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atical model, termed sediment transport rate-based model, is developed for
determining rainfall-induced soil erosion and sediment transport. The model is comprised of (1) the
kinematic-wave equation for overland flow, (2) a transport rate-based advection equation for rainfall-
induced soil erosion and sediment transport, and (3) a semi-Lagrangian algorithm for numerical solution of
the soil erosion and sediment transport equation. A series of soil flume experiments under simulated rainfalls
were conducted to simulate the overland flow and sediment transport and to test the sediment transport
rate-based model. Numerical results of sediment transport rate-based model indicate that (i) hydrographs
display an initial rising limb, followed by a constant discharge and then a recession limb; (ii) sediment
transport rate graphs exhibit the distributions similar to the hydrographs; and (iii) sediment concentration
graphs show a steep-receding limb followed by a constant distribution and a receding tail. The numerically
simulated hydrographs, sediment transport rate and concentration distributions are in good agreement with
those measured in laboratory experiments, demonstrating the efficacy of the transport rate-based model.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Soil erosion has been recognized as a serious environmental and
soil degradation problem. It can reduce soil productivity and increase
sediment and other pollution loads in receiving waters. Estimation of
soil erosion is therefore essential to issues of land and water
management, including TMDL (Total Maximum Daily Load) calcula-
tions, BMP (Best Management Practice) implementation and evalua-
tion, sediment transport and storage in lowlands, reservoirs, estuaries,
and irrigation and hydropower systems.

Mathematical models have been proven to be a cost-effective tool
for improving our understanding of erosion processes and evaluating
possible effects of land use changes on soil erosion andwater quality. A
soundmathematical model can provide an efficient and economic tool
by which a large number of scenarios can be simulated and compared
in a short time and then the best alternative of addressing the
problems may be found. Consequently, a wide spectrum of models,
ranging from simple empirical formulas to comprehensive distributed
descriptions (Woolhiser et al., 1990; Smith et al., 1995; Sander et al.,
1996; Morgan et al., 1998; Parlange et al., 1999; Rose, 2001; Hairsine
et al., 2002; Sander et al., 2002; Aksoy and Kavvas, 2005), has been
proposed for the description and prediction of soil erosion and
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sediment transport. Some of the models show great promise and
have been increasingly used (Singh and Woolhiser, 2002).

Sander et al. (1996) extended the model presented by Hairsine and
Rose to account for the time variation of suspended sediment
concentration during an erosion event and proposed a simple
analytical solution for the extended model. Morgan et al. (1998)
presented a dynamic distributed model, called EUROSEM (European
Soil Erosion Model), for simulating sediment transport, erosion and
deposition over the land surface by rill and interill processes in single
storms for both individual fields and small catchments. Heilig et al.
(2001) tested the development of a shield over the original soil and
associated changes in sediment concentrations using the Rose model
and a simple laboratory experiment. A common feature of the models
is that the sediment concentration distributions simulated using the
models have an initial sediment concentration of zero. This type of
sediment concentration distributions was supported by some labora-
tory experiments, as shown in Figs. 3 and 4 of Heilig et al. (2001).
However, most measured sediment concentration distributions
approximately exhibit the first-flush phenomenon: a high initial
sediment concentration followed by a gradual decline, as demon-
strated in Fig. 1 (period 1) in Polyakov and Nearing (2003), Fig. 3 in
Morgan et al. (1998), Fig. 1 in Rose and Hogarth (1998), and Figs.1–3 in
Sander et al. (1996). The experimental data collected by Polyakov and
Nearing (2003) provides novel insights into sediment transport in rill
flow under deposition and detachment conditions. Morgan et al.
(1998) stressed that since, during a rainstorm, splash erosion will
already be taking place when runoff begins, the initial sediment
concentration in the runoff cannot be taken as zero. Woolhiser et al.
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Fig. 1. Control volume for overland soil erosion and sediment transport.
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(1990) made a similar comment on the initial sediment concentration.
It is, therefore, essential to develop an alternative model that is able to
simulate the soil erosion and sediment transport processes with a
non-zero initial sediment concentration. Such a model may also
facilitate the computation of sediment discharge.

Soil loss is commonly computed as a sediment discharge (also
called sediment transport rate) to give a mass (or volume) of sediment
passing a given point in a given time (Smith et al., 1995; Morgan et al.,
1998; Folly et al., 1999; Veihe et al., 2001). Currently, the sediment
discharge is calculated based on the product of the rate of runoff (flow
discharge) and the simulated sediment concentration in the flow.
Sediment discharges or sediment transport rates predicted using
models with an initial sediment concentration of zero may result in
erroneous load estimates for events of consequential length, espe-
cially when the length of sediment concentration rising period is
comparable to that of concentration falling period, as shown in Fig. 3
in Morgan et al. (1998). It is therefore desirable to have a sediment
discharge or transport rate-based model so that the sediment
discharge can be directly solved from the model. Once the sediment
discharge C becomes available, sediment concentration c can be easily
determined from c=C/Q because the prediction of discharge or
hydrographs (relationship between the flow discharge Q and time)
is relatively easy and accurate.

