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Abstract

The main goal of this work is the analytical and numerical study of a differential system defined
by an integro-differential equation of hyperbolic type and a convection-diffusion-reaction equation.
This system arises in the mathematical modeling of drug delivery enhanced by ultrasound. In this
case, the hyperbolic equation describes the target displacement generated by ultrasound and the
second equation describes the drug transport. The parabolic equation depends on the displacement
and eventually on its time derivative. The differential system is completed by initial conditions and
homogeneous boundary conditions of Dirichlet type. We establish existence, uniqueness and stability
results for the displacement and concentration in both the continuous and the semi-discrete cases.
In the continuous case, the existence result for the displacement problem is established considering
the method of separation of variables, the stability is proved considering the energy method that
allows us to get an estimate for the potential and kinetic energies. The existence of concentration
is obtained applying a known result. The stability is proved using again the energy method. In the
stability analysis of the semi-discrete approximations for the displacement and concentration, we
follow discrete versions of the arguments used in the continuous case. The convergence analysis of
the semi-discrete approximations is also based in the discrete energy method and second convergence
order is obtained. We observe that the spatial truncation error is only of first order with respect to the
norm ∥ · ∥∞. The numerical results illustrating the theoretical results established are also included.





Resumo

O objectivo principal deste trabalho é o estudo analítico e numérico de um sistema diferencial definido
por uma equação integro-diferencial do tipo hiperbólico e uma equação de convecção-difusão-reação.
Este sistema surge na modelação matemática da administração de fármacos assistida por ultrassom.
Neste caso, a equação hiperbólica descreve o deslocamento no meio gerado pelo ultrassom e a
segunda equação descreve o transporte do fármaco. A equação parabólica depende do deslocamento e
eventualmente da sua derivada temporal. O sistema diferencial é completado com condições iniciais e
condições de fronteira homogéneas de Dirichlet. Estabelecemos resultados de existência, unicidade e
estabilidade para o deslocamento e para a concentração tanto no caso contínuo como no caso semi-
discreto. No caso contínuo, o resultado da existência para o problema do deslocamento é estabelecido
considerando o método de separação de variáveis, a estabilidade é provada considerando o método da
energia que nos permite encontrar uma estimativa para as energias potencial e cinética. A existência da
concentração é obtida aplicando um resultado conhecido. A estabilidade é provada usando novamente
o método da energia. Na análise da estabilidade da aproximação semi-discreta para o deslocamento,
seguimos versões discretas dos argumentos usados no caso contínuo. A análise da convergência das
aproximações semi-discretas é também baseada no método da energia discreto e é obtida segunda
ordem de convergência. Observamos que o erro de truncatura espacial é apenas de primeira ordem em
relação à norma ∥ · ∥∞. Os resultados numéricos ilustrando os resultados teóricos obtidos são também
incluídos neste trabalho.
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Chapter 1

Introduction

The main goal of this work is to study the differential system defined by an integro-differential
equation

ρ0utt(x, t) = E0uxx(x, t)+
1
τ

∫ t

0
E(t − s)uxx(x,s)ds+ f (x, t),x ∈ Ω, t ∈ (0,T ], (1.1)

with Ω = (0,1), and the parabolic equation

ct(x, t)+(c(x, t)v(u(x, t)))x = Dcxx(x, t)− γc(x, t),x ∈ Ω, t ∈ (0,T ], (1.2)

complemented with the initial conditions

u(x,0) = φ(x),
∂u
∂ t

(x,0) = ψ(x),x ∈ Ω, (1.3)

c(x,0) = c0(x),x ∈ Ω, (1.4)

and the boundary conditions of Dirichlet type

u(0, t) = u(1, t) = 0, t ∈ (0,T ], (1.5)

c(0, t) = c(1, t) = 0, t ∈ (0,T ], (1.6)

In (1.1) E(µ) is a kernel function with specific properties that we will specify in what follows. The
convective velocity v in (1.2) can be also dependent on ux but in order to simplify the analysis we
consider that v depends only on u.

The differential problem (1.1)-(1.6) can be used to describe mathematically the drug delivery
enhanced by ultrasound, as for instance, in [5] and [8]. Ultrasound induces in the target tissue a
complex set of phenomena that are characterized by the so called cavitation - expansion and contraction
of endogenous or exogenous microbubbles that can be stable or unstable. In this last case, the collapse
of the microbubbles can occur generating in the fluid environment several phenomena that can lead to
the increase of the permeability of the media and also of the convective transport (see for instance [7]).
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2 Introduction

In the case of transdermal drug delivery, the ultrasound is used to disrupt the stratum corneum
barrier. This layer is the outermost part of the epidermis, is flexible but relatively impermeable due to
its brick structure made mostly from proteins and some lipids. The skin is a viscoelastic tissue whose
mechanical properties are mainly determined by collagen fibers, elastic fibers, and proteoglycans (
see for instance [1]). A viscoelastic material is a material with both elastic and viscous properties.
Elasticity is a property of solid objects to deform under tension and then return to its original position.
This deformation occurs instantly when the tension is applied and the return to the original position
also occurs instantly after the tension is removed. Viscosity is a property of liquids to resist flow. A
viscoelastic material has both properties and therefore has properties of both liquids and solids.

The ultrasound generates a pressure wave that propagates through the target tissue, for instance in
the skin, that induces a displacement of the tissue. Such displacement can be described by the partial
differential equation (1.1) where f denotes the source displacement (a force). Equation (1.2) can be
used to describe the drug transport trough the target tissue induced by the tissue displacement and
by diffusion. The convective term v can be considered depending on u, ux or ut . In what follows we
assume that v depends on the displacement and its velocity.

As we mention before, equation (1.1) can be used to describe the displacement evolution of a
target tissue under the action of an ultrasound. In fact, the ultrasound generates a pressure wave that
induces a displacement in the target namely in viscoelastic materials.

The displacement u of a point x ∈ Ω at time t under the action of a force f in this point is described
by

ρ0utt(x, t) = σx(x, t)+ f (x, t),x ∈ (0,1), t ∈ (0,T ], (1.7)

where σ denotes the stress that is related with the strain ε by the convolution relation

σ(x, t) =
∫ t

0
E(t − s)εt(x,s)ds. (1.8)

In (1.8), E(s) = D′e−
s
τ , τ is a relaxation parameter that corresponds to the time needed to restore its

initial state when deforms, and the strain ε is given by

ε(x, t) = ux(x, t),x ∈ (0,1), t ∈ (0,T ]. (1.9)

From (1.8) and considering (1.9) we obtain successively

σ(x, t) =
∫ t

0
E(t − s)εt(x,s)ds

= ε(x, t)E(0)− ε(x,0)E(t)−
∫ t

0
E ′(t − s)ε(x,s)ds

= E0ux(x, t)− ε(x,0)E(t)+
1
τ

∫ t

0
E(t − s)ux(x,s)ds.

Considering that we do not have any initial strain or it is constant, we derive

σx(x, t) = E0uxx(x, t)+
1
τ

∫ t

0
E(t − s)uxx(x,s)ds. (1.10)

Taking this expression in (1.7) we conclude (1.1).
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Finally we observe that the stress-strain relation (1.8), usually called Maxwell model, can be
established considering the differential formulation

σ +aσt =C1εt , (1.11)

where a and C1 are convenient constants that depend on the properties of the material under considera-
tion.

The generalization of (1.8) is the so called Maxwell-Weichert model

σ(x, t) =
∫ t

0

(
E0 +

n

∑
i=1

Eie
− t−s

τi

)
εt(x,s)ds,

where Ei and τi are fixed in function of the characteristics of the material was considered in [9] with
n = 2 to describe the viscoelastic properties of collagen - a main ingredient in the human skin.

We note that other models can be considered like the Voigt model

σ =C0ε +C1εt , (1.12)

or Zener model
σ +aσt =C0ε +C1εt , (1.13)

(see [10]).
We observe that in [2], [3] and [4], the authors considered (1.1) replaced by the telegraph equation

for the pressure intensity
utt +αut = βuxx,x ∈ (0,1), t ∈ (0,T ].

In this case the authors do not consider the viscoelastic nature of the target tissue. It should be noted
that other equations have been considered in the same context to describe the propagation of the
pressure waves.

The main goal of this work is to propose a numerical method for the IBVP (1.1)-(1.6) using the so
called Method of Lines Approach (MOL) that converts the IBVP (1.1)-(1.6) in a ordinary differential
problem. Here we use finite differences approximations defined in nonuniform grids.

The main problem here is to define the right discretization of (1.1) that guarantees that the
numerical approximation for (1.2) is sufficiently accurate. In fact, the convective term in the last
equation depends u and ut and consequently, the numerical approximation for the concentration can
be deteriorated.

As we intend to work with spatial nonuniform grids, the second order centered finite difference
operator for the second order spatial derivative leads to a truncation error of first order with respect
to the norm ∥.∥∞. Consequently, we expect that the approximations for the displacement and for the
concentration are also of first order accuracy. We will show that such approximations are in fact
second order convergent with respect to convenient norms. In the establishment of these results, is
crucial the adaptation to our system of equations of the approach followed in [4]. The stability of the
semi-discrete solutions is analysed as well error estimates are established.

This thesis is composed by five chapters. In the second chapter, Mathematical Analysis, we
provide for the displacement and concentration results on the existence, uniqueness and stability. The



4 Introduction

third chapter, Numerical Analysis, is devoted to the study of semi-discrete approximations for the
displacement and concentration. Here, we establish results on the existence, uniqueness and stability
for such approximations. This chapter ends with the error analysis of the semi-discretization errors
where we prove second order accuracy for both approximations - displacement and concentration. In
the fourth chapter, Numerical Simulation, numerical experiments illustrating the theoretical results are
included. The thesis ends with the last chapter, Conclusions.



Chapter 2

Mathematical Analysis

2.1 Introduction

In this chapter we present some existence, stability and uniqueness results for the differential problem
(1.1), (1.3), (1.5) when f = 0. We remark that when f ̸= 0 the same approach for the existence
result can be followed with the convenient adaptations. The existence, stability and uniqueness of
the displacement solution are established in Section 2.2. Section 2.3 is focused in the mathematical
analysis of the concentrations, namely, we study existence and stability results.

2.2 Existence, stability and uniqueness of the displacement solution

This section aims to establish some existence, stability and uniqueness results for the solution of the
IBVP (1.1), (1.3), (1.5) when f = 0.

2.2.1 An existence result for the displacement

In what follows we consider that E(s) = D′e−
s
τ , where D′ > 0 and τ > 0 represents the relaxation

coefficient that measures the time needed for the medium to restore its initial configuration when
deforms subject to a force. To prove that there is at least one solution of the IBVP (1.1), (1.3), (1.5),
we use the method of separation of variables.

Let us suppose that u(x, t) = N(t)M(x). From (1.1) we obtain

ρ0N′′(t)M(x) = E0N(t)M′′(x)+M′′(x)
1
τ

∫ t

0
E(t − s)N(s)ds

that, for N(t)M(x) ̸= 0, leads to

ρ0N′′(t)
E0N(t)+ 1

τ

∫ t
0 E(t − s)N(s)ds

=
M′′(x)
M(x)

,x ∈ (0,1).

Consequently,

ρ0N′′(t) = λ

(
E0N(t)+

1
τ

∫ t

0
E(t − s)N(s)ds

)
, t > 0, (2.1)

5



6 Mathematical Analysis

and
M′′(x) = λM(x),x ∈ (0,1).

From the boundary conditions (1.5) we get M(0) = M(1) = 0. Then conclude for M the following
boundary value problem {

M′′(x) = λM(x),x ∈ (0,1)
M(0) = M(1) = 0.

