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Abstract

The data generated annually is around 40 trillion gigabytes. This significant increase in
data every year brings with it the need to ensure the protection of sensitive information.

Artificial Intelligence has been improving its results more and more, presenting models
capable of responding rigorously in critical areas, for example medicine, autonomous vehicles,
robotics, etc. These algorithms need huge amounts of available data to optimize their response
to all their area of operation.

The urge to continue to improve these algorithms while maintaining the privacy and
confidentiality of the data used emerged. Thus, the concept of Federated Learning was
created. Federated Learning allows to continue training Machine Learning algorithms without
sharing the data used for model convergence. Federated Learning has some similarities with
Distributed Learning. In both concepts the training is distributed, however, Federated
Learning also decentralizes the data in order to keep the information private.

The objective of this dissertation is to explore the concept of Federated Learning, as
well as to directly compare this concept with centralized Machine Learning. To this end,
the architecture required to build a federated solution is analyzed in depth. This dissertation
also presents results obtained with federated solutions in both simulation and real-world
deployment. Finally, a viewpoint of the obtained results is also presented, and options for
optimizing a solution with Federated Learning are discussed.
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Resumo

Os dados gerados por anualmente rondam os 40 trilhões de gigabytes. Este aumento
significativo de dados todos os anos trás a necessidade de assegurar a proteção de informação
sensível.

A Inteligência Artificial tem vindo a melhorar cada vez mais os seus resultados, apre-
sentando modelos capazes de responder rigorosamente em áreas de atuação críticas, por
exemplo, medicina, veículos autónomos, robótica, etc. Estes algoritmos precisam de enormes
quantidades de dados disponíveis para otimizarem ao máximo a sua resposta perante todos a
sua área de operação.

Surgiu a necessidade de continuar a melhorar estes algoritmos mantendo a privacidade
e confidencialidade dos dados utilizados. Desta forma, foi criado o conceito de Federated
Learning. O Federated Learning permite continuar a treinar algoritmos de Machine Learning
sem partilhar os dados utilizados para a convergência do modelo. O Federated Learning
apresenta apresenta algumas similaridades com o Distributed Learning. Em ambos os
conceitos o treino é distribuido, no entanto o Federated Learning descentraliza também os
dados de forma a manter a informação privada.

O objetivo desta dissertação passa por explorar o conceito de Federated Learning, assim
como comparar diretamente este conceito com o Machine Learning centralizado. Para
tal, é mostrada a arquitetura necessária para a construção de uma solução federada. Este
documento apresenta ainda resultados obtidos com soluções federadas tanto em ambiente de
simulação como numa implementação em ambiente real. Finalmente, é também apresentado
um ponto de vista dos resultados obtidos e opções de otimização de uma solução com
Federated Learning são discutidas.
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Chapter 1

Introduction

Fig. 1.1 Federated Learning Applications.

Mobile devices, wearable devices and autonomous vehicles are just some of the devices
that are part of modern distributed networks that generate an abysmal amount of data every
day [1] [2] [3]. Due to the increased computing power, energy efficiency, reduced latency
between communications, increased bandwidth, increased data governance solutions and
even storage capacity of these devices, along with concerns about private information sharing,
it is increasingly attractive to allocate data locally and push computing to the edge so as to
not let users’ private information be exposed [4].



2 Introduction

The concept of edge computing is not new. Indeed, computing simple instructions in
low-power, distributed devices is an area of research that is several years old. Recently, some
work has considered training machine learning models centrally, but serving and storing
them locally [5].

However, as the computing and storage capabilities of the devices comprising a distributed
network grow, it is possible to leverage enhanced local resources on each device. This has led
to an increase in interest in Federated Learning [6] [7] [8], which exploits statistical training
models directly on edge devices. Figure 1.1 shows that Federated Learning has numerous
applications, such as healthcare systems, industry, telecommunications, etc.

This concept has some similarities with Distributed Learning. Distributed Learning is
about having the data centralized but distributing the training model across different nodes,
whereas Federated Learning privileges a decentralization of both the data and the model,
while also contributing to a global model that aggregates all the clients’ models [9] (Figure
1.2).

Throughout this dissertation the concept of Federated Learning is discussed. This work
explores both the definition of the concept itself and the implementation of the whole process,
from the server to the clients. It also discusses existing methods of aggregation and the
updates of the local model in a global model located on the central server. In addition, some
challenges/fragilities of the Federated Learning process are also presented, paving the way
for the contributions of this Dissertation work.
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Fig. 1.2 Difference Between Centralized Machine Learning, Distributed Learning and Feder-
ated Learning.

In a later phase, the implementation of a federated solution is presented and compared
with an existing solution in centralized Machine Learning (Figure 1.2) with the objective of
studying the advantages and disadvantages of the presented concept. Finally, a federated
solution is also developed in a real environment with the purpose of having a better perception
of FL in a real context.

The structure of this dissertation and content of each chapter are the following:

• Chapter 2 reviews the state of the art on Federated Learning, different methods of
aggregation and challenges of FL;

• Chapter 3 presents the frameworks used throughout the development phase of this
dissertation and a step by step walkthrough of an implementation of Federated Learning.
In addition, this chapter also presents the testing methodology used in this dissertation;

• In Chapter 4, the results obtained are presented and discussed;

• Chapter 5 draws some conclusions, as well as some proposals for future work;





Chapter 2

Fundamentals and Related Work

2.1 The Definition of Federated Learning

Within the field of Artificial Inteligence (AI), the Federated Learning (FL) concept aims
to create a Machine Learning (ML) model based on data distributed through multiple sites
[10]. It grants users the ability to collaboratively train a shared model without sharing the
personal data located on their devices [11] [8].

FL consists of two processes: model training and model inference. Typically, in a
FL framework there are two main players: clients/workers/parties who are the ones who
contribute to the training of the model and the server where the aggregation and update
of the global model is performed. Model training consists of sharing information between
the workers and the server. However, the data can never be shared. On the other hand,
during the inference phase, the model is trained based on new data. Lastly, there should be a
mechanism to distribute the benefit of the whole process through all the collaborative parties.
As referred in [11] [12], FL is an algorithmic framework for building ML models that can be
characterized by the following features:

• Two or more parties are interested in building an ML model collectively. Each party
holds some data that wishes to contribute to train the model;

• It is imperative that during the model-training process the data retained by each party
never leave that party;

• The model may be transmitted in part from one party to another, under an encryption
scheme, in such a way that other parties cannot re-engineer the data at any given party;

• In theory, the performance of the resulting model is a good approximation of an ideal
ML model built with all the data located at one party.
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More technically, let N = {1, ...,N} designate the set of N parties, each of them has a
private dataset Di∈N . Each data owner i will use their dataset Di to train a local model wi

from and forward the local model parameters to the FL server. Subsequently, all the gathered
local model parameters are aggregated w = ∪i∈N wi to produce a global model WG [13].

A conventional architecture and training process of an FL system is illustrated in Figure
2.1. In this system, the parties collectively train an ML model with the assistance of an
aggregate server. There is a presumption that all the parties involved in the process are
trustworthy, which implies that they use real private data to perform the training and provide
the true local model parameters obtained within the training to the FL server [13]. Naturally,
this assumption might not be practical and this topic is discussed further ahead in this
document.

Fig. 2.1 Federated Learning Architecture.

Typically, the FL process includes the following three steps [13].

• Step 1 (Task initialization): The FL server determines the training assignment, i.e., the
application goal and the corresponding data requirements. Furthermore, the server stip-
ulates the hyperparameters of the global model and the training process. In conclusion,
the server transmits the initialized global model w0

G to the selected parties.