The overall goal of this paper is therefore to develop a new
sediment transport rate (sediment discharge)-based model for
simulating rainfall-induced soil erosion and accompanying sediment
transport process. The specific objectives are (i) to present a sediment
transport rate-basedmathematical model for the overland soil erosion
based on the characteristics of rainfall-induced soil erosion; (ii) to
propose an efficient method for numerical solution of the model
equations; and (iii) to test the efficacy of the mathematical model
using laboratory data. The three specific objectives are presented in
the following three consecutive Sections 2–4, respectively.

2. Rainfall-induced soil erosion and sediment transport equations

The rainfall-induced overland soil erosion and sediment transport
are driven by rainfall and a non-uniform flow with an increasing
discharge along the slope. It is therefore necessary and convenient to
mathematically describe the overland flow and sediment transport
process with two governing equations, although physically the flow
and sediment erosion and transport are inseparable.

2.1. Kinematic-wave overland flow equations

Flow over a pervious steep plane is generally described by the
kinematic-wave approximation of the Saint-Venant shallow-water
equations, stating the laws of conservation of mass and momentum of
the water flowing longitudinally and infiltrating vertically (Woolhiser,
1975; Martin and McCutcheon, 1999). The kinematic-wave equation
can be expressed on a unit width and uniform slope basis as:

Ah
At

þ A uhð Þ
Ax

¼ I−f ð1aÞ

with

u ¼ αhm−1 or Q f ¼ αWhm ð1bÞ

where h is the depth of overland flow [L], t is time [T], u is the velocity
of the flow [L T−1], x is distance along the flow direction [L], I denotes
the rainfall intensity [L T −1], f stands for the infiltration capacity of soil
[L T −1], α is the kinematic-wave resistance parameter, m is an
exponent, Q f is the flow discharge [L3 T −1], and W is the width of
overland flow [L]. Overland flow is treated as turbulent flow in this
paper and thus m=5/3 and α=S0.5/n are employed, where n is
Manning's roughness coefficient and S is surface slope. For the
convenience of numerical treatment and programming, Eq. (1a) can
be expressed as:

Ah
At

þ A uhð Þ
Ax

¼ 1−FInfð Þ � I ð1cÞ

where FInf = f/I. The solution of the kinematic-wave equation requires
only initial and upstream boundary conditions (van der Molen et al.,
1995). The initial and boundary conditions imposed on Eq. (1c) are:

h x;0ð Þ ¼ 0; 0V x b L ð1dÞ

h 0; tð Þ ¼ 0; 0 V t b∞: ð1eÞ

The problem of overland flow reduces to the solution of Eq. (1c)
subject to Eqs. (1b), (1d), and (1e).

2.2. Overland soil erosion and sediment transport equation

Equations used in the literature for rainfall-induced overland soil
erosion and sediment transport vary significantly due to different
understanding and treatments of the mechanisms responsible for soil
erosion/deposition and sediment transport. Without detailed
mechanisms-based derivations it is difficult to evaluate the soundness
of the equations. It is therefore necessary to analyze the mechanisms
involved in the soil erosion/deposition and sediment transport and to
derive an equation for description of the rainfall-induced overland soil
erosion and deposition processes and sediment transport. To that end
a control volume for the overland flow and soil erosion/deposition and
sediment transport is selected and shown in Fig. 1. The control volume
is based on the following assumptions: (1) the flow and soil erosion/
deposition and sediment transport can be approximated as a one-
dimensional problem; (2) suspended sediments are fully mixed
vertically at any location and thus the vertical sediment concentration
gradient is negligible; (3) sediment concentration gradient caused by
the dispersion term is negligible as compared to other terms
(Boardman et al., 1990). Based on the above assumptions and the
Reynolds transport theorem, one-dimensional mass conservation
equation or continuity equation of suspended sediment in the over-
land flow on a unit width surface can be written as

A

At

Z
CV

ρsd8 þ
Z
CS

ρsVdA ¼ 0 ð2aÞ

where ρs=sediment density [M L−3] and V=velocity vector of flow.
The first integral in Eq. (2a) represents the accumulated mass of
sediment in the control volume. The second integral stands for the net
mass efflux of sediment through the entire control surface. The control
volume has four control surfaces and a uniform concentration c. Then,
Eq. (2a) can be rewritten as

A chΔxð Þ
At

þ
Z
CS1

ρsVdAþ
Z
CS2

ρsVdAþ
Z
CS3

ρsVdAþ
Z
CS4

ρsVdA ¼ 0 ð2bÞ

where c=sediment concentration [M L−3]. The equation states that the
rate of accumulation of sediment mass in the control volume plus the
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net mass efflux through all control surfaces (CS1–CS4) is zero. The net
efflux is the mass flow rate of sediment out of the control volume
minus the mass flow rate in. In other words, values of the integrals are
negative if sediment entering the control volume and positive if
leaving the control volume.

