

Masters in Informatics Engineering

Internship
Final Report

Development of a browser-
based Audio/Video

Application using HTML5 and
WebRTC

Luís Manuel Tavares de Matos
lmmatos@student.dei.uc.pt

WIT Software Supervisor:

Eng. Frederico Lopes

DEI Supervisor:

Dr. Mario Rela

Date: 3rd July 2013

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 ii

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

Pólo II, Pinhal de Marrocos, 3030-290 Coimbra

+351239790000|+351239701266| info@dei.uc.pt

| http://www.uc.pt/fctuc

WIT Software, S.A.

EN1/IC2, Km 185,6, Banhos Secos, Santa Clara, 3040-032

Coimbra

+351239801030|+351239801039|info@wit-
software.com | http://www.wit-software.com/

Candidate:

Name: Luís Manuel Tavares de Matos

Student Number: 2007183871

Contact: lmmatos@student.dei.uc.pt

DEI Supervisor:

Name: Mário Rela

Contact: mzrela@dei.uc.pt

WIT Software Supervisor:

Name: Frederico Lopes

Contact: frederico.lopes@wit-software.com

mailto:info@dei.uc.pt
http://www.uc.pt/fctuc
mailto:info@wit-software.com
mailto:info@wit-software.com
http://www.wit-software.com/

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 iii

Abstract

Rich Communication Services (RCS) is an industry effort focused on the use of IP
Multimedia Subsystem (IMS) for providing enhanced mobile phone communication
services. RCS’s goal is to enable subscribers to establish calls between eachother despite
their mobile operator and device type. Since this is only possible through unified standards
RCS is a reliable base for communications standardization.

The Web is an environment where users communicate with each other frequently. Web-
based solutions can reach a wide variety of devices. New technologies such as WebRTC and
Firefox OS come to push the web to the next level.

WebRTC is the next step in browser-based real-time communications. It consists in adding
native support for real-time audio and video communications in a web-browser. Firefox OS
is an Operative System for mobile devices built upon HTML5 in development by Mozilla.

WIT Software is a RCS Unified Communications solution provider, WIT’s Communications
Suite (WCS) is complete set of communication products, for web, mobile and desktop
scenarios.

In this internship, the main goal is to develop two RCS client applications to be added to the
WCS family of products. A new Web-Based client built atop WebRTC and a new mobile
client for Firefox OS.

Keywords

“WebRTC”, “Communications”, “Real-time”, “Browser”, “Rich Web Applications”, “Rich
Communications Services”, “RCS”, “joyn”, “FirefoxOS”, “HTML5”, “W3C”,
“Boot2Gecko”

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 iv

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 v

Index

1. Introduction ... 1

Motivation ... 1

Goals 2

Document Structure .. 2

2. Project Planning .. 3

2.1. Software Development Methodology .. 3

Project Execution Control .. 3

Versioning ... 3

2.2. Project Team .. 3

2.3. Planning .. 4

First Semester ... 4

Second Semester .. 5

Project Roadmap Events .. 5

2.4. Overview of the First Semester .. 6

2.5. Planed Work Plan for the Second Semester ... 7

2.6. Overview of the Second Semester ... 8

3. State of the Art .. 9

3.1. Rich Communication Services .. 9

3.1.1. What is RCS-e ... 9

3.2. WWC WebRTC ... 10

3.2.1. Overview .. 10

3.2.2. WebRTC Architecture .. 10

3.2.3. Conducted Studies .. 12

3.2.4. Current WebRTC Browser Support .. 13

3.2.5. Analysis of Competitors ... 13

Frisb – Frisb™ .. 13

Phono – Voxeo .. 14

Sipml5 – Doubango .. 14

Twelephone – GetVocal ... 14

Open tok – Tokbox .. 14

Clientless Web Softphone – Thrupoint ... 14

Connect – Utribo .. 15

Zingaya – Zingaya, inc .. 15

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 vi

TenHands – TenHands ... 15

Bistri – bistri © .. 15

Considerations .. 16

Competitor Comparison ... 17

3.2.6. Project Technologies .. 18

Q Promises ... 18

Angular JS ... 18

WebSockets .. 18

Chrome WebRTC Implementation ... 19

Grunt JS .. 20

JSON 20

3.3. Joyn for Firefox Client ... 21

3.3.1. The Firefox OS Operative System .. 21

3.3.1.1. Firefox OS Architecture ... 21

3.3.1.2. Firefox OS Applications ... 22

3.3.1.2.1. Web API’s .. 22

3.3.1.2.2. Application Security .. 22

3.3.2. Competitor Analysis .. 23

joyn for Firefox OS (Solaiemes) .. 23

3.3.2.1. Overview ... 23

4. Proposed Approach .. 24

4.1. Wit Web Communicator WebRTC .. 24

4.1.1. Features ... 24

4.1.2. Requirements ... 24

4.1.3. User Stories .. 24

4.1.4. Use Cases .. 25

Client 25

Server 27

4.1.5. Architecture .. 27

Overview ... 27

Client 28

Server 29

4.2. Joyn for Firefox OS Client .. 30

4.2.1. Architecture Overview .. 30

4.2.2. Design Principles .. 30

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 vii

4.2.3. Architecture ... 31

5. Results Obtained ... 32

5.1. WIT Web Communicator WebRTC Client .. 32

5.1.1. Tests .. 33

5.1.1.1. Browser Interoperability ... 33

5.2. Joyn for Firefox OS client ... 35

5.3. Internship Outcomes .. 36

6. Future Work ... 36

7. Conclusions .. 37

References ... 38

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 viii

List of Figures

Fig. 1 – Gantt chart for the First Semester .. 6

Fig. 2 - Gantt chart for the Second Semester (planned) .. 7

Fig. 3 - Gantt chart for the Second Semester (actual) .. 8

Fig. 4 – Joyn Logo ... 9

Fig. 5 - WebRTC Architecture [8] ... 10

Fig. 6 – WebRTC Browser Model [16] ... 11

Fig. 7 – SIP Message Exchange for a SIP INVITE ... 19

Fig. 8 - Firefox OS High level architecture .. 21

Fig. 9 - by Solaiemes application logo ... 23

Fig. 10 – User Use Cases Diagram .. 25

Fig. 11 – Event Registering Flow Diagram .. 26

Fig. 12 – Event Firing Flow Diagram ... 26

Fig. 13 – WWC WebRTC System Environment .. 27

Fig. 14 –High Level Design of the Client SDK .. 28

Fig. 15 – High Level Design of WCAS Socket Lib module .. 29

Fig. 16 - Architecture overview of the joyn FF OS application .. 30

Fig. 17 - Presentation layer high level Architecture .. 31

Fig. 18 – Loging Screen .. 32

Fig. 19 – 1-1 Chat Conversation .. 33

Fig. 20 – Login Screen .. 35

Fig. 21 – Address Book... 35

Fig. 22 – 1-to-1 Chat Window ... 35

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 ix

Acronyms
AB Address Book
API Application Programming Interfaces
B2G Boot to Gecko
CRM Customer Relationship Management
CSS Cascading Style Sheets
FF OS Firefox OS /mOS
FT File Transfer
GSMA Global System for Mobile Communications Association
HAL Hardware Abstraction Layer
HTML Hypertext Markup Language
HTTP HyperText Transfer Protocol
HVGA Half Video Graphics Array
IMS IP Media Subsystems
ISDN Integrated Services Digital Network
joyn Costumer facing brand for RCS-e services
JSON JavaScript Object Notation
LTE Long Term Evolution
MSISDN Mobile Subscriber ISDN Number
MSRP Message Session Relay Protocol
MWC Mobile World Congress
OEM Original Equipment Manufacturer
OTT Over-the-top
P2P Peer to Peer
PBX Public Branch Exchange
PSTN Public Switched Telephone Network
RCS Rich Communications Suite (or Services)
RCS-e Rich Communications Suite (enhanced)
REST Representational State Transfer
RTC Real-Time Communications
RTCP RTP Control Protocol
RTMP Real Time Messaging Protocol
RTP Real-Time Transport Protocol
SGM Socket Gateway Module
SIM Subscriber Identity Module
SIP Session Initiation Protocol
SMS Short Message Service
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
UC Unified Communications
UI / UX User Interface
UNI User to Network Interface
VOIP Voice Over IP
WCAS WIT Communications Application Server
WCS WIT Communications Suite
WebRTC Web Real-Time Communication
WWC WIT Web Communicator
XCAP XML Configuration Access Protocol
XML Extended Markup Language

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

 x

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

1

1. Introduction

This document reflects the work done during the first and second semesters of the academic
year 2012/2013 of the Internship of the Masters of Informatics Engineering of the Faculty
of Sciences and Technology of the University of Coimbra. The work took place on WIT
Software, S.A., a company founded in 2001 as a spin-off from the University of Coimbra,
specialized in the development of applications and services for telecommunication and
media companies, and underwent the supervision of Dr. Mário Rela (DEI) and Eng.
Frederico Lopes (WIT Software).

