
Master in Informatics Engineering

Internship

Final Report

downCloud - Fault Injection in
Cloud Platforms

Autor:
Tiago Filipe Domingues Simões
tfsimoes@student.dei.uc.pt

Orientador:
Mário Zenha-Rela

June 28, 2016

Master in Informatics Engineering

Internship

Final Report

downCloud - Fault Injection in
Cloud Platforms

Autor:
Tiago Filipe Domingues Simões
tfsimoes@student.dei.uc.pt

Orientador:
Mário Zenha-Rela

Juri Arguente:
Marilia Curado

Juro Vogal:
Alexandre Miguel Pinto

June 28, 2016

Resumo

Durante vários anos o núcleo de investigação SSE (Software and Systems En-
gineering) do CISUC (Centro de Informática e Sistemas da Universidade de
Coimbra) tem vindo a desenvolver diversos injectores de falhas para efeitos
de investigação. Contudo, tem-se observado que após o final dos trabalhos
se perde o know-how das ferramentas e do ambiente de injecção, nomeada-
mente com a partida dos investigadores envolvidos. Isto torna em muitos
casos imposśıvel reutilizar ou mesmo replicar os resultados, devido à enorme
complexidade envolvida. Para além deste problema, os testes e recolha de
resultados são normalmente realizados de forma manual, não automatizada,
utilizando scripts para recolher os dados, que posteriormente são analisados
utilizando ferramentas de análise de dados externas.
Com este problema em mente o grupo de investigação SSE decidiu lançar
o estágio downCloud, visando desenvolver uma aplicação web que permita
doravante aos investigadores enviar cada injector desenvolvido para esta
plataforma para o testar e para outros investigadores externos à equipa o
usarem, para validar resultados obtidos ou mesmo para testarem a presença
de erros nos seus sistemas. A intenção foi desenvolver uma solução total-
mente automática, isto é, capaz de realizar as campanhas de injecção sem
qualquer interacção humana ou scripts, e no final apresentar um relatório de
śıntese dos principais resultados obtidos. Posteriormente os investigadores
podem descarregar os resultados de injecção em bruto para uma análise mais
detalhada, se assim o desejarem.
Este foi o objectivo, plenamente atingido, deste estágio. De assinalar que não
era nosso objectivo desenvolver qualquer injector de falhas, mas sim todo o
ambiente de gestão de campanhas de injecção usando injectores desenvolvi-
dos por terceiros.
A solução desenvolvida ao longo deste estágio já está dispońıvel como um
serviço (SaaS) que, através de uma aplicação web, permite que qualquer
utilizador-investigador envie o seu injector de falhas para teste ou para que
utilizadores ’finais’ testem o impacto de erros de hardware nos seus sistemas
utilizando injectores disponibilizados por terceiros.

i

Palavras-Chave

Injecção de falhas, servidores cloud, benchmark, aplicações web, engenharia
de software

ii

Abstract

During the last decades the SSE (Software and Systems Engineering) research
group of of CISUC (Center for Informatics and Systems of the University of
Coimbra) have developed several fault injectors for research purposes. How-
ever, after the end of the projects and the involved researchers leave, it is
almost always impossible to reuse the research setup platform to replicate
the experiments, due to its complexity. Moreover, most of the analysis is
performed manually using external data processing and analysis tools.
With this problems in mind the SSE research group launched the downCloud
master thesis, aiming to develop a web-based platform that allows researchers
to upload their injectors to the platform to test them and also allows other
interested parties to use them, to validate results or to test their own systems
against hardware errors. It must be stressed that it was out of scope of this
project to create a new fault injector, but rather to develop the environment
to support researchers’ fault injection campaigns.
These goals have been fully achieved, there is now an operational web plat-
form (SaaS) functioning autonomously, so that it is now possible for any
researcher to upload its fault injector and launch a fault injection campaign
without human intervention, so that, after the campaign is over, a synthesis
of the most relevant results is delivered. This solution also supports assess-
ment by ’final’ interested users of their system’s resilience to hardware errors
by using third party fault injectors.

