sue|-enel
SULITS 5U1 10 DUB U1 SPULL 1811 UOIAUNI -Ag-440 ue Jo asnedaq s1N220 uodadxa siy| ‘a8essaw Jolia ue 3uinS Agq
s o p 13 SPUl 3Bu3 LoRoun; 341 ajdwexa Joy ‘A|392.410 J1 3|puey 03 S|IE} JBALIP 3Y3 ‘pPawio) Ajpeq Sulag
Asanb ayy ayidsaq juasauid si Sulls pajeulwaaiun ue yum Asanb e uaym
$4n220 1ey) 8ng SutwwesSoud e sey TOS2481504 JO JBAQ D9Ar YL
‘uondadxa ayj sasned
‘8uisn | pue anjeA siy) asn 0} spaadoad uayl oAeIquadQ “TINN SUINIBJ pue s|ie} 3900 e € 55e991150ddOLIBAUCI—/ Wi-SuLs uondaox3
2J0Jaq ||nu J0u S|, uoieziues.o,, Ji YYD Yo1ym ‘uoijeziuesio Jo anjeA ay) uielqo o3 pasn si ,p(8i0s, pareInw 0 mmwwmmw E»wn €33039€6.68vAVYAL68YYIVVTED90200 St ou £ s Ja1ul0d||INNSue| enel r
Ajsnoinaad uaaq sey p|810J1s asnedaq ‘||nu si ,uoneziuesio, d|qeliep L68ve9REIE2902P
‘8uisn *uondadxa ay3 sasned yaiym ‘onesquadQ Ag pasn uayi sl anjea siyy o uondasx3
210J9q ||NU 10U S|, d2413|qRLUleW,, JI }O3YD ‘uoneinw ||nNAgaoe|dal e Jo asnedaq ||nu Sawodaq 2341 d|qeLulew,, lInt | 2€A4vA4€802I5LrV0I8YT930VA88YSD lInNAgaoe|do TwBukas J31ul0d||NNSue|'eAel ot
“Buisn *3084409 10U sI ()pie|qelAgAinuzied - - uondadx3y
21ojaq ||nu jou si , Anuziasiey,, Ji }oayd 0} passed anjeA ay} asnesaq ||nu sawodaq ,Ayuziasiey, 0 E TeAqnsT6w e8| J1ul0d||NNSue| eaef st
R uondaox:
.m:_mz 94043q [|NU JOU S|, 3INYH3|e,, JI YI3YD ‘uoledlylIdA m30_>0‘_a noyum pasn st s|nyuale, ||nu 398127040146V 106664€776179VS0CATST __:Z>mmum_nw‘_ Tw m:_‘_uw hwur:cn___sz.m—.._um_.m>qu i7an
|NU S| S91BP 31 JO BUO UBYM UOIdIIXTIRIUIOG|INN
B S9SNED Siy *(uonouny siyy ||ed 1eyy sadejd Jaylo ul pa)
‘28esn 210§2q | 10U OS|e SI }I PUB) 10U JO [|NU dJB SBAISIJ 3l S3IEP Y3 JI AJLISA J0U SR0P Y69'EV:SHIET . e o uondaox3g
pay23yd aq p|noys ,zp,, pue ,Ip, se1eq 11 JOASMOH "S31ep OM) asedwod 0} uonduny e sey oaeiquado ¥0-£0-€T0ZAYd V69'EViSyiEL $0-LOETOC Sno3ueLXIPPETZZWBuLAS Ja1u0d| NN Sue|eael et
S3W023q anjeA ay3 pue) dweisawiy 03 Sulls Wouy SuIISAUOD UBYM
24n|1ej B S3SNED YdIym pajeInuw si d1ep ayl Jo Sulls syl ased siy) uj
osn *3N|BA S} JO UOIIBDIIJIIBA B INOYIM Pash s, 3|qes,, 3|qelle, nu nNAgase|dal Tw ™ SuL: uondadx3
210434 [INU 30U S| ,3]GEL, BIGELEA 1 OBLD | 1 Jo uon Yum p: I9e1,, 3|qenen 1 80T lINNAgade| T B 193UI0g|INN e ene [49
-Apaa1100 aLd'sralaid
. -M3IA-qo/saiejdw [3'sI"plaYy-main-qo/saie [uondaoxa
J0U JO ||nu aJe yied, pue ,jan, J13a3y) JInu 3y 3|puey 03 S|iej OABIQUIQ °||NU BW023q 0] , 4N, SASNED o3/uoneaydde/suay | (duwss/uoneoydde/suaip/oneiquado/Sio) ase)ayisoddQ1aAU0d LW BuLlS 123uodNN-Bueenel 1T
Ud1ym ‘3]l Y3 puly 03 s|tej oAelquado pue pajeinui st ,yied, ajqerien >/oneiquado/oy0/
‘Buisn *pas}aaYyd Suraq Inoyum paresedoud st |nu SIyL |iNu uINYdJ | 68€455292092029 o uondaoxg
21043q ||NU 30U SI, PIIUBIIDIMOI,, J1 HO3YD pue |1ej 01 gQ 01 $S9IJ. UE S3SNEed ,(199UJ3J2J,, 40} dNjeA BUOIM Y | 6D/974964SLS659E 68£85528309L02967£9V40685L565DET | dseD3ys0ddOMANU0I LT BULAS J121u104|INN"Sue| enel ot
*UOREILIBA vondasx
*8uIsn a1ojaq [|nu J0uU S| 431, J13P9YD | INOYUM uo passed SI [|nu SIYL “||Nu SUIN}DJ pue S|iey 3l @] 18Y} YUM Ssejd W OT . WO0T. 2oedsayMuasul- gw ™ Suls - 6

X4 paisading

© puly 0} S3L4) OABIQUIAQ UBYM pUE PajeInu si ,J190UId4aJ, d|qeLien

uondudsaqg

(yop)) uoryeordde 9o1AI9S BT} UI PUNOJ SSNQ dIeMIJOS 0T I[RT,

anjep pareIniy

anjep jeuwSuo

uopenpy

J23u10d||NNBue| eael

uondadx3

54

tampering with the connection between database and service application (as we
did), is capable of modifying these values to perform actions that he should not
normally be able to (e.g., create a new account with high privileges, drop a table,
read privileged content). This is a severe flaw that can possibly allow an attacker
even with limited local access to the system to perform privilege escalation and
to perform actions that can compromise the security of the system. The solution
to this issue consists again in implementing and applying a strict validation of
all inputs coming from database. However, an even better approach would be to
forgo this architectural approach entirely and to move away as much as possible
from dynamically creating SQL queries.

The defects found during our experiments also extend to the user interface of
the application. The interface of a service application is where the end-user com-
municates with the application. By nature, the end-user should not be presented
with information that he does not need to know, and which will only confuse and
disturb his experience. This observation also applies to error messages, where
the widely accepted rule is that an error message presented to the user should
be human-readable, easily understandable and helpful to solve the problem [96].
Unfortunately this is not what happens with Openbravo, where the error mes-
sages contain the exact same copy of the exception message, or other unhelpful
content. By applying the Orthogonal Defect Classification (ODC) [97], and an-
alyzing all the error messages obtained during the experimental evaluation, the
defects of the user interface can be assigned to two different impact categories.
One of them is Usability, which is one of the 9 impact categories proposed by
IBM for usage with ODC [98], the other one is Security, which was employed
because no other category was adequate. A more detailed explanation follows:

e Usability: the error messages are unhelpful and unintelligible to the user.
Figure shows one example of such an error message, which consists
solely of a standard text ("Error occurred:") followed by the name of the
Java exception.

e Security: sometimes the error messages inadvertently leak information
to a possible attacker about the internal functioning of the system. When-
ever a direct copy of the exception message is displayed to the user, there
is the risk that database schema details, stack traces, path information,
file names and database content are displayed. This configures an in-
formation disclosure vulnerability, and can help a possible attacker to
break into the system. Figure [IT] shows an error message obtained during
our experiments, where the schema and contents of a database row are
displayed.

%)

ff! E Error occured: java.lang.NullPointerException

Figure 10: Error message with shortcomings at the Design level

Error

M Saving failed. ERROR: null value in column "c_taxcategory_id" violates not-null constraint Detail: Failing row contains (3F1B1AF66D5F4FE1B483EC2E219DBF17,
BIS, Biskrem, Biscuits, null, null, null, null, 104, null, N, N, NN, N, N, NN, 5526FCABFE9545018EE221E8802AA283, null, 0, 0, null, null, null, null, null, null, N,
null. null, null, null, null. N, null, null, N, N noll, noll, N, nall, noll, null, noll, Nnoll, noll, N noll, N nall, N, N).

¥ New

P Cmmenb Waees

Figure 11: Error message with shortcomings at the Security level

Of particular importance are entries 1 and 18, which represent software
bugs that are not in Openbravo’s code, but rather in the code of libraries. The
discovery of these issues is the perfect proof that our data mutation tool is
capable not only of discovering problems in the service application being tested
but also in the software of the entire system (e.g., libraries).

The first entry of the table refers to a bug in Hibernate, a very well-known
and widely-used library that acts as an intermediary and helper for database
access, using an approach that is commonly known as object-relational mapping
(ORM). The Hibernate version used during the experiments was 3.6.3-Final, but
even at the moment of writing the bug here uncovered had yet to be fixed in
the latest version (Hibernate 4.2.21).

One of the functionalities of Hibernate is the conversion of values stored in
multiple formats (e.g., string, integer, character) into the corresponding boolean
value. This functionality is used whenever a boolean value is stored in database
as another format. One of the supported formats that can be converted into a
boolean is a String, where Openbravo defines Y’ and N’ to represent True and
False, respectively. However, a programming flaw exists in this code, which can
be seen in Listingm Although Openbravo checks (in line 2) if the input value is
null, before proceeding, it does not take into account the possibility of an empty

96

0O Ui Wi+

string. The bug occurs in line 17, when an attempt is made to access position 0 of
the string. If this string is empty, a java.lang. StringIndexOutOfBoundsEzxception
exception is raised, and thereby the process interrupted. The proposed solution
is to check if the string is empty, as is already done for the null value.

Listing 7: Excerpt of the defective Hibernate function

public <X> Boolean wrap(X value, WrapperOptions options) {
if (value == null) {
return null;
}
if (Boolean.class.isInstance(value)) {
return (Boolean) value;
}
if (Number.class.isInstance(value)) {
final int intValue = ((Number) value).intValue();
return intValue == 0 7 FALSE : TRUE;
}
if (Character.class.isInstance(value)) {
return isTrue(((Character) value).charValue())
? TRUE : FALSE;
}
if (String.class.isInstance(value)) {
return isTrue(((String) value).charAt(0))
? TRUE : FALSE;
}
throw unknownWrap(value.getClass());
}

Entry 18 refers to a software bug found in the JDBC driver of Post-
greSQL, which provides the connection between the Java application and the
database. Unlike what happened in Hibernate’s bug, this software fault had
already been found and fixed prior to our discovery [99]. However this does not
invalidate the ability of our tool for finding bugs that extend over the service
application under test.

This software bug occurs in the parser of the JDBC driver that is going
to receive the SQL query and translate it from a human-readable format to a
format which can be internally used in the driver. More specifically, the parser
fails to correctly handle queries that contain unterminated strings (in other
words, odd number of single quotes or double quotes). The programming flaw
is spread across two functions. An excerpt of the first function is shown in
Listing [8] and the second function is shown in Listing [0

The first function iterates over every character of the query and looks for
predefined characters that it must escape (among which is the single quote).
When it finds a single quote (line 12), it will call the second function (line 13)
to find and return the location of the next single-quote. The position of the
first and second single quotes is then used to calculate the parameters for a

57

00 O Ui W N

el el el e i
N O U W~ O O

copy (line 15). The software bug occurs when the query has an unterminated
string (i.e., one of the single quotes has no match), which leads the second
function to return the length of the entire query (line 31 of the second func-
tion). This value is incorrect, and when used to calculate the copy operation
(line 15) it will cause the JDBC driver to attempt to access a position that
is one place after the end of the character array (aChars), thereby causing a
java.lang. ArrayIndexOut Of BoundsException exception.

This software bug can be fixed in a few different ways, but we advise an
improvement of how both functions interact between them. For example, the
first function should be able to understand when the second function fails to find
a single quote and then act accordingly. The second function could also return a
value that more clearly indicates that something has failed (e.g., -1), instead of
just returning the query’s length, which can be overlooked by the programmers
as a normal, acceptable value and indicative of a successful operation, when
in reality it causes a problem and occurs when the function fails to fulfill its
purpose.

Listing 8: Excerpt of the defective PostgreSQL JDBC code (1)

public static String unmarkDoubleQuestion(String query,
boolean standardConformingStrings) {

if (query == null) return query;

char[] aChars = query.toCharArray();
StringBuilder buf = new StringBuilder(aChars.length);
for(int i=0, j=-1; i< aChars.length; i++)
{
switch (aChars[i])
{
case ’\’’: // single-quotes
j = Parser.parseSingleQuotes(aChars, i,
standardConformingStrings) ;
buf .append(aChars, i, j-i+1);
i=j;
break;

98

00 O Uik W N+

O W WNDNNDNDDNDNDNDNDDNDN F === =
N OO©OIDDU R WNDRFRE O OO U aWwhh — O o

Listing 9: Excerpt of the defective PostgreSQL JDBC code (2)

public static int parseSingleQuotes(final char[] query,
int offset, boolean standardConformingStrings) {
// check for escape string syntaz (E’’)
if (standardConformingStrings
&& offset >= 2
&& (queryloffset-1] == ’e’ || queryloffset-1] == ’E’)
&& charTerminatesIdentifier (query[offset-2]))

{
standardConformingStrings = false;
3
if (standardConformingStrings)
{
// do NOT treat backslashes as escape characters
while (++offset < query.length)
{
switch (queryl[offset])
{
case ’\’7:
return offset;
default:
break;
3
X
b
else
{
V2N G)
X

return query.length;

Having obtained several programming bugs, we decided to use a standard
classification for software anomalies, designed by IEEE [100], to classify each of
the software defects according to Severity, Type, Effect and Probability. Sever-
ity can vary between Inconsequential, Minor, Major and Critical, according to
how disruptive the bug is, and how important are the functions that it affects.
Type can be Data, Interface, Logic, Description, Syntazx, Standards or Other,
according to the root cause of the defect. Effect can be Functionality, Usability,
Security, Performance or Serviceability. Probability can be High, Medium or
Low, according to how likely the defect is to be triggered. To fill theses columns
the knowledge obtained during the experiments was used. The resulting classi-

99

fication is presented in Table

Table 11: Classification of Software Defects

Hibernate Bug Minor Logic Functionality High
PostgreSQL JDBC Driver Bug Minor Logic Functionality Low
Class Not Found Bugs Major Other Functionality Medium
Null Pointer Bugs Minor Logic Functionality Low
SQL Injection Bugs Critical Logic Security Low

SQL injection was the only software bug to obtain a Critical classification,
due to the security impact that it is capable of causing in the system. It was also
the only one to have an Effect in Security, unlike the remaining bugs which all
had an impact in the Functionality. However, it was assigned a Low probability
of occurrence, based on the results of our experiments. The Class Not Found
bug was given a rating of Major regarding its Severity, because the failure to
load a class translates to a part of the functionality being inaccessible, which,
as we have explained in Section [5.2] can only be recovered from after a log-out
and log-in. Because this bug is the product of an architectural decision, it was
not considered to be a Logic bug like all the remaining bugs, but rather it was
given the classification of Other.

In our experiments, the bug that occurred more often was, by far, the Hi-
bernate bug, hence the High probability that it was attributed. However its
severity was considered to be Minor, because it usually translates to a failure
of the current task to finish execution, but does not affect other tasks and does
not have a persistent effect. For a similar reason the Minor classification was
also attributed to the Null Pointer bugs. In our analysis, often a Null Pointer
bug caused a failure that was confined to the task under execution. Sometimes,
if the exception occurred during a loading phase, we witnessed Openbravo ap-
pear to infinitely try to load, despite in reality the task having already stopped.
Because of this behaviour, the user is given the perception of an hang (infinite
loading).

5.4 Distribution of exceptions

During the experimental process, whenever mutated data is injected, there is
a strong possibility that the application finishes the run with the presence of
exceptions in its logs. According to the type of exception that is displayed, it
is possible to study their frequency and ascertain which exceptions are more
common, what they mean and which mutations cause them. The exceptions
and their number of occurrences during all our experiments are presented in

60

Table 2 [

Table 12: Exceptions that Openbravo threw during the experiments

1 org.openbravo.base.validation.ValidationException 676 28,34
2 java.lang.StringIndexOutOfBoundsException 449 18,83
3 java.lang.NullPointerException 416 17,44
4 org.hibernate.ObjectNotFoundException 202 8,47
5 org.postgresql.util.PSQLException 196 8,22
6 org.openbravo.client.kernel.OBUserException 96 4,03
7 javax.servlet.ServletException 83 3,48
8 java.lang.Exception 79 3,31
9 java.lang.ClassNotFoundException 64 2,68
10 java.lang.lllegalArgumentException 43 1,8

11 org.openbravo.base.exception.OBException 23 0,96
12 org.openbravo.base.exception.OBSecurityException 21 0,88
13 org.hibernate.StaleStateException 12 0,5

14 org.codehaus.jettison.json.JSONException 9 0,38
15 org.hibernate.LazylnitializationException 7 0,29
16 org.openbravo.base.util.CheckException 2 0,08
17 org.openbravo.service.json.OBStaleObjectException 2 0,08
18 com.thoughtworks.xstream.mapper.CannotResolveClassException 1 0,04
19 org.openbravo.erpCommon.utility.PropertyNotFoundException 1 0,04
20 java.lang.ArrayIndexOutOfBoundsException 1 0,04
21 java.lang.IndexOutOfBoundsException 1 0,04
22 java.lang.lllegalStateException 1 0,04

While some exceptions are native to Java, others are created by Openbravo
itself to represent specific unhandled situations that cannot be expressed using
the existing exceptions, and others belong to external libraries that Openbravo
uses to provide its service. In more detail, the exceptions are analyzed according

to their meaning and reason of occurrence:

e org.openbravo.base.validation.ValidationException: Openbravo

makes use of input validation functions to ensure basic constraints (e.g.,
field has to have certain size, field cannot be null or empty, ..
some fields of an object are set. If the check fails then this exception
is thrown. As a result of the occurrence of this exception, the possible

* The sum of all percentages is different from 100% due to rounding.

61

.) whenever

behaviours that were witnessed (from the client perspective) were: appli-
cation fails during page loading and hangs in this phase; a popup error
message is shown to end user with the exception message directly obtained
from Java (not good to be seen by end user); the JavaScript stack-trace
is displayed to end user in a popup message (once again unacceptable to
be shown to the end user).

e java.lang.StringIndexOutOfBoundsException: This exception is
characteristic of the bug found in Hibernate, where an empty string is not
being well-handled in a certain function.

e java.lang.NullPointerException: NullPointerExceptions very often in-
dicate a software bug in Openbravo’s code that occurs because of the de-
ficient verification of the variables value’s after it is read from DB and
before it is used. What often occurs is that the value being read from DB
is mutated to null and Openbravo fails to account for this possibility and
simply decides to continue execution. In other cases, the scenario is a bit
more complex: the data coming from DB is mutated to an incorrect value,
which causes a posterior call to database to return null (e.g., a search by
ID returns null when the ID has been mutated to some non-existent value
and it cannot find the desired entity).

e org.hibernate.ObjectNotFoundException: Occurs when no row with
the given identifier exists and Hibernate is unable to find the corresponding
information in database. This occurs when the identifier is mutated to an
incorrect value.

e org.postgresql.util. PSQLException: This kind of exceptions are
closely linked with PostgreSQL, which is the DBMS used in the experi-
ments. This exception occurs whenever PostgreSQL is unable to success-
fully complete a query. In our experiments, this was mainly due to 3
reasons: the column name being mutated and, thereby, becoming incor-
rect; a previous exception causing the abortion of an active transaction,
and all the next queries failing (being ignored) for the sole reason that the
transaction is aborted; invalid characters for the encoding being used are
present in the query. Usually this kind of exception has a high severity
and will cause the current activity to fail.

e org.openbravo.client.kernel.OBUserException: This exception is
thrown only in a place of Openbravo (in the DataSourceServlet). It sig-
nals that the current logged in user does not have enough permissions to
view a certain resource. In our experiments it occurs because of a previous
exception or mutation that causes the permission check to fail. Its impact
is limited in the sense that either a previous and more critical exception
has already crashed the application, or that the worst possible result is
that some data (such as a listing of products) is not displayed.

