

João Dinis Duarte Soares de Sousa

FUN2HELPELDERLY
COGNITIVE STIMULATION AND REHABILITATION

OF HAND-EYE COORDINATION IN THE ELDERLY

THROUGH SERIOUS GAMES

Dissertação no âmbito do Mestrado Integrado em Engenharia

Eletrotécnica e de Computadores, no ramo de especialização em
Computadores, orientada pelo Professor Rui Paulo Pinto da

Rocha, apresentada ao Departamento de Engenharia Eletrotécnica
e de Computadores da Faculdade de Ciências e Tecnologia da

Universidade de Coimbra.

Fevereiro de 2022

This page intentionally left blank.

Fun2HelpElderly - Cognitive Stimulation and
Rehabilitation of Hand-Eye Coordination in the

Elderly Through Serious Games

João Dinis Duarte Soares de Sousa

Dissertation submitted to the Electrical and Computer Engineering
Department of the Faculty of Science and Technology of the

University of Coimbra in partial fulfillment of the requirements for the
Degree of Master of Science in Electrical and Computer Engineering

Supervisor: Prof. Rui Paulo Pinto da Rocha

Jury
President: Prof. Dr. Jorge Miguel Sá Silva
Vogals: Prof. Dr. Paulo Jorge Carvalho Menezes

Prof. Rui Paulo Pinto da Rocha

February 2022

This page intentionally left blank.

Acknowledgments

Em primeiro lugar quero agradecer ao meu orientador Prof. Rui Paulo Pinto da Rocha, por
todo o apoio, disponibilidade, e orientação nesta fase final do meu percurso académico.

Gostaria também de agradecer ao Instituto de Sistemas e Robótica, por me ter disponibi-
lizado todos os meios e condições necessários para a elaboração da parte prática deste trabalho.
Deixo também um agradecimento a toda a comunidade do DEEC, colegas, professores e fun-
cionários que se cruzaram comigo e que de alguma maneira contribuı́ram para que este percurso
tenha acabado da forma desejada.

Não menos importante, quero também realçar a importância do apoio incondicional dado
pela minha famı́lia e amigos. Guardarei com carinho todos os momentos partilhados no decorrer
deste trajecto.

Por último, um agradecimento especial à Cáritas Diocesana de Coimbra, assim como a todos
os idosos que disponibilizaram um pouco do seu tempo para me auxiliar nas etapas finais deste
trabalho. Toda a ajuda prestada foi fulcral para que esta dissertação pudesse ser terminada.

Os vossos ensinamentos e conselhos foram fundamentais para perpetuar este percurso.

Um sincero obrigado,

João Dinis Sousa

This dissertation was supported by the EuroAGE project, funded by Interreg V A Spain -
Portugal program under Grant No. POCTEP-0043 EUROAGE 4 E. It also had the contribution
of the Institute of Systems and Robotics(ISR) – University of Coimbra, funded by “Fundação
para a Ciência e a Tecnologia” (FCT) under GrantNo. UIDB/00048/2020

A todos,
Muito Obrigado!

Abstract

Technology has been exponentially evolving through the last decades, and as a result of
that, our lives have drastically changed due to its undeniable impact in every dimension and
field of our lives, including our daily habits and routines. Thus, it is easily acknowledged that
the mentioned technological evolution provides innovative and creative ways to solve problems
that have been around since the beginning of humanity through new techniques and gadgets.
However, this information can only be helpful if used by someone who understands it and
comprehends its true potential, hence the importance of familiarizing the maximum amount of
possible people who currently do not have an average technology knowledge level. Due to this
lack of familiarization, elderly people happen to represent a big portion of the latest group, and
curiously, they are also the ones that could benefit the most from the evolution that has been
witnessed over the past few years, considering their physical and cognitive debilities.

Adding to the previous idea, population average age is gradually increasing, which means
each year that passes by, senior population numbers are becoming superior to the younger ones.
So, with this group of people representing such a big percentage of the population, answering
their needs should be a priority, considering that an improvement in this age group is going
to affect a big portion of the world population, not only directly strengthening society health
conditions, but also increasing their overall life quality.

Considering what was previously mentioned, this dissertation aims to take a leap regarding
physical and cognitive rehabilitation of elder people, which is desired to be achieved through
the development of an easy-to-play and understandable serious game, that aims to reach and
engage the seniors through a virtual, fun and lighthearted experience, trying to make justice to
the project name, Fun2HelpElderly. Knowing that luring elders into playing a virtual game can
be a tough yet challenging task, due to their lack of technology familiarity, studies prove that it
is indeed possible to turn a likely disengaging rehabilitation therapy, or certain physical activity
experience into a fun regular habit, while requiring almost no professional assistance, as it will
be seen forward in this dissertation. All in all, this serious games intends to fulfill an important
health role, through the stimulation of different emotions and use of techniques that traditional

therapies may not provide and/or satisfy.

Keywords

Serious Games, Physical Rehabilitation, Human-Machine Interaction, Cognitive Stimula-
tion

Resumo

A tecnologia tem evoluı́do exponencialmente ao longo das últimas décadas, e como resul-
tado disso, as nossas vidas mudaram drasticamente devido ao seu impacto inegável em todas as
dimensões, nas quais estão incluı́dos os nossos hábitos e rotinas diárias. Assim, é facilmente
reconhecı́vel que a referida evolução tecnológica proporciona formas criativas e inovadoras de
resolver problemas existentes desde o inı́cio da humanidade, através da utilização de novas
técnicas e dispositivos tecnológicos. Contudo, esta informação apenas será útil caso seja uti-
lizada por alguém que a compreenda, salientando assim a importância de familiarizar o maior
número possı́vel de pessoas que atualmente não possua um nı́vel médio de conhecimento tec-
nológico. Os idosos representam uma grande parte do grupo anterior, e curiosamente, são
também eles quem mais poderia tirar proveito da evolução que temos vindo a testemunhar nos
últimos anos, tendo em conta as suas debilidades fı́sicas e cognitivas.

A idade média da população está a aumentar gradualmente, o que significa que a cada ano
que passa, os números da população sénior tornam-se mais elevados. Assim, com esta faixa
etária a representar uma percentagem tão elevada da população, responder às suas necessidades
deve ser uma prioridade, considerando que uma melhoria neste grupo etário vai afetar uma
grande parte da população mundial, não só reforçando directamente as condições de saúde da
sociedade, mas também melhorando a sua qualidade de vida no geral.

Dado o exposto, esta dissertação visa ter um impacto positivo na reabilitação fı́sica e cog-
nitiva dos idosos, através do desenvolvimento de um jogo sério, compreensı́vel e fácil de jogar,
que pretende cativar e entreter os idosos através de uma divertida experiência virtual que faça
justiça ao nome do projecto, Fun2HelpElderly. É sabido que convencer os mais velhos a jogar
um jogo virtual pode ser uma tarefa difı́cil e desafiante, devido à sua falta de familiaridade
tecnológica. Contudo, estudos comprovam que é de facto possı́vel transformar métodos de ter-
apia e reabilitação desinteressantes num hábito regular e divertido, não requerendo qualquer
assistência profissional, tal como se será explicado no decorrer desta dissertação. Em suma,
este jogo sério pretende desempenhar um papel relevante na saúde da população, estimulando
diferentes emoções e usando técnicas alternativas aquelas utilizadas nas terapias tradicionais já

conhecidas.

Palavras Chave

Estimulação Cognitiva, Interação Homem-Máquina, Jogo Sério, Reabilitação Fı́sica

Contents

1 Manual de Utilizador 1

1.1 Motivation and context . 2

1.2 Problem statement . 4

1.3 Objectives and contributions . 4

1.4 Document structure . 5

2 Background and related work 7

2.1 Active ageing, cognitive stimulation, and rehabilitation 8

2.1.1 Hand-eye coordination . 9

2.2 Serious games . 10

2.3 Related work on serious games to help elderly 10

2.4 Research scope . 13

2.4.1 Key requirements . 14

2.4.2 Envisaged serious game design . 15

2.5 Summary . 17

3 Serious game requirements analysis 19

3.1 Functional requirements . 20

3.1.1 UML use case diagrams . 21

3.2 Non-functional requirements . 24

3.3 Design constraints and limitations . 25

3.4 Development model . 26

3.5 Requirements prioritization . 27

3.6 Summary . 30

4 Serious game design 31

4.1 General concepts of software design . 32

i

Contents

4.2 Architecture . 33

4.2.1 Preliminary UML class diagram . 34

4.3 Mock-ups for the design of the graphical user interface 35

4.4 Conceptual design . 37

4.5 Technical design . 39

4.5.1 Data structures . 39

4.5.2 Algorithms . 39

4.6 Summary . 41

5 Serious game implementation 42

5.1 Computer graphics programming technologies 43

5.1.1 Unity versus Unreal Engine . 44

5.2 Development environment . 45

5.3 Source code structure . 45

5.3.1 Final UML class diagram . 45

5.3.2 UML component diagrams . 46

5.3.3 Source code repository and documentation 47

5.4 GUI events handling . 48

5.5 Main issues during implementation . 48

5.6 Functional and performance tests . 49

5.7 Summary . 50

6 Acceptance tests with end users 51

6.1 Testing scenario . 52

6.2 Tests specification and preparation . 52

6.2.1 Test scheduling . 53

6.2.2 Environment setup . 53

6.2.3 Usability forms . 54

6.2.4 End user consent statement . 54

6.3 Obtained Results . 54

6.3.1 Characterization of the end-user sample 56

6.3.2 Analysis and discussion . 57

6.4 Summary . 58

7 Conclusions 59

ii

Contents

7.1 Future Work . 60

A Annex A - User manual 67

B Annex B - Reference manual 81

C Annex C - Detailed project documentation 128

D Annex D - Testing sessions tables 137

iii

This page intentionally left blank.

List of Figures

1.1 Percentage of population over and under 65 years old [1] 3

2.1 Rehabilitation progress over the course of a year. Reproduced from [2]. 14

2.2 Overall view of the main menu screen . 15

2.3 Overall view of the serious game virtual environment 16

2.4 Leap Motion hardware . 17

3.1 Main menu use case . 22

3.2 Sub-game 1 use case . 22

3.3 Sub-game 2 use case . 23

3.4 Sub-game 3 use case . 23

3.5 Sub-game 4 use case . 24

3.6 Sub-game 5 use case . 24

4.1 Preliminary UML class diagram . 35

4.2 Graphic User Interface mock-ups #1 . 36

4.3 Serious game UML sequence diagram . 37

4.4 Serious game UML activity diagram . 38

5.1 Final UML class diagram . 46

5.2 UML global system component diagram . 46

5.3 UML global system component diagram . 47

5.4 Time Required to tackle the desired quests in each sub-game and overall score . 49

6.1 Environment setup . 53

6.2 Time Required to tackle the desired quests in each sub-game and overall score
after eight testing days . 55

6.3 Age distribution of the end-user sample . 56

v

List of Figures

6.4 Gender distribution of the end-user sample . 57

A.1 Ilustração da porta USB do LeapMotion controller e respetiva entrada no com-
putador . 68

A.2 Extrair a pasta do instalador que se encontra num arquivo comprimido 68

A.3 Abrir a pasta resultante do processo anterior 69

A.4 Instalador do LeapMotion controller software – Selecionar e clicar na aplicação
assinalada a vermelho . 69

A.5 Selecionar o botão ”Seguinte” . 69

A.6 Ler os termos do contrato de licença e pressionar o botão ”Aceito” 70

A.7 Selecionar o botão ”Terminar” . 70

A.8 Notificação de confirmação da instalação do software do LeapMotion controller 71

A.9 Abrir a janela do software do LeapMotion controller 71

A.10 Clique no botão ”Troubleshooting” . 72

A.11 Clique no botão ”Diagnostic Visualizer”, para confirmar que o LeapMotion
controller está a ler a posição das mãos corretamente 73

A.12 Como colocar as mãos por cima do LeapMotion controller – I 73

A.13 Como colocar as mãos por cima do LeapMotion controller – II 74

A.14 Representação da posição das mãos no ecrã do computador 74

A.15 Clique no ı́cone do instalador do jogo sério, denomaninado ”Instalador Fun2HelpElderly” 75

A.16 Escolha a pasta onde pretende instalar o jogo sério. Nesta demonstração, o
software será instalado no ambiente trabalho. 75

A.17 Selecione a opção ”Create a desktop shortcut” e clique no botão ”Next” 76

A.18 Clique no botão ”Install” . 76

A.19 Deixe a opção ”Launch Fun2HelpElderly” ativada e clique no botão ”Finish” . 77

A.20 Definições recomendadas para computadores com especificações de hardware
médias-altas . 77

A.21 Definições recomendadas para computadores com especificações de hardware
médias-baixas . 78

A.22 Menu principal do jogo sério . 78

A.23 Estatı́sticas do jogador – I . 79

A.24 Estatı́sticas do jogador II – Aqui deve poder visualizar as últimas pontuações
guardadas pelo jogador. Neste caso a tabela aparece vazia pois nenhuma pontuação
foi guardada até ao momento . 79

A.25 Opções – I . 79

vi

List of Figures

A.26 Opções – II. Aqui deve poder ajustar o volume da música de fundo 80

A.27 Primeiro cenário do jogo sério – Aquecimento para o sub-jogo número 1 80

vii

This page intentionally left blank.

List of Tables

2.1 Kinect, Leap Motion and Wii comparison table. Reproduced from [3–7] 13

3.1 Requirement prioritization following the MoSCoW method. 28

5.1 Unreal Engine and Unity head to head comparison 44

D.1 Serious game prototype’s functional and performance with a sample of four
end-users. The ”Time required” column refers to the fastest quest tackling done
in each sub-game regarding every session, in seconds. 138

D.2 Serious game eight day testing stage with a sample of eleven end-users. The
”Time required” column refers to the fastest quest tackling done in each sub-
game regarding every session, in seconds. 141

ix

This page intentionally left blank.

1
Manual de Utilizador

Contents
1.1 Motivation and context . 2

1.2 Problem statement . 4

1.3 Objectives and contributions . 4

1.4 Document structure . 5

1

1. Manual de Utilizador

This chapter summarizes all the motivations and goals of this dissertation, while also pro-
viding a reading guide for contextualization purposes.

1.1 Motivation and context

Technology’s influence is undeniable and does not go unnoticed on our everyday tasks, as
it slowly gets more integrated into our gadgets, routines, and overall lifestyle. Therefore, it
is quickly concluded that its impact and benefits on numerous areas is notorious, aiming to
simplify, accelerate, and improve our daily lives.

It seems obvious how technology could take place in fulfilling an essential role in health-
care. As seen in [8], areas such as patient reach out, treatment facilities, decision making, dis-
ease diagnosis, rehabilitation, motoring, among others, already rely on technological support to
improve its intrinsic value and efficiency. Due to the technology available in the rehabilitation
area, it is possible to turn therapeutic exercises and tasks into appealing and engaging activities.
Nevertheless, technology itself is not solving all existing problems. It should be used as an
extension tool to apply scientific and logical thoughts towards a specific goal.

The scientific and medical communities can explore the previous idea in several forms, such
as resorting to specialized robots [9], promoting various physical and cognitive stimulations
[10], motion tracking & analysis tools through virtual reality resources [11], among many other
ways. This dissertation will focus on the latter, more precisely, by creating an interactive virtual
reality environment inside a developed serious game, where the player has to perform certain
determined motions and reasonings to tackle the requested quests.

As a result of the previous analysis, this dissertation is seen as an opportunity window
to serve real people’s needs while utilizing academic knowledge. The developed serious game
mainly focuses on elderly users, but could also be played by anyone who benefits from it. It aims
to promote cognitive stimulation, cognitive rehabilitation, prevent impairments and improve the
recovering progress of body members or other related handicaps. The motivational aspect of
this dissertation resides in this serious game potential to become a step towards success inside
an ageing society environment. It will allow older people to improve their health and familiarize
themselves with technology, while circumventing boredom.

To complement what was previously mentioned, the following pie chart in Figure 1.1 –
made with data obtained from [1] – shows how elder people practically represent one-quarter
of the Portuguese population.

2

1.1 Motivation and context

Figure 1.1: Percentage of population over and under 65 years old [1]

The information represented in the previous pie chart expresses how much of an impact
technological advance directed to that specific age group could make.

3

1. Manual de Utilizador

1.2 Problem statement
Population average age is increasing gradually, and as a result, worsening the aged popula-

tion numbers. According to [12] data, in about three decades, 47,1% of the Portuguese popu-
lation will be over 55 years old – currently, those numbers sit at 35,1%. Therefore, to answer
society’s needs, and since elders already represent such a high population percentage, finding
distinct ways of improving their healthcare and lifestyle is fundamental, and it will naturally
influence and contribute to a community life quality overall improvement.

As described before, an ageing society is already a reality, becoming more pronounced
every passing year. Even though older people represent such a significant percentage of the
total population, this group is often the most neglected one. Unfortunately, the previously stated
forgetfulness that older people are victim of, usually tends to result in an increasing disinterest
towards healthcare and wellness chores. It is contradictory since, due to their natural limitations,
elders should receive the most encouragement to try different types of stimulative activities that
aim to improve their health and well-being. This disengagement is usually caused by a lack of
monitoring, support, incentive, and information.

It is noteworthy how stagnated most elders get after retiring from their jobs. Excluding
necessities, they suddenly find themselves without essential tasks to perform and quickly end
up in a monotone and sedentary spiral of unhealthy habits, leading to minor to no cognitive
and physical stimulation. Consequently, this set of harmful behaviors may anticipate possible
impairments and handicaps, avoided otherwise had they engaged in a different lifestyle years
earlier.

Moreover, serious games, a type of virtual entertainment with stimulation and pedagogical
roles, would be expected to be more ingrained in the rehabilitation scene by now than they
currently are. Inside the video game industry, only a few studies focus on how effective serious
games can be when used as an auxiliary tool. Comparing to the whole leisure video games
industry, serious games also represent a small percentage of the existing all the existing video
games, which is unfortunate considering that they could play a more significant role in modern
therapeutic methods, regarding cognitive and physical fields.

1.3 Objectives and contributions
This work pretends to combine healthcare and wellness with technology, taking advantage

of the latter to improve and rehabilitate elders’ physical and cognitive conditions by creating
an entertaining, versatile and practical serious game, promoting a playful virtual experience for
the end user.

Any player of any age group should be able to play this serious game. However, it is mainly
focused on the elderly group, which have seen their cognitive abilities decline over time, or

4

1.4 Document structure

that only want to prevent that from happening. The main movements required by the serious
game consist on specific actions that need the upper body support, more specifically, arms,
wrists, and fingers, aiming to enhance the mobility of the previously mentioned body members.
However, this serious game also requires a basic level of upper body competencies on the end-
user side to complete the demanded tasks by the interface. This game is not suited for people
with advanced and severe low mobility cases since those will need more advanced and specific
recovery methods, or programs with the proper specialized assistance. For that, simplicity is
key – the serious game should be intuitive, straightforward, well-explained and appealing. It
should be faced as a fun and engaging activity from the end user side, and it should be able
to replace or help traditional recovery methods and exercises. Overall, this software strives to
embody an objective and trackable improvement, in any aspect, to the already existing and used
therapeutic strategies, in the particular interest of this work validation.

Since the major purpose of this activity is therapeutic rehabilitation, professional validation
should be considered. Implementing the serious game to make it seen as a fun experience
is mandatory. However, this does not guarantee its technical and practical efficiency, which
ultimately is one of this work main goals: benefiting the cognitive fields while also providing a
fun and entertaining experience to the end user – and that can only be achieved when considering
the opinion of people who work ”in the field”, in order to validate the techniques required to
play it.

Later in this document, all intended implementation ideas will be thoroughly and extensively
discussed, breaking down every concept, theory, and reasoning behind the decision making
process and potential problems raised, while simultaneously pointing out possible solutions to
fix them.

1.4 Document structure
After this introductory chapter, the work background and respective state of the art can be

found in Chapter 2. Then the definition of serious games is presented, followed by examples
supporting how effectively the latter can be to fulfil the role of helping seniors’ daily lives. In
Chapter 3, the project is viewed from a software engineering perspective, by covering an exten-
sive analysis of functional & non-functional requirements, development model, and respective
requirement priority. Then, the overall serious game design will be explored in Chapter 4. This
chapter contains the decision-making process behind its general concept and architecture. The
technical design will also be covered with a detailed and comprehensive description of the de-
veloped data structures, featuring respective structures and algorithms. Chapter 5 compares all
the contemplated game developing software and explains why Unity was the chosen one. The
relevant stages of the software system development will also be described and clarified, such as
source code, documentation, graphic user interface, faced problems, and functional tests. After

5

1. Manual de Utilizador

that, testing procedures with the end users are introduced in Chapter 6, providing the reader
with an illustrative representation of the obtained results and respective conclusions. To final-
ize, in Chapter 7 conclusions are drawn – an overview of what went as planned but also could
have been done differently or more efficiently. A future work path suggestion is also included,
as an effort to ensure the viability of this piece of work’s possible continuation.

This document also includes four annexes in the final pages:

• Annex A - User manual;

• Annex B - Reference manual;

• Annex C - Detailed project documentation;

• Annex D - Testing sessions tables.