Keywords

Fault Injection, cloud servers, benchmark, web applications, software engi-
neer.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Cloud-as-a-target . 2
1.3 Objectives . 2
1.4 Document structure . 5

2 Background concepts 6
2.1 Cloud computing . 6

2.1.1 Service models . 7
2.1.2 Deployment models . 8

2.2 Benchmarking . 9
2.3 Fault injection . 10

2.3.1 Fault types . 12
2.4 System properties . 13
2.5 Conclusion . 13

3 Work Methodologies 14
3.1 Software processes and lifecycle 14

3.1.1 Agile Development . 14
3.2 Work Plan . 17
3.3 Processes of Software Engineering 22

3.3.1 Version Control Software 22
3.3.2 Deployment Environments 23

3.4 Conclusion . 24

4 Requirements Analysis 25
4.1 System Actors . 25
4.2 Prototyping . 26

4.2.1 Low Fidelity Prototyping 26
4.2.2 High Fidelity Prototyping 28

4.3 Functional Requirements . 30

iv

4.4 Non Functional Requirements 32
4.5 Conclusion . 32

5 Architecture Analysis and Design 34
5.1 Architecture of the Solution 34
5.2 Technologies Used . 37
5.3 Architectural design strategy 38
5.4 Conclusion . 39

6 Development work 40
6.1 Injection Campaigns . 40

6.1.1 Problem Definition . 40
6.1.2 Our approach to achieve these goals 41
6.1.3 Interface and Features 45
6.1.4 Features Developed . 48
6.1.5 Validation . 49

6.2 Conclusion . 50

7 Validation 51
7.1 Acceptance Tests . 51
7.2 Stress Tests . 51

7.2.1 Stress Test Scenario . 52
7.2.2 Observations and improvements 52

7.3 Conclusion . 53

8 Conclusion and future work 54
8.1 Competences achieved . 54
8.2 Main difficulties overcome . 55
8.3 Future Work . 55

9 Annex 56
9.1 Annex A - Artifacts of agile methodology 56
9.2 Annex B - Risk Analysis . 69
9.3 Annex C - Requirements Analyses 71

9.3.1 D.1 - Functional Requirements 71
9.4 Annex D - Data Model . 75
9.5 Annex E - Tests and Validation 83

9.5.1 Validation Campaigns 83
9.5.2 Acceptance Tests of Features 84

v

List of Figures

2.1 Comparison between own server, Iaas, Paas and SaaS [17] . . . 8

3.1 Scrum agile methodology cycle[36] 16
3.2 Structure of Git Branches[39] 23

4.1 Low fidelity prototype of use case ’list campaigns’ 27
4.2 Low fidelity prototype of short report campaign 28
4.3 High fidelity prototype of short report campaign 29
4.4 High fidelity prototype of short list campaigns 30

5.1 Global perspective of the architecture 35

6.1 Data model of Campaigns . 44
6.2 Data model of CampaignsRegister 45
6.3 Interface developed to visualize all the system target the user

have . 46
6.4 Interface developed to visualize all the campaigns and the evo-

lution of their execution . 47
6.5 Interface developed to visualize the results obtained during

the tests . 48

9.1 Sprint 1 Burndown . 57
9.2 Sprint 2 Burndown . 58
9.3 Sprint 3 Burndown . 59
9.4 Sprint 4 Burndown . 60
9.5 Sprint 5 Burndown . 61
9.6 Sprint 6 Burndown . 62
9.7 Sprint 7 Burndown . 63
9.8 Sprint 8 Burndown . 64
9.9 Sprint 9 Burndown . 65
9.10 Sprint 10 Burndown . 66
9.11 Sprint 11 Burndown . 67
9.12 Sprint 12 Burndown . 68