62

javax.servlet.ServletException: This exception represents a problem
during the execution of a Servlet, which can be due to a variety of reasons.
Therefore, it is a very general exception.

java.lang.Exception: This is the basic exception in Java from where
every other exception inherits from. In Openbravo it usually appears
accompanied by an error message of a specific exception.

java.lang.ClassNotFoundException: This exception occurs because
Openbravo makes occasional use of dynamic class loading (e.g., to load
classes relative to visual themes), and decides to store the information
relative to the classes that it wants to load (which in itself is relatively
static content) in the database. A mutation in this information causes
the dynamic loading to fail, simply because the name of the class becomes
wrong. When the loading of the class fails, whatever would be the job of
the class cannot be completed.

java.lang.Illegal ArgumentException: In our experiments, this excep-
tion was thrown always from the same place, when an attempt at loading
a FreeMarker template failed because of a mutation to the name of the
language.

org.openbravo.base.exception.OBException: OBException is an ex-
ception type created by Openbravo that has a quite general functionality
and does not represent any particular problem. In our experiments, it can
represent a variety of problems, such as not being able to update an entry
in database, not being able to compute data to show to the user, among
others. While the problem that occurred can easily be understood, the
root, cause behind it is not very explicit.

org.openbravo.base.exception.OBSecurityException: This is a gen-
eral exception of Openbravo, which occurs when it detects security vio-
lation (i.e., according to the logic of Openbravo a certain action cannot
be performed, otherwise it would break the basic security principles [e.g.,
confidentiality, integrity]). For example, this exception is thrown when a
client tries to access data belonging to another client, or when it tries to
read data to which he does not have permission.

org.hibernate.StaleStateException: This exception occurs in update
or delete operations whenever the ID of the target object can no longer be
found. In practice, this usually occurs when there is an attempt to update
an object after it has been deleted (therefore, the object does not exist
anymore). However, the exception is not limited to this specific scenario.

org.codehaus.jettison.json.JSONException: This exception occurs
whenever there is a problem parsing a JSON message exchanged between
the client’s browser and the service application. In our experiments, this
occurred either because of the existence of non-printable characters (e.g.,

63

new-line character) which interfere with the parsing of the message, or
because when Openbravo attempts to read the value associated with a
certain key, that key cannot be found in the JSON content.

e org.hibernate.LazylInitializationException: This exception occurs
whenever there is unfetched data that must be accessed but the session
has already been closed. Usually Hibernate takes a lazy approach and
delays fetching data, such as arrays and complex objects, from database
until it is really needed. This increases the performance of Hibernate, but
can cause this exception to be thrown.

e org.openbravo.base.util.CheckException: Openbravo is equipped
with a set of functions to check the names of the columns in database, and
from these names infer which data types they are holding (e.g., string,
integer). When these functions fail because of an unexpected column
name, this exception is thrown.

e org.openbravo.service.json.OBStaleObjectException: This excep-
tion is thrown whenever the JSON converter implemented in Openbravo
tries to update a certain object, but the values that are inside the object
are different from the values in the JSON message. The object is assumed
to be stale (not up to date).

e com.thoughtworks.xstream.mapper.CannotResolveClassException:
This exception is thrown when XStream cannot find the class to be dy-
namically loaded.

e org.openbravo.erpCommon.utility. PropertyNotFoundException:
This exception occurs when a certain property is not defined.

e java.lang.ArrayIndexOutOfBoundsException: This exception is
thrown whenever an attempt is made to access an illegal position (i.e.,
negative position or higher than the size) of an array.

¢ java.lang.IndexOutOfBoundsException: Similar to
java.lang. ArrayIndexOutOfBoundsException, but can indicate an access
to an illegal position in any kind of objects (e.g., array, string, vector),
and not only in an array.

e java.lang.IllegalStateException: This exception signals that a certain
operation cannot be performed at the current time, because the applica-
tion or environment is not in the correct state to perform it.

Extracting these exceptions from the application’s logs is done mostly in an
automated manner, by using a specially designed script, however in some cases
manual intervention is required to fix a small number of cases where the script
fails.

64

Tablepresents the relationships between an exception, its description (the
same exception is able of being caused by more than one reason, and therefore
can have different descriptions) and its origin.

The origin of a failure can be attributed to one of three different compo-
nents that were identified when looking at the results: the DBMS (in our case,
PostgreSQL), the Middleware (e.g., Hibernate, Freemarker) and the Service
Application (in our case, Openbravo).

When looking at the table, it is possible to see that most of the exceptions
are associated with the Service Application, but there is also a significant of
DBMS and Middleware exceptions. Most of these exceptions only have a pos-
sible description. However, org.postgresql.util. PSQLException has nine possible
descriptions.

5.5 Statistics regarding the experiments

Another venue of analysis of the results, which reflects the workload and muta-
tions, is to look at statistics regarding the data mutation process. For example,
Table [I4] shows the absolute amount and percentage of mutations grouped ac-
cording to their data type. This analysis provides a better understanding of how
homogeneous is the distribution of mutations performed during the experiments.

Table 14: Amount of mutations grouped per data type

Long Integer | 42145 2,426
String 1659584 95,536
Decimal 1872 0,108
Timestamp | 13416 0,772
Int Integer 19 0,001
Date 106 0,006
Boolean 19966 1,149
Object 35 0,002
Total 1737143 100

It is easy to see that despite the significant amount of different data types,
the high majority of mutations belonged to the String data type. followed from
very far away by the Long data type.

Table [15| shows how many runs were need to successfully complete each test
case (i.e., test case must finish with success).

65

520]q UOI}DBSUE.} JO PUS |3UN PaJOUSI SPUBWIWOD ‘PAJIOGE SI UOI}IBSURL} JUIIND

INU@=3000@

0 3U31]2 YyuM saduelsul aney Ajuo Aew mopuipay Aui@=3a0d@

u013dadX313|AIDS 13| AISS XeAe|

S1SIX Jal13Uap! UBAIS BY3 YIM MO ON

1SIX3 J0U S90p <IndINO™ pajeInw> uwn|od

qe3 ay3 23e20| 03 Ukl 31ym 10113

0 :28ueJ Jo 1no xapul Sulis

uondaox3-8ue|enel

135 10U S| U033|3ul

uondadx3elels|eda|||-Sue|-eael

0:92IS ‘0 :xapu|

uondadx3spunogjoinoxapul-Sue|-eael

|9pOowW awiunJ ul punoy jou [|nu :aweu Suiddepy

uondadx3yray) |un-aseq-oaeiquadoio

e1ep 0quwod SuiNdwod 3|1Iym 103

3|14 ASD e Suniodxa 3j1lym Joui3

(<@l” mopuim> :mopuim ‘<aweus :aweu) (<g|>)qeLay gqel 4o s3unias uonezijeuossad unad usym uondadx3

(<aweu> :aweu) (<Q|>)MOpPUIMAY MOpUIM 4o} sBuillas uonezijeuossad Suniad usym uondsdox3

M3IA\ON3|(R]SS20y :Ad) 10} 98essaw Sui1a8 uaym uondadxgy

Aa110d uonajap apou ayy SuluIWIIBP J|IYM 10113

uondadx3go-uondadxa aseq-oaeiquado-8io

©91eQ3|eIS NOSrd0®@

uondadx3123lqOa|e1SgO uosl-adinias oneiquadodio

uondadxjpuno4ioNAuadoidAynn-uowwo)dia-oneiquado-8io

0 3U31]2 YuM saduelsul aaey Ajuo Aew mopuiay Auug

<z ndino |euiSuo> 1simual|) ul yuasald jou st ((4 :aweu) (07v)uoneziuediQ) 193[qo jo (<Tindino™ pajeinws) uald

uondaox3AIn2asgQ uondadxaaseq-oneiquado-gio

<indino” pajeinw>

uondadx3jpuno4ioNsse|d Sue| eael

M3I\ON?3|Ge]SS20y

uondadx34asNgQ’[auIa¥ Jual> 0AeIquUado SI0

uondadx3iajuiod||nN Sue|eael

Z€ S!Y18ua| pamojje wnwixew ay) ‘<pajeinw” y38ua|> y18ua| sey 1l ‘8uoj 001 s <indino pajeinw>

uondadxjuonepl|eA uoliepleA'aseq onelquado 8io

uonedyddy 221n195

0 :98ued Jo 1no xapul Sulis

uondadx3spunogjoinoxapu|duris Sue| eael

punoy jou <indino pajeinw> a8engue| 10} J0ssad04d a1ejdwa |

uondadx3jiuawnsiy|esa)||‘Sue| eael

unoj jou [,<Aa REY(24ema|pp!
puno; Jou [,<At>, 1231GONOST uo3dadx3gNQS[uos(-uosniaf'sneyapoa gio IPPIN
<uos[pajenws> Jo <uoisod> Ja1deJeyd 18 SuLl}S pajeulwIdlun
<indino” pajenw> uondadx3sse|Danjosayiouur) addew wWealsx sy1omiysnoyl wod
u01329)|02 Sulpeo| 03 ssadde [e3d
uondadxjuonezieniujAzet-aleusaqly-sio
uoIssas ou - Axoud azijeniul Jou pjnod
S1SIX3 12113U3P! USAIS 3Y) YIM MOJ ON uondadxgpuno4ioNalqo-aleusaqy-8io
T :pa32adxa ‘0 :3un0d MoJ [en3de {[] d3epdn WOy JUNOD MOJ pa3dadxaun pauinial alepdn yoleg uondaox3aleisalels-aleusaqy-sio
<indino” pajeinws> a|qe) o) Asjus asne-|A QY4 Sulssiw
UIBJISUOD [|NU-}OU S]B[OIA , <UWIN|OD>, UWN|OJ Ul dN[eA ||NU
00X0 :,,84.1N,, Suipodua 10j dduanbas 1Aq pijeaul Snga

(z€)8uiAsen ua10e4RYD 9dA] J0J SUO| 00) BNjBA

,<®|qe1>, 3|qe1 Ul Juasald Jou si (<indino™ pajeinwi>)=(<Aay>) Asyl

320]q UOIJBSUEBJ} JO PUS |13UN PaIOUSI SPUBLUWOD ‘PILIOGE S| UOIJIBSURLY JUSLIND

15I1X@ J0U S30p ,<INdINO~ pajeInw>, uoleal

,<Indi1no pajeinw>, Jeau Jo 1e J01J3 XeUAS

15IX3 30U S30p <3NdIN0_ pajeInws> uwn|od

uondadx310sd |1In‘|bsaigisod 810

a8essa|y uondacxy

uondainx3

wsuo

S9INQLIYYR I9YJ0 pue suorydeox;] usomiaq UOrye[dy €T 9[qe],

66

Table 15: Number of runs for each test case

Test Case 1 Login 96
Test Case 2 Create Organization 60
Test Case 3 Create a new User 80
Test Case 4 Create a new Role 76
Test Case 5 Create Product 78
Test Case 6 Delete Product 75
Test Case 7 Update Product 50
Test Case 8 Export Product Categories to Spreadsheet 64

The amount of mutations performed for each Test Case was also studied and
the results can be seen in Table [I6l

Table 16: Amount of mutations performed in each Test Case

Test Case 1 132317 96
Test Case 2 427243 60
Test Case 3 292468 80
Test Case 4 164063 76
Test Case 5 120089 78
Test Case 6 123507 75
Test Case 7 183237 50
Test Case 8 329273 122

There is some variation in the number of mutations, with the peak being
Test Case 8 with 329273 mutations, which is also the test case with the higher
amount of runs. However if we ignore this specific test case, there does not
appear to exist a strong correlation between the number of mutations and the
number of runs.

5.6 Guidelines for robustness against poor data quality

Taking into consideration the results obtained from our experiments and after
a careful analysis of the various uncovered programming bugs, it has become
possible to define a few guidelines that can be used as best practices to minimize
the occurrence of programming bugs similar to those that were witnessed during
the experimental evaluation. First and foremost, we propose that every input
coming from an untrusted source (in our case, the database) must be validated

67

as thoroughly as possible. In Openbravo, the contents read from database,
almost always, lacked any kind of verification that could ensure even the lowest
expectations (e.g., assure that it is not null, assure that it obeys basic criteria
for the expected value). If a rule that enforced the mandatory verification of
contents coming from database had been strictly applied in Openbravo’s code,
the majority of the bugs would not have been present.

Middleware developers also play a role in ensuring a bug-free system, as is
proven by the two bugs that were discovered in libraries. The advice for middle-
ware developers is to never trust any of the content coming from the database
(and also the application), and once again, verify it thoroughly and gracefully
fail if a problem that prevents execution has been found. The Hibernate bug
occurred because of an oversight in these validation checks, which allowed an
unexpected value (empty string) to cause an unforeseen condition. The Post-
greSQL JDBC bug was made possible because once again the programmers
did not take into consideration how their code would handle an unexpected in-
put (unterminated quote), and their approach ended with an off-by-one bug that
attempted to access a non-existing array position. In these two cases, the vali-
dations were in place, however their implementation was flawed, due to certain
scenarios having not been taken into account.

Finally, it is a good idea to think about how the architecture of the system
is designed from a robustness point, and, at the design phase, to avoid situ-
ations and programming solutions that unnecessarily compromise this aspect.
An example of this, is the abundant use that Openbravo makes of storing data
in database that will later be used to create new queries or to dynamically load
classes. Once again, this architecture, paired with the lack of input valida-
tion, has opened the service application to the occurrence of second order SQL
injection.

From a user interface design point of view, we advise that exceptions should
be shown to the user in a streamlined manner, and providing a human-readable
explanation and an easy way for the user to identify which error occurred (e.g.,
error code). In no occasion should the user be presented with the complete
exception message or stack-trace, which is not only of no use to him, as it
will certainly also disturb his browsing experience. Openbravo was particularly
deficient in this aspect, where exceptions were displayed to the end-user without
any treatment, and in the most varied manners (pop-up messages, small error
boxes). Furthermore, the exception message can include sensitive information
(e.g., database schema, file paths, parts of SQL queries) which can help an
attacker.

68

6 Conclusions and Future Work

In this section, an overview of the work performed during this thesis is provided,
followed by a reflection about what can be the future work after the end of this
Master thesis.

6.1 Overall view

One of the first steps performed in this thesis, still during the first semester,
was an extensive survey about data quality, which included data quality di-
mensions and data quality problems. From this study, a fault model (i.e., our
data mutation tables) that closely follows real-world data quality problems was
developed.

Then, after careful consideration, and fueled by the lack of previous research
in this area, an approach was devised to inject mutated data (i.e., poor quality
data) into the results that come from a DBMS to a service application, with the
objective of testing the behaviour of any service application in the presence of
poor quality data. This approach and the fault model were converted from an
abstract concept into a usable tool.

Finally, this tool, was employed to conduct experiments against a well-
known service application (Openbravo), and thereby classify its behaviour (using
an adapted CRASH scale for that purpose). Furthermore, these experiments
yielded several software bugs present both in the service application and in the
middleware libraries (namely, Hibernate and the PostgreSQL JDBC driver).
After analyzing the results, guidelines were developed for programmers so that
they can avoid the mistakes that were identified.

By the end of this thesis, the developed tool and fault model had been dis-
tributed online, for the entire community to be able to use and assess their
service applications. Furthermore, two conference papers had been written
and submitted to renowned peer-reviewed international conferences of the area.
Namely, a survey paper about data quality had been submitted and accepted
to PRDC 2015 (Appendix [C]), and another paper, describing our approach, tool
and results, had been submitted and accepted to LADC 2016 (Appendix @)

Overall, we consider the outcome of this thesis as very positive, with an array
of contributions to the area, and believe that the goals that were proposed have
been attained.

6.2 Future Work

Given the fact that this work, to the best of our knowledge, is a first in this
particular area, it is understandable that plenty of improvements can still be
undertaken. The topics that we consider most important and feasible in a short
to medium term will be introduced in this subsection.

During the experimental phase of this thesis, only a single experimental
setup was tested. In the future, we desire to apply our approach to different
service applications, in particular applications that use different components,

69

such as ORMs (e.g., instead of using Hibernate, it can use EclipseLink JPA
or OpenJPA, or even it might not use any ORM, and instead use a different
approach, such as JDBC or JDO).

Another interesting analysis that can be done is to compare the same sys-
tem when only one component is modified, and thereby understand the impact
that a specific component has, and compare the various available competitors.
For example, taking the experimental setup described in this thesis as a ba-
sis, we could easily and without any code modification change the DBMS from
PostgreSQL to MySQL or Oracle. Or we could use a different web server, and
instead of Apache Tomcat, we could use WildFly or GlassFish.

During our study of the results, the completion of each test case was defined
as the point where the application is no longer capable of behaving correctly
under the mutated data. However, the last experiment run of each Test Case
worked correctly, and the Test Case would finish successfully. Despite the ap-
parent success of the application in completing the Test Case, the reality is
that the application is full of poor data, which can have a silent effect in its
behaviour. As a future work, we desire to continue the study of the application
after the Test Case has finished, so that we can detect the possible existence of
Silent Data Corruption, or other problems that are not being manifested when
they should.

A situation that may occur in larger, more extensive experiments is that the
performance overhead added by our tool can become noticeable and intrusive.
Although this was not the case in the experiments performed during this thesis,
it is a possibility which, as a future work, can be avoided by using optimized
algorithms that can reduce this overhead.

Another aspect deserving of our attention is the installation process of our
tool. At the moment this process, despite straightforward, is manual. The
automation of the installation (e.g., executable installer, virtual machines) is
beneficial in attracting potential users, since a simple installation and opera-
tion reduces the difficulties faced by interested users. This aspect should not
be disregarded, as it is a key factor in ensuring that the tool (and approach)
attain a wide reach. In fact, several technologies that are commonly used in re-
search groups face difficulties when trying to gain widespread use in the business
world (e.g., the usage of fault injection to assess the dependability of systems),
mainly due to their difficult usage. The most time-consuming and difficult part
of the entire experimental process is definitely the analysis of results in order
to extract valuable information, such as failure modes or software bugs in the
code, which right now is completely manual. For this reason, improvements in
this area will benefit the most. Our ultimate goal as a future work is to have
a completely automated way of analyzing the results, right after each experi-
ment run, and easily obtain information such as uncovered software bugs, which
mutation caused a certain exception and a classification regarding the failure
modes. We believe that if this goal is reached then our approach will become a
very powerful tool in studying the dependability of service applications.

70

References

(1]

2]

13

4]
[5]

[6]

17l

18]

19]

[10]

[11]

[12]

[13]

Nachiappan Nagappan and Thomas Ball. Use of relative code churn mea-
sures to predict system defect density. In Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005., pages 284-292.
IEEE, 2005.

T. Capers Jones. Measuring programming quality and productivity. IBM
Systems Journal, 17(1):39-63, 1978.

Lakshmi N Bairavasundaram, Andrea C Arpaci-Dusseau, Remzi H
Arpaci-Dusseau, Garth R Goodson, and Bianca Schroeder. An analy-
sis of data corruption in the storage stack. ACM Transactions on Storage
(TOS), 4(3):8, 2008.

The typo that destroyed a NASA rocket. 2015-06-25.

Maggie Urry. Book errors figure in Salamon $770m pretax loss. The
Financial Times, 1995.

Marco Vieira and Nuno Laranjeiro. Comparing web services performance
and recovery in the presence of faults. In IEEE International Conference
on Web Services (ICWS 2007), pages 623-630. IEEE, 2007.