6

2
Background and related work

Contents
2.1 Active ageing, cognitive stimulation, and rehabilitation 8

2.2 Serious games . 10

2.3 Related work on serious games to help elderly 10

2.4 Research scope . 13

2.5 Summary . 17

7

2. Background and related work

This chapter will develop some context regarding the work background and its respective
state of the art. To do that, four fundamental concepts will be explained and elaborated:

• Active ageing;

• Cognitive stimulation;

• Cognitive rehabilitation;

• Hand-eye coordination.

Essentially, it is crucial to understand how to trigger those concepts simultaneously to en-
sure the developed software satisfies and embraces the latter notions. Afterward, the definition
of serious games is presented to understand what the developed software backbone should look
like before inter-twinning it to the first explained concepts. Following that, scientific experi-
ments can be found in the related work section, supporting how effectively those can be and
how much potential they have regarding therapeutic purposes. To sustain the previous premise,
the research scope section includes the explored tools regarding the this serious game develop-
ment, assuring they fulfill their focus on the previously mentioned topics, showing the reader
what the envisioned version of the serious game looks like.

2.1 Active ageing, cognitive stimulation, and rehabilitation
As stated in [13] the active ageing concept encompasses a complex notion of multiple fields,

which allow the healthy control of the worlds’ population. Active ageing guarantees the older
population remains healthy and employed for a more extended period, ensuring the mentioned
group can still play an active role properly within society. The latter means they should main-
tain the ability, clarity and dexterity to perform social, political, economic, cultural and sporting
activities – which sustain the choice of the word ”active”, present in the concept name. In turn,
the term ”ageing” covers the idea of completing the natural life-course cycle. As mentioned in
the introductory chapter, a significant life longevity increase was witnessed in the last years, cul-
minating in a scenario where the elder group is the most abundant among all age sections. This
situation affects social care, pensions management, employment rates and political decisions.

The definition provided by the World Health Organization (WHO) policy framework [13]
agrees with the previous paragraph. According to this organization, active ageing is defined as
optimizing opportunities for health, social activities participation, and security to enhance life
quality. The previous should be achieved while accompanying people’s ageing process.

This definition also explicitly beholds the ratio between life quality and health opportuni-
ties. This correlation happens thanks to the support of strategies aiming to promote quality and
quantity of life increase, autonomy, and independence enhancement, while reducing costs in the

8

2.1 Active ageing, cognitive stimulation, and rehabilitation

healthcare system. Elder roles within society is also not disregarded, fostering activities of ped-
agogical, and practical nature related to employment, politics, education, arts and religion. With
that being said, WHO also guarantees protection, dignity, care systems, socials, and finances of
the older people unable to secure the rights mentioned above.

Regarding cognitive intervention, it is usual to resort to stimulation and rehabilitation [14],
and the latter approaches complement each other. However, they could be done individually,
according to the aimed objective and user needs [15].

Cognitive stimulation pretends to foster activities for users to adopt a problem-solving and
keen attitude towards a specific end goal [16], as well as trying to exercise their memory –
which, combined to active ageing, will be this dissertation main focus. Some examples of these
activities are relevant topics discussion, puzzle-solving, listening to music and baking. This
approach is associated with keeping the user’s social standard functioning levels [17], and it
mainly prevents impairments related to neurodegenerative diseases [13] .

Cognitive rehabilitation, on the other hand, is a far more specific treatment. It focuses on
restoring a previously damaged brain function. This strategy works towards a particular user’s
objectives to increase life quality, and it is only possible because its therapy process gradually
passes through four essential steps [18]:

• Education;

• Process training;

• Strategy training;

• Functional activities training [19].

2.1.1 Hand-eye coordination
As stated in [20], arm movements performed to achieve a specific premeditated objective,

like reaching or touching an object, usually have eye movement associated to it. According to
multiple studies [21–23], eyes start to move in the direction of the desired target from around
40 to 100 milliseconds first before the following arm/hand movement. Regarding tasks that
require a fast reaction timing, the existing latency between the eye and the arm/hand movement
is usually correlated to a situational basis [21], suggesting that recurrent sources trigger the
same eye and arm movements with the same delay.

On the one hand, a reduction in reaction time is verified when an experimental temporal gap
is added between the central eye fixation and the appearance of a new target. On the other hand,
older studies on this eye and arm movement area [24] have evaluated arm movement latencies
with different arm reference positions, counting with the influence of neuromuscular delays.

9

2. Background and related work

The results were underwhelming, as determining the precise time correlation between eyes and
superior members is still somewhat imprecise.

Despite this impreciseness, the realized studies [25] still proved the existence of a mech-
anism that associates both the ocular and limb motor systems. This conclusion undoubtedly
points to the possibility of cognitive development and consequent reaction time improvement
through rehabilitation therapies.

2.2 Serious games
Serious games [26, 27] could be defined as virtual games that pretend to take advantage

of people’s interest in interactive platforms for entertaining purposes. At the same time, those
games aim to stimulate the player in any way, either in the pedagogical, physical, or cognitive
field – ideally, all of them simultaneously.

The term ”serious” is applied to conceptually transmit an idea of a relevant implementation
on a significant theme, seeking to go beyond the pure entertainment side of it – usually char-
acteristic of classic video games. Serious games have the purpose of adequately stimulating an
intended area of peoples’ lives, looking forward to creating a positive impact by improving the
well-being or some specific characteristic on those who play it.

Thus, what differentiates serious games from regular video games is solely the purpose
behind them [27]. While the first one mainly focuses on the entertainment component, the
second one consists of one software able to merge both ”serious” and ”game” dimensions,
ultimately resulting in a helpful and entertaining experience, with a particular end goal already
predefined. The process of tackling all the previous plotted quests should result in intentional
player development in some specific field, whether cognitive or physical.

Serious games are developed to satisfy the necessities of a particular target audience, and
because of that, they should be adapted to the player’s reality, conditions, needs and environ-
ment. Thus, different strategies should be implemented in the developing process, aiming to
guarantee a basic level of adaptability. This strategical aspect intends to add in-game versatility,
allowing different players to play it, no matter their capabilities.

Also, creating a certain level of familiarity with the serious game mechanics is crucial.
When eventually transitioning to a higher skill level, the player should be able to complete all
the requested virtual tasks. If the serious game is effectively developed, tackling these quests
should stimulate and enhance the desired pedagogical, physical, and cognitive components,
reaching its full enhancing potential.

2.3 Related work on serious games to help elderly
Developed in A&M University, the serious game ”Smart Thinker” [28] recruited 59 elders

for testing purposes. This game is free, can be played online and it was built to be fun, en-

10

2.3 Related work on serious games to help elderly

gaging, and, more importantly, to improve people’s cognitive skills. Due to the serious game
architecture, attention and memory abilities are the most exercised ones, encouraging the play-
ers’ cognitive and memory stimulation while playing it. This serious game uses the computer
mouse to bridge the end-users thoughts and screen actions. It contains a set of reasonably known
sub-games like Rock Paper Scissors, High-Low, and Color Game. According to data previously
shown to the player, the latter requires the computer’s cursor to select and guess predictable de-
tails related to pictures, numbers, words, and color. All participants played all games over 200
times during the testing phase. To accurately determine each participant’s progress level, all
participants did a Mini-Mental State Examination (MMSE) before and six weeks after. Later,
they were also asked to fill an inquiry with questions regarding their own opinion about serious
game efficiency. Ultimately, end users’ feedback was positive. Project developers analyzed the
results and confirmed elders’ cognitive capabilities improvement. They admittedly experienced
a fun time playing the serious game as a bonus. This information confirms how this serious
game became what it was meant to be: engaging, user-friendly and straightforward to under-
stand. Dissecting the results, attention was the most improved skill, followed by memory in
second place. These details could mean a step towards the possibility of using serious games as
a tool to prevent certain cognitive conditions, with the most popular one being the Alzheimer’s
disease.

According to [29], the helping tool ”Wiihab” is the perfect example to demonstrate how
stimulative serious games can potentially be. The latter takes advantage of Wii Fit, a functional
console video game that creates an interactive virtual reality environment through the player’s
physical movement. This console has familiar access and its easily purchased due to its world-
wide distribution. This game revolves around virtual quest tackling, which is only possible
when moving the body directly to an existing paired motion sensor. Functioning with remote
control allows performing physical exercises while also influencing the video game virtual en-
vironment pose through the data being sent to the receiver based on the controller motion. In
this experience, Wii Fit is used under the nickname of ”WiiHab”, a wordplay between ”Nin-
tendo Wii” and the word ”rehabilitation”, aiming to increase physical activity and speed up the
rehabilitation process of the disabled users. St. Mary’s Medical Center of the United States pio-
neered this program in 2008, applying it to approximately 100 patients suffering from multiple
diseases and disorders [29]. From the results, it is possible to conclude how the fitness avatar
from ”WiiHab” positively impacted the physical activity of disabled people with spinal cord
injury. For this study’s sake, the real-time avatar interaction was used to project a patient self-
representation to a virtual reality scenario. This fitness avatar represents a massive advantage for
people going through rehabilitation processes. Due to its immersive environment experience,
the players can purposely deceive their brains, sensing the enjoyment of performing physical
activities. However, they are only using their Wii remote control within the limited infrared

11

2. Background and related work

range to send data to the motion sensor without the concern about any potential injury. This
study proved how therapeutic methods could include ”WiiHab” in an adequate physical activity
plan to treat spinal cord injury disabled people, inside a rehabilitation environment. It [29] pro-
vided essential and interesting guidelines for future serious games design, ensuring health, and
promoting fitness tracking before and after physical activity. Finally, it should support the reg-
ular performance of physical activities to promote multiple training variants amongst disabled
people with spinal cord injury. The fitness avatar model should be implemented to contem-
plate various performing phases, provide suited feedback to each one, and minutely analyze
this method’s results. This last step is essential regarding the self-motivation chapter. Once the
user identifies the model’s positive impact on his progress, it will likely be a motivator factor to
continue working under the fitness avatar model.

The next and last example [30] was created through the popular XBOX series add-on,
Kinect. Once again, it also proved to speed up the rehabilitation process of disabled people.
The article showcases how a physical rehabilitation system named ”Kinerehab”, once again,
a wordplay combining Microsoft ”Kinect” and ”rehabilitation”, promoted the possibility of
stimulating the lower body on two young adults with impairments by using the previously men-
tioned system. It was implemented in a public school setting, and after eleven experimental
sessions, the two users were delighted with the results. Given the context, the number of correct
movements achieved with the rehabilitation process was significantly high. As a bonus, this
recovery concept of playing video games seemed effortless for the end users. Tracked data con-
firmed how the two participants significantly improved their physical performances over time.
They also greatly increased their motivation and willingness to engage in physical rehabilitation
sessions. After the predefined experiment phases, they manifested interest in maintaining this
kind of therapy after the testing phase was over. Since this rehabilitation system was tested by
two users only, more research needs to be done to certificate its validation. However, it proved
how effective it could be. It also highlighted how this idea could minimize specialized staff
intervention during rehabilitation. This example takes advantage of Kinect system technology,
which features voice control settings and infrared sensors capable of capturing body movement
precisely.

In [3, 31], an intuitive comparison between Leap Motion, Kinect, and Wii resulted in Table
2.1. However, it should be noted that the Wii Motion-sensor receives arm movement real-time
data from the Wii remote motion, unlike Kinect and Leap Motion, which receive it from body
movements. For that reason, ”Image refresh rate” row does not contain any value.

12

2.4 Research scope

Table 2.1 Kinect, Leap Motion and Wii comparison table. Reproduced from [3–7]
Kinect Leap Motion Wii

Manufacturer Microsoft Leap Motion Inc Nintendo

Technology

1 infrared transmitter
1 infrared camera of 0.3 megapixels

1 RGB camera
4 directional microphones

3 infrared transmitters
2 infrared cameras of 1.3 megapixels

1 motion sensor
1 infrared pointer

Image refresh rate 30Hz 200Hz /

Recognition
Body movements
Facial recognition
Voice recognition

Hand movements
Finger movements Arm movements

Precision In centimeters Hundredth of a millimeter In centimeters

Field of vision Horizontal 57º
Vertical 43º Anteroposterior 120º Almost 180º vertically and horizontally

Captor’s range 1.2 - 3.5m 0.10 - 0.80m 0 - 5m
Work space’s floor surface 6m 1.16m 9m

Configuration SDK for Windows by Microsoft AirSpace Home Not configurable on PC

Based on the compared data in Table 2.1, LeapMotion controller could be a viable option.
Since it recognizes hand and finger movements, multiple concepts can be turned into serious
games with the objective of rehabilitating the end user upper body and stimulating its cognitive
domain. Also, its 200Hz refresh rate can promote a smooth and immersive virtual reality ex-
perience. Its captor’s range also allows to implement a wide variety of required movements, as
well as its small work space’s floor surface portability to the projected software system.

2.4 Research scope
This work strives to achieve cognitive stimulation and rehabilitation in the elderly group,

relying on hand-eye coordination inside a virtual scenario to do so. This software was developed
under Unity [32], a cross-platform game engine able to create three-dimensional (3D) games
to reach the latter. To build a bridge between the previous software and real-world movements,
Leap Motion [6,7], a computer hardware sensor device that supports hand and finger motions as
input, similar to a mouse, but requires does not require hand contact or touching. This hardware
was chosen due to its portability, high frequency image refresh rate and versatility to be featured
in diverse software implementations, which could be to enhance hand-eye coordination while
also promoting rehabilitation.

Learning about them was crucial to planning a flawless serious game to develop the project
with the tools mentioned above. Since this software must be attractive and appealing to an
older age group that generally has little to no technology sensibility, it should logically cover
focal points such as interlacing cognitive stimulation and rehabilitation, promoting and hand-
eye coordination with the previous concept and how to acquire therapeutic validation.

It is also fundamental to understand the average user rehabilitation time window. Com-
prehending this type of data allows an accurate estimation of when the first progress became
visible. This data is relevant to confirm the serious game is having the desired impact on the
end-user cognitive dimensions.

13

2. Background and related work

The following bar chart depicted in Figure 2.1 was built with data provided in [2] and ac-
cording to it, the first 3 month rehabilitation stage is where the standard healing aches and pains
phase takes place.

Figure 2.1: Rehabilitation progress over the course of a year. Reproduced from [2].

2.4.1 Key requirements
When it comes to these specific serious game key requirements, an immediately eye-catching

factor is professional validation. Since the primary goal of this work focuses on therapeutic
rehabilitation, the serious game implementation should have the previously mentioned require-
ment in absolute consideration. Its technical and practical efficiency should be indisputable,
allowing all the cognitive fields to benefit. This registered progress should be approved and
confirmed by a professional who directly contacts a source of data or subject of interest to
validate the techniques required to play it.

Implementing the serious game to make it a fun and entertaining experience is also a manda-
tory point. The gameplay experience should resemble an upgrade to standard therapeutic tech-
niques, excelling for its pleasing involvement in the process. In fact, there is no other way of
turning the act of playing serious games for rehabilitation purposes a habit.

Finally, it is essential to have a genuinely user-friendly interface to engage older people. For
that, simplicity is critical: an inexperienced player should be able to comprehend and absorb its
physics and mechanics quickly. Consequently, this will appeal and require a massive intuition
level from the software end. This point is fundamental because unnecessary barriers in the play-
ing and learning processes may discourage older people from using it. To better comprehend
the serious game, a user manual is bundled in the final pages of this project. It was written to try
to reduce the player’s wasted time overcoming installation difficulties and other misconceptions
– fast-forwarding the player way into the serious game playing phase is a priority.

14

2.4 Research scope

2.4.2 Envisaged serious game design
Regarding the envisaged serious game design, when starting the game, the end-user should

be faced with an initial menu composed by four different options, represented in a considerable
sized font: Play, Scoreboard, Options, and Quit (see Figure 2.2).

Figure 2.2: Overall view of the main menu screen

This serious game will be composed of 5 different sub-games.

In the first sub-game, the user should grab different shaped objects and drop them in properly
labeled containers. It aims to promote arm transversal movement, finger dexterity, geometrical
recognition, and logical reasoning.

Regarding the second one, different colorway spheres will be presented on the screen. The
player should use the virtual hands to hit those with a specific color displayed on the screen.
This color will change from time to time and each successful hit will add points to the player
score, stimulating arm movement and color recognition.

The third one consists of a ”bowling like” mini-game, where the player has multiple spheres
at its disposal and has to throw them to take down a set of cylinders. This sub-game intends to
develop the user’s sense of depth, wrist strength, and finger sensibility.

The fourth sub-game will require the player to use the virtual hand to answer multiple-choice
general knowledge questions. It aims to promote the player’s memory and reasoning.

Finally, in the fifth game, the player has to steer rolling balls into the proper compartment.
This sub-game has the objective of promoting transversal arm movements and stimulating rea-
soning to make the right decision.

Given that this serious game is designed for older people, it is also relevant to notice that
in-game objects should also be considerably sized. The camera perspective should be situated

15

2. Background and related work

in a virtual place close enough for the objective to be as intuitive and simplified as possible.

Also, the scenario and objects’ color palette should be chosen to prevent unnecessary mis-
understandings, allowing the clear perception of every element in each sub-game.

The following Figure 2.3 depicts the intended serious game virtual environment.

Figure 2.3: Overall view of the serious game virtual environment

2.4.2.A LeapMotion controller

The LeapMotion controller [6, 7] is a small USB peripheral device that is designed to be
placed on a physical desktop or table. It uses monochromatic IR cameras and infrared LEDs
and can capture gestures within 1 meter of distance. Its cameras generate almost 200 frames
per second of captured data, which are sent through a USB cable to the computer. Then, the
latter creates virtual 3D position data with the controller’s installed software by comparing all
the 2D frames generated by the two included cameras. The overall controller average accuracy
is approximately the hundredth of a millimeter, which will enable the required human-machine
interaction level to play the idealized game smoothly.

As a consequence of LeapMotion controller use, only hands, finger, and wrist movements
will be registered by the software. Even though arms movement is not tracked by it, they play an
essential role for the player to succeed at the serious game’s objectives as they allow the player
to control the virtual hands’ depth. On the one hand, this could be seen as an advantage. Since
this serious game only requires upper members’ movement, understanding the game’s mechan-
ics and movements becomes more accessible, promoting simplicity. On the other hand, this
implication could also represent a disadvantage – it does limit the number of possible physical

16

2.5 Summary

activities, which will condition and restrict the implementation options regarding rehabilita-
tion exercises involving other body parts than upper limbs. Also, the complexity of setting
the gameplay environment up is lowered due to the low quantity of technological equipment
needed. The required devices are a general purpose computer, the LeapMotion controller and
the serious game software.

Figure 2.4: Leap Motion hardware

2.5 Summary
This chapter addressed the concepts of active ageing, cognitive stimulation, and cognitive

rehabilitation. The term serious game was also covered in the interest of this work validation, for
a solid workflow to build a complete software contemplating all the latter concepts. As firmly
believed in Chapter 1, serious games have high potential to positively impact society, which was
proved to be scientifically valid in the related work section of this chapter. In the research scope
section, the key requirements are set, and the serious game design is sketched. After that, the
software/hardware were chosen based on their potential to fulfill the project goals. Since this
serious game needs to be implemented without previous knowledge, Unity was selected due to
its steep learning curve. This chapter also explained the bridge between the previously analyzed
concepts and the serious game software – this connection allows data transfer between real-life
movements and the created virtual 3D pair of hands. The next chapter will elaborate on the
serious game requirement analysis, thus going beyond the “key requirements” sub-section.

17

This page intentionally left blank.

3
Serious game requirements analysis

Contents
3.1 Functional requirements . 20

3.2 Non-functional requirements . 24

3.3 Design constraints and limitations . 25

3.4 Development model . 26

3.5 Requirements prioritization . 27

3.6 Summary . 30

19

3. Serious game requirements analysis

As stated in Chapter 2, cognitive stimulation, rehabilitation, and hand-eye coordination can
be exercised in multiple ways. The previous concepts rely on activities that put the player out
of his comfort zone, regarding physical and mental domains. That chapter also showcased how
consistently performing similar activities can result in the desired progress, achieved by abusing
the latter repetition process. To successfully fulfill its purpose, this serious game should also be
fun and engaging. Chapter 2 also states how LeapMotion controller is used to create a bridge
between reality and the serious game virtual environment. This strategy obligatory entails some
critical details that must be stressed when plotting the requirements addressed in this following
chapter.

With this in mind, Chapter 3 will scrutinize every detail related to the serious game require-
ments, ensuring all the preparation is done to promote the desired repetition with the available
tools. To achieve the latter, the present chapter will essentially display the thought process be-
hind all requirements’ appointments while contemplating possible constraints and limitations.
In the functional requirements section, this concept will be explained, the requirements will be
elicited and the respective use cases will be displayed with the help of UML diagrams. This
will also define non-functional requirements, followed by a description of all requirements be-
longing to that group. The following section will present design constraints and limitations and
a brief insight into the decision-making process that led to their identification. The development
model section will explain the chosen development model, explaining why it is the most suit-
able approach for the intended software. Requirements will be ranked according to their priority
in the requirement prioritization section, and additional notes will be provided. To finalize the
chapter, conclusions about the chosen requirements are drawn in the summary section.

