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Resumo

A respiração é mais do que simplesmente um sinal vital. Está profundamente ligada à

atividade cerebral, processamento sensorial e função cognitiva. Estudos sobre a sincronia

entre as oscilações cerebrais e a respiração sugerem que a atividade respiratória é modulada

para melhorar a perceção. Nesta dissertação, propus-me a estudar a interação entre a ativi-

dade respiratória e a perceção visual numa tentativa de compreender melhor tais interações.

Para isso, desenhei uma tarefa de discriminação visual onde os participantes distinguiam

entre duas categorias de est́ımulos e um aviso sonoro soava alguns segundos antes da ap-

resentação do est́ımulo visual. As imagens dos est́ımulos visuais foram apresentadas por

um peŕıodo de tempo muito breve e imediatamente seguidas de uma máscara, utilizando

um método de visual backward masking, para que os est́ımulos fossem dif́ıceis de identificar,

exigindo uma grande concentração. Durante a recolha dos dados, medimos vários sinais

fisiológicos, incluindo, obviamente, a respiração. Conjeturei que: a atividade respiratória é

modulada pelo aviso sonoro e o est́ımulo visual; essa modulação ocorre no sentido de melho-

rar o processamento visual; a fase da respiração no instante de apresentação dos est́ımulos

modula o desempenho na tarefa. Os meus resultados revelaram que a duração do ciclo res-

piratório foi modulada pela apresentação dos est́ımulos visuais (a respiração abrandou após

a apresentação do est́ımulo visual), mas não foi modulada pelo aviso sonoro. No entanto, a

fase do ciclo respiratório no momento do est́ımulo não estava relacionada com a modulação

da duração do ciclo respiratório nem com o desempenho na tarefa. Além disso, observei

que peŕıodos de respiração mais acelerada durante o aviso sonoro estão associados a um

melhor desempenho. Estes resultados sugerem que: os participantes tendem a abrandar a

respiração com a exibição de est́ımulos visuais, talvez para melhorar o processamento visual;

uma respiração mais rápida no som de alerta poderá melhorar o desempenho. De forma

geral, as conclusões a que cheguei confirmam que a respiração é modulada durante tarefas
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cognitivas e oferecem uma base para investigações futuras.



Abstract

Respiration is much more than a vital sign of life. It is deeply connected to brain ac-

tivity, sensory processing and cognitive function. Studies regarding the synchrony of brain

oscillations with respiration have suggested that breathing activity is modulated in order to

improve perception. In this dissertation, I aimed to study the interaction between breath-

ing activity and visual perception in an attempt to better understand these interactions.

I designed a visual discrimination task where participants had to distinguish between two

categories of stimuli, with an auditory warning cue sounding a few seconds before visual

stimulus display. The target stimuli images were presented for a very brief period of time

and immediately followed by a mask, using a visual backward masking technique, so that

the stimuli were hard to identify, requiring a great level of concentration. During data

acquisition, we measured several physiological signals, including, obviously, respiration. I

hypothesized that: breathing activity is modulated by attentive anticipation elicited by the

warning cue and by visual stimuli presentation; this modulation happens in a way that

enhances visual processing; breathing phase at the onset of the visual stimuli modulates

visual discrimination abilities. My results revealed that the duration of breathing cycle was

modulated by the presentation of the visual stimuli (breathing slowed down after visual

stimulus presentation) but was not modulated by the warning cue. Phase of breathing cycle

at stimulus onset did not affect modulation of breathing cycle duration nor did it predict

task performance. Besides this, I found that a faster breathing rate at the time of the

auditory cue was associated with a better accuracy. I concluded that: participants tend to

decelerate respiration with visual target display, perhaps in order to improve visual process-

ing; a faster respiration during the pre-stimulus period might enhance accuracy. Overall,

these results confirm that breathing is modulated during cognitive tasks and can be the

blueprint for future investigations.
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Chapter 1

Introduction

Breathing is the process we use to exchange gas with the external environment, by moving

oxygen into our lungs and flushing out carbon dioxide. In the lungs, this gas exchange occurs

in the alveoli through diffusion, and the circulatory system then transports these gases to

and from the cells [1, 2].

This process repeats itself in cycles of inhalation (air entering the lungs) and exhalation

(air leaving the lungs) [3]. Our breathing rate - number of respiratory cycles per minute -

is a primary vital sign of life [4].

Under normal conditions, breathing activity is controlled automatically and uncon-

sciously by homeostatic mechanisms, maintaining the partial pressures of carbon dioxide

and oxygen in the arterial blood constant [5].

Breathing, however, is much more than an exchange of gases and plays a role in other

important functions - it contributes as a mechanism for laughter, speech, yawning, sneezing,

coughing, etc [6–9].

In certain conditions, for example at an extreme altitude (low air pressure) or depth

(elevated air pressure), the process of breathing is adjusted in order to maintain acceptable

levels of oxygen in the bloodstream [10,11].

Breathing activity can also be related to certain moods - for example, a slower breathing

rhythm can encourage relaxation [12, 13]. The same happens during the practise of phys-

ical activities - a deeper breathing pattern might be adopted to facilitate greater oxygen

absorption and strengthen the body’s core [14].
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The several ways in which respiration influences our mind and body states are fascinat-

ing. In fact, breathing activity might be even more deeply connected to our actions and

perception of the outside world than one might think. In my investigation for this disser-

tation, I attempted to observe and explain some of this connections that run deep in our

brains, at a perceptual level.

In this chapter, the context and motivation of the thesis will be explained as well as the

outline for the rest of document.

1.1 Contextualisation and Motivation

Usually, in our day-to-day life, we are always moving – we sway our body, we rock our

feet, twitch our faces. We are hardly ever still. However, when we are paying attention to

any sort of stimulus, there is a tendency to stop all of this activity [15], [16]. In fact, effects

such as motor inhibition (behavioural freezing), cardiac deceleration and pupil dilation arise

from focusing the mind in anticipation of external events [16–19]. These shifts in body

physiology are related to a faster and more sensitive sensorimotor procession. In fact, it

is known that cardiac activity, breathing and motor output affect sensory processing, for

example:

• Synchronization of visual stimulation with the heartbeat modulates perception [20],

[21];

• Accuracy in visuospatial tasks is higher if the stimuli are presented during inhalation

in comparison with exhalation [22];

• In mice, spontaneous behaviours modulate activity in the visual cortex [23].

Bodily functions as ongoing spontaneous behaviours (blinking, eye movements, twitch-

ing, postural adjustments, body sways) and visceral activity are inevitable sources of

neuronal variability. They modulate sensory perception and need to be considered in order

to better understand the interactions between brain activity and behaviour.

Since perception is modulated by these functions (spontaneous behaviours and visceral

activity), then cognitive processes that work to optimize sensory processing (like attention)

might modulate these bodily functions accordingly. In fact, these modulations are observed

during attentive anticipation.



Regarding visceral signals, these can modulate neural activity, perception, memory, de-

cision processes and behaviour [22, 24]. In the same way that cardiac phase modulates

sensory perception, emotional processing and action control - which suggests the existence

of brain state fluctuations locked to cardiac cycle [25] -, breathing has also been shown

to modulate perception, finding higher visuospatial abilities and visual-evoked potentials

during inhalation rather than during exhalation [22].

It is also important to understand the relevance of endogenous attention (or top-down

attention). Endogenous attention refers to the voluntary allocation of attention to a certain

object. For example, one can decide either to pay attention to a certain region of space

(e.g. the centre of a screen) or to colored items [26]. Both cases are examples of endogenous

attention - the first of spatial attention and the latter of feature attention [27, 28]. On the

other hand, attention is not only voluntarily directed. Attention can be switched to salient

external stimuli even when the subject has no intentions of attending to them [29–31].

For example, regarding visual processing, someone may be focusing on items of a specific

color, but their attention may be unconsciously drawn if an object of another color appears

suddenly.

Endogenous attention modulates neural activity in a way that increases the process-

ing efficiency of the attended feature. This modulation involves the reduction of neuronal

noise and enhancement of sensitivity in the neurons ’targeting’ the attended object [32].

Several neural mechanisms have been proposed underlying noise reduction during attentive

states, e.g., enhanced inhibitory transmission [32]. The modulation of visceral activity and

spontaneous behaviours could work as a complementary mechanism for ’noise’ reduction,

in order to minimize sources of internal variability. In fact, attention might do just that:

for example, somatosensory perception is enhanced during the diastole phase of the cardiac

cycle [33] and cardiac deceleration increases the proportion of the cycle that is devoted to

the diastole phase. This could be one of the mechanisms through which cardiac deceleration

enhances sensory processing.