Yao-Wen Huang, Shih-Kun Huang, Tsung-Po Lin, and Chung-Hung Tsai.
Web application security assessment by fault injection and behavior mon-
itoring. In Proceedings of the 12th International Conference on World
Wide Web, WWW 03, pages 148-159, New York, NY, USA, 2003. ACM.

K Roebuck. Data quality: High-impact strategies-what you need to know:
Definitions, adoptions, impact. Benefits, Maturity, Vendors, 2011.

ISO. Quality management systems — fundamentals and vocabulary.
ISO 9000:20015, International Organization for Standardization, Geneva,
Switzerland, 2015.

Laura Sebastian-Coleman. Measuring data quality for ongoing improve-
ment: a data quality assessment framework. Newnes, 2012.

Diane M Strong, Yang W Lee, and Richard Y Wang. Data quality in
context. Communications of the ACM, 40(5):103-110, 1997.

Richard Y Wang and Diane M Strong. Beyond accuracy: What data
quality means to data consumers. Journal of management information
systems, pages 533, 1996.

Anthony Giannoccaro, Graeme G. Shanks, and Peta Darke. Stakeholder
perceptions of data quality in a data warehouse environment. Australian
Computer Journal, 31(4):110-116, 1999.

71

[14]

[15]

[16]

[17]

(18]

[19]

20]

21]

22]

23]

24]

[25]

[26]

27]

28]

Thomas C Redman. The impact of poor data quality on the typical
enterprise. Communications of the ACM, 41(2):79-82, 1998.

Evaluating the Business Impacts of Poor Data Quality. The data quality
benchmark report. Technical report, Knowledge Integrity Incorporated,
Business Intelligence Solutions, 1 2011.

Phillip Cykana, Alta Paul, and Miranda Stern. DoD guidelines on data
quality management. In 1Q, pages 154-171, 1996.

P Larry. English, improving data warehouse and business information
quality: methods for reducing costs and increasing profits, 1999.

Gartner. Magic Quadrant for Data Quality Tools. |https://www.
gartner.com/doc/reprints?id=1-259U63Q&ct=141126&st=sb, Novem-
ber 2015.

Rob Karel. The All InCosts of Poor Data Quality. http:
//www . computerworld.com/article/2949323/data-analytics/
the-all-in-costs-of-poor-data-quality.html, July 2015.

newswire.com. Dirty Data Costs the US Economy $3.1 Trillion Yearly.
https://www.newswire.com/dirty-data-costs-the-us-economy/
128732, September 2011.

Time. Blunders: An $11 million typo. 2015-06-25.

M Eppler and Markus Helfert. A classification and analysis of data quality
costs. In International Conference on Information Quality, 2004.

Mbnica Bobrowski, Martina Marré, and Daniel Yankelevich. Measuring
data quality. Universidad de Buenos Aires. Report, pages 99-002, 1999.

David Loshin. The practitioner’s guide to data quality improvement. El-
sevier, 2010.

Thomas C Redman and A Blanton. Data quality for the information age.
Artech House, Inc., 1997.

Marcey L Abate, Kathleen V Diegert, and Heather W Allen. A hierarchi-
cal approach to improving data quality. Data Quality Journal, 4(1):365—
369, 1998.

Eva Gardyn. A data quality handbook for a data warehouse. In 1Q, pages
267-290, 1997.

Jennifer Long and Craig Seko. A new method for database data quality
evaluation at the canadian institute for health information (CIHI). In IQ),
pages 238-250, 2002.

72

https://www.gartner.com/doc/reprints?id=1-259U63Q&ct=141126&st=sb
https://www.gartner.com/doc/reprints?id=1-259U63Q&ct=141126&st=sb
http://www.computerworld.com/article/2949323/data-analytics/the-all-in-costs-of-poor-data-quality.html
http://www.computerworld.com/article/2949323/data-analytics/the-all-in-costs-of-poor-data-quality.html
http://www.computerworld.com/article/2949323/data-analytics/the-all-in-costs-of-poor-data-quality.html
https://www.newswire.com/dirty-data-costs-the-us-economy/128732
https://www.newswire.com/dirty-data-costs-the-us-economy/128732

[29]

[30]

31]
32]

[33]

[34]

[35]

[36]

37]

[38]

39]

[40]

[41]
42]

[43]

[44]

David Loshin. FEnterprise knowledge management: The data quality ap-
proach. Morgan Kaufmann, 2001.

Leo L Pipino, Yang W Lee, and Richard Y Wang. Data quality assessment.
Communications of the ACM, 45(4):211-218, 2002.

Thomas C Redman. Data quality: the field guide. Digital Press, 2001.

Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3-13, 2000.

Christine Parent and Stefano Spaccapietra. Issues and approaches of
database integration. Communications of the ACM, 41(5es):166-178,
1998.

William W Cohen. Integration of heterogeneous databases without com-
mon domains using queries based on textual similarity. In ACM SIGMOD
Record, volume 27, pages 201-212. ACM, 1998.

Vipul Kashyap and Amit Sheth. Semantic and schematic similarities be-
tween database objects: a context-based approach. The VLDB Jour-
nal—The International Journal on Very Large Data Bases, 5(4):276-304,
1996.

Won Kim, Byoung-Ju Choi, Eui-Kyeong Hong, Soo-Kyung Kim, and Do-
heon Lee. "A Taxonomy of Dirty Data". Data mining and knowledge
discovery, 7(1):81-99, 2003.

Paulo Oliveira, Fatima Rodrigues, and Pedro Rangel Henriques. "A For-
mal Definition of Data Quality Problems". In I1Q, 2005.

Heiko Miiller and Johann-Christph Freytag. Problems, methods, and chal-
lenges in comprehensive data cleansing. Professoren des Inst. Fiir Infor-
matik, 2005.

José Barateiro and Helena Galhardas. A survey of data quality tools.
Datenbank-Spektrum, 14(15-21):48, 2005.

Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

Ron Patton. Software testing. Sams, 2001.

Thomas Ostrand. White-box testing. Encyclopedia of Software Engineer-
ing, 2002.

Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5,
pages 1-19. ACM, 1970.

Janvi Badlaney Rohit Ghatol Romit Jadhwani. An introduction to data-
flow testing. NCSU CSC TR-2006-22, 2006.

73

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

53]

[54]

[55]

[56]

[57]

Raul Barbosa, Johan Karlsson, Henrique Madeira, and Marco Vieira.
Fault injection. In Resilience Assessment and FEvaluation of Computing
Systems, pages 263-281. Springer, 2012.

Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE
transactions on dependable and secure computing, 1(1):11-33, 2004.

Henrique Madeira et al. Assessing, Measuring, and Benchmarking Re-
silience (AMBER) - State of the Art. 2009.

Ieee standard glossary of software engineering terminology. IEEE Std
610.12-1990, pages 1-84, 12 1990.

Philip Koopman and John DeVale. Comparing the robustness of posix
operating systems. In Fault-Tolerant Computing, 1999. Digest of Papers.
Twenty-Ninth Annual International Symposium on, pages 30-37. IEEE,
1999.

Nathan P Kropp, Philip J Koopman, and Daniel P Siewiorek. Automated
robustness testing of off-the-shelf software components. In Fault- Tolerant
Computing, 1998. Digest of Papers. Twenty-Fighth Annual International
Symposium on, pages 230-239. IEEE, 1998.

Manuel Rodriguez, Frédéric Salles, Jean-Charles Fabre, and Jean Arlat.
MAFALDA: Microkernel assessment by fault injection and design aid.
Lecture notes in computer science, pages 143-160, 1999.

Yue Jia and Mark Harman. An analysis and survey of the develop-
ment of mutation testing. Software Engineering, IEEE Transactions on,
37(5):649-678, 2011.

Reda Siblini and Nashat Mansour. Testing web services. In Computer
Systems and Applications, 2005. The 3rd ACS/IEEE International Con-
ference on, page 135. IEEE, 2005.

Wuzhi Xu, Jeff Offutt, and Juan Luo. Testing web services by XML
perturbation. In Software Reliability Engineering, 2005. ISSRE 2005.
16th IEEE International Symposium on, pages 10-pp. IEEE, 2005.

Mark Hansen, Stuart Madnick, and Michael Siegel. Data integration using
web services. Springer, 2003.

G Shankaranarayanan and Yu Cai. "A Web Services Application for the
Data Quality Management in the B2B Networked Environment". In Sys-
tem Sciences, 2005. HICSS’05. Proceedings of the 38th Annual Hawaii
International Conference on, pages 166c—166¢c. IEEE, 2005.

Maria Grazia Fugini, Barbara Pernici, and Filippo Ramoni. "Quality anal-
ysis of composed services through fault injection". Information Systems
Frontiers, 11(3):227-239, 2009.

74

[58]

[59]

(60]

[61]

(62]

(63]

[64]

[65]

(6]

[67]

[68]
[69]

[70]
[71]

Xitong Li, Stuart Madnick, Hongwei Zhu, and Yushun Fan. "Improving
Data Quality for Web Services Composition". In Proceedings of the VLDB
Quality in Databases (QDB) Workshop, Lyon, France, 2009.

Naghmeh Ivaki, Nuno Laranjeiro, and Marco Vieira. Towards evaluating
the impact of data quality on service applications. In Dependable Sys-
tems and Networks Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP
Conference on, pages 1-7. IEEE, 2013.

Marek Rychly and Martin Zouzelka. Fault injection for web-services. In
ICEIS (2), pages 377-383, 2012.

Lourival F de Almeida and Silvia R Vergilio. Exploring perturbation based
testing for web services. In Web Services, 2006. ICWS’06. International
Conference on, pages 717-726. IEEE, 2006.

Evan Martin, Suranjana Basu, and Tao Xie. Websob: A tool for ro-
bustness testing of web services. In Companion to the proceedings of
the 29th International Conference on Software Engineering, pages 65—66.
IEEE Computer Society, 2007.

Munro Malcolm Looker, Nik and Jie Xu. Ws-fit: A tool for dependability
analysis of web services. 2004.

Nuno Laranjeiro, Marco Vieira, and Henrique Madeira. Improving web
services robustness. In Web Services, 2009. ICWS 2009. IEEFE Interna-
tional Conference on, pages 397-404. IEEE, 2009.

Inderjeet Singh and Bindia Tarika. Comparative analysis of open source
automated software testing tools: Selenium, sikuli and watir. Interna-
tional Journal of Information and Computation Technology, 4:15, 2014.

Gerald D Everett; Raymond McLeod; Wiley InterScience (Online service).
Software testing : testing across the entire software development life cycle.
Wiley, 2007.

Gurock Software. Test automation tools - popular automated test-
ing tools and software, April 2016. http://www.testingtools.com/
test-automation/.

Raimund Hocke. SikuliX Documentation, Release 1.1.0-Betal. 2016.

Selenium Project. Seleniumhq browser automation -
test automation for web applications. http://docs.
seleniumhqg.org/docs/01_introducing_selenium. jsp#
test-automation-for-web-applications, April 2016.

SikuliX. SikuliX powered by raiman. http://www.sikulix.com/|

Watir. Watir.com | web application testing in ruby. https://watir.com/.

75

http://www.testingtools.com/test-automation/
http://www.testingtools.com/test-automation/
http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp#test-automation-for-web-applications
http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp#test-automation-for-web-applications
http://docs.seleniumhq.org/docs/01_introducing_selenium.jsp#test-automation-for-web-applications
http://www.sikulix.com/
https://watir.com/

[72]

(73]

[74]
[75]

[76]

[77]

(78]

[79]

[80]

[81]

82]

(83]
(84]

[85]

[36]

Sahi Pro. Automation testing tool for web applications | free - sahi. http:
//sahipro.com/.

Hewlett Packard Enterprise Development LP. Automated
testing, wunified functional testing, wuft | hewlett packard en-
terprise. http://www8.hp.com/us/en/software-solutions/

unified-functional-automated-testing/.

Ranorex GmbH. Test automation for GUI testing | ranorex. http://www.
ranorex.com/.

AspectJ Team. The AspectJ programming guide, 2003.

Thomas Mahler and Armin Waibel. JDBC types, December
2012. https://db.apache.org/ojb/docu/guides/jdbc-types.html#
mapping-tablel

Nuno Laranjeiro, Seyma Nur Soydemir, and Jorge Bernardino. A sur-
vey on data quality: Classifying poor data. In Dependable Computing
(PRDC), 2015 IEEE 21st Pacific Rim International Symposium on, pages
179-188. IEEE, 2015.

Sylvia A Gardner. Spelling errors in online databases: what the techni-
cal communicator should know. Technical Communication, pages 50-53,
1992.

Barbara Nichols Randall. Spelling errors in the database: Shadow or
substance? Library Resources € Technical Services, 43(3):161-169, 2011.

Fred J Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171-176, 1964.

Joseph J Pollock and Antonio Zamora. Collection and characterization of
spelling errors in scientific and scholarly text. Journal of the American
Society for Information Science, 34(1):51-58, 1983.

Terry Ballard and Arthur Lifshin. Prediction of OPAC spelling errors
through a keyword inventory. Information Technology and Libraries,
11(2):139, 1992.

Kai A Olsen. The $100,000 keying error. Computer, (4):108-106, 2008.

Tara Bernard. An $18 million lesson in handling credit report errors. The
New York Times, 2013.

Jonathan I Maletic and Andrian Marcus. Data cleansing: Beyond integrity
analysis. In 1Q, pages 200-209. Citeseer, 2000.

Harold Thimbleby and Paul Cairns. Reducing number entry errors: solv-
ing a widespread, serious problem. Journal of the Royal Society Interface,
7(51):1429-1439, 2010.

76

http://sahipro.com/
http://sahipro.com/
http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/
http://www8.hp.com/us/en/software-solutions/unified-functional-automated-testing/
http://www.ranorex.com/
http://www.ranorex.com/
https://db.apache.org/ojb/docu/guides/jdbc-types.html#mapping-table
https://db.apache.org/ojb/docu/guides/jdbc-types.html#mapping-table

[87]

(83]

[89]

90]

[91]

92]

93]

[94]

[95]

196]

97]

(98]

99]

[100]

Openbravo. Openbravo commerce suite. http://www.openbravo.com/
about/company/.

Dennis Howlett. Can Openbravo challenge incumbent ERP
with open source? http://www.zdnet.com/article/
can-openbravo-challenge-incumbent-erp-with-open-source/,
March 2011.

Openbravo. Customer Successes | Other Industries | Openbravo. http:
//www.openbravo.com/other-industries/customers-successes/.
Michael Stonebraker and Greg Kemnitz. The POSTGRES next generation
database management system. Communications of the ACM, 34(10):78—
92, 1991.

Ken Kitchen. Gartner on the state of PostgreSQL and
open-source DBMS. https://www.linkedin.com/pulse/
gartner-state-postgresqgl-open-source-dbms-ken-kitchen, July
2015.

Donald Feinberg, Merv Adrian, Nick Heudecker, Adam M. Ronthal, and
Terilyn Palanca. Magic quadrant for operational database management
systems. Gartner, October 2015.

Nikita Salnikov-Tarnovski. Most popular Java EE con-
tainers: 2015 edition. https://plumbr.eu/blog/java/
most-popular-java-ee-containers-2015-edition, April 2015.

Craig Buckler. Browser Trends January 2016:
12 month review. http://www.sitepoint.com/

browser-trends- january-2016-12-month-review/, January 2016.

James Martin. Managing the Data Base Environment. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1st edition, 1983.

Rolf Molich and Jakob Nielsen. Improving a human-computer dialogue.
Communications of the ACM, 33(3):338-348, 1990.

Ram Chillarege. Orthogonal defect classification. Handbook of Software
Reliability Engineering, pages 359-399, 1996.

Stephen H Kan. Secrets of software quality: 40 innovations from IBM.
IBM Systems Journal, 35(1):116, 1996.

Arrayindexoutofboundsexception - issue #369 - pgjdbe/pgjdbe - github.
https://github.com/pgjdbc/pgjdbc/issues/369, September 2015.

IEEE standard classification for software anomalies. IEEFE Std 1044-2009
(Revision of IEEE Std 1044-1993), pages 1-23, Jan 2010.

7

http://www.openbravo.com/about/company/
http://www.openbravo.com/about/company/
http://www.zdnet.com/article/can-openbravo-challenge-incumbent-erp-with-open-source/
http://www.zdnet.com/article/can-openbravo-challenge-incumbent-erp-with-open-source/
http://www.openbravo.com/other-industries/customers-successes/
http://www.openbravo.com/other-industries/customers-successes/
https://www.linkedin.com/pulse/gartner-state-postgresql-open-source-dbms-ken-kitchen
https://www.linkedin.com/pulse/gartner-state-postgresql-open-source-dbms-ken-kitchen
https://plumbr.eu/blog/java/most-popular-java-ee-containers-2015-edition
https://plumbr.eu/blog/java/most-popular-java-ee-containers-2015-edition
http://www.sitepoint.com/browser-trends-january-2016-12-month-review/
http://www.sitepoint.com/browser-trends-january-2016-12-month-review/
https://github.com/pgjdbc/pgjdbc/issues/369

8

Appendices

A Data Mutation Tables

Table [A7] shows the mutations defined for the integer data types. The original

input used for the "Example" column was 125.

Table A.1: Mutations for Integer data types

No Fault Description Argument ‘ Configuration ‘ Example |
1 | Replace by random same size - - 145
2 | Remove one random numeric character from data | - - 13
3 | Duplicate one of the numeric characters Position From 0.to the numeri.c.value's original size. Repeat digit will 1223
be put in front of Position
X . Begin From 0 to the numeric value's original size minus 1
4 | Invert two consecutive digits " PR " . " 132
Length From 2 to the numeric value’s original size minus Begin
5 | Add one numeric character Position Random 1123
6 | Flip sign - Positive numbers become negative and vice-versa -123
7 | Replace one random numeric character Position Random. 153
8 |Add1 - - 124
9 | Substract 1 - - 122

Table [A22] presents the mutation for the Time data types. The original
input used for the "Example" column was 02:10:08. It should be noted that
values higher or lower than the limit of the fields (hours, minutes, seconds) are

considered valid in these mutations.

79

Table A.2: Mutations for Time data types

Replace by null value

- - null
Replace by empty dummy time | - - 0:00:00
Hours field 7:10:08
. Field Minutes field 2:52:08
Replace by random time
Seconds field 2:10:25
Value Uniformly random between the maximum and minimum allowed value for the field | -
Hours field 20:10:08
Reverse field Field Minutes field 02:01:08
Seconds field 02:10:80
Before hours value 102:10:08
After hours value 021:10:08
Add one extra digit Position Before r'nlnutes value 02:110:08
After minutes value 02:101:08
Before second value 02:10:108
After second value 02:10:081
Before hours value 002:10:08
After hours value 022:10:08
. - . Before minutes value 02:110:08
Duplicate one digit Position -
After minutes value 02:100:08
Before second value 02:10:008
After second value 02:10:088
Hours field 0:10:08
i Field Minutes field 2:01:08
Remove one digit -
Seconds field 2:10:00
Position Random character -

Table presents the mutation for the Date data types. The original input
used for the "Example" column was 2020-05-10. As happened with the Time
data types, values higher or lower than the limit of the fields (year, month, day)
are considered valid in these mutations.

80

Table A.3: Mutations for Date data types

No | Fault Description Argument Configuration Example
1 Replace by null value - - null
2 Replace by empty dummy date - - 0000-00-00
Year field 2120-05-10
Field Month field 2020-08-10
3 Replace by random date Day field 2020-05-12
Value Uniformly random between the maximum and minimum B
allowed value for the field
Before year value 12020-05-10
After year value 20201-05-10
. " Before month value 2020-105-10
4 Add one extra digit Position
After month value 2020-051-10
Before day value 2020-05-110
After day value 2020-05-101
Year field 2000-05-10
5 Remove one digit Field Month field 2020-5-10
Day field 2020-05-01
o Year field 2320-05-10
6 gfg‘i’t'ace one digit with a random | .y Month field 2020-08-10
Day field 2020-05-14
Year field 2002-05-10
7 Invert digits in a field Field Month field 2020-50-10
Day field 2020-05-01
Year field 05-2020-01
Source Month field 2020-10-05
. Day field 10-05-2020
8 Swap values among fields -
Year field 10-05-2020
Target Month field 2020-10-05
Day field 10-05-2020
9 Replace with the default value Default date | - 1970-01-01
10 | Remove first 2 digits of year field - - 0020-05-10
11 | Add 100 years - - 2120-05-10
12 | Subtract 100 years - - 1920-05-10
Year field 20200-05-10
13 | Duplicate digit Field Month field 2020-055-10
Day field 2020-05-110

Table [A-4] presents the mutation for the Timestamp data types. The origi-
nal input used for the "Example" column was 2020-05-10 11:11:11.121212121.
Once again, values higher or lower than the limit of the fields are considered
valid in these mutations.

