
Computers & Operations Research 36 (2009) 2632 -- 2637

Contents lists available at ScienceDirect

Computers &Operations Research

journal homepage: www.e lsev ier .com/ locate /cor

An improved heuristic for the capacitated arc routing problem

Luís Santosa,c, João Coutinho-Rodriguesa,c,∗, John R. Currentb,c
aDepartment of Civil Engineering, Faculty of Sciences and Technology, Polo II, University of Coimbra, 3030-788 Coimbra, Portugal
bDepartment of Management Sciences, The Fisher College of Business, The Ohio State University, 632 Fisher Hall, 2100 Neil Avenue, Columbus. OH 43210-1144, USA
cINESC-Coimbra, R. Antero Quental, 199, 3000-033 Coimbra, Portugal

A R T I C L E I N F O A B S T R A C T

Available online 19 November 2008

Keywords:
Vehicle routing
Capacitated arc routing problem
Heuristics

The capacitated arc routing problem (CARP) is an important and practical problem in the OR literature.
In short, the problem is to identify routes to service (e.g., pickup or deliver) demand located along the
edges of a network such that the total cost of the routes is minimized. In general, a single route cannot
satisfy the entire demand due to capacity constraints on the vehicles. CARP belongs to the set of NP-hard
problems; consequently numerous heuristic and metaheuristic solution approaches have been developed
to solve it. In this paper an “ellipse rule” based heuristic is proposed for the CARP. This approach is
based on the path-scanning heuristic, one of the mostly used greedy-add heuristics for this problem. The
innovation consists basically of selecting edges only inside ellipses when the vehicle is near the end of
each route. This new approach was implemented and tested on three standard datasets and the solutions
are compared against: (i) the original path-scanning heuristic; (ii) two other path-scanning heuristics and
(iii) the three best known metaheuristics. The results indicate that the “ellipse rule” approach lead to
improvements over the three path-scanning heuristics, reducing the average distance to the lower bound
in the test problems by about 44%.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle routing is an important activity in both the public and
private sectors. In the United States for example, transportation costs
account for approximately 6% of the GDP [1]. As a consequence,
even small improvements in routing efficiency can result in large
cost reductions. Improving routing efficiency will become even more
important as a result of recent increases in fuel prices. A common
vehicle routing problem involves the pickup or delivery of items
located along the arcs of a road network (e.g., trash collection and
parcel delivery). Other examples of real applications can be found in
Assad and Golden [2], Dror [3], and Santos et al. [4]. Many of these
applications can be structured as a capacitated arc routing problem
(CARP).

Golden and Wong [5] introduced CARP. The problem may be
stated as follows. Let G = (N, E) be an undirected graph, where
N={v0, . . . ,vn} is a node set and E={[vi,vj] : vi,vj ∈ N, i < j} is an edge
set. Each edge [vi,vj] of E has a nonnegative cost or length cij and

∗ Corresponding author at: Department of Civil Engineering, Faculty of Sciences
and Technology, Polo II, University of Coimbra, 3030-788 Coimbra, Portugal.
Tel.: +351239797145; fax: +351239797123.

E-mail addresses: lsantos@dec.uc.pt (L. Santos), coutinho@dec.uc.pt
(J. Coutinho-Rodrigues), current.1@osu.edu (J.R. Current).

0305-0548/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2008.11.005

nonnegative demand or weight qij. Node v0 represents a depot at
which � identical vehicles of capacityw (w�max[vi ,vj]∈Eqij) are based.
The number of vehicles (�) is a decision variable. The CARP consists
of designing a set of vehicle routes, such that: (1) each positive-
demand edge is serviced by exactly one vehicle; (2) each route starts
and ends at the depot; (3) the total demand of all edges serviced
by any vehicle does not exceed w; and (4) the total routing cost is
minimized.

CARP can be formulated as an integer linear programming and
solved optimally using a branch-and-bound algorithm (e.g., [6,7]).
Given that CARP belongs to the class of NP-hard problems [5] such
approaches are limited to small problem instances. For example,
Hirabayashi et al. [6] solved problems with up to 30 edges and Longo
et al. [7] with up to 87 edges.