The sediment entering the control surface CS1 is

Z
CS1

ρsVdA ¼ −cuh: ð2cÞ

The sediment leaving the control surface CS2 is

Z
CS2

ρsVdA ¼ cuhþ A cuhð Þ
Ax

Δx: ð2dÞ

If the sediment concentration in rainfall is negligible, the net
sediment flux through the control surface CS4 is zero, i.e.,

Z
CS4

ρsVdA ¼ 0: ð2eÞ

Sediment exchange at the control surface CS3 is complicated due
to the entrainment and deposition of sediment. The exchange mainly
involves two mechanisms or driving forces which include (i) the
hydraulic erosion or deposition, eh, due to the interplay between the
shearing force of water on the soil bed and the tendency of soil
particles to settle under the force of gravity (Woolhiser et al., 1990),
and (ii) the raindrop impact or rain splash on bare soil, er, i.e.,Z
CS3

ρsVdA ¼ − eh þ erð ÞΔ x � 1: ð2fÞ

Substituting Eqs. (2c)–(2f) into Eq. (2b) and dividing both sides of
the resulting equation by Δx yields

A chð Þ
At

þ A cuhð Þ
Ax

¼ eh þ er ð3aÞ

where er=the rate of soil erosion causedby raindrop impact or rain splash
[M L−2 T−1], eh=the net rate of hydraulic erosion (+) caused by flowing
water or deposition (−) from thewater [M L−2 T−1]. Although there are no
generally accepted expressions for hydraulic erosion of soil, it is widely
recognized that the rate of soil erosion depends to a large extent on the
sediment concentration defect (c⁎−c), where c⁎, and c are sediment
concentrationunder equilibriumconditions and sediment concentration,
respectively, representing themass of sediment per unit volumeof runoff
[M L−3]. The surface shear stressτ0 or shear velocityu⁎=(τ0/ρ)1/2=(ghS)1/2

is also a dominant parameter affecting the erosion rate of cohesive
sediment or consolidated soil (Prosser and Rustomji, 2000), where
ρ=water density [M L−3], g=the acceleration due to gravity [L T−2], and
S=surface slope along the flow direction. The hydraulic erosion occurs
only when the shear velocity u⁎ is greater than the critical shear velocity
u⁎c of the soil. The hydraulic erosion or the mass rate of entrainment of
sediment into suspension can therefore be expressed as eh=ξ(u⁎−u⁎c)
(c⁎−c), where ξ=a dimensionless constant. The critical shear velocity can
be estimated using the following equations (Chien and Wan, 1999):

u⁎c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ

0:068Dþ 3:73� 10−6

D

 !vuut ð3bÞ

where D=mean diameter of sediment [L]. It should be pointed out that
Eq. (3b) was derived for steady flow and it is thus not applicable to the
initial unsteady period of overland flow or the rising limb of hydrograph.
Due to rain splash during the ponding period the top soil layer is usually
detached from soil and sediments are suspended in the ponding water.
Therefore, a zero critical shear velocity is used for the initial rising limb of
overland flow and sediment transport. During the receding portion of
hydrograph flow decreases and excess sediments (c⁎−c) deposit due to
the settling velocityws of sediment particles. The mass rate of sediment
deposition onto the bed can thus be expressed by ζws(c⁎−c), where ζ is a
dimensionless constant. The settling velocity (ws) can be estimated using
the following equation (Cheng, 1997):

ws ¼ v
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25þ 1:2d2

⁎

q
−5

� �1:5

ð3cÞ

where, v=kinematic viscosity [L2 T−1] of water and d⁎=dimensionless
particle parameter which is defined as

d⁎ ¼
Δg
m2

� �1=3

D ð3dÞ

where Δ=(ρs−ρ)/ρ. It is clear that the hydraulic deposition is driven by
the joint effect ofws in the vertical direction andnegative (c⁎−c)while the
hydraulic erosion is caused by the combined action of the shear velocity
u⁎ in the flow direction and positive (c⁎−c). Consequently, it is
inappropriate to use one single term like φws(c⁎−c) (φ=constant) to
describe both the erosion and the deposition because their driving forces
are not the same. It should be indicated that in terms of the net sediment
exchange at the control surface CS3 the hydraulic erosion and the
hydraulic deposition cannot occur simultaneously. Consequently, the rate
of hydraulic erosion can be expressed as

eh ¼ n u⁎−u⁎cð Þ c⁎−cð Þ if cV c⁎ ð3eÞ

eh ¼ fws c⁎−cð Þ if cNc⁎ ð3fÞ

where ξN0 if c⁎Nc and u⁎Nu⁎c; Otherwise, ξ=0. ζN0 if c⁎bc; Otherwise,
ζ=0.