vi

9.13 Data model diagram . 75

vii

List of Tables

4.1 Actors present in the solution 26
4.2 Functional requirements . 31

6.1 Hardware Specification of hypervisor 49

7.1 Tests conditions to view and analyze reports 52

9.1 Sprint 1 . 56
9.2 Sprint 2 . 57
9.3 Sprint 3 . 58
9.4 Sprint 4 . 59
9.5 Sprint 5 . 60
9.6 Sprint 6 . 61
9.7 Sprint 7 . 62
9.8 Sprint 8 . 63
9.9 Sprint 9 . 64
9.10 Sprint 10 . 65
9.11 Sprint 11 . 66
9.12 Sprint 12 . 67
9.13 Risk 01 . 69
9.14 Risk 02 . 69
9.15 Risk 03 . 70
9.16 Risk 04 . 70
9.17 User story DC-01 . 71
9.18 User story DC-02 . 71
9.19 User story DC-03 . 71
9.20 User story DC-04 . 72
9.21 User story DC-05 . 72
9.22 User story DC-06 . 72
9.23 User story DC-07 . 72
9.24 User story DC-08 . 73
9.25 User story DC-09 . 73

viii

9.26 Description data base entities 76
9.27 Description table Clients . 76
9.28 Description table Tokens . 77
9.29 Description table Machines . 78
9.30 Description table Campaigns 79
9.31 Description table GoldRuns 80
9.32 Description table CamapignsRegister 80
9.33 Description table ResultsCampaigns 81
9.34 Description table InfoCampaigns 82
9.35 Evaluation campaigns to Apache 83
9.36 Evaluation campaigns to Kernel 83
9.37 Acceptation tests of features 84

ix

Acronyms

CISUC Centre for Informatics and Systems of the University of Coimbra
IaaS Infrastructure as a Service
MVC Model View Control
ORM Object-Relational Mapping
PaaS Plataform as a Service
REST Representational State Transfer
SaaS Software as a Service
SEE Software and Systems Engineering researach group of CISUC
SSH Secure Shell
SPEC Standard Performance Evaluation Corporation
TPC Transaction Processing Performance Council

x

Chapter 1

Introduction

This document presents the work developed in partial fulfillment of the Mas-
ter degree in Informatics Engineering at the University of Coimbra, in the
academic year 2015/2016, by the student Tiago Filipe Domingues Simões.
In this chapter we present the downCloud - Fault injection in clouds project,
its motivation, objectives and the document structure.

1.1 Motivation

During the past decades the Software and Systems Engineering research
group of CISUC (Center for Informatics and Systems of the University of
Coimbra) has developed several fault injectors for research purposes. How-
ever, after after the end of the projects and the involved researchers leave, it is
almost always impossible to reuse the research platforms to replicate the ex-
periments due to its complexity and insufficient documentation; researchers’
focus is more on the experiments themselves than in the tools they use along
the way, seen as a mean not as an end unto themselves. Moreover, most of
the analysis is performed manually using external data processing and anal-
ysis tools, so not much information is left behind.
With this problems in mind the SSE research group launched the downCloud
master thesis, aiming to develop a web-based platform that allows researchers
to upload their injectors to the platform as well as all the scripts involved
in setting up the research environment, in order to test their tools and also
allowing other interested parties to use them, to validate results or to test
third party systems against hardware errors. It must be stressed that it was
out of scope of this project to create a new fault injector, but rather to de-
velop the environment to support researchers’ fault injection campaigns.
There is an interesting circularity in this project, as the idea is to develop a

1

cloud-based infrastructure that supports cloud-targeted fault-injection.