The initial goal of this internship was to conduct a detailed study about HTML5 and
WebRTC technologies in order to develop prototypes of a voice and video communication
application that runs in a web-browser. However during the start of the second semester of
the Internship it was decided to develop a native client for Firefox OS. This new client will
be a new branch of the WebRTC prototype that started to be developed during the first
semester.

HTML5 is a cooperative effort between the World Wide Web Consortium (W3C) and the
Web Hypertext Application Technology Working Group (WHATWG). HTML5 will be the
new standard for HTML. HTML5 brings native browser support for audio and video
elements as well as complex data manipulations that used to require various technologies
such as Adobe’s Flash or Shockwave. HTML5 is still work in progress however the major
browsers already support many of HTML5 elements and API’s.

WebRTC is the bleeding edge of browser enabled rich communications and a part of
HTML5. Its objective is to bring the power of native desktop communication applications
such as softphones1 to the web-browser by invoking a series of simple JavaScript API’s.

WebRTC was first proposed to W3C by Google after the acquisition of Global IP Solutions
(GIPS) and with it its real time audio and video products and technology. Google provided
and licensed GIPS’s former voice and video media engines by wrapping then up with a set
of JavaScript API’s under the WebRTC open-source project. Finally they proposed the first
draft for “WebRTC 1.0: Real-time Communication between Browsers” to the W3C in
August 23th 2011.

The possibilities of having a rich communication application that’s not bound to a specific
platform can benefit several business areas, from Customer Relationship Management
(CRM), online commerce and of course inter-device communication. All this is possible by
using nothing more than a WebRTC capable web-browser and a web connection.

Currently WebRTC is behind standardized by two standard bodies, the IETF and W3C, it is
also backed by major communications companies including Cisco and Ericsson.

Motivation

WebRTC has a great potential to disrupt OTT service providers and radically change the
development of unified communications platforms. WebRTC enables the users to establish
calls between each other quickly and without the sign-up process often required in OTT
communications applications such as Skype. WebRTC presents potential opportunity for
experienced rich communication solutions providers has they can quickly integrate WebRTC

1
 A Softphone can be described as software that simulates a cell phone. The purpose is to provide features normally available on

mobile devices on a computer

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

2

clients into their own communications suite. However, this ease of deployment also removes
the entry level barriers typical in the VOIP market by presenting startups with the means to
quickly create web-based communication applications without the need for any additional
technologies such as browser plug-ins.

Goals

WIT Software is a unified communications solution provider, WIT’s Communications Suite
(WCS) comprises a complete set of communication products, for web, mobile and desktop
scenarios.

The goal for this internship is to explore the development a new product to integrate with
the WCS family of applications. By the end of its development cycle the new product should
consist of a browser-based, WebRTC powered communications platform with support for
voice and video calls, one-to-one chat, file transfer and address book operations.

There are two major components that will be developed in the course of this project. The
browser-side component, which consists in the JavaScript API that communicates with the
user interface (UI), and the server-side component that consists in the module that will be
integrated in WIT’s Communications Application Server (WCAS) a legacy SIP Application
Server. Detailed information about the project can be found in Annex C – Solution
Architecture.

The client-side Software Development Kit (SDK) is intended to be independent from the
UI it is attached to. It will provide a set of services that the UI can asynchronously invoke to
establish communication with the server and manage all communications, and an event-
based API to receive incoming calls and any other information from the server.

The server-side library will consist of the required mechanisms to transform WebRTC client
requests into WCAS internal request format and subsequently transform the server
responses in the client specific protocol.

The communication between these two entities is done using HTML5 WebSockets. The
messages are structured using JavaScript Object Notation (JSON) according to a new
proprietary communication protocol specific for WebRTC client.

During the second phase of this internship there is also planned the development of a RCS
client for the Firefox OS mobile operative system (joyn FF OS). Detailed information
regarding this project can be found in Annex D - FFOS.

Document Structure

The document starts with an introduction presenting the motivations behind this work. The
planning for the first and second semesters of the internship is presented afterwards.

Then, an overview on the technologies involved on this project is given, which alternatives
were considered and what studies were conducted. An analysis of some WebRTC solutions
already available on the market is also presented in this chapter.

Apart from the document the following documents were created: details on state of the art
and background knowledge (Annex A – State of the Art Document), detailed information
on the project requirements (Annex B – Requirements Analysis) also detailed information
on the system architecture (Annex C – Solution Architecture)

Detailed information regarding the joyn for Firefox OS client is found in (Annex D –
FFOS).

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

3

2. Project Planning

This section makes reference to the overall planning of the internship project. It concerns
the software development process adopted as well as an overview of the planned tasks. The
project will be referred from now on as WIT Web Communicator WebRTC (WWC
WebRTC). The RCS joyn client for Firefox OS developed during the second semester will
be referred as joyn for Firefox OS (joyn FF OS).

2.1. Software Development Methodology

The WWC WebRTC project is of Strategic nature, its objective is to explore new
technological possibilities in order to gain technological advantage in a new area of the
business market. In this type of environment the needs and requirements of a project shift
constantly making traditional development methodologies poorly suited for this task. This
reasons conjugated with the fact that the internship also has a limited duration led to an
iterative and incremental agile software development methodology being chosen.

The development methodology adopted was Scrum [1]. Sprint lasted two weeks. Daily status
meetings were conducted with the Team Leader to discuss task status and plan the next step.

Project Execution Control

Besides the normal Scrum meetings, there are also scheduled weekly meetings that take place
each Tuesday with the project owner to demonstrate the current developments. The sole
purpose of these meeting is to show the current prototype functionality against the planned
features.

Versioning

The project has a centralized repository available for documents and software versioning.
This repository stores all the documentation and source code related to the project. WIT
Software is an ISO-9001 [2] certified company which means that there are several rules and
procedures that must be followed. These include naming conventions and specific software
development guidelines for all project related artifacts.

2.2. Project Team

Bellow we have a table with the members that constituted the WWC WebRTC development
team for the duration of the internship.

Product Owner Frederico Lopes

Team Leader André Silva (Intern Scrum Master)

Team Member Project Area

Luís Matos WCAS Socket Lib and Client JS SDK

Bruno Leite WWC WebRTC User Interface

Nuno Campos WCAS ICE support
Table 1 – WWC WebRTC team members

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

4

Bellow we have a table with the members of the joyn for Firefox OS development team for
the second semester of the internship.

Product Owner Frederico Lopes

Team Leader André Silva (Intern Scrum Master)

Team Member Project Area

Luís Matos WCS joyn for Firefox OS client

André Silva WCS joyn for Firefox OS client
Table 2 – joyn FF OS team members

In the course of this internship André Silva is the person in charge of assigning tasks and
reviewing the intern progress for each sprint, therefore he also acts as Scrum Master.

2.3. Planning

Gantt Charts are typically used to illustrate a project’s schedule. They are also typically used
in classical approaches to software development like the Waterfall [3] model. Despite what
was said previously regarding the nature of the WWC WebRTC project three Gantt charts
will be presented. The first chart illustrates the work developed during the first semester, the
second represents the initial plan for the second semester and the last shows the actual work
developed during the second semester. The Gantt charts were decided to be included both
for a cleaner and quicker learning of the project status and as it was said previously the
duration of this internship is limited to two semesters.

First Semester

This internship’s first semester planning mainly focuses on investigation for the WWC
WebRTC project. This consisted in the study of the WebRTC [4] and HTML5 video
technology. A detailed analysis of possible solutions for the WWC WebRTC was conducted
as well as an analysis of competitor solutions. This investigation effort was of a great help
for the specification of the requirements and the architecture.