Rainfall impact detaches soil particles and keeps them in
suspension during rainfall. When the energy from rainfall ends or is
reduced, the excess particles in suspension deposit. The erosion
produced by raindrop impact or rain splash, er, is dependent on the
water depth (Woolhiser et al., 1990; Morgan et al., 1998). Increasing
water depth causes the reduction in splash erosion. Based on the
detachment equation for rainfall used in EUROSEM (Morgan et al.,
1998) and the splash erosion equation adopted in KINEROS (Woolhiser
et al., 1990) the rate er of the erosion produced by the raindrop impact
or rain splash can be approximated as:

er ¼ c0
I2

ws
exp −ηhð Þ ð3gÞ

where c0=the maximum sediment concentration produced by the
raindrop impact in the overlying water at the end of the ponding time.
The parameter c0 depends on the rainfall intensity and soil and surface
properties. er=0 during the recession of the overland flow when
rainfall stops (I=0). The parameter η represents the damping rate of
thewater depth and carries a dimension of [L −1]. Substituting Eqs. (3e),
(3f), and (3g) into Eq. (3a) yields

A chð Þ
At

þ A cuhð Þ
Ax

¼ n u⁎−u⁎cð Þ þ fws½ � c⁎−cð Þ þ c0
I2

ws
exp −ηhð Þ: ð4aÞ

For the convenience of mathematical manipulation, Eq. (4a) is
recast as:

c
Ah
At

þ A uhð Þ
Ax

� �
þ h

Ac
At

þ u
Ac
Ax

� �
¼ u⁎w c⁎−cð Þ þ c0

I2

ws
exp −ηhð Þ ð4bÞ

where u⁎w=ξ(u⁎−u⁎c)+ζws. Eq. (4b) can be rearranged as

Ac
At

þ u
Ac
Ax

¼ u⁎w

h
c⁎−cð Þ þ c0

h
I2

ws
exp −ηhð Þ− q

h
c: ð5aÞ

In principle Eq. (5a) may be employed to predict distributions of
sediment concentration c, that are usually characterized temporally
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by a steep rising limb followed by a receding limb, by assuming the
initial concentration c0 to be zero (Sander et al., 1996; Boardman and
Favis-Mortlock, 1998; Heilig et al., 2001; Yu, 2003). However, for the
overland sediment transport measured concentration curves often
exhibit the first-flush phenomenon: a rapid falling limb followed by a
prolonged receding limb. To simulate the overland sediment erosion
and transport process with a non-zero initial sediment concentration,
Eq. (5a) must be changed to a solvable form. To that end, replacing c by
cQf/Qf =C/Qf and c⁎ by c⁎Qf/Qf =C⁎/Qf, splitting each differential term of
C/Qf into two terms by taking their partial derivatives, respectively,
and then multiplying both sides of the equation by Qf, result in:

AC
At

þ u
AC
Ax

þ Q f
A 1=Q fð Þ

At
þ u

A 1=Q fð Þ
Ax

� �
C ¼ u⁎w

h
C⁎−Cð Þ

þC0

h
I2

ws
exp −ηhð Þ− q

h
C

ð5bÞ

where C=cQ f is the sediment transport rate or sediment discharge,
C⁎=c⁎Q f denotes sediment transport capacity of surface runoff, C0=c0Q f

is the sediment discharge corresponding to c0. It is assumed that C0=C⁎
due to the difficulty in the direct measurement of c0. For simplicity the
third term on the left hand side of Eq. (5b) without parameter C is
assumed as:

Q f ¼ Q f
A 1=Q fð Þ

At
þ u

A 1=Q fð Þ
Ax

� �
¼ −

1
Q f

AQ f

At
þ u

AQ f

Ax

� �
¼ −

1
Q f

dQ f

dt
ð5cÞ

where the total derivative of the flow discharge can be determined by
using Eq. (1b) as

dQ f

dt
¼ αWmhm−1 dh

dt
¼ αWmhm−1 Ah

At
þ u

Ah
Ax

� �

¼ αWmhm−1 Ah
At

þ Auh
Ax

−h
Au
Ax

� �
¼ αWmhm−1 q−h

Au
Ax

� �

¼ mQ f

h
q−hα m−1ð Þhm−2 Ah

Ax

� �
ð5dÞ

in which q= I− f and Eqs. (1a) and (1b) are employed. In terms of the
kinematic-wave approximation ∂h/∂x=S0=soil surface slope along the
flow direction (Martin and McCutcheon, 1999). Substituting ∂h/∂x=S0
into Eq. (5d) and combining Eqs. (5c) and (5d) gives

Q f ¼ −
1
Q f

mQ f

h
q− m−1ð ÞuS0½ � ¼ m

h
m−1ð ÞuS0−q½ � ð5eÞ

where the term (m−1)uS0 is much greater than q in general. Therefore,
the right-hand side of Eq. (5e) is always positive on steep slopes where
the kinematic-wave model is applicable. Turbulent flow is commonly
assumed and thus m=5/3 is widely adopted for overland flow
(Woolhiser et al., 1990; Morgan et al., 1998). Substituting m=5/3 into
Eq. (5e) and neglecting q yields Q− f =10uS0/9h=1.11αh−1/3S0.