(2.2)

It is well known that (2.2) has the null solution for λ ≥ 0 and then we take λ = −β 2 with β > 0.
Consequently, we establish

β = nπ,n ∈ IN, Mn(x) = sin(nπx),n ∈ IN. (2.3)

To compute the solution of the ordinary differential equation (2.1), we observe that

ρ0N(3)(t) =−(nπ)2
(

E0N′(t)+E0N(t)+
1
τ

∫ t

0
E ′(t − s)N(s)ds

)
.

Taking into account that E ′(s) =− 1
τ
E(s), we deduce

ρ0N(3)(t) =−β
2
(

E0N′(t)+E0N(t)− 1
τ2

∫ t

0
E(t − s)N(s)ds

)
.

As from (2.1) we have also

∫ t

0
E(t − s)N(s)ds =−τρ0N′′(t)+ τβ 2E0N(t)

β 2 ,

we conclude for N(t) the third order ordinary differential equation

ρ0N(3)(t)+
1
τ

ρ0N(2)(t)+β
2E0N′(t)+β

2E0

(
1
τ
+1
)

N(t) = 0, t > 0. (2.4)

Equation (2.4) is a third order differential equation with constant coefficients, its solution admits the
representation

Nn(t) =
3

∑
ℓ=1

Aℓ,nern,ℓt ,n ∈ IN, (2.5)

where rℓ, ℓ= 1,2,3, are the roots of the third order polynomial equation

ρ0r3 +
1
τ

ρ0r2 +β
2E0r+β

2E0

(
1
τ
+1
)
= 0. (2.6)

We observe that the roots rℓ, ℓ= 1,2,3, are real or one is real and the other two are imaginary. Let us
suppose that r1 is the real solution and r2,r3 are complex solutions. For n ∈ IN, we assume, without
loss of generality, that, for n ≤ p0, these roots are real and for n > p0 only one root (r1) is real and
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r2,n = Re(rn,2)+ iIm(r2,n). Consequently,

Nn(t) =
3

∑
ℓ=1

Aℓ,nern,ℓt , for n ≤ p0,

and
Nn(t) = Ã1,ner1,ℓt + eRe(r2,n)t

(
Ã2,n cos(Im(r2,n)t)+ Ã3,n sin(Im(r2,n)t)

)
, for n > p0.

We are now in position to predict the expression of u. In fact, we have formally

u(x, t) =
p0

∑
n=1

(
3

∑
ℓ=1

Aℓ,nerℓ,nt

)
sin(nπx)

+
∞

∑
n=p0+1

(
Ã1,ner1,nt + eRe(r2,n)t

(
Ã2,n cos(Im(r2,n)t)+ Ã3,n sin(Im(r2,n)t)

))
sin(nπx)

, x ∈ [0,1], t ∈ [0,T ].
(2.7)

To finalize the definition of u, we need to specify conditions for the constants Aℓ,n, ℓ = 1,2,3.
From the initial condition (1.3) we should have

φ(x) =
p0

∑
n=1

(
3

∑
ℓ=1

Aℓ,n

)
sin(nπx)

+
∞

∑
n=p0+1

(
Ã1,n + Ã2,n

)
sin(nπx), x ∈ [0,1], t ∈ [0,T ].

Consequently,
3

∑
ℓ=1

Aℓ,n, for n ≤ p0, and Ã1,n, Ã2,n, for n > p0, should be given in function of the Fourier

coefficients of φ as a Fourier series of sines, that is

3

∑
ℓ=1

Aℓ,n = 2
∫ 1

0
φ(x)sin(nπx)dx,n ∈ IN,n ≤ p0

Ã1,n + Ã2,n = 2
∫ 1

0
φ(x)sin(nπx)dx,n ∈ IN,n > p0.

(2.8)

From the velocity condition of (1.3), we should have

ψ(x) =
p0

∑
n=1

( 3

∑
ℓ=1

rℓ,nAℓ,n

)
sin(nπx)

+
∞

∑
n=p0+1

(
r1,nÃ1,n +Re(r2,n)Ã2,n + Im(r2,n)Ã3,n

)
sin(nπx), x ∈ [0,1], t ∈ [0,T ].

Then we obtain the following equations

3

∑
ℓ=1

rℓ,nAℓ,n = 2
∫ 1

0
ψ(x)sin(nπx)dx,n ∈ IN,n ≤ p0,

r1,ℓÃ1,n +Re(r2,n)Ã2,n + Im(r2,n)Ã3,n = 2
∫ 1

0
ψ(x)sin(nπx)dx,n ∈ IN,n > p0.

(2.9)
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The last conditions for the coefficients Aℓ,n, ℓ= 1,2,3, for p ≤ p0, and Ãℓ,n, ℓ= 1,2,3, for n > p0, are
established considering that the differential equation (1.1) holds at t = 0. From this assumption we
have

ρ0utt(x,0) = E0uxx(x,0).

Assuming that φ is smooth enough, namely, there exists φ ′′, we get

ρ0utt(x,0) = E0φ
′′(x).

Combining this condition with (2.7), we deduce the last conditions

3

∑
ℓ=1

r2
ℓ,nAℓ,n =

2E0

ρ0

∫ 1

0
φ
′′(x)sin(nπx)dx,n ∈ IN,n ≤ p0,

r2
1,ℓÃ1,n +(Re(r2,ℓ))

2Ã2,n +2Re(r2,n)Im(r2,n)Ã3,n

−Ã2,n(Im(r2,n))
2 = 2

∫ 1

0
ψ(x)sin(nπx)dx,n ∈ IN,n > p0.

(2.10)

The algebraic system (2.8)- (2.10) defines the coefficients An,ℓ, ℓ= 1,2,3, for n ≤ p0, and Ãℓ,n, ℓ=

1,2,3, for n > p0.

Finally, we state the existence result:

Theorem 2.2.1. Let Aℓ,n, ℓ = 1,2,3, for n ≤ p0, and Ãℓ,n, ℓ = 1,2,3, for n > p0, be defined by the
algebraic system (2.8)- (2.10). Then (2.7) defines a solution u ∈C2([0,1]× [0,T ]) of the IBVP (1.1),
(1.3), (1.5) provided that φ and ψ are smooth enough.

We remark that in the near future we intend to specify the minimum smoothness conditions for
these two functions that allow us to prove that u is in fact solution of the IBVP (1.1), (1.3), (1.5).

2.2.2 Stability

The main goal of this section is the establishment of stability inequalities for the solution of the IBVP
(1.1), (1.3), (1.5). As we are interested in the stability, then it is enough to take f = 0.

Let (., .)L2 be the usual inner product in L2(0,1) defined by

( f ,g)L2 =
∫ 1

0
f (x)g(x)dx, f ,g ∈ L2(0,1),

and let ∥.∥L2 be the correspondent norm.

If v : [0,1]× [0,T ]→ IR, then, for t ∈ [0,T ], v(t) denotes the following function v(t) : [0,1]→ IR
such that v(t)(x) = v(x, t),x ∈ [0,1].

By Cm([0,T ],Cp([0,1])) we denote the space of functions v : [0,1]× [0,T ]→ IR such that, for
t ∈ [0,T ], and j = 0, . . . ,m, v( j)(t) : [0,1]→ IR have continuous spatial derivatives of order less or
equal than p in [0,1].
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Theorem 2.2.2. Let u ∈C2([0,T ],C([0,1]))∩C1([0,T ],C1([0,1]))∩C([0,T ],C2([0,1])) be solution
of the IBVP (1.1), (1.3), (1.5). If τE0 > 2 and β is a positive constant such that β < τE0 < 2β and

m = min
{

ρ0,
(τE0 −2)(τE0 −β )

τ2E0
,
2β − τE0

τ2E0β

}
,

then ∫ t

0

(
∥ut(s)∥2

L2 +∥ux(s)∥2
L2 +

∥∥∥∥∫ s

0
E(s−µ)ux(µ)dµ +βux(s)

∥∥∥∥2

L2
ds

)
≤ 1

E0

(
ρ0∥ψ∥2

L2 +

(
E0 −

β

τ

)
∥φ

′∥2
L2

)(
e

E0
mτ

t −1
)
,

(2.11)

for t ∈ [0,T ].

Proof. From (1.1) we easily get

ρ0(utt(t),ut(t))L2 = E0(uxx(t),ut(t))L2 +
1
τ

(∫ t

0
E(t − s)uxx(s)ds,ut(t)

)
L2
. (2.12)

We have
1
2

d
dt
∥ut(t)∥2

L2 = (utt(t),ut(t))L2 . (2.13)

As
(uxx(t),ut(t))L2 = ux(1, t)ut(1, t)−ux(0, t)ut(0, t)− (ux(t),uxt(t))L2 ,

and ut(0, t) = ut(1, t) = 0, we have also

(uxx(t),ut(t))L2 =−(ux(t),uxt(t))L2 .

Furthermore,
d
dt
∥ux(t)∥2

L2 = 2(ux(t),uxt(t)),

leads to
1
2

d
dt
∥ux(t)∥2

L2 =−(uxx(t),ut(t))L2 . (2.14)

We need now to deduce a representation of the term
(∫ t

0
E(t − s)uxx(s)ds,ut(t)

)
L2
. Using again that

ut(0, t) = ut(1, t) = 0, we get(∫ t

0
E(t − s)uxx(s)ds,ut(t)

)
L2
=−

(∫ t

0
E(t − s)ux(s)ds,uxt(t)

)
L2
.
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We start by noting that we have

d
dt

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2
= 2

(
E0 −

β

τ

)(∫ t

0
E(t − s)ux(s)ds,ux(t)

)
L2

−2
1
τ

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2

+β
2 d

dt
∥ux(t)∥2

L2 +2E0β∥ux(t)∥2
L2

+2β

(∫ t

0
E(t − s)ux(s)ds,uxt(t)

)
L2
.

The last equality allow us to obtain(∫ t

0
E(t − s)ux(s)ds,uxt(t)

)
L2

=
1

2β

d
dt

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2

+
1
β

(
β

τ
−E0

)(∫ t

0
E(t − s)ux(s)ds,ux(t)

)
L2

+
1

βτ

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2

−β

2
d
dt
∥ux(t)∥2

L2 −E0∥ux(t)∥2
L2 .

(2.15)

Now we need to establish a representation for
(∫ t

0
E(t − s)ux(s)ds,ux(t)

)
L2
. As we have

d
dt

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2
= 2E0

(∫ t

0
E(t − s)ux(s)ds,ux(t)

)
L2

−2
1
τ

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2
,

we deduce (∫ t

0
E(t − s)ux(s)ds,ux(t)

)
L2

=
1

2E0

d
dt

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2

+
1

E0τ

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2
.

(2.16)

Taking (2.16) into (2.15), we establish the following representation(∫ t

0
E(t − s)ux(s)ds,uxt(t)

)
L2

=
1

2β

d
dt

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2

+

(
β

τ
−E0

)
1

2E0β

d
dt

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2

+
1

E0τ2

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2

−β

2
d
dt
∥ux(t)∥2

L2 −E0∥ux(t)∥2
L2 .

(2.17)
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Inserting (2.13), (2.14) and (2.17) in (2.12), we conclude the following differential inequality

d
dt

(
ρ0∥ut(t)∥2

L2 +

(
E0 −

β

τ

)
∥ux(t)∥2

L2 +
1

τβ

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2

+
β −E0τ

τ2E0β

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2
− E0

τ

∫ t

0
∥ux(s)∥2

L2ds

)
≤ 0, t > 0.