Parallel to this research, experiments with a previously developed prototype were also
conducted with the objective of evaluating the feasibility of the WWC WebRTC project and
learn how to use the project’s technologies.

The original planning for the first semester suffered some modifications after a product
roadmap reunion in October 26th. The scope of features originally planned have changed in
order to have a working prototype for presentation in the 2013 edition of Mobile World
Congress (MWC) [5] that was held in Barcelona in past February.

Upon reviewing the scope of features planned for this first semester it was decided the
feature regarding information about contact availability would not be completed in the time
window available and as such it was decided to swap it for RCS-E [6] contacts capabilities
discovery. Capabilities discovery mechanisms allow the user to be notified about voice,
video, and content sharing capabilities of the contacts in his/her address book. The
availability information feature was shifted for the final release.

On a traditional waterfall model, these tasks would have represented the Requirements,
Design and part of the Implementation stages.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

5

Second Semester

Throughout the second semester significant functionality was added to the WWC WebRTC
project. File transfer and 1-to-1 chat with typing and delivery notifications was implemented.

After a roadmap reunion that took place on the 3rd of March it was decided that the
development of the other planned features (Group Chat and Video and Image Share) were
to be postponed in order to start the developments of a WWC WebRTC prototype for
Firefox OS which later became the joyn for Firefox OS project. The development of this
new client took place during the second semester of this Internship.

Project Roadmap Events

The following table illustrates the major roadmap events that took place during the
internship.

Date Overview

26 October -Initial Project Milestones Delimited
-It was decided that Bruno Leite would lead the development of the new
client’s UI (WWC WebRTC)

16 November -Discussion of the JavaScript SDK Architecture
-Presentation on the initial sketches for the new WWC WebRTC Client
-It was decided that Nuno Campos would enable support for ICE
connectivity in WCAS

23 November -Unravel of the new WWC WebRTC Client Mockups
-Discussion of the Features to present in Mobile World Congress (MWC)

3 January -Further Refinement of the JavaScript SDK

25 -28 February -Reveal of the WWC WebRTC client during the MWC 2013

3 March -Intern moved from WWC WebRTC Client to the new joyn for Firefox
OS client
-joyn for Firefox OS application architecture discussion

13 July -Internal Demonstration of the joyn FF OS client prototype
Table 3 – Project Roadmap Events

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

6

2.4. Overview of the First Semester

The following Gantt chart illustrates the tasks developed so far and the timeline involved in their execution.

Fig. 1 – Gantt chart for the First Semester

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

7

2.5. Planed Work Plan for the Second Semester

The following Gantt chart illustrates the predicted timeline for the tasks expected to be completed during the second semester.

Fig. 2 - Gantt chart for the Second Semester (planned)

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

8

2.6. Overview of the Second Semester

The following Gantt chart illustrates the tasks developed during the second semester and the timeline involved in their execution.

Fig. 3 - Gantt chart for the Second Semester (actual)

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

9

3. State of the Art

This section discusses the state of art analysis that took place for the two RCS clients
developed during the course of this internship, the Wit Web Communicator WebRTC and
the joyn FF OS Client.

3.1. Rich Communication Services

Rich Communication Services (RCS) is an industry effort focused on the use of IP
Multimedia Subsystem (IMS) for providing enhanced mobile phone communication
services.

RCS is a joint effort of network infrastructure vendors, handset manufacturers and Telecom
Operators. RCS is seen as an industry initiative to fight the threat of OTT apps (such as
Whatsapp, Viber, Skype, etc.) and to leverage the capabilities of IMS networks towards the
evolution to Long Term Evolution (LTE).

3.1.1. What is RCS-e

RCS-e is a commercial specification for RCS (version 1.2.1). It was designed by a leading
group of Mobile Operators, including Vodafone, Telefonica, Orange, Deutsche Telekom
and Telecom Italia, under the governance of GSMA. The official announcement of RCS-e
was unveiled at the 2011 Mobile World Congress.

RCS-e delivers an experience beyond voice and SMS, enabling users to use instant
messaging, live video sharing and file share across any mobile phone on any network
operator.

The service can be natively integrated in the mobile phone or via a downloadable app. The
main features are:

 Service discovery: joyn identifies automatically other joyn contacts on the contact
list;

 Chat: enable instant messaging with one or more contacts;

 File Share: transfer files (e.g. pictures, videos) during a chat or a voice call;

 Live Video Share: share live video during a voice call.

Joyn is the consumer-facing brand for the RCS-e services. The joyn brand is used by all
operators deploying accredited RCS services.

Fig. 4 – Joyn Logo

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

10

3.2. WWC WebRTC

In this section the WebRTC technology will be discussed in detail. Topics such as where it
came from, what it enables and its advantages and disadvantages will be covered. An
overview of the current state and open issues will also be in discussion.

It will also be given an overview of the current technologies that enabled results similar to
what will be expected from the WWC WebRTC client and an analysis of competitor
solutions which already use the WebRTC technology.

This section ends with an overview of the technologies that will be used on the course of
this project.

3.2.1. Overview

WebRTC is an API definition being carried out within W3C and IETF to standardize the
support for real-time capabilities in web browsers, allowing web applications to send data
and media streams between devices over IP networks in a peer-to-peer fashion [7]. WebRTC
empowers the developers with the ability to create Rich Internet Applications (RIA’s)
without relying on third party plug-ins.

3.2.2. WebRTC Architecture

Bellow we have the diagram of the WebRTC architecture.

Fig. 5 - WebRTC Architecture [8]

This architecture is attractive for the Web Developer Community for various reasons. The
Transport Layer (PeerConnection) is compact and easy to use. With a few lines of code we
can establish connectivity between two web browsers. The Codec processing is
automatically managed, removing the need to acquire these from third parties. The WebRTC
project uses the VP8 [9] codec for video and Opus [10], G.711 [11], iLBC [12] and iSAC [13]
for audio. All these codec’s are royalty free.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

11

Besides, having this technology natively accessible in the web browser reduces the chance of
having integration problems at the expense of not having much control over the real-time
data transmission flow. Other benefits include a reduced load on Web Servers previously
used to relay the communication, automatic adaptation to network conditions changes and
browser embedded echo cancelation and noise suppression mechanisms.

Other features include the possibility to send different media types are sent over the same
channel using RTP multiplexing, reducing the time it takes to establish a session and
improving the overall efficiency of the data channel. The audio and video streams are
encrypted using Secure Real-time Transport Protocol (SRTP) [14] with DTLS [15]
algorithms.

Bellow we have a diagram showing an example of WebRTC browser model.

Fig. 6 – WebRTC Browser Model [16]

We will discuss the main components (API’s) behind the WebRTC technology. These
components reside in the browser (Browser RTC Function component in Fig.4), its
implementation may vary depending on the browser manufacturer.

GetUserMedia

A WebRTC capable browser accesses the user’s audio and video devices using the
GetUserMedia API. This API is an implementation of the W3C Media Capture and Streams
working draft [17]. This API can access multimedia data (video, audio or both) from local
devices (video cameras, microphones, webcams) and represent it using data streams which
can then be played using HTML5 video or audio elements or sent over the web using the
PeerConnection API.

PeerConnection

The PeerConnection API is a top level API for WebRTC media exchange. This API is
intended to implement the W3C WebRTC API [18] proposal for the PeerConnection
JavaScript API in C++. The PeerConnection API lies at the heart of real time
communication. It allows P2P (browser-to-browser) streaming of audio and video
information. In order to setup a PeerConnection the browser must exchange information
regarding its codec support. This is done by exchanging extended SDP (Session Description
Protocol) [19] messages. The session establishment is done by using ICE (Information and
Content Exchange protocol) [20].

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

12

3.2.3. Conducted Studies

During the initial stage of the internship a study to evaluate the feasibility of the WWC
WebRTC project was conducted. More information regarding this study can be found in
Annex A – State of the Art Document.

The purpose of the study is to evaluate what solutions existed for managing SIP (Session
Initiation Protocol) in the web-browser since browsers cannot manage UDP/TCP sockets
directly. This study attempts to give an overview of what solutions exist that do not require
the utilization of third party plug-ins.

Possibilities Considered

As the browser cannot send SIP directly, we need to pass the communication through a
capable component.