3.1 Functional requirements
According to [33], the functional requirements describe the set of services that ultimately

result in experience the software can provide to the end user. Those requirements include any
functionality ensuring the system can execute every featured initially established. These imple-
mented features’ utility can be envisioned in the projected use cases. Overall, the latter ensure
full software functionality by guaranteeing the system can fulfill all the expected end user’s
needs.

In this serious game development process, the following functional requirements were es-
tablished:

• Once the software system initializes, the end user should be faced with the initial menu;

• The end user should be able to select any of the four displayed options in the initial menu,
with them being Play, Scoreboard, Options and Quit;

20

3.1 Functional requirements

• When the end user selects the ”Play” option, he should be forwarded to the first sub-game
warm-up scene;

• The end user’s latest score should be visible when selecting the ”Scoreboard” button;

• At the main menu, selecting the ”Options” button should take the end user to a page where
the game volume could be changed;

• ”Quit” button should immediately exit the game and close the software application;

• Every sub-game instruction should be visible on top of the screen;

• Whenever the end user completes the requested task in the warm-up scene, he should be
forwarded to the respective sub-game scene;

• End user’s total score should be visible on the right side of the screen;

• A score increase should occur each time the end user successfully completes the sub-game
requested task and decreased each time the end user performs it wrongly;

• The end user should be able to quit the game at any given moment;

• The end user’s final score should be displayed as a final scene, right after the last sub-
game;

• The end user should be able to save his score at the end of the game.

3.1.1 UML use case diagrams
As stated in [34], Unified Modeling Language (UML) is a modeling language represented

through a diagram cluster. This illustration aims to facilitate the requirement specification role
and to visualize and document the specified goals. Since a software system is being built, the
previous language will be used to create multiple use cases, forming a use case model [33]. That
methodology previews the software’s expected functionalities and reactions within the system
environment. This model can have different interveners, known as ”actors”, to simulate the end
users usability process. Overall, this UML use case diagram is a simplified way of illustrating
which features the end-user can explore and the expected system response to each actor action.

To easily comprehend these multiple use cases, the following UML use case diagrams were
developed:

21

3. Serious game requirements analysis

Figure 3.1: Main menu use case

Figure 3.2: Sub-game 1 use case

22

3.1 Functional requirements

Figure 3.3: Sub-game 2 use case

Figure 3.4: Sub-game 3 use case

23

3. Serious game requirements analysis

Figure 3.5: Sub-game 4 use case

Figure 3.6: Sub-game 5 use case

3.2 Non-functional requirements
As stated in [35], non-functional requirements evaluate the quality attributes of the software

system as a whole. Those requirements guarantee the system being analyzed can function under

24

3.3 Design constraints and limitations

certain limiting conditions. The non-functional requirements can be seen as product properties
and represent software quality attributes. In the interest of this project validation, the most
essential quality attribute is undoubtedly usability. To ensure the software possesses the latter
characteristic, a sequence of functional and performance tests will be considered, allowing the
end user to try out a prototype of the serious game, as well as to provide its feedback. According
to the previous feedback, some implementation adjustments can be made, to guarantee the
highest possible usability level for this software’s target audience.

This specific project contains the following non-functional requirements:

• Simplified options and menus;

• Intuitive graphic user interface;

• Clear in-game instructions through warm-up scenes, before loading any of the five sub-
games;

• Possibility of using the mouse to navigate through the serious game menus and also to
quit the application at any given moment;

• Engaging and immersive virtual environment gameplay;

• In-game goals directly correlate to and validate cognitive stimulation, rehabilitation and
eye-hand coordination.

3.3 Design constraints and limitations
According to [36], the design constraints concept encompasses a set of required conditions

that guarantee project success. By eliminating the possibility of taking certain decisions right
from the beginning, the project is tapered to follow the best possible path, suiting the end user’s
exact necessities and demands, while also avoiding time-wasting on unnecessary features and
resources. In the developed software, the following design constraints were adopted:

• As Unity was the chosen game engine to develop the intended serious game, the latter
must be developed in C#;

• The developed serious game should be adapted to elder people struggles, since they rep-
resent the software target audience;

• The menus and additional instructions should be implemented in Portuguese, to reach the
intended audience of end-users;

25

3. Serious game requirements analysis

• Since the LeapMotion controller was the chosen sensor to bridge real-life movements
with the respective virtual reality actions, this software should be executed in a computer
with Windows OS, guaranteeing both Unity and LeapMotion controller software support;

• Considering LeapMotion controller tends to sporadically take a few seconds to calibrate
the end user’s hand position properly, a warm-up that quickly leads to the sub-game
scenes must be introduced. The latter will allow less time wasted with calibration issues.

3.4 Development model
Since this project required professional validation while also keeping the fun and enter-

tainment values, an objective approach needed to be taken. Therefore, it should encompass a
strategy able to accommodate overtime changes to satisfy the end user’s requirements and de-
mands. Due to that, the Agile Project Management approach was chosen. According to [37],
this methodology focuses on splitting heavy projects into multiple iterations to quickly achieve
fundamental tasks while simultaneously supplying the ”client” with usable software prototypes.
The latter method introduces flexibility, allowing the end user to test the software before the fi-
nal version, opening the opportunity to implement any desired change.

It is also important to mention the ”client” role was played by representative from Cáritas
Diocesana de Coimbra 1, whose help and feedback were fundamental. Given this serious game
target audience is constituted by senior users, the client experience with that age group was
crucial for complementing this project development phase.

This approach holds four main values:

1. Individuals and interactions over processes and tools – during the development of this
serious game, client feedback was always very important and appreciated;

2. Working software over comprehensive documentation – only a small amount of docu-
mentation was initially created, containing the requirements and design constraints. Then
a basic system was built and continuously developed for the client to test it, so changes in
the features could be made;

3. Customer collaboration over contract negotiation – client opinion always had priority over
the previously created documentation, which ended up implying plenty of changes to the
latter;

4. Responding to change over following a plan – client feedback obtained between iterations
was crucial to change the serious game.

1Click here for Cáritas Diocesana de Coimbra website

26

https://caritascoimbra.pt/

3.5 Requirements prioritization

Overall, this project hugely relied on the Agile Project Management approach since each
iteration provided a new version, including a new feature.

3.5 Requirements prioritization
The requirement prioritization concept encompasses the requirement ranking process, or-

dering them from the most to the least significant software functionality. This labeling system
helps to ensure fundamental features get implemented adequately and in time. The previous
idea prevents time-wasting while also promoting a heavy focus on task completion – leaving
less important features unimplemented, if needed. Those could still be added later, if the time
required in their implementation process does not compromise the final software version dead-
line.

This section demonstrates the importance of the highest priority ranked requirements, and
how influential they can be regarding its functionality. The MoSCoW method [38] was the
chosen scale to perform this ranking – this approach consists on distinguishing the fundamental
from the dispensable features. The chosen name for this method is an acronym that encompasses
the initial letter of the following terms:

• ”Must have (M)” refers to a mandatory feature to include in the software. Not including
any functionality with the previous label automatically flags the application as a failure.
In this project, an example of this could be not including a critical virtual object that
would prevent the end-user from completing the requested task.

• ”Should have (S)” covers good but not strictly necessary features. The particular require-
ment aimed to be satisfied most likely is already fulfilled by one of the requirements
labeled as ”Must have”. Even though it could represent an excellent addition to promote
software diversity, it is not crucial enough to compromise its success.

• ”Could have (C)” encompasses a recommendable feature that could improve the end user
experience when using the system, but it is nowhere close to being necessary.

• ”Will not have (W)” refers to an idea that came to be equated but will not make the
envisioned plans for a reasonable reason. Thus, any requirement labeled as the latter is
excluded from the implementation process.

Overall, using the MoSCoW method as a scale comparison term seems to perfectly fit this
project’s needs, which led to the assembly of the Table 3.1:

27

3. Serious game requirements analysis

Table 3.1: Requirement prioritization following the MoSCoW method.

Requirement Description Priority
1 Graphic User Interface M
1.1 Create initial menu M

1.1.1
Create sub-menus buttons to initialize the game, check the lat-
est obtained scores, adjust end user’s preferences and close the
game

M

1.1.2 Implement and develop the latter sub-menus M
1.1.2.1 Allow the end user to register end user’s latest scores S
1.1.2.2 Allow the end user to change the music volume S
1.1.2.3 Allow the end user to change the font size C

1.1.2.4
Include an in-game menus translation from Portuguese to En-
glish

C

1.2
Creation of a graphic matrix for the to be developed 5 sub-
games

M

1.3 Add background music S
2 Implementation of each 5 sub-games M
2.1 All sub-games include a temporal limit M
2.2 All sub-games include a score indicator transverse across them M
2.3 First sub-game grass scenario implementation M
2.3.1 Add five boxes with different labels M
2.3.2 Add multiple geometric forms easily reachable for the end user M

2.3.3
Create a fence around the previous geometric forms to avoid
them from going out of the end user’s reach

S

2.3.4 Each geometric form can be dropped in every single box M

2.3.5
The end user’s score is increased if the geometric form was
dropped in the proper box

M

2.3.6
The end user’s score is decreased if the geometric was dropped
in the wrong box

M

2.3.7
A message is displayed if the end user dropped the geometric
for in the proper box informing the latter the right action was
performed

S

2.3.8
A message is displayed if the end user dropped the geometric
form in the wrong box, informing the latter the right action was
performed

S

2.3.9
Brand new geometric forms with a different color spawn from
time to time

S

2.4 Second sub-game implementation M
2.4.1 Add a set of multiple color spheres inside open windows M

2.4.2
Display text on the screen indicating the color of the sphere
that should be taken down

M

2.4.3 Increase end user’s score if the proper color was taken down M
Continued on next page

28

3.5 Requirements prioritization

Table 3.1 – continued from previous page
Requirement Description Priority

2.4.4
Decrease the end user’s score if the wrong color was taken
down

M

2.4.5 Text showing if the decision was right or wrong C
2.5 Third sub-game implementation M
2.5.1 Add multiple easily knock-able down cylinders M
2.5.2 Add three spheres that the end-user could easily reach and grab M
2.5.3 Allow spheres to spawn from time to time S
2.5.4 Add a bowling alley S
2.5.5 End user’s score increases when a cylinder is hit M
2.5.6 Any sphere disappears when hitting any cylinder S
2.5.7 Any cylinder disappear once it hits the floor S
2.5.8 A fence is build around the area where the spheres are located S
2.6 Fourth game implementation M
2.6.1 Add a text box containing a single question M

2.6.2
Add two text boxes containing two possible answers for the
previous question

M

2.6.3
If the end user chooses the right answer, the score should be
increased

M

2.6.4
If the end user chooses the wrong answer, the score should be
decreased

M

2.6.5
Display a message informing the end user if the decision taken
was right or wrong

S

2.7 Fifth game implementation M
2.7.1 Add an alley with diverse path changers along its area M

2.7.2
Add different two color oval shaped forms that will roll on the
previous mentioned alley

M

2.7.3
Add two different possible destinations for the end-user to for-
ward the oval shaped forms to the one that matches the oval
shaped form color

M

2.7.4
Add spawn of oval shaped forms to promote in-game dy-
namism

S

2.7.5
If the end user chooses the right answer, the score should be
increased

M

2.7.6
If the end user chooses the wrong answer, the score should be
decreased

M

2.7.7
Display a message informing the end user if the decision made
was right or wrong

S

2.8 Final game scenario M
2.8.1 Play again button M
2.8.2 Save stats button S

29

3. Serious game requirements analysis

3.6 Summary
This chapter started by addressing the serious game functional requirements, which allowed

a better understanding of the indispensable software necessities that needed to be fulfilled due
to minutely description of the latter. UML use case diagrams were beneficial to visualize these
needs better, displaying the functionalities the main menu and the remaining five sub-games
should have intuitively. Following that, non-functional requirements were also analyzed. The
software properties were highlighted with those, guaranteeing the main quality attributes are
satisfied, thereby certifying the software value. In the next section, design constraints and lim-
itations were covered, which narrowed the developing stage from the beginning, leaving less
relevant decisions already taken, consequently promoting a better focus towards the implemen-
tation phase. Consecutively, the development model was scrutinized to explain why the agile
approach method was the chosen strategy to carry out this project. This chapter also explained
its application in this specific project and identified it. Lastly, the requirements prioritization un-
der the MoSCoW examined was analyzed. This section described the latter method and helped
the development phase by ranking the requirements priority, according to these a scale provided
by the previous form.

The already mentioned serious game design will be described in detail during the next chap-
ter, focusing on explaining the thought process responsible for the final design.

30

4
Serious game design

Contents
4.1 General concepts of software design . 32

4.2 Architecture . 33

4.3 Mock-ups for the design of the graphical user interface 35

4.4 Conceptual design . 37

4.5 Technical design . 39

4.6 Summary . 41

31

4. Serious game design

The previous chapter covered all relevant information about system requirements, including
a brief but pertinent mention of the initial design constraints. These enabled to limit projecting
options initially, fostering a clearer vision of the different possibilities regarding this serious
game design. Chapter 3 also demonstrated the importance of transitioning from the require-
ment gathering phase to the design stage – the latter have a fundamental role towards software
aesthetic since the serious game design must match the requirements’ demands.

This chapter will demonstrate how the serious game design can be projected around the
previously mentioned requirements by providing a general idea of the system design concept.
After comprehending that, the system architecture will be covered by displaying how it portrays
the different system components coexisting. The preliminary built UML class diagrams will be
used as an explaining tool to better understand that concept. It is essential to envision the
set of projected foundations for the intended sub-games and their anticipated appearance. For
this, the design mock-ups will be explained and depicted – UML sequence diagrams of and
UML activity diagrams were the used charts to demonstrate how these mock-ups may include
the planned event interaction between graphic design and code. After that, technical design
will be defined, showcasing its importance while also explaining its influence in the idealized
development concept.

4.1 General concepts of software design
As stated in [39], software design consists in the previewing process responsible for a sig-

nificant part of the software appearance in its finished version. This concept also encompasses
solution anticipation to eventual hazards and problems. These goals include low-level com-
ponents and algorithm projection – foreseeing [39] the expected system behavior regarding
human interactions and its attached hardware. The software design process embraces a group
of sequential phases, promoting the conceptualization and shifting of the software requirements
to the software implementation, i.e. the specification of a solution to the problem defined in
the requirements analysis phase. This methodology opens space for a better understanding
from the developing perspective, fostering an absolute comprehension of the intended goals
and mandatory software building constraints. Ideally, the software design [40] should be ade-
quately versatile to consume the available resources exclusively. It also must be accurate to the
analysis model and preferably build off existing field-tested design patterns for time manage-
ment and viability reasons. In this designing stage, source code is frequently ruled out, with
pseudo code [41], an informal and less effort-requiring language, being preferred. The latter
concept allows pseudo coders to provide a descriptive view of the intended software, describing
the intended structure, and previewing necessary algorithms. Pseudo code could also be ex-
tremely helpful for projects where the developing team have to write source code in a language
that they are not familiar with, fast-forwarding the implementation process. Overall, software

32

4.2 Architecture

design encourages designers to create visual solutions able to solve eventual problems while
respecting the established initial requirements – the best possible design leads to ideal solutions
regarding project goals.

Software design is frequently represented through design modeling languages [42] to por-
tray the intended concepts and details. Different variations of UML charts will be used to
achieve accurate chart representations. Documenting software design through the previous
strategy ensures all stated specifications, requirements and features are met just before the cod-
ing phase begins. It also turns the latter stage more straightforward and objective regarding
achieving the intended goals.

As previously mentioned, this serious game must be fun, engaging, and, most importantly,
therapeutic. Therefore, all in-game objectives must be sketched to anticipate and selectively
determine the required movements to achieve success within the projected application. With
this in mind, software design is crucial to set the foundations that the implementation phase
should replicate from the available documentation.

4.2 Architecture
As stated in [43], the software architecture promotes the system overview of its organization

and structure, while explaining how the projected software development components behave
with each other. Therefore, when exploring the latter process elaboration, a decision-making
process contemplating every decision’s pros and cons must occur. It is essential to understand
that each option may affect system attributes like performance, maintainability and quality.
Hence, with these possible risks in mind, it is frequent to plot multiple architectures styles for
software systems. These sketches usually overlap in any regard, so a combination of them is
generally considered – ultimately resulting in the final software architecture archetype.

Compared to the software design concept, which mainly describes data structures and al-
gorithms, the software architecture concept distinguishes itself for providing an overall system
structure sketch, accompanied by explanations about the component interaction and behavior
with each other. However, the previous two ideas also have commonalities, which lead to a
situational application when considering which one to use for software mounting – ultimately,
the system architecture ends up being a design, but not all designs represent an architecture.
The chosen concept varies from case to case, but usually it is the one that provides a straight-
forward solution to the existing issue. A usual tool for this consists of process analysis, where
the problem in question is decomposed in multiple sub-problems, and combining all of these
sub-problems’ resolutions, the ideal solution is obtained.

Ideally, the design phase should gradually be updated and improved as the implementation
process advances. Newer proposed solutions for the implementation process may provoke de-
sign changes, which constrains the depicted architecture to accommodate those changes without

33

4. Serious game design

compromising the conceived software system outcome.

Software-related issues are often associated with implementation bugs and initial design
planning flaws. Consequently, architecture analysis can be a powerful tool to solve them, since
most of the time, reviewing software code reveals to be insufficient. Significant problems are
frequently related to the system’s fundamental components malfunctions, attributing architec-
ture design the required leverage to analyze and solve those issues. In other words, it can
identify what is incorrect with these components and troubleshoot them towards the desired
problem-solving. This procedure promotes environment comprehension towards the surround-
ings where the projected system will operate. Other essential procedures revolving around
different architectural activities [44] are also:

• Architectural synthesis – the act of creating and improving the software architecture,
based on requirements analysis and design documentation;

• Architectural evaluation – consists of two stages, with the first one being validation. This
stage contemplates sketched design validation by evaluating how well the latter can meet
the requirements initially provided, and may occur whenever a design decision is being
considered or whenever a design stage got completed. The second stage of this concept
incorporates validation and verification, submitting the built system through a process to
determine whether or not the architecture meets its specifications;

• Architectural evolution – the existing architecture is gradually evolved to accommodate
requirement or environmental changes. This evolution should happen whenever a new
feature needs to be implemented while never disregarding the preserve of the remaining
system’s functionalities behavior.

This serious game’s main classes architecture was preliminarily represented in a UML class
diagram. The following subsection will minutely explain how the previous diagramming tech-
nique accurately portrays and exemplifies the intended system architecture.

4.2.1 Preliminary UML class diagram
UML class diagrams aim to illustrate main software classes, including their respective

names and attributes, containing required data values to accurately conceptualize the latter
classes into the desired code. These diagrams also provide the previewed methods, consist-
ing of functions able to alter the class attributes or interact with other classes. Depending on its
visibility, defined by the indicative behind the method name, those can be private (”-”), public
(”+”) or protected (”#”).

34

4.3 Mock-ups for the design of the graphical user interface

Regarding the system preliminary software architecture, its illustration in a UML class dia-
gram allows overviewing the system as a whole, promoting a more straightforward implemen-
tation process.

The overall system is depicted in Figure 4.1:

Figure 4.1: Preliminary UML class diagram

This preliminary diagram represents a main class for the serious game and one for objects,
score and time control. As an example, in this diagram it can be stated that one serious game
has a single time and score, but can have multiple objects. These three classes are dependent
from the serious game class since they would not exist without the ”startGame()” method. The
main class is also responsible for storing all the relevant variables.

4.3 Mock-ups for the design of the graphical user interface
In graphic design, mock-ups [45] represent a prototype structure model of a particular con-

cept or object intended to be turned into a concrete and tangible design. The latter can be
used for studying, testing, or feature showcasing purposes, as they can set the foundations for
an evolved and more complex version of the intended idea. Mock-ups are characterized to
illustrate an early draft, previewing a future project while also easily accommodating needed
changes.

In this serious game, the mock-ups of graphical design aim to portray an objective yet in-
troductory preview of the menus and the sub-scenes environment. Regarding this specific soft-
ware, mock-ups were designed to properly envision each sub-game required set of movements

35

4. Serious game design

to tackle the existing quests. To efficiently develop this software’s graphic user interface, mock-
up designs depicted in Figures 4.2 were sketched:

Figure 4.2: Graphic User Interface mock-ups #1

36

4.4 Conceptual design

Since the mock-up concept consists of less elaborated sketches, changes can easily be intro-
duced to them without wasting excessive time. They also promote a faster and more objective
implementation phase, as the developing team will know how the intended graphic user inter-
face structure should look. In this case, some sub-games concepts had to be reviewed, as the
mock-ups showed how some previewed required movements could be too complicated for the
end users to perform.

In the following sub-section, two new UML diagrams types will be introduced to prop-
erly show the interaction between the previous mock-ups and the earlier displayed preliminary
classes.

4.4 Conceptual design
Sequences diagrams [46] are a type of UML diagram that aims to demonstrate how the

classes within the code behave and interact with each other. These are particularly useful be-
cause of their ability to neatly display the interactions in an event-based timeline, hence the
term ”sequence”. These diagrams excel at documenting system processes and demonstrating
software’s requirements since the events appear according to their respective order. In this case,
a UML sequence diagram was built to promote both the document building phase and the devel-
oping process. To do this, the following Figure 4.3 depicts how the classes within the sub-games
scenes interact with each other in a regular playing scenario.