As a result of CARP's many practical applications and its com-
putational complexity, considerable research has been devoted to
developing heuristic procedures to solve it. Path-scanning [8] is the
most commonly used greedy-add solution approach to CARP. At each
iteration, these heuristics “scan” the remaining unserved edges to
determine which one should be visited next on the current vehicle
route. This research introduces a new path-scanning heuristic that
includes an “ellipse rule” to solve the problem. In essence, the ellipse
rule only considers edges inside an ellipse when the vehicle is near
the end of a route (i.e., when the vehicle load is near its capacity).
This new heuristic was implemented and tested on three standard

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
mailto:lsantos@dec.uc.pt
mailto:coutinho@dec.uc.pt
mailto:current.1@osu.edu


L. Santos et al. / Computers & Operations Research 36 (2009) 2632 -- 2637 2633

data sets. The results are compared to prior path-scanning heuris-
tics and the three best known metaheuristics for the problem. When
compared to the existing path-scanning heuristics, the experimental
tests demonstrate that the new heuristic generates higher quality
results in comparable CPU time. When compared to the metaheuris-
tics, the experimental tests demonstrate that the new heuristic gen-
erates lower quality results, as expected, but in considerably less
CPU time. Other reasons for the development of improved heuristics
for CARP are presented in Section 2.1.

The remainder of this paper is organized as follows. Existing
heuristic solutions for CARP are presented in the next section.
The new ellipse-based heuristic is introduced in the third sec-
tion. Computational results and comparisons are given in the
fourth section followed by a summary and conclusions in the last
section.

2. Existing heuristic solution procedures for CARP

2.1. General overview

Over the years, various heuristics (e.g., [5,8,9]) and lower
bound generating techniques (e.g., [5,7,10,11]) have been proposed
for CARP. These heuristics (usually referred to as “greedy-add
heuristics”) generally provide good approximate solutions in accept-
able CPU time, given the computational complexity of the problem.
Descriptions and computational performance comparisons of these
heuristics are presented in Coutinho et al. [12] which concluded
that the CARP solution heuristic first introduced by Golden et al. [8]
is one of the best in terms of solution quality and CPU time required
to obtain the solutions.

More recently, metaheuristics have been proposed to solve CARP.
These include tabu search [13,14], genetic algorithms [15], and ant
colony optimization [16]. In general, these metaheuristics identify
better solutions than do the path-scanning heuristic. However, this
improvement comes with an increase in solution time

The development of improved greedy-add heuristics for CARP is
still an important area of research even though the application of
metaheuristics to CARP has led to improved solutions. Several rea-
sons exist for this in addition to reduced solution times required.
First, greedy-add heuristics are more intuitive as they mimic the
way that people approach many problems. Consequently, they are
more likely to be accepted by managers. Second, they are easier
to implement (program and encode) and do not require the de-
termination and fine tuning of various metaheuristic parameters
such as mutation rate, aspiration levels, tabu list length, number
of ants, evaporation coefficient, etc. Third, their simplicity makes
them more flexible as they can be more easily modified to accom-
modate changes in the underlying problem (e.g., prohibited turns
and maximum route duration). Finally, they form the starting point
for various metaheuristics. For example, the genetic algorithm of
Lacomme et al. [15] and Belenguer et al. [17], and the algorithm
based on ant colony optimization of Lacomme et al. [16] use the
original and a modified path-scanning heuristic to generate one of
its “good” starting solutions and the tabu search approach of Greis-
torfer [14] starts with a greedy-add heuristic solution presented in
Greistorfer [18].

2.2. Previous path-scanning heuristics for CARP

In the original path-scanning heuristic [8] each solution is con-
structed by adding one edge at a time. In determining the edge to
add, the heuristic considers variously edge length, edge demand,
distance to the depot node, v0, distance to the next unserved edge,
and unused capacity of the vehicle. Specifically, Golden et al. [8]

proposed five criteria to determine which edge to service next on a
route. These criteria may be stated as follows:

1. minimize the ratio cij/qij;
2. maximize the ratio cij/qij;
3. minimize the cost from node vj back to the node v0;
4. maximize the cost from node vj back to the node v0;
5. if the vehicle is less than half-full use criterion 4, otherwise use

criterion 3,

where vi is the last node visited by the route to date and [vi,vj] is a
feasible unserved edge (i.e., qij is less than or equal to the remaining
vehicle capacity).