81

Table A.4: Mutations for Timestamp data types

No | Fault Description Argument | Configuration Example
1 N -

Replace by null timestamp null
2 Replace by empty dummy timestamp |- - 0000-00-00 00:00:00.000000
Year field 2012-05-10 11:11:11.121212
Month 2020-11-10 11:11:11.121212
Day field 2020-05-29 11:11:11.121212
Position 1 field 2020-05-10 02:11:11.121212
3 [Replace by random timestamp Minute field 2020-05-10 11:54:11.121212
Second field 2020-05-10 11:11:23.121212
Nanosecond field 2020-05-10 11:11:11.565654
Value Uniformly random between the maximum and -
minimum allowed value for the field
Year field 0202-05-10 19:45:31.143684
Month 2020-50-10 19:45:31.143684
Day field 2020-05-01 19:45:31.143684
4 [Reverse field Field Hour field 2020-05-10 91:45:31.143684
Minute field 2020-05-10 19:54:31.143684
Second field 2020-05-10 19:45:13.143684
Nanosecond field 2020-05-10 19:45:31.486341
Before year value 12020-05-10 11:11:11.121212
After year value 20209-05-10 11:11:11.121212
Before month value 2020-205-10 11:11:11.121212
After month value 2020-051-10 11:11:11.121212
Before day value 2020-05-310 11:11:11.121212
After day value 2020-05-105 11:11:11.121212
5 |Add one extra character to timestamp |Field Before hour value 2020-05-10 611:11:11.121212
After hour value 2020-05-10 114:11:11.121212
Before minute value 2020-05-10 11:711:11.121212
After minute value 2020-05-10 11:113:11.121212
Before second value 2020-05-10 11:11:411.121212
After second value 2020-05-10 11:11:119.121212
Before nanosecond value 2020-05-10 11:11:11.9121212
After nanosecond value 2020-05-10 11:11:11.1212128
Before year value 22020-05-10 11:11:11.121212
After year value 20202-05-10 11:11:11.121212
Before month value 2020-505-10 11:11:11.121212
After month value 2020-055-10 11:11:11.121212
Before day value 2020-05-110 11:11:11.121212
After day value 2020-05-101 11:11:11.121212
g [Puplicate one character on timestamp |, ... [Before hour value 2020-05-10 111:11:11.121212
value After hour value 2020-05-10 111:11:11.121212
Before minute value 2020-05-10 11:111:11.121212
After minute value 2020-05-10 11:111:11.121212
Before second value 2020-05-10 11:11:111.121212
After second value 2020-05-10 11:11:111.121212
Before nanosecond value 2020-05-10 11:11:11.2121212
After nanosecond value 2020-05-10 11:11:11.1212122
7 Add 100 years to the timestamp - - 2120-05-10 11:11:11.121212
8 Subtract 100 years from the timestamp |- - 1920-05-10 11:11:11.121212
9 Remove 2 digits of the year field - - 20-05-10 11:11:11.121212121

82

Table presents the mutation for the Boolean data types. The original
input used for the "Example" column was True.

Table A.5: Mutations for Boolean data types
1 | Replace by null value |- - null
2 | Flip value - True becomes False, and vice-versa | FALSE
3 | SettoTrue - - TRUE
4 | Set to False - - FALSE

Table [A26] presents the mutation for the Decimal data types. The original
input used for the "Example" column was 1253,13.

Table A.6: Mutations for Decimal data types

1 | Replace by null value - - null
2 | Replace by random same-size decimal values - - 456,12
3 Add 1 - - 124,13
4 | Substract 1 - - 122,13
5 Remove one random numeric character from data | - - 13,13
6 | Duplicate one of the numeric characters Position Ra?ndom f“?m Otothe nAurAnericAv?Iue's original size. Repeated digit 1223,13
will be put in front of original digit
7 | Reverse two consecutive characters Position Random from 0 to the numeric value's original size minus 1 132,13
8 | Add numeric character Position Random from 0 to the numeric value's original size 4123,13
9 | Flip sign - Positive numbers become negative and vice-versa -123,13
10 | Zero out the integer part - - 0,13
11 | Zero out the fractional part - - 123,0
12 | Remove the integer part - - 13,0
13 | Remove the fractional part - - 123,0
14 | Remove the decimal separator - 12313,0
15 | Add 107-X X Random, from 1 to the limit of the type 123,14
16 | Subtract 107-X X Random, from 1 to the limit of the type 123,12
o Left 12,313
i i Direction -
17 | Shift decimal separator Right 1231,3
Amount One position, as long as there at is at least 1 digit in both sides -
X . After decimal separator 123,013
18 | Add 1 zero next to decimal separator Position -
Before decimal separator 1230,13
19 | Swap fractional and integer parts - - 13,123
20 | Reverse fractional part - - 123,31
21 | Reverse integer part - - 321,13
22 | Skipping decimal point near zero - - 12313,0

Table [A77] presents the mutation for the Double data types. The original
input used for the "Example" column was 123,13.

83

Table A.7: Mutations for Double data types

1 | Replace by random same-size double values - - 456,12
2 Add 1 - - 124,13
3 | Substract 1 - - 122,13
4 | Remove one random numeric character from data | - - 13,13
5 | Duplicate one of the numeric characters Position From 0 to the numeric value's original size. Repeat digit will be put in front of Position 1223,13
6 | Reverse two consecutive numeric characters Begin From 0 to the numeric value's original size minus 1 132,13
7 | Add numeric character Position Random position 1223,13
8 | Flip sign - Positive numbers become negative and vice-versa -123,13
9 | Zero out the integer part - - 0,13
10 | Zero out the fractional part - - 123,0
11 | Remove the integer part - - 13,0
12 | Remove the fractional part - - 123,0
13 | Remove the decimal separator - 12313,0
14 | Add 107-X X Random, from 1 to the limit of the type 123,14
15 | Subtract 107-X X Random, from 1 to the limit of the type 123,12
o Left 12,313
16 | Shift decimal separator Direction Right 1231,3
Amount One position, as long as there at is at least 1 digit in both sides -
. . After decimal separator 123,013
17 | Add a zero next to decimal separator Position -
Before decimal separator 1230,13
18 | Swap fractional and integer parts - - 13,123
19 | Reverse fractional part - - 321,13
20 | Reverse integer part - - 123,31
21 | Skipping decimal point near zero - - 12313

Table presents the mutation for the Binary data types. The original
input used for the "Example" column was [10, 4, 5, 1, 149], where each position
inside the array represent the value of a byte (from 0 to 255).

84

Table A.8: Mutations for Binary data types

&\ Fault Description Argument | Configuration Example
Replace by null value - - null
Replace by empty - - 1]
Prefix [1, 10, 4,5, 149]
Add byte Position Mid.dle (Random) [10, 4,5, 1, 149]
Suffix [10, 4, 5, 149, 1]
Value Random from 0 to 255 -
Prefix [5, 149]
Position Middle (Random) [10, 149]
Remove bytes -
Suffix [10, 4]
Quantity Random from 1 to size of Binary - Position -
Prefix [10, 10, 4, 5, 149]
Duplicate byte Position Middle (Random) [10, 4, 5, 5, 149)]
Suffix [10, 4, 5, 149, 149]
Prefix [6,4,5,149]
Position Middle (Random) [10, 4, 6, 149]
Replace byte -
Suffix [10, 4,5, 6]
Value Random from 0 to 255 -
Drop X most significant bits | X From 1 to 8 bits that make a byte [0, 0,0, 16]
Drop X least significant bits | X From 1 to 8 bits that make a byte [2,4,5,5]
Prefix [138, 4, 5, 149]
Flip sign bit of a byte Position Middle (Random) [10, 132, 5, 149]
Suffix [10, 4,5, 21]

Table presents the mutation for the Object data types. Due to the

Table A.9: Mutations for Object data types

1 | Replace by null object

No W‘ Argument m’ Example

null

abstract definition of a Java object, and how difficult it would be to represent
in text, the example column may be left empty.

2 | Replace by empty object

3 | Replace by object of different type

Table presents the mutation for the Reference data types. Due to the

abstract definition of a Java reference, and how difficult it would be to represent
in text, the example column may be left empty.

85

Table A.10: Mutations for Reference data types

No Fault Description Argument Configuration = Example
1 | Replace by null - - null

2 | Replace by reference to object of different type - - -

86

B Activity Diagrams of Test Cases

Figure shows the activity diagram for Test Case 2 - Create Organization.

87

Create Organization

Click in "Application”
Click in "General Setup”
Click in "Enterprise Model"

Click in "Initial Crganization
Setup”

Type Organization Password

[Type Organization Name] [Type Organization Username] and Confirm Password

|

Type 1st Line of Street Address

Choose Country
Clickin "OK"
Choose Organization Type

ccounting

Clickin "OK"

Figure B.1: Activity Diagram for Test Case 2 - Create Organization

88

Figure shows the activity diagram for Test Case 3 - Create User.

Create User

[Click in "Application”]

|

[Click in "General Setup”]

|

[Click in "Security™]

|

[Clickin "User”]

|

[Click in "Create New” icon]

Type Name of User Type new Username] [Type new Password]

| i

[Click in "Save and Close” icon]

Figure B.2: Activity Diagram for Test Case 3 - Create User

Figure shows the activity diagram for Test Case 4 - Create Role.

89

Create Role

[Click in "Application™

l

[Click in "General Setup”

J
J

|
=
J
J

l

[Click in "Role”

|

[Click in "Create New" icon

[Type Name of Role] [Type Description] [Choose User Level

|

[Click in "Save” icon J

N
4

Figure B.3: Activity Diagram for Test Case 4 - Create Role

Figure [B.4] shows the activity diagram for Test Case 5 - Create Product.
Figure shows the activity diagram for Test Case 6 - Delete Product.

90

1ONPOIJ 998dI)) - G 9se)) 1S9, I0] WeISer([] ANATOY ¢ 9IS

U031 ,850|D) PUE BAES, LI §3

i

]

i

uopdusssp sdil

ﬁ uofezueliQ ssooyd E

abew peojdn E ﬁ Wwbiem adh) g ﬁ

fuoba)es janpoud ssooyD

_

ﬁ 1anpoud Jo sweu ay) adfA]

Ay yaueag adh

H

U031,13NpoId MBN,. Ul

anpoid, ui {0

Juswabeuey

Juopeaddy, ul

19npoid siesid

91

Delete Product .

Click in "Application™

Click in "Mater Data
Management”

Click in "Product”

Selectthe Product

Click in "Delete” icon

Y

Caonfirm deletion

"\,_ _,/"
Figure B.5: Activity Diagram for Test Case 6 - Delete Product

Figure shows the activity diagram for Test Case 7 - Update Product.

92

Update Product

Click in "Application”

|

Click in "Master Data
Managemeant”

Click in "Product”

Select Product

h A

Click in "Edit” icon

Edit Name | | Edit Description ‘

i

‘ Click in "Save and Close™icon

Figure B.6: Activity Diagram for Test Case 7 - Update Product

Figure [B.7] shows the activity diagram for Test Case 8 - Export Product
Categories to Spreadsheet.

93

Export Product Categories to .

Spreadshest

N

Click in “Application”

W

Click in "Master Data
Management”

N

Click in "Product Setup”

A

Click in "Product Category”

N

Click in "Export Spreadsheet”
icon

v
|\x_ _/I

Figure B.7: Activity Diagram for Test Case 8 - Export Product Categories to

Spreadsheet

94

C Survey paper on Data Quality

Below is provided the conference paper that was presented in The 21st IEEE
Pacific Rim International Symposium on Dependable Computing (PRDC 2015).

95

A Survey on Data Quality: Classifying Poor Data

Nuno Laranjeiro*, Seyma Nur Soydemir*, and Jorge Bernardino*?
*CISUC, Department of Informatics Engineering
University of Coimbra, Portugal
seyma@student.dei.uc.pt, cnl@dei.uc.pt
TPolytechnic of Coimbra, Portugal
jorge@isec.pt

Abstract—Data is part of our everyday life and an essential
asset in numerous businesses and organizations. The quality of
the data, i.e., the degree to which the data characteristics fulfill
requirements, can have a tremendous impact on the businesses
themselves, the companies, or even in human lives. In fact,
research and industry reports show that huge amounts of capital
are spent to improve the quality of the data being used in
many systems, sometimes even only to understand the quality
of the information in use. Considering the variety of dimensions,
characteristics, business views, or simply the specificities of the
systems being evaluated, understanding how to measure data
quality can be an extremely difficult task. In this paper we survey
the state of the art in classification of poor data, including the
definition of dimensions and specific data problems, we identify
frequently used dimensions and map data quality problems to the
identified dimensions. The huge variety of terms and definitions
found suggests that further standardization efforts are required.
Also, data quality research on Big Data appears to be in its initial
steps, leaving open space for further research.

Keywords—Poor data quality; dirty data; poor data classifica-
tion; data quality problems

I. INTRODUCTION

Nowadays data (i.e., any information, especially facts or
numbers, regarding some object [1]) supports many enterprise-
level businesses, forming one of their most valuable assets.
Its use can have short-term impact on the businesses (e.g.,
the reception of purchase orders) but also medium or long-
term implications. The way data is being currently used in
data analysis or mining processes to support decision making,
including higher level decisions such as operational (e.g.,
at a department, or local store level) or tactical (i.e., from
the organization point-of-view) is a clear example of such
implications [2]. Thus, the need for organizations to possess
high quality data is essential, as it can increase the opportunity
for the organizations to deliver services that clients can rely
on [3].

Data quality, sometimes referred to as information quality
[4], has been defined in many diverse ways in the literature
[5]. High quality data can refer to whether data meets the
expectations of the users [6], which can be human users or
systems, or can be defined as "data that is fit for use by
data consumers" [7]. In the ISO/IEC 25012 standard [8] it
is defined as "the degree to which a set of characteristics of
data fulfills requirements". Examples of such characteristics
include completeness, accuracy or consistency of the data [9],
whereas the requirements express the needs and constraints
that contribute to the solution of some problem [10].

According to the above definitions, poor data quality, can
be defined as the degree to which a set of characteristics of
data does not fulfill the requirements. By not fulfilling all the
requirements it is not fit for use by data consumers, and thus
it is prone to cause impact on the entities involved (e.g., a
company, a customer). The impact can be of three types: op-
erational (i.e., causing customer and employee dissatisfaction
and increased costs); tactical (i.e., affecting decision making
and causing mistrust), and strategic impacts (i.e., affecting the
overall organization’s strategy) [11]. Overall, any system or
enterprise that heavily relies on data is prone to experience
problems if the data being handled does not possess the
expected quality attributes.

Previous research and industry reports are clear in indi-
cating the severe damage caused by the presence of poor
quality data in diverse contexts and at many different levels
[12], [4], [13], [14]. In addition to the severe impact on
business performance, at the same time investment is being
made in data quality using unsophisticated approaches [14],
frequently without proper knowledge on data quality. In fact,
understanding what is good data, how it can be measured,
and also improved, is a quite difficult problem due to the
variety of definitions, its multiple dimensions and applicability
to different contexts [5]. In this paper we analyze the state of
the art in data quality, particularly considering the perspective
of data quality classification.

The quality of data can be analyzed from multiple dimen-
sions. A dimension is a measurable data quality property that
represents some aspect of the data (e.g., accuracy, consistency)
that can be used to guide the process of understanding quality
[15], [16], [9]. Thus, some particular data can be described as
of being high quality, according to one or more dimensions.
Since the use of data is pervasive, it is very common to find
different terms referring to the same dimension (e.g., currency
is many times used as timeliness) in the literature [5]. For
instance, dimensions are sometimes referred to as attributes,
or characteristics [17]. Data quality problems, often named
dirty data [18], are the specific problem instances that we can
find within a dimension (e.g., under the accuracy dimension,
we can find format problems) and that prevent data from being
regarded as high quality [19]. The terms used for data quality
problems also differ [19], [20], [21], and also the mapping
between each different problem to each dimension (depending
on the definitions used).

Performing a superficial identification of data quality issues
is relatively straightforward. However, performing a thorough
identification of issues (e.g., to be used as means for quan-

titatively measuring data quality, or to select data cleaning
procedures), which is obviously guided by the dimensions that
characterize the quality of data, is a quite difficult task. This
is especially true, considering the multitude of categories and
sub-categories that different authors propose, many times to
designate the same aspects [16].

In this paper we survey data quality research, especially
in the field of data quality classification, with focus on data
quality dimensions and data quality problems. We describe the
different classification structures and dimensions identified by
researchers, present the different data quality problems found,
and perspectives used to group these problems. Finally, we
map the problems into a subset of dimensions most frequently
cited in the literature. The analysis suggests the need for further
standardization efforts and open space for research in data
quality for Big Data, which appears to be in an initial stage.

This paper is organized as follows. Section II discusses the
impact of poor data quality and Section III describes typical
dimensions used to describe data quality. Section IV identifies
data quality problems and maps them to a set of frequently
cited data quality dimensions. Finally, Section V concludes
this paper.

II. THE IMPACT OF POOR DATA

There are clear evidences that data quality problems affect
many organizations [22], [14] and result in different types of
impact, including substantial social and economical impacts
[11], [13]. Understanding these impacts is relevant to under-
stand the overall importance of the presence of poor data
and its far-reaching implications, but also to create awareness
in practitioners and researchers regarding this topic. In this
section we briefly overview the different types of impact
caused by poor data, with emphasis on financial cost, which
can be the most immediate impact of a data quality problem.

The need for awareness of poor data in enterprises and a
classification of its impact is presented in [11]. At a conceptual
level and from the organization point-of-view, the following
main impact types can occur:

e Operational: Employee and customer dissatisfaction,
and also increased cost of operations (e.g., resources
are used to correct errors).

e Tactical: Effects on decision making, more difficult
reengineering, mistrust within the organization.

e Strategic: Increased difficulty to define and execute
organizational strategies, contributes to issues regard-
ing data ownership, and diverts management attention
from crucial aspects (e.g., customers or competition).

The main types of data quality impact are described from
a business perspective in [13]. The four impact areas identified
are: 1) Confidence and satisfaction-based impact: refers to the
satisfaction of actors, such as customers, employees, or suppli-
ers, which can result in lowered organizational trust, incoherent
management and operational reporting, and incorrect deci-
sions. 2) Productivity: higher processing time, lower through-
put and, as a consequence, increased workloads, ultimately
reflecting on the product quality. 3) Risk and compliance:
refers to possible risks (e.g., investment, competitive, capital

fraud) and to regulations and policies, such as those imposed
by governments, industry, or the company itself. 4) Financial:
lower profit, decreased cash flow and higher operational costs.
Penalties tend to increase and opportunities are lost.

Despite of the multiple perspectives on the impact of data
quality, in the end, all have the potential to bring in financial
costs for organizations. The following examples illustrate
real cases, where poor data brought significant costs to the
entities involved: 1) Gartner recently found that the annual
cost brought in by poor data in a set of surveyed organizations
in 2014 was on average of $13.3 million dollars [23]. 2) The
US Postal Service calculated in 2013 that more than 6 billion
pieces of mail could not be delivered due to wrong bad postal
data. Processing that email costed over $1.5 billion, which is
just the direct fraction of the wasted costs [24]. 3) Poor data
is known to cost over 3 trillion per year to US economy [25].