Figure 4.3: Serious game UML sequence diagram

37

4. Serious game design

Activity diagrams [47] illustrate a flow control representation within any event occurring
inside the system. These diagrams have the advantage of being able to display sequential and
concurrent activities simultaneously, to better comprehend the overall system behavior.

Figure 4.4: Serious game UML activity diagram

To provide context, the previous diagram shows the interaction between the serious game
class and the respective objects and score. Even though the time class does not directly interact
with the score or objects, it can be seen how crucial its role is to the regular serious game
course.

38

4.5 Technical design

4.5 Technical design
As described before, software design uses diagrams as basis to specify a solution that meets

the specified requirements into an intuitive and interfaced visual illustration. This strategy
makes the design documentation understandable in software system building process stage.
These foundations are shifted into code in the implementing phase by the developing team.

Therefore, technical design [48] is a developing phase where the developers minutely de-
scribe all design previews before starting to write source system code. The existing diagrams
outline what needs to be implemented in the coding stage while considering the available re-
sources to turn the envisioned descriptions into tangible software. Overall, the technical design
aims to facilitate critical analysis while contemplating the possible solutions to the respective
issues. By documenting this describing process, developers have a more straightforward task
when searching for anomalies, considering everything needed to be done is already minutely
specified. This strategy also has the objective of simplifying the debugging process – in case
of any eventual issue, searching for the flaw becomes more manageable, as every code founda-
tion was previously specified. This concept is proven to be more efficient than reviewing the
entire source code – the problem is easily spotted in the technical design document, thanks to
its accurate and detailed conceptual design description.

In this project, the technical design stage was divided into two phases. Firstly, additional
data structures will be presented. Then, the anticipated algorithms will be described, portraying
the envisioned methods to create in-game objectives and ensuring the end-user is righteously
rewarded for tackling the implemented quests.

4.5.1 Data structures
Beyond the previous classes, the following C# additional structures were also used during

this project development, to support and complement the implementation process:

• Collision;

• GameObject;

• Quaternion;

• SerielizeField;

• Vector3.

4.5.2 Algorithms
In order to complete certain goals inside the serious game, a few algorithms had to be

developed to make it possible. Those objectives change in each sub-game. However, they

39

4. Serious game design

rely on the same type of behaviors, which implies that all of them have one same algorithm in
common. The main algorithms in each sub-game are the following:

• The end user has to grab and drop five geometric figures into their adequately labeled
boxes in the first sub-game. Its score should increase or decrease depending on whether
the move performed was correct or incorrect. The implemented algorithm attaches a
specific tag to each geometric figure (for example, the sphere was attached with the tag
”sphere”). Then, a platform was placed inside of each box and, whenever any geometric
figure collides with this platform, a code function linked to the platform will determine if
the dropped figure matches the anticipated tag or not;

• The end user has to knock down different color spheres from open windows regarding
the second sub-game. To do this, a function has to print multiple strings containing the
corresponding color names to the screen, changing over a predefined time. The end-
user should take down the sphere colored by the tonality indicated on the screen-printed
string. A similar algorithm is applied to achieve this – the spheres are labeled with tags
indicating their color, and a function is attached to the scene floor. Whenever any sphere
collides with it, this function determines, with the help of the attached tags, whether or
not it was the proper collision – benefiting right clashes and decreasing score when an
incorrect collision happens;

• In sub-game number three, the end user faces a game similar to a bowling one. Its goal is
to grab reachable spheres and throw them to take down a set of cylinders. An algorithm
must count the score correctly in this specific case, so a few lines were added on the floor.
Each time any cylinder collides with any line drawn in the bowling lane, the end-user
score is incremented;

• In sub-game four, the end user has to answer a few multiple-choice questions – each ques-
tion will be displayed in a large panel, while the two possible answers will be displayed
in two smaller panels next to each other. The end user has to touch and take down one of
the smaller panels to answer the questions, provoking a collision between the scene floor
and the fallen panel. Applying a similar thought process to the one used in the previous
sub-games, each panel containing the answers will be tagged as ”right” or ”wrong”, cor-
responding to the possible outcomes of the end-user response. The same function is also
applied to the scene floor, and each time the panels fall, the latter function verifies if the
answer is correct or incorrect;

• While playing the fifth and last sub-game, the end user has to deflect rolling oval figures,
colored with two different colors, into two different paths. Two platforms were added

40

4.6 Summary

at the end of each direction and, consequently, the spheres have tags attached to them
representing their color. Once any collision happens with the platforms, the end users
score changes.

4.6 Summary
This chapter showcased the importance of sketching design models to fulfill the software re-

quirements. When a solid and cohesive design is sketched, it adds versatility to the developing
phase, efficiently opening an opportunity window for any desired change in a posterior stage.
The system software architecture was then explored using UML class diagrams to demonstrate
the software system component interaction. Following that, the built mock-ups of the serious
game menus and sub-games were shown, since they were used to facilitate the feedback obten-
tion process. After that the UML sequence and activity diagram were displayed to comprehend
the relevance of the different system events that occur simultaneously. Lastly, the technical
design is explored by explaining the intended developing process in advanced stages with a
description of the sub-games required algorithms.

In the next chapter, the software implementation phase will be covered. Reasoning break-
downs behind code writing decisions will be presented, as well as other relevant information
regarding code structure and software performance will be displayed.

41

5
Serious game implementation

Contents
5.1 Computer graphics programming technologies 43

5.2 Development environment . 45

5.3 Source code structure . 45

5.4 GUI events handling . 48

5.5 Main issues during implementation . 48

5.6 Functional and performance tests . 49

5.7 Summary . 50

42

5.1 Computer graphics programming technologies

The previous chapter covered all the relevant details about the serious game’s software sys-
tem design – it showed its illustrative process while providing a minute description of the pre-
viewed serious game. In the same chapter, this software was scrutinized through the description
and respective breakdown of its classes, methods, and algorithms.

Chapter 5 presents and contextualizes the current computer graphics programming tech-
nologies about two possible game engines to develop the intended serious game. After that,
a tiebreaker description takes place to choose the most proper one for the implementation re-
quirements. Shortly after, the winning environment is analyzed, in order to understand which
advantages did provide in this specific situation, as well as, which particularities did it display to
create the playable prototype that later lead to the final software system. Then, the source code
structure and its respective class and component diagrams are displayed and explained. Follow-
ing that, the chosen source code repository is scrutinized alongside some relevant information
regarding the documentation present on it. After that, the thought process behind the graphic
user interface event handling is explained, providing some context regarding screen changes
that happen during the gameplay flow. Ensuing this, some of the main issues found during the
implementation phase are going to be discussed, followed by a detailed reference analysis of
the functional and performance tests done before the testing stage.

5.1 Computer graphics programming technologies
Computer graphics [49] are computational techniques used to create and change information

to generate visual content. This concept is mainly applied to three-dimensional graphics, which
will be the case of this project. The latter concept includes applications for video games, and
can divide itself in three main sub-fields [49, 50], being them:

• Geometry, which comprises the capability to represent and process three-dimensional
objects;

• Animation, as a way of simulating the physics of a certain motion;

• Rendering, responsible for the lighting and generating images from a certain specified
scene model.

The best way to manipulate the previous concept while creating a video game is to use game
engines. Those can easily and quickly create a significant set of foundations, straightforwardly
evolving into a real video game as they can render graphics, detect collisions, and create anima-
tions with the help of programming languages. Regarding the used programming technologies,
C++, C#, and Java are amongst the most used ones. Unity is a game engine based on C# and
was used to create this project. The engine uses a programming language to implement the
desired algorithms and link them up to the latter mechanisms.

43

5. Serious game implementation

When looking for the best possible option to take the implementation stage forward, an
in-depth research was done. After analyzing some likely game engines to develop it, two alter-
natives stood out among the others – Unity and Unreal Engine, both compatible with the chosen
sensor, the LeapMotion controller.

The following subsection will compare both engines and select the most suitable for this
work.

5.1.1 Unity versus Unreal Engine
Unity is a well-known game engine software where a game can be developed (freely for

personal use). However, the latter software was not the only considered option to develop this
project – Unreal Engine, another popular game development software was also considered. Af-
ter analyzing and considering both options, the choice was not easy at all. On the one hand,
Unreal Engine works with C++ and allowed the development of popular games, such as ”Splin-
ter Cell” and ”Gears of Ware” – big-budget games that introduced next-gen physics and graph-
ics. The latter engine also has a big advantage when it comes to creating realistic and superb
visuals. On the other hand, Unity allowed to build iconic mobile games like ”Temple Run” and
”Pokemon GO”, as well as some computer video game classics like ”Assassin’s Creed: Iden-
tity” and ”Rust”. The fact that it works with C# undoubtedly represents an advantage to Unreal
Engine’s programming language C++, since no memory allocation and pointers are required.
Unity also has a steep learning curve, representing a huge advantage for inexperienced devel-
opers regarding video game implementing [51]. Also, Unity is more focused on lightweight
games development, which is exactly the case with this serious game. Unity also promotes
faster development of a playable prototype due to its intuitive interface. The biggest downside
of Unity is the difficulty to make a game look as good as it does in Unreal in terms of graphic
display [51], due to less available lightning options and shaders.

Table5.1 showcases a Unity head-to-head comparison with Unreal Engine. Comparison data
was obtained from [52–54].

Table 5.1 Unreal Engine and Unity head to head comparison
Unreal Engine Unity

Devoloper Tim Sweeney and Epic Games Unit tecnologies
Language C++ C#
Excels at creating next gen physics and graphics creating flash and mobile games

Typical Use
developing games with a big budget
in a really detailed 3D environment

specially first person shooters

developers interested in 2D games
side-scrollers or mobile games

Other
observations shallow learning curve but simple to create superb visuals steep learning curve and quick to create playable prototypes

Considering the characteristics previously presented, Unity was the chosen game engine to
carry out this project. Also, since the serious game is intended to be light in order to run on
any computer, there is no need to create stunning graphics. Another point in favor of Unity is

44

5.2 Development environment

the quickness to develop a playable prototype, because the client opinion is needed as soon as
possible to implement possible constraints useful in the future. Therefore, the implementation
model will take place in the game engine software Unity, by building the graphic user interface,
the environment, the respective objects and adding scripts to the latter objects. Unity will rely
on the LeapMotion controller and hardware to capture finger, hand, and arm movement data, to
virtually interact with the developed environment in the previous software.

5.2 Development environment
As stated in the previous section, Unity was the chosen game engine to implement this

project. With this in mind, this software is responsible for this environment, i.e., it creates all
the existing scenes, objects, and surrounding visual elements. It can also attribute fundamental
particularities such as gravity, colliding behaviors, and rendering properties.

Due to the LeapMotion controller libraries being compatible with Unity, this environment
also gives specific properties to the objects, allowing them to get manipulated – libraries to
connect interaction behaviors to all the intended objects. This feature makes human-machine
interaction possible, creating the previously mentioned bridge between fingers, hand, and arm
movements within the virtual reality environment.

This environment also allows linking scripts containing classes and relevant functions to the
objects, essential for algorithm development. It also provides a significant amount of freedom
in designing, providing customized options for menus, fonts, and colors. For a more immersive
experience, the latter software also added background music to the serious game.

5.3 Source code structure
In this project, all graphic user interface was done through the Unity development envi-

ronment interface. Source code was required to implement the desired buttons, as well as to
develop the needed classes and sub consequent methods and functions. Inside a folder known
as ”scripts”, every source code file1 can be found. The scripts have the same name as the classes
portrayed in the following ”Final UML class diagram” that appears in the next section.

5.3.1 Final UML class diagram
A preliminary version of a UML class diagram was presented in chapter 4, containing the

previewed classes and subsequent attributes and methods. After the implementation phase was
over, the introduction of new classes changed the software system structure, reasonably justify-
ing the creation of an updated UML class diagram, as depicted in Figure 5.1.

1Hyperlink for the Fun2HelpElderly project files and source code here.

45

https://gitlab.com/joaoddsousa/fun2helpelderly_beta

5. Serious game implementation

Figure 5.1: Final UML class diagram

In contrast to the preliminary UML class diagram where the time, score, and objects class
revolved around the ”seriousGame” class, after some iterations, a class for every sub-game was
developed, including the needed methods. This decision was made because, otherwise, the final
UML class diagram would become too extensive and unnecessarily difficult to comprehend.

5.3.2 UML component diagrams
UML component diagrams [55] display the interactions and behaviors of the different com-

ponents. These components equal to a group of classes representing independent systems and
subsystems, and the way they interact with each other is depicted in Figure 5.2.

Figure 5.2: UML global system component diagram

This type of diagram facilitate the comprehension of the software system, through the con-
crete and accurate architecture visualization they provide. It also highlights some system com-
ponents’ importance by showing system simultaneous behaviors with mutual interaction. The
serious game system component is depicted in the following Figure 5.3:

46

5.3 Source code structure

Figure 5.3: UML global system component diagram

The diagram above shows the objectives that the system components help to achieve – for
both end users and non human actors.

5.3.3 Source code repository and documentation
According to [56], a source code repository consists of an archive that contains code files and

simultaneously offers the opportunity to host the latter files alongside technical documentation
and other relevant content. This archive can be accessed by anyone on the internet or it can be
private/non-listed.

This type of repositories is useful for storing the desired project online without having to
save it on a physical hard drive. Another advantage is the versatility it creates through its version
control – every update to the uploaded files can be documented in the repository, which allows
other programmers to join the project and be on pair with every change made, as well as to
create changes themselves if they were allowed to do so. Whenever a change needs to be made
to source code, there is no need to upload the whole project again, through its interface its simple
to only update the file being worked on. For this project, the chosen source code repository was
GitLab, so the serious game files and respective documentation can be found there, alongside a
text file giving instructions on how everything inside that archives works. The latter repository
can be accessed here.

All the files were uploaded to the previous repository through a software called GitKraken,
responsible for bridging and allowing to transfer files between the computer directory and the
online repository.

As seen before in Chapter 4, documentation [57] is a vital component of the software engi-
neering process. It consists of the information that came along with the code to explain certain
behaviors, to justify certain decision-making process and how can a random programmer use
it. There are two forms of documentation, one being the comments inside the source code and
the other supporting documentation to it. A well-documented project allows being worked in
parallel with anyone interested, due to the minutely specified classes functions and objects. A
cohesive set of documentation should make any coder understand any project, by providing
enough context to continue it solely by reading the latter documentation.

To document this project, Doxygen software [58] was used. This software can automat-

47

https://gitlab.com/joaoddsousa/fun2helpelderly_beta

5. Serious game implementation

ically generate documentation by capturing and reading comments in popular programming
languages, in this case, C#. In this project case, besides the comments inside the source code
files, the external documentation was generated through Doxygen and can be seen in Annex B
section of this project.

5.4 GUI events handling
Events [59] are objects which can be handled to create certain interactions with the graphic

user interface, which will change the screen appearance visible to the end-user. These objects
are frequently known as ”Listeners”, as they represent an essential component of the event
framework to achieve the desired event handling sequence. They are ”waiting” for a specified
interaction to happen, and when it does, their response provokes a certain change in the screen.

This software is event-driven between menus because, due to human-machine interactions,
their overall flow is controlled and carried by the actions performed with the computer mouse.
This also excludes the possibility of this serious game being algorithm-driven, because even
though the previous algorithms control the end user’s score, the game will follow its natural
overall flow, even if the end user does not perform any action. In the developed software, the
existing GUI events [59] consist of mouse clicks to navigate between menus, time interruptions
to alternate between sub-games, and windows closing events when the ”quit game” button is
pressed. Regarding the main menu, the end user can select one of the four presented options
with the mouse, which do a certain action through a Boolean function.

5.5 Main issues during implementation
During the implementation stage, it was noticeable how calibrations issues keep happening

with the LeapMotion controller. It momentarily stops capturing or misreading hand and arm
movement data, thus causing the hands models to disappear. This obligates the playing end user
to re-position its hands in the default tracking position, to get its hands’ model to display on the
screen again. Unfortunately, after a few hours spent on investigation and troubleshooting, it was
clear that it was not an implementation problem; instead, it was a LeapMotion controller issue.
This unfortunate event offers sporadic unpleasant times to the end user, ultimately resulting in
a less fun and overall, less engaging activity. However, with the warm-up scene implemented,
the sensor saves a reference position of the end user hands, avoiding eventual issues in the
beginning of each sub-game.

Another implementation issue was the difficulty to perceive the serious game environment
from an elder perspective of view. This did not always allowed to certain details through an
older end user lens. Meetings with the ”client” were crucial to make essential realizations
about the necessity to change certain details. Even though everything ended up working out, a
significant amount of time was lost in this corrective process.

48

5.6 Functional and performance tests

5.6 Functional and performance tests
Before approaching a severe testing stage, later mentioned in Chapter 6, this serious game

went through a series of functional and performance tests. Initially, these software essential
tasks were tested – menu navigation, score counting and saving, scene changing and messages
displaying. Then, after making sure the serious game prototype was not only playable, but also
could validate a more severe testing stage, four elders were chosen to be part of six functional
testing sessions, which consisted of the repetition of the five sub-games. In each session, each
end user score was saved, and the fastest goal achievement movement in each sub-game was
timed – depicted in Figure 5.4 in the Y axis named ”Time required”. End users’ feedback was
also considered, motivating strategic software aesthetic changes to turn the serious game more
accessible. At the end of the sessions, a warm-up scene was introduced before every sub-game.
These scenes contained a simpler sample of the goal the end user had to complete before the
sub-game started. This created a calibration checkpoint, reducing the LeapMotion controller
chances of momentarily missing calibrating, just like mentioned in the previous section. Ac-
cording to the table included in Annex D.1, a steep improvement curve is verified in all of the
end-users, even for those that started the first session with low score points. The time improve-
ment column regarding quest tackling also validates this serious game prototype positive impact
this serious game had. To properly visualize the previously mentioned scenario, some graphics
were built and depicted in Figure 5.4:

Figure 5.4: Time Required to tackle the desired quests in each sub-game and overall score

49

5. Serious game implementation

This serious game, alongside LeapMotion controller software, were also installed and tested
in a different computer with average hardware specifications. This test aimed to validate if the
developed project would run in any computer and it was successfully passed.

5.7 Summary
This chapter started to explain what revolves around computer graphics programming tech-

nologies by contextualizing their current place in the technology industry, how they work, and
why was the serious game engine Unity the chosen one, between all the available options. Af-
ter that, the development environment inside the latter game engine is explored, by explaining
all the leading processes towards the aesthetic and the physics of the serious game. Regarding
that, the source code structure is also dissected, followed by the addition of the final UML class
diagram for better class comprehension, as well as the UML component diagram can display
all the interactions between subsystems, classes, and objects. After that, the source code notion
was explained, as well as, why it was used its consequent advantages of it. A brief mention
of the existing documentation in this project annexes and repository and why it is so important
is also provided. Later on, the GUI events handling is specified to give a better context about
every change within the scenes and consequently on the screen. Following that, the main issues
that happened during the implementation were detailed, mainly consisting of LeapMotion con-
troller calibration issues and difficulties in observing the serious game through the perspective
of view of an elder. Finally, functional and performance tests are specified, portraying how the
first playable prototype behaves inside a chosen sample of elders. These results show that the
developed software is ready to advance to a more serious testing scenario, with a random and
wider end user sample – this scenario will expanded on the next chapter.

50

6
Acceptance tests with end users

Contents
6.1 Testing scenario . 52

6.2 Tests specification and preparation . 52

6.3 Obtained Results . 54

6.4 Summary . 58

51

6. Acceptance tests with end users

The previous chapter focused on the software system implementation phase by providing
information regarding the development environment, code structure, and other essential ele-
ments to describe the software building process. A relevant functional testing stage also was
documented, showing conclusive results regarding the serious game prototype usability level.
All the end users who participated in those sessions showed progress compared to their first
tries, giving crucial feedback to fix minor issues within the serious game. The previous changes
were implemented, and the serious game final release version was ready for a more severe,
controlled, and documented testing stage.

In this chapter the testing scenario will be addressed by providing an ample explanation of
the idealized concept. After that, a detailed description of the test specifications and prepara-
tions will be given, minutely detailing the main points evaluated in that given testing phase and
scheduling the period in which they will occur. Essential documentation to take additional con-
clusions regarding the serious game efficiency is also displayed, alongside specified usability
forms and consent statements. Following that, the obtained results will be analyzed to properly
formulate substantiated conclusions.

6.1 Testing scenario
To properly develop a trustworthy testing environment, eleven elders were asked to par-

ticipate in the acceptance test, of the serious game final version, which will let elders use the
developed software during a specific period. Simultaneously, their performance will be studied
to understand how useful, attractive, and entertaining the latter can be. This can happen through
several ways, such as, initial and final performance comparison, forms fulfillment, and personal
feedback acquisition. These concepts will be explored in the following sections, providing an
in-depth view of what was done to achieve the latter and how that proves what needs to be
confirmed.