A problem instance is solved five times, using a different se-
lection criterion each time. The best of the five solutions gener-
ated is the final solution. Golden et al. [8] did not state which
edge should be selected if all edges [vi,vj] incident to the last node
added (vi) have no unserved demand. The generally accepted in-
terpretation (e.g., [15,17,19]) in such situations is that the feasible
unserved edge nearest to node vi ([vp,vj]) is added, where near-
est is measured by shortest path distance between node vi and
node vp. The appropriate selection criterion is used whenever a
tie for the nearest edge occurs (in this case, vi is replaced by vp
in the criteria described above). This interpretation is used in this
research.

Pearn [9] modified this approach by selecting one of the five
criteria at random, with equal probability, whenever a tie for the
nearest edge (incident or not to the last node added to the route)
occurs. Each problem was solved k times (results for k = 30 were
published) and the best solution was selected at the end. One of
the main advantages of this approach vis-à-vis the Golden et al. [8]
heuristic, is that it generally generates more solutions; consequently,
the probability of identifying a better solution increases.

Recently, Belenguer et al. [17] proposed another path-scanning
heuristic. At each iteration, this heuristic adds the feasible unserved
edge that is nearest to the last node added (vi), as in the other
path-scanning heuristics described above. Each problem is solved
k times and the best solution is selected at the end. At any itera-
tion, if there exist more than one feasible unserved edge that are
at the minimum distance from node vi, these edges are referred
to as “tied” edges. In such situations, Belenguer et al. [17] ran-
domly select one of the tied edges to be the next edge added to the
route. This differs from the Golden et al. [8] and Pearn [9] heuris-
tics in that they would select the next edge to be added in such
situations based upon the particular selection criterion in effect at
the time.

Belenguer et al. [17] compared their heuristic with the random
selection of criteria [9] using three standard data sets (referred to
as: gdb, val and egl, and described in Section 4). Belenguer et al. [17]
presented results for k=20 and 50. These results suggested that the
random selection of tied edges is slightly worse for the gdb and val
problems, and is slightly better for the egl problems. However, in all
three data sets, the differences are very small. In order to confirm
these results, we solved the problems with k = 1000, 10000 and
20000. Our results, presented in Table 1, confirm the results obtained
by Belenguer et al. (2006).

3. A new “ellipse rule” based path-scanning heuristic

The new heuristic is similar to the one proposed by Belenguer et
al. [17] in that it randomly selects tied edges and solves each problem
k times. It constructs a route by adding a new edge at each iteration.
The edge added is the nearest edge to the last one added. In cases
where there are ties for the nearest edge, the heuristic randomly



2634 L. Santos et al. / Computers & Operations Research 36 (2009) 2632 -- 2637

Table 1
Evaluation of the three path-scanning heuristics

k PSP (k) RSE (k) RSE_ER (k)

�= 0.5 �= 1 �= 1.5 �= 2 �= 2.5 �= 3

�LB �LB �LB #UE (1) �LB #UE (1) �LB #UE (1) �LB #UE (1) �LB #UE (1) �LB #UE (1)

gdb files 1000 3.73 3.94 2.27 7.01 1.76 18.38 1.47 22.20 2.10 32.35 2.05 36.78 5.06 51.47
10 000 2.75 2.79 1.65 7.64 1.32 18.54 1.13 22.46 1.39 33.21 1.66 36.06 3.69 51.48
20 000 2.61 2.53 1.49 7.59 1.20 18.21 1.07 22.54 1.27 33.21 1.44 36.06 3.49 51.00

val files 1000 8.83 9.21 7.89 3.15 6.83 6.61 6.28 10.61 5.64 13.07 5.62 17.50 6.53 20.70
10 000 6.90 6.55 5.90 3.15 5.01 6.44 4.56 9.92 4.10 13.61 4.41 17.26 5.01 21.00
20 000 5.83 6.19 5.35 2.53 4.65 6.96 3.93 9.45 3.73 14.18 3.83 17.49 4.65 20.89

egl files 1000 18.53 18.30 11.98 12.12 9.95 19.05 10.33 22.94 13.95 28.54 16.20 32.53 21.69 36.33
10 000 16.91 16.63 10.82 12.20 8.86 17.38 8.95 23.32 12.01 27.88 14.58 33.35 19.88 35.74
20 000 16.64 16.35 10.65 11.76 8.51 17.35 8.74 22.90 11.49 27.68 13.99 32.87 19.39 36.61