However, it still remains to be clarified how motor inhibition and modulation of vis-

ceral signals affect sensory processing in the brain in a controlled scenario as a laboratory

computerized experimental task.

In order to analyze this effect and attempt to push forward this constraint in cognitive

neuroscience research, we measured body and eye movements together with brain, cardiac



and stomach electrical activity, breathing, and arousal signals, while participants were en-

gaged in a computerized visual discrimination task.

This thesis is part of a bigger study that intends to investigate several of these processes.

The work developed here arises from the interest of understanding how these mechanisms

work and will focus on the interaction between breathing activity and visual processing.

For that reason, from here on I will focus more deeply on respiration.

1.1.1 Breathing-related effects in behaviour and sensory-cognitive

perception

The effects that breathing-related activity has in cognition and behaviour have been

a topic of interest for decades. Therefore, before diving into the work developed in my

investigation, it is important to take into consideration some of the work that has already

been made in this field.

Since the second half of the 20th century, breathing activity has been studied along with

sensory perception. By then, it was found that the breathing phase has an impact on visual

signal detection and that signals presented during exhalation were detected more frequently

than those presented during inhalation [34]. In fact, Obrist et al. [35] reported that, in order

to attenuate task-irrelevant activity during and before task response, respiration slows down,

leading to an exhalation period larger than inhalation, which makes sense, since there is less

neurological activity during exhalation, as found by Crosby et al. [36]

In fact, breathing activity even plays an important role within the central nervous system.

For example, when we sigh, this action works to monitor brain state changes, control arousal

and regulate breathing variability, as well as emotions [37]. This is relevant in stressful and

challenging situations, which can be the case of a demanding visual task, where attentive

anticipation plays a key role. For example, the expectation of a stimulus leads to a deceler-

ation in heart rate that is more pronounced for unconfident decisions [38]. It would be very

interesting to see if this effect occurs with respiration.

The purpose of respiration goes beyond the simple exchange of gases that keeps humans

alive. There are, indeed, deep and intrinsic relations between respiratory and brain activities:

electrical oscillations in the piriform cortex (related to olfactory processes), as well as in the

amygdala and hippocampus, fall into synchrony with breathing activity - in phase with the

natural rhythm of the breathing cycle - and the intensity of this linkage is higher during



inhalation and less notable when breathing through the mouth instead of nose, underlining

the importance of breathing phase and airway in these processes [39]. In fact, regarding

visuospatial perception, nasal inhalation has been found to increase brain activity in specific,

task-related, regions and improve performance accuracy in a visuospatial task [22].

For a long time, the neuronal oscillations mentioned above were thought to be intrinsic

noise that introduces variability in neuronal processing [40]. However, they play a fundamen-

tal role in driving neuronal activity [41], forming highly organized patterns that modulate

neuronal responses [42–44] and act on sensory perception [45–49].

It has now been observed that cortical activity is phase-locked to respiration and is syn-

chronized by it. Besides, some of this cortical activity (gamma oscillation power and phase

transition timing) is involved in cognitive function, which further suggests the association

between breathing activity and cognitive processes [50].

Furthermore, the synchrony of these brain oscillations is influenced by the rhythm of the

breathing cycle, in a way that adjusts efficiency through neural excitability: the breathing

pattern is spontaneously adapted so that inhalation occurs at onsets of cognitive tasks

and visual stimuli presented during inhalation evoke stronger neural responses than when

presented during exhalation, resulting in a better performance in visuospatial paradigms

during inhalation compared to exhalation [22].

In sensory-cognitive paradigms, there is a tendency to align the breathing cycle with the

experimental task [51]. Interestingly, Grund et al. [38], noted that participants in a tactile

detection task adapted their respiratory cycle to expected stimulus onsets to preferentially

occur during late inspiration/early expiration and that the detection rate was highest during

the first quadrant after expiration onset. In [51], however, response accuracy did not vary

with the breathing cycle as much as reaction times.

By now, it has been observed that respiration modulates perceptual sensitivity, and some

suggest that, through respiration, sensory information is aligned with cycles of enhanced

excitability in order to facilitate performance [52].

Still, some doubts persist regarding the mechanisms by which this modulation influences

cognition, perception and behaviour [53]. Indeed, results found in these investigations have

supported the connection between respiration and sensory-cognitive function, hinting that

sensation is inherently connected to bodily functions [51].

In this work, I will not be taking on the analysis of brain activity, but I will investigate the



effects between breathing and visual perception and attempt to reach some indications that

might explain the presence of such effects. The purpose of this dissertation is to verify and

support the discoveries that have been made and attempt to examine further the relation

between respiratory phase and performance in a visual detection task.

1.2 Objectives

In accordance with the original study’s purpose of researching a variety of body-brain

interactions, I acquired, in collaboration with my supervisor, several bodily functions during

task performance (even though I only investigated breathing activity):

• brain signal - electroencephalogram (EEG);

• ocular movements and blinking detection - electrooculography (EOG) ;

• eye movements and pupilogram - eye tracker;

• respiration;

• muscle activity - electromyography (EMG);

• cardiac signal - electrocardiogram (EKG) and photo plethysmogram (PPG) ;

• skin conductance - electrodermal activity (EDA);

• stomach activity - electrogastrography (EGG).

To investigate the study hypotheses, I designed a visual discrimination task in which par-

ticipants engaged while I acquired the aforementioned behavioural and psychophysiological

data.

The task applied, described in detail in the following section (2.3), was a warned visual

discrimination task where participants were required to determine if the visual stimulus

presented was a car or a house.

The two categories selected were cars and houses, because they activate different regions

of the visual cortex [54]. This is important, because one objective of the original study is

to quantify the effects of visceral signals and body movements on the ongoing activity of

the visual areas presenting stronger image classification accuracy. For this, it is important

that the stimuli categories activate distinct regions, so it is possible to later differentiate

this activity and quantify this effect more clearly.

Each trial started with an auditory warning cue that alerted participants of the upcoming

visual stimulus. Immediately after the display of the visual stimulus, a mask was presented,



made out of several parts of images of cars and houses mixed up. This technique is called

visual backward masking and is widely used for dissociating awareness and stimulation

(figure 1.1).

Figure 1.1: Schematic of backward masking. A briefly presented stimulus is erased from awareness
by presentation of a ‘mask’ in close spatial and temporal proximity to the target. (Image from [55].)

With appropriate timing and spatial arrangement of stimulus and mask, the technique

works very effectively: an ordinarily visible target can be erased from visual awareness by

the mask [56]. The mask ‘halts’ processing of the target, thereby abbreviating the target’s

effective duration [55]. After the mask was cleared, a response prompt was shown and the

participants selected the stimulus category they saw using their index fingers. Figure 1.2

illustrates this description with an example of a trial.

Figure 1.2: Schematic example of one trial type presenting a car stimulus (the response prompt
here is not to scale, I increased its size to facilitate visualization).

I proposed that the auditory and visual stimuli might have a crucial effect on the subject’s

breathing activity and might be linked with neural mechanisms to optimize visual processing.

With this project, I attempted to elucidate if and how visual processing is modulated

by breathing activity. In order to do so, I started from the following hypotheses:

• Periods of attentive anticipation of visual stimuli modulate breathing activity;

• The ability to discriminate across categories of visual objects is modulated during the

breathing cycle;



• Breathing modulation induced by anticipatory attention improves behavioural perfor-

mance. This modulation improves image categorization.

My analyses were focused on answering the following questions:

• Is there a modulation in breathing activity with auditory cue and visual stimuli dis-

play? Here, I measured the change in breathing cycle duration at the moment of both

of these events. At these time points breathing modulation might occur to facilitate

perception;

• If there is a modulation, is it related/does it influence task accuracy (i.e. the ability of

the brain to discriminate across image categories)? And is this modulation conditioned

by the phase of respiration (inhalation/exhalation) at the onset of the events (auditory

cue/visual stimuli)? I compared modulation on incorrect trials with modulation in

correct trials. The presence of this effect could suggest that breathing activity could,

in fact, modulate neural activity in a way that enhances behavioral performance.

1.3 Outline of the Dissertation

The remainder of this document is structured as follows: Chapter 2 gives an overview of

the methodology used to acquire and analyze data; in Chapter 3, the results obtained are

presented and discussed further in Chapter 4; finally, in Chapter 5, I make a conclusion for

the work developed.



Chapter 2

Methods

In this chapter, I will describe the design and conditions chosen for this study, as well as

the processes and methods used to gather and analyze the data

2.1 Participants

For this study, I was able to gather and record data from 18 participants, in collaboration

with my supervisor. The first participant was the pilot test, and, consequently, I discarded

those data since the task design was still far from what I intended and was considerably

modified after that (explained ahead - section 2.4). So, after all, we gathered 17 eligible

volunteers. All of them agreed to a written consent that was in accordance with the Dec-

laration of Helsinki, in which they were informed about the procedures undertaken in this

task. The participants were aged between 20 and 33, where 12 were female and 6 were male.