1.2 Cloud-as-a-target

Cloud computing is today a common-place reality: Google, Netflix, Face-
book, LinkedIn, are some of the services available and used by millions of
users around the globe. Following such titans of the internet, lots of big,
small and medium enterprises start to use platforms in the cloud (e.g. Ama-
zonEC2 [2], WindowsAzure [3], etc), not only to store their data, but also
keep available their services to their customers. These infrastructures pro-
vide different computational resources, what permit that several enterprises
build their applications online without the costs of having their own physical
infrastructure.
However, this change of infrastructure paradigm keeps raising many concerns,
specially the resilience of this platforms to hardware errors. The continuous
size reduction of the transistors in the processors and the progressive reduc-
tion in their work voltages has led to an increase of transient hardware errors.
In most of the applications it is assumed that this errors are treated by the
several layers of software, including the application layer.
The SSE research group of CISUC have decades of experience in the de-
velopment of fault injectors in several platforms, from embedded systems to
distributed big data warehouses. With the emergence of the dissemination of
systems based on cloud computing, naturally arises the interesting to evalu-
ate the resilience of such systems. It’s specificity raise the need to create new
tools to perform such experiments that, due to its scale and complexity, are
not amenable to the ’handcrafted’ approaches used in less complex systems.
Thus, targeting the cloud for fault injection was the driver to build a SaaS
infrastructure to support a cloud-based fault injection platform.

1.3 Objectives

This thesis has two major goals: on one hand the objective is to design and
develop the first functional version of a fault-injection platform for systems
hosted in the cloud, based on previous investigation of fault injection in hy-
pervisors [4].
On the other hand, the solution itself should be designed as service (SaaS).
The solution to be developed should also include a semi-automated process
of fault injection and also a framework to support a preliminary analysis of

2

the results from the fault injection campaigns.
One of the main features of the platform to develop in this internship was
its usability, in a perspective of a ’product’: the platform was designed to be
itself hosted in a cloud infrastructure and be available in two different modes,
expert and auto. In the first mode is expected for the user to have enough
knowledge to define the several parameters of the fault injection campaign.
In the second scenario the user does not need to have the same expertise
knowledge, and consequently the system performs a (semi) automatic defi-
nition of several parameters of the injection.
Other important aspect of the solution implemented was its intended scope:
since there is a wide variety of services that are hosted in cloud platforms,
this thesis will be focused solely on web applications. Given the innumerable
platforms and solutions in the cloud, and the time available for this thesis
work, this scope intends to lead to a first fully usable solution, e.g. the full
functionality of the service, even if just on a subset of all the possible tar-
gets.
To deliver a complete usable solution, the thesis work also provides the a
preliminary analysis of the results of the injections performed. For more ad-
vanced analysis the researcher/user can access the full fault injection data in
an external database, that can be browsed and managed by external tools
(e.g. Oracle Business Intelligence [6], Pentaho [7]).
For the thesis purpose we adopted a workload that has been extensively used
by the SSE research team (extracted from a web-TPC suite), but the plat-
form allows the researcher to select its own workload.
In summary, the main objectives for this thesis are:

• Independent application of methodologies and practices of a software
engineer;

• Design and development of a software architecture capable of handling
complex fault -injection campaigns (several different campaigns, in dif-
ferent cloud-based targets, with different types of injectors, and be able
to make a preliminary analysis of results);

• Development of a semi-autonomous solution, capable to handling si-
multaneously different campaigns in different targets with different pa-
rameters;

• Development of the preliminary analysis of the results and deliver a
meaningful report;

• Development of a front-end that allows user to setup a campaign with

3

their specific parameters and see the report and results of the experi-
mental campaigns performed.

• Assessment of the correct operation of the system developed.

• Publication of a paper with the description of this injection framework.

Below we present a concise initial schedule of the work that was per-
formed:

1o Semester work plan

• Analysis of state of the art in fault injection;

• Study of the technologies to be adopted, namely those cloud-based.

• Specification of architecture to implement;

• Selection of the workload;

• Specification of the data model for the platform;

• Write the intermediate report.

2o Semester work plan

• Development of the fault injection framework;

• Development of the preliminary analysis of injection results;

• Development of other system components;

• Testing of the platform.

• Delivery for third party testing in their own platforms (external assess-
ment).