Global average 9.19 9.17 6.44 7.46 5.34 14.32 5.16 18.48 6.19 24.86 7.09 28.88 9.93 36.14
Average for k= 1000 10.36 10.48 7.38 6.18 6.03 7.23 7.96 11.09
Average for k= 10000 8.85 8.66 6.12 5.07 4.88 5.83 6.89 9.53
Average for k= 20000 8.36 8.36 5.83 4.79 4.58 5.50 6.42 9.18

�LB—Average deviation to the LB (%). #UE (1)—Average number of unserved edges that satisfy inequality (1) (%).

selects one of the tied edges to add. The new heuristic differs from
the Belenguer et al. [17] one in that it utilizes an “ellipse rule”
when the vehicle load is near capacity. Intuition suggests that as a
vehicle's load approaches its capacity, its route should stay closer
to the depot to reduce its cost to return to the depot when full.
The “ellipse rule” is designed to implement this intuition. When
the vehicle is near the end of a route, this rule forces the vehicle
to service only edges near the shortest path between the last ser-
viced edge and the depot (v0). This rule is similar to the one pro-
posed by Norback and Love [20] for solving the travelling salesman
problem.

The “ellipse rule” is defined as follows. Let ned be the number
of edges with positive demand in the network, td the total demand
to be collected, tc the total cost assigned to edges with positive
demand, � a real parameter, and [vh,vi] the last serviced edge on the
route. If the remaining capacity of the vehicle is less than or equal to
�× td/ned (i.e., the average demand on the arcs), then the next edge
to be serviced [vp,vj] must be the nearest edge to [vh,vi] (vi = vp, if
the edges are adjacent) satisfying the condition:

SP(vi,vp)+ cpj + SP(vj,v0)� tc/ned+ SP(vi,v0), (1)

where for example, SP(vi,vp) is defined as the shortest path cost
between the nodes vi and vp, and vi and v0 are the foci of the
ellipse. If no feasible edge (i.e., an edge with demand less than or
equal to the remaining capacity of the vehicle) satisfies (1) then the
vehicle returns directly to the depot. In general, as � increases, the
ellipse rule is invoked earlier in the construction of a vehicle route.
When enforced, condition 1 limits the addition of arcs to the route
to those that are within an “ellipse” such as those shown in Fig. 1.
In general, tc/ned will be less than SP(vi,v0) because it represents
the average cost (distance) of an arc in the network while SP(vi,v0)
must include at least one arc and generally will include multiple
arcs. However, tc/ned may be greater than SP(vi,v0) if node vi is near
node v0. In Fig. 1, we present 3 ellipses for various values of tc/ned
where c1+ c2= tc/ned+SP(vi,v0). We set SP(vi,v0)=1 and set tc/ned
equal to 0.1, 0.5, and 1.0. As tc/ned increases, the area of the ellipse
increases and its shape approaches its limit which is a circle. As this
occurs, more unserved arcs are likely to be eligible for inclusion on
the current route.

Let nmit be the maximum number of iterations, Scur the solution
being constructed in the current iteration, Sbest the best solution
obtained so far, CScur and CSbest the total cost of solutions Scur and

1.0/ =nedtc

5.0/ =nedtc

1/ =nedtc

1c

iv 0v
2c

1c

iv 0v

2c

1c

iv 0v

2c

Fig. 1. Comparison of ellipses obtained for SP(vi ,v0)=1 and several values of tc/ned.

Sbest , respectively, rvc the remaining vehicle capacity, w the vehicle
capacity, LB the lower bound for the problem, and F the set of feasible
unserved edges that are at minimum distance from the last node
added to Scur .



L. Santos et al. / Computers & Operations Research 36 (2009) 2632 -- 2637 2635

Given these definitions, the new path-scanning heuristic may be
stated as follows.