The following options were deemed viable:

 Create a new JavaScript API to communicate with WCAS via Websockets;

 Use the current ActionScript/JavaScript API that communicates with WCAS
using Real Time Messaging Protocol (RTMP).

 Create a new client that uses the RCS REST API [21] model;

 Use a library to create SIP requests in the browser and send them to a SIP proxy
via Websockets.

The approach that consisted into reusing the existing ActionScript/JavaScript API was
deliberately left out of the study since it is only attractive as a fallback option and the main
objective of this project is promote the use of HTML5 and WebRTC technology.

Study Conclusions

In this sub-section the conclusions regarding each approach considered initially will be
discussed.

The RCS API approach was rendered not suitable for a short term development effort
because it conflicts greatly with the logic flow of the existing API. For example the
commands to pass to the Wit Communications Application Server (WCAS) cannot be
directly invoked in a similar way to the existing API. This translation changes would lead to
additional development effort.

The libraries that exist for generating the SIP packets in the web browser (JavaScript based
SIP Adapter) are not a good option yet due to complexity and stabilization issues. At the
moment we are still far from an interesting SIP stack. Besides the SIP stack built in WCAS is
time-proven and toughly tested.

Using the existing Flash/JS API is only relevant when trying to interact with clients that do
not support WebSockets. Therefore it was selected as a fallback option.

This leaves us with the implementation of WebSocket support in WCAS. The flexibility and
reutilization of various components makes it the most attractive option for short term
development.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

13

3.2.4. Current WebRTC Browser Support

This sub-section concerns to the current support of the WebRTC API in the main browsers.

Browser Notes

Opera Implemented part of WebRTC on the laboratory version on January 2012.
The current stable version already has support for the GetUserMedia API.

Chrome Integrated WebRTC into its dev channel release in January 2012. It’s also
included in the stable release since version 20 (June 2012)

Firefox Included WebRTC into the Alpha version in early 2012 and it is expected to
be included in the stable release of Firefox 18 in January 2013 [22]

Internet
Explorer

Microsoft stated that they have started working on implementation of the
API. News of the current state of implementation can be found in HTML5
Labs [23]

Mobile
Devices

Ericsson announced the world’s first WebRTC-enabled browser for mobile
devices, called “Bowser” currently available for iOS and Android (October
2012) [24]

Table 4 - Main browser's WebRTC support

3.2.5. Analysis of Competitors

WebRTC applications benefit from the advantage of being able to follow a “develop once
deploy anywhere” philosophy. In the future the same web application can be used to
connect clients in a variety of devices, from desktop computers to tablets and Smartphone’s.
Only the media devices, a web connection and a WebRTC enabled browser will be required

As browser makers continue to shift toward WebRTC more and more companies tend to
invest in this area in order to get a foothold in this new business market and take advantage
of its possibilities.

In this section some web-based voice and video clients that use WebRTC will be presented
and compared.

Frisb – Frisb™

FrisB [25] is a web-based voice service that creates a voice channel to ring and invite a
regular telephone user to talk. FrisB is a free service that uses WebRTC to send the user’s
audio media to a lightweight Public Switch Telephone Network (PSTN) gateway.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

14

Phono – Voxeo

Phono [26] is a jQuery plugin and JavaScript library that turns a web browser into a
softphone, capable of making phone calls and sending instant messages.

Sipml5 – Doubango

Doubango [27] claims that Sipml5 [28] is the world's first open source HTML5 SIP client
entirely written in JavaScript. Sipml5 can be used to connect to any SIP or IMS network
using no extensions or plugins to make audio/video calls and instant messages. Doubango
also has a WebRTC to SIP gateway called webrtc2sip.

Twelephone – GetVocal

Twelephone [29] adds real-time communications (voice, video, presence and messaging) to
Twitter using HTML5 and WebRTC. Upon installing an extension in Chrome the user
interface of Twitter is changed so that it now provides information about the presence of a
person (that must also be using Twelephone) and allows the user to initiate a call or send a
private message.

Open tok – Tokbox

OpenTok [30] is an API developed by tokbox to enable developers to build face-to-face
video to any web browser, iOS, or Android device. OpenTok Servers manage all
communication and streaming between devices.

Clientless Web Softphone – Thrupoint

The Thrupoint Clientless Web Softphone [31] is one of the solutions of the Thrupoint
Unified Communications (UC) Suite. Thrupoint’s WebRTC solutions provide the signaling
interworking, media transcoding and applications needed to connect to Thrupoint’s UC
network. Thrupoint also offers APIs for WebRTC to SIP interworking.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

15

Connect – Utribo

Connect by Utribo [32] is Software as Service (SaS) platform that enables subscribers to
receive calls made in a web browser (using WebRTC) to their computer, phone, or Private
Branch Exchange (PBX).

Zingaya – Zingaya, inc

Zingaya [33] is a software as service (SaS) platform especially suited for online sales or
customer service. Zingaya provides an application that can be embedded into e-retailer’s
website. Using this application the costumer can talk directly through the browser to a
business representative who can be working in the sales department, at his own computer or
on a mobile phone.

TenHands – TenHands

TenHands [34] is a web used to deliver real-time communications in a browser-based
application. At the moment Tenhands requires a browser plug-in despite the fact that the
media is sent using WebRTC.

Bistri – bistri ©

Bistri [35] is a web based service that provides its members with a customizable link that
works like an online phone number. The application user interface is built using HTML5
and CSS and the media is processed using WebRTC. Bistri provides integration with
numerous services like Gtalk, Facebook, Windows Live and Yahoo.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

16

Considerations

Of the solutions analyzed the application that most resembles what is expected of the WWC
WebRTC client is the Clientless Web Softphone by Thrupoint. WIT Software and
Thrupoint are both unified communications providers so out of this group this application
is the closest to a competitor that we get. Thrupoint’s Clientless Web Softphone hasn’t been
released yet and as such it could not be analyzed in detailed.

Therefore as a measure of quality the current version of WWC has been selected as the
prime competitor although it does not use HTML5 or WebRTC Technology it still delivers
the features expected to be implemented during this internship.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

17

Competitor Comparison

Bellow we have a comparative table of the capabilities and underlying technology of some of the market available WebRTC solutions.

Client Company Protocol
Communication
with the Server

PSTN
Interworking

SIP
Interworking License Audio Video

FrisB FrisB Proprietary HTTP Yes No
Not

Released
Yes No

Phono
(WebRTC)

Voxeo Labs XMPP HTTP Yes Yes
Not

Released
Yes Yes

Sipml5
Doubango

Telco
SIP WebSockets Yes Yes GPL V3 Yes Yes

Twelephone GetVocal inc Proprietary WebSockets No No
Not

Released
Yes Yes

Open.Tok Tokbox Proprietary HTTP Yes Yes Proprietary Yes Yes

Thrupoint Thrupoint Proprietary HTTP Yes Yes Proprietary Yes Yes

Utribo Utribo Proprietary HTTP Yes Yes Proprietary Yes Yes

Zingaya Zingaya Proprietary RTMP Yes Yes Proprietary Yes No

TenHands TenHands Proprietary HTTP No No Proprietary Yes Yes

Bistri
Bistri

Engineering
XMPP HTTP No No Proprietary Yes Yes

WWC
WebRTC

WIT
Software

Proprietary WebSockets Yes Yes Proprietary Yes Yes

WWC RCS-e
(Flash)

WIT
Software

Proprietary RTMP Yes Yes Proprietary Yes Yes

Table 5 – Comparison of Competitor Solutions

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

18

3.2.6. Project Technologies

This section describes the technologies that will be used in the course of this project, each of
the following sections identifies how will they be applied, and the alternatives studied.

Q Promises

Q Promises [36] are one of three ways available in JavaScript for asynchronous operations
handling. The other two are events and callbacks. Promises can be combined with callbacks
and the promise object can be passed around as an argument to functions and fulfilled when
the appropriate time comes.

A promise is an object that represents the return value or the thrown exception that a given
function may eventually provide. Promises invert the “inversion of control” approach of
callbacks, cleanly separating the input arguments from flow control arguments.

Promises were also chosen to be used because they add extra security to the web application
since all the code to be executed upon fulfilling the promise can’t mess with the global scope
of the SDK.