• Writing the final report (this document).

• Writing of a scientific paper describing this ’open’ fault-injection frame-
work.

4

1.4 Document structure

In this first chapter we contextualized the reader about the problem, the
motivations to start this project and the thesis goals.
In the second chapter we present some background information about the
methodologies, architectures and technologies used in this project.
In the third chapter we present the work plan, methodologies and processes
of software engineering used during the work.
In the fourth chapter we describe how the requirements gathering was per-
formed and validated, as well the specification of all functional and non
functional requirements for the solution developed.
In the fifth chapter we describe of architecture designed and implemented.
In sixth chapter we describe all the actual work products (artifacts) that
were developed during the two semesters.
In the seventh chapter we describe all the functional and quality tests that
were performed to ensure the correctness of the platform.
And finally, this thesis concludes in the eighth and last chapter with a final
reflection and the conclusions.

5

Chapter 2

Background concepts

In this chapter we present an overview of the core concepts involved in the
DownCloud project. While it involved a rather extensive literature survey,
this is not a state-of-art, but instead an overview of the core concepts of the
many and varied fields covered by this work.

2.1 Cloud computing

We intend that the downCloud platform has the ability to scale up if needed
to serve the worldwide fault-injection research community needs, and that
this service can be available to everyone with an internet connection. Beyond
this connected scalability our platform must be able to test the resilience of
cloud-based servers. In view of these complementary needs we performed a
’state-of-practice’ survey about cloud computing concepts and services that
is synthesized below:
According to The NIST definition of cloud computing [8], Cloud Computing is
”a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.”. In the
same reference five essential characteristics for Cloud Computing are listed:

• On-demand self-service: A consumer can request and obtain com-
puting capabilities, such as server time and network storage, without
requiring human interaction;

• Broad network access: Capabilities are accessible over the network
through standard mechanisms;

6

• Resource pooling: The provider’s computing resources are pooled to
serve multiple consumers, where the resources are dynamically assigned
and reassigned according to consumer demand. Usually the consumer
has no control or knowledge over the physical location of the resources;

• Rapid elasticity: Capabilities can be elastically provisioned and re-
leased, in order to adapt the demand;

• Measured service: Resource usage can be monitored and controlled
providing transparency for both the provider and consumer of the uti-
lized service.

2.1.1 Service models

There are three different types of service models that can be used to provide
Cloud Computing services:

• Software as a Service (SaaS): The capability provided to the con-
sumer with access through various client interfaces to software services
running on the cloud. Examples of this service all Google Apps [10],
Dropbox [11], Office365 [12] from Microsoft ;

• Platform as a Service (PaaS): The capability provided to the con-
sumer to deploy his applications into a cloud infrastructure, by using
programming languages, libraries,service and tools supported by the
provider. The consumer can not manage or control the underlying
cloud infrastructure, keeping only control over the deployed applica-
tions and possibility configuration settings for the application-hosting
environment. Examples are Heroku [13], OpenShift [14] and Windows
Azure [3];

• Infrastructure as a Service (IaaS): In this model the consumer is
provided with the capability of manage the processing, storage, net-
works and other fundamental computing resources where the his appli-
cations run. Examples are Amazon EC2 [2], Google Compute Engine
[15] and Rackspace [16].

In Figure Figure 2.1 a visual comparison between IaaS, SaaS, PaaS and ’on
premises’ traditional servers is presented.

7

Figure 2.1: Comparison between own server, Iaas, Paas and SaaS [17]

As can be seen, the infrastructure responsibility varies depending on the
service level, being totally ’in the cloud’ for SaaS.

2.1.2 Deployment models

Not all clouds are public. Actually a cloud computing infrastructure can be
deployed in several settings:

• Public: The cloud is provisioned for open use by the general public.
(E.G. Heroku [13])

• Private: The cloud infrastructure is provisioned for exclusive use by
a single organization.