CSbest ←+∞
iter← 1
while ((iter�nmit) and (CSbest > LB)) do //if both the maximum nr.
of iterations and the LB are not attained

Scur ← v0
rvc← w
for i= 1 to ned do //for all the edges with positive demand

if (rvc >�× td/ned) then
Determine F

else
Determine F satisfying equation (1)

end if
if (F = ∅) then

Scur ← Scur ∪ {v0} //the vehicle returns to the depot
rvc← w

else
Select [vp,vj] randomly from F //an additional edge is
serviced in the solution being constructed
Scur ← Scur ∪ {[vp,vj]} ∪ {vj}
rvc← rvc− qpj

end if
end for
if (CScur <CSbest) then //if the current solution is better than the
best so far

Sbest ← Scur
end if
iter← iter+ 1

end while.

4. Computational results

The new “ellipse rule” based heuristic, and the path-scanning
heuristics of Golden et al. [8], Pearn [9], and Belenguer et al. [17]
were implemented and tested on the 23 problems proposed by
DeArmon [21] (gdb files), the 34 problems proposed by Benavent
et al. [10] (val files) and the 24 problems proposed by Belenguer
and Benavent [11] (egl files), based on real road networks used by
Li and Eglese [22]. The first set of problems ranges from 7 to 27
nodes and from 11 to 55 edges. In keeping with general practice,
problems 8 and 9 were removed from the 25 originally proposed
because they contain inconsistencies. The second set of problems
ranges from 24 to 50 nodes and from 34 to 97 edges. The third
set of problems ranges from 77 to 140 nodes and from 98 to 190
edges. These data sets were used because they are the standard data
sets for testing CARP solution heuristics (data can be downloaded at
http://www.uv.es/∼belengue/carp.html). These problems were also
solved with three of the best known metaheuristics. These include
the tabu search procedure of Hertz et al. [13], the genetic algorithm-
based procedure of Lacomme et al. [15], and the ant colony ap-
proach of Lacomme et al. [16]. The solutions generated by the vari-
ous heuristics and metaheuristics were compared to each other and
to the lower bounds (LB) identified by Belenguer and Benavent [11].
To facilitate comparisons, the heuristics were run on a 1GHz Pen-
tium III with 368K RAM which is similar to the computers used by
the three metaheuristics.

The following notation will be used in presenting the results of
these tests.

PSG: original path-scanning heuristic with 5 criteria [8] (as imple-
mented by Lacomme et al. [15], Belenguer et al. [17], and Evans
and Minieka [19]);

PSP (k): path-scanning heuristic modification of Pearn [9] with 5
random selection criteria in each iteration (uniform distribution
used) and k runs for each problem (as implemented by Lacomme
et al. [15], Belenguer et al. [17], and Evans and Minieka [19]);

RSE (k): path-scanning heuristic with random selection of tied edges
and k runs for each problem as proposed and implemented by
Belenguer et al. [17];

RSE_ER (k): “ellipse rule” based path-scanning heuristic, with k runs
for each problem, introduced in this article;

CARPET: metaheuristic proposed by Hertz et al. [13] based on tabu
search (CPU times were scaled to 1GHz Pentium III PC by Lacomme
et al. [15]);

MA: metaheuristic proposed by Lacomme et al. [15] based on genetic
algorithms (CPU times were obtained by 1GHz Pentium III PC);

BACO: metaheuristic proposed by Lacomme et al. [16] based on ant
colony optimization (CPU times were obtained by 800MHz Pen-
tium III PC).

The deviation percentage between the obtained solution cost (SC)
and the lower bound (LB), for each problem, are used to evaluate the
solution quality (i.e., deviation percentage is equal to ((SC−LB)/LB)×
100%).

Table 1 presents the results obtained by two of the existing path-
scanning heuristics, PSP and RSE, and the new approach, RSE_ER, for
k = 1000, 10000 and 20000. The table also includes the results of
the RSE_ER heuristic for six values of � (0.5, 1.0, 1.5, 2.0, 2.5, and
3.0). These results indicate that RSE_ER generated better solutions
than did either PSP or RSE on every data set for every value of k and
for every value of � except for �= 3 in the gdb and egl datasets. For
example, the “global average” for the average deviations to the LBs
for the various problem sets were 9.19% and 9.17% for PSP and RSE,
respectively, versus 6.44%, 5.34%, 5.16%, 6.19%, 7.09%, and 9.93% for
the RSE_ER for the six values of �.