• Step 2 (Local model training and update): Following the global model wt
G, where t

represents the current iteration index, each party individually uses their local data to
update the local model parameters wt

i. The purpose of a party i in iteration t is to find
ideal parameters wt

i that minimize the loss function L(wt
i), for instance,

wt∗
i = argmin

wt
i

L(wt
i). (2.1)
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Afterwards, the local model parameters are sent to the FL server.

• Step 3 (Global model aggregation and update): The FL server aggregates the local
models received from all the parties selected and sends the updated model parameters
wt+1

G back to the participants.

Steps 2-3 are repeated until the global loss function converges or a desirable training
accuracy is achieved [13], i.e.,

L(wt
G) =

1
N

N

∑
i=1

L(wt
i). (2.2)

2.2 Related and Current Work

The Federated Learning training process can be used for several Machine Learning
models that use the Stochastic Gradient Descent (SGD) method. Typically, a training dataset
contains a set of n data feature vectors x = {x1, ...,xn} and a set of corresponding data labels1

y = {y1, ...,yn}. In addition, ŷ j = f (x j;w) denotes the predicted result from the model w
updated/trained by data vector x j [13]. Table 2.1 compiles the most used loss functions of
common ML models [14].

Table 2.1 Loss functions of common ML models.

Model Loss Function L(wt
i)

Neural
Network

1
n ∑

n
h=1(yi− f (x j;w))2

(Mean Squared Error)

Linear
Regression

1
2 ||yi−wT x j||2

K-means
∑ j ||x j− f (x j;w)||

( f (x j;w) is the centroid of all objects assigned to x j’s class)

Squared-SVM
(Support Vector Machine)

[1
n ∑ j=1 max(0,1− y j(wT w j−bias))]+λ ||wT ||2

(bias is the bias parameter and λ is const.)

Most of the recent successful Deep Learning [15] applications use variants of SGD for
optimization. In fact, many advances can be understood as an adaptation of the structure
of the model (and hence the loss function) to be more amenable to optimization by simple

1In the case of unsupervised learning, there is no data label.
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gradient-based methods. Therefore, it is natural that the algorithms of federated optimization
are built based on SGD.

After the local model training and update, an essential part of the FL process arises, the
global model aggregation. There are several proposed solutions to this topic.

In experiments by Chen et al. [16] show that large-batch synchronous state-of-the-art
SGD optimization in the data center setting outperforms asynchronous approaches. To
apply this approach in the federated setting, a C-fraction of clients/parties is selected at each
round, and the gradient of the loss over all the data held by these parties is computed. Thus,
C controls the global batch size, with C = 1 corresponding to full-batch (non-stochastic)
gradient descent2. The baseline algorithm is FederatedSGD (FedSGD)[15].

A typical implementation of FedSGD with C = 1 and fixed learning rate η has each client
k compute gk =▽Fk(wt), the average gradient on its local data at the current model wt , and
the central server aggregates these gradients and applies the update wt+1←− wt−η ∑

K
k=1

nk
n gk,

since ∑
K
k=1

nk
n gk =▽ f (wt) [17]. An equivalent update is given by ∀k, wk

t+1←− wt−ηgk and
then wt+1←− ∑

K
k+1

nk
n wk

t+1. That is, each client locally takes one step of gradient descent
on the current model using its local data, and the server takes a weighted average of the
resulting models. Once the algorithm is written this way, more computation can be added
to each client by iterating the local update wk←− wk−η▽Fk(wk) multiple times before the
averaging step [15]. This approach is called FederatedAveraging (FedAvg).

The amount of computation is controlled by three key parameters: C, the fraction of
clients that perform computation on each round; E, the number of training passes each
client makes over its local dataset on each round; and B, the local batch size used for the
client updates. Selecting B = ∞ and E = 1 corresponds to FedSGD. For a client with nk local
examples, the number of local updates per round is given by uk = E nk

B [15]. Algorithm 1 is a
complete pseudo-code of the FederatedAveraging method.

2While the batch size selection mechanism is different than selecting a batch by choosing individual
examples uniformly at random, the batch gradients g computed by FedSGD still satisfy E[g] =▽ f (w).
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Algorithm 1: FederatedAveraging. The K clients are indexed by k; B is the
local minibatch size, E is the number of local epochs, and η is the learning
rate.

Server Executes:
initialize w0

for each round t = 1,2, ... do
m←− max(C ·K,1)
St ←− (random set of m clients)
for each client k ∈ St in parallel do

wk
t+1←−ClientU pdate(k,wt)

wt+1←− ∑
K
k=1

nk
n wk

t+1

CLientUpdate(k,w: //Run on client k

B←− split Pk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w←− w−η▽ l(w;b)

return w to server

Some solutions prioritize the privacy and security of all the parties involved. In the FL
process, the server does not need to access individual information from each party involved
to perform SGD. The server only requires the weighted averages of the update vectors [18].
In [18], the authors propose the Secure Aggregation Protocol to compute these weighted
averages. This method would ensure the server becomes aware that one or more parties in
this randomly selected subset gave some information relative to the type of data chosen for
the training, but not which user.

The FL process faces several challenges. Mobile devices have limited resources in terms
of energy and network connectivity. This introduces a certain amount of unpredictability on
the number of parties available to participate in each update round and the system must be
resilient to it. Because the ML model involved in the FL framework may be parametrized
by millions of values, updates may be large, representing a direct cost to users on metered
network plans.

Secure Aggregation proposes to operate on high-dimensional vectors, communicate
efficiently, even considering a novel set of parties on each round, is robust to users dropping
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out, and, finally, provides the strongest possible security under the constraints of a server-
mediated, unauthenticated network model [18].

Algorithm 2 is a detailed description of the Secure Aggregation protocol.

Algorithm 2: Secure Aggregation Protocol
Round 0:

- Generate DH keypairs (CSK
u ,CPK

u ) and (SSK
u ,SPK

u )
User u:
- Send signed public keys (CSK

u ,CPK
u ,σu)

Server:
- Wait for enough users υ1 ⊆ υ

Round 1:
Server:
- Broadcast list of received public keys to all users in υ1
User u:
- Validate signatures, generate bu and compute Su,v
- Compute t-ou-of-n secret shares for bu and SSK

u
- Send encrypted shares of bu and SSK

u
Server:
- Wait for enough users υ2 ⊆ υ1

Round 2:
Server:
- Forward received encrypted shares
User u:
- Compute masked input yu
- Send yu
Server:
- Wait for enough users υ3 ⊆ υ2

Round 3:
Server:
- Send a list of at least t survived users: υ3 ⊆ υ2
User u:
- Abort if |υ3|< t
- Sign υ3 and reply with a signature σ ′u
Server:
- Collect signatures
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Round 4:
Server:

- Send a list {v,σ ′v} of survived users from υ4 ⊆ υ3

User u:

- Abort if |υ4|< t, validate signatures
- Send shares of bu for alive users and SPK

u for dropped
Server:

- Reconstruct secrets
- Compute x̄ (the final aggregated value)

The underlined parts are required to guarantee security in the active-adversary model.

Algorithm 2 relies on Shamir’s t-out-of-n Secret Sharing [19], which allows a user to
split a secret s into n shares, such that any t shares can be used to reconstruct s, but any set
of at most t−1 shares gives no information about s. Also, it uses a Key Agreement which
consists of a tuple of algorithms (KA.param,KA.gen,KA.agree). KA.param(k) −→ pp

produces some public parameters. KA.gen(pp)−→ (SSK
u ,SPK

u ) allows any party u to generate
a private-public key pair. KA.agree(SSK

u ,SPK
u ) −→ Su,v allows any user u to combine their

private key SSK
u with the public key SPK

u for any v (generated using the same pp), to obtain a
private shared key Su,v between u and v [18].