The potentially huge financial cost caused by poor data is
an obvious aspect that has been the focus of several research
works, which present different views on this matter [26], [27],
[28]. Besides the obvious costs brought in by poor data, on
the other hand managing data quality also comes with its
own costs, and there is always a trade-off between any data
quality management strategy or procedure and the potential
loss caused by poor data. This further reflects the importance
of understanding the costs of poor data.

The US Department of Defense produced a set of data
quality guidelines [26], where the cost of poor data quality
is distinguished into two main groups: i) direct costs; and ii)
indirect costs. The direct data quality costs are related with
the impact of poor data in a process and with the cost of
improving and correcting the poor data. This group includes
controllable costs, due to the management of data quality
(e.g., prevention, appraisal, correction costs), resultant costs,
related with the impact of poor data quality (e.g., internal and
external error costs), and equipment and training costs (e.g.,
costs of hardware and software for basic operational support,
and training required to prevent, assess, and correct data).
Indirect data quality costs are essentially related with the loss
of creditability and customer satisfaction.

Authors in [29] review the costs associated with low
quality data and categorizes them in two types: i) improvement
costs; and ii) costs due to low data quality. The former are
related with the information quality process such as prevention
(training, monitoring, standard development and deployment),
detection (analysis and detection), and repair (planning and
implementation). The latter costs are categorized in direct
or indirect. Direct costs refer to verification, re-entry, and
compensation costs; whereas indirect costs refer to lower
reputation, wrong decisions or actions and sunk investment.
In [28] authors have reused the taxonomy defined in [29] as a
basis for further analysis on data problems.

Data quality costs are classified under three main groups in
[27]: a) data entry; b) data processing; and c) data use. Data
entry quality costs may either be caused by the low quality
of data (e.g., cost of correcting), or preventive costs (e.g.,
training, defect prevention). Data processing quality costs are
also organized in two subgroups: costs of re-processing dirty
data (e.g., re-work, rolling back) and process improvement
costs (e.g., costs of detecting, analyzing, and reporting dirty

data). Finally, in data use costs, the authors consider a division
between direct costs (e.g., lost revenue and opportunities,
compensation costs) and indirect costs (e.g., liability costs,
lower reputation).

Although we can find different views for the classification
of the impact of data quality, in general the key areas focused
are costs associated with poor data and costs regarding im-
provement of data quality. While some authors group costs
according to the phase in data lifecycle where the action is
taken (e.g., entry, processing, use), others use different criteria,
such as the moment when the action takes place (i.e., before
or after poor data caused some impact). The categorization of
costs in direct and indirect is also very much common, but
while some research takes into account the cost in association
with ensuring data quality, other authors are simply interested
in the more direct costs related with poor data quality. Despite
these different views, understanding the cost of poor data is
a crucial tool for researchers or practitioners to take the right
actions, concerning their specific goals.

III. THE DIMENSIONS OF DATA QUALITY

In this section, we review the literature and systematize
different definitions of data quality dimensions (i.e., the mea-
surable data quality properties that represent some aspect of
the data, such as accuracy, or completeness). We build on this
knowledge to identify the most frequently cited dimensions.
The detailed information regarding the dimensions identified
in all analyzed works is summarized by the end of this section,
in Table II. The literature review is organized in the following
two major sets and in chronological order within each set (with
exception of the seminal work in [15], which is analyzed first):

1) Set I: Research or industry work that defines data
quality dimensions.

2) Set II: Research or industry work that selects, ranks,
or suggests a subset of data quality dimensions.

In order to determine the quality of data and how it can
be improved, measuring data quality is a key activity in any
data-centric organization. However, it is impossible to evaluate
without agreeing on what should be measured [30]. With the
goal of identifying measurable aspects of data quality (i.e.,
dimensions), different perspectives and strategies are used to
perform this identification and to organize the dimensions [17].

A seminal work in [15] provides a definition of data quality
dimensions, gathered from data consumers, and organizes
these dimensions in categories. Hundreds of dimensions were
collected and then reduced into 20 under 4 categories, and
further reduced and repositioned into 15 dimensions under
the following 4 categories. The intrinsic category includes
dimensions which express the natural quality of the data; the
dimensions under the contextual category express the fact
that data quality must be considered within a specific context;
the representational category refers to dimensions that are
related with the format and meaning of the data; and finally,
the accessibility category, refers to dimensions that express
how accessible data is to users. The final set of dimensions
under these four categories is presented in Table I.

The research grouped in Set I, which this paragraph begins,
defines data quality dimensions and usually provides some

TABLE 1. DATA QUALITY DIMENSIONS, ADAPTED FROM [15].
Category Dimension Description
Accuracy Data is is correct (error-free) and reliable.
. Believability Degree to which data is seen as credible and true.
Intrisic — - " -
Objectivity How impartial the data is.
Reputation Data contents or source are kept in high consideration.

How suitable is the quantity of the data.
Refers to the scope of the information in the data.

Appropriate amount
Completeness

Contextual Relevancy How usable, applicable, or interesting the data is.
Value-added Data provides a competitive advantage.
Timeliness The age of the data.

Concise representation |Data is compactely represented.

Ease of understanding [How clear, readable, or understandable the data is.
Interpretability The extent to which the data meaning is explained.
Consistency Data continuously presented in the same format.
Access security Access is secure or can be restricted.

Accessibility The degree to which the data is retrievable.

Representational

Accessibility

hierarchical view of the dimensions. An example is [31] where
dimensions are categorized according to an external view,
which is related with the use and the effect of a given system,
and to an internal view, which refers to the construction and
internal operations needed to achieve some functionality. The
dimensions are further separated into data-related and system-
related. As an example of dimensions fitting in the external
view, conciseness is data-related dimension, whereas efficiency
is a system-related dimension. Some dimensions fit on both
views, such as timeliness, or on both the data and the system
category.

In [7] the authors use the same definitions presented
in [15], discuss a set of data quality projects, and provide
recommendations for professionals to improve data quality
from the data consumer perspective. Data quality is put in
perspective of dynamic organizations that many times down-
size or merge in [26]. The dimensions used in this work are
accuracy, completeness, consistency, timeliness, uniqueness
and validity. Authors discuss that data quality characteristics
and conformance measures used in data quality management
in the US Department of Defense are similar to those used to
measure data quality in most information systems, despite that
in this case the size of the potential issues can be quite large,
as it involves thousands of systems worldwide.

A modeling perspective is taken in [32] to define data
quality dimensions. In that particular context, a data item is
considered to be a triple (a value, from a domain, within
an entity). The three categories defined by the author are
associated with: i) the data model (which mostly refers to the
structure of the data), ii) the data values (the raw data itself),
and with the rules for iii) the data representation (the set of
rules that define how to keep data).

A broad view on several data quality topics is provided in
[33]. On the information quality assessment topic, the author
discusses several characteristics of data quality, which are
grouped in two categories: i) Inherent quality which refers
to how accurate the data describes the world being modeled
(i.e., the static quality characteristics of the data, such as
completeness of the data, or conformance to business rules);
and ii) Pragmatic quality which refers to how the data allows
users to achieve their goals and how understandable it is in a
particular format (e.g., how clear, how usable it is).

Information quality criteria (e.g., reputation, completeness,
accuracy) are discussed in [34] and organized in three classes:
1) Subject, which comprises criteria that can only be scored by

individual users, based on their knowledge; 2) Object, which
includes criteria that are determined by the analysis of the
information itself; and 3) Process, which holds criteria that
are determined by querying, which means that the procedure
of querying is the source of the scores.

Principles that can be used by organizations towards the
definition of usable data quality metrics are described in [12].
The authors discuss that, in the enterprise domain and in areas
such as as healthcare, finance, or consumer product, companies
must consider not only the objective metrics of the data, but
also the subjective metrics which reflect the experience of the
individuals that are involved with the data. In this work, the
data quality dimensions are quite similar to the ones presented
in [15] and [7] and have been extracted from [35]. The main
difference is that there are new references to Ease of Manip-
ulation’ and ’Free-of-Error’. There are also slight differences
in names, such as ’Security’, or ’Understandability’. In [35],
the authors aim to provide a methodology for assessing the
performance of organizations in developing and delivering
information products and services to consumers.

An enterprise view of data quality is presented in [36],
where 5 categories are used to group dimensions. Data quality
is defined in terms of the data model (e.g., how clear and
robust); the data values (e.g., how accurate the values are,
or how complete); the information domains, which mostly
refers to the presence and enforcement of standards and usage
agreements at the enterprise level; the data presentation (e.g.,
how portable or appropriate); and the information policy (e.g.,
presence and quality of metadata, privacy). In [37] the authors
mention 24 characteristics which can be integrated in 5 dimen-
sions (accuracy, timeliness, comparability, usability, relevance).
No explicit mapping between dimensions and characteristics is
presented in this work. The AIMQ model is based on the PS/IQ
model and defines four quadrants for data quality dimensions
[38]. Sound’ and ’Dependable’ are two quadrants that refer
to information that complies with specifications, the former is
associated with product quality, the latter with service quality.
The remaining two quadrants are ’Useful’ and ’Usable’ and
refer to data that meets or exceeds the consumer’s expectations.
Again they match product and service quality, respectively.

A conceptual framework and belief function to assess
information quality is discussed in [39]. In what concerns
classification, 4 criteria are used: Accessibility, the capability
to retrieve information; Interpretability, how understandable
and meaningful the data is to the user; Relevance, which is
the applicability of the data to the user’s goals; and Credibility,
the degree of belief on the information, based on its accuracy,
completeness, consistency, and non-fictitiousness.

A general framework for assessment of information quality
is proposed in [40]. It considers a large amount of data quality
problems, and defines a taxonomy of dimensions divided
in three categories: i) Intrinsic, characteristics that can be
measured with respect to some reference; ii) Relational or
contextual, which refers to aspects that concern relationships or
some specific usage context; and iii) Reputation, which refers
to the position of the object with respect to some activity or
cultural structure.

The ISO/IEC 25012 standard [8] defines a data quality
model that comprises 15 characteristics within two points of

view: inherent, which includes all characteristics that intrinsi-
cally have the potential to comply with the explicit and implicit
need under specified conditions; and system dependent, which
refers to how data quality is achieved and kept in a computer
system under specified conditions. Some of the characteristics
share both points of view.

Data quality dimensions are discussed from a practical
point-of-view in [17]. The author’s rationale is that, although
we can find many proposals for dimensions in the literature,
practitioners usually tend to use dimensions that can be
effectively measured. Thus, these tend to assume a greater
importance in such contexts. The dimensions discussed in [17]
are divided in three main groups: intrinsic, contextual, and
qualitative. The two former groups hold a set of dimensions,
with each dimension being associated with a set a characteris-
tics, in turn associated with metrics that allow measuring that
particular aspect of the data. The last group essentially reflects
the dimensions for which the measuring aspects are less clear.

The dimensions of data quality considering the needs of
the data consumers are presented in [41]. The dimensions
are grouped under 9 categories: 1) Accessibility/Delivery, how
reachable the data is; 2) Quality of Content, e.g., how clear,
appropriate, or relevant; 3) Quality of values, e.g., accurate,
complete; 4) Presentation Quality (e.g., format precision); 5)
Flexibility, how portable or interpretable; 6) Improvement,
e.g., how measurable; 7) Privacy; 8) Commitment, (is help
available help or warnings regarding the data usage); and 9)
Architecture, which mostly refers to the structural aspects of
the data (e.g., logical or physical structure). This work also
initiates the discussion of the research belonging to Set I1, as it
also selects a subset of data quality dimensions, by presenting
the following as the most frequently cited by data consumers:
availability, security; comprehensiveness, appropriate use, clear
definition, source, relevancy, accuracy; ease of interpretation;
measurement; early warning, help; library, documentation,
naming, unit cost. Identifiability is a critical dimension that
is usually forgotten by data customers but still holds a critical
importance for them.

An overview of data quality, which considers its multi-
dimensional nature is presented in [16]. The authors analyze
several works on data quality, match the dimensions found
in the literature with the works, and compare the definitions
of dimensions used by the different authors. Conclusions
include that accuracy, completeness and time-related dimen-
sions (currency, timeliness, and volatility) are applicable to
many contexts (i.e., they are more generic) and that additional
dimensions can be used to enrich this set.

In [42] the author selected the following five dimensions
that are quite popular among researchers and that have partic-
ular relevance to data warehouses: correctness, completeness,
consistency, currency, and accessibility. The author emphasizes
that other dimensions may also be worth considering the
context of systems that handle large amounts of data. The data
consumer perspective is used in [43] to select the most relevant
data quality characteristics for a web portal. PDQM and
ISO/IEC 25012 have been used as basis for defining the char-
acteristics and the model defines two points of view: inherent
and system dependent; four categories: intrinsic, operational,
contextual, and representational. Within each category a set of
characteristics and subcharacteristics are also identified.

Authors in [44] survey an ample set of areas in data quality
and also analyze work that defines data quality dimensions,
despite not being the the main focus of the work. Four dimen-
sions (accuracy, completeness, consistency, and timeliness) are
presented as being the most commonly discussed in the litera-
ture. On the other hand, in [45] the scope is limited to the social
web. The authors have identified 5 categories, which include
42 criteria: 1) Process pragmatics, the degree to which data
can be accessed by a user; 2) Information pragmatics, refers
to how useful, applicable, and understandable the information
is within some user context; 3) Semantics, which indicates how
well the data represents the external world; 4) User pragmatics,
which refers to credibility and trustworthiness from a user
point of view; and 5) Syntactics, which expresses how well the
data conforms to other information, such as stored metadata.

Data quality is a vital aspect in genome annotation, which
has the key goal of marking the key features of a genome
linking them to the related literature. As a complex collabora-
tive task, any error can cause serious problems. The work in
[46] creates 5 constructs (accuracy, accessibility, usefulness,
relevance, security) that were generated and selected from
a set of data quality dimensions. In the context of medical
informatics, authors in [47] have analyzed 245 papers in the
data quality domain, and in which 13 defined data quality. Most
of these papers see this topic as a multidimensional concept
and, despite the specific domain of the paper, the authors found
out that the most used dimensions are completeness, accuracy,
correctness, consistency and timeliness.

In [5] a broad survey on information quality is also
presented. The authors discuss the virtues and limitations
of the classification presented in ISO/IEC 25012 [8] and
also present diverse definitions found in the literature for
each of the most frequently mentioned dimensions (accuracy,
completeness, consistency, timeliness, and currency).

Research on the quality of Big Data appears to be in
its initial steps. The role of big data in the modernization
of statistical production is discussed in [48], with particular
focus in data quality. Three hyper-dimensions are used (source,
metadata, data) to group dimensions and sub-dimensions in
three different phases (some dimensions apply to more than
one phase), which are close to the stages defined by the
general statistical business process model [48]. In [49] authors
discuss the fact that data quality is more relevant when big
datasets, from heterogeneous sources, integrated at different
velocities are used. Thus the authors emphasize the importance
of the consistency dimension, in three views: Contextual (the
extent to which different datasets can be used within the
same domain); Temporal (the time slot consistency required
for producing, analyzing, and understanding the data); and
Operational (the degree to which it is technically possible to
analyze a dataset). The authors map the ISO/IEC 25012 [8]
characteristics into these three views and into big data’s three
Vs: Velocity, Volume, and Variety.

Table II summarizes the research work on data quality
analyzed in this section. The table is organized in chronological
order, and focuses on the categorization structure and terms
used in each work to classify data quality, which are referred
under the ’Structure’ and *Terms used’ columns, respectively.

According to the research analyzed here and summarized
in Table II, we find the subset of data dimensions presented
in the next paragraph to be the most frequently cited among
the analyzed works. The definitions are the ones used in
the ISO/IEC 25012 standard [8]; however, accessibility has
been complemented with the definition in [45] for clarity, and
consistency has been adapted also from [45] for the same
reason:

o Accessibility: The degree to which data can be ac-
cessed in a specific context of use, which includes
suitability of representation.

e Accuracy: Degree to which data’s attributes correctly
represent the true value of the intended object.

o Completeness: The degree to which an entity has
values for all expected attributes and related entity
instances.

o Consistency: The degree to which an information ob-
ject is presented in the same format, being compatible
with other similar information objects.

e Currency: The extent to which data holds attributes
of the right age.

The research analyzed in this section shows clear differ-
ences in how data quality is perceived. Although the ’fitness
for use’ concept is widely accepted, the heterogeneity in the
structure and naming and definition of dimensions is very
clear. This has to do sometimes with the domain of the
work (e.g., web, manufacturing), but even when the context
is different, there are many similarities and we observe the
same dimensions being repeatedly used by different authors.
Although there have been a standardization efforts [8], the
definitions found in ISO/IEC 25012 are also quite generic,
leaving space for the context of use and opening space for
further research. Finally, the research in big data appears to
be in its initial steps; considering the scale of these systems
and the potentially higher impact of poor data issues, further
research seems to be of utmost importance.

IV. MAPPING DATA QUALITY PROBLEMS

Problems regarding data quality, (i.e., dirty data [18]),
have been analyzed in previous research and are present
in different domains, including healthcare [50], data science
[51], or Cyber-Physical Systems [52], just to name a few. In
this section, we discuss research that deals with data quality
problems, i.e., the specific poor data issues that affect services
and organizations, which rely on data for their operations. This
section is organized in chronological order, with exception of
the seminal work in [19], which initiates the discussion. In
Table III, which is presented by the end of this section, we
associate the data quality problems identified in the literature
with their corresponding dimensions (as identified in Section
I1I).

The literature shows data quality problems from a few dif-
ferent perspectives, with authors many times using some form
of hierarchical organization. Some authors classify problems
based on their origin (single/multiple) and application level
(e.g., instance, schema) [19]; others based on their absence or
presence (and, in this latter case, if it is incorrect or correct

TABLE II. DATA QUALITY CATEGORIZATION IN THE LITERATURE.