• Community: The cloud infrastructure is provisioned for exclusive use
by a group of organizations that share the same concerns.

• Hybrid: The cloud infrastructure is composed by two or more dis-
tinct cloud infrastructures (private, community, or public) that remain
unique entities, are linked together by standardized or proprietary tech-
nology that enables data and application portability.

8

From the above survey of concepts we can now decide the type of target
platforms aimed by our platform. Since we want to emulate hardware faults,
thus we need direct access to the operating system kernel, the only possible
target (by now) will be IaaS services. In what concerns deployment models,
all are possible targets as long as the end-user has root access to their allo-
cated servers. No other constraint to the applicability of our platform has
been identified so far.

We shall now present our survey on benchmarking concepts in order to
assess the resilience of the target systems.

2.2 Benchmarking

One of the core objectives of downCloud project is to provide a platform that
allows any end user (most likely a researcher on fault-injection) to be able to
test the resilience of his/her own servers in a cloud environment. Since we
pretend to develop a service that allow such end user to test and evaluate his
environment with several parameters, we surveyed the main concepts related
with benchmarking.
Benchmarks are standard tools that allow the evaluation and comparison
of different systems or components in different areas such as performance,
dependability, security or resilience.
In order to produce valid and useful benchmarks there is certain criteria
which must be respected. These criteria is discussed in the core reference on
benchmarking, The Benchmark Handbook [18]:

• Significance: The benchmark has to measure the performance of the
typical operation of the problem domain.

• Portability: The benchmark should be capable of running in several
different systems and architectures.

• Scalability: The benchmark should be scalable to cover small and
large systems.

• Simplicity: The benchmark should be understandable to avoid lack
of credibility.

Further studies about benchmarking has yielded further criteria [19]:

• Relevance: The benchmark has to reflect something important;

• Repeatable: The benchmark result must be reproducible by running
the benchmark under similar conditions;

9

• Fair & Portable: The benchmark should provide a fair comparison
between systems and not favor or penalize a system or architecture over
another;

• Verifiable: The results provided by the benchmark need to inspire
confidence as of their validity and representativeness;

• Economical: Running the benchmark should be affordable.

Performance benchmarks are the most common. These benchmarks fo-
cus on performance of the systems for posterior comparison. The two most
influential standardization organizations in this area are TPC (Transaction
Processing Council) [20] and SPEC (Standard Performance Evaluation Cor-
poration) [21].

In the context of this work we took a pragmatic approach, and adopted
a benchmark used by the SSE group in previous studies which is based on a
TPC benchmark to assess web-services.

2.3 Fault injection

For this first version of downCloud, we will focus on how cloud servers react
to a fault injection that emulates transient hardware errors. This is due to
the availability of an ’injection driver’ that emulates such faults. So, we also
did a survey about fault injection to understand better what other kind of
fault injections exist, so that we could position the fault-injector made avail-
able to us compared to others.
Fault injection is an experimental technique for assessing the behavior of
systems under the presence of faults. Actually it is the only way to inten-
tionally trigger its fault tolerance mechanisms in a controlled way. Fault
injection can be defined as ”the process of deliberately introducing faults
or errors in computer systems, allowing researchers and system designers to
study how computer systems behave in the presence of faults” [22]. This ex-
perimental technique can be used in several different contexts and can serve
different purposes, namely:

• Assess the effectiveness of fault-tolerance mechanisms.

• Study of error propagation and error latency.

• Tests the correctness of fault-handling mechanisms.

• Measure the time it takes for a system to detect and recover from errors.

10

• Test the correctness of fault-handling protocols.

• Verify failure mode assumptions of components or subsystems.