Angular JS

Angular JS [37] is a HTML framework that enables the creation of dynamic views in web-
applications. Simply put it acts as an extension to the HTML language. It automatically
synchronizes data from the UI (view) with JavaScript objects (model) through 2-way data
binding. Since we cannot use Flash for rendering the user interface, Angular JS was chosen
since enables the creation of dynamic web applications with various views with little
complexity.

WebSockets

The HTML5 WebSocket JS API enables bi-directional communication between a browser
and a server over one TCP Socket. HTTP is only half-duplex, communication using
Websockets is quicker and more scalable because of a reduced number and size of the
requests. The WebSocket API is still being standardized by the W3C however the major
browsers have already support for this technology.

The following WebSocket libraries were analyzed:

 jWebSocket [38]

 Atmosphere [39]

 MigratoryData [40]

 Bristleback [41]

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

19

The following table summarizes the features of the WebSocket frameworks analyzed.

jWebSocket Atmosphere MigratoryData Bristleback

 Cross-Browser
Compatibility

 Clear and Simple
API

 Support for Text
and Binary Data

 Fallback Support
using Flash

 Full Socket
Session
Management

 Good
Documentation

 Cross Browsers
Compatibility

 Active
Development

 Fallback Support
using Comet and
JASONP

 Good
Documentation

 Support for Text
and Binary Data

 Highly Scalable
(horizontally and
vertically)

 API’s for multiple
Languages

 Extensive
Documentation

 High Level
Abstraction

 Integration with
Spring

 Different
development branch
of jWebSocket.

 Good
Documentation

GNU LGPL Apache v.2 Commercial GNU LGPL

Table 6 – Comparison of WebSocket Frameworks

The purpose of this study was to learn the current state and maturity of WebSocket
Frameworks. The choice of the jWebSocket library was conditioned due to integration
factors with WCAS. As a requirement in Session Initiation Protocol (SIP) transactions
multiple responses are given for a unique request. For example on a SIP Invite the sequence
is the following:

Fig. 7 – SIP Message Exchange for a SIP INVITE

In order to support this kind of operations the WebSocket library had to be modified. The
jWebSocket library was chosen because it provided good documentation that allowed this
modification.

Before the beginning of this internship the jWebSocket library was already used with success
in WCAS, therefore no reason to change was identified at this point.

Chrome WebRTC Implementation

Development will take place in the Chrome Web Browser because it is the leading browser
in the WebRTC API implementation since January 2012. Chrome Canary implements the

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

20

latest changes in the WebRTC framework and the features provided (Chrome Web Tools)
make developing and debugging an easier task.

Grunt JS

Grunt JS [42] is a task-based command line build tool for JavaScript projects. Grunt
automates several tasks in a JavaScript project typical workflow. For instance it automatically
concatenates the entire project’s files into a single JavaScript (JS) file, validates the code with
code quality tools, minifies the JS code and automatically launches a static preview server.
Grunt JS also does all these tasks automatically whenever it detects that any of the files in
the project directory have been changed.

JSON

JavaScript Object Notation (JSON) is a data-interchange format for representing data
structures and associative arrays. JSON is an alternative to the XML format, and is gaining
its importance since it is more lightweight than the previous, which is important when it
comes to passing data over network connections.

JSON is the data type that is exchanged with WCAS’s WebSocket Module. Since the SDK is
built in JavaScript objects can be directly passed to the server without being serialized and
we will also use less bandwidth in comparison to other data interchange formats like
Extensible Markup Language (XML).

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

21

3.3. Joyn for Firefox Client

This section discusses the state of the art that directly concerns the joyn for Firefox OS
Client.

3.3.1. The Firefox OS Operative System

Previously known as Boot to Gecko, Firefox OS is a Linux based Operative System for
mobile devices in development by Mozilla. Its core concept is to allow HTML5 applications
to communicate directly with the device’s hardware using a series of JavaScript API’s (Web
API’s).

3.3.1.1. Firefox OS Architecture

Bellow we have a diagram that depicts the high level architectural components of Firefox
OS [43].

Fig. 8 - Firefox OS High level architecture

We can identify three major layers from this diagram:

Application Layer

The Application layer includes Gaia which is the User Interface of Firefox OS. Gaia
implements all the standard system components such as the lock screen, home screen and
default system applications. Third party applications are also stored here.

Runtime Layer

The Runtime layer includes the Firefox OS runtime (Gecko). Gecko provides support for
HTML, JavaScript and CSS processing and includes important components such as the
network stack, user interface layout stack and JavaScript engine. This layer also includes the
Web API’s that are accessed by Gaia and 3rd party applications and the Security layer that
moderates access to Gecko and the Infrastructure layer.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

22

Infrastructure Layer

The Infrastructure layer also called Gonk is the lower layer of the Firefox OS operative
System. It consists of a Linux kernel and userspace and the Hardware Abstraction Layer
(HAL) that includes the Original Equipment Manufacturer (OEM) firmware and drivers as
well as 3rd party device drivers.

3.3.1.2. Firefox OS Applications

The entire user interface of Firefox OS is a Web Application (Gaia) written in HTML,
JavaScript and CSS. Gaia is responsible for rendering content on the screen and interacting
with the FF OS runtime (Gecko). Gaia is also capable of displaying and launching other
Web apps. Any application that runs on Firefox OS is also a Web page, although with
enhanced access to the mobile device's hardware and services through the use of Web API’s.

3.3.1.2.1. Web API’s

Web API’s are methods exposed by the runtime layer that enable the web applications to
access the device hardware. The level of access to these API’s varies according to the type of
the application. In order to access sensitive device data the applications must be “trusted”
and in some cases require the user permission.

3.3.1.2.2. Application Security

Application security in FF OS is enforced trough Content Security Policy (CSP). This CSP
policy dictates what type of content the web application can run and which device API’s it
has access to.

There are two types of applications, hosted and packaged. An application is called hosted if
its resources are obtained remotely from a remote web server. The application is said
packaged if all its resources stored in the device encapsulated in a single zip file.

There are three security levels that can be attributed to Firefox OS applications.

 Web (Hosted): Typical Web Content;

 Privileged: Trusted Applications, obtained through Firefox OS App Stores;

 Certified: Highly Trusted Applications, certified by a Carrier or the OEM;

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

23

3.3.2. Competitor Analysis

In this section we will present and compare commercial Rich Communication applications
available for Firefox OS.

joyn for Firefox OS (Solaiemes)

Fig. 9 - by Solaiemes application logo

Joyn for Firefox OS [44] was announced by Solaiemes2 on January 2013 and is currently the
only publically known RCS joyn application available for Firefox OS.

The application is a JavaScript/Ajax RCS thin client. Major computation operations are
done remotely. After logging in the subscriber is identified through a URL identifier. RCS
services are accessed through a SOAP [45]/REST [46] API exposed by the server.

3.3.2.1. Overview

Bellow we have a comparative table of the capabilities and underlying technology of the joyn
clients of Solaiemes and WIT Software.

 Joyn
Solaiemes

Joyn
WIT Software

Protocol Proprietary Proprietary

Communication with the Server HTTP WebSockets

License Proprietary Proprietary

RCS Version RCS 2 RCS-e

Layout Customization CSS Angular JS and CSS

Client Type Thin Thick

Capabilities Discovery NO YES

Availability Information YES (RCS 2) SIP OPTIONS

Chat 1-1 YES YES

File Transfer YES YES

Integration with Device Contacts NO YES

Support for Network Address book (NAB) YES YES
Table 7 – RCS Client applications for Firefox OS Overview

2 http://www.solaiemes.com/

http://www.solaiemes.com/

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

24

4. Proposed Approach

4.1. Wit Web Communicator WebRTC

This section concerns the proposed architecture for the development of the WWC
WebRTC project.

In this section the features and the associated requirements of this project will be described.
Lastly an overview of the system architecture will be discussed.

4.1.1. Features

The WWC WebRTC client is designed to be integrated with the WCS family of products.
The goal is to create a fully capable web-based communication application without the use
of third-party plug-ins.

The initial features required for the WWC WebRTC client are the following:

 Voice and Video Calls;

 Possibility of media sharing (images and video) during a voice call;

 One to One Chat and Group Chat with File Transfer;

 Information about contacts availability and media capabilities;

 Contact management;

 Possibility of sending SMS / MMS if the contact can’t receive IM messages;

4.1.2. Requirements

In this section the requirements for the WWC WebRTC project will be discussed. An
overview on the user stories and use cases for a typical user will also be given.