Research work

Structure

Terms used

Beyond accuracy: What data
quality means to data

4 categories, 15

Intrinsic: accuracy, objectivity, believability, reputation

Contextual: value-added, relevancy, timeliness, completeness, appropriate amount of data

consumers [15] dimensions Representational: interpretability, ease of understanding, representational consistency, concise representation
Accessible: accessibility, access security
Internal Data-related: accuracy, reliability, timeliness, completeness, currency, consistency, precision
Anchoring data quality 2 views, 2 view System-related: reliability
dimensions in ontological categories, 26 External Data-related: timeliness, relevance, content, importance, sufficiency, usableness, usefulness, clarity, conciseness, freedom
foundations [31] dimensions view from bias, informativeness, level of detail, quantitativeness, scope, interpretability, understandability
System-related: timeliness, flexibility, format, efficiency

DoD Guidelines... [26]

6 characteristics

Accuracy, completeness, consistency, timeliness, uniqueness, validity

Data Quality Handbook.. [42]

5 dimensions

Correctness, completeness, consistency, currency, accessibility

Data Quality for the
Information Age [32]

3 categories, 27
dimensions (15
characteristics)

Data model: content (data relevance, obtainability of values, clarity of definition), scope (comprehensiveness, essentialness), level of detail
(attribute granularity, domain precision), composition (naturalness, identifiability, homogeneity, minimal unnecessary redundancy), model
consistency (structural, semantic consistency), reaction to change (flexibility, robustness)

Data values: accuracy, completeness, currency, and consistency

Data representation: appropriateness, interpretability, portability, format precision, format flexibility, ability to represent null values,
efficient usage of recording media, representation consistency

Improving data warehouse
and business information

2 categories, 15

Inherent: definition conformance, value completeness, validity/business rule conformance, accuracy to surrogate source, accuracy to
reality, precision, non-duplication, equivalence/concurrency of redundant or distributed data

. dimensions - —— - — - — -
quality [33] Pragmatic: accessibility, timeliness, contextual clarity, derivation integrity, usability, rightness or fact completeness
Assessment methods for 3 classes, 22 Subject: believability, concise representation, interpretability, relevancy, reputation, understandability, value-added
information quality criteria criteria g Object: completeness, customer support, documentation, objectivity, price, reliability, security, timeliness, verifiability

(34]

Process: accuracy, amount of data, availability, consistent representation, latency, response time

Data Quality: The Guide Field
[41]

9 categories, 51
dimensions

Accessibility/Delivery: availability, protocol, security

Quality of content: attribute granularity, comprehensiveness, essentialness, flexibility, appropriate use, areas covered, homogeneity,
naturalness, obtainability, precision of domains, robustness, semantic consistency, structural consistency, simplicity, clear definition,
identifiability, source, relevancy

Quality of values: accuracy, completeness, timeliness, consistency

Presentation quality: appropriateness, format precision, use of storage

Flexibility: portability, representation consistency, null values, formats, language, ease of interpretation

Improvement: feedback, measurement, track record

Privacy: consumer privacy, privacy of others, security

Commitment: warning, help, special requests, commitment

Architecture: library/documentation, logical structure, physical structure, naming, rules, redundancy, unit cost

Enterprise Knowledge
Management: The Data
Quality Approach [36]

5 categories, 31
characteristics

Data models: clarity, comprehensiveness, flexibility, robustness, essentialness attribute granularity, domain precision, homogeneity,
naturalness, identifiability, obtainability, relevance, simplicity, semantic/structural consistency

Data values: accuracy, null values, completeness, consistency, currency/timeliness

Information domains: enterprise agreement of usage, stewardship, ubiquity

Data presentation: appropriateness, correct Interpretation, flexibility, format precision, portability, representation consistency,
representation of null values, use of storage

Information policy: accessibility, metadata, privacy, redundancy, security, unit cost

Data quality assessment [12]

16 dimensions

Accessibility, appropriate amount of data, believability, completeness, concise/consistent representation, ease of manipulation, free-of-
error, interpretability, objectivity, relevancy, reputation, security, timeliness, understandability, value-added

A New Method for Database
Data Quality Evaluation at
the Canadian Institute... [37]

5 categories

Accuracy, timeliness, comparability, usability, relevance

24 characteristics

Over-coverage, under-coverage, simple response variance, reliability, correlated response variance, collection and capture, unit and item
non-response, edit and imputation, processing, estimation, timeliness, comprehensiveness, integration, standardization, equivalency,
linkage-ability, product comparability, historical comparability, accessibility, documentation, interpretability, adaptability, value

Product Conforms to specifications (Sound): free-of-error, concise representation, completeness, consistent representation
AIMQ: a methodology for 4 quadrants (2) Meets or exceeds consumer expectations (Useful): Appropriate amount, relevancy, understandability, interpretability,
information quality views plus 2 quality objectivity
assessment [38] views) Service Conforms to specifications (Dependable): Timeliness, security

Quality Meets or exceeds consumer expectations (Usable): Believability, accessibility, ease of operation, reputation
A conceptual framework and Accessibility

belief-function approach to
assessing overall information
quality [39]

4 attributes, 8
subattributes

Interpretability: Intelligible, meaningful

Relevance: user-specified criteria, timely (considers age and volatility)

Credibility: accuracy, completeness, consistency, and non-fictitiousness

A Framework for Information
Quality Assessment [40]

3 categories, 22
dimensions

Intrinsic: Accuracy/validity, cohesiveness, complexity, semantic consistency, structural consistency, currency, informativeness /
redundancy, naturalness, precision / completeness

Relational or contextual: Accuracy, accessibility, complexity, naturalness, informativeness / redundancy, relevance (aboutness), precision /
completeness, security, semantic consistency, structural consistency, verifiability, volatility

Reputation: authority

ISO/IEC 25012 [8]

2 points of view
and 1 mixed
view, 15
characteristics

Inherent: accuracy, completeness, consistency, credibility, currentness; accessibility, compliance, confidentiality, efficiency, precision,
traceability, understandability

System dependent: availability, portability, recoverability

Inherent and system dependent: accessibility, compliance, confidentiality, efficiency, precision, traceability, understandability

SPDQM: SQuaRE-aligned
portal data quality model
[43]

2 points of view,
4 categories, 27
characteristics,
15
subcharacteristics

Intrinsic: accuracy, credibility (objectivity, reputation), traceability, currentness, expiration, completeness, consistency,

Inherent accessibility (interactive, operation ease, cust. support), compliance, confidentiality, efficiency, precision, understandability

Operational: availability, accessibility, verifiability, confidentiality, portability, recoverability

Contextual: validity (reliability, scope), value-added (applicability, flexibility, novelty), relevancy (novelty, timeliness),

System specialization, usefulness, efficiency, effectiveness, traceability, compliance, precision

dependent |Representational: concise representation, consistent representation, understandability, (interpretability, amount of data,

documentation, organization), attractiveness, readability

The Practitioner’s Guide to
Data Quality Improvement
[17]

3 categories, 10
Characteristics

Intrinsic: Accuracy, Lineage, Semantic, Structure.

Contextual: completeness, consistency, currency, timeliness, reasonableness and identifiability

Qualitative dimensions

(continued on next page)

TABLE II.

DATA QUALITY CATEGORIZATION IN THE LITERATURE. (CONTINUED FROM PREVIOUS PAGE)

Research work Structure

Terms used

Process pragmatics: ease of operation, ease of navigation, interactivity, flexibility of representation, suitability of representation, access
security, accessibility, latency, response time, availability

Information Quality

Syntactics: consistency, semantic consistency, structural consistency, conformability, naturalness, integrity

5 categories, 42
Dimensions for the Social categories,

User pragmatics: believability, verifiability, amount empirical evidence, reliability, reputation, user-conformability, enjoyability

Web [45] criteria

unambiguous

Semantics: informativeness, conciseness, accuracy, objectivity, currency, completeness, cohesiveness, degree of context, maintainability,

Information pragmatics: understandability, interpretability, usability, efficiency, value add, complexity, relevancy, timeliness, volatility

Accuracy: accuracy, unbiased, believability, traceability

Prioritization of data quality

Accessibility: accessibility, believability, appropriate amount of information

dimensions and skills 5 constructs, 19

Usefulness: interpretability, understandability, ease of manipulation, consistent representation, value added

requirements in genome dimensions n - -
. Relevance: relevant, concise representation, up-to-date, reputation, value added
annotation work [46] n - -
Security: security, traceability
Towards an ontology... [47] |5 dimensions Completeness, accuracy, correctness, consistency, and timeliness

Source: institutional/business environment, privacy and security

A Suggested Framework for

hyperdimensions, | Metadata: complexity, accessibility clarity, completeness, usability, time factors, coherence(linkability and consistency), validity

the Quality of Big Data [48]

11 dimensions, 3 |Data: accuracy (selectivity), coherence (consistency and linkability), validity, time factors

. i
A Data Quality in Use Model |3 by 3 views, 15 consistency |understandability

Contextual |Velocity: consistency, credibility, confidentiality Volume: completeness, credibility Variety: accuracy, consistency,

Temporal

Velocity: consistency, credibility, currentness, availability Volume: availability Variety: consistency, currentness, compliance

for Big Data [49] characteristics

Operational | Velocity: completeness, accessibility, efficiency, traceability, availability, recoverability Volume: completeness, accessibility,
consistency |efficiency, availability, recoverability Variety: accuracy, accessibility, compliance, efficiency, precision, traceability, availability,

but unusable) [20]; The work in [21] considers instance and
relation levels with a distinction between problems related with
single or multiple instances/relations; data quality problems are
also viewed in terms of syntactics, semantics, and coverage
(missing objects) [53]; the work in [54] merges the concepts
defined in [19] and [20]; finally, problems are also viewed in
respect to their relation to context [28].

The reference work in [19] discusses data cleaning ap-
proaches and classifies data quality problems with respect to
the source of information: single or multiple. Single-source
problems are related with the (wrong or absent) definition of
integrity constraints. Multi-source problems relate with the
integration of data from multiple sources, which, for instance,
might hold different representations of the same values, or
contradictions. Also, in general, all issues that refer to the
instance level apply, but with the potential of producing greater
impact. Each of these two classes of problems are further
divided in [19] into schema-level, which are related with
defects in the definition of the data model and schema, and
instance-level which are problems that are not visible at the
schema level and cannot be prevented by restrictions at the
schema level (or by redesign).

As presented in [19], single-source instance-level prob-
lems include missing values, abbreviations, or misspellings.
A single-source schema-level problem can be, for instance,
the violation of a unique value, or referential integrity. multi-
source schema-level problems are many times structural (dif-
ferent representations for the same objects) or naming conflicts
(use of synonyms or homonyms). In Multi-source instance-
level we may find issues related with different representation
of values, or interpretation (e.g., different measurement units
used), or values referring to different time periods.

A hierarchical taxonomy consisting of 33 primitive dirty
data types, primarily distinguished between missing data and
non-missing data is proposed in [20]. Further subcategories
include whether the data is incorrect or correct but unusable
and data problems are further distinguished in terms of whether
they could have been prevented by techniques supported by
relational databases or not.

Another classification of data quality problems is presented
in [21]. In short, the authors organize data quality problems
in a hierarchy of four levels: multiple data sources; multiple
relations; single relation; and attribute/tuple, which is similar
to the organization in [19]. Examples of problems at the
level of attribute/tuple include missing values, misspellings, or
syntax violations; at the single relation level problems include
approximate and inconsistent duplicate tuples; at the multiple
relation level problems include referential integrity violation,
or incorrect reference; and at the level of multiple data sources
we can find heterogeneity of syntaxes, measure units and
representation, among others.

In [53] the authors classify data anomalies into syntac-
tical, semantic and coverage. Syntactical anomalies include
differences between object structure format, domain format
errors, and general irregularities, such as the non-uniform use
of values units, and abbreviations. Semantic anomalies include
integrity constraint violations, contradictions (e.g., difference
between age and birth), duplicates, and invalid tuples, which
correspond to the remaining cases. Finally, coverage anomalies
include missing values or tuples.

A classification of data quality problems is presented in
[54]. The classification holds similarities to the work in [20],
however the authors follow the clustering of [19] by dividing
data quality problems into schema level (that can be avoided
by an improved schema design) and instance level problems
(that are not visible or avoided at the schema level). Schema
level problems are further divided in: i) supported by relational
database management systems (RDBMS), ii) not-supported by
RDBMS. Instance level data quality problems are divided in:
i) problems concerning single data records, and ii) problems
concerning multiple data records.

Data quality problems are analysed as context-independent
and also context-dependent in [28]. An extra axis is considered,
which presents problems from a user perspective versus an
information perspective. Thus, from the information perspec-
tive, a context-independent problem would be a spelling error,
missing data, or duplicate data; whereas a context-dependent
problem could be the violation of business rules or company
regulations. From the user perspective, a context independent

problem can be the perception of inaccessible or insecure
information; whereas a context dependent problem would
be the irrelevance of the information to the work, its low
credibility, or inconsistency.

The work in [55] references a set of data quality problems
for character data and links the data quality domain to the
issues in the robustness testing domain, where some of the
issues used to test systems for robustness are similar to
some data quality problems (e.g., null values, values out of
range). In [56] the authors identify and map data quality
problems into a selected set of dimensions, which also includes
uniqueness, a dimension not considered for the mapping in
this work. Finally, the work in [18] focuses on time-oriented
dimensions and problems and summarizes the key research on
data quality problems carried out by different authors, detailing
the classification used by each author.

The way dirty data is classified varies from author to
author, and this includes the approach used for performing
classification. Despite this, the research analyzed shares similar
findings and discuss common problems, which affect data
quality according to the dimensions defined in Section III. In
Table III we map each problem to the identified dimensions,
using the structure proposed in [19], and thus showing the
relationship between data quality problems and dimensions.
The problems present in the table have been collected from
the works analyzed in this paper, some have been merged
(e.g., missing values) in a single line for clarity, other have
been omitted as they only differ in the cause of the problem
(e.g., integrity problems problems due to the lack of transaction
isolation [20]), are too specific or defined in terms of its
cause (e.g., mutually inconsistent data due the an action
not being triggered [20]), or lack some consensus among
researchers (e.g., self-relationship circularity presented only in
[21]). Each filled circle indicates that the occurrence of this
data quality problem affects the related dimension. Each data
quality problem is discussed in the following paragraphs.

Considering a single source of information, at the instance
level, missing data [20], [54], [53] is a quite common problem,
although it can correspond to an empty value, or to a dummy
value indicating that there is no data. This issue hinders the
completeness dimension, since the data is not present. In
addition, accuracy is impaired, because the value is not correct.
Incorrect data [20] occurs when a value does not conform to
the real entity (e.g., an age of 17 instead of 18). The data is
wrong and thus not accurate (see Section III). A misspelling
[19] (e.g., ’Adnrew’ instead of ’Andrew’) also represents an
accuracy problem.

A data problem may occur when the data can be interpreted
in more than one way, i.e. the data is ambiguous [20]. It can
refer to cryptic values (e.g., a ’Level’ attribute holding the *A’
value) [19], abbreviations (e.g., J. Locke can be interpreted
as John or Joseph Locke) and incomplete context [20] (e.g.,
Coimbra can stand for the city in Brazil or the city in Portugal).
It impairs accuracy, but it also adds as an accessibility problem,
as it diminishes the degree to which the data can be accessed
(i.e., it has to be interpreted) and it is a representation problem.
Extraneous data is a data problem where additional data is
represented, for instance the use of the title and name in a
name field (e.g., John Smith, Director). This problem hinders
the access to the required data, because unnecessary data is

TABLE III. DATA QUALITY PROBLEMS MAPPED INTO DIMENSIONS.

Problem types

Data quality problems

Source Level

Accessibility
Consistency
Currency

« |Completeness

Missing data
Incorrect data
Misspellings
Ambiguous data
Instance |Extraneous data . .
Outdated temporal data . .
Misfielded values B ERERE
Incorrect references .
Duplicates .
Domain violation .
Violation of functional dependency .
Schema |Wrong data type .]
Referential integrity violation o | o | (e
Uniqueness violation .

e| o| o| o|Accuracy

Single

Structural conflicts .
Different word orderings .
Different aggregation levels o [
Temporal mismatch .
Different units

Different representations
Use of synonyms

Use of homonyms

Use of special characters
Different encoding formats

Instance

Multiple

Schema

also present. In addition, it poses a clear format issue, thus
affecting the consistency dimension.

Data may be valid for a time point or interval, but may also
become obsolete (outdated temporal data) [20]. This problem
leads to violation of the currency (i.e., the data is not of the
right age) and accuracy (i.e., the data is not correct anymore)
dimensions. Misfielded values [19] occur when the data values
are stored in the wrong place (e.g., the first name of a person
stored in the last name placeholder). Thus the problem affects
accessibility (it is not in the right place), accuracy (the correct
place for the data will be empty), completeness as the data is
not present where expected, and consistency as the object may
not be compatible with others.

Incorrect references occur when, for instance, an employee
is associated with the wrong department, which damages
accuracy as the data is no longer correct. Duplicates [19],
[53] occur when the same data appears repeated one or more
times (e.g., two entries for the same client) without violating
uniqueness (e.g., the identifier in use is not repeated). This
makes the access to the data more difficult, as navigation
through the data will be required.

Domain violation is a typical single source, schema level
problem [21], for which similar terms exist in the literature
(e.g., illegal values [19], wrong categorical data [20]). Violation
of functional dependency [53] is a different issue, which occurs
when some functional dependency between objects is broken.
For instance, Age and Birthdate are dependent values which
can contradict themselves if one is wrong. We find accuracy
problems in both cases (domain violation and violation of
functional dependency), as the information is not correct.

A Wrong data type [20] (also found in the literature
associated with syntax violation [21]) is the violation of a
data type constraint. An example can be a date represented

as a timestamp (for which we do not have time information).
It is an accessibility issue, as it is a representation problem,
that makes the data access more difficult. Consistency is also
impaired as the format differences can cause incompatibilities
with other similar objects.

A Uniqueness [21] constraint specifies that a given object
property is unique and not null (e.g., a passport number).
Thus, when violated, accuracy is impaired, as the data is not
correct. Referential integrity violation [20] occurs when one
entity has no correspondence in another entity (e.g., a bank
account which has no associated client), which clearly violates
the accuracy dimension, but also impairs accessibility as we
do not have access to the correct data; completeness, as data is
missing from the storage; and consistency as the missing data
may lead to incompatibilities with other objects.

The problems presented with single source origin are
intensified when data comes from multiple sources, where the
data in the sources may be represented differently, overlap or
contradict. This results in a large degree of heterogeneity be-
tween data models, schema designs and the actual data [19]. At
the multi-source single-instance level we can find Structural
conflicts [19], which refer to different representations of the
same object in different sources. This kind of problems have
impact in the accessibility of the data, as the representational
issue impairs the access to the data, and also in consistency as
the different formats cause incompatibility problems.

Different word orderings [20] occur when the expected
ordering of data is not met (e.g., name and title, instead of
title and name). This data problem violates the consistency and
accessibility of data, by breaking the pattern and increasing the
effort to access the data. When data is retrieved from different
sources and correspond to different aggregation levels (i.e.,
entries per week vs entries per day) also impair accessibility
and consistency, but also accuracy as the data will be wrong.

Temporal mismatch [20] occur when the sources of data
refer to different points in time. The data is not accurate
(it is wrong in terms of time) and obviously damages the
currency dimension. The use of different units (e.g., feet
instead of meters) impairs accessibility as it is a representation
issue and also consistency as the different format creates
incompatibilities with other objects. The same happens with
different representations of a value (e.g., gender represented
as M/F or Male/Female).

The problems originating from multiple sources at the
schema level include homonyms [21] that occur when the
same name is used for different objects. The use of homonyms
creates difficulties in accessing the data. The same happens
with the use of synonyms, where different names are used for
the same object, and also with the use of special characters
(e.g., a, §, 00, ...). Different encoding formats [19] also harm the
accessibility of data, as the representation may not be suitable,
but in this case consistency is impaired as the different format
causes incompatibilities between objects.

As we have seen in Section III, the terms and definitions
found concerning dirty data are also diverse, but not as hetero-
geneous as what we observed for the definition of dimensions.
We observed a few different perspectives mainly related with
the grouping of the problems, and not so much regarding the
problems themselves. A different aspect is that the number

of works found defining dirty data issues is much smaller,
suggesting it might be a more restricted problem. The advent
of Big Data opens space for future research on this topic.

V. CONCLUSION

Data quality management is an important area of research
and investment in information technology, supported by the
potentially high impact of poor data in organizations. To
measure the quality of data, identifying dimensions is an
essential step, as each data quality problem potentially affects
different dimensions. In this paper we surveyed the research
area of data quality classification, with particular emphasis on
the definition of data quality dimensions and on the classifi-
cation of poor data problems (i.e., dirty data). We observed a
large diversity of structures and terms used in the literature,
sometimes designating the same aspects, and for which this
kind of knowledge base is of utmost importance. We identified
a frequently cited set of dimensions, gathered data quality
problems, and mapped problems to the top cited dimensions.
Open research lines include the effective standardization of
dimensions, problems and mapping (including their structure
and relations) and data quality classification and dirty data
definition for Big Data systems, in which research appears to
be in its initial steps.

ACKNOWLEDGMENTS

This work has been partially supported by the projects
CErtification of CRItical Systems (CECRIS), Marie Curie
Industry-Academia Partnerships and Pathways (IAPP) number
324334; and DEsign, Verification and VAlidation of large-
scale, dynamic Service SystEmS (DEVASSES), Marie Curie
International Research Staff Exchange Scheme (IRSES) num-
ber 612569, both within the context of the EU Seventh
Framework Programme (FP7).

REFERENCES

[1] “Data Definition in the Cambridge English Dictionary,” 2015. [Online].
Available: http://dictionary.cambridge.org/dictionary/english/data

[2] H. Baldwin, ‘“Drilling Into the Value of Data” [On-
line]. Available: http://www.forbes.com/sites/howardbaldwin/2015/03/
23/drilling-into-the- value-of-data/

[3] C. W. Fisher and B. R. Kingma, “Criticality of data quality as exempli-
fied in two disasters,” Information & Management, vol. 39, no. 2, pp.
109-116, 2001.