Overall, the best results for the RSE_ER heuristic occurred when
�= 1.5. As reported in the “global average” row, the global averages
of the deviations to the LBs for the RSE_ER solutions decreased as �
went from 0.5 to 1.5 and then increased as � went from 1.5 to 3.0.
In addition, these global averages were best for �= 1.5 for all three
values of k.

These results are not surprising as increasing � invokes the ellipse
rule earlier in the construction of a route. If it is invoked too early
(e.g., �= 2.5 or 3.0), condition 1 is not restrictive enough and keeps
the route close to the depot too early in the route construction. If
� is too small (e.g., 0.5), it is overly restrictive on arc selection and
keeps the route close to the depot too late in the route construction.
The relative effects that � may have on arc selection options can be
seen in the “#UE” columns of Table 1. The entries in these columns
are the average number of unserved edges that satisfy condition (1)
when invoked. As the “global” averages for these values reported in
the last row of Table 1 indicate, the number of unserved edges that
satisfy condition 1 are 7.46%, 14.32%, 18.48%, 24.86%, 28.88%, and
36.14% for �= 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, respectively.

Further analysis of the average global results (“global average”
row of Table 1) for the 81 problems indicates that the results attained
by the RSE heuristic are similar to those attained by the PSP heuristic.
The RSE results are slightly worse than those for PSP for the gdb and
val files and are slightly better for egl files (for all three values of k).
These results indicate that random selection among tied edges (e.g.,
RSE) is as effective as selection based upon “improvement criteria”
(e.g., PSP). This is further supported by the results presented in
Table 2 comparing the average deviations to the LBs for the PSG
heuristic which uses five “improvement criteria” and RSE for k = 5.
These results indicate that heuristics based upon “greedy” selection
criteria should be compared to ones based upon “random” selection
as well as others based upon “greedy” criteria. However as discussed
earlier, and as shown in Table 1, the introduction of the “ellipse rule”

http://www.uv.es/~belengue/carp.html


2636 L. Santos et al. / Computers & Operations Research 36 (2009) 2632 -- 2637

Table 2
Comparison between heuristics and metaheuristics approaches

Av. deviation to the LB (%) Av. CPU time (seconds)

gdb val egl gdb val egl

Heuristics
PSG 10.62 16.34 26.05 0.00 0.01 0.02
RSE (5) 10.59 18.51 25.54 0.00 0.01 0.02
RSE_ER (5) 7.86 15.77 15.84 0.01 0.02 0.03

PSP (10000) 2.75 6.90 16.91 2.59 8.51 22.15
RSE (10000) 2.79 6.55 16.63 2.41 8.45 21.85
RSE_ER (10000) 1.13 4.56 8.95 3.12 6.51 23.04

Metaheuristics
CARPET 0.48 1.96 4.74 9.03 63.86 a

MA 0.15 0.61 2.47 5.29 38.35 526.99
BACO 0.28 0.90 4.11 24.77 276.32 2341.3

aUnknown CPU time.

(RSE_ER) greatly improves the quality of the RSE solutions. For ex-
ample, the global average deviation to the LBs was 9.17% for RSE
and 5.16% for RSE_ER with � = 1.5 (i.e., the average deviation was
globally reduced by about 44%).

Table 2 presents the results obtained by the three path-scanning
heuristics, PSG, PSP and RSE, by the new approach, RSE_ER (�=1.5),
and also by the best known metaheuristics (CARPET, MA and BACO).
RSE and RSE_ER were tested for five iterations in order to attain
results comparable with PSG (which is executed five times, one time
for each of the five criteria). Conclusions are similar to those obtained
from the results presented in Table 1. For example, comparing the
ratios of average deviation to the LBs one finds that the ratio of PSG to
RSE_ER(5) solutions ranged from 1.04 to 1.64 and the ratio of RSE(5)
to RSE_ER(5) ranged from 1.17 to 1.61, for the three problem sets.
Similar ratios for the PSP(10000) to RSE_ER(10000) ranged from
1.51 to 2.43 and RSE(10000) to RSE_ER(10000) ranged from 1.44 to
2.47. The new heuristic generated better solutions on average than
did the existing path-scanning heuristics in all three problem sets.
The times reported in Table 2 indicate that these improved results
were attained with little or no additional CPU time.