The detailed requirements specification can be found in Annex B – Requirements Analysis.

4.1.3. User Stories

In this section the User Stories for a normal WWC WebRTC user are depicted.

As a User I want to…
“…Make a call”
Using a Microphone and Webcam the user must be able to do audio and video calls to his
friends.
“…Send an SMS/MMS”
 The User must be able to send text/image messages to friends using mobile devices.
“…Chat with a friend
 The User must be able to chat with a friend through the browser.
“…Add Contacts to my contact list”
 The User must be able to insert new contacts in his/her contact list.
“…Manage Contacts”
 The User must be able to manage his/her contact list (delete, block, edit, etc...)

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

25

4.1.4. Use Cases

Below is represented a Use Case diagram representing the actions that a user can take in the
WWC WebRTC application.

Fig. 10 – User Use Cases Diagram

Client

This subsection reefer to the requirements identified for the WWC WebRTC JavaScript
SDK.

 The WWC WebRTC SDK must be able to establish a WebSocket connection with
WCAS.

 The SDK must provide an interface layer with services so that the higher abstraction
layer (UI) can invoke methods from the SDK and communicate and receive
messages from the server.

 All the internal components of the SDK must not be directly accessible from
outside. Instead all interactions must be done trough the services layer API. All
internal components of the SDK should be able to talk to each other transparently.

 The UI must remain responsive despite any delays induced by the SDK. Most
operations should be asynchronous.

 All components should be implemented as modules on the SDK in order to allow
different configurations upon initialization.

 All SDK components should be as independent as possible and work without
dependencies.

 The SDK must provide an API for the registering of events so that the UI can be
notified when a certain action has taken place.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

26

The function of the Events API is explained in the following diagrams.

Fig. 11 – Event Registering Flow Diagram

Fig. 12 – Event Firing Flow Diagram

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

27

Server

The server comprises of WCAS and the Socket Lib Module. This is the most complex
module of the system as it must follow WCAS design guidelines.

 The Socket Lib module must be integrated with WCAS according to its modular
design methodology.

 WCAS must be able to receive and recognize commands send by the WWC SDK.

 WCAS must be able to recognize when a user terminates the session either explicitly
by sending a SESSION_TERMINATE Request or when WCAS detects that the
WebSocket connection has been closed.

 Each transaction between WCAS and WWC SDK must be numbered with a unique
transaction number.

 The Socket Lib module must implement the necessary logic to interact with
WebRTC clients as well as the necessary Command Translators that enable
communication with WCAS core.

4.1.5. Architecture

This subsection concerns the defined architecture for WWC WebRTC project. This
concerns both the WebRTC JavaScript SDK and the Server Socket Lib library.

The detailed architecture specification can be found in Annex C – Solution Architecture.

Overview

The following figure (Fig. 5) shows an overview of the Wit Web Communicator (WWC)
WebRTC solution Architecture. As we can see, the WWC WebRTC solution has two major
components/sectors: the client and the server.

Fig. 13 – WWC WebRTC System Environment

The Server (in green) is composed by:

- The Socket Lib library imported in WCAS.

- WIT’s WCAS (Wit Communications Applications Server) on top of which the
Socket Lib Module is deployed.

The architecture specification regarding the WWC SDK (Client) and the Socket Lib (Server)
will now be discussed.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

28

Client

Bellow we have a high level view of the WWC WebRTC SDK.

Fig. 14 –High Level Design of the Client SDK

There are three major layers in the WWC WebRTC JavaScript SDK. Detailed Information
regarding the components that constitute these layers can be found in Annex C Architecture
Specification.

a) Communication Layer (ComLayer)

This is the component responsible for the communication with the server. It also manages
and notifies the Manager Layer of incoming requests and responses.

b) Managers Layer

This is the layer where the internal logic of the SDK is stored and is not directly accessible
for the UI. This layer consists of various classes (Managers) that have different
competencies. There are managers for Session Management, Call Management, Chat
Management, Content Share Management, Capabilities Discovery and Events Management.

c) Services Layer

The Public Services Interface contains functions that the UI can invoke in order to trigger a
given action. These functions have privileged access to the manager’s public methods and
are organized according to their respective manager.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

29

Server

This section refers to the architecture design of the Socket Lib module integrated in WCAS.

Fig. 15 – High Level Design of WCAS Socket Lib module

There are three major components layers that make up the WCAS Socket Lib Module.
Detailed Information regarding the components that constitute these layers can be found in
Annex C Architecture Specification.

a) Communication Layer

This is the middleware layer responsible of delegating requests incoming from WWC
WebRTC clients to the Protocol Layer for further processing. It is also responsible for
sending the responses and commands received from the Protocol layer back to the client
using the WebRTC client specific protocol using the jWebSocket library.

b) Protocol Layer

This layer is where all the messages between the client and the server are constructed and
deconstructed. This layer is made up by command Translators that are responsible for
translating client requests into WCAS internal command syntax and WCAS responses into
each client’s explicit protocol.

c) Service Layer

The services layer is stored in the Core of WCAS. The core exposes a set of API’s which
must then be overridden by client specific services. This results in a clear separation between
the business logic of the WCAS core and domain-specific problems such as client
interoperability.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

30

4.2. Joyn for Firefox OS Client

This section concerns the overall architecture of the joyn for Firefox OS application.

4.2.1. Architecture Overview

Bellow we have a simple diagram depicting the high level architecture of the joyn for Firefox
OS client application.

Fig. 16 - Architecture overview of the joyn FF OS application

In order to develop the joyn FF OS application with the imposed constraints (limitations
regarding both team members and overall project time) several components were re-used
from the WWC WebRTC project. Namely the WWC WebRTC SDK remains the same for
both projects since both applications share a web – based environment and the WWC
WebRTC SDK was designed to be independent of the UI it is attached to.

Angular JS is a web MVC framework used in both applications. The flexibility and
component isolation provided by it ensured that almost all the services used for data
manipulation and WWC SDK management are similar to identical in both the joyn FF OS
and WWC WebRTC projects.

4.2.2. Design Principles

FF OS applications are written in HTML5. The visual components are arranged in HTML
files and styled trough CSS. All client logic is computed using JavaScript. JavaScript is also
used to access the device data such as the contacts and data storage.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

31

The application will be built atop the Angular JS framework, same as the WWC WebRTC
version. This way we maximize reutilization of components such as Controllers and Services
having only to develop the views from scratch according to the design document specified
for the joyn FF OS client. Detailed information regarding the joyn FF OS client design can
be found in Annex D FFOS.

4.2.3. Architecture

Bellow we have a diagram that describes the architecture of the presentation layer for the
joyn FF OS client. Detailed information regarding the joyn FF OS client architecture can be
found in Annex D FFOS.

Fig. 17 - Presentation layer high level Architecture

View Component

The View Component includes the several partial HTML files that compose the joyn FF OS
application such as the Contact List, Chat window, Chat List and Contact Details Screens
and its respective Cascading Style Sheets (CSS) used for appropriate styling.

Controller Component

The Controller Component refers to the JavaScript code responsive for the application
logic, each view as an associated controller. The Action viewer controller is the global
application controller and is in charge of navigation across the various application views.

Model Component

The model component is the UI service layer. Services are always in execution and concern
data (Model) used across different controllers. There are two types of services. Services used
for interaction with the WWC SDK and are responsible for managing events for various
chat and file transfer sessions and UI services used for storing information related to visual
components such as the number of chats with unread messages.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

32

5. Results Obtained

5.1. WIT Web Communicator WebRTC Client

The work on the prototype had two principal flows, the development of the JavaScript SDK
(client) and WCAS Socket Lib Library (server).

WWC WebRTC JavaScript SDK (Client)

Currently offers support for Voice and Video Calls between WebRTC clients and Voice
Calls for PSTN devices. SMS messages and 1-1 chat with typing and delivery notifications
are also available. File Transfers were also implemented.

Socket Lib WCAS Library (Server)

Currently offers support for address book operations, session creation and termination,
capabilities discovery information, WebRTC voice calls, chat 1-1, SMS and file transfer.

Bellow we have some screenshots that describe the current look of the WWC WebRTC
client used for demonstrational purposes. This is the look that was presented at the MWC
last February.