[4] M. Ge and M. Helfert, “A review of information quality re-
search—develop a research agenda,” in International Conference on
Information Quality 2007, 2007.

[5] C. Batini, M. Palmonari, and G. Viscusi, “Opening the closed world: A
survey of information quality research in the wild,” in The Philosophy
of Information Quality. Springer International Publishing, 2014, pp.
43-73.

[6] L. Sebastian-Coleman, Measuring data quality for ongoing improve-
ment: a data quality assessment framework. Newnes, 2012.

[71 D. M. Strong, Y. W. Lee, and R. Y. Wang, “Data quality in context,”
Communications of the ACM, vol. 40, no. 5, pp. 103-110, 1997.

[8] ISO/IEC, “Software engineering — Software product Quality Require-
ments and Evaluation (SQuaRE) — Data quality model,” ISO/IEC, Tech.
Rep. ISO/IEC 25012, 2008.

[9] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, 1st ed. Springer Publishing Company, 2010.

[10] “Swebok v3 guide ieee computer society.” [Online]. Available:
http://www.computer.org/web/swebok/v3-guide

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

T. C. Redman, “The impact of poor data quality on the typical
enterprise,” Communications of the ACM, vol. 41, no. 2, pp. 79-82,
1998.

L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data quality assessment,”
Communications of the ACM, vol. 45, no. 4, pp. 211-218, 2002.

D. Loshin, “Evaluating the business impacts of poor data quality,”
Knowledge Integrity Incorporated, Business Intelligence Solutions,
Tech. Rep., January 2011.

E. D. Quality, “The data quality benchmark report,” Experian Data
Quality, Tech. Rep., January 2015.

R. Y. Wang and D. M. Strong, “Beyond accuracy: What data quality
means to data consumers,” Journal of Management Information Sys-
tems, pp. 5-33, 1996.

M. Scannapieco, P. Missier, and C. Batini, “Data quality at a glance,”
Datenbank-Spektrum, vol. 14, pp. 6-14, 2005.

D. Loshin, The practitioner’s guide to data quality improvement.
Elsevier, 2011.

T. Gschwandtner, J. Girtner, W. Aigner, and S. Miksch, “A Taxonomy
of Dirty Time-Oriented Data,” in Multidisciplinary Research and Prac-
tice for Information Systems, ser. Lecture Notes in Computer Science,
G. Quirchmayr, J. Basl, I. You, L. Xu, and E. Weippl, Eds. Springer
Berlin Heidelberg, 2012, no. 7465, pp. 58-72.

E. Rahm and H. H. Do, “Data cleaning: Problems and current ap-
proaches,” IEEE Data Eng. Bull., vol. 23, no. 4, pp. 3—13, 2000.

W. Kim, B.-J. Choi, E.-K. Hong, S.-K. Kim, and D. Lee, “A taxonomy
of dirty data,” Data mining and knowledge discovery, vol. 7, no. 1, pp.
81-99, 2003.

P. Oliveira, F. Rodrigues, and P. R. Henriques, “A formal definition of
data quality problems,” in IQ, 2005.

A. Giannoccaro, G. G. Shanks, and P. Darke, “Stakeholder perceptions
of data quality in a data warehouse environment,” Australian Computer
Journal, vol. 31, no. 4, pp. 110-116, 1999.

Gartner, “Magic Quadrant for Data Quality Tools,” 2014.
[Online]. Available: http://www.gartner.com/technology/reprints.do?id=
1-259U63Qé&ct=141126&st=sb

R. Karel, “The ’All In’ Costs of Poor Data Quality,” Jul. 2015.
[Online]. Available: http://www.computerworld.com/article/2949323/
data-analytics/the-all-in-costs- of- poor-data-quality.html

H. Tibbetts, “Fixing a $3 Trillion Dirty Data Prob-
lem with "Crowd Computing" - Integration on the
Edge: Data Explosion & Next-Gen Integration”” [On-
line]. Available: http://www.ebizq.net/blogs/integrationedge/2012/01/

fixing-a-3-trillion-dirty-data- problem-with-crowd-computing.php
P. Cykana, A. Paul, and M. Stern, “Dod guidelines on data quality

management,” in Conference on Information Quality, 1996, pp. 154—
171.

C. Batini, D. Barone, M. Mastrella, A. Maurino, and C. Ruffini,
“A framework and a methodology for data quality assessment and
monitoring,” in ICIQ, 2007, pp. 333-346.

M. Ge and M. Helfert, “Cost and Value Management for Data Quality,”
in Handbook of Data Quality, S. Sadiq, Ed. Springer Berlin Heidelberg,
2013, pp. 75-92.

M. Eppler and M. Helfert, “A classification and analysis of data quality
costs,” in International Conference on Information Quality, 2004.

M. Bobrowski, M. Marré, and D. Yankelevich, “Measuring data quality,”
Universidad de Buenos Aires. Report, pp. 99-002, 1999.

Y. Wand and R. Y. Wang, “Anchoring data quality dimensions in
ontological foundations,” Communications of the ACM, vol. 39, no. 11,
pp. 86-95, 1996.

T. C. Redman and A. Blanton, Data Quality for the Information Age.
Artech House, Inc., 1997.

P. E. Larry, “Improving data warehouse and business information
quality: methods for reducing costs and increasing profits,” 1999.

F. Naumann and C. Rolker, “Assessment methods for information
quality criteria,” in Conference on Information Quality, 2000.

B. K. Kahn, D. M. Strong, and R. Y. Wang, “Information quality

benchmarks: Product and service performance,” Communications of the
ACM, vol. 45, no. 4, pp. 184-192, 2002.

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]1

[55]

[56]

D. Loshin, Enterprise knowledge management: The data quality ap-
proach. Morgan Kaufmann, 2001.

J. Long and C. Seko, “A new method for database data quality
evaluation at the canadian institute for health information (cihi),” in
Conference on Information Quality, 2002, pp. 238-250.

Y. W. Lee, D. M. Strong, B. K. Kahn, and R. Y. Wang, “AIMQ:
a methodology for information quality assessment,” Information &
management, vol. 40, no. 2, pp. 133-146, 2002.

M. Bovee, R. P. Srivastava, and B. Mak, “A conceptual framework
and belief-function approach to assessing overall information quality,”
International Journal of Intelligent Systems, vol. 18, no. 1, pp. 51-74,
Jan. 2003.

B. Stvilia, L. Gasser, M. B. Twidale, and L. C. Smith, “A framework
for information quality assessment,” Journal of the American Society
for Information Science & Technology, vol. 58, no. 12, pp. 1720-1733,
Oct. 2007.

T. C. Redman, Data quality: the field guide. Digital Press, 2001.

E. Gardyn, “A data quality handbook for a data warehouse,” in Con-
ference on Information Quality, 1997, pp. 267-290.

C. Moraga, M. Moraga, A. Caro, and C. Calero, “Spdgm: Square-
aligned portal data quality model,” in Ninth International Conference
on Quality Software, QSIC, 2009, pp. 24-25.

C. Batini, C. Cappiello, C. Francalanci, and A. Maurino, “Methodolo-
gies for Data Quality Assessment and Improvement,” ACM Comput.
Surv., vol. 41, no. 3, pp. 16:1-16:52, Jul. 2009.

M. Schaal, B. Smyth, R. M. Mueller, and R. MacLean, “Information
Quality Dimensions for the Social Web,” in Proceedings of the Inter-
national Conference on Management of Emergent Digital EcoSystems,
ser. MEDES ’12. New York, NY, USA: ACM, 2012, pp. 53-58.

H. Huang, B. Stvilia, C. Jorgensen, and H. W. Bass, “Prioritization of
data quality dimensions and skills requirements in genome annotation
work,” Journal of the American Society for Information Science and
Technology, vol. 63, no. 1, pp. 195-207, Jan. 2012.

S. T. Liaw, A. Rahimi, P. Ray, J. Taggart, S. Dennis, S. de Lusignan,
B. Jalaludin, A. E. T. Yeo, and A. Talaei-Khoei, “Towards an ontology
for data quality in integrated chronic disease management: A realist
review of the literature,” International Journal of Medical Informatics,
vol. 82, no. 1, pp. 10-24, Jan. 2013.

UNECE/HLG, “A suggested Framework for the Quality of Big Data:
Deliverables of the UNECE Big Data Quality Task Team,” UN-
ECE/HLG, Project Deliverable Big Data Quality Framework, 2014.

I. Caballero, M. Serrano, and M. Piattini, “A Data Quality in Use
Model for Big Data,” in Advances in Conceptual Modeling, ser. Lecture
Notes in Computer Science, M. Indulska and S. Purao, Eds. Springer
International Publishing, Oct. 2014, no. 8823, pp. 65-74.

R. S. Mans, W. M. P. v. d. Aalst, and R. J. B. Vanwersch, “Data
Quality Issues,” in Process Mining in Healthcare, ser. SpringerBriefs
in Business Process Management. Springer International Publishing,
2015, pp. 79-88.

B. T. Hazen, C. A. Boone, J. D. Ezell, and L. A. Jones-Farmer, “Data
quality for data science, predictive analytics, and big data in supply
chain management: An introduction to the problem and suggestions
for research and applications,” International Journal of Production
Economics, vol. 154, pp. 72-80, Aug. 2014.

K. Sha and S. Zeadally, “Data Quality Challenges in Cyber-Physical
Systems,” J. Data and Information Quality, vol. 6, no. 2-3, pp. 8:1—
8:4, Jun. 2015.

H. Miiller and J.-C. Freytag, Problems, methods, and challenges in com-
prehensive data cleansing. Humboldt-Universitat, Berlin, Germany,
2005.

J. Barateiro and H. Galhardas, “A survey of data quality tools,”
Datenbank-Spektrum, vol. 14, no. 15-21, p. 48, 2005.

N. Ivaki, N. Laranjeiro, and M. Vieira, “Towards Evaluating the Impact
of Data Quality on Service Applications,” in Workshop on Reliability
and Security Data Analysis (RSDA 2013) co-located with The 43rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2013). Budapest, Hungary: IEEE Computer
Society, Jun. 2013.

L. Li, T. Peng, and J. Kennedy, “A rule based taxonomy of dirty data,”
GSTF International Journal on Computing, vol. 1, no. 2, 2011.

106

D Conference paper

Below is provided the conference paper that was submitted and accepted in
Latin-American Symposium on Dependable Computing (LADC 2016).

107

\DRAFT}

Testing Web Applications Using Poor Quality Data

Practical Experience Report

Nuno Laranjeiro’, Seyma Nur Soydemir’, Jorge Bernardino”'

"CISUC, Department of Informatics Engineering
University of Coimbra, Portugal
cnl@dei.uc.pt, seyma@student.dei.uc.pt
TPolytechnic of Coimbra, Portugal

jorge@isec.pt

Abstract—Web applications are nowadays being used to
support enterprise-level business operations and usually rely on
back-end databases to deliver service to clients. Research and
industry reports indicate the huge impact the quality of the data
can have on businesses, especially when applications are not
prepared for handling low quality data. In fact, even in widely
tested and used applications, the presence of poor data can
sometimes result in severe failures and bring in disastrous
consequences for clients and providers, including financial or
reputation losses. In this paper, we present an approach based on
the runtime injection of poor quality data on the database
interface used by web applications, which allows understanding
how vulnerable the application is to the presence of poor quality
data. Results indicate that the approach can be easily used to
disclose critical problems in web applications and supporting
middleware, helping developers in building more reliable services.

Keywords—testing; web applications; poor quality data; data
quality problems; object-relational mapping; JDBC driver.

I. INTRODUCTION

Web applications are nowadays being used as the interface
of many businesses to the outside world, providing service that
is frequently supported by back-end databases. In this type of
environments, a failure in the web application can impair the
whole business potentially bringing in huge losses for providers.
These losses can simply refer to lost business transactions, but
can also refer to other types of financial losses (e.g., time to
repair systems, human resources assisting system recovery),
including reputation losses [1].

The current trend of fast-paced development of software
leads developers to focus on functionality, and non-functional
aspects, such as application robustness, are often disregarded
[2]. Industry reports show that the way applications handle data
is an aspect that is many times disregarded, i.e., developers many
times assume that the data being handled by the application is
correct, which is not always the case. In fact, severe system
failures and/or huge financial losses caused by the presence of
poor quality data have been widely reported in the industry [1].
This kind of problem is relatively well-known in the robustness
testing domain, where tests using invalid inputs applied on
public interfaces of many different systems have been used with
great success [2]-[4]. However, there is still some missing link
between the data quality community and the software
engineering research and practitioner communities. This

missing link prevents developers from creating applications that
are prepared to resist to the presence of poor data. Although
there are numerous tools for data cleaning and data quality
assessment, to the best of our knowledge, there is currently no
practical approach or tool that developers can use to test the
behavior of applications in the presence of poor quality data.

In this paper, we propose an easy-to-use and low-
intrusiveness approach that is based on the injection of poor
quality data at the application-storage interface. In our approach
we inject data on returning result sets from the database and the
injected data is based on typical data quality problems, which
were identified based on a large survey of the state of the art in
dirty data [S]. In short, we replace valid data coming from the
database with poor data, that should be properly handled by the
application, and observe the application behavior. As we will
see, tests can be performed automatically and, if needed, can
also be tuned to fit the specificities of the application being
tested. For the time being, the analysis of the tests results is
carried out in a manual way.

The approach was used to test an open-source and widely
used application for commerce and business, which is used
worldwide and which we designate by ERPx. We were able to
disclose several bugs not only in the code being tested; but also
issues in the Object Relational Mapping (ORM) framework used
by ERPx (a mainstream middleware framework used by
applications to satisfy persistency requirements); and also in the
JDBC driver used by the application. Results show that our
approach and tool can be used to not only disclose problems
related with poor data, at different software levels, but also as an
informative means to correct and build more reliable software.
The main contributions of this paper are the following:

* A test-based approach for understanding the behavior of web
applications in presence of poor quality data.

* A free and open-source tool, named Poor Data Injector [6],
that implements the approach and can be easily used by
developers and providers to test their applications.

The outline of this paper is as follows. The next section
presents the related work on poor quality data and testing.
Section III presents the approach for testing web applications in
the presence of poor data. Section IV presents a case study
carried out using our tool and discusses the results. Section V
concludes this paper.

II. BACKGROUND AND RELATED WORK

Data quality, sometimes referred to as information quality
[7], has been defined in diverse ways in the literature [8]. The
ISO/TEC 25012 standard defines it as "the degree to which a set
of characteristics of data fulfills requirements"[9]. Examples of
such characteristics include completeness, accuracy, or
consistency [5], whereas the requirements express the needs and
constraints that contribute to the solution of some problem [10].

Industry reports and previous research indicate the severe
damage caused by the presence of poor quality data in diverse
contexts [7], [11]-[13], with the Gartner Group reporting bad
data as the main cause of failure in CRM systems [14]. Data
volume growth can also intensify its management complexity,
which can in turn result in a higher probability of generating
poor data. The fast-changing dynamics of the Web environment
can easily lead to the degeneration of customer data (for instance
due to the introduction of new software components holding
bugs) and this has actually been observed in the field [14].

Although the analysis and improvement of data quality has
gathered plenty of attention (e.g., to perform data cleaning
operations) from researchers and practitioners [12], [15]-[19],
and despite the well-known impact of poor data in business
critical systems [20], understanding how well an application is
prepared to handle the inevitable appearance of poor data has
been largely overlooked. For this purpose, the identification of
representative data quality problems and how they should be
integrated in test cases is vital. In [5] we researched the state of
the art in data quality classification and data quality problems
precisely to support the creation of such test cases. Regarding
the definition of the test approach, the closest studies for
understanding application behavior in presence of incorrect
inputs, although from a different perspective, come from the
robustness testing area [2]-[4].

Robustness testing allows to understand the behavior of a
system in the presence of invalid input or stressful conditions
[3]. The goal of these tests is to stimulate the system being tested
so that possible existing internal errors are triggered and this
allows developers to solve or wrap the identified problems. This
technique can be used to differentiate systems according to the
number and severity of the problems uncovered and has been
mostly applied to the public interface of several systems, from a
black-box perspective [3], [4]. The interaction points between
different independent systems has rarely been used in robustness
testing research, and to the best of our knowledge typical poor
data quality issues have not yet been considered.

Ballista [3] is a tool for testing robustness that combines
acceptable and exceptional values on calls to kernel functions of
operating systems. The values used in each call are randomly
extracted from a specific set of predefined tests, that apply to the
particular data type involved in the call. The results of the tests
are used to classify each operating system in terms of its
robustness, according to a predefined scale (the CRASH scale)
that distinguishes several failure modes. MAFALDA [4] is
another robustness testing tool that allows characterizing the
behavior of microkernels in the presence of faults. Closer to the
Web domain, in previous work we defined an approach to assess
the behavior of web services in the presence of tampered SOAP
messages [2]. It consists of a set of robustness tests based on

\DRAFT}

invalid web services call parameters. The services are classified
according to the failures observed during the execution of the
tests and using an adaptation of the CRASH scale [3].

The impact of invalid data on the reliability of web services
has been the object of research in [21]. The approach includes
building an architecture view of the system being tested;
measuring the data quality or validity with a tool; measuring the
reliability of the data and software components; creating a state
machine using the system architecture as basis; and computing
the overall system reliability. The invalid types used in the study
are limited to seven already present issues. There is no use of
issues that might affect the system in the future, so the approach
is limited to reliability estimation based on identified and
already present issues. In our own previous work [22], we
defined a preliminary view for a testing approach using dirty
data. In this paper we define the complete approach using a
comprehensive set of data quality problems [5] and now
demonstrate the utility of the approach in a real-world scenario.

III. TESTING APPLICATIONS USING POOR DATA INJECTION

In this section we explain our approach to test applications
in the presence of dirty data. We first overview the core
mechanism involved in our approach, then explain the main
phases of the approach, and finally describe in detail the
components used to implement the approach.

A. Injecting poor data

Our approach is based on the presence of an instrumented
data access driver (e.g., a JDBC driver) that we place between
the application, which we generally designate as a service
application, and the data storage (e.g., a database management
system), which has the exact same interface of a regular data
access driver. We emphasize that no changes to the service code,
database management system, or database are required. The core
concept is that the driver is able to intercept all calls to the
database management system and it simulates the presence of
poor quality data, by replacing the original data coming from the
database, with poor data. A simplified view of this scenario is
described in Figure 1.

Q Request
i Response
———
Client
Application

Data Data
Query -—
Poor
Quality
REM™
Set

Result
set

Database
Server

Data Access
Driver

Application

Fig. 1. The general setup required for testing using poor quality data.

Using the scenario depicted in Figure 1 as basis, the goal is
to understand if the application code can handle the poor data
coming from the database in a robust way, or if, on the other
hand, the service is poorly built and cannot tolerate the presence
of such data (e.g., it becomes unavailable or throws unexpected
exceptions when handling the data). This core mechanism is
used in a set of distinct phases in our approach, explained in the
next section. Despite the multiple phases, using the mechanism
is very easy, essentially requiring a simple replacement of the
data access driver with our instrumented version.

Note that any application should be able to handle poor data
and this is especially true for applications that are deployed in
business-critical environments. The presence of poor data in a
storage system is known to increase with the ageing of
applications, and in the currently dynamic Web environment,
where applications change very often, it is likely that residual
bugs, user misuse, manipulation of data by other services, or
even malicious accesses to data cause the appearance of such
problems in the storage.

In practice, and in the case of our prototype testing tool, the
driver involved is a regular JDBC driver, which is instrumented
to perform all the necessary steps. Thus, we do not modify the
driver code directly, we rely on the external API and on code
instrumentation packages (i.e., Aspect]) to intercept calls to
well-known methods that are used by the application to access
the data [23], [24]. By purely relying on the API to perform the
Aspect-Oriented instrumentation, we can apply our approach to
any JDBC driver. An important aspect is that this specific setup
is an application of the overall approach, which is generic as the
concepts involved are present in other mainstream languages.
Although we have used a Java-based scenario, a similar scenario
could be used, for instance, with Python, or C# .NET.