(2.18)

Taking into account the smoothness of u, from (2.18) we derive

ρ0∥ut(t)∥2
L2 +

(
E0 −

β

τ

)
∥ux(t)∥2

L2

+
1

τβ

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2
+

β −E0τ

τ2E0β

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2

≤ ρ0∥ψ∥2
L2 +

(
E0 −

β

τ

)
∥φ

′∥2
L2 +

E0

τ

∫ t

0
∥ux(s)∥2

L2ds ≤ 0, t ∈ [0,T ].

(2.19)

We note that E0 − β

τ
and β−E0τ

τ2E0β
have symmetric signs so we can manipulate in the following way

E0τ −β

τ2E0β

∥∥∥∥∫ t

0
E(t − s)ux(s)ds

∥∥∥∥2

L2
=

E0τ −β

τ2E0β

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)−βux(t)

∥∥∥∥2

L2

≤ 2
E0τ −β

τ2E0β

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2
−2β

E0τ −β

τ2E0β
∥ux(t)∥2

L2

(2.20)
getting us to

ρ0∥ut(t)∥2
L2 +

(τE0 −2)(τE0 −β )

τ2E0
∥ux(t)∥2

L2 +
2β − τE0

τ2E0β

∥∥∥∥∫ t

0
E(t − s)ux(s)ds+βux(t)

∥∥∥∥2

L2

≤ ρ0∥ψ∥2
L2 +

(
E0 −

β

τ

)
∥φ

′∥2
L2 +

E0

τ

∫ t

0
∥ux(s)∥2

L2ds ≤ 0, t ∈ [0,T ].

(2.21)
Let Z(t) be defined by

Z(t) =
∫ t

0

(
∥ut(s)∥2

L2 +∥ux(s)∥2
L2 +

∥∥∥∥∫ s

0
E(s−µ)ux(µ)dµ +βux(s)

∥∥∥∥2

L2

+

∥∥∥∥∫ s

0
E(s−µ)ux(µ)dµ

∥∥∥∥2

L2

)
ds.

Then, from (2.21), we get

Z′(t)− E0

mτ
Z(t)≤ 1

m

(
ρ0∥ψ∥2

L2 +

(
E0 −

β

τ

)
∥φ

′∥2
L2

)
, t ≥ 0,

and consequently

Z(t)≤ 1
E0

(
ρ0∥ψ∥2

L2 +

(
E0 −

β

τ

)
∥φ

′∥2
L2

)(
e

E0
mτ

t −1
)
, t ∈ [0,T ],
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that leads to (2.11).

Corollary 1. Under the assumptions of Theorem 2.2.2, we have

∥ut(t)∥2
L2 +∥ux(t)∥2

L2 ≤
1
m

(
ρ0∥ψ∥2

L2 +

(
E0 −

β

τ

)
∥φ

′∥2
L2

)
e

E0
mτ

t , (2.22)

Corollary 2. Under the assumptions of Theorem 2.2.2, the IBVP (1.1), (1.3), (1.5) has at most one
solution.

Proof. Let us suppose that (1.1), (1.3), (1.5) has two solutions u and w and let ω = u−w. We have

∥ωt(t)∥L2 = 0,∥ωx(t)∥L2 = 0, t ∈ [0,T ].

From ∥ωt(t)∥L2 = 0, using the continuity of ωt(x, t), we get ω(t) = g(x). Using now the fact that we
have also ωx(x, t) = 0, we obtain ω(x, t) = const. Then we conclude the proof taking into account
that ω(x,0) = 0.

2.3 Coupling the displacement with the concentration

Taking into account the results established for the displacement u defined by IBVP (1.1), (1.3), (1.5),
the main objective of this section is to establish the existence and the uniqueness of the concentration
defined by the IBVP (1.2), (1.4) and (1.6).

2.3.1 An existence result

We observe that the differential equation (1.2) can be rewritten in the following equivalent form

ct(x, t)−Lc(x, t)+(γ +(v(u(x, t)))x)c(x, t) = 0,x ∈ Ω, t ∈ (0,T ],

where
Lc(x, t) = Dcxx(x, t)− v(u(x, t))cx(x, t).

The existence of the solution of the IBVP (1.2), (1.4) and (1.6) is given by Theorem 1.1 of [6].
We recall that a function g ∈C((0,1)× (0,T ]) is said to be Hölder continuous with coefficient

α ∈ (0,1) if

sup
x,y∈(0,1),t,t ′∈(0,T ]

|g(x, t)−g(y, t ′)|
((t − t ′)2 +(x− y)2)

α

2
<+∞.

For p,q ∈ IN0, by Cp,q((0,1)× (0,T ]) we represent the space of functions whose p time derivatives
in x and q times derivatives in t are continuous in (0,1)× (0,T ].

Theorem 2.3.1. If v′(u)ux and v(u) are Hölder continuous in (0,1)× (0,T ] and c0(0) = c0(1) = 0,
then the IBVP (1.2), (1.4) and (1.6) has a unique solution in C([0,1]× [0,T ])∩C2,1((0,1)× (0,T ]).
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2.3.2 Stability for the concentration

In this section we will establish energy estimates for the solution of the IBVP (1.2), (1.4) and (1.6).

Theorem 2.3.2. Let c ∈C([0,1]× [0,T ])∩C2,1((0,1)×(0,T ]) be the solution of the IBVP (1.2), (1.4)
and (1.6). If

|v(y)| ≤ L∞|y|,y ∈ IR, (2.23)

then

∥c(t)∥2
L2 +2(D− ε

2)
∫ t

0
e

∫ t

s
g(u(µ))dµ

∥cx(s)∥2
L2ds ≤ e

∫ t

0
g(u(s))ds

∥c0∥2
L2 , (2.24)

for t ∈ [0,T ], where

g(u(t)) =
1

2ε2 L2
∞∥u(t)∥2

∞ −2γ (2.25)

Proof. From (1.2), taking into account the homogeneous boundary conditions, we easily obtain

(ct(t),c(t))L2 +D∥cx(t)∥2
L2 = (v(u(t))c(t),cx(t))L2 − γ∥c(t)∥2

L2 . (2.26)

Considering that |v(y)| ≤ L∞|y|,y ∈ IR, we get successively

(v(u(t))c(t),cx(t))L2 ≤ L∞∥u(t)∥∞∥c(t)∥L2∥cx(t)∥L2

≤ 1
4ε2 L2

∞∥u(t)∥2
∞∥c(t)∥2

L2 + ε
2∥cx(t)∥2

L2 ,

where ε ̸= 0 is an arbitrary constant.
Then, from (2.26), and using the fact

(ct(t),c(t))L2 =
1
2

d
dt
∥c(t)∥2

L2 ,

we have
d
dt
∥c(t)∥2

L2 +2(D− ε
2)∥cx(t)∥2

L2 ≤
(

1
2ε2 L2

∞∥u(t)∥2
∞ −2γ

)
∥c(t)∥2

L2 ,

for t > 0, that can be rewritten in the following equivalent form

d
dt

∥c(t)∥2
L2e

−

∫ t

0
g(u(s))ds

+2(D− ε
2)
∫ t

0
e
−

∫ s

0
g(u(µ))dµ

∥cx(s)∥2
L2ds

≤ 0, (2.27)

for t > 0. In (2.27), g(u) is defined by (2.25).
Inequality (2.27) finally leads to (2.24).

Under the assumptions of Theorem 2.3.2 we have the stability inequality (2.24) that depends on
g(u) given by (2.25). Considering that

∥u(t)∥∞ ≤ ∥ux(t)∥L2 ,
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we have

g(u(s))≤ m
E0

(
∥ψ∥2

L2 +

(
E0 −

2β

τ

)
∥φ

′∥2
L2

)(
e

E0
m s −1

)
.

In the next result we establish the stability of the IBVP (1.2), (1.4) and (1.6) comparing two
solutions: c and c̃ depending on u and ũ that are defined by the IBVP (1.1), (1.3), (1.5) with initial
conditions φ ,ψ and φ̃ , ψ̃ , respectively, and two initial concentrations c0 and c̃0, respectively.

Theorem 2.3.3. Let c, c̃ ∈C([0,1]× [0,T ])∩C2,1((0,1)× (0,T ]) be solutions of the IBVP (1.2), (1.4)
and (1.6) with initial conditions c0 and c̃0 and depending on u and ũ that are defined by the IBVP
(1.1), (1.3), (1.5) with initial conditions φ ,ψ and φ̃ , ψ̃ , respectively. Let ωc and ωu be defined by
ωc = c− c̃ and ωu = u− ũ. If v is bounded by ∥v∥∞ and is a Lipschitz function

|v(y)− v(ỹ)| ≤ Lv|y− ỹ|,y, ỹ ∈ IR, (2.28)

then

∥ωc(t)∥2
L2 +2(D−2ε

2)
∫ t

0
eg(v)(t−s)∥ωcx(s)∥2

L2ds

≤ eg(v)t∥ωc(0)∥2
L2 +

1
2ε2 L2

v

∫ t

0
eg(v)(t − s)∥ωu(s)∥2

L2∥c(s)∥2
∞ds,

(2.29)

for t ∈ [0,T ], where

g(v) =
1

2ε2 ∥v∥2
∞ −2γ (2.30)

Proof. Considering (1.2) for c and c̃, for ωc we obtain the following

(ωct(t),ωc(t))L2 +D∥ωcx(t)∥2
L2 = (v(u(t))c(t)− v(ũ(t))c̃(t),ωcx(t))L2 − γ∥ωc(t)∥2

L2 . (2.31)

Considering that v is a Lipschitz function, we deduce

(v(u(t))c(t)− v(ũ(t))c̃(t),ωcx(t))L2 = ((v(u(t))− v(ũ(t)))c(t),ωcx(t))L2

+(v(ũ(t)))ωc(t),ωcx(t))L2

≤ Lv∥ωu(t)∥L2∥c(t)∥∞∥ωcx(t)∥L2

+∥v∥∞∥ωc(t)∥L2∥ωcx(t)∥L2

≤ 1
4ε2 L2

v∥ωu(t)∥2
L2∥c(t)∥2

∞ +2ε
2∥ωcx(t)∥2

L2

+
1

4ε2 ∥v∥2
∞∥ωc(t)∥2

L2 ,

where ε ̸= 0 is an arbitrary constant.
As

(ωct(t),ωc(t))L2 =
1
2

d
dt
∥ωc(t)∥2

L2 ,

we get
d
dt
∥ωc(t)∥2

L2 +2(D−2ε
2)∥ωcx(t)∥2

L2 ≤
(

1
2ε2 ∥v∥2

∞ −2γ

)
∥ωc(t)∥2

L2

+
1

2ε2 L2
v∥ωu(t)∥2

L2∥c(t)∥2
∞,

for t > 0.
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The last inequality is equivalent to the following one

d
dt

(
∥ωc(t)∥2

L2e−g(v)t +2(D−2ε
2)
∫ t

0
e−g(v)s∥ωcx(s)∥2

L2ds

− 1
2ε2 L2

v

∫ t

0
e−g(v)s∥ωu(s)∥2

L2∥c(s)∥2
∞ds
)
≤ 0,

(2.32)

for t > 0. In (2.32), g(v) is defined by (2.30).
The inequality (2.29) is easily concluded from (2.32).