Fig. 18 – Loging Screen

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

33

Fig. 19 – 1-1 Chat Conversation

5.1.1. Tests

In order to develop the new joyn client for Firefox OS the load and throughput tests
planned for this semester for the WWC WebRTC client had to be postponed to after the
duration if the internship. The development followed a testing – and – developing
methodology and ad hoc tests were conducted as necessary.

5.1.1.1. Browser Interoperability

Bellow we have a summary of the required HTML5 features required by the Wit Web
Communicator HTML5+WebRTC web application.

 WebSockets

 Media Capture and Streams (GetUserMedia)

 HTML Audio and Video Elements

 WebRTC (PeerConnection)

 WebGL Binary Data

 HTML5 File API

 Web Workers

More detailed information about how each of these components is needed can be found in
section 7 of Annex C Architecture Specification.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

34

Bellow we have a table that summarizes the results of the Browser interoperability tests for
the WWC WebRTC client.

API Feature

Browser Support

Chrome Firefox Safari Opera IE

Communication WebSockets 6+ 8+ 5+ 12.10+ 10+

Local
Multimedia

GetUserMedia 21+ 17+ n/a 12+ n/a
<audio> element 6+ 3.6+ 5+ 10.60+ 9+
<video> element 6+ 3.6+ 5+ 10.60+ 9+

WebRTC PeerConnection 21+ Nightly3 n/a n/a n/a

WebGL
ArrayBuffer 10+ 4+ 5.1+ 11.64+ 10+
uInt8Arrays 10+ 4+ 5.1+ 11.64+ 10+

File API

File Reader API 6+ 3.6+ 6+ 11.10+ 10+
File Slice 6+ 3.6+ 6+ 11.10+ 10+
Blobs 6+ 3.6+ 6+ 11.10+ 10+

Other Web Workers 6+ 3.6+ 5+ 10.60+ 9+
Potential Feature Set

Google Chrome

Voice and Video Calls
1-to-1 Chat
Group Chat
File Transfer

Mozilla Firefox Same as Google Chrome

Safari

All but Voice and Video over IP calls Opera

Microsoft IE
Table 8 – WWC WebRTC browser feature requirements

3 Online available in Firefox Aurora and Nightly builds (first announcement in February 4th 2013)

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

35

5.2. Joyn for Firefox OS client

The joyn FF OS client consists of a modified branch of WWC WebRTC. This version
possesses a fluid interface that is aimed for mobile devices. It also possesses additional
functionally that enable the application to access functionally exposed by the Firefox OS
device.

Currently the joyn FF OS client offers support for 1-1 Chat with typing and delivery
notifications. It also supports address book operations integrated with the device contact list
and File Transfer. Detailed feature evaluation can be found in section 7 of Annex D –
FFOS.

The WWC JavaScript SDK and Socket Lib Server library are shared between the two
projects proving the flexibility and robustness of the implemented solution.

Bellow we have some screenshots that describe the look of the finished functional
prototype.

Fig. 20 – Login Screen

Fig. 21 – Address Book

Fig. 22 – 1-to-1 Chat Window

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

36

5.3. Internship Outcomes

This table briefly summarizes what features where implemented in the two clients that were
developed during the course of this Internship.

WIT Web Communicator WebRTC Joyn Firefox OS Client

Feature Status Feature Status

Contact management

Native Device Contacts Integration

Chat 1-1

Chat 1-1

SMS Messages

File Transfer

MMS Messages
Application Theme Customization

Voice Calls to PSTN

Client Auto configuration XML partial

Video Calls to other WebRTC
Clients

Video Calls to other Clients

File Transfer

Content Share during a Call

Group Chat
Table 9 – Overview of the implemented features

Support for MMS, Content Share and Group Chat in the WWC WebRTC was postponed in
order to advance the developments of the joyn FF OS client. Group Chat Communication is
also being developed in another project that also uses the WWC WebRTC SDK developed
during this internship.

Video Calls to other devices were also not possible to implement during this Internship
because that would require several modifications in WCAS due to codec incompatibilities
between clients (Chrome only encodes video using VP8 [9], most RCS clients, especially
mobile clients prefer AVC/H.264 [47] for video).

Support for IP voice and video calls in the joyn for Firefox OS client was not considered
during this internship due to the fact that Firefox OS doesn’t yet possesses support for
WebRTC applications. Calls to the PSTN network are made by invoking the native device
dialer application. Support for SMS messages is done by invoking the Firefox OS SMS
composer.

6. Future Work

Future developments will now be shifted towards the WWC WebRTC once the tasks of
stabilization and demonstration preparation of the joyn for Firefox OS client are finished.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

37

7. Conclusions

This document reflects the work done during the first and second semesters of the
internship concerning the development of the WWC WebRTC solution. This solution
comprises the client side JavaScript API and the Socket Lib library that is integrated in
WCAS.

The original planning suffered some modifications during the first semester due to the need
to implement some features earlier for the MWC. During the second semester further
changes had to be made in order to further the advances of the new prototype client joyn
for Firefox OS

At this point both the WWC WebRTC and the joyn FF OS client are available for
demonstration and both already give a good idea of what the finished products will be.

WebRTC is still a bleeding-edge technology and, as such, it is still constantly undergoing
changes. Many more changes are expected in this year as major market players will start to
pronounce regarding the WebRTC’s roadmap. This volatility is one of the risks of this
project however as the major browser vendors have started to invest in WebRTC the API
should reach a stable state in the coming months. The Architecture proposed for this project
was also designed in order to achieve both maximum flexibility and mitigate any major
changes to the WebRTC API that could compromise the application.

The benefits of WebRTC can range from interesting to transformational. Business areas
such as CRM can benefit greatly from the ease of use provided by WebRTC. For example
we have an undecided costumer shopping online. At the distance of a click he can be in
touch with a company representative and have his/her doubts cleared increasing customer
satisfaction and possibly the company’s revenue.

The impact in unified communications solutions will be even more significant, although at a
longer term. For existing vendors, the ability to easily support soft clients on a range of
devices will increase the overall usability of their UC solution.

Although there are still some challenges regarding WebRTC adoption, mainly security and
interoperability concerns, ultimately the value of open browser based real-time
communications will drive the industry to overcome them.

The prototype client of WWC WebRTC that was prepared by the end of February was
successfully presented at the 2013 edition of Mobile World Congress and was divulged in
several technological news websites.

During the second part of the internship developments shifted towards the development of
a RCS client for Firefox OS, the flexibility of the architecture of the WWC WebRTC client
made possible to finish the joyn FF OS client prototype by the end of the internship with
the expected functionality. Once the client is finished and prepared for demonstration it will
be showcased to possible clients by the sales team of WIT Software.

The fact that both clients developed during the internship share most of its internal
components proves the robustness and flexibility of the approach proposed initially for the
application architecture. As a matter of fact the WWC JavaScript SDK that communicates
with the WCAS server is already being used in a Corporate Communication demo
application and will be further enhanced in the future.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

38

References

[1] Scrum.org, “Improving the Profession of Software Development,” [Online].
Available: http://www.scrum.org/. [Acedido em 16 1 2013].

[2] ISO, “Quality management systems -- Requirements,” 2008. [Online]. Available:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber
=46486. [Acedido em 16 1 2013].

[3] W. Model, “ADVANTAGES, EXAMPLES, PHASES AND MORE ABOUT
SOFTWARE DEVELOPMENT,” [Online]. Available: http://www.waterfall-
model.com/. [Acedido em 16 1 2013].

[4] Google inc., “WebRTC,” [Online]. Available: http://www.webrtc.org/. [Acedido em
16 1 2013].

[5] GSMA, “Mobile World Congress 2013,” [Online]. Available:
http://www.mobileworldcongress.com/. [Acedido em 16 1 2013].

[6] GSM Association, “RCS-e - Advanced Communications: Services and Client
Version 1.2.2,” 04 July 2012.

[7] S. H. Göran AP eriksson, “WebRTC: enhancing the web,” Ericsson Review, p. 1, 2012.

[8] Google inc., “WebRTC Architecture,” [Online]. Available:
http://www.webrtc.org/reference/architecture. [Acedido em 30 10 2012].

[9] WebMProject, “VP8 Bitstream Specification License,” [Online]. Available:
http://www.webmproject.org/license/bitstream/. [Acedido em 6 11 2012].