6.2 Tests specification and preparation
The executed tests evaluated this serious game usability value according to the end user

performance in the developed software, either through their in-game final score comparison
or through the measurement of the fastest time required to perform a particular movement as-
sociated with goal achieving. Those movements were compared between the initial and final
stages, to measure dexterity progress, which allowed to perceive the end user dexterity and
hand-eye coordination progress. Testers that give permission to be video recorded also create
an interesting comparison term – if the contrast between initial and final days footage is clear,
the improvement is undeniable.

Form filling was also used to understand the serious game usability and entertaining value.
In the initial and last sessions, the end users will be asked to fill out questionnaires regarding

52

6.2 Tests specification and preparation

their experience with the developed software. This would lead to the obtention of accurate
feedback, as well as to understand if a perceptive evolution also happened.

The following subsections will discuss the previously mentioned ways to get essential data
regarding the serious game validation.

6.2.1 Test scheduling
This testing stage encouraged the end users to play the serious game for half an hour during

eight consecutive days. This phase started on February 3rd and lasted until February 10th.

The planned schedule aimed to create gradual progress regarding end user performances
through consistency and practice – by repeating the same sub-games every day, the exact body
mechanisms are also getting exercised and stimulated. Ideally, the end user would end this pe-
riod with improved reaction times and a better performance regarding in-game goal achieving.

6.2.2 Environment setup
In this testing stage, the computer containing the serious game should be standing on a

plain table. Then, the LeapMotion controller should be plugged into the computer, staying at
approximately 25cm, so the end user has the opportunity to manage the virtual hands’ depth
control optimally. The setup setting used during this testing stage is depicted in Figure 6.1:

Figure 6.1: Environment setup

The latter setup allows the elder user to play the serious game while comfortably sitting
on a chair, avoiding unnecessary tiredness and fatigue. Also, the fact that it only requires a
laptop and a small but affordable controller represents portability and montage simplicity – a
significant advantage to fulfill this project main objectives.

53

6. Acceptance tests with end users

6.2.3 Usability forms
After using the serious game, it is important to question the end user about its experience.

This will allow to get a better comprehension of the developed software usability and entertain-
ing values. To achieve the previous goal, two usability scales were created, namely FlowShort
Scale [19, 60] – also known as FSS – and System Usability Scale [19, 61], known as SUS.

The SUS scale was created to measure usability, and it is based on a ten-item adaptable form
– the end user should rate from one (strongly disagree) to five (strongly agree), given its opinion
towards the evaluated software. It is proven to be able to be used on small testers samples and
still produce reliable results. Those previously mentioned ten core questions are usually similar
but should be adapted to the system being evaluated.

Regarding the FSS scale, it aims to measure flow, defined as the perfect balanced state
of mind between boredom and anxiety. More than usability, this form has the objective of
understanding what feelings did a certain experience provide, by asking the end users who fill
it to rate fourteen items on a scale of 1 to 7, given that the last three statements are asked to
be rated on a scale of 1 to 9. Like in the previous model, the latter SUS statements should be
adapted to the software interest.

Since the sample in question is mostly constituted by elder people, asking them to fill both
forms could be an exhausting and complex task. To fix that, a new usability form was created,
featuring the most crucial questions out of the latter two. This usability forms variants adapted
to the developed serious game can be found at the end of this document, inside Annex C.

6.2.4 End user consent statement
As previously mentioned, statistical data regarding end users’ personal information is crucial

to properly carry out a cohesive study. Still, the end user continually consented to share the
previously mentioned data. Therefore, to obtain end users’ names, age, physical and mental
conditions, forms responses, and video recordings of their gameplay, their authorization must
be undoubtedly guaranteed. To acquire those important parameters that allow to analyze the
end user’s evolution, a consent statement contracted was written, ensuring every participant
gave their consent about sharing their data with this project.

Besides the previously mentioned forms, Annex C also contains a copy of the developed
consent statement.

6.3 Obtained Results
After the last tests, the results included in annex D.2 were collected. To provide context

about the developed serious game impact, the obtained results were discussed and used to create
following linear graphics 6.2:

54

6.3 Obtained Results

Figure 6.2: Time Required to tackle the desired quests in each sub-game and overall score after
eight testing days

The graphics depicted in Figure 6.2 leave no doubt about the serious game effectiveness.
Based on its results, this serious game appears to represent a benefit to the end users that par-

55

6. Acceptance tests with end users

ticipated in the eight days testing stage. According to the collected data related to the time
required axis, every end-user managed to consistently perform the sub-games required tasks
in less time compared to their starting point, which is directly related to a notorious hand-eye
coordination improvement. The previous graphics also demonstrate how the overall score val-
ues improved in every end user during the previously mentioned time span. This sustains the
idea that the end users’ cognitive component was stimulated during the eight day testing stage,
which allowed them to display a significant dexterity evolution represented by the serious game
score improvement.

6.3.1 Characterization of the end-user sample

To contextualize the participant end users background, the following two pie graphs repre-
sented in Figures 6.3 and 6.4 below will portray both age and gender representation of those
who participated in this testing stage.

Figure 6.3: Age distribution of the end-user sample

56

6.3 Obtained Results

Figure 6.4: Gender distribution of the end-user sample

According to previous pie graphs depicted in Figures 6.3 and 6.4, it is easily seen that
female participation in this study slightly overcame male participation. Also, end users with an
age comprehended between 70 and 80 years were the most present.

It is also relevant to mention that three end users of the considered sample had physical
impairments during the testing phase. This condition may lead to inferior scores, more time
required to achieve the serious game objectives, and a different perception of the form ques-
tionnaires because of that – which end up being the case. Those three participants were the
ones that revealed more difficulties to play the serious game. However, according to the filled
forms, they seemed to enjoy this serious game more than other healthy participants did.

6.3.2 Analysis and discussion
According to the information above, this serious game firmly allowed its end users to man-

ifest a significant amount of progress during the eight days testing stages. Every elder involved
managed to improve their score gradually and fasten their reaction time regarding in-game ob-
jective completion. The overtime difference in ”Required time” and ”Score values” helps to
prove how the end users improved during this testing sessions. Analyzing the ”Overall Score”
chart, it can be seen that every participant made a huge progress. End user 4, which happened
to be one of the participants with physical impairments, was the participant that made the least
progress, but still managed to improve its performance score in 58% – started with a score of
23 in the first day, and in the last day obtained a score of 28 D.2.

It is also essential to notice that the end users were given one usability form in the first

57

6. Acceptance tests with end users

day and one in the last day. The results were also expressive since all of them found the game
more appealing according to the FSS scale and more useful regarding the SUS scale. This also
demonstrates the evolution during the previously mentioned period.

6.4 Summary
This chapter minutely analyzed the testing stage. It started by briefly describing the testing

scenario, followed by an explanation regarding its specific progress measures, test scheduling,
and environment setup within the latter tests. Following that, the decision of choosing the FSS
and the SUS scales to estimate usability and flow was also explained. To finalize the chapter, the
obtained results were displayed and scrutinized to properly justify that the developed software
gathers enough conditions to fall under the category of a serious game.

58

7
Conclusions

Contents
7.1 Future Work . 60

59

7. Conclusions

The world population average age is gradually increasing, which by consequence has a
tremendous impact in an already ageing society. Hence, it is becoming crucial to create quality
improvement conditions for the mentioned age group, which will ultimately also strengthen
society as a result, since elders already represent such a big percentage of the overall population.
To do this, the developed project aimed to help elder people increase their life quality. The
objective was to build a serious game with therapeutic validation that was simultaneously fun
and entertaining.

Based on the obtained results, this serious game was proven to represent a benefit to the tar-
geted age group. According to the collected data, the elders that participated in the eight days
testing sessions improved their in-game performance through continuous cognitive stimulation,
ultimately resulting in a final score increase over that period. They also demonstrated a signifi-
cant evolution in the required time to tackle each sub-game quests, which is directly related to
hand-eye coordination. That data by itself unveils and attributes an undeniable potential to this
project.

Also, by asking the end users to fill the forms in the first and in the last sessions, also became
clear that based on the registered answers, their interest in the serious game also grew, which
proves the entertainment and fun goal of this serious game was also achieved.

Finally, the recorded video footage of the testing sessions displays a significant contrast
between the first and the last days by showing a visible improvement in the end user’s dexterity
and cognitive capabilities.

This serious game not only differentiates itself from other similar ones due its portability
– LeapMotion controller is a small device and it is playable on almost any laptop – but also
because of the low level assistance and professional monitoring it requires to be played.

7.1 Future Work
This work future directions point to the continuation of the serious game graphical and

technical improvement, by including sound and visual effects to turn the virtual experience
even more immersive and entertaining. Also, innovative and challenging new algorithms could
be added to game, to engage and motivate players that already understood the required game
mechanics and already complete it effortlessly.

Developing more and distinct sub-games could also be a convenient way of introducing
therapeutic validation to a wider sample of end users. These additional scenes would establish
a significant new range of options, which could open an opportunity window to specialize and
group the latter scenes towards a specific goal or rehabilitation role. This concept would encom-
pass a set of sub-games focused on exercising and stimulating exclusively a specific predefined
characteristic of the end user.

60

7.1 Future Work

It would be also interesting to test this serious game, and analyze the obtained results, with
an end user sample made of people with different physical and cognitive impairments. This
would provide a more concrete idea of this serious game’s physical and mental restrictions, as
well as allowing to comprehend if the obtained success rate during this project testing stage
would remain similar with less capable end users.

61

Bibliography

[1] P. INE, População residente: total e por grandes grupos etários, 2020, ”Available at
https://www.pordata.pt/DB/Portugal/Ambiente+de+Consulta/Tabela.

[2] J. Heafner, “Explaining Your Rehab Time Frames,” 2019.

[3] J. Pauchot, L. Di Tommaso, A. Lounis, M. Benassarou, P. Mathieu, D. Bernot, and
S. Aubry, “Leap motion gesture control with carestream software in the operating room
to control imaging: Installation guide and discussion,” Surgical Innovation, vol. 22, no. 6,
pp. 615–620, 2015.

[4] Nintendo Wii – Hardware Information, 2006, available at https://web.archive.org/web/
20080212080618, archived from the original http://wii.nintendo.com/controller.jsp.

[5] Kinect Protocol Documentation, 2013, available at https://openkinect.org/wiki/Protocol
Documentation#Control Commands;a=summary.

[6] LeapMotion controller, available at https://www.ultraleap.com/product/
leap-motion-controller/.

[7] Leapmotion.com, “Firmware Reset Leap Motion Developers,” 2021.

[8] Completemyassignment.com, “Healthcare Assignment - Sample Healthcare Assignment
- Sample,” 2017.

[9] S. Martel, “Beyond imaging: Macro-and microscale medical robots actuated by clinical
mri scanners,” Science Robotics, vol. 2, no. 3, p. eaam8119, 2017.

[10] M. Knapp, L. Thorgrimsen, A. Patel, A. Spector, A. Hallam, B. Woods, and M. Orrell,
“Cognitive stimulation therapy for people with dementia: cost-effectiveness analysis,” The

British Journal of Psychiatry, vol. 188, no. 6, pp. 574–580, 2006.

[11] D. Borton, “What are some types of rehabilitative technologies? — NICHD - Eunice
Kennedy Shriver National Institute of Child Health and Human Development,” 2013.
[Online]. Available: https://www.nichd.nih.gov/health/topics/rehabtech/conditioninfo/use

62

https://www.pordata.pt/DB/Portugal/Ambiente+de+Consulta/Tabela
https://web.archive.org/web/20080212080618
https://web.archive.org/web/20080212080618
http://wii.nintendo.com/controller.jsp
https://openkinect.org/wiki/Protocol_Documentation#Control_Commands;a=summary
https://openkinect.org/wiki/Protocol_Documentation#Control_Commands;a=summary
https://www.ultraleap.com/product/leap-motion-controller/
https://www.ultraleap.com/product/leap-motion-controller/
https://www.nichd.nih.gov/health/topics/rehabtech/conditioninfo/use

Bibliography

[12] M. Gordon, “Ageing Europe,” Bmj, vol. 315, no. 7115, p. 1103, 1997.

[13] P. Stenner, T. McFarquhar, and A. Bowling, “Older people and ‘active ageing’: Subjective
aspects of ageing actively,” Journal of Health Psychology, vol. 16, no. 3, pp. 467–477,
2011, pMID: 21224334. [Online]. Available: https://doi.org/10.1177/1359105310384298

[14] S. Tardif and M. Simard, “Cognitive stimulation programs in healthy elderly: a review,”
International journal of Alzheimer’s disease, vol. 2011, 2011.

[15] B. A. Wilson, “Cognitive rehabilitation: How it is and how it might be,” Journal of the

International Neuropsychological Society, vol. 3, no. 5, pp. 487–496, 1997.

[16] M. Eckroth-Bucher and J. Siberski, “Preserving cognition through an integrated cognitive
stimulation and training program,” American Journal of Alzheimer’s Disease & Other

Dementias®, vol. 24, no. 3, pp. 234–245, 2009.

[17] P. Gamito, J. Oliveira, D. Morais, C. Coelho, N. Santos, C. Alves, A. Galamba, M. Soeiro,
M. Yerra, H. French et al., “Cognitive stimulation of elderly individuals with instrumental
virtual reality-based activities of daily life: pre-post treatment study,” Cyberpsychology,

behavior, and social networking, vol. 22, no. 1, pp. 69–75, 2019.

[18] L. C. PhD and R. T. Woods, “Cognitive training and cognitive rehabilitation
for people with early-stage alzheimer’s disease: A review,” Neuropsychological

Rehabilitation, vol. 14, no. 4, pp. 385–401, 2004. [Online]. Available: https:
//doi.org/10.1080/09602010443000074

[19] P. Menezes and R. P. Rocha, “Promotion of active ageing through interactive artificial
agents in a smart environment,” SN Applied Sciences, vol. 3, no. 5, pp. 1–15, 2021.

[20] D. H. Ballard, M. M. Hayhoe, F. Li, and S. D. Whitehead, “Hand-eye coordination during
sequential tasks,” Philosophical Transactions of the Royal Society of London. Series B:

Biological Sciences, vol. 337, no. 1281, pp. 331–339, 1992.

[21] P. L. Gribble, S. Everling, K. Ford, and A. Mattar, “Hand-eye coordination for rapid point-
ing movements,” Experimental brain research, vol. 145, no. 3, pp. 372–382, 2002.

[22] M. Inaba and H. Inoue, “Hand eye coordination in rope handling,” Journal of the Robotics

Society of Japan, vol. 3, no. 6, pp. 538–547, 1985.

[23] P. L. Gribble, S. Everling, K. Ford, and A. Mattar, “Hand-eye coordination for rapid point-
ing movements,” Experimental brain research, vol. 145, no. 3, pp. 372–382, 2002.

63

https://doi.org/10.1177/1359105310384298
https://doi.org/10.1080/09602010443000074
https://doi.org/10.1080/09602010443000074

Bibliography

[24] P. Boulinguez, J. Blouin, and V. Nougier, “The gap effect for eye and hand movements
in double-step pointing,” Experimental brain research. Experimentelle Hirnforschung.

Expérimentation cérébrale, vol. 138, pp. 352–8, 07 2001.

[25] D. P. Carey, “Eye–hand coordination: Eye to hand or hand to eye?” Current Biology,
vol. 10, no. 11, pp. R416–R419, 2000.

[26] H. Barbosa, “S g r e a,” vol. 6, no. 1, pp. 275–283, 2018.

[27] S. Spiegel and R. Hoinkes, “Immersive serious games for large scale multiplayer dialogue
and cocreation,” Serious Games: Mechanisms and Effects, no. 2005, pp. 469–485, 2009.

[28] H. Chi, E. Agama, and Z. G. Prodanoff, “Developing serious games to promote cognitive
abilities for the elderly,” in 2017 IEEE 5th International Conference on Serious Games

and Applications for Health (SeGAH), 2017, pp. 1–8.

[29] S. Kang, S. Kang, and H. Kim, “Fitness image model for individual with disabled,” 2014

International Conference on IT Convergence and Security, ICITCS 2014, pp. 2008–2010,
2014.

[30] Y. J. Chang, S. F. Chen, and J. D. Huang, “A Kinect-based system for physical
rehabilitation: A pilot study for young adults with motor disabilities,” Research in

Developmental Disabilities, vol. 32, no. 6, pp. 2566–2570, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.ridd.2011.07.002

[31] Web.archive.org, “Wii,” 2008.

[32] Unity Game Engine Guide: How to Get Started with the Most Popular Game

Engine Out There, 2020, available at https://www.freecodecamp.org/news/
unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/.

[33] R. Malan, D. Bredemeyer et al., “Functional requirements and use cases,” Bredemeyer

Consulting, 2001.

[34] G. T. Guedes, UML 2-Uma abordagem prática. Novatec Editora, 2018.

[35] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, “Non-functional requirements,” Software

Engineering, 2000.

[36] A. Tang and H. van Vliet, “Modeling constraints improves software architecture design
reasoning,” in 2009 Joint Working IEEE/IFIP Conference on Software Architecture Euro-

pean Conference on Software Architecture, Sep. 2009, pp. 253–256.

64

http://dx.doi.org/10.1016/j.ridd.2011.07.002
https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/
https://www.freecodecamp.org/news/unity-game-engine-guide-how-to-get-started-with-the-most-popular-game-engine-out-there/

Bibliography

[37] R. Hoda, J. Noble, and S. Marshall, “Agile project management,” in New Zealand com-

puter science research student conference, vol. 6, 2008, pp. 218–221.

[38] K. Waters, “Prioritization using moscow,” Agile Planning, vol. 12, p. 31, 2009.

[39] R. N. Taylor and A. Van der Hoek, “Software design and architecture the once and future
focus of software engineering,” in Future of Software Engineering (FOSE’07). IEEE,
2007, pp. 226–243.

[40] A. Tang, A. Aleti, J. Burge, and H. van Vliet, “What makes software design effective?”
Design Studies, vol. 31, no. 6, pp. 614–640, 2010.

[41] G. G. Roy, “Designing and explaining programs with a literate pseudocode,” Journal on

Educational Resources in Computing (JERIC), vol. 6, no. 1, pp. 1–es, 2006.

[42] R. F. Paige, J. S. Ostroff, and P. J. Brooke, “Principles for modeling language design,”
Information and Software Technology, vol. 42, no. 10, pp. 665–675, 2000.

[43] D. Garlan, “Software architecture,” 2008.

[44] M. Shahin, P. Liang, and M. A. Babar, “A systematic review of software architecture
visualization techniques,” Journal of Systems and Software, vol. 94, pp. 161–185, 2014.

[45] J. M. Rivero, G. Rossi, J. Grigera, J. Burella, E. R. Luna, and S. Gordillo, “From mockups
to user interface models: an extensible model driven approach,” in International Confer-

ence on Web Engineering. Springer, 2010, pp. 13–24.

[46] S. Bernardi, S. Donatelli, and J. Merseguer, “From uml sequence diagrams and statecharts
to analysable petri net models,” in Proceedings of the 3rd international workshop on Soft-

ware and performance, 2002, pp. 35–45.

[47] M. Dumas and A. H. Ter Hofstede, “Uml activity diagrams as a workflow specification
language,” in International conference on the unified modeling language. Springer, 2001,
pp. 76–90.

[48] R. Bähre, B. Döbrich, J. Dreyling-Eschweiler, S. Ghazaryan, R. Hodajerdi, D. Horns,
F. Januschek, E.-A. Knabbe, A. Lindner, D. Notz et al., “Any light particle search
ii—technical design report,” Journal of Instrumentation, vol. 8, no. 09, p. T09001, 2013.

[49] J. Bruno, V. Jan, and A. Slaby, “Computer graphics in computer science education,” Prob-

lems of Education in the 21st Century, vol. 11, p. 60, 2009.

[50] A. Watt, “3d computer graphics,” 1993.

65

Bibliography

[51] M. Dealessandri, What is the best game engine: is Unity right

for you?, 2020, available at https://www.gamesindustry.biz/articles/
2020-01-16-what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you.

[52] B. W., “How to Choose The Right Game Engine For Your Video Game 7 Factors To
Consider [Unreal Engine or Unity Engine],” 2021.

[53] Xsolla, “Which Game Engine Is Best For You Xsolla,” 2020.

[54] J. Byrne, “Design Notes, Tutorials and Articles UDK or Unity Which is better ,” 2014.

[55] D. Bell, “Uml basics: The component diagram,” IBM Global Services, 2004.

[56] J. Sayago-Heredia, R. Pérez-Castillo, and M. Piattini, “A systematic mapping study on
analysis of code repositories,” Informatica, vol. 32, no. 3, pp. 619–660, 2021.

[57] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers use documentation:
The state of the practice,” IEEE software, vol. 20, no. 6, pp. 35–39, 2003.

[58] D. van Heesch, Doxygen index, available at https://www.doxygen.nl/index.html.

[59] J. Chen, “Formal modelling of java gui event handling,” in International Conference on

Formal Engineering Methods. Springer, 2002, pp. 359–370.

[60] S. Engeser and F. Rheinberg, “Flow, performance and moderators of challenge-skill bal-
ance,” Motivation and Emotion, vol. 32, no. 3, pp. 158–172, 2008.