2.3 Statement of Contributions

Like all methods/algorithms, FL has its unique characteristics and issues. These chal-
lenges make the federated framework distinct from other classical problems, such as dis-
tributed learning or traditional private data analysis [5]. This dissertation describes four of
the core challenges associated with this process, and clarifies the contributions of the work
proposed.

2.3.1 Expensive Communication

Client/Client and Client/Server communications are a critical bottleneck in federated
solutions [20]. When paired with privacy concerns over sending raw data, it becomes neces-
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sary that data generated on each party remains local. Undeniably, FL networks potentially
comprise a massive number of devices, e.g., millions of smartphones, and communication
in the network can be slower than local computation by many orders of magnitude, due to
limited resources such as bandwidth, energy, and power [21] [22].

To fit a model to data generated by the devices in the federated network it is important
to develop communication-efficient methods that iteratively send small messages or model
updates as part of the training process, as opposed to sending the entire data set over the
network. To reduce communication in such a setting, two key aspects to consider are:
reducing the total number of communication rounds and reducing the size of the transmitted
messages at each round [5] [22].

2.3.2 Systems Heterogeneity

The storage, computational, and communication capabilities of each device in federated
networks may differ due to variability in hardware (CPU and memory), network connectivity
(3G, 4G, 5G, and Wi-Fi), and power (battery level) [21]. Additionally, the network size and
systems-related constraints on each device typically result in only a small fraction of the
devices being active at once, e.g., hundreds of active devices in a network with millions of
devices [20]. Also, it is not uncommon for an active device to drop out at a given iteration
due to connectivity or energy constraints [20].

These system-level characteristics dramatically increase the number of challenges, such
as straggler mitigation and fault tolerance [5]. Proposed FL approaches must therefore:
anticipate a low amount of participation, tolerate heterogeneous hardware, and be robust
enough to dropped devices in the communication network [5] [8].

2.3.3 Statistical Heterogeneity

Devices frequently generate and collect data in a highly non-identically distributed
manner across the network, e.g., smartphone users have varied use of language in the context
of a next-word prediction task [5]. Moreover, the number of data points across devices may
vary significantly, and there may be an underlying statistical structure present that captures
the relationship among devices and their associated distributions [23]. This data-generation
paradigm violates frequently used independent and identically distribute (i.i.d.) assumptions
in distributed optimization and may add complexity in terms of problem modeling, theoretical
analysis, and the empirical evaluation of solutions [5].
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Although the canonical FL problem aims to learn a single global model, there exist other
alternatives such as simultaneously learning distinct local models via multitask learning
frameworks [23]. In that regard, there is also a close connection between leading approaches
for FL. This multitask perspective enables personalized or device specific modeling, which
is often a more natural approach to handle the statistical heterogeneity of the data for better
personalization [5] [8].

2.3.4 Privacy Concerns

Privacy is often a major concern in FL applications. FL makes a step toward protecting
data generated on each device by sharing model updates, e.g., gradient information, instead
of raw data. However, communicating model updates throughout the training process can
reveal sensitive information, either to a third party or to the central server [24].

Although recent methods aim to enhance the privacy of FL using tools such as secure
multiparty computation (SMC) or differential privacy, these approaches often provide privacy
at the cost of reduced model performance or system efficiency [24], [18]. Understanding
these tradeoffs, both theoretically and empirically, is a considerable challenge in realizing
private FL systems [5].

Theoretically, when an implementation of the FL process in a real environment is per-
formed, new variables are introduced to the equation. These variables are the challenges
addressed during this chapter.

Given this information, it is permissible to propose the implementation of a solution in a
real environment in order to obtain more accurate results from models trained using the FL
process.

Furthermore, during this research an optimization of the model presented in section 2.2
was devised. This model performs the update of the global model from an arithmetic average
of the local models coming from each worker. During this dissertation it is proposed to
implement a weighted average of the local models in order to update the global model, i.e.,
to give more importance to the parameters coming from a worker that is contributing more to
the model training than a worker where the results obtained are not being positive.





Chapter 3

Design and Development of a Federated
Learning System

3.1 Methodology

Having in mind the contributions of this dissertation, the undermentioned methodology
is followed:

• Become familiar with the frameworks and programming languages needed to develop
solutions using Federated Learning;

• Perform training with a conventional ML algorithm to obtain a baseline for comparison
with the studied FL approaches under the same conditions (i.e., the same dataset, the
same parameters and on the same machine);

• Perform side by side comparisons of simulations with FL and with conventional ML,
and understand the advantages and disadvantages of each method;

• Perform a real implementation of a solution with FL to assess which variables differ
between the simulations and the real world solution (for example, in a simulation the
communication overhead of the devices is not considered and in a real solution this
parameter is expected to be critical);

• Further explore the method and optimize it for better and more accurate results.

Naturally, the dissertation work starts by getting familiar with the frameworks and the FL
process itself, to understand where the main bottlenecks currently lie and where contributions
are most needed.
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Once the first step is completed, it is crucial to chose a baseline that will serve as a
comparison against the results obtained with the FL approach used. This baseline consists
of a training model under the same parameters, but using conventional ML. This perfor-
mance comparison study will allow easier and accurate understanding of the advantages and
disadvantages of FL when compared with existing solutions.

The third point consists in performing adequate experimental design to allow a compara-
tive analysis between the two types of solutions under different configurations.

After consolidating the knowledge of the FL process and its results, as wells as its
constraints, a real world solution will be implemented in a controlled environment, to observe
whether there are significant gaps to the simulation results. This point will introduce new
variables, such as communication restrictions between devices and energy efficiency of each
device. In the application in question, high priority will be given to the parameters with the
highest impact and the parameters considered to be less important will be fixed.

3.2 Frameworks for FL

During the initial phase of this work, a study of the available tools for training and testing
FL models has been carried out. Following this, two frameworks were chosen for tests and
simulations:

• TensorFlow Federated (TFF): TFF [25] is a TensorFlow1 based framework developed
by Google for decentralized Machine Learning and other distributed computations.
TFF consists of two layers: i) FL and; ii) Federated Core (FC). The FL layer is a
high-level interface, which enables the implementation of FL into existing TensorFlow
(TF) models without the user having to apply FL algorithms personally. The FC layer
combines TF with communication operators that allows users to experiment with newly
designed and customized FL algorithms [13].

• PySyft: PySyft [26] is a framework based on PyTorch2 for performing encrypted,
privacy-perserving DL and implementations of related techniques, such as Secure
Multiparty Computation (SMPC), in untrusted environments while protecting data.
PySyft is developed such that it retains the native Torch interface, i.e., the ways
to execute all tensor operations remain unchanged from that of PyTorch. When a
SyftTensor is created, a LocalTensor is automatically created to also apply the input

1https://www.tensorflow.org/
2https://pytorch.org/
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command to the native PyTorch tensor. To simulate FL, participants are created as
Virtual Workers. Data, i.e., in the structure of tensors, can be split and distributed to
the Virtual Workers as a simulation of a practical FL setting. Then, a PointTensor is
created to specify the data owner and storage location. In addition, model updates can
be fetched from the Virtual Workers for global aggregation [13].

The frameworks presented above were chosen to explore during this dissertation, since
they already present a great development and optimization when it comes to FL simulations.
Moreover, these two frameworks present a very complete documentation, as well as several
examples in order to explain in detail how to implement a federated solution.

3.3 Deployment of a Federated Solution: A step by step
Walkthrough

In this section, a concrete example of a simulation with FL is presented to serve as a
guide to deploy a federated solution. Throughout the process, the entire experimental design
needed to build the solution is presented.

This first test was done with the intention of using the first TensorFlow model in Tensor-
FlowFederated. For this purpose, a classic image classification algorithm has been tested.