Each participant performed the task at least four times (four runs), each one consisting

of 60 trials and a duration of about 10 minutes, which means there was a total of 4080

non-independent trials and almost 700 minutes of physiological activity. Some individual

trials and breathing cycles had to be excluded, as I will describe ahead.

2.2 Recording of Physiological Signals

As said before, in this experiment, we recorded signals from several bodily functions (brain

signal, ocular movements, respiration, muscle activity, cardiac signal, skin conductance and

9



stomach activity). The participants wore an EEG cap to record brain activity (64-channel

Quik-Cap from Neuroscan). This EEG system also includes electrodes that allowed us to

measure:

• heart activity - EKG -, which were placed vertically on top of the sternum;

• EOG to detect blinks and eye movements on the horizontal and vertical planes, which

were placed near the outer canthus of each eye and above and below the left eye;

• muscle activity - EMG - with electrodes placed on the right side of the trapezius (figure

2.1a);

• stomach activity - EGG - with eight electrodes distributed across the belly, on top of

the stomach area (figure 2.1b).

(a) Shoulder EMG electrodes placement. (b) EGG electrodes placement.

Figure 2.1: Electrogastrography (EGG) and shoulder electromyography (EMG) electrode distri-
bution.

The layout of the cap is according to the extended 10/20 system.

Besides these electrodes, we also measured EMG on both forearms (2.2a), leg movements

with one accelerometer on each ankle (in some cases, we used custom-made accelerometers

on the subjects’ knees, due to constraints on the systems’ availability), PPG and EDA with

sensors on the left hand’s pinky, middle and ring fingertips (figure 2.2b). All of these were

recorded with Biopac’s System Bionomadix.



(a) Forearms EMG electrodes placement. (b) EDA and PPG electrodes placement.

Figure 2.2: Electrodermal activity (EDA), photo plethysmogram (PPG) and forearms electromyo-
graphy (EMG) electrode distribution.

To keep track of eye movements and pupil dilation, we used the EyeLink 1000 Plus (SR

Research, Canada), sampling at 1000 Hz.

Finally - and more importantly for this thesis -, the participants wore a respiration

transducer belt (Biopac’s TSD221-MRI ) to measure respiratory effort associated with cir-

cumferential changes in the thoracic region of the torso. The breathing data was transmitted

at a rate of 5000 Hz (except for the second subject, for which I used 1000 Hz).

Each data acquisition session took nearly 3 hours and the software we used to acquire the

Biopac data was the AcqKnowledge 4.2 Software and, for the EEG data, we used Neuroscan’s

Curry 7.



The following images and block diagram show how the acquisition system was set up,

as well as the placement of the electrodes described above:

(a) (b)

(c)

Figure 2.3: Representation of the acquisition system setup: (a) side view of the participant posi-
tion relative to the stimulation computer; (b) photo showing the setup design with all instruments;
(c) diagram with each instrument and software identified and how they connect with each other.

2.3 The Visual Task Design

As said before, the task developed was a warned visual discrimination task built with

Matlab (version 2021a) using the Psychtoolbox−3 toolbox extensions [57–59].

The participants were asked to discriminate visual stimuli between two categories: cars

and houses (figure 2.4). We used visual stimuli included in the fLoc functional localizer

package from [54].

At the beginning of each run, before the task started, there was a 5 second countdown.



(a) (b)

Figure 2.4: Example of the two types of stimulus. (a): car stimulus; (b) house stimulus.

Each trial began with a baseline period, which is important to let the participant’s bodily

signals stabilize and measure spontaneous psychophysiology during rest (during this period

the participants are fixating a grey background with no additional information, ranging

from 3 to 5 seconds, randomly). This baseline was followed by a warning cue indicating

that the visual stimulus would be presented within the next few seconds (the time between

cue and visual stimulus varied randomly from 2 to 6 seconds, so that participants would

not be able to predict the timing of visual stimulus display, requiring them to be prepared

from the sound of warning cue). The warning cue was a pure tone of 1500 Hz and lasted

for 0.25 seconds. The visual stimuli were presented for 30ms and immediately followed by

a mask (visual backward masking).

The mask was shown for 0.51 seconds and, after that, a response prompt was displayed,

consisting of the words “CAR” and “HOUSE” (in Portuguese) next to each other, side by

side (the side on which each word was shown was assigned randomly). The participants

used their index fingers to answer what they believed was the stimulus they saw, using the

keys ‘Z’ and ‘M’ to choose the option presented on the left or right, respectively. This design

was meant to prevent the participants from answering over the visual stimulus. The original

study aimed to use classifiers to discriminate each trial by ”house” or ”car” using the EEG

signal, but only considering the visual data and not if the participant is using the left or

right hand. By presenting the response prompt in the described way, the participant does

not know which hand to use until the prompt appears, which leaves 500 ms of data where

the EEG signal is not affected by the motor response.

After the participant’s answer, the task automatically moved to the next trial. At the

end of each run, the participant’s task performance was presented, with the percentage of



correct trials.

For the 60 trials in each run, I randomized the amount of cars and houses presented.

Some runs contained more cars and others more houses, but it averages to about 30 of each

category per run (in total, out of the 4080 trials, 2047 displayed houses and 2033 displayed

cars).

I took into consideration that if participants had an accuracy of 100 %, that would mean

they were discriminating the stimuli perfectly. In that case, there would not be a ground for

comparison between what happens in a correct and incorrect trial. On the other hand, if

there were a 50 % accuracy, the participants would be simply guessing randomly what the

correct answer was without actually focusing and processing the stimuli. For that reason, I

aimed at an accuracy of 75 % (which would be in between those scenarios).

We asked each participant to perform at least 4 runs. Some did more than 4 (in cases

where we thought it could be better to repeat the recording), but I only analysed four runs

out of each participant for consistency.

After the second and fourth runs, we also included a different visual task, with videos

from a separate study being acquired at the same time that will not be considered for this

work.

2.4 Task Adjustments

The description in the previous sub-section was the basis of the task for most of the study.

However, it is essential to note that the task suffered minor changes throughout the study

to improve what we believed should be slightly corrected, as mentioned below:

• For the pilot test, the backward masking method was not used. Instead, the same

stimuli were presented with gaussian noise. This did not work properly because the

gaussian noise appeared to cover the house stimuli much more than car stimuli, making

it only possible to discriminate houses by knowing it was not a car;

• For the first three subjects, there were three levels of stimuli duration: 30 ms, 40 ms

and 50 ms. Each of these levels occurred the same number of times (from the 60

trials in each run, there were 20 trials for each level). As figure 2.5 shows, I noticed

that participants were performing too well (way above 75 % accuracy), so I decided



to only use the first, most difficult, level from there on. For these subjects, on visual

stimulus-related analysis, I only considered trials with a duration of 30 ms;

• For subjects 3 to 7, the triggers for the Biopac and Neuroscan systems were sent

through the same port using a splitter. Here, I found that some triggers were missing

because the time between triggers was too small for the system to process.

(a) (b) (c)

Figure 2.5: Percentage of correct answers on each ’level’ of stimulus display time for subjects 2,
3 and 4. It is visible that in longer stimuli the accuracy is much higher than desired.

Before moving on to the next section, I will use table 2.1 as an overview of the main

parameters that were used for each participant and went through adjustments.

Subject Runs Stimuli Duration (Levels)
Biopac Sampling
Rate (Hz)

Leg Accelerometers

2 4 3 (0.3ms, 0.4ms, 0.5ms) 1000 3, both knees + ankle (bionomadix)
3 5 3 (0.3ms, 0.4ms, 0.5ms) 5000 3, both knees + ankle (bionomadix)
4 5 3 (0.3ms, 0.4ms, 0.5ms) 5000 3, both knees + ankle (bionomadix)
5 4 1 (0.3ms) 5000 3, both knees + ankle (bionomadix)
6 4 1 (0.3ms) 5000 3, both knees + ankle (bionomadix)
7 4 1 (0.3ms) 5000 3, both knees + ankle (bionomadix)
8 4 1 (0.3ms) 5000 3, both knees + ankle (bionomadix)
9 4 1 (0.3ms) 5000 3, both knees + ankle (bionomadix)
10 4 1 (0.3ms) 5000 3, both knees + ankle (bionomadix)
11 4 1 (0.3ms) 5000 2, ankles (bionomadix)
12 4 1 (0.3ms) 5000 2, ankles (bionomadix)
13 4 1 (0.3ms) 5000 2, ankles (bionomadix)
14 4 1 (0.3ms) 5000 2, ankles (bionomadix)
15 4 1 (0.3ms) 5000 2, ankles (bionomadix)
16 4 1 (0.3ms) 5000 2, ankles (bionomadix)
17 4 1 (0.3ms) 5000 2, ankles (bionomadix)
18 5 1 (0.3ms) 5000 2, ankles (bionomadix)

Table 2.1: Main task parameters that suffered changes. All the other parameters mentioned
remained unchanged.