[61] P. T. Kortum and A. Bangor, “Usability ratings for everyday products measured with the
system usability scale,” International Journal of Human-Computer Interaction, vol. 29,
no. 2, pp. 67–76, 2013.

[62] D. C. Rios, T. Gilbertson, S. W. McCoy, R. Price, K. Gutman, K. E. Miller, A. Fechko,
and C. T. Moritz, “Neuro game Therapy to improve wrist control in children with cerebral
palsy: A case series,” Developmental Neurorehabilitation, vol. 16, no. 6, pp. 398–409,
2013.

[63] M. Jensen, “Design vs,” 2016.

66

https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://www.gamesindustry.biz/articles/2020-01-16-what-is-the-best-game-engine-is-unity-the-right-game-engine-for-you
https://www.doxygen.nl/index.html

A
Annex A - User manual

67

A. Annex A - User manual

Para jogar o jogo sério, introduza a porta USB do LeapMotion controller na entrada USB
do seu computador, como indicado na Figura A.1 seguinte:

Figure A.1: Ilustração da porta USB do LeapMotion controller e respetiva entrada no computa-
dor

Após isto, é necessário instalar o software do LeapMotion controller. Para o fazer siga os
passos representados nas figuras abaixo:

Figure A.2: Extrair a pasta do instalador que se encontra num arquivo comprimido

68

Figure A.3: Abrir a pasta resultante do processo anterior

Figure A.4: Instalador do LeapMotion controller software – Selecionar e clicar na aplicação
assinalada a vermelho

Figure A.5: Selecionar o botão ”Seguinte”

69

A. Annex A - User manual

Figure A.6: Ler os termos do contrato de licença e pressionar o botão ”Aceito”

Figure A.7: Selecionar o botão ”Terminar”

Deverá aparecer no seu computador a seguinte notificação, no canto inferior direito, repre-

70

sentada na Figura A.8, para confirmar que o software ficou devidamente instalado.

Figure A.8: Notificação de confirmação da instalação do software do LeapMotion controller

De forma a confirmar esta informação abra o software do LeapMotion controller. Para isto
clique no botão representado como ”1” na Figura A.9, e de seguida, clique no icon representado
como ”2”, também nessa mesma figura. Este último deverá aparecer aparecer com a cor verde
ou amarela. Caso apareça com a cor vermelha significa que o LeapMotion controller não está
devidamente conectado ao computador.

Figure A.9: Abrir a janela do software do LeapMotion controller

Siga os passos seguintes, assinalados a vermelho nas Figuras A.10 e A.11:

71

A. Annex A - User manual

Figure A.10: Clique no botão ”Troubleshooting”

72

Figure A.11: Clique no botão ”Diagnostic Visualizer”, para confirmar que o LeapMotion con-
troller está a ler a posição das mãos corretamente

Depois deverá colocar as mãos por cima do sensor, exatamente como indicado nas Figuras
A.12 e A.13:

Figure A.12: Como colocar as mãos por cima do LeapMotion controller – I

73

A. Annex A - User manual

Figure A.13: Como colocar as mãos por cima do LeapMotion controller – II

Se tudo estiver configurado corretamente, os movimentos das suas mãos deverão ser fiel-
mente replicados no ecrã do seu computador, tal como demonstrado na Figura A.14:

Figure A.14: Representação da posição das mãos no ecrã do computador

Após tudo relativamente ao LeapMotion controller estar funcional, o jogo sério poderá ser
instalado. Feche todas as janelas que atualmente tem abertas e execute os seguintes passos:

74

Figure A.15: Clique no ı́cone do instalador do jogo sério, denomaninado ”Instalador
Fun2HelpElderly”

Figure A.16: Escolha a pasta onde pretende instalar o jogo sério. Nesta demonstração, o soft-
ware será instalado no ambiente trabalho.

75

A. Annex A - User manual

Figure A.17: Selecione a opção ”Create a desktop shortcut” e clique no botão ”Next”

Figure A.18: Clique no botão ”Install”

76

Figure A.19: Deixe a opção ”Launch Fun2HelpElderly” ativada e clique no botão ”Finish”

Figure A.20: Definições recomendadas para computadores com especificações de hardware
médias-altas

77

A. Annex A - User manual

Figure A.21: Definições recomendadas para computadores com especificações de hardware
médias-baixas

Após clicar no botão ”Start”, deverá deparar-se com a seguinte janela:

Figure A.22: Menu principal do jogo sério

Antes de começar a jogar, poderá ser conveniente conhecer os sub-menus do jogo sério:

78

Figure A.23: Estatı́sticas do jogador – I

Figure A.24: Estatı́sticas do jogador II – Aqui deve poder visualizar as últimas pontuações
guardadas pelo jogador. Neste caso a tabela aparece vazia pois nenhuma pontuação foi guardada
até ao momento

Figure A.25: Opções – I

79

A. Annex A - User manual

Figure A.26: Opções – II. Aqui deve poder ajustar o volume da música de fundo

Clicando no botão ”Play”, o jogo sério deverá começar, com as respetivas instruções na
parte superior do ecrã, tal como se pode visualizar na Figura A.27:

Figure A.27: Primeiro cenário do jogo sério – Aquecimento para o sub-jogo número 1

80

B
Annex B - Reference manual

81

Fun2HelpTheElderly

Generated by Doxygen 1.9.1

i

1 Hierarchical Index 1

1.1 Class Hierarchy . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Class Documentation 7

4.1 CreateSpawner Class Reference . 7

4.1.1 Member Function Documentation . 7

4.1.1.1 Start() . 8

4.1.1.2 Update() . 8

4.1.2 Member Data Documentation . 8

4.1.2.1 decideObject . 8

4.1.2.2 fTimeIntervals . 8

4.1.2.3 fTimer . 8

4.1.2.4 goCreate1 . 8

4.1.2.5 goCreate2 . 8

4.1.2.6 goCreate3 . 9

4.1.2.7 goCreate4 . 9

4.1.2.8 goCreate5 . 9

4.1.2.9 goCreateAux . 9

4.1.2.10 v3SpawnPosJitter . 9

4.2 MainMenu Class Reference . 9

4.2.1 Member Function Documentation . 10

4.2.1.1 BackToMenu() . 10

4.2.1.2 PlayGame() . 10

4.2.1.3 QuitGame() . 10

4.3 SeriousGame Class Reference . 10

4.3.1 Member Data Documentation . 10

4.3.1.1 score . 11

4.3.1.2 time . 11

4.4 ShowHighScore Class Reference . 11

4.4.1 Member Function Documentation . 11

4.4.1.1 OnEnable() . 12

4.4.1.2 ReadAndShowScore() . 12

4.4.2 Member Data Documentation . 12

4.4.2.1 names . 12

4.4.2.2 scores . 12

4.4.2.3 text_aux . 12

4.4.2.4 txtNamesNscore . 12

Generated by Doxygen

ii

4.5 SubGame1 Class Reference . 13

4.5.1 Member Function Documentation . 13

4.5.1.1 OnCollisionEnter() . 14

4.5.1.2 start() . 14

4.5.1.3 WaitForSec_right() . 14

4.5.1.4 WaitForSec_wrong() . 14

4.5.2 Member Data Documentation . 14

4.5.2.1 tag_right . 14

4.5.2.2 tag_wrong . 15

4.5.2.3 uiObject_right . 15

4.5.2.4 uiObject_wrong . 15

4.6 SubGame2 Class Reference . 15

4.6.1 Member Function Documentation . 16

4.6.1.1 OnCollisionEnter() . 16

4.6.1.2 Start() . 16

4.6.1.3 Update() . 17

4.6.2 Member Data Documentation . 17

4.6.2.1 bola_azul . 17

4.6.2.2 bola_branca . 17

4.6.2.3 bola_preta . 17

4.6.2.4 bola_roxa . 17

4.6.2.5 bola_verde . 17

4.6.2.6 bola_vermelha . 18

4.6.2.7 color . 18

4.6.2.8 fTimeIntervals . 18

4.6.2.9 fTimer . 18

4.6.2.10 stringAux . 18

4.6.2.11 textDisplay . 18

4.7 SubGame3 Class Reference . 19

4.7.1 Member Function Documentation . 19

4.7.1.1 OnCollisionEnter() . 20

4.7.1.2 Start() . 20

4.7.1.3 Update() . 20

4.7.1.4 waitfunction() . 20

4.7.2 Member Data Documentation . 20

4.7.2.1 aux_score . 20

4.7.2.2 strTag . 21

4.7.2.3 strTag2 . 21

4.7.2.4 strTag3 . 21

4.7.2.5 strTag4 . 21

4.7.2.6 strTag_aux . 21

4.8 SubGame4 Class Reference . 21

Generated by Doxygen

iii

4.8.1 Member Function Documentation . 22

4.8.1.1 OnCollisionEnter() . 22

4.8.1.2 start() . 23

4.8.1.3 Update() . 23

4.8.1.4 WaitForSec_right() . 23

4.8.1.5 WaitForSec_wrong() . 23

4.8.2 Member Data Documentation . 23

4.8.2.1 fTimer . 23

4.8.2.2 nextlvl . 23

4.8.2.3 tag_right . 24

4.8.2.4 tag_wrong . 24

4.8.2.5 uiObject_right . 24

4.8.2.6 uiObject_wrong . 24

4.9 SubGame5 Class Reference . 24

4.9.1 Member Function Documentation . 25

4.9.1.1 OnCollisionEnter() . 25

4.9.1.2 start() . 25

4.9.1.3 WaitForSec_right() . 26

4.9.1.4 WaitForSec_wrong() . 26

4.9.2 Member Data Documentation . 26

4.9.2.1 tag_right . 26

4.9.2.2 tag_wrong . 26

4.9.2.3 uiObject_right . 26

4.9.2.4 uiObject_wrong . 26

4.10 SubmitButton Class Reference . 27

4.10.1 Member Function Documentation . 27

4.10.1.1 CreateText() . 27

4.10.1.2 SubmitName() . 27

4.10.2 Member Data Documentation . 27

4.10.2.1 _path . 28

4.10.2.2 aux_name . 28

4.10.2.3 name . 28

4.11 TimerFunction Class Reference . 28

4.11.1 Member Function Documentation . 28

4.11.1.1 Start() . 29

4.11.1.2 TimerTake() . 29

4.11.1.3 Update() . 29

4.11.2 Member Data Documentation . 29

4.11.2.1 secondsLeft . 29

4.11.2.2 takingAway . 29

4.11.2.3 textDisplay . 29

4.12 volumeChangerScript Class Reference . 30

Generated by Doxygen

iv

4.12.1 Member Function Documentation . 30

4.12.1.1 MyUpdate() . 30

4.12.1.2 OnDisable() . 30

4.12.1.3 OnEnable() . 30

4.12.2 Member Data Documentation . 30

4.12.2.1 musicVolumeController . 31

4.12.2.2 SliderHandleValue . 31

4.13 WarmupClass Class Reference . 31

4.13.1 Member Function Documentation . 31

4.13.1.1 OnCollisionEnter() . 31

4.13.1.2 WaitForSec() . 32

4.13.2 Member Data Documentation . 32

4.13.2.1 strTag . 32

5 File Documentation 33

5.1 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/CreateSpawner.cs File Reference 33

5.2 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/MainMenu.cs File Reference . 33

5.3 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SeriousGame.cs File Reference 33

5.4 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/ShowHighScore.cs File Refer-
ence . 33

5.5 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame1.cs File Reference . 34

5.6 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame2.cs File Reference . 34

5.7 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame3.cs File Reference . 34

5.8 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame4.cs File Reference . 34

5.9 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame5.cs File Reference . 34

5.10 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubmitButton.cs File Reference 34

5.11 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/TimerFunction.cs File Reference 35

5.12 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/volumeChangerScript.cs File
Reference . 35

5.13 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/WarmupClass.cs File Reference 35

Index 37

Generated by Doxygen

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

MonoBehaviour
CreateSpawner . 7
MainMenu . 9
SeriousGame . 10
ShowHighScore . 11
SubGame1 . 13
SubGame2 . 15
SubGame3 . 19
SubGame4 . 21
SubGame5 . 24
SubmitButton . 27
TimerFunction . 28
WarmupClass . 31
volumeChangerScript . 30

Generated by Doxygen

2 Hierarchical Index

Generated by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CreateSpawner . 7
MainMenu . 9
SeriousGame . 10
ShowHighScore . 11
SubGame1 . 13
SubGame2 . 15
SubGame3 . 19
SubGame4 . 21
SubGame5 . 24
SubmitButton . 27
TimerFunction . 28
volumeChangerScript . 30
WarmupClass . 31

Generated by Doxygen

4 Class Index

Generated by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/CreateSpawner.cs 33
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/MainMenu.cs 33
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SeriousGame.cs 33
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/ShowHighScore.cs 33
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame1.cs 34
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame2.cs 34
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame3.cs 34
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame4.cs 34
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame5.cs 34
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubmitButton.cs 34
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/TimerFunction.cs 35
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/volumeChangerScript.cs 35
C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/WarmupClass.cs 35

Generated by Doxygen

6 File Index

Generated by Doxygen

Chapter 4

Class Documentation

4.1 CreateSpawner Class Reference

Inheritance diagram for CreateSpawner:

CreateSpawner

MonoBehaviour

Private Member Functions

• void Start ()
• void Update ()

Private Attributes

• GameObject goCreate1
• GameObject goCreate2
• GameObject goCreate3
• GameObject goCreate4
• GameObject goCreate5
• GameObject goCreateAux
• int decideObject
• float fTimeIntervals
• Vector3 v3SpawnPosJitter
• float fTimer = 0

4.1.1 Member Function Documentation

Generated by Doxygen

8 Class Documentation

4.1.1.1 Start()

void CreateSpawner.Start () [private]

4.1.1.2 Update()

void CreateSpawner.Update () [private]

4.1.2 Member Data Documentation

4.1.2.1 decideObject

int CreateSpawner.decideObject [private]

4.1.2.2 fTimeIntervals

float CreateSpawner.fTimeIntervals [private]

4.1.2.3 fTimer

float CreateSpawner.fTimer = 0 [private]

4.1.2.4 goCreate1

GameObject CreateSpawner.goCreate1 [private]

4.1.2.5 goCreate2

GameObject CreateSpawner.goCreate2 [private]

Generated by Doxygen

4.2 MainMenu Class Reference 9

4.1.2.6 goCreate3

GameObject CreateSpawner.goCreate3 [private]

4.1.2.7 goCreate4

GameObject CreateSpawner.goCreate4 [private]

4.1.2.8 goCreate5

GameObject CreateSpawner.goCreate5 [private]

4.1.2.9 goCreateAux

GameObject CreateSpawner.goCreateAux [private]

4.1.2.10 v3SpawnPosJitter

Vector3 CreateSpawner.v3SpawnPosJitter [private]

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/CreateSpawner.cs

4.2 MainMenu Class Reference

Inheritance diagram for MainMenu:

MainMenu

MonoBehaviour

Public Member Functions

• void PlayGame ()
• void BackToMenu ()
• void QuitGame ()

Generated by Doxygen

10 Class Documentation

4.2.1 Member Function Documentation

4.2.1.1 BackToMenu()

void MainMenu.BackToMenu ()

4.2.1.2 PlayGame()

void MainMenu.PlayGame ()

4.2.1.3 QuitGame()

void MainMenu.QuitGame ()

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/MainMenu.cs

4.3 SeriousGame Class Reference

Inheritance diagram for SeriousGame:

SeriousGame

MonoBehaviour

Static Public Attributes

• static int score

Serious game score public variable.

• static int time

Serious game time public variable.

4.3.1 Member Data Documentation

Generated by Doxygen

4.4 ShowHighScore Class Reference 11

4.3.1.1 score

int SeriousGame.score [static]

Serious game score public variable.

4.3.1.2 time

int SeriousGame.time [static]

Serious game time public variable.

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SeriousGame.cs

4.4 ShowHighScore Class Reference

Inheritance diagram for ShowHighScore:

ShowHighScore

MonoBehaviour

Public Attributes

• string[] txtNamesNscore
• List< string > names = new List<string>()
• List< string > scores = new List<string>()

Private Member Functions

• void OnEnable ()
• void ReadAndShowScore ()

Private Attributes

• Text text_aux

4.4.1 Member Function Documentation

Generated by Doxygen

12 Class Documentation

4.4.1.1 OnEnable()

void ShowHighScore.OnEnable () [private]

4.4.1.2 ReadAndShowScore()

void ShowHighScore.ReadAndShowScore () [private]

4.4.2 Member Data Documentation

4.4.2.1 names

List<string> ShowHighScore.names = new List<string>()

4.4.2.2 scores

List<string> ShowHighScore.scores = new List<string>()

4.4.2.3 text_aux

Text ShowHighScore.text_aux [private]

4.4.2.4 txtNamesNscore

string [] ShowHighScore.txtNamesNscore

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/ShowHighScore.cs

Generated by Doxygen

4.5 SubGame1 Class Reference 13

4.5 SubGame1 Class Reference

Inheritance diagram for SubGame1:

SubGame1

MonoBehaviour

Public Member Functions

• void OnCollisionEnter (Collision Collision)

Function that allows to detect eventual collisions.

Public Attributes

• GameObject uiObject_right

game objects to show confirmation messages

• GameObject uiObject_wrong

Private Member Functions

• void start ()

hides confirmation messages

• IEnumerator WaitForSec_right ()

show confirmation message for 1 second

• IEnumerator WaitForSec_wrong ()

show confirmation message for 1 second

Private Attributes

• string tag_right

Tag to verify is the right move was performed.

• string tag_wrong

Tag to verify is the wrong move was performed.

4.5.1 Member Function Documentation

Generated by Doxygen

14 Class Documentation

4.5.1.1 OnCollisionEnter()

void SubGame1.OnCollisionEnter (

Collision Collision)

Function that allows to detect eventual collisions.

If the collision was the expected one, the system destoys the colliding object, display a confirmation message,
enters WaitForSec function and increases score

If the collision was the expected one, the system destoys the colliding object, display a confirmation message,
enters WaitForSec function and increases score

4.5.1.2 start()

void SubGame1.start () [private]

hides confirmation messages

4.5.1.3 WaitForSec_right()

IEnumerator SubGame1.WaitForSec_right () [private]

show confirmation message for 1 second

4.5.1.4 WaitForSec_wrong()

IEnumerator SubGame1.WaitForSec_wrong () [private]

show confirmation message for 1 second

4.5.2 Member Data Documentation

4.5.2.1 tag_right

string SubGame1.tag_right [private]

Tag to verify is the right move was performed.

Generated by Doxygen

4.6 SubGame2 Class Reference 15

4.5.2.2 tag_wrong

string SubGame1.tag_wrong [private]

Tag to verify is the wrong move was performed.

4.5.2.3 uiObject_right

GameObject SubGame1.uiObject_right

game objects to show confirmation messages

4.5.2.4 uiObject_wrong

GameObject SubGame1.uiObject_wrong

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame1.cs

4.6 SubGame2 Class Reference

Inheritance diagram for SubGame2:

SubGame2

MonoBehaviour

Public Member Functions

• void OnCollisionEnter (Collision Collision)

Function that allows to detect eventual collisions.

Public Attributes

• GameObject textDisplay

game objects to show the right color

• string stringAux

Generated by Doxygen

16 Class Documentation

Private Member Functions

• void Start ()

Initialization of the time interval and string responsible for showing the right color on the screen.

• void Update ()

Private Attributes

• string bola_branca

Tag to verify is the wrong move was performed.

• string bola_roxa

Tag to verify is the wrong move was performed.

• string bola_preta

Tag to verify is the wrong move was performed.

• string bola_verde

Tag to verify is the wrong move was performed.

• string bola_azul

Tag to verify is the wrong move was performed.

• string bola_vermelha

Tag to define the color changing intervals.

• float fTimeIntervals

Tag to verify is the wrong move was performed.

• float fTimer = 0

float number to control the color string changing process

• int color = 0

integer number to be randomly sorted to change the colors

4.6.1 Member Function Documentation

4.6.1.1 OnCollisionEnter()

void SubGame2.OnCollisionEnter (

Collision Collision)

Function that allows to detect eventual collisions.

If the collision was the expected one, user's score is increased. If it was not the expected one, user's score is
decreased

4.6.1.2 Start()

void SubGame2.Start () [private]

Initialization of the time interval and string responsible for showing the right color on the screen.

Generated by Doxygen

4.6 SubGame2 Class Reference 17

4.6.1.3 Update()

void SubGame2.Update () [private]

Random color genarator algorithm

4.6.2 Member Data Documentation

4.6.2.1 bola_azul

string SubGame2.bola_azul [private]

Tag to verify is the wrong move was performed.

4.6.2.2 bola_branca

string SubGame2.bola_branca [private]

Tag to verify is the wrong move was performed.

4.6.2.3 bola_preta

string SubGame2.bola_preta [private]

Tag to verify is the wrong move was performed.

4.6.2.4 bola_roxa

string SubGame2.bola_roxa [private]

Tag to verify is the wrong move was performed.

4.6.2.5 bola_verde

string SubGame2.bola_verde [private]

Tag to verify is the wrong move was performed.

Generated by Doxygen

18 Class Documentation

4.6.2.6 bola_vermelha

string SubGame2.bola_vermelha [private]

Tag to define the color changing intervals.