B. Approach execution phases

Our approach involves the sequential execution of the
following phases, which are explained in the next paragraphs:

1) Warm-up: Valid client requests are issued to the web
application and the goal is simply to warm-up the
application and infrastructure to resemble typical
operational conditions;

2) Injection: Valid requests are sent to the web application and
poor data inputs are injected (i.e., data mutations are
applied) during operation execution, whenever a data
access point is carried out by the application;

3) Analysis: The behavior of the service is analyzed (e.g., by
examining the responses).

During the first two phases, we assume the presence of some
workload generation client that places valid requests on the
system. These requests are then used as basis to perform
different functions according to the phase being executed. All
requests sent to the service and their responses should be logged.
The same happens with the operation of the data access driver,
which should also log any data mutation applied (for debugging
purposes). The intention is that, upon service failure, the user
can understand which sequence of requests (and mutations)
caused the failure and, if there is the option to restore the system
state, replay requests and compare responses. Although what is
really important is that the developer is able to understand the
cause of the failure, this kind of option is advantageous for
debugging activities, where a fix must be introduced and tests
must be rerun, to verify the correct behavior of the system.

During the warm-up phase the instrumented data access
driver performs like a regular driver. The instrumented data
access driver intercepts all data access calls, but does not inject
any mutated data during this phase, the goal is simply to let the
system warm-up, to better resemble typical working conditions.

{DRAFT}

The injection phase is central to the approach. During this
phase we replace genuine data coming from the database with
data that, for the particular data type and value being accessed,
represents a poor data quality problem. In order to define which
types of problems should be included in our testing approach, in
previous work we surveyed the state of the art in data quality
classification and identified representative data quality problems
(e.g., misspellings, abbreviations, imprecisions, extraneous
data) associated with common data types (e.g., text, numbers,
dates) [5]. The goal was precisely to support the idea brought in
this paper: that we can design and use testing with poor quality
data to effectively disclose software bugs, or at least bad
programming practices. Thus, in the present paper we use such
data quality problems, in particular the ones applicable to single
values, to build a fault model that is used during testing. Specific
combinations of multiple values to represent more complex
issues is left for future work and out of the scope of this paper.
As the total number of data quality problems is quite large, we
made the model of the identified problems available at [6] and
present a subset in Table I, for clarity.

The injection of mutated data can be done once per service
operation execution (i.e., per each client call), as the goal is to
understand the impact of the faulty data in the execution of that
particular operation. However, there is also the option to inject
any given number of faults during the execution of a service
operation (which we have followed in our experiments). Even
though this latter option may create difficulties in understanding
the exact causes of failures (as multiple faults are involved), it is
often the typical choice in the robustness testing domain due to
its simplicity and ability to disclose problems. In fact, we do not
consider any particular state of the application (either than the
one led to by the user) and in this sense the tests resemble
traditional robustness tests.

In general, all public operations should also be tested, but
this depends on the goals of the tester (which may be simply
interested in testing a few cases). For each operation to be tested,
each of the data access points present in the code should also be
tested in this phase. This naturally depends on the client
workload providing enough coverage and dealing with aspect is
something out of the scope of this paper, which we intend to
target in future work. In some applications, data access points
may be shared by different operations. Even in these cases, it is

TABLE L. PARTIAL EXAMPLE OF POOR DATA QUALITY FAULTS

Data type Issue description

Replace by null

Replace by empty

Replace a word by a misspelled word (Dictionary-based) or, if
no match, use a random single edit operation (insertion;
deletion; substitution of a single character; or transposition of
two adjacent characters) over a randomly selected word

Add whitespace in a leading or trailing position, or between
words (random choice)

Add extraneous data in leading, trailing, or random position
(random choice)

String

Add one numeric character

Set to zero

Remove one random numeric character
Flip sign

Integer

desirable to exercise the different public operations, as we are
passing in different areas of the code and might disclose
different problems if bugs are present. Each data access point
should be tested with all predefined poor data faults. The
desirable execution profile of the injection phase, which we just
described, is represented in Figure 2.

| Operation0 | Operationl | |
| | | |

Data access Data access
| point0 |
| |

Operation N

Data access
pointl | | point N
| |

| FaultO | Faultl | | FaultN
| I I |

Fig. 2. Basic execution profile of the tests.

The injection phase could be automatically configured to
stop when a given percentage of data access points has been
covered by the tests (provided that such information is collected
during the warm-up phase). In the case of this preliminary work,
we manually determine that a test should stop when the user
action as concluded (with a response being delivered to the user)
or when a failure is detected.

The last phase is the analysis of the results of the tests, which
involves classifying any observed failures (e.g., using a well-
known failure mode scale, such as the CRASH scale) and also
the number, location, and origin of the problems disclosed
during the tests. This latter step requires access to the source
code to understand exactly if the output shown by the tests is a
software bug, what is the exact location in the code (as a mutated
value injected at a specific point in the code may only be
improperly used later in the code) and why it is a problem (so
that it can be fixed). If the tester wants to classify the service
behavior it is possible to use the CRASH scale, which classifies
the severity of the failures observed in five levels, Catastrophic,
Restart, Abort, Silent, or Hindering [3]. This step is not
mandatory, and is only necessary if there is, for instance, the
need for comparing systems or prioritize bug fixing.

C. Components and Setup

Figure 3 presents the key components involved in our
approach and their interactions in a services environment. The
elements involved in a typical services interaction are
represented in gray boxes, in light brown we have the
components that respect to our approach. All components in
solid lines are mandatory, whereas the dashed components are
optional (their use depends on the application being tested and
on the tester requirements). As mentioned, in the case of our
prototype, applying and deploying our mechanism requires no
change to existing source code. The following paragraphs
explain the components and their main functions.

The component that plays a key role in implementing our
approach is named AOP Wrapper as it is essentially a data
access driver (in our case, a JDBC driver) that has been wrapped
to include our injection logic. Thus, the driver byte code is
instrumented to be able to inject poor data inputs in returning
calls to the storage. This procedure simply involves replacing
the original value retrieved from the database by a poor data

\DRAFT}

value, retrieved from our list of data quality problems (please
refer to Table I).

The HTTP Filter is a component that is executed at two
moments: 1) before processing each client request; 2) after the
client has been processed (and immediately before the response
is delivered to the client). Thus, in the case of a typical web
application, this can simply be an HTTP Filter, which the major
web serving platforms allow configuring (any Java EE platform
allows), or any other component that is executed the two
moments referred (e.g. an HTTP proxy). In the case of our
prototype we used an HTTP Filter for this purpose.

The HTTP Filter also allows a fine-grain control over the
tests. In particular, it marks the beginning and end of a client
request (which in general maps to the execution of a particular
user operation) and this allows us to understand that a particular
data access point is being accessed as part of a given user
request. It also allows the driver to understand if it has already
mutated a value for this client request or not. Thus, to allow
easier debugging we may execute a single poor data injection
per client request, even if that request involves multiple data
accesses. Overtime, we will eventually cover all data accesses,
as long as a workload with proper coverage is provided. As a
final note, this filter allows logging server responses in a
centralized manner, so that we can later analyze the behavior of
the application being tested in an easy manner.

In the case of our prototype [6], the server-side components
are all assembled in a single unit (i.e., one jar file) that
implements our approach, which will replace the original data
access driver (e.g., a JDBC driver). This jar file includes the
filter, which can also be used to initialize and load any specific
configuration for the tests. To use our testing approach we
simply need to change the original data access driver with our
own and it will be ready to perform blind injection of poor data
for any java web application that uses PostgreSQL as data access

Clie

ti
T

[Web Application]

Ty

! ORM API !

1y

:r ORM Implementation i

1

[DataAccessAPI |

t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
v

y

Data Access Driver

[Database Server]

!

Fig. 3. Detailed view of the components involved in the tests.

driver. Changing our tool to use another driver (e.g., MariaDB,
Oracle) is simply a matter of writing the names of the required
dependencies in our maven project descriptor file and
recompiling and packaging using mvn package, no further
implementation or configuration is needed.

IV. CASE STUDY

In this section we describe a case study carried out to
illustrate the applicability of our approach. We explain the setup
used, the tests executed, and discuss the results.

A. Experimental Setup

We selected a well-known and widely used commercial open
source ERP business solution for enterprises. It allows
companies to manage their entire business, and supports typical
processes such as sales, manufacturing, or finance, just to name
a few. As we cannot disclose the name of the tool, we designate
it ERPx. ERPx requires a database which we chose to be
PostgreSQL 9.3, and a server for deployment for which we
chose the well-known Apache Tomcat 7.0.68. As we intended
to repeat the tests at least once, besides a regular browser, we
recorded and later replayed user actions on the browser (when
operating ERPx) using SikuliX 1.1.0.

B. Selecting and Executing the Test Cases

ERPx is an application of huge dimensions and due to this,
we selected a few test cases for testing. We considered the
CRUD model [14] for performing this selection, so that we
could have operations with different profiles: CREATE, READ,
UPDATE and DELETE. Note that all test cases selected are
quite complex and also perform read operations, but we
classified them according to their main purpose. Thus, the test
cases are mostly composed of read operations. The goal was to
obtain a good mix between test cases that potentially have
different data access patterns or are built in a different way. In
practice, any test case will do as long as it accesses the database.
Table II presents the operations selected for testing, their
mapping to the CRUD model, and a reference to the failures
uncovered in each operation during testing. These failures are
discussed in the next section.

C. Results and Discussion

As shown in Table II, during the experiments we were able
to uncover failures in all operations tested. As discussed in the
next paragraphs, the disclosed issues were actually found at
three main locations of the system being tested: 1) the application
itself; ii) in the very popular Object-Relational Mapping
framework used by the system; and iii) in the also widely used
PostgreSQL driver code.

Table III presents an excerpt of the issues disclosed during
the tests. We were able to disclose further issues, but due to
length restrictions in this paper we opted discuss only a set of
problems that manifested in different forms and at different
structural locations of the system (as noticed in Table IIT). Note
also that all of these examples are problematic, even those where
no message was shown to the user, as the tests eventually led the
application to become unusable.

Failure A mostly occurred whenever the data involved was
set to null, however, in the case of the example, a mutated

{DRAFT}

TABLE II. RESULTS OVERVIEW
Operation
Name Type (CRUD) Failure Reference

Login R A,B,C,D
Create Organization C A,C,D
Create a new User C A,B,C,D
Create a new Role C A,B,C,D
Create Product C A,B,C,D,E
Delete Product D A,B,C,D
Update Product U A,B,C,D
Export Product Categories R A,B,D

variable value (variable referencelD) causes an access to the
database to return null, and this null value is then used without
being checked. This results in a NullPointerException being
thrown (a check would need to be made to prevent the
exception). In the end, this exception triggers a
TemplateModelException that eventually is shown to the user in
an alert box.

ERPx loads several classes dynamically, and Failure B
occurs when one of those names is wrong (due to the application
of'a mutation). If the goal is to dynamically load the classes there
are not many alternatives, as the names must reside outside the
code. On the other hand, if these names are not likely to change,
they can also be kept in compiled code. Although we do not have
enough information to specify what should be the right design
choice, disclosing this issue can help developers understanding
if this is actually the right design decision or not and how the
application handles this type of situation. Anyway, the user
should be informed in case of error, especially if it is a problem
that renders the application unusable.

Failure C is a critical case. It actually represents a second
order SQL Injection problem, where malicious data in the
database is unsafely used to build an SQL query. An attacker
might be able to obtain sensitive information, as the information
obtained from the database is currently not sanitized by the
application. This shows that this testing technique, besides
pointing out potential design or implementation flaws, also has
potential to disclose security problems. In addition, and although
the error messaging system of the application was correctly
triggered, the actual error message shown to the user discloses
the contents of an entire database table row, which should
obviously not happen.

Failure D is a very interesting case, where the technique
served to disclose a fragility in the implementation of the quite
popular Object-Relational Mapping framework used by the
application. In this case, the framework tries to access the first
character of a string and fails as the string had become empty
due to the mutation applied. Although the framework previously
checks if the string is null, it does not check if it is empty and
immediately accesses its first character. It then fails with a
StringIndexOutOfBoundsException, this is an implementation
flaw, very similar to the one described next (which has already
received attention and a correction from the developer
community).

Failure E occurs when adding characters that include a
single quote to a string. This is a reported bug [25] in the driver
being used in the experiments (PostgreSQL JDBC Driver 9.4-
1201) and has been corrected in version 9.4-1204. Basically, the
code fails to find the closing single quote and returns the position

{DRAFT}

TABLE III. SELECTED CASES FROM THE EXPERIMENTS
Ref Root Exception Triggered Location Last Mutation External behavior
A NullPointerException Application changeToOppositeCase TemplateModelException reported to the user.
B ClassNotFoundException Application addExtraneous No message displayed to the user.
C PSQLException Application replaceBySQLString Application error message disclosing table row contents
D StringIndexOutOfBoundsException | JPA Middleware replaceByEmptyString Application error message stating String index out of range
E ArraylndexOutOfBoundsException | JDBC Driver addCharactersToString No message displayed to the user.

of the last character in the query as the end of the string. The
problem is that in another part of the driver, the code does not
expect this behavior, and the result is an attempt to access a
position that is one place after the end.

During the tests we were expecting to find a few application-
level problems, but it was interesting to see that this type of
testing was able to actually find problems at the middleware
level (in our case at two levels — ORM framework and JDBC
driver). The fact that the middleware is widely used and tested
emphasizes the importance of performing this kind of tests to
disclose issues that might affect applications experiencing
unexpected conditions. Furthermore, the ability to find problems
beyond ‘simple’ exceptions (or inadequate messages presented
to the user) and that represent security issues further emphasizes
that this type of testing has the potential to produce results that
are of high value for application architects and developers.

V. CONCLUSION

This paper presented a testing approach, based on the
injection of poor quality data at the application—storage
interface. Data quality problems are injected on returning result
sets from the database and the application behavior is observed.
The tests disclosed several different failures, including bugs at
the application, JPA implementation, and also the JDBC driver
used. In future work we intend to perform a larger scale
evaluation, further explore different configurations of this
approach, and explore the state of the system being tested.

ACKNOWLEDGMENTS

This work has been partially supported by the project
DEsign, Verification and VAlidation of large-scale, dynamic
Service SystEmS (DEVASSES), Marie Curie International
Research Staff Exchange Scheme (IRSES) number 612569,
within the context of the EU Seventh Framework Programme
(FP7).

REFERENCES

[11 D. Loshin, “Evaluating Business Impacts of Poor Data Quality,”
Information Quality Journal, 2011.

[2] N. Laranjeiro, M. Vieira, and H. Madeira, “A Robustness Testing
Approach for SOAP Web Services,” JISA, vol. 3, no. 2, pp. 215-232,
Sep. 2012.

[3] P. Koopman and J. DeVale, “Comparing the robustness of POSIX
operating systems,” in Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing, 1999, pp. 30-37.

[4] M. Rodriguez, F. Salles, J.-C. Fabre, and J. Arlat, “MAFALDA:
Microkernel Assessment by Fault Injection and Design Aid,” in The
Third European Dependable Computing Conference on Dependable
Computing, 1999, pp. 143-160.

[5] N. Laranjeiro, S. Nur Soydemir, and J. Bernardino, “A Survey on Data
Quality: Classifying Poor Data,” in The 2Ist IEEE Pacific Rim
International Symposium on Dependable Computing (PRDC 2015),
Zhangjiajie, China, 2015.

(6]

(7]

[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

N. Laranjeiro, N. S. Seyma, and B. Jorge, “Poor Data Injector Toolset,”
2016. [Online]. Available: http://eden.dei.uc.pt/~cnl/papers/2016-ladc-
zip. [Accessed: 25-May-2016].

M. Ge and M. Helfert, “A Review of Information Quality Research -
Develop a Research Agenda.,” in 12th International Conference on
Information Quality, Cambridge, MA, USA, 2007, pp. 76-91.

C. Batini, M. Palmonari, and G. Viscusi, “Opening the Closed World: A
Survey of Information Quality Research in the Wild,” in The
Philosophy of Information Quality, Springer International Publishing,
2014, pp. 43-73.

ISO/IEC, “Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Data quality model,”
ISO/IEC, ISO/IEC 25012, 2008.

SWEBOK V3 Guide IEEE Computer Society. .

L. L. Pipino, Y. W. Lee, and R. Y. Wang, “Data quality assessment,”
Communications of the ACM, vol. 45, no. 4, pp. 211-218, 2002.

D. Loshin, The practitioner’s guide to data quality improvement. Morgan
Kaufmann, 2010.

E. D. Quality, “The data quality benchmark report,” Experian Data
Quality, Jan. 2015.

R. Marsh, “Drowning in dirty data? It’s time to sink or swim: A four-
stage methodology for total data quality management,” Journal of
Database Marketing &,; Customer Strategy Management, vol. 12,
no. 2, pp. 105-112, Jan. 2005.

A. Caro, C. Calero, E. Mendes, and M. Piattini, “A Probabilistic
Approach to Web Portal’s Data Quality Evaluation,” in Quality of
Information and Communications Technology, 2007. QUATIC 2007.
6th International Conference on the, 2007, pp. 143 —153.

B. Xiaojuan, N. Shurong, X. Zhaolin, and C. Peng, “Novel method for
the evaluation of data quality based on fuzzy control,” Journal of
Systems Engineering and Electronics, vol. 19, no. 3, pp. 606 —610, Jun.
2008.

M. Bergdahl, M. Ehling, E. Elvers, E. Foldesi, T. Korner, A. Kron, P.
LohauB3, K. Mag, V. Morais, and A. Nimmergut, Handbook on Data
Quality Assessment Methods and Tools. Wiesbaden, 2007.

0O.-H. Choi, J.-E. Lim, H.-S. Na, K.-J. Seong, and D.-K. Baik, “An
Efficient Method of Data Quality Evaluation Using Metadata
Registry,” in Advanced Software Engineering and Its Applications,
2008. ASEA 2008, 2008, pp. 9 —12.

H. Galhardas, D. Florescu, and D. Shasha, “Declarative Data Cleaning:
Language, Model, and Algorithms,” in In VLDB, 2001, pp. 371-380.
A. Haug, F. Zachariassen, and D. van Liempd, “The costs of poor data
quality,” Journal of Industrial Engineering and Management, vol. 4,

no. 2, Jul. 2011.

E. Musial and M.-H. Chen, “Effect of Data Validity on the Reliability of
Data-centric Web Services,” 2012, pp. 576-583.

N. Ivaki, N. Laranjeiro, and M. Vieira, “Towards Evaluating the Impact
of Data Quality on Service Applications,” in Workshop on Reliability
and Security Data Analysis (RSDA 2013) co-located with The 43rd
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN 2013), Budapest, Hungary, 2013.

Eclipse Foundation, “The Aspect] Project,” 2006. [Online]. Available:
http://www.eclipse.org/aspectj/. [Accessed: 08-Apr-2016].

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in /Ith
European Conference on Object-oriented Programming, Jyvéskyla,
Finland, 1997.

“PostgreSQL JDBC Driver — GitHub,” 17-Sep-2015.
Available: https://github.com/pgjdbc/pgjdbce/issues/369.

[Online].

	Introduction
	State of the Art
	Data Quality
	Concepts of Data Quality
	Impacts of Poor Data
	Data Quality Dimensions
	Classification of Data Quality Problems

	Software Testing
	Testing Service Applications
	Automation Tools for Testing

	Approach
	General Approach
	Implementation of a Poor Data Injector
	Identifying Data Quality Problems
	Failure Classification

	Experimental Evaluation
	Experimental Setup
	Test Cases
	Description of Experiments

	Results and Analysis
	Overview of results
	Service application behaviour
	Software defects uncovered during experiments
	Distribution of exceptions
	Statistics regarding the experiments
	Guidelines for robustness against poor data quality

	Conclusions and Future Work
	Overall view
	Future Work

	Appendices
	Data Mutation Tables
	Activity Diagrams of Test Cases
	Survey paper on Data Quality
	Conference paper