2.5 Analysis of Breathing Data

2.5.1 Preprocessing

I used Matlab (version 2020b) to analyse all of the data considered for this thesis. The

breathing signals were initially downsampled from 5000 Hz (1000 Hz for participant 2) to

100 Hz. This rate is adequate for breathing signals, given that the average number of

respirations for a non-respiratory compromised healthy adult is between 12 and 20 breaths

per minute [60]. The data were then filtered using a high-pass filter at 0.01 Hz to remove

low frequency drifts from the breathing signal and a low-pass filter at 2 Hz to remove

high-frequency noise. Both the downsampling and filtering of the data were made with the

EEGLAB toolbox version 2021.0 [61].

The next preprocessing step was a smoothing of all data using the Matlab function

smoothdata with the ‘loess’ method. I did this because the raw data contained too much

high frequency noise to analyse. I tried several methods and then calculated the difference

between the original and smoothed data to find out which method presented a difference

closest to zero. I chose the ‘loess’ method because it was the one that distorted less the

data and kept it closest to the original. Figure 2.6 shows a comparison of the data before

and after preprocessing (the high-pass filter corrects the signal average to zero).

Figure 2.6: Comparison between raw and preprocessed breathing data. The preprocessed data
contains much less noise, as it is shown in the zoomed-in parts side by side, taken from the same
time frame.



The next step was to include the triggers I had defined when designing the task. The

triggers were numbered from 1 to 16 in the following way:

Trigger Number Event
1 Start of experiment
2 Auditory cue
3 “House” stimulus with duration 30ms
4 “House” stimulus with duration 40ms (only for subjects 2, 3 and 4)
5 “House” stimulus with duration 50ms (only for subjects 2, 3 and 4)
6 ”Car” stimulus with duration 30ms
7 ”Car” stimulus with duration 40ms (only for subjects 2, 3 and 4)
8 ”Car” stimulus with duration 50ms (only for subjects 2, 3 and 4)
9 Response prompt with “house” option on the left
10 Response prompt with “car” option on the left
11 Response: participant chooses the option on the left correctly
12 Response: participant chooses the option on the left incorrectly
16 Response: participant chooses the option on the right correctly
13 Response: participant chooses the option on the right incorrectly
14 End of experiment

Table 2.2: Triggers and the corresponding events.

Note: the numbers of the triggers are not in order because of the adjustments that were

made regarding the absence of some triggers in one of the designs I made initially.

I also removed the breathing data acquired before trigger 1 and after trigger 14 - “resid-

ual” data -, since they were not relevant for the analyses. After that, I made sure every

subject’s sampling rate was the same to facilitate the following approaches. The triggers,

when acquired in the Biopac system, are converted to binary code, so, in my analysis, I used

a Matlab script to convert them to decimal system and obtain the following data:

Figure 2.7: Example of one subject’s run, representing which trigger happened at what time
during the run and the breathing activity in that moment (the breathing data representation was
vertically stretched to help visualization).



Breathing data is composed of peaks and valleys, where peaks correspond to the end of

the inhalations and start of exhalations and vice versa - valleys correspond to the end of

the exhalations and start of inhalations. From here, I defined the duration of an individual

respiratory cycle as the length between two valleys - from the start of inhalation to the end

of exhalation.

By visualizing the data, I noticed the presence of artefacts, occurring as odd or unex-

pected breathing behaviour: small deviations to the surrounding breathing pattern (figure

2.8). So, my next and last preprocessing step was to remove all breathing cycles with

artefacts.

Figure 2.8: Example of an artefact. The expected and trending respiratory behavior would be a
full exhalation. However, this small deviation is enough to lead to the detection of a peak and a
valley, incorrectly.



I began with a peaks-and-valleys approach, by using Matlab’s function ‘findpeaks’ to

determine the beginning and end of inhalations and exhalations. This function return local

maxima by identifying data sample that is larger than its two neighboring samples. To

obtain valleys, I inverted the signal, so that what used to be valleys were then peaks, and

use ‘findpeaks’ again. Figure 2.9 shows an example of one run from one subject.

Figure 2.9: Output obtained from using ‘findpeaks’ (example from one run from a single subject).

This procedure was quite accurate and allowed me to easily obtain the duration of

the breathing cycle from the ‘distance’ between two valleys, i.e., the difference between

the position of adjacent valleys, obtained with the ‘findpeaks’ function. This simplified

the process of removing artefacts, because, as I will explain ahead, it is a reliable way of

discriminating artifacts from normal breathing patterns, by telling me the abnormal duration

of those ’cycles’.

Then, I defined artefacts as cycles with a duration below a certain threshold. My initial

intention was to perform a linear interpolation on every cycle identified as an artefact, as in

figure 2.10. Nevertheless, this method could not tackle every occurrence and missed a large

number of artefacts.



Figure 2.10: Correcting artefacts by linear interpolation.

In a second attempt, I opted for a statistical procedure: if a cycle is too small compared

to the mean duration of all cycles in that run, then it should be removed. Quantitatively,

this is done using the z-score, measuring how many standard deviations below or above the

mean a cycle duration is. Having done this calculation with Matlab’s function ‘zscore’, I

rejected all cycles with a z-score below -2.5 (z-score < -2.5).

In this process, I considered removing cycles with z-scores higher than 2.5 (in that case,

it would be |z-score| > 2.5), although longer breathing cycles most likely are not artefacts,

but just deep breaths instead, in which case it is interesting to keep them for analysis.

After doing this, I noticed that this was not the most accurate strategy, because a lot

of artefacts happened in the middle of an inhalation or exhalation. For example, a slight

increase in breathing data in the middle of an exhalation would cause a peak-valley pair to

be identified where it should not. This could happen at a point where the distance between

the previous and following valleys are valid (inside the threshold defined), without being

considered an artefact, even though it clearly is one. Figure 2.11 shows that: what was

expected to be a complete exhalation is interrupted by a very small inhalation, instead, and

an artefact occurs without being considered as one, since the distance between valleys is

accepted.



Figure 2.11: Example of an artefact not detected by the z-score method.

To avoid this, I realized that I would need to take the peaks into consideration, examining

also inhalation and exhalation lengths. This procedure would take care of situations like the

one described above, where the small increase would now be identified as an artefact given

the abnormal inhalation length. This procedure showed to be the most effective. Figure

2.12 shows how this was done.

(a) (b)

Figure 2.12: Visualization of how the z-score method identifies artefacts (data from subject 8).
The red line in all of the graphs corresponds to the defined threshold (z-score < -2.5). The graph
on the left represents inhalation cycles and the one on the right exhalation cycles. It is possible to
see here that inhalations are considerably shorter than exhalations.



Every identified artefact was then substituted by blank values - not a number (‘NaN’)

values -, and I was able to remove every cycle with ‘NaN’ in them, which left me with the

data looking like what is represented in figure 2.13. From this point on, everything was

ready to proceed to the intended analyses.

Figure 2.13: Representation of ‘NaN’ values in data after removing artefacts.

It is important to note that, when performing the z-score method, I noticed some ab-

normalities. The graphs in 2.14(a) and 2.14(b) show the same as the previous graphs but

for subject 17. I observed that the threshold I defined was not excluding any artefacts, even

though there clearly are several inhalation/exhalation lengths that are very short. However,

there are so many of these cases and they happen so regularly, that the mean is skewed and

these points end up being accepted instead of rejected. This happens for both inhalation

and exhalation. Looking at the data, I understood that this participant did long pauses

in between each breathing cycle, and a lot of tiny cycles arise from the peaks-and-valleys

approach (figure 2.14(c)). This happened throughout all the data. Unfortunately, after

spending quite some time trying to deal with this, I decided it was best to leave these par-

ticipant’s data out of the analyses, even though there was nothing wrong with the collecting

of the data whatsoever. The same problem happened for subject 7. Therefore, in analyses

that involve breathing data, I only considered 15 participants.



(a) (b)

(c)

Figure 2.14: Breathing data from subject 17 showing artefacts. (a) and (b): No artefacts identified
by the z-score method - all durations are above the threshold (red line); (c) is the visualization
of artefacts at the end of several breathing cycles due to the breathing activity of this participant
throughout the whole task, occurring repeatedly.