[10] Xiph.Org, “Opus Interactive Audio Codec,” 2012 12 21. [Online]. Available:
http://www.opus-codec.org/.

[11] ITU-T, “Pulse Code Modulation of Frequencies - ITU-T Recomendation G.711,”
ITU-T, 1990.

[12] A. D. H. A. e. a. S. Andersen, “ Internet Low Bit Rate Codec (iLBC) - RFC 3951,”
12 2004. [Online]. Available: Internet Low Bit Rate Codec (iLBC).

[13] Google Inc., “WebRTC Components,” 2011. [Online]. Available:
http://www.webrtc.org/reference/webrtc-components#TOC-iSAC. [Acedido em 1
7 2013].

[14] E. C. K. N. M. Naslund, “The Secure Real-time Transport Protocol (SRTP) - RFC
3711,” IETF, 2004.

[15] N. M. E. Rescorla, “Datagram Transport Layer Security - RFC 4347,” 4 2006.
[Online]. Available: http://tools.ietf.org/html/rfc4347.

[16] A. B. Johnson, WebRTC APIs and RTCWEB Protocols of the HTML5 Real-Time

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

39

Web, Digital Codex LLC, 2012.

[17] W3C, “Media Capture and Streams,” W3C, 28 6 2012. [Online]. Available:
http://www.w3.org/TR/mediacapture-streams/.

[18] W3C, “WebRTC 1.0: Real-time Communication Between Browsers,” 21 8 2012.
[Online]. Available: http://www.w3.org/TR/webrtc/.

[19] C. Perkins, “SDP: Session Description Protocol - RFC 4566,” IETF, 2006.

[20] C. O. B. H. R. L. L. P. G. L. Neil Webber, “The Information and Content Exchange
(ICE) Protocol,” 26 10 1998. [Online]. Available: http://www.w3.org/TR/NOTE-
ice.

[21] GSMA, “RCS API Detailed Requirements,” 9 11 2012. [Online]. Available:
http://www.gsma.com/rcs/wp-
content/uploads/2012/10/RCS_API_requirements_v2_2.pdf. [Acedido em 28 1
2013].

[22] R. Nyman, “Full WebRTC support is soon coming to a web browser near you!,”
Hacks.Mozilla.Org, 11 9 2012. [Online]. Available:
https://hacks.mozilla.org/2012/09/full-webrtc-support-is-soon-coming-to-a-web-
browser-near-you/.

[23] Microsoft, “HTML5 Labs,” [Online]. Available:
http://html5labs.interoperabilitybridges.com/prototypes/media-capture-api/media-
capture-api/info. [Acedido em 2 11 2012].

[24] Ericsson, “Experimental WebRTC mobile browser released by Ericsson,” 19 10
2012. [Online]. Available: http://www.ericsson.com/news/121019-experimental-
webrtc-mobile-browser-released-by-ericsson_244159017_c.

[25] frisB, “frisb.com,” 2012. [Online]. Available: http://www.frisb.com/.

[26] Voxeo Labs, “PhonoSDK WebRTC,” 2012. [Online]. Available:
http://phono.com/webrtc.

[27] Doubango, “Doubango Telecom,” [Online]. Available: http://www.doubango.org/.
[Acedido em 7 11 2012].

[28] Doubango Telecom, “World's first HTML5 SIP client,” 2012. [Online]. Available:
http://www.sipml5.org/.

[29] Twelephone, 2012. [Online]. Available: http://twelephone.com/.

[30] OpenTok, [Online]. Available:
http://www.tokbox.com/opentok/api/documentation/v2. [Acedido em 8 11 2012].

[31] thrupoint, 2012. [Online]. Available: http://www.thrupoint.com/solutions/webrtc-
sip.html.

[32] Utribo, “Utribo Connect,” [Online]. Available: http://www.utribo.com/. [Acedido
em 8 11 2012].

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

40

[33] Zingaya, 2012. [Online]. Available: http://zingaya.com/.

[34] TenHands, “Free, Easy Video Collaboration for Business,” 2012. [Online].
Available: https://www.tenhands.net/Home.htm.

[35] Bistri, “Bistri,” [Online]. Available: https://bistri.com/. [Acedido em 8 11 2012].

[36] Github, “Kirskowal Q,” [Online]. Available: https://github.com/kriskowal/q.
[Acedido em 18 1 2013].

[37] Google, “HTML enhanced for web apps!,” [Online]. Available:
http://angularjs.org/. [Acedido em 18 1 2013].

[38] jWebSocket, “Boosting Web Communication,” [Online]. Available:
http://jwebsocket.org/. [Acedido em 28 12 2012].

[39] Atmosphere, “The only Portable WebSocket/Comet Framework supporting Scala,
Groovy and Java,” [Online]. Available:
https://github.com/Atmosphere/atmosphere. [Acedido em 28 12 2012].

[40] Migratory Data, “MigratoryData WebSocket Server,” [Online]. Available:
http://migratorydata.com/migratorydata-websocket-server.html. [Acedido em 28 12
2012].

[41] Bristleback Server, “A fast, high level WebSocket Server powered by Spring
Framework,” [Online]. Available: http://bristleback.pl/. [Acedido em 28 12 2012].

[42] B. Alman, “Grunt,” [Online]. Available: https://github.com/gruntjs/grunt/tree/0.3-
stable. [Acedido em 18 1 2013].

[43] Mozilla, “Firefox OS Architecture,” 22 5 2013. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Mozilla/Firefox_OS/Platform/Architecture.

[44] Solaiemes, “joyn for Firefox OS available as HTML5 app using Solaiemes RCS
network API,” 14 1 2013. [Online]. Available:
http://blog.solaiemes.com/2013/01/joyn-for-firefox-os-available-as-html5.html.

[45] “SOAP specification,” W3C, 27 4 2007. [Online]. Available:
http://www.w3.org/TR/soap/.

[46] “Representational State Transfer,” Wikipédia, [Online]. Available:
http://pt.wikipedia.org/wiki/REST. [Acedido em 24 6 2013].

[47] MPEGLA, “AVC/H.264 License Agreement,” MPEG LA, LLC , 2009. [Online].
Available:
http://www.mpegla.com/main/programs/AVC/Pages/AgreementExpress.aspx.

[48] “RFC 4975,” 9 2007. [Online]. Available: http://tools.ietf.org/html/rfc4975.

[49] GSM Association, “Rich Communication Suite 5.1 Advanced Communications
Services and Client Specification,” GSMA, 13 August 2012.

Development of a browser-based Audio/Video Communication Application using HTML5 and WebRTC

41

[50] “Gaia is a HTML5-based Phone UI for the Boot 2 Gecko,” [Online]. Available:
https://github.com/mozilla-b2g/gaia. [Acedido em 23 06 2013].

[51] GSMA, Rich Communication Suite Release 2 Service, 14 February 2011.

[52] “Firefox OS Web API,” [Online]. Available: https://wiki.mozilla.org/WebAPI.
[Acedido em 24 6 2013].

[53] “B2G - Milestone 5 Plan,” [Online]. Available:
https://docs.google.com/spreadsheet/ccc?key=0AiBigu584YY7dGlNSlY0QzhJb3
M5anRBa1gxalV0Y3c#gid=0. [Acedido em 24 6 2013].

[54] Mozilla, “Firefox OS Simulator 3.0.1,” [Online]. Available:
https://addons.mozilla.org/pt-pt/firefox/addon/firefox-os-simulator/. [Acedido
em 24 6 2013].

[55] IETF, “Javascript Session Establishment Protocol,” 22 10 2012. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-rtcweb-jsep-02. [Acedido em 18 1 2013].

[56] IETF, “RTCWeb Offer/Answer Protocol (ROAP),” 30 10 2011. [Online]. Available:
http://tools.ietf.org/html/draft-jennings-rtcweb-signaling-01. [Acedido em 18 1
2013].

[57] W3C, “Media Capture and Streams,” 28 6 2012. [Online]. Available:
http://www.w3.org/TR/mediacapture-streams/. [Acedido em 18 1 2012].

[58] W3C, “WebRTC 1.0: Real-time Communication Between Browsers,” 21 8 2012.
[Online]. Available: http://www.w3.org/TR/webrtc/. [Acedido em 21 1 2013].