• Study the impact of faults and fault-tolerance mechanisms

Given the repeated use of fault injection related concepts in this docu-
ment, the definition of the core concepts is given below, so that the reader
can follow this document without ambiguity. Fault is the phenomenological
cause of an error (e.g. a gamma ray hitting a transistor); Error is a wrong
state of the system, i.e. a discrepancy between the correct and the actual
internal state; Failure is an external visible manifestation of an error, i.e.
when the system is unable to perform its desired function. [23]. Target sys-
tem is the system that will endure the fault-injection testing. Fault-load
is a (set of) operation(s) that will interfere with the system (actually that
generates internal errors). Workload is as operation that will be used to
exercise the system (e.g. an HTTP request). Fault injection experiment
is the execution of a workload and fault-load in a controlled experimental
environment. Fault injection campaign can be defined as the execution
of several fault injection experiments.
Different fault injection techniques can be compared and characterized on
the basis of several different properties:

• Controllability: the ability of control the injection of faults, both in
time and space (location).

• Observability: the ability to observe the manifestations of the in-
jected faults. This is normally an (un-met) technical challenge.

• Repeatability: the ability of being capable of repeating an experiment
and obtain the same results. This is extremely difficult, as no system is
exactly in the same state at the exact point in time due to concurrency
and non-determinism of CPU execution.

• Reproducibility: the ability to reproduce the results of a fault injec-
tion campaign. This is easier to achieve than repeatability as we are
dealing with statistical values.

• Representativeness: how accurate can be the emulated system, the
workload and the fault-load represent the real system.

The most common fault injection techniques are hardware-implemented
fault injection and software-implemented fault injection. These techniques

11

vary in the method used to inject the faults. While software-implemented
fault injection uses software for that purpose (e.g. a kernel driver that flips
register or memory bits), the hardware-implemented fault injection make uses
of specialized hardware components (external or internal, e.g. a boundary
scan infrastructure).

2.3.1 Fault types

A fault can be classified as a software fault, a malfunction due to a software
defect, or an hardware fault, a malfunction of an hardware component. Typ-
ical software faults, injected by fault injection tools are incorrectly assigned
variables, wrong loop counter initialization, off-by-one overflows and incor-
rect comparison rules. Since the injection driver provided by the SSE for this
work emulates hardware errors, software faults are out of scope.
Hardware faults can be of various kinds, such as stuck-to-on, stuck-to-zero
and bit flip, and can affect a wide range of computer components, from CPU
registers to memory transistors or communication buses. Our injection driver
flips bits on the CPU registers.
Faults can be also classified, as permanent, intermittent and transient. A
transient fault will disappear after some time, can also be causes by en-
vironmental effects. An intermittent fault will appear and reappear in an
apparently random fashion. A permanent fault will remain active until the
affected component is repaired.
The emulation of a permanent hardware fault is considerably more elaborate
than emulating a transient fault, since a permanent fault requires a manip-
ulation every time the target hardware component is read, while a transient
fault needs only one manipulation. That is the case with our injection driver
(bit flip of CPU registers)
Faults can also manifest themselves in a number of different ways. Some
faults will cause the system or program to completely crash while others will
cause it to enter an hang state. Some can have a less destructive effect, such
as slowing down the performance of the system , making the system produce
wrong or invalid output, or have no effect at all. Understanding the system
behavior under faults is the main goal of fault injection. Our platform will
deliver a synthesis of the major behavior outcomes after a fault-injection
campaign.

12

2.4 System properties

We close this chapter by defining some global concepts so that the reader can
understand which system properties can be assessed using fault injection.

Performance is the amount of work accomplished by a computer system.
[30]

Dependability is the ability to provide services that can defensibly be
trusted within a time-period. This may also encompass mechanisms designed
to increase and maintain the dependability of a system or software. [31]

Security is the protection of information systems from theft or damage to
the hardware, the software, and to the information on them, as well as from
disruption or misdirection of the services they provide. [32]

Resilience is the ability to provide and maintain an acceptable level of
service in the face of faults and challenges to normal operation. [33]

Availability refers to the ability of the user community to obtain a service
or good, access the system, whether to submit new work, update or alter
existing work, or collect the results of previous work. If a user cannot access
the system, it is - from the users point of view - unavailable. Generally, the
term downtime is used to refer to periods when a system is unavailable. [34]

2.5 Conclusion

At the end of this chapter the reader should have the background concepts
involved in the downCloud project.
In the next chapter we shall present the work methodology and the techniques
and processes of software engineering used during the project.