We consider now the Corollary 1 for the stability of the displacement. Under the conditions of the
Theorem 2.2.2, we have

∥ωut(t)∥2
L2 +∥ωux(t)∥2

L2 ≤
1
m

(
ρ0∥ψ − ψ̃∥2

L2 +

(
E0 −

β

τ

)
∥φ

′− φ̃
′∥2

L2

)(
e

E0
mτ

t −1
)
. (2.33)

Considering now the Poincaré inequality we also have

∥ωu(t)∥2
L2 ≤

1
m

(
ρ0∥ψ − ψ̃∥2

L2 +

(
E0 −

β

τ

)
∥φ

′− φ̃
′∥2

L2

)(
e

E0
mτ

t −1
)
,

Corollary 3. Under the assumptions of Theorems 2.2.2 and 2.3.3, we have

∥ωc(t)∥2
L2 +2(D−2ε

2)
∫ t

0
eg(v)(t − s)∥ωcx(s)∥2

L2ds

≤ 1
2ε2 L2

v
1
m

(
ρ0∥ψ − ψ̃∥2

L2 +

(
E0 −

β

τ

)
∥φ

′− φ̃
′∥2

L2

)∫ t

0
eg(v)(t − s)

(
e

E0
mτ

s −1
)
∥c(s)∥2

∞ds

+eg(v)t∥ωc(0)∥2
L2 ,

(2.34)
for t ∈ [0,T ], where ε ̸= 0 is an arbitrary constant and g(v) is defined by (2.30).

Corollary 3 allow us to conclude the stability of the coupled problem: displacement defined by
the IBVP (1.1), (1.3), (1.5) with concentration defined by the IBVP (1.2), (1.4) and (1.6).





Chapter 3

Numerical Analysis

3.1 Introduction

In this chapter we introduce a ordinary differential system that defines approximations for the
displacement and concentration defined by IBVP (1.1)-(1.6). This ordinary differential problem is
introduced following the MOL approach- the spatial derivatives presented in the displacement and
concentration equations are discretized considering centered finite difference operators defined in
nonuniform grids.

In the first part of this chapter : Sections 3.2 and 3.3, we introduce the differential problems for
semi-discrete approximations for the displacement and concentration, respectively, and we establish
existence, uniqueness and stability results.

The last part, Section 3.4, is focused in the convergence analysis of such semi-discrete approxima-
tions. It should be pointed out that the truncation error is first order convergent with respect to the
norm ∥ · ∥∞. However, we show that both approximations are second order accuracy with respect to
convenient norms.

3.2 A semi-discrete approximation for the displacement

Let λ be a sequence of vectors h = (h1, . . . ,hN) with positive entries, such that

hmax = max
i=1,...,N

hi → 0,

and
N

∑
i=1

hi = 1.

Considering h ∈ Λ we introduce in Ω = [0,1] the following grid

Ωh = {xi, i = 0, . . . ,N : x0 = 0,xi = xi−1 +hi, i = 1, . . . ,N}.

We also consider the set of grid points Ωh = Ωh −{x0,xN}.

17
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By Wh we denote the space of grid functions defined in Ωh. Let Wh,0 be the vector subspace of Wh

of the grid functions that are null at the boundary points x0 and xN .

In Wh,0 we introduce the inner product

(uh,wh)h =
N−1

∑
i=1

hi +hi+1

2
uh(xi)vh(xi),uh,wh ∈Wh,0,

and the corresponding norm is denoted by ∥.∥h.

We use the notation

(uh,wh)+ =
N

∑
i=1

hiuh(xi)wh(xi),uh,wh ∈Wh,

and

∥uh∥+ =
( N

∑
i=1

hiuh(xi)
2
)1/2

,uh,Wh.

To discretize the spacial derivatives in (1.1) we introduce the finite difference operator

D2uh(xi) =
hiuh(xi+1)− (hi +hi+1)uh(xi)+hi+1uh(xi−1)

hihi+1hi+1/2
, i = 1, . . . ,N −1,

where hi+1/2 =
hi +hi+1

2
. We observe that if D−x denotes the the backward operator, we have

D2uh(xi) =
D−xuh(xi+1)−D−xuh(xi)

hi+1/2
, i = 1, . . . ,N −1.

Holds the following proposition:

Proposition 1. For uh,wh ∈Wh,0, we have

(D2uh,wh)h =−(D−xuh,D−xwh)+. (3.1)

Proof. As wh(x0) = wh(xN) = 0 we have successively

(D2uh,wh)h =
N−1

∑
i=1

D−xuh(xi+1)wh(xi)−
N−1

∑
i=1

D−xuh(xi)wh(xi)

=
N

∑
i=1

D−xuh(xi)wh(xi−1)−
N

∑
i=1

D−xuh(xi)wh(xi)

=−
N

∑
i=1

hiD−xuh(xi)D−xwh(xi)

=−(D−xuh,D−xwh)+.
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3.2.1 Existence and uniqueness

We introduce the semi-discrete approximation for the solution of the IBVP (1.1), (1.3), (1.5). Let
uh(t) ∈Wh,0, t ∈ [0,T ], be defined by the following ordinary differential system

ρ0u′′h(t)(xi, t) = E0D2uh(xi, t)+
1
τ

∫ t

0
E(t − s)D2uh(xi,s)ds+ f (xi, t), i = 1, . . . ,N −1, t ∈ (0,T ],

(3.2)
complemented with the initial conditions

uh(xi,0) = φ(xi), u′h(xi,0) = ψ(xi), i = 1, . . . ,N −1, (3.3)

and the boundary conditions of Dirichlet type

uh(x0, t) = uh(xN , t) = 0, t ∈ (0,T ]. (3.4)

To prove that there exists a unique solution uh(t) ∈Wh,0, we consider ρ0 = 1 to simplify and we
remark that the system (3.2), (3.3), (3.4) can be written in the following equivalent form

u′′h(t) = E0Ahuh(t)+
1
τ

∫ t

0
E(t − s)Ahuh(s)ds+Fh(t), t ∈ (0,T ], (3.5)

with the initial conditions
uh(0) = φh,u′h(0) = ψh. (3.6)

In this representation uh(t) is identified with the vector with entries uh(xi, t), i = 1, . . . ,N −1, and Ah

is the tridiagonal matrix induced by the operator D2 and φh and ψh are identified with the vectors with
entries φ(xi) and ψ(xi), i = 1, . . . ,N −1, respectively. Finally, Fh(t) represents the vector with entries
f (xi, t), i = 1, . . . ,N −1.

Let Zh(t) and Qh(t) be defined by

Zh(t) = u′h(t), Qh(t) =
1
τ

∫ t

0
E(t − s)uh(s)ds.

As we have
Q′

h(t) = E(0)uh(t)−
1
τ2

∫ t

0
E(t − s)uh(s)ds

=
E0

τ
uh(t)−

1
τ

Qh(t),

and
Z′

h(t) = u′′h(t)

= E0Ahuh(t)+Ah

(1
τ

∫ t

0
E(t − s)uh(s)ds

)
+Fh(t)

= E0Ahuh(t)+AhQh(t)+Fh(t),

for the vector with entries uh(t),Zh(t) and Qh(t) we establish the following initial value problem: u′h(t)
Z′

h(t)
Q′

h(t)

=

 0 I 0
E0Ah 0 Ah

E0
τ

I 0 − 1
τ
I


 uh(t)

Zh(t)
Qh(t)

+
 0

Fh(t)
0

 , t > 0, (3.7)
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with the initial condition  uh(0)
Zh(0)
Qh(0)

=

 φh

ψh

0

 . (3.8)

Finally we conclude that there exists a unique solution of the IVP (3.7), (3.8) that admits the
representation

Uh(t) = eAhtUh(0)+
∫ t

0
eAh(t−s)Fh(s)ds, t ≥ 0,

where

Uh(t) =

 uh(t)
Zh(t)
Qh(t)

 , Ah =

 0 I 0
E0Ah 0 Ah

E0
τ

I 0 − 1
τ
I

 , Fh(t) =

 0
Fh(t)

0

 .
3.2.2 Stability

Theorem 3.2.1. Let u ∈Wh,0 be solution of the IBVP (3.2), (3.3), (3.4). If τE0 > 2 and β is a positive
constant such that β < τE0 < 2β and m is given by

m = min
{

ρ0,
(τE0 −2)(τE0 −β )

τ
,
2β −E0τ

βE0τ2

}
,

then

ρ0∥u′h(t)∥2
h +

(τE0 −2)(τE0 −β )

τ
∥D−xuh(t)∥2

++
2β −E0τ

βE0τ2

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

≤ e
τE2

0
(τE0−2)(τE0−β ) t

(
ρ0∥ψh∥2

h +
(

E0 − β

τ

)
∥φ ′

h∥2
+

)
,

(3.9)
for t ∈ [0,T ], and

∫ t

0

(
∥u′h(s)∥2

h +∥D−xuh(s)∥2
++

∥∥∥∥∫ s

0
E(s−µ)D−xuh(µ)dµ +βD−xuh(s)

∥∥∥∥2

+

)
ds

≤ 1
E0

(
ρ0∥ψh∥2

h +

(
E0 −

β

τ

)
∥φ

′
h∥2

+

)(
e

E0
mτ

t −1
)
,

(3.10)

for t ∈ [0,T ].

Proof. From (3.2) we easily get

ρ0(u′h(t),u
′′
h(t))h = E0(D2uh(t),u′h(t))h +

1
τ

(∫ t

0
E(t − s)D2uh(s)ds,u′h(t)

)
h
. (3.11)

We have
1
2

d
dt
∥u′h(t)∥2

h = (u′′h(t),u
′
h(t))h, (3.12)

and
(D2uh(t),u′h(t))h =−(D−xuh(t),D−xu′h(t))+

=−1
2

d
dt
∥D−xuh(t)∥2

+.
(3.13)
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We need now to deduce a representation of the term
(∫ t

0
E(t − s)D2uh(s)ds,ut(t)

)
h
. Using again

(3.1), we get(∫ t

0
E(t − s)D2uh(s)ds,u′h(t)

)
h
=−

(∫ t

0
E(t − s)D−xuh(s)ds,D−xu′h(t)

)
+

.

As we have

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

=−2
(

β

τ
−E0

)(∫ t

0
E(t − s)D−xuh(s)ds,D−xuh(t)

)
+

−2
1
τ

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

+β
2 d

dt
∥D−xuh(t)∥2

++2E0β∥D−xuh(t)∥2
+

+2β

(∫ t

0
E(t − s)D−xuh(s)ds,D−xu′h(t)

)
+

,

we obtain(∫ t

0
E(t − s)D−xuh(s)ds,D−xu′h(t)

)
+

=
1

2β

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

+
1
β

(
β

τ
−E0

)(∫ t

0
E(t − s)D−xuh(s)ds,D−xuh(t)

)
+

+
1

βτ

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

−β

2
d
dt
∥D−xuh(t)∥2

+−E0∥D−xuh(t)∥2
+.

(3.14)

Now we need to establish a representation for
(∫ t

0
E(t − s)D−xuh(s)ds,D−xuh(t)

)
+

. As we have

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

= 2E0

(∫ t

0
E(t − s)D−xuh(s)ds,D−xuh(t)

)
+

−2
1
τ

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

,

we deduce(∫ t

0
E(t − s)D−xuh(s)ds,D−xuh(t)

)
+

=
1

2E0

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

+
1

E0τ

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

.

(3.15)
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Taking (3.15) into (3.14), we establish the following representation(∫ t

0
E(t − s)D−xuh(s)ds,D−xu′h(t)

)
+

=
1

2β

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+D−xuh(t)

∥∥∥∥2

+

+

(
β

τ
−E0

)
1

2E0β

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

+
1

E0τ2

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

−β

2
d
dt
∥D−xuh(t)∥2

+−E0∥D−xuh(t)∥2
+.