3.3.1 Dataset Selection

In order to facilitate the first experiment, a dataset made available in the TFF repository
was used. The dataset used consists of a version of MNIST3 which presents a group of
images of handwritten digits, adequate for people who want to experiment with machine
learning techniques and pattern recognition methods on real-world data, while spending
minimal efforts on preprocessing and formatting.

Federated data is typically non-independent or non-identical (non-i.i.d.). Users commonly
have different distributions of data depending on usage patterns. Some clients may have
fewer training examples on their devices, suffering from data paucity locally, while some
clients will have training examples with higher variability.

In this simulation, the concept of data heterogeneity typical of a federated system is
explored. It is important to note that this deep analysis of a client’s data is only possible

3http://yann.lecun.com/exdb/mnist/
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because this is a simulation environment where all the data is available locally. In a real-world
federated solution it is not possible to inspect a single client’s data.

After understanding the type of dataset to be used, it is shaped into a federated dataset.
One of the ways to feed data to a TFF in a simulation is simply a Python list, with each
element of the list holding the data of an individual user. Figure 3.1 represents an example of
the dataset present in a client.

Fig. 3.1 Portion of the MNIST Dataset.

3.3.2 Client Selection

In a typical FL scenario, there is potentially a very large population of user devices. Only
a fraction of which may be available for training at a given point in time. An example of this
includes clients that are mobile phones, which participate in training only when plugged into
a power source.

Naturally, this is a simulation environment, and all the data is locally available. Generally,
when running FL simulations, a random subset of clients should be sampled to be involved
in each round of training, generally different in each round.

Additionally, achieving convergence in a system with randomly selected subsets of clients
in each round can take a long time. Therefore, during the work for this dissertation, the
variable introduced in the equation by dropping and adding users in the middle of a training
round or in between rounds will not be considered.

For that reason, the number of clients used per round during the entire training is set in
prior to the training. In addition, the number of clients is a variable in the code that composes
the solution, therefore, it is completely at the discretion of who is implementing the solution.
For this example, 10 is the number of clients selected.
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3.3.3 Model Initialization

Typically, after establishing the dataset and customer selection, it is necessary to initialize
the model that will be trained. This model is initialized on the server, from where it will be
sent to each available client. Subsequently, training is performed on each client using the
data present there. After the training is completed, each client sends the weights obtained
from this process to the server. In the server, an aggregation of the received information is
done and, consequently, an update is triggered. This process is called a training round. In
each training round the whole process is repeated.

In our case study with MNIST, a Keras model is used. Keras is a neural network
Application Programming Interface (API) for Python that is tightly integrated with TF, which
is used to build machine learning models. Keras’ models offer a simple, user-friendly way to
define a neural network, which will then be built by TF.

In order to use any model with TFF, it needs to be wrapped in an instance of the
tff.learning.Model interface, which exposes methods to stamp the model’s forward pass,
metadata properties, etc., similarly to Keras, but also introduces additional elements, such as
ways to control the process of computing federated metrics.

3.3.4 Model Training

Now that the model has been initialized, all the conditions are in place to perform the
final part of the process, the training of the model. In this case, there are two optimizers: a
client optimizer and a server optimizer. The client optimizer is used to compute the local
model updates on each client. The server optimizer applies the average to the global model
at the server. It is therefore recommended to start with a regular SGD. The learning rate is
completely up to the implementer.

Algorithm 3: Python code to run an iterative process
iterative_process = tff.learning.build_federated_averaging_process(model,

client_optimizer_fn = lambda: tf.keras.optimizers.SGD(learning_rate=X),

server_optimizer_fn = lambda: tf.keras.optimizers.SGD(learning_rate=Y))

After testing different values for the learning rate we found that a value of 0.02 for the
client and a value of 1.0 for the server allowed to obtain a better convergence of the model.
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The python function presented in 3 constructs a pair of federated computations and
packs them into a tff.templates.IterativeProcess. Federated computations are programs in
TFF’s internal language that can express various federated algorithms. In this case, the two
computations generated and packed into iterative_process implement Federated Averaging.

It is a goal of TFF to define computations in a way that they could be executed in real FL
solutions, but currently only local execution simulation runtime is implemented. This default
interpreted environment is not designed for high performance, but TF expects to provide
higher-performance simulation runtimes to facilitate larger-scale research in future releases.

Finally it is possible to conduct a training round. Algorithm 4 shows how it is possible to
conduct a federated training round in the TFF.

Algorithm 4: TFF Training Round
state, metrics = iterative_process.next(state, federate_train_data)

Note that state represents the server state and federated_train_data represents the data
already distributed to each client.

Table 3.1 shows the results of a complete training round process.

Table 3.1 First Training Round with a portion of the MNIST dataset
.

Round Number of Clients Training Accuracy Training Loss Total Number of Images

1 10 0.1235 3.1194 4860

Training accuracy and loss are obtained from a validation of the model with a portion of
the MNIST images used only for testing.

Finally, to repeat a training round as many times as necessary, you should include algo-
rithm 5 within a for loop that runs through all the training rounds.

Algorithm 5: Training Cicle
for round_num in range(X, NUM_ROUNDS):

state, metrics = iterative_process.next(state, federated_train_data)
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In conclusion, in table 3.2 you can see the result of the example with the MNIST dataset
presented in this chapter. It should be noted that this solution is very similar to one made
with conventional machine learning, with the big advantage of having decentralized data.

Table 3.2 Ten rounds of Federated Learning Training with the MNIST dataset.

Round Training Accuracy Training Loss

2 0.1352 2.9835

3 0.1438 2.8617

4 0.1741 2.7957

5 0.1992 2.6147

6 0.2198 2.5298

7 0.2409 2.4054

8 0.2611 2.3154

9 0.3082 2.1240

10 0.3331 2.1164

3.4 Tools and Apparatus for this Dissertation

During this dissertation, a machine4 was assembled in order to help in the simulations
performed. Due to scheduling conflicts with students from other projects, it was not possible
to perform all simulations on this machine. Therefore, the results presented throughout this
paper were done on Godzilla or on the student’s personal computer.

Godzilla specifications are:

• RAM: 256 GB;

• GPU: Zotac Gaming GeForce RTX 3090 24GB GDDR6X Trinity;

• CPU: AMD Ryzen Threadripper 3970X;

• Storage: 6TB of SSD storage;

• Motherboard: Gigabyte TRX40 Aorus Master;

• PSU: Corsair AX1600i 1600W 80 Plus Titanium Modular.
4This machine was named Godzilla.
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One should note that the assembly of this machine was carried out during the preparation
of this dissertation.

3.5 Testing Methodology

The final objective for this dissertation is to implement a real-world Federated Learning
Solution. To reach that goal we outlined a succession of tests to perform. The results of this
tests are presented and discussed in Chapter 4.

In the first instance, the dataset to utilize throughout this roadmap was chosen.
One of the main goals of this dissertation is to compare the behavior of Federated

Learning and centralized Machine Learning solutions. Thus, we establish a baseline with
centralized Machine Learning to serve as a comparison with the tests performed from this
point forward.

The first simulated test allows us to analyze the behavior of a federated solution for a
different number of clients selected to perform training each round. That said, the CIFAR10
dataset is distributed through 20 clients and 5 of them are selected to perform training each
round. Then, we will test the scenario where all the training is performed in all the 20
available clients.

In the next step tests with 2, 4, and 8 clients will be performed. After implementing the
real-world solution these tests will be repeated and then compared. This scenario will let us
explore if there is a difference between the output of simulated tests and the ones performed
in a real-world solution.

In a real-world implementation, the clients do not have the same amount of data available
for training. Therefore, we will distribute the CIFAR10 dataset unevenly through each client
to help get a clearer view of how a federated solution behaves on this occasion.