Substituting Eq. (5e) into Eq. (5b) and rearranging the terms yields

AC
At

þ u
AC
Ax

¼ EC⁎ þ GC0 exp −ηhð Þ− Y þ Eð ÞC ð6aÞ

in which E=u⁎w/h, G= I2/(hws), and Y=Q
P

f +q/h are introduced. Eq. (6a)
describes the change of sediment transport rate or sediment discharge
C in overland flow due to the rainfall erosion and thus is termed as
sediment transport rate-based equation. It is apparent that for a
continuous, steadyflowQ

P
f =0 in Eq. (5c) and then Eq. (6a) reduces back

to Eq. (5a). It implies that Eq. (5a) and the commonly used advection
equation of sediment transport are a special form of Eq. (6a).
Consequently, Eq. (6a) is a generalized sediment transport equation.
Eq. (6a) is also subject to the initial and boundary conditions:

C x;0ð Þ ¼ 0; 0 V x b L ð6bÞ

C 0; tð Þ ¼ 0; 0 V t b∞: ð6cÞ
The sediment transport capacity C⁎ can be estimated using the
following equations presented by Beasley et al. (1980):

60C⁎

W
¼ 146S

60Q f

W

� �1=2

or C⁎ ¼ 146S
WQ f

60

� �1=2

for Q f=W V 0:046 m2min−1
� �

ð7aÞ

60C⁎

W
¼ 14600S

60Q f

W

� �2

or C⁎ ¼ 14600SQ2
f

60
W

� �
for Q f=W N 0:046m2min−1
� �

:

ð7bÞ

Eqs. (7a) and (7b) are found to be ineffective in describing sedi-
ment deposition process during the receding period of overland flow.
The following equation proposed by Prosser and Rustomji (2000) is
employed to determine the sediment transport capacity of receding
overland flow:

qs ¼ k qηw Sγ ð7cÞ
where, qs=sediment transport capacity per unit width [L3 T L−1], qw=
discharge per unit width [L2 T −1], k, η, and γ are empirical or
theoretically derived constants. It should be noted that the time t=0
corresponds to the beginning of overland flow instead of rainfall. Soil
surface is impacted by raindrops and sediment particles are suspended
and mixed in overlying water in the ponding time but there is no
sediment transport in the soil surface until the overland flow begins.
Therefore, it is reasonable for overland flow to have a zero initial sedi-
ment transport rate but a non-zero initial concentration value of c(x,0),
since C=cQ f and Q f =0 at t=0. As c=C/Q f and both C and Q f are zero at
t=0, the value (0/0) of c(x,0) is thus uncertain but calculable. Oneway to
determine the initial value of c(x,tinitial) is to take tinitial=5 s or even a
shorter time, for instance, 2 s, then c(x,tinitial) can be found as C(x,tinitial)/
Q f(x,tinitial). If the sediment transport rate of the flow during the initial
period is assumed to be equal to its sediment transport capacity, the
concentration can be calculated as c=C⁎(x,tinitial)/Q f(x,tinitial)=[146S
(WQ f/60)1/2]/Q f =146S[W/(60Q f)]1/2. It is obvious that if flow discharge
Q f approaches to 0, sediment concentration c tends to be infinite
large insteadof zero conventionally assumed. In general, the value of c(x,
tinitial) is not necessarily the maximum. It is possible to obtain a peak
concentration from c=C/Q f, although the initial concentration is not
zero. Consequently, the transport rate-basedmodel provides aneffective
and flexible tool for simulating the complicated rainfall-induced soil
erosion and subsequent sediment transport. Eqs. (1a)–(1e) and (6a)–(6c)
can be employedas fundamental equations for simulatingoverlandflow
and soil erosion and sediment transport.

3. Numerical solutions for proposed model

The objective of numerical method is to solve Eq. (6a) for sediment
transport rate C(x,t) and then concentration c(x,t) at the outlet. To that
end, the flow depth h should be calculated first at each spatial grid
from the overland flow Eq. (1a).

3.1. Numerical scheme for kinematic-wave equation

Several numerical techniques are available for the solution of the
kinematic-wave equation. One of the most widely used second-order
finite-difference schemes is the Lax–Wendroff (LW) scheme. The
essence of the LW scheme is in the Taylor series expansion of the
dependent variable h by neglecting the terms whose order is higher
than two, i.e.,

h x; t þ Δtð Þ ¼ h x; tð Þ þ Δt
Ah
At

þ Δtð Þ2
2!

A2h
At2

ð8aÞ



Fig. 2. Sketch of laboratory set-up with square soil flume, support structure for the
rainfall simulator and hydraulic circuit (constant head reservoir, pump, hose and
nozzles).
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where ∂h/∂t is obtained from Eq. (1a) as

Ah
At

¼ q −mαhm−1 Ah
Ax

ð8bÞ

where q= I− f is the lateral inflow per unit width. ∂2h/∂t2 can be found
by differentiating Eq. (8b) as:

A2h
At2

¼ Aq
At

−α
A

Ax
mhm−1 q−mαhm−1 Ah

Ax

� �� �
: ð8cÞ

Substituting Eqs. (8b) and (8c) into Eq. (8a) and applying the FTCS
(forward time and centered space) differencing scheme yields the
following finite-difference solution of the kinematic-wave equation
(Woolhiser, 1975; Singh, 1996):

hiþ1
j ¼ hij þ Δt qij−mα

hi
m−1

jþ1 þ hi
m−1

j−1

2

hijþ1−h
i
j−1

2Δx

 !
þ Δtð Þ2

2

qiþ1
j −qij
Δt

− mα
Δtð Þ2
2Δx ½ him−1

jþ1 þ hi
m−1

j

2

qijþ1 þ qij
2

−mα
hi

m−1

jþ1 þ hi
m−1

j

2

hijþ1−h
i
j

Δx

 !