2.5.2 Analyses Performed

In my analyses, I considered two moments of special interest: the moment at which the

auditory cue happens and the moment at which the visual stimulus (car or house images) is

displayed. These might have a crucial effect on the subject’s breathing activity and might

be linked with neural mechanisms to optimize visual processing. From here on, I will refer to

these moments as ‘events’ and I will consider both of them into every investigation. There

were 2 analyses I set out to conduct:

• The first was to determine whether those events led to a modulation of the breathing

activity, comparing the duration of breathing cycles’ at the moment of these events



and just before they occur. I also did this for both inhalation and exhalation, to find

out if, in case of existing modulation, that difference came specifically from one of

those phases;

• Secondly, I took into account the task performance of each subject and evaluated

if there was any relation between the accuracy (correct/incorrect) of each trial and

the phase of breathing cycle at which both events occurred as well as the breathing

modulation for each scenario.

Modulation of breathing activity with auditory cue and visual stimuli

As explained, to explore this modulation, I determined, for each trial, the duration of

the breathing cycle before the events. I called this variable D1. I then did the same thing

for the cycle occurring at the moment of the events and called that variable D2. Having

determined both lengths, I then proceeded to calculate the difference between the two, in

order to obtain the modulation. To that variable, I called D, defined by D = D2 − D1

(figure 2.15). I calculated these values and averaged them for each run of each participant.

I also took into account one more variable, which I called D3, corresponding to the mean

duration of all breathing cycles of that run.

Figure 2.15: Definition of variables D1, D2 and D.



Since, for this analysis, I considered pairs of breathing cycles (the one occurring at the

moment of the events and the one before), it is important to note that if any of the two

cycles contained ‘NaN’ values (due to the presence of artefacts), I would not consider the

other, as well. Figure 2.16 shows an example of this (in this case, these are image triggers).

Figure 2.16: Representation of the rejection of three trials. The red lines correspond to stimuli
triggers on trials that were rejected either because they occur on a breathing cycle containing ‘NaN’
values or because the previous breathing cycle contained ‘NaN’ values.

After doing this for both events, I ended up with 3337 trials for auditory cue-related

analysis - with an average trial acceptance rate of 92.7 % (SD = 4.37%) per participant,

ranging from 82.9 % to 97.9 % - and 2913 trials for visual stimulus-related analysis - aver-

aging 93.2 % (SD = 4.78) rate of accepted trials per participant, ranging from 82.9 % to

97.9 % -, while keeping the amount of trials with cars and houses balanced - for auditory

cue analysis, 50.3 % were house trials and 49.7 % were car trials, whereas, for visual stimuli,

49.2 % corresponded to house trials and 50.8 % to car trials.

The findings I arrived at, which I will explain in detail later, led me to examine the

breathing cycles surrounding the visual stimulus - more specifically, the breathing cycle at

the onset of the visual stimulus and the two breathing cycles before and after the visual

stimulus (to which I will refer to as C1, C2, C, C3 and C4 - see figure 2.17).



Figure 2.17: Definition of variables C1, C2, C, C3 and C4.

I also hypothesized that if there was any modulation, it would depend on the phase of

the cycle at which the event occurs, for example: if the visual stimuli are presented at the

end of exhalation, that is too late to provoke any modulation on that cycle.

Therefore, I took another approach and used circular statistics, dividing the length of

each breathing cycle into radians, from 0 to 2π (where 0 represents the start of inhalation

and 2π the end of exhalation) and determined at which angle each event occurs. This also

allowed me to visualize if there is a significantly predominant angle (a predominant phase

of the cycle at which the events happened). Consequently, the final output consisted of two

arrays: one with the phase of each trial and one with the measured modulation (variable

D) on each trial.

Relation between breathing modulation and task performance and phase of

breathing cycle

When accounting for task performance, I first evaluated if there was a relation with the

number of runs, i.e., if the participants improved along the task. For this evaluation, I

considered all 17 participants, since this did not involve breathing data. In case of finding

something relevant here, I would then investigate if this effect was induced by any breathing



pattern - namely, using D3 - with the expectation of observing a similar variation in overall

breathing rhythm and performance along runs.

Then, I wondered if the accuracy could be related to the breathing modulation caused

by each event (auditory cue and visual stimuli). In other words, does a stronger modulation

lead to a higher accuracy (or maybe the other way around)? I also thought that the accuracy

of participants could depend on how soon or late in the breathing cycle the event happens.

In that sense, I used the same circular statistics procedure as before but now applied only

in correct trials and incorrect trials and compared the outcomes.

Here, it is important to note that I had to reject some data: some subjects had very

few incorrect trials and, given that I had already removed trials in the preprocessing stage,

several of those overlapped, leaving me without any available trials for some subjects; on

top of this, as I mentioned earlier, I only considered 30ms trials for subjects 2, 3 and 4

(corresponding to one third of the data of these participants), which, once again, reduced

the amount of data available. Therefore, for this analysis, I considered fewer subjects: 12

when evaluating auditory cue-related effects and 11 for visual-stimuli effects.

2.6 Statistical analysis

To verify if the results I obtained were statistically significant, I used the SPSS software

to run the Repeated Measures ANOVA tests.

To analyse the relation between phase of breathing cycle at the moment of events and

modulation (D) statistically, I used Matlab custom scripts to run a circular-logistic regres-

sion to test whether phase predicts modulation at the single-trial level. Phases are sine- and

cosine transformed and used as circular predictors of the modulation in a regression model

with coefficients β1 and β2 [62]:

Di = β0 + β1cosΦi + β2sinΦi + ε (2.1)

where Di is the modulation on trial i, Φi is the phase at which the event occurred in

trial i, β0 the intercept term and ε the error term. To quantify the performance of the

fit, a p-value for each participant can be obtained. To do this, I used Matlab’s function

‘regress’, which returns the coefficients β0, β1 ans β2, as well as the p-value. I ran this for

each participant and determined the percentage of participants for which this regression



was significant (p < 0.05). Additionally, I also ran a one-sample t-test on the cosine and

sine coefficients, β1 and β2, to find out whether or not these coefficients are, on average,

significantly different from zero. The size of the coefficient for each independent variable

represents the size of the effect that variable has on the dependent variable [63]. I ran

this test with Matlab’s function ‘ttest’, which returns the p-values for each coefficient and

tells me if phase of breathing cycle has a significant effect on predicting breathing cycle

modulation.

For the last analysis, where I investigated the relation between task performance and

phase of breathing cycle on event presentation, I performed a Watson test, which was

most appropriate for this case [64]. The Watson test is the nonparametric version of the

Watson-Williams two-sample test. It computes a test statistic U2, which is based on the

ordering of the phases and computing the cumulative relative frequency distributions. Once

again, I ran this test for each participant and calculated the percentage of participants

for which this regression was significant. To determine the p-values, I made use of the

script ’watsons U2 approx p.m’ from the ’Simulations phase statistics’ function developed

by Wolpert, N, & Tallon-Baudry, C. in [65].



Chapter 3

Results

In this chapter, I will present the analyses I performed and the results they led to, by using

the methods described in the previous section.

3.1 Results obtained

3.1.1 Task performance variation along runs

Regarding task performance, an initial approach showed that the mean accuracy percent-

age across all participants was 80.1 % (SD = 8.73 %), ranging from 62.9 % to 95.4 %. The

mean accuracy on houses was 75.5 % (SD = 11.9 %), from 47.1 % to 96.2 %, and on cars

84,2 % (SD = 11, 7 %), from 54.9 % to 100 %.

I will refer to ”Effect of Run” as the change in modulation from run to run. In my

following analyses I will include ”Effect of Time”, which refers to the comparison between

the breathing cycle duration at the moment of event, D2, and the duration of breathing

cycle just before that, D1, and ”Effect of Accuracy”, when comparing scenarios between

correct trials and incorrect trials. The interaction effect represents the combined effects of

the two factors on my measure, i.e., if the impact of one factor depends on the level of the

other factor.

While running the experiment in the laboratory, I noticed that, for almost all partic-

ipants, the accuracy increased with each run. This was interesting to see, and, in fact,

some participants would comment that in the beginning they found it hard to discriminate
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between cars and houses, but after some trials they would start to get better at this task.

Therefore, to confirm this, I ran a repeated-measures ANOVA test only with run (4 levels)

as within-subject factor. Indeed, this relation was significant:

Effect of Run F(3,48) = 10.4 p < 0.001(0,000023)

Table 3.1: Results from repeated-measures ANOVA with run as within-subject factor suggest an
increase of task accuracy along runs.