4.6.2.7 color

int SubGame2.color = 0 [private]

integer number to be randomly sorted to change the colors

4.6.2.8 fTimeIntervals

float SubGame2.fTimeIntervals [private]

Tag to verify is the wrong move was performed.

4.6.2.9 fTimer

float SubGame2.fTimer = 0 [private]

float number to control the color string changing process

4.6.2.10 stringAux

string SubGame2.stringAux

4.6.2.11 textDisplay

GameObject SubGame2.textDisplay

game objects to show the right color

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame2.cs

Generated by Doxygen

4.7 SubGame3 Class Reference 19

4.7 SubGame3 Class Reference

Inheritance diagram for SubGame3:

SubGame3

MonoBehaviour

Public Member Functions

• void OnCollisionEnter (Collision Collision)

Function that allows to detect eventual collisions.

• IEnumerator waitfunction ()

waits one second before destroying the desired object

Private Member Functions

• void Start ()

initial score value is store before the game begins

• void Update ()

Private Attributes

• string strTag_aux

collision trigger

• string strTag

collision trigger

• string strTag2

collision trigger

• string strTag3

collision trigger

• string strTag4

collision trigger

• int aux_score

integer number responsible for storing score value before the subgame begins

4.7.1 Member Function Documentation

Generated by Doxygen

20 Class Documentation

4.7.1.1 OnCollisionEnter()

void SubGame3.OnCollisionEnter (

Collision Collision)

Function that allows to detect eventual collisions.

If the collision was the expected one, the system waits 1 second and destroys the colliding object

If the collision was the expected one, user's score is increased

If the collision was the expected one, the system waits 1 second and destroys the colliding object

4.7.1.2 Start()

void SubGame3.Start () [private]

initial score value is store before the game begins

4.7.1.3 Update()

void SubGame3.Update () [private]

if the total score obtained in this subgame is bigger than 8 it means all cylinders were taken down and loads next
scene

4.7.1.4 waitfunction()

IEnumerator SubGame3.waitfunction ()

waits one second before destroying the desired object

4.7.2 Member Data Documentation

4.7.2.1 aux_score

int SubGame3.aux_score [private]

integer number responsible for storing score value before the subgame begins

Generated by Doxygen

4.8 SubGame4 Class Reference 21

4.7.2.2 strTag

string SubGame3.strTag [private]

collision trigger

4.7.2.3 strTag2

string SubGame3.strTag2 [private]

collision trigger

4.7.2.4 strTag3

string SubGame3.strTag3 [private]

collision trigger

4.7.2.5 strTag4

string SubGame3.strTag4 [private]

collision trigger

4.7.2.6 strTag_aux

string SubGame3.strTag_aux [private]

collision trigger

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame3.cs

4.8 SubGame4 Class Reference

Inheritance diagram for SubGame4:

SubGame4

MonoBehaviour

Generated by Doxygen

22 Class Documentation

Public Attributes

• GameObject uiObject_right

game objects to show confirmation messages

• GameObject uiObject_wrong

Private Member Functions

• void start ()

hides confirmation messages initially

• void OnCollisionEnter (Collision Collision)

If the collision was the expected one, the system displays a confirmation message, activates "nextlvl" flag, enters
WaitForSec function and increases score.

• IEnumerator WaitForSec_right ()

show confirmation message for 1 second

• IEnumerator WaitForSec_wrong ()

show confirmation message for 1 second

• void Update ()

constantly confirmates if the "nextlvl" is activated.

Private Attributes

• string tag_right

Tag to verify is the right move was performed.

• string tag_wrong

Tag to verify is the wrong move was performed.

• float fTimer = 0

Sets the timer to 0 to control new scene loading timming.

• bool nextlvl = false

Tag to verify is the wrong move was performed.

4.8.1 Member Function Documentation

4.8.1.1 OnCollisionEnter()

void SubGame4.OnCollisionEnter (

Collision Collision) [private]

If the collision was the expected one, the system displays a confirmation message, activates "nextlvl" flag, enters
WaitForSec function and increases score.

If the collision was not the expected one, the system displays a confirmation message, activates "nextlvl" flag, enters
WaitForSec function and decreases score

Generated by Doxygen

4.8 SubGame4 Class Reference 23

4.8.1.2 start()

void SubGame4.start () [private]

hides confirmation messages initially

4.8.1.3 Update()

void SubGame4.Update () [private]

constantly confirmates if the "nextlvl" is activated.

if it is, the system wais 3 seconds and then loads the next scene

4.8.1.4 WaitForSec_right()

IEnumerator SubGame4.WaitForSec_right () [private]

show confirmation message for 1 second

4.8.1.5 WaitForSec_wrong()

IEnumerator SubGame4.WaitForSec_wrong () [private]

show confirmation message for 1 second

4.8.2 Member Data Documentation

4.8.2.1 fTimer

float SubGame4.fTimer = 0 [private]

Sets the timer to 0 to control new scene loading timming.

4.8.2.2 nextlvl

bool SubGame4.nextlvl = false [private]

Tag to verify is the wrong move was performed.

Generated by Doxygen

24 Class Documentation

4.8.2.3 tag_right

string SubGame4.tag_right [private]

Tag to verify is the right move was performed.

4.8.2.4 tag_wrong

string SubGame4.tag_wrong [private]

Tag to verify is the wrong move was performed.

4.8.2.5 uiObject_right

GameObject SubGame4.uiObject_right

game objects to show confirmation messages

4.8.2.6 uiObject_wrong

GameObject SubGame4.uiObject_wrong

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame4.cs

4.9 SubGame5 Class Reference

Inheritance diagram for SubGame5:

SubGame5

MonoBehaviour

Public Member Functions

• void OnCollisionEnter (Collision Collision)

Function that allows to detect eventual collisions.

Generated by Doxygen

4.9 SubGame5 Class Reference 25

Public Attributes

• GameObject uiObject_right

game objects to show confirmation messages

• GameObject uiObject_wrong

Private Member Functions

• void start ()

hides confirmation messages

• IEnumerator WaitForSec_right ()

show confirmation message for 1 second

• IEnumerator WaitForSec_wrong ()

show confirmation message for 1 second

Private Attributes

• string tag_right

Tag to verify is the right move was performed.

• string tag_wrong

Tag to verify is the wrong move was performed.

4.9.1 Member Function Documentation

4.9.1.1 OnCollisionEnter()

void SubGame5.OnCollisionEnter (

Collision Collision)

Function that allows to detect eventual collisions.

If the collision was the expected one, the system destoys the colliding object, display a confirmation message,
enters WaitForSec function and increases score

If the collision was the expected one, the system destoys the colliding object, display a confirmation message,
enters WaitForSec function and increases score

4.9.1.2 start()

void SubGame5.start () [private]

hides confirmation messages

Generated by Doxygen

26 Class Documentation

4.9.1.3 WaitForSec_right()

IEnumerator SubGame5.WaitForSec_right () [private]

show confirmation message for 1 second

4.9.1.4 WaitForSec_wrong()

IEnumerator SubGame5.WaitForSec_wrong () [private]

show confirmation message for 1 second

4.9.2 Member Data Documentation

4.9.2.1 tag_right

string SubGame5.tag_right [private]

Tag to verify is the right move was performed.

4.9.2.2 tag_wrong

string SubGame5.tag_wrong [private]

Tag to verify is the wrong move was performed.

4.9.2.3 uiObject_right

GameObject SubGame5.uiObject_right

game objects to show confirmation messages

4.9.2.4 uiObject_wrong

GameObject SubGame5.uiObject_wrong

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame5.cs

Generated by Doxygen

4.10 SubmitButton Class Reference 27

4.10 SubmitButton Class Reference

Inheritance diagram for SubmitButton:

SubmitButton

MonoBehaviour

Public Member Functions

• void SubmitName ()

Private Member Functions

• string CreateText ()

Private Attributes

• string name
• InputField aux_name
• string _path

4.10.1 Member Function Documentation

4.10.1.1 CreateText()

string SubmitButton.CreateText () [private]

4.10.1.2 SubmitName()

void SubmitButton.SubmitName ()

4.10.2 Member Data Documentation

Generated by Doxygen

28 Class Documentation

4.10.2.1 _path

string SubmitButton._path [private]

4.10.2.2 aux_name

InputField SubmitButton.aux_name [private]

4.10.2.3 name

string SubmitButton.name [private]

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubmitButton.cs

4.11 TimerFunction Class Reference

Inheritance diagram for TimerFunction:

TimerFunction

MonoBehaviour

Public Attributes

• GameObject textDisplay
• int secondsLeft = 70
• bool takingAway = false

Private Member Functions

• void Start ()
• void Update ()
• IEnumerator TimerTake ()

4.11.1 Member Function Documentation

Generated by Doxygen

4.11 TimerFunction Class Reference 29

4.11.1.1 Start()

void TimerFunction.Start () [private]

4.11.1.2 TimerTake()

IEnumerator TimerFunction.TimerTake () [private]

4.11.1.3 Update()

void TimerFunction.Update () [private]

4.11.2 Member Data Documentation

4.11.2.1 secondsLeft

int TimerFunction.secondsLeft = 70

4.11.2.2 takingAway

bool TimerFunction.takingAway = false

4.11.2.3 textDisplay

GameObject TimerFunction.textDisplay

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/TimerFunction.cs

Generated by Doxygen

30 Class Documentation

4.12 volumeChangerScript Class Reference

Inheritance diagram for volumeChangerScript:

volumeChangerScript

MonoBehaviour

Private Member Functions

• void OnEnable ()
• void OnDisable ()
• IEnumerator MyUpdate ()

Private Attributes

• Slider SliderHandleValue
• AudioSource musicVolumeController

4.12.1 Member Function Documentation

4.12.1.1 MyUpdate()

IEnumerator volumeChangerScript.MyUpdate () [private]

4.12.1.2 OnDisable()

void volumeChangerScript.OnDisable () [private]

4.12.1.3 OnEnable()

void volumeChangerScript.OnEnable () [private]

4.12.2 Member Data Documentation

Generated by Doxygen

4.13 WarmupClass Class Reference 31

4.12.2.1 musicVolumeController

AudioSource volumeChangerScript.musicVolumeController [private]

4.12.2.2 SliderHandleValue

Slider volumeChangerScript.SliderHandleValue [private]

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/volumeChangerScript.cs

4.13 WarmupClass Class Reference

Inheritance diagram for WarmupClass:

WarmupClass

MonoBehaviour

Public Member Functions

• void OnCollisionEnter (Collision Collision)

Function that allows to detect eventual collisions.

• IEnumerator WaitForSec ()

Private Attributes

• string strTag

4.13.1 Member Function Documentation

4.13.1.1 OnCollisionEnter()

void WarmupClass.OnCollisionEnter (

Collision Collision)

Function that allows to detect eventual collisions.

If the collision was the expected one, the system enters WaitForSec function

Generated by Doxygen

32 Class Documentation

4.13.1.2 WaitForSec()

IEnumerator WarmupClass.WaitForSec ()

The system waits 2 seconds

The system loads the next scene

4.13.2 Member Data Documentation

4.13.2.1 strTag

string WarmupClass.strTag [private]

The documentation for this class was generated from the following file:

• C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/WarmupClass.cs

Generated by Doxygen

Chapter 5

File Documentation

5.1 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/CreateSpawner.cs File Reference

Classes

• class CreateSpawner

5.2 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/MainMenu.cs File Reference

Classes

• class MainMenu

5.3 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SeriousGame.cs File Reference

Classes

• class SeriousGame

5.4 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/ShowHighScore.cs File Reference

Classes

• class ShowHighScore

Generated by Doxygen

34 File Documentation

5.5 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SubGame1.cs File Reference

Classes

• class SubGame1

5.6 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SubGame2.cs File Reference

Classes

• class SubGame2

5.7 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SubGame3.cs File Reference

Classes

• class SubGame3

5.8 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SubGame4.cs File Reference

Classes

• class SubGame4

5.9 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SubGame5.cs File Reference

Classes

• class SubGame5

5.10 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/SubmitButton.cs File Reference

Classes

• class SubmitButton

Generated by Doxygen

5.11 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/TimerFunction.cs File
Reference 35

5.11 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/TimerFunction.cs File Reference

Classes

• class TimerFunction

5.12 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/volumeChangerScript.cs File Reference

Classes

• class volumeChangerScript

5.13 C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/←↩

Scripts/WarmupClass.cs File Reference

Classes

• class WarmupClass

Generated by Doxygen

36 File Documentation

Generated by Doxygen

Index

_path
SubmitButton, 27

aux_name
SubmitButton, 28

aux_score
SubGame3, 20

BackToMenu
MainMenu, 10

bola_azul
SubGame2, 17

bola_branca
SubGame2, 17

bola_preta
SubGame2, 17

bola_roxa
SubGame2, 17

bola_verde
SubGame2, 17

bola_vermelha
SubGame2, 17

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/CreateSpawner.cs,
33

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/MainMenu.cs,
33

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SeriousGame.cs,
33

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/ShowHighScore.cs,
33

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame1.cs,
34

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame2.cs,
34

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame3.cs,
34

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame4.cs,
34

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubGame5.cs,
34

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/SubmitButton.cs,
34

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/TimerFunction.cs,
35

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/volumeChangerScript.cs,
35

C:/Users/jddso/OneDrive/Documentos/fun2helpelderly/Assets/Scripts/WarmupClass.cs,
35

color

SubGame2, 18
CreateSpawner, 7

decideObject, 8
fTimeIntervals, 8
fTimer, 8
goCreate1, 8
goCreate2, 8
goCreate3, 8
goCreate4, 9
goCreate5, 9
goCreateAux, 9
Start, 7
Update, 8
v3SpawnPosJitter, 9

CreateText
SubmitButton, 27

decideObject
CreateSpawner, 8

fTimeIntervals
CreateSpawner, 8
SubGame2, 18

fTimer
CreateSpawner, 8
SubGame2, 18
SubGame4, 23

goCreate1
CreateSpawner, 8

goCreate2
CreateSpawner, 8

goCreate3
CreateSpawner, 8

goCreate4
CreateSpawner, 9

goCreate5
CreateSpawner, 9

goCreateAux
CreateSpawner, 9

MainMenu, 9
BackToMenu, 10
PlayGame, 10
QuitGame, 10

musicVolumeController
volumeChangerScript, 30

MyUpdate
volumeChangerScript, 30

name

Generated by Doxygen

38 INDEX

SubmitButton, 28
names

ShowHighScore, 12
nextlvl

SubGame4, 23

OnCollisionEnter
SubGame1, 13
SubGame2, 16
SubGame3, 19
SubGame4, 22
SubGame5, 25
WarmupClass, 31

OnDisable
volumeChangerScript, 30

OnEnable
ShowHighScore, 11
volumeChangerScript, 30

PlayGame
MainMenu, 10

QuitGame
MainMenu, 10

ReadAndShowScore
ShowHighScore, 12

score
SeriousGame, 10

scores
ShowHighScore, 12

secondsLeft
TimerFunction, 29

SeriousGame, 10
score, 10
time, 11

ShowHighScore, 11
names, 12
OnEnable, 11
ReadAndShowScore, 12
scores, 12
text_aux, 12
txtNamesNscore, 12

SliderHandleValue
volumeChangerScript, 31

Start
CreateSpawner, 7
SubGame2, 16
SubGame3, 20
TimerFunction, 28

start
SubGame1, 14
SubGame4, 22
SubGame5, 25

stringAux
SubGame2, 18

strTag
SubGame3, 20

WarmupClass, 32
strTag2

SubGame3, 21
strTag3

SubGame3, 21
strTag4

SubGame3, 21
strTag_aux

SubGame3, 21
SubGame1, 13

OnCollisionEnter, 13
start, 14
tag_right, 14
tag_wrong, 14
uiObject_right, 15
uiObject_wrong, 15
WaitForSec_right, 14
WaitForSec_wrong, 14

SubGame2, 15
bola_azul, 17
bola_branca, 17
bola_preta, 17
bola_roxa, 17
bola_verde, 17
bola_vermelha, 17
color, 18
fTimeIntervals, 18
fTimer, 18
OnCollisionEnter, 16
Start, 16
stringAux, 18
textDisplay, 18
Update, 16

SubGame3, 19
aux_score, 20
OnCollisionEnter, 19
Start, 20
strTag, 20
strTag2, 21
strTag3, 21
strTag4, 21
strTag_aux, 21
Update, 20
waitfunction, 20

SubGame4, 21
fTimer, 23
nextlvl, 23
OnCollisionEnter, 22
start, 22
tag_right, 23
tag_wrong, 24
uiObject_right, 24
uiObject_wrong, 24
Update, 23
WaitForSec_right, 23
WaitForSec_wrong, 23

SubGame5, 24
OnCollisionEnter, 25

Generated by Doxygen

INDEX 39

start, 25
tag_right, 26
tag_wrong, 26
uiObject_right, 26
uiObject_wrong, 26
WaitForSec_right, 25
WaitForSec_wrong, 26

SubmitButton, 27
_path, 27
aux_name, 28
CreateText, 27
name, 28
SubmitName, 27

SubmitName
SubmitButton, 27

tag_right
SubGame1, 14
SubGame4, 23
SubGame5, 26

tag_wrong
SubGame1, 14
SubGame4, 24
SubGame5, 26

takingAway
TimerFunction, 29

text_aux
ShowHighScore, 12

textDisplay
SubGame2, 18
TimerFunction, 29

time
SeriousGame, 11

TimerFunction, 28
secondsLeft, 29
Start, 28
takingAway, 29
textDisplay, 29
TimerTake, 29
Update, 29

TimerTake
TimerFunction, 29

txtNamesNscore
ShowHighScore, 12

uiObject_right
SubGame1, 15
SubGame4, 24
SubGame5, 26

uiObject_wrong
SubGame1, 15
SubGame4, 24
SubGame5, 26

Update
CreateSpawner, 8
SubGame2, 16
SubGame3, 20
SubGame4, 23
TimerFunction, 29

v3SpawnPosJitter
CreateSpawner, 9

volumeChangerScript, 30
musicVolumeController, 30
MyUpdate, 30
OnDisable, 30
OnEnable, 30
SliderHandleValue, 31

WaitForSec
WarmupClass, 31

WaitForSec_right
SubGame1, 14
SubGame4, 23
SubGame5, 25

WaitForSec_wrong
SubGame1, 14
SubGame4, 23
SubGame5, 26

waitfunction
SubGame3, 20

WarmupClass, 31
OnCollisionEnter, 31
strTag, 32
WaitForSec, 31

Generated by Doxygen

Repository Documentation

1) Download Unity version 5.6.1 (https://unity3d.com/pt/get-unity/download/archive).

2) Download Leap Motion SDK (https://developer.leapmotion.com/sdk-leap-motion-

controller).

3) Connect the Leap Motion device to a USB port on your computer.

4) Open an existing project and select the folder “fun2helpelderly”.

5) Open the folder “Game Scenes” (in column “Project”) and select the desired game

scenery.

(Note 1: Ideally select the menu.)

6) Click on the button “Play” at the top of Unity’s window.

(Note 2: The scripts related to the game implementation are in folder path

"fun2helpelderly\Assets\Scripts" or in the folder “Scripts” in column “Project”.)

7) The background music can be found in the folder “fun2helpelderly\Assets\Audio”

8) The used font can be found in the folder path “fun2helpelderly\Assets\Fonts”

9) The used textures can be found in the folder path “fun2helpelderly\Assets\Textures”

10) The “.txt” file containing the saved scores can be found in “fun2helpelderly\Assets\”

with the name of “scores.txt”

11) Every game object, as well as camera angles and panels can be found in the Hierarchy

tab, in the Unity top right corner.

C
Annex C - Detailed project documentation

128

DADOS PESSOAIS - DECLARAÇÃO DE CONSENTIMENTO

O Regulamento Geral sobre a Proteção de Dados Pessoais (RGPD), em vigor desde o

dia 25 de maio de 2018, estabelece regras relativamente à proteção, tratamento e livre

circulação dos dados pessoais das pessoas singulares, mesmo que tenham sido recolhidos

antes daquela data, e que se aplica diretamente a todas as entidades que procedam ao

tratamento desses dados.

De forma utilizar os seus dados pessoais para conclusões experimentais e potencial

publicação científica das mesmas, necessitamos do seu consentimento, que deve ser livre,

explícito, inequívoco e informado, que pode ser confirmado assinalando as seguintes

opções:

▢ obtenção de informação pessoal do utente (nome, idade) e respetiva aptidão física

e mental para jogar o jogo;

▢ elaboração de processos de inquérito e estudos de monitorização e avaliação de

resultados do jogo;

▢ obtenção de conteúdo audiovisual (fotografias, vídeos) durante o tempo em que se

encontrar a experimentar o jogo sério, com o objetivo de ilustrar a investigação realizada,

em dissertações e teses académicas e em artigos científicos com ela relacionados, e apenas

para estes tipos de divulgação científica;

▢ não dou consentimento a nenhuma das opções anteriores.

Os seus dados serão guardados de acordo com as imposições legais, nomeadamente,

respeitando os prazos de conservação arquivística, neste caso particular, até à data de

agosto de 2022.