(3.16)
Inserting (3.12), (3.13) and (3.16) in (3.11) we conclude the following differential inequality

d
dt

(
ρ0∥u′h(t)∥2

h +

(
E0 −

β

τ

)
∥D−xuh(t)∥2

++
1

τβ

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

+
β −E0τ

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

− E0

τ

∫ t

0
∥D−xuh(s)∥2

+ds
)
≤ 0, t > 0.

that leads to

ρ0∥u′h(t)∥2
h +

(
E0 −

β

τ

)
∥D−xuh(t)∥2

+

+
1

τβ

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

+
β −E0τ

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

≤ ρ0∥ψh∥2
h +

(
E0 −

β

τ

)
∥φ

′
h∥2

++
E0

τ

∫ t

0
∥D−xuh(s)∥2

+ds, t ∈ [0,T ].

(3.17)

We note that E0 − β

τ
and β−E0τ

τ2E0β
have symmetric signs so we can manipulate in the following way

E0τ −β

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds

∥∥∥∥2

+

=
E0τ −β

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)−βD−xuh(t)

∥∥∥∥2

+

≤ 2
E0τ −β

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

−2β
E0τ −β

τ2E0β
∥D−xuh(t)∥2

+

(3.18)
getting us to

ρ0∥u′h(t)∥2
h +

(τE0 −2)(τE0 −β )

τ2E0
∥D−xuh(t)∥2

++
2β − τE0

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

≤ ρ0∥ψh∥2
h +

(
E0 −

β

τ

)
∥φ

′
h∥2

++
E0

τ

∫ t

0
∥D−xuh(s)∥2

+ds ≤ 0, t ∈ [0,T ].

(3.19)
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Let Z(t) be given by

Z(t) = ρ0∥u′h(t)∥2
h +

(τE0 −2)(τE0 −β )

τ2E0
∥D−xuh(t)∥2

+

+
2β − τE0

τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xuh(s)ds+βD−xuh(t)

∥∥∥∥2

+

.

Then (3.19) leads to

Z(t)≤ ρ0∥ψh∥2
h +

(
E0 −

β

τ

)
∥φ

′
h∥2

++
τE2

0
(τE0 −2)(τE0 −β )

∫ t

0
Z(s)ds, t ∈ [0,T ].

Gronwall Lemma allow us to obtain

Z(t)≤ e
τE2

0
(τE0−2)(τE0−β ) t

(
ρ0∥ψh∥2

h +

(
E0 −

β

τ

)
∥φ

′
h∥2

+

)
, t ∈ [0,T ],

which is equivalent to (3.9).
Let now Z(t) be defined by

Z(t) =
∫ t

0

(
∥u′h(s)∥2

h +∥D−xuh(s)∥2
++

∥∥∥∥∫ s

0
E(s−µ)D−xuh(µ)dµ +βD−xuh(s)

∥∥∥∥2

+

)
ds

Then (3.19) can be rewritten in the following equivalent form

Z′(t)− E0

mτ
Z(t)≤ 1

m

(
ρ0∥ψ∥2

h +

(
E0 −

β

τ

)
∥φ

′∥2
+

)
, t ≥ 0,

and, consequently,

Z(t)≤ 1
E0

(
ρ0∥ψ∥2

h +

(
E0 −

β

τ

)
∥φ

′∥2
+

)(
e

E0
mτ

t −1
)
, t ∈ [0,T ],

which is equivalent to (3.10).

3.3 A semi-discrete approximation for the concentration

To define the semi-discrete approximation for the solution of the IBVP (1.2), (1.4), (1.6) we introduce
the first order centered finite difference operator

Dcwh(xi) =
wh(xi+1)−wh(xi−1)

hi +hi+1
, i = 1, . . . ,N −1,

and the average operator

Mhwh(xi) =
1
2
(wh(xi−1)+wh(xi)), i = 1, . . . ,N,

where wh ∈Wh.
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Holds the following proposition:

Proposition 2. If wh ∈Wh,0 then

(Dcwh,qh)h =−(Mhwh,D−xqh)+, wh,qh ∈Wh,0. (3.20)

Proof. As wh,qh ∈Wh,0, we have successively

(Dcwh,qh)h =
1
2

N−1

∑
i=1

wh(xi+1)qh(xi)−
1
2

N−1

∑
i=1

wh(xi−1)qh(xi)

=
1
2

N−1

∑
i=1

wh(xi)qh(xi−1)−
1
2

N−1

∑
i=1

wh(xi)qh(xi+1)

=
1
2

N−1

∑
i=1

wh(xi)(qh(xi−1)−qh(xi+1))

=−1
2

N−1

∑
i=1

hiwh(xi)D−xqh(xi)

−1
2

N−1

∑
i=1

hi+1wh(xi)D−xqh(xi+1)

=−1
2

N

∑
i=1

hiwh(xi)D−xqh(xi)

−1
2

N

∑
i=1

hiwh(xi−1)D−xqh(xi)

=−
N

∑
i=1

hiMhwh(xi)D−xqh(xi)

==−(Mhwh,D−xqh)+.

The semi-discrete approximation ch(t) ∈Wh,0 for the concentration defined by IBVP (1.2), (1.4),
(1.6) is defined now by the following ordinary differential system

c′h(xi, t)+Dc(ch(xi, t)v(Mh(uh(xi, t),Mhu′h(xi, t))) = DD2ch(xi, t)− γch(xi, t), (3.21)

for i = 1, . . . ,N −1, and t ∈ (0,T ], complemented with the initial

ch(xi,0) = c0(xi), i = 1, . . . ,N −1, (3.22)

and the boundary conditions of Dirichlet type

ch(x0, t) = ch(xN , t) = 0, t ∈ (0,T ]. (3.23)

In (3.21), the semi-discrete approximation for the displacement uh(t) ∈Wh,0 is defined by (3.2),
(3.3), (3.4).
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3.3.1 Existence and uniqueness

The ordinary differential system (3.21), (3.22) and (3.23) can be rewritten in the following equivalent
form

c′h(t) =
(

DAh − γI −Ac,hV (uh(t))
)

ch(t), t > 0, (3.24)

with
ch(0) = c0,h, (3.25)

where ch(t) is identified with the vector with entries ch(xi, t), i= 1, . . . ,N−1, as before Ah is the matrix
associated with the finite difference operator D2 and Ac,h is the matrix associated with the finite differ-
ence operator Dc. In (3.24), V (uh(t)) is the diagonal matrix with entries v(Mhuh(xi, t),Mhu′h(xi, t)), i=
1, . . . ,N −1, and, in (3.25), c0,h is identified with the vector with entries c0(xi), i = 1, . . . ,N −1.

The unique solution of the IVP (3.24), (3.25) is now given by

ch(t) = e

∫ t

0
A (uh(s))ds

ch,0, t ≥ 0,

with
A (uh(t)) = DAh − γI −Ac,hV (uh(t)),

which is a continuous matrix function provided that uh(t) and u′h(t) are continuous.

3.3.2 Stability

In this section we will establish energy estimates for the solution of the IBVP (3.21), (3.22) and (3.23).

Theorem 3.3.1. Let ch ∈Wh,0 be the solution of the IBVP (3.21), (3.22) and (3.23). If

|v(y)| ≤ L∞|y|,y ∈ IR, (3.26)

then

∥ch(t)∥2
h +2(D− ε

2)
∫ t

0
e

∫ t

s
g(uh(µ))dµ

∥D−xch(s)∥2
+ds ≤ e

∫ t

0
g(uh(s))ds

∥c0∥2
L2 , (3.27)

for t ∈ [0,T ], where

g(u(t)) =
1

2ε2 L2
∞∥uh(t)∥2

∞ −2γ (3.28)

Proof. From (3.21) taking into account the homogeneous boundary conditions, we easily obtain

1
2

d
dt
∥ch∥2

h − (Mh (chv(Mhuh)) ,D−xch)+ =−D∥D−xch∥2
+−λ∥ch∥2

h. (3.29)

Considering that |v(y)| ≤ L∞|y|,y ∈ IR, we get successively

(Mh (ch(t)v(Mhuh(t))) ,D−xch(t))+ ≤ L∞∥Mhuh(t)∥∞∥Mhch(t)∥+∥D−xch(t)∥+
≤ 1

4ε2 L2
∞∥Mhuh(t)∥2

∞∥Mhch(t)∥2
++ ε

2∥D−xch(t)∥2
+,
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where ε ̸= 0 is an arbitrary constant.

Then we have

d
dt
∥ch(t)∥2

h +2(D− ε
2)∥D−xch(t)∥2

+ ≤
(

1
2ε2 L2

∞∥Mhuh(t)∥2
∞ −2γ

)
∥Mhch(t)∥2

+,

that leads to

d
dt
∥ch(t)∥2

h +2(D− ε
2)∥D−xch(t)∥2

+ ≤
(

1
2ε2 L2

∞∥uh(t)∥2
∞ −2γ

)
∥ch(t)∥2

h,

for t > 0. The last inequality can be rewritten in the following equivalent form

d
dt

∥ch(t)∥2
he

−

∫ t

0
g(u(s))ds

+2(D− ε
2)
∫ t

0
e
−

∫ s

0
g(u(µ))dµ

∥D−xch(s)∥2
+ds

≤ 0, (3.30)

for t > 0, where g(u) is defined by (3.28).

Inequality (3.30) finally leads to (3.27).

Corollary 4. Under the assumptions of Theorem 3.3.1, we have

∥ch(t)∥2
h +2(D− ε

2)
∫ t

0
e−γ(t−s)∥D−xch(s)∥2

+ds ≤ e

∫ t

0
g(uh(s))ds

∥c0∥2
L2 , (3.31)

for t ∈ [0,T ].

3.4 Error analysis

3.4.1 Displacement

Let eh,u(xi, t) be the global spatial discretization error for the displacement given by eh,u(xi, t) =
u(xi, t)−uh(xi, t), i = 0, . . . ,N, where u is solution of the IBVP (1.1), (1.3), (1.5) and uh is solution of
the ordinary differential problem (3.2), (3.3) and (3.4).

The spatial error eh,u is defined by the second-order integro-differential equation

ρ0e
′′
h,u(xi, t) = E0D2eh,u(xi, t)+

1
τ

∫ t

0
E(t − s)D2eh,u(xi,s)ds+Th(xi, t), i = 1, . . . ,N −1, t ∈ (0,T ],

(3.32)
and the boundary conditions

eh,u(x0, t) = eh,u(xN , t) = 0, (3.33)

and the initial condition

eh,u(xi,0) = e′h,u(xi,0) = 0, i = 1, . . . ,N −1. (3.34)
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In (3.32), Th(t) denotes the spatial truncation error induced by the spatial discretization defined by the
finite difference operator D2. This error admits the representation

Th(xi, t) =−1
3
(hi+1 −hi)S1(xi, t)−

1
12(hi +hi+1)

(
h3

i+1S2(ξ1(x1, t), t)+h3
i S2(η1(x1, t), t)

)
,

where ξ1,η1 ∈ [xi−1,xi+1],

S1(x, t) = E0
∂ 3u
∂x3 (x, t)+

1
τ

∫ t

0
E(t − s)

∂ 3u
∂x3 (x,s)ds

and

S2(x, t) = E0
∂ 4u
∂x4 (x, t)+

1
τ

∫ t

0
E(t − s)

∂ 4u
∂x4 (x,s)ds.

We observe that (3.32) is easily obtained taking into account that

e
′′
h,u(xi, t) =

∂ 2u
∂ t2 (xi, t)−u

′′
h(xi, t),

ρ0e
′′
h,u(xi, t) = E0

(
∂ 2u
∂x2 (xi, t)−D2uh(xi, t)

)
+

1
τ

∫ t

0
E(t − s)

(
∂ 2u
∂x2 (xi, t)−D2uh(xi, t)

)
ds

and

D2u(xi, t) =
∂ 2u
∂x2 (xi, t)+

1
3
(hi+1 −hi)

∂ 3u
∂x3 (xi, t)+

1
12(hi+1 +hi)

(
h3

i+1
∂ 4u
∂x4 (ξ , t)+h3

i
∂ 4u
∂x4 (η , t)

)
.