Figure 3.1 shows the same result:

Figure 3.1: Effect of run on accuracy (the black horizontal line depicts mean across participants
and the grey box represents ± standard error of the mean; different participants are represented
with different colours).

This result was interesting to observe and I then wondered whether this improvement in

accuracy could also be related to breathing activity - there could be a significant adjustment

in breathing cycle durations from run to run. To analyse this, I made use of the variable

D3 mentioned earlier (corresponding to the mean duration of all breathing cycles of each

run) and, as before, performed a repeated-measures ANOVA test for D3 with run (4 levels)

as within-subject factor (table 3.2 and figure 3.2).

Effect of Run F(3,42) = 0.562 p = 0.643

Table 3.2: Results from repeated-measures ANOVA with run as within-subject factor revealed no
consistent pattern of D3 along runs.



Figure 3.2: Effect of run on breathing cycle duration (the black horizontal line depicts mean
across participants and the grey box represents ± standard error of the mean; different participants
are represented with different colours).

I found that the effect I was expecting turned out to not be statistically significant - the

mean duration of the breathing cycle does not change across runs and, therefore,

the improvement in accuracy is not associated with mean breathing cycle duration. Besides

this, I also analysed a correlation between D3 and the percentage of correct trials, which

did not reveal any statistical significance, as well (figure 3.3).

Figure 3.3: Task performance plotted against the mean duration of all breathing cycles. Each
dot represents one participant.



3.1.2 Modulation of breathing activity with auditory cues and vi-

sual stimuli

For this analysis, I will present side-by-side the results obtained for the auditory warning

cue with the ones for the visual stimuli. All the analyses were the same in both cases.

I started by looking for a breathing cycle modulation with the auditory cue, so I compared

D1 and D2 with respect to this trigger (effect of time). My line of thought was to also do

this for the inhalation and exhalation of breathing cycles in these trials, in case I found

a significant modulation, to investigate whether this modulation comes particularly from

inhalation or exhalation. In these analyses I included the effect of run because as accuracy

increased with run, we wanted to test if the modulation also changed with run. The first

result showed that there was no significant effect of auditory cue on breathing

cycle duration (according to the values obtained in table 3.3 and represented in figure

3.4).

Effect of Run F(3,42) = 0.407 p = 0.749
Effect of Time F(1,14) = 0.023 p = 0.882
Interaction Run vs. Time F(3,42) = 1.15 p = 0.340

Table 3.3: Results from repeated-measures ANOVA with run and time as within-subject factors
for breathing modulation with auditory cues.

Figure 3.4: Breathing cycle modulation with auditory cue (the black horizontal line depicts mean
across participants and the grey box represents ± standard error of the mean; different participants
are represented with different colours).



Given that no relation was found, it did not make sense to explore the modulation on

inhalation and exhalation, as explained earlier.

As for the visual stimuli, the result was different. I found that, on average, the value of

D2 was higher than D1 for the majority of participants across all runs (only one participant

showed a negative mean value of D2−D1). Table 3.4 shows the results of performing, once

again, a repeated-measures ANOVA with run (4 levels) and time (2 levels) as within-subject

factors, where it is clear that the effect of time is significant, with p = 0.001 (highlighted in

bold). This allowed me to conclude that there was a significant effect of the visual

stimuli on breathing cycle. Figure 3.5 represents this modulation and appears to sug-

gest that participants with a longer breathing cycle present a more accentuated breathing

modulation.

Effect of Run F(3,42) = 0.472 p = 0.704
Effect of Time F(1,14) = 17.2 p = 0.001
Interaction Run vs. Time F(3,42) = 1.24 p = 0.307

Table 3.4: Results from repeated-measures ANOVA with run and time as within-subject factors
for breathing modulation with visual stimuli.

Figure 3.5: Breathing cycle modulation with visual stimuli (the black horizontal line depicts mean
across participants and the grey box represents ± standard error of the mean; different participants
are represented with different colours).



The next step was to look into the modulation on each phase - inhalation and exhalation.

Here, the results are presented as before (in table 3.5 and figures 3.6a and 3.6b).

Inhalation:

Effect of Run F(3,42) = 0.841 p = 0.479
Effect of Time F(1,14) = 16.9 p = 0.001
Interaction Run vs. Time F(3,42) = 1.39 p = 0.260

Exhalation:
Effect of Run F(3,42) = 0.483 p = 0.696
Effect of Time F(1,14) = 14.4 p = 0.002
Interaction Run vs. Time F(3,42) = 1.10 p = 0.358

Table 3.5: Results from repeated-measures ANOVA with run and time as within-subject factors
for inhalation and exhalation modulation with visual stimuli.



(a)

(b)

Figure 3.6: Inhalation and exhalation modulations with visual stimuli (the black horizontal line
depicts mean across participants and the grey box represents ± standard error of the mean; different
participants are represented with different colours).

There was a significant modulation on inhalation and exhalation provoked

by the visual stimuli.

I then analysed if the occurrence of modulation depends on the timing of the events. In

other words, when the events take place, which breathing phase leads to a higher change in

D (D = D2−D1)?

To answer this, I transposed the breathing cycle into an interval from 0º to 360º. The

exhalation is usually longer than inhalation, which means that 180º does not correspond

to the middle point of one breath, where one starts to exhale. That middle point occurs

around 130º to 150º.

For this analysis, I measured, for each trial, the angle at which the auditory cue and



visual stimuli were presented and the corresponding value of D . Having done this for all

subjects, ended up with a table with the angles in one column and D values in another. To

visualize this effect, I plotted these phase-modulation pairs in a scatter plot (for visualisation

purposes, the graphs represent all trials from all participants, but the statistical analysis was

done for each participant separately, since within-participant trials are not independent).

The result was the following:

(a) Auditory cue.

(b) Visual stimuli.

Figure 3.7: Relation between breathing modulation, D, and angle at which the events occur,
relative to the breathing cycle. For a matter of visualization, I assigned the first half (0º - 180º) to
inhalation and the second half (180º - 360º) to exhalation. These graphs contain all trials relative
to all participants.



It is interesting to note that on the bottom graph there are much less large negative

values, which can imply that it is rare to find very long cycles before the presentation of

visual stimuli (possibly associated with a deep audible breath, as in weariness or relief).

For the auditory cue analysis there were a total of 3337 points and for the visual stimuli

there were 2913 points (corresponding to the total of valid trials in each case).

For the auditory cue, and using the circular-logistic regression aforementioned, there

was only statistical significance for 1 participant (6.67 %) out of the 15 eligible and, for the

visual stimuli, 4 out of 15 participants showed p-values lower than 0.05 (26.7 %).

This last result could have some relevance - 27 % is still a considerable amount. To

examine this significance, I ran a one-sample t-test on the cosine and sine coefficients,

β1 and β2, from the circular-logistic regression (see equation 2.1). I did this for all 15

participants and found that these coefficients are, on average, not significantly different from

zero, meaning that phase does not have a significant effect on predicting breathing cycle

modulation. The next table shows the p-values obtained with this test for the coefficients

β1 and β2 of both events (auditory cue and visual stimuli), which are all larger than 0.05:

Event Coefficient p-value

Auditory Cue
β1 0.837
β2 0.635

Visual Stimuli
β1 0.560
β2 0.932

Table 3.6: p-values obtained from one-sample t-test on circular-logistic regression coefficients.

Therefore, from these results, I found that there is no significant relation between

the modulation and the timing of the events relative to the breathing cycle.

Upon these findings, I speculated about the breathing variations along each trial (instead

of event-related modulation only), since the breathing rhythm slows down with visual stimuli

but suffers no change with auditory cue and the existing modulation is not linked with the

moment in breathing cycle at which the events occur. Perhaps there might be an acceleration

of breathing rhythm somewhere along the trial that compensates for the slowing down of

breathing activity. As mentioned in the Methods section (2.5.2), to analyse this I will

consider the breathing cycles surrounding the visual stimulus trigger and refer to each of

them as C1, C2, C, C3 and C4 (see figure 2.17).



The results I found appeared to be very interesting: a noticeable change in breathing

cycle duration occured around the visual stimuli display. I had already observed that breath-

ing cycle slows down (duration increases) with presentation of visual stimuli, but here it is

also possible to see that the modulation I noticed before is now countered in a symmetrical

way and the breathing cycle after the visual stimuli exhibition is faster (duration decreases),

restoring the breathing rhythm (figure 3.8 illustrates this).

Figure 3.8: Mean durations of breathing cycles ahead (C3 and C4), behind (C1 and C2) and on
visual stimulus onset (C). The black horizontal line depicts mean across participants and the grey
box represents ± standard error of the mean; different participants are represented with different
colours.