−
hi

m−1

j þ hi
m−1

j−1

2

qij þ qij−1
2

−mα
hi

m−1

j þ hi
m−1

j−1

2

hij−h
i
j−1

Δx

 !� ð9Þ

where superscript i denotes the time step and subscript j stands for
the distance step; Δx and Δt represent the distance and time step
lengths, respectively. For the downstream boundary, Eq. (9) is no
longer valid and the following first-order scheme is employed:

hiþ1
j ¼ hij þ Δt qij −mα

hi
m−1

j þ hi
m−1

j−1

2

hij−h
i
j−1

Δ x

 !
: ð10Þ

To ensure the numerical stability of the LW scheme, the Courant
condition must be satisfied, i.e.,

Δt
Δx

V
1

αmhm−1 : ð11Þ

Once the flow depth is calculated, then flow velocity can be
determined using Eq. (1b) and the solute transport equation can be
subsequently solved.

3.2. Numerical scheme for soil erosion and sediment transport equation

Due to the lack of dispersion term, Eqs. (6a)–(6c) is an advection-
dominated transport equation. It has been demonstrated that the
semi-Lagrangian (SL) scheme, based on the method of characteristics
and interpolation between grid points, is particularly suitable for
numerical simulation of advection-dominated transport processes
and is capable of providing high accuracywithminimal computational
effort (Holly and Preissmann, 1977; Holly and Usseglio-Polatera, 1984;
Karpik and Crockett, 1997). In order to utilize the semi-Lagrangian
approach, Eq. (6a) can be recast as

dC
dt

¼ EC⁎ þ GC0 exp −ηhð Þ− Y þ Eð ÞC: ð12Þ

Eq. (12) is the total derivative of the transport rate C along the
solute particle trajectory or the characteristic line defined by

dx
dt

¼ u: ð13Þ
Integrating Eq. (12) from (xd, ti) to (xa, ti+1) along the characteristic
line Eq. (13) and using the explicit second-order Runge–Kutta
(midpoint) method (Press et al., 1988) lead to

Ciþ1
a ¼ Ci

d þ
Z tiþ1

ti
EC⁎ þ GC0 exp −ηhð Þ− Y þ Eð ÞC½ �dt ð14aÞ

xd ¼ xa þ
Z t

tþΔt
u x; tð Þdt ¼ xa−

Z tþΔt

t
u x; tð Þdt ¼ xa−Δtu

xd þ xa
2

; tnþ1=2

� �
ð14bÞ

where subscripts a and d represent the arrival (at time t+Δt) and
departure (at time t) points of the considered solute particle. Applying
a trapezoidal integration rule to Eq. (14a) results in

Ciþ1
a ¼ Ci

d þ
Δt
2 f EC⁎ þ GC0 exp −ηhð Þ− Y þ Eð ÞC½ �id

þ EC⁎ þ GC0 exp −ηhð Þ− Y þ Eð ÞC½ �iþ1
a g:

ð15Þ

Rearranging terms in Eq. (15) gives

Ciþ1
a ¼ λCi

d þ β
1þ e Yiþ1 þ Eiþ1ð Þ ð16aÞ

in which

e ¼ Δt=2 ð16bÞ

λ ¼ 1−e Yi þ Ei
� �

ð16cÞ

β ¼ e EC⁎ þ GC0 exp −η hð Þ½ � jid þ EC⁎ þ GC0 exp −η hð Þ½ � jiþ1
a

n o
: ð16dÞ

Eq. (16a) shows that the transport rate C at each grid point xa (the
“arrival” point) at the new time t+Δt can be determined using the
transport rate of the departure point xd at the previous time t. In
principle, the transport rate at all grid points at time t should be
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known. However, the departure point xd typically will not fall on a grid
point and thus the location of the departure point xd must be
estimated first. Then, the transport rate C at the departure point xd can
be interpolated using the known values of two neighbouring grid
points and finally replacing that value at xa according to Eq. (16a).

Numerous interpolation methods exist (Press et al., 1988). Cubic
splines are the most popular interpolating functions. These smooth
functions do not have the significant oscillatory behavior that is
characteristic of high-degree polynomial interpolators, e.g., the
Lagrangian interpolator, Hermite interpolator, and similar schemes.
Moreover, cubic splines have the lowest interpolation error of all
fourth-order interpolating polynomials. Therefore, the commonly
used natural cubic splines were adopted to perform the required
interpolation. The “natural” implies that the second derivative of the
spline function is set to zero at the endpoints because this provides a
boundary condition that completes the system of n−2 equations,
leading to a simple tridiagonal system which can be solved easily.
Once the solute transport rate C is available, the solute concentration c
can be easily obtained. Since the splashed sediments are suspended in
water and accumulated on the soil surface in the ponding time, the
availability of sediments for erosion is high in the initial runoff period
and becomes lower latter due to the increase inwater depth. Although
the runoff rate may be greater in the remainder of the storm duration,
the storage of detached sediments available for washoff is almost
depleted or limited, causing a significant decline in sediment
concentration. Sediment erosion and transport tends to be steady
when rainfall and flow are steady, producing a constant sediment
concentration. Such a sediment concentration variation is difficult to
Fig. 3. Grain-size characteristics of the soil material placed in the soil flume
simulate directly using the concentration-based advection–diffusion
equation unless the solution conditions are properly defined.