Up to this point, all the tests performed used an arithmetic average aggregation method.
That said, we will test this solution with an aggregation method that performs a weighted
average. The weighted average benefits clients with a larger dataset over ones that have less
data locally. Therefore, the tests performed before will be repeated and compared. Figure 3.2
shows a diagram with the methodology of the tests presented in Chapter 4.
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Fig. 3.2 Methodology of the tests presented in Chapter 4.

Finally, a test with a different dataset will be performed. This test aims to validate the
implemented solution and the aggregation methods presented with a more complex dataset.

The illustrative example presented in this section gives an insight of how to implement
a federated solution in a simulation environment. The next chapter presents a solution
implemented in the scope of this dissertation in order to explore the behavior of federated
learning and compare the results obtained with centralized machine learning. One should
note that Chapter 4 follows the testing methodology presented above.





Chapter 4

Results and Discussion

From the previous chapter, it was possible to have an insight of the path taken to develop
this dissertation. With a clear idea of the behavior of a federated solution it becomes easier
to choose which points to address and which points to overlook.

The preliminary research done also made it possible to realize the limitations of simulation
frameworks. Even though the frameworks presented provide a very clear view of the FL’s
behavior, they do not offer an exact view of the behavior of a real solution, for example, the
bottleneck introduced in the system by server/client and client/server communication.

The example presented in the previous chapter makes it possible to achieve high per-
centages of accuracy with the MNIST dataset in a few rounds of training, i.e., in only 50
rounds of training an accuracy of 92% was achieved. Therefore, the first decision made was
to change the dataset to a more complex one, which would give a clearer idea of the potential
of this solution. This leads to the first section of this chapter, the dataset used during this
work.

4.1 Dataset

After a thorough study of the existing datasets, CIFAR10 was chosen because it presents
a balance between complexity and size. This balance allows the tests performed to see more
precisely the difference between the accuracy curve per round of a solution with centralized
ML and a solution with FL, while also ensuring that the tests performed do not take a
prohibitive amount of time to perform. This last point is crucial, as it allows an appropriate
number of scenarios to be tested.



4.2 Establishing a Baseline 23

The CIFAR10 dataset consists of 60,000 colour images of 32x32 pixels, divided by 10
classes. There are 50,000 images available for training and 10,000 images available for
testing [27].

Fig. 4.1 CIFAR10 dataset classes, as well as 10 random images from each.

4.2 Establishing a Baseline

Since the main focus of this dissertation is the direct comparison between centralized
Machine Learning and Federated Learning algorithms, a baseline should be made. This
baseline will serve as method of comparison throughout this chapter, as well as serving as the
basis for the discussion on the advantages and disadvantages of FL versus centralized ML.

In order to make accurate comparisons between the models, the baseline was performed
under the same conditions as the simulations with FL, i.e., the same dataset, the same neural
network, the same training rounds, etc. were used.

Having chosen the CIFAR10 dataset, the next decision to be made is the neural network
used. After some research on both centralized ML solutions and FL simulations it was
decided to choose the VGG19 neural network. This neural network has 16 convolution
layers, 3 Fully Connected layers, 5 MaxPool layers, and 1 SoftMax layer.
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This network allows reaching a percentage of 94.71% on CIFAR10 according to [28].
However, since the FL simulations are performed on both student’s personal machine and
Godzilla, it was decided to perform a test with the baseline on each of these machines as
well.

Based on the solution provided in [28], a test was run on each available machine. As
the goal is to make a direct comparison between centralized ML and FL, it was decided to
perform all the tests only up to 100 training rounds and not until the maximum possible
accuracy was reached. Assumptions about high training time also made a contribution to this
decision.

Finally, after performing these tests, an accuracy of 92.86% was obtained on the personal
machine and 92.89% on Godzilla. That said, we have assumed 93% as the value of accuracy
obtained locally. Note that throughout this chapter the time it takes to perform 100 rounds of
training for any test is taken into account as a relative value, i.e., it is not used as a reference
between solutions.

This decision is due to limitations in parallelizing the training of the clients in the
simulation frameworks. That is, in an ideal real case, training on each client device should
be performed in parallel and each round takes as long as the time it took the slowest device
to perform the training. However, the frameworks presented have some vulnerabilities and
therefore training is not performed completely in parallel, and all the computation is done on
the same machine, which also slows down the time of each communication round.

4.3 Simulation

Now that the dataset and algorithm used and the comparative baseline have been es-
tablished, the conditions are set to start developing a federated solution in a simulated
environment.

4.3.1 Simulation Solution Development

After grasping the concept of Federated Learning and studied its frameworks, we move
on to the implementation phase of a solution built from scratch and trained on the CIFAR10
dataset. Since this is a simulation, this solution does not go into detail about how the server-
client communication is done. In addition, all clients are present on the same machine.
In order to help implementing the solution some existing implementations in PySyft were
addresed, so the solution presented in this section uses the same framework.
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4.3.1.1 Hyper-Parameters

In this solution there are 5 controllable variables that allow testing various training
scenarios.

The first hyper-parameter is the number of clients (num_clients). This variable represents
the total number of clients participating in the federated solution. The dataset will be divided
equally among these clients, thus having each one with the same number of images.

The second variable represents the number of clients selected per round (num_selected).
These clients are the ones that will actually contribute to the training and they are chosen ran-
domly from the total number of clients, for example, if num_clients is 100 and num_selected
is 20 it means that in each training round 20 clients will be chosen randomly from the total
100.

The third parameter represents the number of rounds that the training will take (num_rounds).
In each communication round, num_clients are randomly selected, training on client’s de-
vices takes place, which is followed by aggregation of the individual model weights into one
global model. Note that for all the simulations the total number of rounds is 100.

The fourth hyper-parameter represents the total number of local training rounds on each
selected client’s device (epochs). This variable was set to the value 5 for all simulations.

The fifth and last parameter is a the batch size (batch_size). Data is loaded on a per batch
basis, so it is important to choose a value for this parameter that allows not too little data to
be loaded at a time, as this worsens training performance since the full capacity of the client
devices is not being taken advantage of, but it is also important not to choose a value that
is too high because it can cause a data overload on the clients. During all simulations this
variable has the value 32.

In Algorithm 6 it is possible to see all the hyper-parameters as well as which ones will
be variables during training. The values of the epochs and batch_size parameters are due
to the fact that they introduce more changes in training, so in order to make all simulations
under the same conditions this decision was made. The value of the num_rounds parameter
was set because after some tests it was possible to observe that after 100 rounds it is already
possible to obtain an accuracy close enough to the maximum achieved in article [28] with
CIFAR10.
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Algorithm 6: Hyper-parameters for this dissertation

num_clients = 20
num_selected = The values 5 and 20 were used for this solution
num_rounds = 100
epochs = 5
batch_size = 32

4.3.1.2 Model Architecture

In this implementation phase it is necessary to initialize the chosen neural network. As
mentioned before, the chosen neural network is VGG19. This network can be seen as a
successor to AlexNet, but it was created by a different group called the Visual Geometry
Group at Oxford University. It carries and uses some ideas from its predecessors and improves
on them by using deep Convolutional Neural Layers in order to achieve a higher accuracy
[29].

The neural network chosen was given a fixed size of 224 RGB channels as input, leading
to a 3D matrix of size 224x224x. The only preprocessing done was a subtraction of the mean
RGB value from each pixel, computed over the whole training set. It uses a 3x3x kernel with
a stride size of 1 pixel, this allows to cover the whole notion of the image. Spatial padding
was used to preserve the spatial resolution of the image. A max pooling was performed over
a 2x2x pixel windows with stride 2 (Figure 4.2). This was followed by Rectified Linear
Unit (ReLu) to introduce non-linearity to make the model classify better and to improve
computational time as the previous models used tanh or sigmoid functions this proved much
better than those. Finally, the team implemented three fully connected layers from which
first two were of size 4096 and after that a layer with 1000 channels for 1000-way ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) classification and the final layer is a
softmax function.