To verify statistical significance, I used, once again, a repeated-measures ANOVA test

with time (5 levels) as the only within-subject factor (since I am comparing durations of 5

breathing cycles).

Effect of Time F(4,56) = 7.14 p < 0.001(0.000103)

Effect of Run F(3,42) = 0.321 p = 0.810

Interaction Run vs. Time F(12,168) = 0.879 p = 0.570

Table 3.7: Results from repeated-measures ANOVA with time as within-subject factor reveal a
significance effect in change of cycle duration.

The effect is significant: there is an effect of time among the 5 cycles surrounding the

visual stimulus trigger, using the averages of each run. If the effect of run is also included,

it does not have a significant effect, neither is there an interaction between the time and run

factors (however, the effect of time remains), which might indicate that there is no relation



between this breathing pattern and accuracy (since accuracy increased significantly with

run).

By running paired t-tests on all pairs of cycles, it is confirmed that the central cycle, C,

is significantly different from all the others, while cycles C1, C2, C3 and C4 do not differ

from each other (analysis not shown).

3.1.3 Relation between breathing modulation and accuracy

Once I started exploring task performance, one question that obviously arose was if the

accuracy could be related to the breathing modulation caused by each event (auditory cue

and visual stimuli). In other words, does a stronger modulation lead to a higher accuracy

(or maybe the other way around)? In order to do this, I compared the modulation measured

in incorrect trials against the modulation measured in correct trials.

I started by analysing this for the auditory cue. I already knew that no modulation

occurred with auditory cues, but, to my surprise, a significant effect of accuracy was present

(table 3.8, figure 3.9).

Effect of Accuracy F(1,11) = 4.89 p = 0.049
Effect of Time F(1,11) = 0.214 p = 0.653
Interaction Accuracy vs. Time F(1,11) = 0.335 p = 0.575

Table 3.8: Results from repeated-measures ANOVA with accuracy and time as within-subject
factors for the correlation between modulation with auditory cues and task performance.

Figure 3.9: Relation between task performance and breathing modulation in relation to the
auditory cue (the black horizontal line depicts mean across participants and the grey box represents
± standard error of the mean; different participants are represented with different colours).



This significant effect of accuracy reflected the fact that, in incorrect trials, the

breathing cycle duration is longer. This significant effect of accuracy indicates that

the means of D1 and D2 on correct trials are different from incorrect trials. It suggests

that periods where breathing duration is longer are associated with a higher probability of

incorrect responses. However, there was no significant effect of time, nor interaction effect

time x accuracy, suggesting that there was no modulation of breathing duration with the

auditory cue either in correct or incorrect trials.

After this, I moved on to the visual stimuli. The modulation observed before, with the

visual stimuli, left me hopeful of finding an interesting relation here.

Effect of Accuracy F(1,10) = 3.02 p = 0.113
Effect of Time F(1,10) = 10.8 p = 0.008
Interaction Accuracy vs. Time F(1,10) = 0.193 p = 0.67

Table 3.9: Results from repeated-measures ANOVA with accuracy and time as within-subject
factors studying the modulation of the breathing cycle with visual stimuli and task performance.

Figure 3.10: Relation between task performance and breathing modulation in relation to the visual
stimuli (the black horizontal line depicts mean across participants and the grey box represents ±
standard error of the mean; different participants are represented with different colours).

Consequently, I analysed the same for inhalation and exhalation:



Inhalation:

Effect of Accuracy F(1,10) = 1.52 p = 0.246
Effect of Time F(1,10) = 11.9 p = 0.006
Interaction Accuracy vs. Time F(1,10) = 1.73 p = 0.217

Exhalation:
Effect of Accuracy F(1,10) = 3.45 p = 0.093
Effect of Time F(1,10) = 7.86 p = 0.019
Interaction Accuracy vs. Time F(1,10) = 0.023 p = 0.883

Table 3.10: Results from repeated-measures ANOVA with accuracy and time as within-subject
factors studying the modulation of inhalation and exhalation with visual stimuli and task perfor-
mance.

(a)

(b)

Figure 3.11: Relation between task performance and inhalation/exhalation modulation in rela-
tion to the visual stimuli (the black horizontal line depicts mean across participants and the grey
box represents ± standard error of the mean; different participants are represented with different
colours).



In the results presented above, I found that there was a significant effect of time, i.e.,

there is a significant modulation in breathing cycle on both correct and incorrect

trials (this was already expected from the modulation observed across all trials). The same

happened with inhalation and exhalation. The absence of an effect of accuracy means that

there is no difference in breathing pattern associated with outcome (correct/incorrect) -

breathing cycle duration is not significantly different when comparing correct and incorrect

trials. Furthermore, the absence of an interaction between accuracy and time means that

there is not any relation between accuracy and breathing modulation.

3.1.4 Effect of breathing phase on accuracy

Still regarding task performance, I followed the same line of thought as before and analysed

if the breathing phase at which the auditory cue or the visual stimulus occur is related to

the accuracy. In other words, does the phase of breathing cycle where the auditory cue or

the visual stimulus are presented have an impact on the number of correct answers?

To represent these results, I plotted a circular histogram, with angles from 0º to 360º

(as in the unit circle). The circle is divided in 40 bins and each bin is as long as the number

of events in that interval - in this case, I am referring to the amount of trials with event

triggers in that phase interval.

Firstly, I started simply by analysing all trials, just to have an idea of where the events

occur, relatively to the breathing cycle (figure 3.12).

(a) (b)

Figure 3.12: Phase of breathing cycle at the onset of auditory cue (a) and visual stimulus (b).
Once again, only for illustrative purposes, these plots include all trials from all participants.



Secondly, I focused on correct and incorrect trials and the result was the following:

(a) (b)

(c) (d)

Figure 3.13: Relationship between breathing phase on stimuli display and accuracy.

In each of these graphs, there is a red line in a radial direction, at the centre of the image.

This line indicates the direction - the circular mean - and magnitude - mean resultant length

- of the mean resultant vector. This magnitude is a statistic between 0 and 1 that gives

information about the spread of a circular variable, where 0 means that the spread is large

and 1 means that all data are concentrated at a single value [66]. In my representations,

however, this red line is barely visible, which might indicate that there is no significant

result.

As mentioned before, I used the Watson’s test to determine if the phase of the breathing

cycle at which the auditory or visual stimuli were presented was related to the accuracy

in the respective trial. After performing the Watson’s test, I determined the number of

participants presenting a significant effect (that is, with p < 0.05). The test showed that,



regarding the auditory cue-analysis, the effect was not significant for any participant (0 %).

As for visual stimuli-analysis, it was significant for 1 participant out of 15 (6.67 %). I can

conclude that the phase of breathing cycle where the events happen does not have

a significant impact on accuracy.



Chapter 4

Discussion

In my investigation, I asked whether participants engaged in a visual discrimination task

modulated their breathing activity, how this modulation was influenced by the breathing

phase in which the task events occurred and how it impacted task performance. Across my

analysis, I found that there is, indeed, the presence of breathing modulation that manifests

significantly at the onset of visual stimuli, although it does not vary with the phase of

breathing cycle. Task performance gets significantly better with each run, but this effect

is not directly related to respiration, since there was no effect of run on modulation of

breathing cycle duration. The covariation of human behaviour with breathing cycle duration

- shorter breathing cycles were associated with better task performance - was observed

around auditory cue presentation but not at the time of the visual stimulus presentation.

Task performance increases with run, but not because of a breathing modulation

Participants showed an increase in task accuracy along each run. This is something we

initially noticed in the laboratory while watching the participants perform the task. Many

stated that houses were harder to discriminate and would only answer with that option if

the stimulus did not resemble a car, instead of answering because they were sure that it was

a house. However, they would comment that this changed as they advanced in the task.

It is possible that the visual processing improved, as participants would get accustomed to

the task’s timings, but this improvement does not appear to be related to the breathing

activity.
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Breathing activity is modulated by visual stimuli display, but not by the pre-

sentation of the auditory warning cue

Initially, I observed that the auditory warning cue does not trigger any kind of modulation

in breathing cycle duration, which went against my expectations, since I predicted that the

anticipation evoked by the auditory cue would induce a state of alertness that prepared

participants for the stimulus presentation. This state of alertness does not seem to be

associated with changes in breathing and I noticed, instead, that the breathing modulation

arises from the presentation of the visual stimulus (the target stimulus) - there is an increase

in breathing cycle duration as the stimulus is displayed.

Besides, from observing the data, it appears that participants with longer breathing

cycle reveal a stronger modulation (however, we have not explored this observation in a

quantitative manner). I also concluded that the amplitude of the modulation is not related

with the phase of breathing cycle at the moment of the events - onset of events on inhalation

or exhalation does not allow to predict the impact of modulation on respiration.