As expected, the metaheuristics generated better solutions, on
average, than did the path-scanning heuristics. For example, the
average ratios of average deviation to LBs of RSE_ER(10000) to
CARPET, MA, and BACO over all data sets were 2.19, 6.21, and 3.76,
respectively. These improvements came at a large cost in increased
solution times as shown by the ratios of average solution times for
the problem sets for the metaheuristics to those for RSE_ER(10000)
which varied from 2.89 to 9.81 for CARPET, 1.70 to 22.87 for MA,
and 7.94 to 101.62 for BACO. The importance of these increased
solution times is mentioned in the next section.

5. Conclusions

Due to its practicality and computational complexity, the capaci-
tated arc routing problem (CARP) has received considerable attention
in the Operations Research literature. Several heuristics and meta-
heuristics have been developed to solve it. This article introduces a
new path-scanning heuristic for the CARP. The heuristic constructs a
route by adding feasible edges (i.e., with demand less than or equal
to the remaining vehicle capacity) one at a time based on a near-
est neighbor strategy. If there is a tie for the nearest neighbor, one
of the tied edges is selected at random. As the vehicle approaches
the end of a route, an ellipse rule is invoked which constrains the
options for the next edge added to those near the shortest path be-
tween the last serviced edged and the depot. The new heuristic was
tested on three well-known data sets and the solutions were com-
pared to lower bounds obtained by Belenguer and Benavent [11] and

to the solutions generated by the three previous best path-scanning
heuristics for CARP [8,9,17] and the three best metaheuristics for the
problem [13,15,16].

The results of these tests indicate that a random selection of tied
edges performs as well as the multi-criterion selection procedures
proposed by Golden et al. [8] and Pearn [9]. This supports the find-
ings of Belenguer et al. [17] and suggests that greedy-add heuristics
should be compared to random-add heuristics during their testing
and evaluation for other problems as well as for CARP. The results
also indicate that the new path-scanning heuristic (RSE_ER) gen-
erates better quality solutions than do the existing path-scanning
heuristics over all three standard problem sets. This improvement
(about a 44% reduction in overall average gap to the lower bounds)
comes with little or no increase in solution time.

As expected, metaheuristics in general generate better solutions
for the CARP than do path-scanning heuristics. However, these
improvements come with a cost of increased solution time. For
example, on average the metaheuristics increased solution times
by factors ranging from 1.70 for the smallest problem instances to
101.62 for the largest instances.

The development of more efficient and effective greedy heuristics
for CARP like RSE_ER is an important area of research. This is true
for several reasons.

First, solution time is an important criterion in many applications
of CARP; especially in those for which edge demand is uncertain
and/or varies while the route is being served. In such dynamic and/or
stochastic applications, CARP may need to be solved numerous times
in “real-time” to incorporate the actual demand encountered as the
routes progress. As Table 2 indicates, solution times for the CARP
metaheuristics can become quite large for even relatively small (i.e.,
maximum of 140 nodes and 190 edges) problems like those in the
data sets. Real world problems are often much larger. For example, a
CARP application to trash collection [4] to part of Coimbra, Portugal
(total population of about 120000 inhabitants), included 756 nodes
and 1051 edges. For large networks, metaheuristic solution times
may be too great for even static, deterministic applications of CARP.

Second, they are often used to identify “starting” solutions for
metaheuristics. Consequently, their solution time (efficiency) and
quality (effectiveness) have an important impact on the efficiency
and effectiveness of the metaheuristic. Third, the simplicity of greedy
heuristics like RSE_ER makes them easier to encode and to modify
to accommodate various real-world specifics of the underlying prob-
lem. Fourth, path scanning heuristics do not require the determi-
nation of various input parameters associated with metaheuristics.
Finally, decision makers often find greedy-add heuristics intuitive.
As a consequence, they may be more willing to accept them and
implement their results.



L. Santos et al. / Computers & Operations Research 36 (2009) 2632 -- 2637 2637

Our research indicates that the new greedy heuristic presented in
this article is the best path-scanning based heuristic to solve CARP. It
can be used to either solve instances of CARP directly or to generate
starting solutions for various metaheuristics.

References

[1] MacroSys Research and Technology. Logistics costs and U.S. gross domestic
product. Federal Highway Administration Department of Transportation; 2005,
August 25 〈http://ops.fhwa.dot.gov/freight/freight_analysis/econ_methods/lcdp_
rep/index.htm〉.