We note that Th(xi, t) = Lu(xi, t)−Lhu(xi, t), where L is the spatial differential operator for the
displacement equation and Lh is the corresponding finite difference operator. From that we take

T ′
h(xi, t) = L

∂u
∂ t

(xi, t)−Lh
∂u
∂ t

(xi, t)

=
1
3
(hi+1 −hi)S1(xi, t)−

1
12(hi +hi+1)

(
h3

i+1S2(ξ2(x1, t), t)+h3
i S2(η2(x1, t), t)

)
,

where ξ2,η2 ∈ [xi−1,xi+1],

S3(x, t) = E0
∂ 4u

∂x3∂ t
(x, t)+

1
τ

∫ t

0
E(t − s)

∂ 4u
∂x3∂ t

(x,s)ds

and

S4(x, t) = E0
∂ 5u

∂x4∂ t
(x, t)+

1
τ

∫ t

0
E(t − s)

∂ 5u
∂x4∂ t

(x,s)ds.

In what follows we use the following notation: L2(0,T,V ) denotes the space of functions q :
[0,T ]→V such that

∥q∥2
L2(0,T,V ) =

∫ T

0
∥q(s)∥2

V ds < ∞,

where V is a normed vector space with the norm ∥.∥V .
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In the next proposition we establish upper bounds for the terms involved in the truncation error
and their derivatives. Although very technical, these estimates, will have an important role in the
construction of the bounds for the error eh,u(t).

Proposition 3. The following inequalities hold:

∥S1(t)∥2
∞
≤ 2E0

∥∥∥∥∂ 3u
∂x3 (t)

∥∥∥∥2

∞

+2
1
τ
∥E∥2

L2(0,T )

∥∥∥∥∂ 3u
∂x3

∥∥∥∥2

L2(0,T,C([0,1]))
,

∥S2(t)∥2
∞
≤ 2E0

∥∥∥∥∂ 4u
∂x4 (t)

∥∥∥∥2

∞

+2
1
τ
∥E∥2

L2(0,T )

∥∥∥∥∂ 4u
∂x4

∥∥∥∥2

L2(0,T,C([0,1]))
,

∥S3(t)∥2
∞
≤ 2E0

∥∥∥∥ ∂ 4u
∂x3∂ t

(t)
∥∥∥∥2

∞

+2
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 4u
∂x3∂ t

∥∥∥∥2

L2(0,T,C([0,1]))
,

∥S4(t)∥2
∞
≤ 2E0

∥∥∥∥ ∂ 5u
∂x4∂ t

(t)
∥∥∥∥2

∞

+2
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 5u
∂x4∂ t

∥∥∥∥2

L2(0,T,C([0,1]))
,

∥∥∥∥∂S3

∂x
(t)
∥∥∥∥2

L2(0,1)
≤ 2E0

∥∥∥∥ ∂ 5u
∂ t∂x4 (t)

∥∥∥∥2

L2(0,1)
+2

1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H5(0,1))

and ∥∥∥∥∂S1

∂x
(t)
∥∥∥∥2

L2(0,1)
≤ 2E0

∥∥∥∥∂ 4u
∂x4 (t)

∥∥∥∥2

L2(0,1)
+2

1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H4(0,1)) .

Proof. For S1(t) we have successively

∥S1(t)∥2
∞

=

∥∥∥∥E0
∂ 3u
∂x3 (t)+

1
τ

∫ t

0
E(t − s)

∂ 3u
∂x3 (s)ds

∥∥∥∥2

∞

≤ 2E0

∥∥∥∥∂ 3u
∂x3 (t)

∥∥∥∥2

+2
1
τ

∥∥∥∥∫ t

0
E(t − s)

∂ 3u
∂x3 (s)ds

∥∥∥∥2

∞

≤ 2E0

∥∥∥∥∂ 3u
∂x3

∥∥∥∥2

∞

+2
1
τ

∫ t

0
|E(t − s)|2 ds

∫ t

0

∣∣∣∣∂ 3u
∂x3 (s)

∣∣∣∣2
∞

ds

≤ 2E0

∥∥∥∥∂ 3u
∂x3 (t)

∥∥∥∥2

∞

+2
1
τ
∥E∥2

L2(0,T )

∥∥∥∥∂ 3u
∂x3

∥∥∥∥2

L2(0,T,C([0,1]))
.

The construction of the estimate for S2(t), S3(t) and S4(t) follow the steps used in the establishment
of the upper bound for S1(t).
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For
∂S3

∂x
(t) we obtain successively

∥∥∥∥∂S3

∂x
(t)
∥∥∥∥2

L2(0,1)
=
∫ 1

0

(
E0

∂ 5u
∂x4∂ t

(x, t)+
1
τ

∂

∂x

∫ t

0
E(t − s)

∂ 4u
∂x3∂ t

(x,s)ds
)2

dx

≤ 2E0

∫ 1

0

(
∂ 5u

∂x4∂ t
(x, t)

)2

dx+2
1
τ

∫ 1

0

(∫ t

0
E(t − s)

∂ 5u
∂x4∂ t

(x,s)ds
)2

dx

≤ 2E0

∥∥∥∥ ∂ 5u
∂ t∂x4 (t)

∥∥∥∥2

L2(0,1)
+2

1
τ

∫ 1

0

∫ t

0
|E(t − s)|2 ds

∫ t

0

∣∣∣∣ ∂ 5u
∂x4∂ t

(x,s)
∣∣∣∣2 dsdx

≤ 2E0

∥∥∥∥ ∂ 5u
∂ t∂x4 (t)

∥∥∥∥2

L2(0,1)
+2

1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H5(0,1)) .

The construction of the estimate for
∂S1

∂x
(t) is analogous to the last one.

In the establishment of the error estimate for eh,u(t) we need the following Discrete Poincaré
inequality.

Theorem 3.4.1. If v ∈Wh,0 then
∥vh∥2

h ≤ ∥D−xvh∥2
+.

Proof. We start by observing that we have the following representation for vh(xi) that we represent by
vi

vh(xi) =
i

∑
j=0

v j −
i−1

∑
j=0

v j.

Then

vh(xi) =
i

∑
j=1

v j −
i

∑
j=1

v j−1

=
i

∑
j=1

h j
v j − v j−1

h j

=
i

∑
j=1

h jD−xv j.

The last representation leads to

v2
i ≤

i

∑
j=1

h j(D−xv j)
2.

Consequently, to conclude the proof, we remark that

N−1

∑
i=1

hi+ 1
2
v2

i ≤
N−1

∑
i=1

hi+ 1
2

i

∑
j=1

h j(D−xv j)
2.

The main convergence result is now established.

Theorem 3.4.2. If β ,λ ,ω,µ are positive constants such that β < τE0 < 2β and
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(τE0 −2)(τE0 −β )

2τ2E0
> λ

2 +2ω
2 +µ

2

and

m = min
{

1
2

ρ0,
(τE0 −2)(τE0 −β )

2τ2E0
−λ

2 −2ω
2 −µ

2,
2β − τE0

τ2E0β

}
, (3.35)

then ∫ t

0

∥∥∥∥deh,u

dt
(s)
∥∥∥∥2

h
+∥D−xeh,u(s)∥2

++

∥∥∥∥∫ s

0
E(s−µ)D−xeh,u(µ)dµ +βD−xeh,u(s)

∥∥∥∥2

+

+

∥∥∥∥∫ s

0
E(s−µ)D−xeh,u(µ)dµ

∥∥∥∥2

+

ds
h4

maxe
c
m t

m

∫ t

0

(∫ s

0
Θ1(η)dη +Θ2

)
e−

c
m sds,

(3.36)

for t ∈ [0,T ], and∥∥∥∥deh,u

dt
(t)
∥∥∥∥2

h
+∥D−xeh,u(t)∥2

++

∥∥∥∥∫ s

0
E(s−µ)D−xeh,u(µ)dµ +βD−xeh,u(t)

∥∥∥∥2

+

+

∥∥∥∥∫ s

0
E(s−µ)D−xeh,u(µ)dµ

∥∥∥∥2

+

ds ≤ h4
maxe

c
m t

m

∫ T

0
(Θ1(s)+Θ2(s))ds

(3.37)

where

Θ1(t) =
1

2σ2
1
62 h4

max

(
E0

∥∥∥∥ ∂ 4u
∂x3∂ t

(t)
∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 4u
∂x3∂ t

∥∥∥∥2

L2(0,T,C([0,1]))

)

+
1

2ε2
1
62 h4

max

(
E0

∥∥∥∥ ∂ 5u
∂ t∂x4 (t)

∥∥∥∥2

L2(0,1)
+

1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H5(0,1))

)

+
1

2δ 2
1
42 h4

max

(
E0

∥∥∥∥ ∂ 5u
∂x4∂ t

(t)
∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 5u
∂x4∂ t

∥∥∥∥2

L2(0,T,C([0,1]))

)
,

(3.38)

Θ2(t) =
1

2λ 2
1
62

(
E0

∥∥∥∥∂ 3u
∂x3 (t)

∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥∂ 3u
∂x3

∥∥∥∥2

L2(0,T,C([0,1]))

)

+
1

2ω2
1
62

(
E0

∥∥∥∥∂ 4u
∂x4 (t)

∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H4(0,1))

)

+
1

2φ 2
1
42

(
E0

∥∥∥∥∂ 4u
∂x4 (t)

∥∥∥∥2

L2(0,1)
+

1
τ
∥E∥2

L2(0,T,C([0,1]))

∥∥∥∥∂ 4u
∂x4

∥∥∥∥2

L2(0,T,C([0,1]))

) (3.39)

and
c =

E0

τ
+σ

2 +δ
2 +2ε

2.

Proof. We start by remarking that we have

ρ0

(
e
′′
h,u(t),e

′
h,u(t)

)
h

= E0
(
D2eh,u(t),e′h,u(t)

)
h +

1
τ

(∫ t

0
E(t − s)D2eh,u(s)ds,e′h,u(t)

)
h

+
(
Th(t),e′h,u(t)

)
h .

(3.40)
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As before, we get

ρ0

(
e
′′
h,u(t),e

′
h,u(t)

)
h
=

1
2

ρ0
d
dt

∥∥e′h,u(t)
∥∥2

h

E0
(
D2eh,u(t),e′h,u(t)

)
h =−1

2
E0

d
dt

∥D−xeh,u(t)∥2
+

and

1
τ

(∫ t

0
E(t − s)D2eh,u(s)ds,

deh,u

dt
(t)
)

h
= − 1

2τβ

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds+βD−xeh,u(t)

∥∥∥∥2

+

−
(

β

τ
−E0

)
1

2τE0β

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds

∥∥∥∥2

+

− 1
E0τ3

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds

∥∥∥∥2

+

+
β

2τ

d
dt

∥D−xeh,u(t)∥2
++

E0

τ
∥D−xeh,u(t)∥2

+ .