4. Test of proposed model and discussion of results

To test the efficacy of the transport rate-based model, a series of
laboratory experiments were conducted using a soil flume and a
rainfall simulator.

4.1. Experimental set-up

A sketch of the laboratory set-up of experimental flume is
presented in Fig. 2. Laboratory experiments were conducted using a
soil flume with a sprinkling-type rainfall simulator and an adjustable
slope.

Dimensions of the soil flume were 2 m long, 2 mwide, and 0.12 m
high. Surface runoff and free percolation water were collected at the
end of theflume. The soilmaterial used in the experiments consisted of
11.5% clay, 9.8% silt, and 78.7% sand and mean diameter of sediment is
about 0.4mm, as shown in Fig. 3. The original soilwas sieved to remove
coarse rock and organic debris, prior to being uniformly spread in the
flume. To obtain a flat surface, a sharp edged straight blade that could
ride on the top edge of the sidewalls of the flume was used to remove
excess soil. The blade was adjusted such that the soil level in the flume
equalled the retaining plate at the downstream end of the flume.
Afterwards, the soil was gently tappedwith awooden block to attain a
uniform dry bulk density of approximately 1565 kg/m3. The resulting
soil surface was smooth, without roughness elements. The soil placed
. Top: Granulometric curve; and Bottom: Position in the Feret triangle.



Table 2
Calibration parameter and values used in the simulation of runoff and sediment
transport

Calibration parameter Run-1 Run-2 Run-3

Infiltration (FInf %) 15 15 15
Manning's roughness (n) 0.0265 0.0265 0.0265
Erosion rate (ξ) 0.021 0.021 0.011
κ 20.0 20.0 22.0
η 1.38 1.38 1.38
γ 1.0 1.0 1.0
a 0.1 0.1 0.1
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in the flume had a uniform thickness of 0.10 m. The flume slope was
10%.

The basic components of the rainfall simulator were three equally
spaced downward-oriented full-cone nozzles, a support structure in
which the nozzles were installed, and the connections with the water
supply and the pump, as shown in Fig. 2. The spacing between the
nozzles was 0.5 m. The nozzles had a height of 2.49 m above the
geometric centre of the soil flume. A simulated rainfall patternwith an
average intensity of 3.53 mm/min was applied to the soil flume
surface. Samples of overland flow and accompanying sediment
transport were collected at the downstream end of the soil flume
using metal containers. The amount of sediment transported by
overland flow was estimated by drying of runoff samples in a low
temperature oven. After drying the runoff samples the transported
sediments underwent granulometric characterization in order to
evaluate how their granulometry evolved over time. There were two
distinct phases in this step: one using optical spectrophotometry
(laser diffraction particle size analyzer — LS 230 Beckman Coulter,
Inc.), and the other using conventional sieving. The collected data
from three experiments are shown in Table 1.

4.2. Model applications

The transport rate-based model was applied to simulate rainfall
simulator-induced overland flow and sediment transport over a soil
flume. Parameters involved in the model were estimated using the
data collected from the laboratory experiments. Estimated values of
parameters involved in the model are listed in Table 2. Fig. 4 shows a
comparison between numerically simulated and experimentally
measured flow discharge, sediment transport rate, and sediment
concentration for the first run. Fig. 4(a) shows that the simulated
hydrograph is in very good agreement with themeasured hydrograph.
Fig. 4(b) indicates that the computed sediment transport rate fits the
measured one well in general although two measured data points
deviate from the computed transport rate curve. Fig. 4(c) illustrates
that the computed sediment concentration matches the measured
data well except one data point. In the second run we noticed some
lateral flow and sediment transport due to the formation of a lateral
rill, causing some deviations of measured data from the simulated
sediment transport rate and concentration distributions in Fig. 5(b)
and (c). Figs. 6(a), (b), and (c) demonstrate good agreements between
the computed and measured flow discharge, sediment transport rate,
and sediment concentration for the third run. Overall, the transport
Table 1
Experimental results of flow discharge (Q), sediment transport rate (C) and calculated
concentration (c) for the 3 experiments

No. of experiment Time (s) Q (l/s) C (g/s) c (kg/m3)

Run-1 0.00 0.000 0.000 0.00
8.00 0.108 1.669 15.50

87.70 0.232 2.190 9.45
164.50 0.216 1.651 7.64
240.45 0.217 1.603 7.38
306.65 0.012 0.033 2.70

Run-2 0.00 0.000 0.000 0.00
7.60 0.114 0.647 5.69

56.15 0.236 2.035 8.62
133.05 0.224 1.908 8.53
239.15 0.221 1.554 7.04
345.60 0.228 1.417 6.20
400.95 0.122 0.383 3.15

Run-3 0.00 0.000 0.000 0.00
7.55 0.149 0.703 4.71

53.85 0.212 0.837 3.94
130.25 0.224 0.875 3.91
295.80 0.236 0.936 3.97
462.15 0.221 0.868 3.92
508.45 0.025 0.019 0.76
rate-based model developed in this paper is capable of reproducing
main characteristics and processes of overland flow and sediment
transport.