[2] Assad AA, Golden BL. Arc routing methods and applications. In: Ball MO et
al., editor. Handbook in operations research and management science, vol. 8,
Elsevier; 1995. p. 375–483.

[3] Dror M. Arc routing: theory, solutions and applications. MA: Kluwer Academic
Publishers; 2000.

[4] Santos L, Coutinho-Rodrigues J, Current JR. Implementing a multi-vehicle multi-
route spatial decision support system for efficient trash collection in Portugal.
Transportation Research Part A: Policy and Practice 2008;42(6):922–34.

[5] Golden BL, Wong RT. Capacitated arc routing problems. Networks 1981;11:
305–15.

[6] Hirabayashi R, Saruwatari Y, Nishida N. Tour construction algorithm for the
capacitated arc routing problems. Asia-Pacific Journal Operations Research
1992;9:155–75.

[7] Longo H, Aragão MP, Uchoa E. Solving capacitated arc routing problems using
a transformation to the CVRP. Computers and Operations Research 2006;33:
1823–37.

[8] Golden BL, DeArmon J, Baker EK. Computational experiments with algorithms
for a class of routing problems. Computers and Operations Research 1983;10:
47–59.

[9] Pearn WL. Approximate solutions for the capacitated arc routing problem.
Computers and Operations Research 1989;16:589–600.

[10] Benavent E, Campos V, Corberán A, Mota E. The capacitated arc routing problem:
lower bounds. Networks 1992;22:669–90.

[11] Belenguer JM, Benavent E. A cutting plane algorithm for the capacitated arc
routing problem. Computers and Operations Research 2003;30(5):705–28.

[12] Coutinho-Rodrigues J, Rodrigues N, Clímaco J. Solving an urban routing problem
using heuristics: a successful case study. Belgian Journal of Operations Research,
Statistics and Computer Science, Combinatorial Optimization in Applications
1993;33:19–32 [special issue].

[13] Hertz A, Laporte G, Mittaz M. A tabu search heuristic for the capacitated arc
routing problem. Operations Research 2000;48:129–35.

[14] Greistorfer P. A tabu scatter search metaheuristic for the capacitated arc routing
problem. Computers and Industrial Engineering 2003;44(2):249–66.

[15] Lacomme P, Prins C, Ramdane-chérif W. Competitive memetic algorithms for
arc routing problems. Annals of Operations Research 2004;131:159–85.

[16] Lacomme P, Prins C, Tanguy A. First competitive ant colony scheme for
the CARP. Research Report LIMOS/RR-04-21; 2004 〈http://www.isima.fr/limos/
publi/RR-04-21.pdf〉.

[17] Belenguer JM, Benavent E, Lacomme P, Prins C. Lower and upper bounds for the
mixed capacitated arc routing problem. Computers and Operations Research
2006;33:3363–83.

[18] Greistorfer P. Computational experiments with heuristics for a capacitated arc
routing problem. In: Derigs U, Bachem A, Drexl A, editors. Operations research
proceedings, 1994. Berlin: Springer; 1995. p. 185–90.

[19] Evans J, Minieka E. Optimization algorithms for networks and graphs. second
ed., New York: Marcel Dekker; 1992.

[20] Norback JP, Love RF. Geometric approaches to solving the traveling salesman
problem. Management Science 1977;23(11):1208–23.

[21] DeArmon JS. A comparison of heuristics for the capacitated Chinese postman
problem. Master's thesis, University of Maryland at College Park; 1981.

[22] Li LYO, Eglese RW. An interactive algorithm for vehicle routeing for winter-
gritting. Journal of the Operational Research Society 1996;47:217–28.

http://ops.fhwa.dot.gov/freight/freight_analysis/econ_methods/lcdp_rep/index.htm
http://ops.fhwa.dot.gov/freight/freight_analysis/econ_methods/lcdp_rep/index.htm
http://www.isima.fr/limos/publi/RR-04-21.pdf
http://www.isima.fr/limos/publi/RR-04-21.pdf

	An improved heuristic for the capacitated arc routing problem
	Introduction
	Existing heuristic solution procedures for CARP
	General overview
	Previous path-scanning heuristics for CARP

	A new ``ellipse rule'' based path-scanning heuristic
	Computational results
	Conclusions
	References