The new term
(

Th(t),e′h,u(t)
)

h
can be written in the following equivalent form

(
Th(t),e′h,u(t)

)
h =

d
dt

(Th(t),eh,u(t))h −
(
T ′

h(t),eh,u(t)
)

h .
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In what follows we estimate
(
T ′

h(t),eh,u(t)
)

h. Taking into account the upper bound obtained in
Proposition 3, we have successively

−
(
T ′

h(t),eh,u(t)
)

h =
1
6

n

∑
i=1

(
h2

i+1 −h2
i
)

S3(xi, t)eh,u(xi, t)

+
1

12

n

∑
i=1

1
hi+1 +hi

(
h3

i+1S4(xi, t)+h3
i S4xi, t)

) hi+1 +hi

2
eh,u(xi, t)

≤ 1
6

n

∑
i=1

h2
i |S3(xi, t)||D−xeh,u(xi, t)|hi +

1
6

n

∑
i=1

h2
i (|S3(xi−1, t)|+ |S3(xi, t)|) |eh,u(xi, t)|

+
1

12

n

∑
i=1

h3
i+1 +h3

i

hi+1 +hi
∥S4(t)∥∞

hi+1 +hi

2
|eh,u(xi, t)|

≤ 1
6

h2
max ∥S3(t)∥∞

∥D−xeh,u(t)∥++
1
6

n

∑
i=1

h2
i

(∫ xi

xi−1

(
∂S3

∂x
(ζ , t)

)2

dζ

) 1
2 √

hi|eh,u(xi, t)|

+
1
4

h2
max ∥S4(t)∥∞

∥eh,u(t)∥h

≤ 1
4σ2

1
62 h4

max ∥S3(t)∥2
∞
+σ

2∥D−xeh,u(t)∥2
+ +

1
4ε2

1
62 h4

max

∥∥∥∥∂S3

∂x
(t)
∥∥∥∥2

L2(0,1)
+2ε

2∥eh,u(t)∥2
h

+
1

4δ 2
1
42 h4

max ∥S4(t)∥2
∞
+δ

2∥eh,u(t)∥2
h

≤ 1
2σ2

1
62 h4

max

(
E0

∥∥∥∥ ∂ 4u
∂x3∂ t

(t)
∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 4u
∂x3∂ t

∥∥∥∥2

L2(0,T,C([0,1]))

)
+σ

2∥D−xeh,u(t)∥2
+

+
1

2ε2
1
62 h4

max

(
E0

∥∥∥∥ ∂ 5u
∂ t∂x4 (t)

∥∥∥∥2

L2(0,1)
+

1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H5(0,1))

)
+2ε

2∥eh,u(t)∥2
h

+
1

2δ 2
1
42 h4

max

(
E0

∥∥∥∥ ∂ 5u
∂x4∂ t

(t)
∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 5u
∂x4∂ t

∥∥∥∥2

L2(0,T,C([0,1]))

)
+δ

2∥eh,u∥2
h.

Finally, we get

1
2

ρ0
d
dt

∥∥e′h,u(t)
∥∥2

h +
1
2

(
E0 −

β

τ

)
d
dt

∥D−xeh,u(t)∥2
++

1
2τβ

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds+βD−xeh,u(t)

∥∥∥∥2

+

+

(
β

τ
−E0

)
1

2τE0β

d
dt

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds

∥∥∥∥2

+

− d
dt

(Th(t),eh,u(t))h

≤ 1
2σ2

1
62 h4

max

(
E0

∥∥∥∥ ∂ 4u
∂x3∂ t

(t)
∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 4u
∂x3∂ t

∥∥∥∥2

L2(0,T,C([0,1]))

)
+σ

2∥D−xeh,u(t)∥2
+

+
1

2ε2
1
62 h4

max

(
E0

∥∥∥∥ ∂ 5u
∂ t∂x4 (t)

∥∥∥∥2

L2(0,1)
+

1
τ
∥E∥2

L2(0,T ) ∥u∥2
L2(0,T,H5(0,1))

)
+2ε

2∥eh,u(t)∥2
h

+
1

2δ 2
1
42 h4

max

(
E0

∥∥∥∥ ∂ 5u
∂x4∂ t

(t)
∥∥∥∥2

∞

+
1
τ
∥E∥2

L2(0,T )

∥∥∥∥ ∂ 5u
∂x4∂ t

∥∥∥∥2

L2(0,T,C([0,1]))

)
+δ

2∥eh,u∥2
h

+

(
E0

τ
+σ

2
)
∥D−xeh,u(t)∥2

++(δ 2 +2ε
2)∥eh,u(t)∥2

h,

where ε,δ ,σ ̸= 0 are arbitrary constants.
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The last differential inequality leads to

1
2

ρ0

∥∥∥∥deh,u

dt
(t)
∥∥∥∥2

h
+

(τE0 −2)(τE0 −β )

2τ2E0
∥D−xeh,u(t)∥2

++
2β − τE0

2τ2E0β

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds+βD−xeh,u(t)

∥∥∥∥2

+

≤ h4
max

∫ t

0
Θ1(s)ds+

(
E0

τ
+σ

2 +δ
2 +2ε

2
)∫ t

0
∥D−xeh,u(s)∥2

+ ds+(Th(t),eh(t))h

where Θ1(t) is defined by (3.38).

It can be shown that for (Th(t),eh,u(t))h we have

(Th(t),eh,u(t))h ≤ h4
max

∫ t

0
Θ2(s)ds+λ

2∥D−xeh,u∥2
++2ω

2∥eh,u∥2
h +µ

2∥eh,u∥2
h,

where λ ,ω,µ ̸= 0 are arbitrary constants, and Θ2(t) is defined by (3.39).

If m is given by (3.35), then we deduce

m

(∥∥∥∥deh,u

dt
(t)
∥∥∥∥2

h
+∥D−xeh,u(t)∥2

++

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds+βD−xeh,u(t)

∥∥∥∥2

+

)
≤ h4

max

∫ t

0
(Θ1(s)+Θ2(s))ds+

(
E0

τ
+σ

2 +δ
2 +2ε

2
)∫ t

0
∥D−xeh,u(s)∥2

+ ds.

Introducing

Y (t) =
∥∥∥∥deh,u

dt
(t)
∥∥∥∥2

h
+∥D−xeh,u(t)∥2

++

∥∥∥∥∫ t

0
E(t − s)D−xeh,u(s)ds+βD−xeh,u(t)

∥∥∥∥2

+

,

the last inequality admits the representation

mY (t)≤ h4
max

∫ T

0
(Θ1(s)+Θ2(s))ds+ c

∫ t

0
Y (s)ds,

where c = E0
τ
+σ2 +δ 2 +2ε2.

Gronwall Lemma allow us to obtain∫ t

0
Y (s)ds ≤ h4

max

m

∫ T

0
(Θ1(s)+Θ2(s))ds (3.41)

and to

Y (t)≤ h4
max

m
e

c
m t
∫ T

0
(Θ1(s)+Θ2(s))ds. (3.42)

The inequalities (3.41), (3.42) lead to (3.36) and (3.37), respectively.

3.4.2 Concentration

Let c be the solution of the IBVP (1.2), (1.4), (1.6) and let ch(t) be its semi-discrete approximation
defined by the differential problem (3.21), (3.22) and (3.23) where, to simplify, we assume that v
depends only on the displacement. The spatial discretization error for the semi-discrete approximation
ch(t) is defined by eh,c(xi, t) = c(xi, t)− ch(xi, t), i = 0, . . . ,N. This error is solution of the following
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differential problem

∂eh,c

∂ t
(xi, t)+Dc (v(u)eh,c +(v(u)− v(uh)ch)) = DD2eh,c(xi, t)− γeh,c(xi, t)+Th(xi, t) (3.43)

for i = 1, . . . ,N −1, and t ∈ (0,T ], complemented with the initial condition

eh,c(xi,0) = 0, i = 1, . . . ,N −1, (3.44)

and the boundary conditions

eh,c(x0, t) = eh,c(xN , t) = 0, t ∈ (0,T ]. (3.45)

In (3.43), u and uh are defined by the IBVP (1.1), (1.3), (1.5) and by the ordinary differential
problem (3.2), (3.3), (3.4), respectively, and Th(t) denotes the truncation error induced by the spatial
discretization considered in (3.21). This error admits the representation

Th(xi, t) =−1
3
(hi+1 −hi)

∂ 3c
∂x3 (xi, t)−

1
12(hi +hi+1)

(
h3

i+1
∂ 4c
∂x4 (ξ1, t)+h3

i
∂ 4c
∂x4 (η1, t)

)
+

1
2
(hi+1 −hi)

∂ 2(v(u)c)
∂x2 (xi, t)+

1
6(hi +hi+1)

(
h3

i+1
∂ 3(v(u)c)

∂x3 (ξ2, t)+h3
i

∂ 3(v(u)c)
∂x3 (η2, t)

)
,

where ξ1,ξ2,η1,η2 ∈ [xi−1,xi+1], i = 1, . . . ,N −1. To get this representation we observe that

D2c(xi, t) =
∂ 2c
∂x2 (xi, t)+

1
3
(hi+1 −hi)

∂ 3c
∂x3 (xi, t)+

1
12(hi+1 +hi)

(
h3

i+1
∂ 4c
∂x4 (ξ1, t)+h3

i
∂ 4c
∂x4 (η1, t)

)
and

Dc(v(u)c)(xi, t) =
∂ (v(u)c)

∂x
(xi, t)+

1
2
(hi+1 −hi)

∂ 2(v(u)c)
∂x2 (xi, t)

+
1

6(hi+1 +hi)

(
h3

i+1
∂ 3(v(u)c)

∂x3 (ξ2, t)+h3
i

∂ 3(v(u)c)
∂x3 (η2, t)

)
.

The next proposition establishes an auxiliary result that will be used in the main convergence
result for the concentration.

Proposition 4.

(Mheh,c,D−xeh,c)+ ≤ 1
2ε2 ∥eh,c∥2

h + ε
2∥D−xeh,c∥2

+,

where ε ̸= 0 is an arbitrary constant.

Proof. We have successively

(Mheh,c,D−xeh,c)+ = ∑
i

hi
ei−1,c + ei,c

2
D−xei,c

≤ 1
4ε2 ∑

i
hi

2e2
i−1,c +2e2

i,c

4
+ ε

2∥D−xeh,c∥2
+

=
1

4ε2

(
∑

i
hi

e2
i−1,c

2
+∑

i
hi

e2
i,c

2

)
+ ε

2∥D−xeh,c∥2
+

=
1

2ε2 ∥eh,c∥2
h + ε

2∥D−xeh,c∥2
+.
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Theorem 3.4.3. Let c be the solution of the IBVP (1.2), (1.4), (1.6) and let ch(t) be its semi-discrete
approximation defined by the differential problem (3.21), (3.22) and (3.23). If v is a Lipschitz function
with Lipschits constant Lv, then the spatial discretization error for the concentration eh,c(xi, t) =
c(xi, t)− ch(xi, t), i = 0, . . . ,N, satisfies the following

∥eh,c∥2
h +2C1

∫ t

0
e2
∫ t

s C2(µ)dµ ∥D−xeh,c∥2
+ ds ≤ 1

ε2
2

∫ t

0
L2

v∥ch(s)∥2
∞e2

∫ t
s C2(µ)dµ∥eh,u∥2

hds

+2h4
max

∫ t

0
e2
∫ t

s C2(µ)dµ
Θ(s)ds,

(3.46)

for t ∈ [0,T ], where εi ̸= 0, i = 1, . . . ,8, are such that

C1 = D− ε
2
1 − ε

2
2 − ε

2
3 − ε

2
6 > 0

C2 =
1

2ε2
1

L∞∥u∥∞ +2ε
2
4 + ε

2
5 +2ε

2
7 + ε

2
8 − γ > 0,

u is the displacement defined by IBVP (1.1), (1.3), (1.5), and Θ(t) is defined by

Θ(t) =
1

4ε2
3

1
62 ∥c(t)∥2

C3([0,1])+
1

4ε2
4

1
62 ∥c(t)∥2

H4(0,1)+
1

4ε2
5

1
42 ∥c(t)∥2

C4([0,1])

+
1

4ε2
6

1
42 L∞∥u(t)∥∞ ∥c(t)∥2

C2([0,1])+
1

4ε2
7

1
42 L∞∥u(t)∥∞ ∥c(t)∥2

H3(0,1)+
1

4ε2
8

1
22 L∞∥u(t)∥∞ ∥c(t)∥2

C3([0,1]) .