Flow discharges in the three runs were almost the same during the
steady state due to the constant rainfall intensity (3.53 mm/min), as
shown in Table 1. Therefore, there were no significant changes in flow
depth in the three runs. Flow depth in the soil flume varied both
spatially and temporally due to non-uniform soil erosion caused by
scattered shields and rills. There were some isolated soils exposed
aboveflowsurface and experienced stronger rain splash than the areas
with relative deep flowdepth (fewmillimeters). Fig. 4c displays a first-
flush phenomenon observed in the first run. Since more andmore fine
sediment particles (primarily small clays and silts) on surface were
eroded, shields composed of large particles started developing at the
end of the first run, leading to a lower sediment concentration at the
beginning of the second run, as indicated in Table 1 and Fig. 5c. The
Fig. 4. Comparison between observed and simulated results for Run-1.
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time interval between thefirst and the second runwas 48 h and 30min
and the interval between the second and the third runwas 43 h. Before
the start of a new run, soil surface was levelled using the blade
mentioned in the previous section so that rills formed during previous
run were filled and the resulting soil surface was smooth. Significant
shielding phenomenon was observed in the third run, reducing both
sediment transport rate and concentration dramatically, as demon-
strated in Fig. 6. Comparisons among the corresponding parameter
values listed in Table 2 also illustrate that the value of parameter ξ
(erosion rate) drops from0.021 in runs-1 and2 to0.011 in run-3, clearly
indicating that the shielding effect is cumulative and it diminishes
erosion over time.

It should be noted that the initial high sediment concentrations
shown in Figs. 4–6 are not artifacts of a small initial discharge because
the sediment concentrations are calculated based on the dryweights of
sediments, asmentioned in the previous section.More sedimentswere
indeed collected during the initial sampling of each run. In addition,
the initial discharges (0.108 l/s, 0.114 l/s, and 0.149 l/s) used in the
computations of initial sediment concentrations are at the same order
of magnitude as the steady state discharges and thus are not small, as
shown in Table 1. Main differences between this model and other
calibrated, process-based erosionmodels include (1) thismodel is able
to simulate overland soil erosion and sediment transport processes
with any type of initial sediment concentrations such as an initial
sediment concentration of zero and any non-zero initial sediment
concentration including the first-flush type of sediment concentra-
tions, and (2) this model treats erosion and deposition as two different
processes. An implicit assumption involved in existing erosion models
Fig. 5. Comparison between observed and simulated results for Run-2.

Fig. 6. Comparison between observed and simulated results for Run-3.
is that sediment transport capacity is independent of sediment
transport regime (erosion/deposition) and has a unique vale for
given soil type, flow rate, and slope. However, Polyakov and Nearing
(2003) found that sediment transport capacity exhibits a hysteresis
phenomenon that depends on the sediment regime. The differences
and evidence mentioned above clearly indicate the major advantages
of the new model developed in this paper over the existing erosion
models.

It should be pointed out that it is possible that sediment con-
centration first rises from a non-zero value and reaches a peak in a
very short time, as shown in Figs. 3 and 4 of Heilig et al. (2001), and
then declines. In theory, the model developed in this paper is also able
to simulate such a process. Due to sampling limitations we were
unable to observe the sediment concentration variation in the very
first few seconds. However, in laboratory experiments we did notice
that it is the very turbid water (with high sediment concentration)
rather than the clear water (with zero sediment concentration) first
entered the sediment sampling container. Anyway, in this paper we
ignore the possibility that concentration first rises because it is
physically unimportant. A sensor-based technology may be employed
to conduct real-time sediment concentration sampling so that the
sediment concentration variation during the ponding period and thus
in the very first few seconds of overland flow can be determined.

5. Conclusions

A physically-based one-dimensional mathematical model is
developed for simulating overland flow and sediment transport
under constant rainfall. The model is comprised of (i) the kinematic-
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wave overland flow equation, (ii) a generalized and transport rate-
based advective equation for overland sediment transport, and (iii) a
semi-Lagrangian algorithm for numerical solution of the sediment
transport equation. A series of soil flume experiments under constant
rainfalls are also conducted to simulate the overland flow and
sediment transport and to test the sediment transport rate-based
model. Both numerical solutions of the sediment transport rate-based
model and experimental results show that (i) hydrographs display an
initial rising limb, followed by a constant discharge and then a
recession limb; (ii) sediment transport rate graphs exhibit the
distributions similar to the hydrographs; and (iii) sediment concen-
tration graphs show an initial steep-receding limb, followed by a
constant distribution, and ended with a receding tail. The numerically
simulated hydrographs, sediment transport rate, and sediment
concentration are in good agreement with corresponding experi-
mental measurements, demonstrating the laboratory proof-of-con-
cept of the transport rate-based model.
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