4.3 Simulation 27

Fig. 4.2 VGG19 Neural Network Architecture.

This network is widely used for image classification for various datasets, e.g. for facial
recognition applications. Its weights are easily available in other frameworks like Keras, so
they can be tinkered with and used for as one intends.

Finally, the matrix shown in 4.1 presents the initial configuration used to create VGG19
neural network for the simulations implemented.

[64,64,M,128,128,M,256,256,256,256,M,512,512,512,512,M,512,512,512,512,M]

(4.1)

4.3.1.3 Functions for Federated Training

In order to accomplish the federated training as desired three auxiliary functions were
created. These functions help the implementation in 3 important phases of FL: training on
the clients, aggregating the global model on the server and testing the global model to see the
improvement of accuracy over the rounds.

A function to train the local model with the client’s private data on the selected clients,
which we call client_update. This local training takes place on num_selected clients.

A function to aggregate the weights coming from each client and updates the global
model with the updated weights called server_aggregate. During the simulations performed,
this aggregation was done with a simple arithmetic average and aggregation into the global
weights.

Finally, a function that uses the global model and the test loader as input and returns the
test loss and accuracy, which we call test.
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4.3.1.4 Training the FL Model

At this stage, one global model, along with the individual client models is initialized with
VGG19 on a GPU. In this solution, SGD is used as an optimizer for all client models.

This operation takes place within a cycle, which performs the training on the clients for
each communication round. Initially, num_selected clients are chosen from the available
num_clients. Then training is performed for each selected client using the client_update
function. Now, the aggregation of the weights takes by place using the server_aggregate
function mentioned above. This updates the global model, which is the final model that is
used for prediction. After updating the global model, this global model is used to test the
training with the help of the test function previously mentioned.

This process continues for num_rounds, i.e., 100 communication rounds for all the
simulations performed.

Algorithm 7: Pseudo-Code for FL training

for i in num_rounds do
Select random num_selected clients from num_clients
for j in num_selected do

Perform client_update function
Use server_aggregate function
Use test function on the updated model

4.3.2 Simulation Results

Now that the we have implemented a solution, the next phase is to perform tests in order to
pursue one of the goals of this dissertation, i.e., the comparison between Federated Learning
and centralized Machine Learning. Furthermore, these results also serve to understand
the limitations of simulation frameworks and their approximation to a solution in a real
environment.

In a first phase, the goal of the tests performed was to understand the advantage of
bringing more participants into the training program and whether it is possible to obtain
satisfactory results even with few customers present per training round. For this, the dataset
was divided by 20 clients (num_clients) and two cases were selected: 5 clients selected per
training round and 20 clients selected per training round (num_selected). Evidently, we
expect that the second case achieves a higher accuracy, since the dataset used for training
is considerably larger in the second case. However, as already discussed, it is important to
understand whether a solution with FL, even with few participants, might be feasible.
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One should note that in a simulation environment the server/client and client/server
communication is not taken into account and in a real case it is an important variable point
in the equation, since it can substantially increase the time of a communication round.
Therefore, the results presented below have as a major goal to explore the maximum accuracy
difference achieved, always keeping in mind that FL always brings a very important point
that centralized ML cannot provide: data privacy and decentralization.

In Table 4.1 it is possible to observe the differences in the results obtained in the two
cases discussed above.

Table 4.1 Results obtained from two scenarios: 5 (case 1) and 20 (case 2) clients selected per
round from a total of 20 clients.

Number of Elapsed Rounds Total Number of Clients Number of Clients Selected Average Accuracy

10 20
5 65%
20 80%

30 20
5 82%
20 87%

50 20
5 86%
20 90%

100 20
5 90%
20 91%

In these two scenarios it is possible to observe that case 2 presents a faster convergence
in the first training rounds, however, after a little more than half of the training rounds, case 1
comes very close to the second case. The model is not as responsive in classifying images
for case 1 as in case 2 because it has a considerably smaller dataset than the second case.
However, it is also a known fact that the more data available for training, the better prepared
the final model will be.

Even though we admitted that the elapsed time for each case presented would not be
taken into account because of limitations of the framework in parallelizing client training, it
is important to inform that for case 1 it took an average of 1h40min of training, which gives
about 1 minute per round, and case 2 took an average of 5h50min minutes to perform, i.e.
about 3min30sec per round. One should note that the simulations presented were performed
in Godzilla.

After drawing conclusions about the tests presented above, the next testing scenario was
decided upon. This second scenario aims to analyze the impact of splitting the data by more
clients in each training round. That said, CIFAR10 was divided equally by 2, 4 and 8 clients.
For all cases all available clients were selected for training (num_selected = num_clients).
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One should note that the second case from the previous shown results is also considered here,
since the dataset is also equally distributed over all the clients selected in each training round.
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Fig. 4.3 Graphic with the curves of the accuracy of the tests with 2,4 and 8 Clients.

Figure 4.3 shows that adding more clients to the program, but keeping the same number
of images for training does not affect the accuracy at any stage of the training, that is,
distributing the same dataset over more clients does not worsen the quality of the result.
However, it is known that the environment where these tests were performed is a simulation
environment and, as mentioned before, in this environment the server/client and client/server
communication is not taken into account as well as the drop out or addition of clients between
communication rounds.

In a real environment solution these variables may cause the test result presented above
not to be the same in practice. This is because the time spent on communications can be a
major bottleneck for the program. In addition, the server has to be prepared to lose and add
participants over time, just as clients have to be prepared to be able to leave the training and
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not start again from the point where they left. That said, it is not possible to accept the results
shown in figure 4.3 as absolute.

This makes the the mock tests an inaccurate picture of FL behavior. Nevertheless, with
the simulations performed it is already possible to make some comparisons between a FL
algorithm and a centralized ML algorithm.

As such, we decided to invest time in designing and implementing a real-world solution,
i.e. one that would give an idea of a federated solution with the clients having to communicate
with the server and vice-versa.

4.4 Real-World

For the development of this solution a system design was conducted. This system design
serves as a guide to the implementation of the real-world Federated Learning solution.

4.4.1 System Design

The server/client and client/server communication is done through a REST server. Since
the main goal is not to encrypt the information sent nor to protect the client or server from
attacks, a REST server presents a simple way to communicate through POST messages with
a JSON formatted body, while allowing us to do a proof of concept study.

Another important point of this solution is the implementation of all the training logic on
the client in a mobile Android application. For this, research on Android programming has
been done.

The logic implemented on the server remains the same, i.e. the function that aggregates
the weights coming from the clients and the function that tests the updated global model
remain the same.

Finally only the last point of this solution remains to be defined: the Android devices.
Purchasing devices just for testing this solution would become a considerable investment. In
addition, due to the current COVID pandemic, we also faced difficulties in using existing
mobile devices from our academic network. Hence, it was decided to use Android mobile
device emulation tools on the student’s personal machine. There are numerous emulation
software for the desired purpose, such as BlueStacks, Nox Player, MEmu Play, etc., as well
as Android Studio itself where the Android application (.apk) development is done.

Figure 4.4 shows a representation of how the solution performs in a real environment
through a high level diagram.
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Fig. 4.4 Federated Learning Real-World Solution High Level Diagram.

4.4.2 Development and Implementation

Now that the system design has been completely aligned it is time to develop and
implement the solution. In the first phase, the REST server is implemented, clarifying how
the communication will be done during the whole process.