From these observations, one possibility is that the positive modulation (increase of

breathing cycle duration) could happen because participants tended to relax after seeing

the stimulus, as if they had previously accelerated respiration during attentive anticipation.

Well, if this was the case, then when does the breathing rhythm accelerate?

Breathing activity slows down when processing visual stimuli

The previous question led me to analyse several cycles surrounding the visual stimulus

trigger, in search of an acceleration of breathing cycle duration. At first, I thought that

there would be an acceleration at the beginning of the trial, before the auditory cue sounded,

which could explain why I could not detect any modulation with the auditory cue. With

this analysis, I would be able to find if that was true.

To my surprise, the acceleration in breathing rhythm actually occurs immediately after

the visual stimulus is shown. The breathing cycle at the moment of the stimulus had an

increased duration and the breathing cycle immediately after that restored the breathing

activity back to ”normal” by having a short duration, decreasing nearly as much it had

increased before.

This observation is very interesting, since it suggests that the presentation of visual

stimulus induces a deceleration in breathing activity, maybe as an attempt to facilitate



visual processing.

Nevertheless, there does not seem to exist any relation between this modulation and task

performance.

Faster breathing during auditory cue might yield better performance

When analysing the relation between task performance and breathing modulation I came

across a curious result. Even though it was borderline significant, there was an effect of

accuracy that indicated that on correct trials the breathing cycle duration at the onset of

auditory cue was slightly shorter than on incorrect trials. This could be interesting, by

suggesting that, in periods where we breathe slower, we are more relaxed and perhaps not

so attentive to the surrounding features - there could be attention lapses. One explanation

for this could be the linkage between respiration and short-term modulation in sympathetic

nerve activity [67]. The sympathetic nervous system activity is associated with high alertness

[68] and faster respiratory rate is associated with higher activity in sympathetic nervous

system [69]. Therefore, a faster breathing rate could also be associated with increase in

performance, but not be the cause.

Relating this to the previous observation, it might be legitimate to say that slower

respiration at the onset of auditory cue originates from the breathing rhythm not being

completely restored after slowing down significantly with the visual stimulus. This could

mean that visual stimuli that induce a stronger modulation might lead to incorrect trials,

although we did not test this hypothesis directly and it is important to keep in mind that

this effect of accuracy was only borderline significant.

Performing the same analysis with visual stimuli display, I found a significant modulation

of breathing cycle duration (effect of time), but not an effect of accuracy nor an interac-

tion between time and accuracy, which means that neither breathing rate nor breathing

modulation during visual stimuli presentation have an impact on task performance.

Task performance is not affected by breathing phase at relevant task events

Lastly, I attempted to find a relation between breathing phase at the moments of auditory

cue and visual target display and task performance. The result showed that there is no link

between these two factors: trial outcome cannot be predicted from the timing of the events

relative to breathing cycle.



Even though there is a noticeable modulation arising from visual stimuli display, the

moment at which the stimuli is presented (inhalation/exhalation) does not play a role in

the amplitude of that modulation, nor in task performance. Perhaps this reveals that par-

ticipants do not have the tendency to align their breathing cycle with the experimental

paradigm.

It is curious to see how some of my results match previous findings, but that does not

apply for all: I did not verify the effects of the phase of breathing cycle observed by Perl

et al. [22] and Flexman [34] - as a matter of fact, both of those studies revealed opposing

observations: Perl et al. [22] found that task accuracy in visuospatial perception is higher

when stimuli are presented during inhalation, while Flexman [34] reported that exhalation

at task onset would be more beneficial to increase performance.

These mismatches might arise from differences in experimental design. For example,

Flexman [34] considers a visual signal detection task, in which the stimulus was a circular

spot of light, appearing randomly in one of the four quadrants of the screen. Participants

had to press one of four response buttons, positioned in each quadrant of a small response

panel and breathing activity was recorded in a method similar to mine, with a bellows pneu-

mograph around the chest, below the ziphoid process. Perl et al. [22], however, measured

nasal airflow with a nasal cannula linked to a spirometer, while participants performed three

consecutive tasks: a lexical task, a visuospatial task and a mathematics task. In the visu-

ospatial task, more relevant for comparison, two alternatives of three-dimensional shapes

were presented simultaneously and participants had to select the one that could exist in the

real world (all its facets were correctly joined).

These variations in experimental design could be a factor that leads to different results

- for example, it could be possible that a signal detection task induces a stronger effect in

respiration due the simpler attentive approach required from participants; the presentation

of two similar three-dimensional shapes contains much more information than the simple

appearance of a spot of light and might require more attention and visual processing ability

in order to identify each detail of stimulus design. Participants might prepare differently

for each type of stimulus. The same applies to my experimental design, in which the

discriminatory nature of the task, where stimuli are only presented for a very short period,

may originate different breathing patterns in order to get ready for the stimuli.



Obviously, the method of recording respiration can also have an impact on the results

obtained - for example, the collector in nasal airflow measurement can affect respiratory

activity by increasing deadspace, while the use of a pneumograph around the chest might

include some motion artefacts.



Chapter 5

Conclusion

5.1 General Conclusion

In this study, I proposed, with the collaboration of my supervisor, to investigate the

interactions between human respiration and visual processing. In order to do this, we

designed a visual discrimination task, which I programmed from scratch in Matlab. We

prepared every acquiring instrument and planned a setup that would be optimal to record

the intended signals and acquired data from 18 participants. This great effort allowed me

to obtain a large and very rich dataset, containing information from various physiological

signals, which provided the unique and valuable groundwork for the development of this

research and future ones. Then, I proceeded to elaborate Matlab scripts in order to explore

and analyse the breathing data obtained.

We aimed for participants to have an accuracy of 75 % (in reality, this value was slightly

higher) and we noticed that there was a significant improvement throughout the task, where

participants would learn to better distinguish each stimulus. I attempted to discover what

could be the origin of this effect and if it was related with any breathing changes. What

my analyses showed, and probably the main result of this study, was that accuracy may be,

in part, dictated by the breathing rate during the auditory cue - moments where the par-

ticipants were breathing faster during the presentation of the auditory cue were associated

with better visual performance. This result was only borderline significant but, perhaps,

when considering the remaining data from other bodily signals, it is possible to understand
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what leads to this phenomenon - one hypothesis is that moments of faster breathing are

associated with enhanced arousal, which could be confirmed by looking at the EDA and

pupil size data, both measurements of sympathetic activation; also, a look into EEG data

could reveal a certain pattern that varies significantly with each run, as does accuracy.

Another interesting result to take home from this research is that respiration slows down

when stimuli are presented. Maybe I could speculate that the prolonged breathing rate

could help with visual processing in moments of focused attention, but I did not find any

evidence of this implication. Nonetheless, although the moment when respiration slows

down is locked with visual stimuli, it also coincides with the moment when participants

decide and respond, so this deceleration can also be associated, for example, with decision

making or the motor response. I speculate that this breathing modulation may even be

indirectly related to accuracy variation, since it could affect the breathing rate during the

auditory warning cue of each following trial. In fact, the improvement in task performance

may result from various factors and the breathing modulation at visual stimuli onset could

be just one of those factors, that plays a small role on its own but could show a deeper

explanation when putting all of those elements together.

As I have mentioned, it was to my surprise that I did not observe any influence of

breathing phase (inhalation/exhalation) on task performance or breathing modulation.

All in all, the results I obtained support that breathing activity is connected to sensory-

cognitive function, possibly in a causal way, reinforcing the importance of considering res-

piration when investigating human cognition.

5.2 Future Work

As I mentioned before, the analysis of the remaining data that I collected could help

provide deeper explanations for what I have found, and even reach new conclusions beyond

that. This dataset is abundant enough to carry out diverse studies around the same topic

on body-brain interactions in visual perception and the work I have developed might pave

the way for the next investigators who are interested in this subject, allowing them to

incorporate these data in their own work.

As it was planned on the original study, the following steps include the examination of

the other physiological signals - EEG, EOG, EMG, EKG, PPG, EDA, EGG, eye movements



and pupillography - and integrate them with the discoveries made in this project. It will be

interesting to see what information might come out of that research - perhaps the borderline

significant results I observed will reveal to have a stronger impact when combined with other

measurements of arousal, for example; it could be found that there is indeed relevance in

breathing phase; the EEG data will contribute to a deeper understanding of the impact

breathing modulation has on brain function and hopefully explain it in a more extensive

and complete way that includes brain-respiration synchronies.

Furthermore, there is still much to be explored regarding respiration and sensory-cognitive

interactions and strengthen the framework to explain how the body and brain interact in

sensory processing.
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