Poderá contactar-nos para qualquer questão relacionada com a proteção dos seus

dados, através dos seguintes endereços de email: joao.sousa@isr.uc.pt, rprocha@isr.uc.pt.

Enquanto titular dos seus dados pessoais, pode solicitar o acesso aos mesmos,

alterá-los e limitar parcial ou totalmente a sua utilização.

___ /___/2022

O Titular dos Dados:

Instituto de Sistemas e Robótica - Universidade de Coimbra

Fun2HelpElderly - Questionário de usabilidade

1 - Achei o jogo interessante.

1
(Discordo
Totalmente)

2 3 4 5 6 7
(Muito)

2 - Achei o jogo fácil de jogar.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

3 - Gostaria de jogar o jogo regularmente daqui em diante.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

4 - O tempo passou depressa enquanto jogava o jogo.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

5 - A experiência de jogo fez com que ficasse completamente concentrado no que estava a fazer.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

6 - O jogo contém informações desnecessárias.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

7 - Percebi sempre o que tinha de fazer em todos os momentos do jogo.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

8 - Eu precisaria de ajuda técnica para conseguir jogar o jogo regularmente.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

9 - Considero que o que tenho que fazer no jogo não faz sentido para pessoas da minha idade.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

10 - Enquanto jogava, senti vontade de dar o meu melhor, de forma a obter a pontuação máxima.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

11 - Enquanto jogava, tive receio de não estar a fazer as coisas bem.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

12 - O jogo estimulou-me a nível físico ou mental.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

13 - Penso que a maioria das pessoas da minha idade conseguiriam aprender facilmente a jogar este

jogo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

14 - Acho o jogo cansativo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

15 - Senti-me confiante durante a utilização do jogo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

16 - Tive de aprender coisas novas para conseguir experimentar este jogo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

17 - Considero que o jogo tem uma dificuldade de:

1
(Muito fácil)

2 3 4 5 6 7
(Muito
díficil)

Instituto de Sistemas e Robótica - Universidade de Coimbra

Fun2HelpElderly - Questionário de usabilidade (escala FSS)

1 - Achei o jogo interessante.

1
(Discordo
Totalmente)

2 3 4 5 6 7
(Muito)

2 - O tempo passou depressa enquanto jogava o jogo.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

3 - A experiência de jogo fez com que ficasse completamente concentrado no que estava a fazer.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

4 - Percebi sempre o que tinha de fazer em todos os momentos do jogo.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

5 - Senti vontade de não falhar e obter a máxima pontuação possível enquanto jogava.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

6 - Tive receio de falhar enquanto tentava atingir os objetivos do jogo.

1
(De modo
algum)

2 3 4 5 6 7
(Muito)

7 - Considero que o jogo tem uma dificuldade de:

1
(Muito fácil)

2 3 4 5 6 7
(Muito
díficil)

Instituto de Sistemas e Robótica - Universidade de Coimbra

Fun2HelpElderly - Questionário de usabilidade (Escala SUS)

1 - Achei o jogo fácil de jogar.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

2 - Gostaria de jogar o jogo regularmente daqui em diante.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

3 - O jogo contém informações desnecessárias.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

4 - Eu precisaria de ajuda técnica para conseguir jogar o jogo regularmente.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

5 - Considero que o que tenho que fazer no jogo não faz sentido para pessoas da minha idade.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

6 - O jogo estimulou-me a nível físico ou mental.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

7 - Penso que a maioria das pessoas da minha idade conseguiriam aprender facilmente a jogar este

jogo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

8 - Acho o jogo cansativo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

9 - Senti-me confiante durante a utilização do jogo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

10 - Tive de aprender coisas novas para conseguir experimentar este jogo.

1
(Discordo
Totalmente)

2 3 4 5
(Concordo
Totalmente)

D
Annex D - Testing sessions tables

137

D. Annex D - Testing sessions tables

Table D.1: Serious game prototype’s functional and performance with a sample of four end-
users. The ”Time required” column refers to the fastest quest tackling done in each sub-game
regarding every session, in seconds.

End-user number Testing session number Age Gender Score Time required (s)

1 1 77 M 14

SG1: 5,13
SG2: 4,22
SG3: 6,01
SG4: 2,30
SG5: 4,54

1 2 77 M 20

SG1: 3,88
SG2: 2,10
SG3: 4,50
SG4: 1,67
SG5: 3,78

1 3 77 M 22

SG1: 3,15
SG2: 2,15
SG3: 4,56
SG4: 1,45
SG5: 4,31

1 4 77 M 25

SG1: 2,80
SG2: 2,07
SG3: 5,32
SG4: 1,56
SG5: 4,01

1 5 77 M 24

SG1: 2,95
SG2: 1,89
SG3: 3,80
SG4: 1,43
SG5: 3,56

1 6 77 M 28

SG1: 2,70
SG2: 1,80
SG3: 3,23
SG4: 1,22
SG5: 3,43

2 1 80 F 3

SG1: 25,32
SG2: 6,51
SG3: 15,12
SG4: 2,47
SG5: 2,45

2 2 80 F 7

SG1: 16,24
SG2: 5,29
SG3: 11,98
SG4: 1,54
SG5: 2,11

Continued on next page

138

Table D.1 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

2 3 80 F 7

SG1: 15,11
SG2: 5,04
SG3: 10,03
SG4: 1,98
SG5: 2,98

2 4 80 F 8

SG1: 13,24
SG2: 4,27
SG3: 9,50
SG4: 1,73
SG5: 1,70

2 5 80 F 10

SG1: 14,13
SG2: 4,56
SG3: 11,31
SG4: 1,80
SG5: 1,83

2 6 80 F 11

SG1: 13,07
SG2: 4,72
SG3: 8,29
SG4: 1,76
SG5: 1,99

3 1 82 M 9

SG1: 10,56
SG2: 4,83
SG3: 10,76
SG4: 3,01
SG5: 2,01

3 2 82 M 20

SG1: 8,90
SG2: 3,69
SG3: 8,13
SG4: 2,39
SG5: 1,96

3 3 82 M 18

SG1: 6,13
SG2: 4,01
SG3: 9,90
SG4: 2,90
SG5: 1,54

3 4 82 M 27

SG1: 7,01
SG2: 3,70
SG3: 6,12
SG4: 1,70
SG5: 1,76

Continued on next page

139

D. Annex D - Testing sessions tables

Table D.1 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

3 5 82 M 25

SG1: 6,90
SG2: 2,17
SG3: 7,01
SG4: 1,22
SG5: 1,30

3 6 82 M 25

SG1: 5,39
SG2: 2,12
SG3: 5,32
SG4: 1,40
SG5: 1,56

4 1 79 F 11

SG1: 13,87
SG2: 5,90
SG3: 12,11
SG4: 13,53
SG5: 4,50

4 2 79 F 12

SG1: 11,98
SG2: 5,17
SG3: 11,67
SG4: 14,01
SG5: 3,78

4 3 79 F 9

SG1: 12,59
SG2: 3,65
SG3: 8,54
SG4: 11,47
SG5: 4,57

4 4 79 F 15

SG1: 10,75
SG2: 4,90
SG3: 9,56
SG4: 9,45
SG5: 2,71

4 5 79 F 14

SG1: 8,46
SG2: 4,01
SG3: 9,01
SG4: 10,78
SG5: 3,95

4 6 79 F 16

SG1: 9,76
SG2: 4,12
SG3: 9,12
SG4: 9,93
SG5: 3,13

140

Table D.2: Serious game eight day testing stage with a sample of eleven end-users. The ”Time
required” column refers to the fastest quest tackling done in each sub-game regarding every
session, in seconds.

End-user number Testing session number Age Gender Score Time required (s)

1 1 74 M 15

SG1: 7,01
SG2: 5,23
SG3: 8,24
SG4: 3,49
SG5: 6,32

1 2 74 M 20

SG1: 5,24
SG2: 4,01
SG3: 7,42
SG4: 3,21
SG5: 4,31

1 3 74 M 19

SG1: 8,52
SG2: 3,05
SG3: 6,22
SG4: 2,24
SG5: 4,51

1 4 74 M 25

SG1: 4,25
SG2: 3,06
SG3: 6,89
SG4: 2,41
SG5: 3,52

1 5 74 M 27

SG1: 3,76
SG2: 3,75
SG3: 5,99
SG4: 2,04
SG5: 4,25

1 6 74 M 24

SG1: 4,61
SG2: 3,01
SG3: 4,75
SG4: 1,53
SG5: 4,99

1 7 74 M 28

SG1: 4,41
SG2: 2,95
SG3: 5,13
SG4: 1,49
SG5: 3,61

1 8 74 M 31

SG1: 5,98
SG2: 2,64
SG3: 6,32
SG4: 1,99
SG5: 3,92

Continued on next page

141

D. Annex D - Testing sessions tables

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

2 1 68 F 16

SG1: 6,72
SG2: 4,37
SG3: 7,45
SG4: 3,01
SG5: 5,70

2 2 68 F 19

SG1: 3,45
SG2: 3,22
SG3: 6,11
SG4: 2,05
SG5: 4,01

2 3 68 F 26

SG1: 4,01
SG2: 2,90
SG3: 3,72
SG4: 1,27
SG5: 3,75

2 4 68 F - -

2 5 68 F 29

SG1: 3,96
SG2: 2,11
SG3: 5,99
SG4: 1,89
SG5: 4,10

2 6 68 F 35

SG1: 2,99
SG2: 1,29
SG3: 3,19
SG4: 1,21
SG5: 3,41

2 7 68 F 29

SG1: 3,01
SG2: 1,72
SG3: 3,21
SG4: 1,22
SG5: 3,85

2 8 68 F 33

SG1: 2,91
SG2: 1,80
SG3: 3,80
SG4: 1,43
SG5: 3,07

3 1 77 M 17

SG1: 6,73
SG2: 4,98
SG3: 9,61
SG4: 3,32
SG5: 6,32

Continued on next page

142

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

3 2 77 M 16

SG1: 6,22
SG2: 4,51
SG3: 7,23
SG4: 2,35
SG5: 5,21

3 3 77 M 24

SG1: 5,31
SG2: 4,04
SG3: 5,17
SG4: 1,99
SG5: 6,01

3 4 77 M - -

3 5 77 M 23

SG1: 8,32
SG2: 3,45
SG3: 5,26
SG4: 1,61
SG5: 4,51

3 6 77 M 23

SG1: 5,12
SG2: 2,12
SG3: 6,01
SG4: 1,79
SG5: 3,74

3 7 77 M 25

SG1: 5,92
SG2: 2,64
SG3: 5,61
SG4: 1,68
SG5: 4,51

3 8 77 M 28

SG1: 4,50
SG2: 2,15
SG3: 3,61
SG4: 1,8
SG5: 4,69

4 1 63 F 23

SG1: 24,16
SG2: 11,41
SG3: 13,41
SG4: 2,52
SG5: 3,01

4 2 63 F 17

SG1: 27,11
SG2: 9,64
SG3: 11,49
SG4: 1,44
SG5: 3,51

Continued on next page

143

D. Annex D - Testing sessions tables

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

4 3 63 F 19

SG1: 23,61
SG2: 9,69
SG3: 10,11
SG4: 1,01
SG5: 2,43

4 4 63 F - -

4 5 63 F 22

SG1: 21,58
SG2: 11,13
SG3: 9,28
SG4: 2,01
SG5: 2,12

4 6 63 F 29

SG1: 18,53
SG2: 7,32
SG3: 8,24
SG4: 1,42
SG5: 2,55

4 7 63 F 30

SG1: 17,75
SG2: 6,41
SG3: 8,55
SG4: 1,76
SG5: 1,29

4 8 63 F 27

SG1: 13,19
SG2: 5,90
SG3: 7,32
SG4: 1,61
SG5: 1,79

5 1 73 M 6

SG1: 14,51
SG2: 7,23
SG3: 10,43
SG4: 7,21
SG5: 2,52

5 2 73 M 9

SG1: 13,13
SG2: 6,41
SG3: 12,51
SG4: 6,37
SG5: 3,79

5 3 73 M 11

SG1: 20,24
SG2: 5,07
SG3: 13,51
SG4: 4,31
SG5: 2,61

Continued on next page

144

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

5 4 73 M 14

SG1: 11,47
SG2: 4,51
SG3: 7,32
SG4: 4,79
SG5: 3,58

5 5 73 M 13

SG1: 9,19
SG2: 3,95
SG3: 9,14
SG4: 3,27
SG5: 1,61

5 6 73 M 16

SG1: 8,17
SG2: 3,92
SG3: 8,84
SG4: 4,52
SG5: 1,14

5 7 73 M 15

SG1: 8,34
SG2: 2,41
SG3: 6,21
SG4: 4,06
SG5: 1,99

5 8 73 M 17

SG1: 7,11
SG2: 4,53
SG3: 7,31
SG4: 4,33
SG5: 1,43

6 1 74 F 5

SG1: 41,21
SG2: 10,12
SG3: 17,11
SG4: 3,14
SG5: 3,48

6 2 74 F 6

SG1: 34,14
SG2: 9,10
SG3: 21,14
SG4: 3,81
SG5: 2.18

6 3 74 F 6

SG1: 42,24
SG2: 9,74
SG3: 16,21
SG4: 2,12
SG5: 2,94

6 4 74 F - -
Continued on next page

145

D. Annex D - Testing sessions tables

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

6 5 74 F 11

SG1: 20,24
SG2: 6,12
SG3: 16,15
SG4: 2,17
SG5: 2,51

6 6 74 F 13

SG1: 23,52
SG2: 7,61
SG3: 17,22
SG4: 2,18
SG5: 2,30

6 7 74 F 14

SG1: 21,11
SG2: 6,56
SG3: 15,51
SG4: 1,59
SG5: 1,97

6 8 74 F 14

SG1: 23,64
SG2: 4,51
SG3: 15,32
SG4: 1,25
SG5: 1,12

7 1 84 M 9

SG1: 39,14
SG2: 11,42
SG3: 20,41
SG4: 2,98
SG5: 5,14

7 2 84 M 11

SG1: 37,19
SG2: 9,45
SG3: 19,53
SG4: 2,52
SG5: 5,71

7 3 84 M 16

SG1: 36,61
SG2: 9,21
SG3: 18,41
SG4: 3,14
SG5: 6,01

7 4 84 M 18

SG1: 26,51
SG2: 7,14
SG3: 17,11
SG4: 2,05
SG5: 3,20

Continued on next page

146

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

7 5 84 M 17

SG1: 29,41
SG2: 8,32
SG3: 17,76
SG4: 1,65
SG5: 5,61

7 6 84 M 20

SG1: 30,51
SG2: 8,02
SG3: 17,94
SG4: 1,91
SG5: 4,51

7 7 84 M 16

SG1: 20,82
SG2: 6,35
SG3: 17,01
SG4: 2,08
SG5: 3,67

7 8 84 M 17

SG1: 24,78
SG2: 5,17
SG3: 14,42
SG4: 2,16
SG5: 5,14

8 1 73 F 12

SG1: 5,12
SG2: 5,22
SG3: 8.12
SG4: 3,01
SG5: 5,32

8 2 73 F 19

SG1: 4,52
SG2: 3,69
SG3: 7,83
SG4: 2,52
SG5: 4,60

8 3 73 F 20

SG1: 3,59
SG2: 3,25
SG3: 4,51
SG4: 1,41
SG5: 4,69

8 4 73 F - -

8 5 73 F 19

SG1: 4,15
SG2: 3,02
SG3: 4,92
SG4: 1,04
SG5: 4,03

Continued on next page

147

D. Annex D - Testing sessions tables

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

8 6 73 F 25

SG1: 2,91
SG2: 2,99
SG3: 5,75
SG4: 1,07
SG5: 3,96

8 7 73 F 27

SG1: 2,25
SG2: 3,07
SG3: 4,61
SG4: 1,45
SG5: 3,36

8 8 73 F 27

SG1: 2,01
SG2: 3,51
SG3: 4,03
SG4: 1,31
SG5: 3,43

9 1 93 F 3

SG1: 29,21
SG2: 8,32
SG3: 16,29
SG4: 3,42
SG5: 2,89

9 2 93 F 2

SG1: 21,95
SG2: 6,11
SG3: 14,14
SG4: 2,81
SG5: 2,53

9 3 93 F 6

SG1: 17,86
SG2: 6,74
SG3: 9,87
SG4: 2,02
SG5: 2,13

9 4 93 F - -

9 5 93 F 5

SG1: 17,11
SG2: 4,53
SG3: 8,95
SG4: 2,56
SG5: 1,94

9 6 93 F 10

SG1: 13,71
SG2: 4,67
SG3: 10,22
SG4: 2,05
SG5: 1,32

Continued on next page

148

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

9 7 93 F 9

SG1: 11,09
SG2: 4,90
SG3: 11,54
SG4: 1,67
SG5: 1,63

9 8 93 F 12

SG1: 9,18
SG2: 3,99
SG3: 10,31
SG4: 1,56
SG5: 1,53

10 1 81 M 1

SG1: 56,21
SG2: 13,32
SG3: 20,53
SG4: 5,62
SG5: 4,51

10 2 81 M 2

SG1: 47,21
SG2: 10,61
SG3: 19,42
SG4: 4,21
SG5: 3,29

10 3 81 M 0

SG1: 34,32
SG2: 11,62
SG3: 17,45
SG4: 3,54
SG5: 4,01

10 4 81 M 5

SG1: 24,54
SG2: 9,69
SG3: 16,24
SG4: 4.10
SG5: 3,41

10 5 81 M 7

SG1: 21,75
SG2: 7,79
SG3: 17,29
SG4: 4,23
SG5: 3,05

10 6 81 M 6

SG1: 19,23
SG2: 6,16
SG3: 16,78
SG4: 3,53
SG5: 2,94

Continued on next page

149

D. Annex D - Testing sessions tables

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

10 7 81 M 12

SG1: 17,29
SG2: 7,32
SG3: 15,11
SG4: 3,45
SG5: 2,51

10 8 81 M 9

SG1: 19,76
SG2: 6,15
SG3: 16,01
SG4: 3,99
SG5: 2,08

11 1 85 F 11

SG1: 13,44
SG2: 6,70
SG3: 13,43
SG4: 6,23
SG5: 4,65

11 2 85 F 16

SG1: 12,12
SG2: 5,24
SG3: 13,01
SG4: 4,95
SG5: 4,78

11 3 85 F 19

SG1: 12,59
SG2: 4,51
SG3: 10,42
SG4: 5,61
SG5: 4,21

11 4 85 F - -

11 5 85 F 20

SG1: 9,53
SG2: 4,12
SG3: 9,04
SG4: 4,32
SG5: 2,71

11 6 85 F 25

SG1: 8,46
SG2: 4,41
SG3: 9,23
SG4: 3,59
SG5: 3,01

11 7 85 F 22

SG1: 9,43
SG2: 4,58
SG3: 9,63
SG4: 3,75
SG5: 3,24

Continued on next page

150

Table D.2 – continued from previous page
End-user number Testing session number Age Gender Score Time required (s)

11 8 85 F 24

SG1: 9,01
SG2: 4,14
SG3: 9,51
SG4: 4,01
SG5: 3,64

151

This page intentionally left blank.

	Titlepage
	Acknowledgments
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables

	1 Manual de Utilizador
	1.1 Motivation and context
	1.2 Problem statement
	1.3 Objectives and contributions
	1.4 Document structure

	2 Background and related work
	2.1 Active ageing, cognitive stimulation, and rehabilitation
	2.1.1 Hand-eye coordination

	2.2 Serious games
	2.3 Related work on serious games to help elderly
	2.4 Research scope
	2.4.1 Key requirements
	2.4.2 Envisaged serious game design

	2.5 Summary

	3 Serious game requirements analysis
	3.1 Functional requirements
	3.1.1 UML use case diagrams

	3.2 Non-functional requirements
	3.3 Design constraints and limitations
	3.4 Development model
	3.5 Requirements prioritization
	3.6 Summary

	4 Serious game design
	4.1 General concepts of software design
	4.2 Architecture
	4.2.1 Preliminary UML class diagram

	4.3 Mock-ups for the design of the graphical user interface
	4.4 Conceptual design
	4.5 Technical design
	4.5.1 Data structures
	4.5.2 Algorithms

	4.6 Summary

	5 Serious game implementation
	5.1 Computer graphics programming technologies
	5.1.1 Unity versus Unreal Engine

	5.2 Development environment
	5.3 Source code structure
	5.3.1 Final UML class diagram
	5.3.2 UML component diagrams
	5.3.3 Source code repository and documentation

	5.4 GUI events handling
	5.5 Main issues during implementation
	5.6 Functional and performance tests
	5.7 Summary

	6 Acceptance tests with end users
	6.1 Testing scenario
	6.2 Tests specification and preparation
	6.2.1 Test scheduling
	6.2.2 Environment setup
	6.2.3 Usability forms
	6.2.4 End user consent statement

	6.3 Obtained Results
	6.3.1 Characterization of the end-user sample
	6.3.2 Analysis and discussion

	6.4 Summary

	7 Conclusions
	7.1 Future Work

	Bibliography
	A Annex A - User manual
	B Annex B - Reference manual
	C Annex C - Detailed project documentation
	D Annex D - Testing sessions tables