4.4.2.1 REST Server (Server Implementation)

As seen before, the REST server has the purpose to start the communication rounds and
make sure that the updated weights are sent from the client to the server. This server also
sends the updated model to all clients.

The architecture of this REST API is composed as follows:

• GET model to get the latest shared model in this server

• POST model to upload the updates from the clients

• GET round to obtain the info about the current round

Each training round starts when the server is initialized. Afterwards, the server receives
the updates from all clients. When a client sends the updated weights to be aggregated to the
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global model these are stored by the server in a JSON format file. This file contains all the
information from each client of all the training rounds.

After receiving all the information from a minimum number of clients, the server proceeds
to aggregate the global model. In a production environment, the server should be protected
to not receive new information during each training round so that there is never a system
crash or deterioration of the training during the process. However, this is a controlled
case, so the server only receives information from a stipulated number of clients during the
implementation and admits that all available clients will participate in each training round,
i.e. during this dissertation the drop out or addition of clients in the middle of the process is
not covered.

Once performed the aggregation of the model, the server sends the model to all partici-
pating clients in the response of the message received initially by each client.

4.4.2.2 Android Application (Client Implementation)

In this chapter, the implementation made for training each client has already been covered.
Thus, this implementation can be leveraged, by migrating to the Android language in order
to create a functional .apk file, which allows any user to install the app on an Android mobile
phone.

However, it is still necessary to include the communication with the server. To do this,
each client sends a REST message to an endpoint created for the server shown above. This
endpoint uses the IP address of the server in order to be able to communicate. The client will
send the weights from the local training and receive as a response the updated global model
that will be used in the next round.

During the implementation some tests were made with Android devices emulated by
Android Studio. These tests showed that the software in question is quite heavy, so it would
not be possible to scale the same tests for a higher number of clients used. That said, a
research was done in order to understand what would be the best solution to do tests with
more clients. From this research, the BlueStacks software already mentioned was chosen.

Like any other emulator, BlueStacks creates a virtual version of an Android device that
runs in a window on the computer. In this virtual client the application generated in Android
Studio is installed to run the federated solution.

The Multi-instance Manager lets you create multiple instances of BlueStacks 5. You can
use these instances to play several games together, use different accounts at the same time
and farm more easily in many different games. From this feature it is possible to emulate
several devices in order to test more cases during this dissertation.
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In an ideal case it is necessary to take into account the computational capacity and
energy efficiency of each client, since in most cases the client devices will be heterogeneous.
Obviously this point affects the training considerably, as there will be clients that can perform
their local training faster than others. This not only affects the total training time, but can
also affect the ability of each client to train with a considerably large dataset. That said, in
this solution, all the devices will be homogeneous. Therefore, the impact of using training
devices with different conditions for future work.

4.4.3 Real-World Results

All conditions are now gathered to perform tests using the solution presented above.
These tests allow us to get a clearer idea of a federated solution compared to the simulations
already performed. One should note that during the research of existing solutions carried out
for of this dissertation few cases were found where the results obtained came from a solution
in a real environment.

In a first case, a test is made that serves as a comparison with the last simulated test
performed. That is, we perform a test where the CIFAR10 dataset is divided equally by
android devices. This test aims to understand if the accuracy of the training is affected when
the devices are real and not created by the available frameworks for FL simulation.

Table 4.2 Results obtained from the real-world solution with 2 devices.

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 2 79%

30 2 88%

50 2 90%

100 2 91%

When comparing table 4.2 with figure 4.3 it is possible to admit that the solution in real
environment does not detract from the accuracy along the rounds. Although the training time
is not taken into account, it is important to mention that the training time in this solution
increases a lot, however this is quite expected since the server and the Android devices are
emulated on the same machine and, on the other hand, the FL simulation frameworks are
more optimized than this solution. Clearly the time varies depending on the capacity of the
machine used, however, the time obtained is not valid because in an ideal case each node
only computes its own training and this is done entirely in parallel.
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Next, focus was given to how a client with a incomplete dataset present in the training
will affect the accuracy over the rounds. For this dissertation, a incomplete dataset is a
quantitative dataset, that is, only the amount of images available for local training on each
client will determine the quality of the dataset. Clearly, there are several conditions that make
a dataset incomplete, such as the quality of the images used, i.e., there may be blurry images,
pixelated images, or even images that are impossible to identify. However, these cases are
left for future work on this topic.

Having said this, three test cases are presented below. In the first case (Table 4.3) there
are two clients present in the training, where one has half of CIFAR10 (25,000 images) and
the second has only 10 images (one image for each class in CIFAR10).

Table 4.3 Results obtained from the real-world solution with 2 devices (One with 50% of
CIFAR10 and another with 0.0002%).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 2 27%

30 2 34%

50 2 42%

100 2 48%

In the second case (Table 4.4), the number of clients is increased to 4, the dataset is
divided non-uniformly among 3 of them, but one of the clients sees its dataset being assigned
with 0,0002% of the complete training batch of CIFAR10 (one image for each class in
CIFAR10). The other 3 clients have 15%, 25% and 60% of the dataset, respectively.

Table 4.4 Results obtained from the real-world solution with 4 devices (15%, 25%, 60% and
0.0002% of CIFAR10, respectively).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 4 22%

30 4 43%

50 4 78%

100 4 90%

Table 4.5 shows the last case. In this scenario, the number of clients is increased again,
this time to 8. Six of the clients have half of the dataset available to the 3 clients with a
decent dataset: two clients with 7.5%, two with 12.5% and two with 30%. The two remaining
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clients have 10 images each, always keeping in mind that they have one image of each class
existing in CIFAR10.

Table 4.5 Results obtained from the real-world solution with 8 devices (two clients with
7.5%, two with 12.5%, two with 30% and two with 0.0002%).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 8 12%

30 8 26%

50 8 44%

100 8 89%

The first case clearly shows a poor result. This result is expected, since the training is
done with only half of the total dataset. The second and third cases show that increasing
the number of clients and, consequently, each client having a smaller local dataset, along
with the introduction of clients that do not contribute at all to the overall training, still allows
reaching an accuracy close to the maximum achieved in previous tests. However, it is also
possible to observe that the accuracy in the initial training rounds is considerably worse than
in the cases presented before.

These findings can be seen in more detail in the graph shown in figure 4.5. This graph
gives a better insight into the overall training behavior shown in the previous tables.
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Fig. 4.5 Comparison between 2 clients with 50% and 0.0002% of the dataset, 4 clients with
15%, 25%, 60% and 0.0002% of the dataset, and 8 clients with 7.5%, 7.5%, 12.5%, 12.5%,
30%, 30%, 0.0002% and 0.0002% of the dataset.

The previous results substantiate the need to use an aggregation method that benefits the
clients that contribute the most to the global model. This can be done through the use of a
weighted average, where more weight is given to the weights coming from clients with a
more complete dataset, that is, clients that ultimately make the model reach a higher accuracy.

That said, the aggregation model was changed in order to comply with this premise. In
order to accomplish this new use, case a controlled weighted average was done, i.e., given
the number of images each client has locally as well as the total number of CIFAR10 images.

Clearly, FL prioritizes privacy above all else, so this would not be possible in a real case.
However, this development is only intended to visualize the contribution of an aggregation
method where it is not assumed that all clients contribute equally to the overall model.

Therefore, equation 4.2 represents the weighted average used hereafter.
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w←−
K

∑
k=1

nk

n
wk (4.2)

In this equation n represents the total number of CIFAR10 images and nk represents the
number of images present in each client. With this aggregation method little importance
is given to clients with 10 local images when calculating the average. Below, the cases
presented above are repeated, but using now a weighted average.

The following table shows the results obtained by repeating the test with three clients
(one client with 15%, one with 25% and one with 60% of CIFAR10) and one with only 10
images.