(3.47)

Proof. From (3.43), we easily get(
e′h,c(t),eh,c(t)

)
h +(Dc(v(u(t))c(t))−Dc (v(uh(t))ch(t)) ,eh,c(t))h

= D(D2eh,c(t),eh,c(t))h − γ(eh,c(t),eh,c(t))h +(Th(t),eh,c(t))h

that leads to

1
2

d
dt

∥eh,c(t)∥2
h +D∥D−xeh,c(t)∥2

++ γ∥eh,c(t)∥2
h

= (Mh (v(u(t))eh,c(t)+(v(u(t))− v(uh(t)))ch(t)) ,D−xeh,c(t))++(Th(t),eh,c(t))h.

Considering now the Lipchitz property for v we obtain

1
2

d
dt

∥eh,c(t)∥2
h +D∥D−xeh,c(t)∥2

++ γ∥eh,c(t)∥2
h ≤ L∞∥u(t)∥∞ (Mheh,c(t),D−xeh,c(t))+

+Lv∥c(t)h∥∞(Mh|u−uh|, |D−xeh,c(t)|)+
+(Th,eh,c)h
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and, from Proposition 4, we deduce

1
2

d
dt

∥eh,c(t)∥2
h +D∥D−xeh,c(t)∥2

++ γ∥eh,c(t)∥2
h ≤ 1

2ε2
1

L2
∞∥u(t)∥2

∞∥eh,c(t)∥2
h + ε

2
1∥D−xeh,c(t)∥2

+

+
1

2ε2
2

L2
v∥ch(t)∥2

∞∥eh,u(t)∥2
h + ε

2
2∥D−xeh,c(t)∥2

+

+(Th(t),eh,c(t))h.
(3.48)

It can be shown that for (Th(t),eh,c(t))h we have

(Th(t),eh,c(t))h ≤ 1
4ε2

3

1
62 h4

max ∥c(t)∥2
C3([0,1])+ ε

2
3∥D−xeh,c(t)∥2

++
1

4ε2
4

1
62 h4

max ∥c(t)∥2
H4(0,1)+2ε

2
4∥eh,c(t)∥2

h

+
1

4ε2
5

1
42 h4

max ∥c(t)∥2
C4([0,1])+ ε

2
5∥eh,c(t)∥2

h

+
1

4ε2
6

1
42 h4

maxL∞∥u(t)∥∞ ∥c(t)∥2
C2([0,1])+ ε

2
6∥D−xeh,c(t)∥2

+

+
1

4ε2
7

1
42 h4

maxL∞∥u(t)∥∞ ∥c(t)∥2
H3(0,1)+2ε

2
7∥eh,c(t)∥2

h

+
1

4ε2
8

1
22 h4

maxL∞∥u(t)∥∞ ∥c(t)∥2
C3([0,1])+ ε

2
8∥eh,c(t)∥2

h

.

(3.49)
Considering now the two inequalities (3.48) and (3.49) we conclude that

1
2

d
dt

∥eh,c∥2
h +C1 ∥D−xeh,c∥2

+ ≤C2∥eh,c∥2
h +

1
2ε2

2
L2

v∥ch∥2
∞∥eh,u∥2

h +h4
maxΘ(t) (3.50)

where Θ(t) is given by (3.47).
Finally, the inequality (3.50) leads to (3.46).

The last result establishes the second order accuracy for the concentration and it is a corollary the
main results established in this work.

Corollary 5. Under the assumption of Theorems 3.2.1, 3.4.2, 3.3.1 and 3.4.3, there exists a positive
constant C, h and t independent, such that

∥eh,c(t)∥2
h +

∫ t

0
∥D−xeh,c(s)∥2

+ ds ≤Ch4
max, (3.51)

for t ∈ [0,T ],h ∈ Λ.



Chapter 4

Numerical Simulation

4.1 Introduction

This chapter aims to illustrate the theoretical results established in this work, namely, the convergence
results Theorem 3.4.2 and Corollary 5. We would like to show numerically that the errors for the
displacement and for the concentration are second order convergent.

We remark that the semi-discrete approximation for the displacement is defined by the second
order integro-differential problem (3.2), (3.3), (3.4). To compute numerically its solution, we need to
consider a numerical method for second order ordinary differential equations and the integral term
needs also to be discretized.

In what concerns the numerical solution of the semi-discrete problem (3.21), (3.22) and (3.23) for
the concentration we consider an implicit-explicit approach.

4.2 Displacement

In order to test the theoretical convergence of the solution, we implement the fully discrete finite
difference method in python. As studied before we use a non-uniform mesh in space, and uniform
mesh in [0,T ]. We introduce the following finite difference operators and the following operators

D2,twh(xi, t j) =
wh(xi, t j−1)−2wh(xi, t j)+wh(xi, t j+1)

∆t2

and

D−twh(xi, t j) =
wh(xi, t j)−wh(xi, t j−1)

∆t
.

37



38 Numerical Simulation

As we consider an implicit approximation on the integral term
∫ t

0
E(t − s)D2,xuh(xi,s)ds, where

the x in the operator D2 indicates that this operator acts in space, we split it in two∫ tn+1

0
E(tn+1 − s)D2,xuh(xi,s)ds =

∫ tn

0
E(tn+1 − s)D2,xuh(xi,s)ds+

∫ tn+1

tn
E(tn+1 − s)D2,xuh(xi,s)ds

= e−
∆t
τ

∫ tn

0
E(tn − s)D2,xuh(xi,s)ds+

∫ tn+1

tn
E(tn+1 − s)D2,xuh(xi,s)ds

= τe−
∆t
τ (D2,tuh(xi, tn−1)−DD2,xuh(xi, tn)− f (xi, tn−1))

+
∫ tn+1

tn
E(tn+1 − s)D2,xuh(xi,s)ds,

and we approximate the remaining integral with the trapezoidal rule

∫ b

a
g(x)dx ≈ b−a

2
(g(a)+g(b)) .

Now we construct the implicit finite difference scheme for the displacement considering Un =

[Un
1 Un

2 . . . Un
N−1]

T with Un
i ≃ uh(xi, tn), φ = [φ(x1) φ(x2) . . . φ(xN−1)]

T , ψ = [ψ(x1) ψ(x2) . . . ψ(xN−1)]
T

and Fn = [Fn
1 Fn

2 . . . Fn
N−1]

T with Fn
i = f (xi, tn).

U0 = φ

U1 = φ +∆tψ(
I −D∆t2

(
1+

∆t
3τ

)
Ax

)
U2 = 2

(
I +

2D∆t3

3τ
Ax

)
U1 −

(
I − D∆t3

3τ
e−

2∆t
τ Ax

)
U0 +∆t2F2(

I −D∆t2
(

1+
∆t
2τ

)
Ax

)
Un+1 =

((
2+ e−

∆t
τ

)
I +D∆t2e−

∆t
τ

(
∆t
2τ

−1
)

Ax

)
Un

−
(

1+ e−
∆t
τ

)
Un−1 + e−

∆t
τ Un−2 +∆t2

(
Fn+1 − e−

∆t
τ Fn

)
(4.1)

In (4.1), I is the identity matrix and Ax denotes the matrix induced by the finite difference operator
D2,x

Ax =


− 2

h1h2

2
h1(h1+h2)

0
2

h2(h2+h3)
− 2

h2h3

2
h2(h2+h3)

· · ·
0 2

h3(h3+h4)
− 2

h3h4
...

. . .

 .
We take the following constants


D = 10−2

τ = 1.1
T = 1.

Now we iterate Nl = 10 ·2l , i = 0,1,2,3 and set ∆tl =
(

h(l)max

)2
for each mesh. Then we calculate

the order of convergence
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pl =
log
(

el−1
el

)
log
(

h(l−1)
max

h(l)max

)
where

el = ∥e(l)h,u(T )∥h +∥D−xe(l)h,u(T )∥+.

Let u(x, t) = e−tsin(πx), x ∈ [0,1], t ∈ [0,T ], be the solution of the IBVP (1.1), (1.3), (1.5 with

f (x, t) = e−tsin(πx)

(
1+Dπ

2

(
1+

e
τ−1

τ
t −1

τ −1

))

and initial conditions

u(x,0) = φ(x) = sin(πx)
ux(x,0) = ψ(x) =−sin(πx).

The convergence rates obtained are included in the following table. The results are in agreement
with the error estimate in Theorem 3.4.2.

N h(l)max el pl

20 0.0904 0.0171 -
40 0.0475 0.0047 1.992
80 0.0244 0.0013 1.972
160 0.0114 0.0003 1.994

4.3 Concentration

To obtain a numerical approximation for the semi-discrete approximation for the concentration defined
by (3.21), (3.22) and (3.23) we use an implicit finite difference scheme.

Let Cn = [Cn
1 Cn

2 . . . Cn
N−1]

T with Cn
i ≃ ch(xi, tn), c0 = [c0(x1) c0(x2) . . . c0(xN−1)]

T and Fn =

[Fn
1 Fn

2 . . . Fn
N−1]

T with Fn
i = f (xi, tn). Then our implicit scheme is defined by{

C0 = c0(
(1+∆tγ) I −∆tDAx +∆tB(n)

x

)
Cn =Cn−1 +Fn (4.2)

where B(n)
x denotes the matrix induced by the operator Dc

B(n)
x =


0 v(Un

2 )
h1+h2

0
v(Un

1 )
h2+h3

0 v(Un
3 )

h2+h3
· · ·

0 v(Un
2 )

h3+h4
0

...
. . .

 .
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Let c(x, t) = e−tsin(πx), x ∈ [0,1], t ∈ [0,T ], be the solution of the IBVP (1.2), (1.4), (1.6) with
the initial condition

c0(x) = sin(πx),

f (x, t) = e−tsin(πx)
(
2πe−tcos(πx)+Dπ

2 + γ −1
)
,

v(u) = u and 
D = 0.1
γ = 1
T = 1.

In our numerical experiments we take

el = ∥e(l)h,c(T )∥h +∥D−xe(l)h,c(T )∥+

and the obtained convergence rates are included in the following table. The results are in agreement
with the error estimate in Corollary 5.

N h(l)max el pl

20 0.0904 0.0266 -
40 0.0475 0.0073 2.012
80 0.0244 0.0019 1.984
160 0.0114 0.0004 2.115



Chapter 5

Conclusions

In this thesis we studied a coupled initial boundary value problem that describes the time and space
evolution of the displacement of a viscoelastic material and the drug transport enhanced by this
displacement. It is assumed that the material displacement is induced by pressure waves that propagate
through the material and the pressure waves are generated by ultrasound. This system can be used to
model drug transport through the skin enhanced by ultrasound. As the skin is a viscoelastic material,
the Maxwell model was used to deduce a wave equation with an integral term for the displacement.
For the drug concentration, a convection-diffusion equation is considered with a velocity v depending
on the displacement. We believe that similar results can be obtained by considering v as a function of
u, ∂u

∂ t and ∇u.
We establish existence, uniqueness and stability results for displacement and concentration and,

using the Method of Lines approach, semi-discrete approximations were introduced presenting
discrete properties that can be seen as discrete versions of the continuous ones. Error bounds for the
semi-discrete approximations were established allowing us to confirm the unexpected second order
convergence in non uniform meshes.
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