Table 4.6 Results obtained from the real-world solution with 4 devices with Weighted Average
(15%, 25%, 60% and 0.0002% of CIFAR10, respectively).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 4 73%

30 4 84%

50 4 88%

100 4 91%

In the graph shown in Figure 4.6 it is possible to admit that the use of a weighted average
when aggregating the global model improves the training in the initial rounds. However, in
both cases an identical accuracy is reached at the end of the training, given enough training
rounds.
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Fig. 4.6 Comparison between training with 4 devices (Weighted Average vs Arithmetic
Average)

Table 4.7 presents the results obtained from the test with 8 clients (two with 7.5%, two
with 12.5% and two with 30% of the dataset, and 2 clients with 10 images for each class
present in CIFAR10).

Table 4.7 Results obtained from the real-world solution with 8 devices with weighted average
(two clients with 7.5%, two with 12.5%, two with 30% and two with 0.0002 %).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 8 36%

30 8 55%

50 8 79%

100 8 90%
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In addition, Figure 4.7 shows a graph comparing the test presented in the previous table
with the same test performed with the arithmetic mean when aggregating the global model.
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Fig. 4.7 Comparison between training with 8 devices (Weighted Average vs Arithmetic
Average).

As expected, in general, the training is better when a weighted average is used for both
cases. This is due to the fact that clients with more percentage of dataset assigned are more
favored than clients with only 10 images, which have almost no influence on the model
aggregation.

In order to test this solution more generally, a test for each of the 8-client cases (with and
without weighted average) with cross-validation has been performed.

In this case, the 50,000 training images were divided into 5 batches of 10,000 images.
Consequently, these five batches were divided into two with 12.5%, two with 7.5% and two
with 30% of their images (figure 4.8). That said, one training run was performed for each
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batch of 10,000 images. This test serves to validate that the presented solution produces
equivalent results for several different cases.

50,000 Training Images 1010,000 Test Images

CIFAR10

10,000 
Batch

10,000 
Batch

10,000 
Batch

10,000 
Batch

10,000 
Batch

750 Batch 750 Batch

1250 Batch 1250 Batch

3000 Batch 3000 Batch

Fig. 4.8 Division of CIFAR10 used for the tests with cross-validation.

That said, the following table presents the average of the results obtained for the two
cases presented.

Table 4.8 Results obtained with cross-validation (Weighted Average in green vs Arithmetic
Average in red).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 8
28%
8%

30 8
42%
17%

50 8
74%
42%

100 8
90%
89%
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Thus, it is admissible that the solution presented is valid for a generality of cases and not
only the cases presented during this section.

Using the weighted average presents an overall improvement in training, however, for
CIFAR10, both the weighted average and arithmetic average cases achieve a similar maximum
accuracy. Therefore, we have decided to do a final test with a larger dataset – CIFAR 100 –
to assess the performance of our FL solution and

This dataset has both the same number of training and test images as CIFAR10. The
difference between these two datasets is in the number of image classes, i.e., while CIFAR10
presents 10 image classes, CIFAR100 presents 100 image classes (Figure 4.9).

Fig. 4.9 Classes of CIFAR100.

In the following table it is possible to observe the results obtained by repeating the tests
presented in Tables 4.5 and 4.7.
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Table 4.9 Results obtained from 8 clients (two clients with 7.5%, two with 12.5%, two
with 30% and two with 0.0002 %) with CIFAR100 dataset (Weighted Average in green vs
Arithmetic Average in red).

Number of Elapsed Rounds Number of Workers Present in Training Average Accuracy

10 8
6%
2%

30 8
21%
12%

50 8
32%
24%

100 8
63%
51%

Note that for the same training rounds with this dataset, an accuracy of 63% is reached.
This is to be expected since the dataset presents a higher level of complexity. The author of
[30] shows that with the VGG19 CNN the CIFAR100 dataset achieves a maximum accuracy
of 70.3%.

These outcomes support the use of aggregation methods that benefit results from clients
that contribute more to training than others.
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Conclusion

The goal of this dissertation is to explore and implement Federated Learning solutions and,
consequently, to compare this method with centralized Machine Learning. In order to achieve
this goal, a functional federated solution was implemented in a simulation environment. This
solution demonstrates that the distribution of training, as well as the decentralization of data,
does not introduce a significant degradation in the accuracy achieved when compared with
a centralized ML baseline under the same conditions. Despite these initial conclusions, it
was observed that a simulated federated solution does not provide great perception of the
bottleneck of the communication, that is, it does not provide a perception about the impact of
server/client and client/server communication in the system.

That said, there is a need to implement a real solution, even if it leaves out some variables
that come with the FL itself, to have a more accurate perception about the method. From this
solution it is concluded that, in general, the overall results are equivalent to those obtained in
the previous simulations. Both the real-world solution and the simulated solution achieved a
maximum accuracy of 91%.

However, this solution shows up that a system built on a FL architecture has some
weaknesses, such as:

• By introducing the need for communication between clients and server, the concept
of drop-out and adding them on the fly needs to be addresed. For these cases, both
the server and the FL architecture need to be extremely resilient. If the system is not
prepared to handle a drop-out or a large influx of users during a communication round
there can be considerable degradation in the final result, or even a fatal system failure;
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• With the need for privacy in the data present in each client also comes the need for
protection against cyber attacks or malicious clients. That said, there is a need to
encrypt all communications, as well as the dataset present in each client;

• At the outset, in a federated solution, there is no knowledge of what kind of data
each client possesses. That said, there may be clients that do not contribute to the
increase in accuracy achieved with the global model, i.e., there may be clients that do
local training with data that is not beneficial to the system. Furthermore, clients are
in most cases heterogeneous, i.e., not all clients have the same computational power
or energy efficiency, so there may be clients that take considerably longer to perform
local training than others. In these cases the training time may increase substantially.

However, FL presents very important advantages when compared to centralized ML.
Data privacy at the clients is, above all, the focal point of the presented concept. Furthermore,
privacy brings two huge advantages: i) distributed training, i.e. there is no longer the need
to have a machine on the server that is capable of running extremely heavy algorithms,
and there will be lighter training on each client. In addition, in an ideal federated learning
solution, this training is performed completely in parallel; ii) The need for distributed training
implies the decentralized use of data. Thus, a federated solution presents a dataset that grows
exponentially as the number of clients in the program increases, i.e., it makes the model more
complete and prepared to respond positively to more different situations.

That said, this dissertation allows to suggest incorporating admission criteria when
implementing a solution with Federated Learning. This type of selection allows to introduce
into the system several securities:

• Ensure that all clients have sufficient computational capacity to contribute positively to
the training;

• Ensure that all clients have enough data to help converge the model;

• Ensure that all clients are beneficial, i.e. do not present a privacy risk to others.

We believe that this solution can improve the overall quality of an FL implementation.

We conclude that FL presents improvements in some aspects over centralized ML. How-
ever, FL does not replace centralized ML in all its applications, i.e., when privacy or the lack
of available data is not a problem for those implementing a solution, centralized machine
learning continues to be the most robust solution.

That said, federated learning justifies implementation in financial, medical and any other
application, where the sensitivity of customer data is critical.
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Considering the work developed and the results obtained, there are several possibilities for
continuing the project to improve the current work, such as:

• Implement a federated solution with physical mobile devices;

• Improve the aggregation method to further optimize model convergence;

• Experiment with encryption techniques for server/client and client/server communica-
tion and even the data present in each client;

• Test a federated solution with larger and more complex datasets in order to validate the
applicability of the model for other cases;

• Explore cyber security techniques to enable sustainability for all participants;

• Implement solutions to deal with drop-out and addition of customers during the course
of the solution in order to increase its robustness.
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