13

Chapter 3

Work Methodologies

In this chapter we present the work methodologies adopted in this project.
We cover the software lifecycles adopted, the work plan and the major pro-
cesses of software engineering used during development.

3.1 Software processes and lifecycle

The development process mostly used in this internship was based in the
Scrum Agile methodology. However, during the first half of the first semester,
we adopted the straightforward Waterfall methodology to do the study of
background concepts, analysis of the problem and requirements gathering.
Having consolidated this knowledge, in the second half of the first semester,
during the experimentation with the software architecture, we adopted two
week sprints for the work [35]. This approach was so effective, as the super-
visor requests kept evolving as the software was built, that this methodology
was adopted until the end of the internship. The artifacts produced during
the this phase (agile sprints) can be consult in Annex 9.1.

3.1.1 Agile Development

The Scrum Agile methodology is considered very effective in projects, where
the requirements of the solution are not stable. In our case, while the overall
goals were clearly defined from the beginning (which allowed a solid archi-
tecture to be defined), Scrum intended to be the methodology of choice for
projects with unstable requirements, so that incremental releases are deliv-
ered maximizing value to the ’client’. This approach requires high proximity
with the client to define the next release. In our case, with weekly or bi-
weekly meetings with the supervisor, this proximity was ensured.

14

Using this methodology it was possible to better manage the requirements,
by a good communication with the supervisor. During the initial stages of the
project, we used a Waterfall methodology, so that we could take advantage
from the sequential more ’formal’ steps (requirement gathering, technology
survey, architecture design) .
In the last phases of the project the progression was done by a set of bi-
weekly interactions (sprints). In our case there were only two roles of the
several that Scrum suggests:

Main Roles

Product Owner Is who represent the client and have a vision over what
he wants, having responsibility to communicate the vision to all the team
of the Scrum. The product owner also prioritizes the task that exist in the
Product Backlog. In this project this role was assumed by professor Raul
Barbosa.

Development Team Is responsible for the delivery of increments of the
project that could by used in the final product at end of each sprint. The
development team for the downCloud project had only one person, the au-
thor.

Scrum Master Is responsible to ensure that the development team fulfills
the good practices in Scrum, is also responsible to help all the elements from
development team to ensure the work is done in best possible way. This role
was performed mostly by the supervisor, professor Mário Rela.

15

Cycle of Agile Methodology

Figure 3.1: Scrum agile methodology cycle[36]

Product Backlog Is a list of tasks set and prioritized by the Product
Owner.

Daily Scrum Meeting It is a brief reunion that happens every day at
same hour, with maximum duration of 15 minutes, between all the elements
of the development team, with the objective to have a situation report about
the tasks complete and to be complete. Being a aone person project, the
author updated his project log with a brief reflection.

Sprint Backlog It is the list of task identified by the Scrum team to be
finished during the sprint. In this project the tasks are planned from user
stories, and are estimated by the author according to the tasks that are

16

present in Product Backlog, most of the time was used the technique of Plan-
ning Poker [37], to estimated the points. The duration of the development
sprints varied between two and four weeks.

So, despite being a one member team, the adoption of different software
lifecycles in different phases of the project has proven to be a good decision.
We had the rare opportunity of realizing that a single project can have more
than one lifecycle. Having the capability to change the approach according
to the project needs was a great insight from this experience.

3.2 Work Plan

We shall now present the work plan for the internship, represented in two
Gantt diagram, and also the artifacts produced in each phase.
The work plan for most of the first semester, was referred in the previous
section, follows a classic perspective (waterfall), it was more focused in the
requirements, survey and architectre design artifacts.
The work plan for the second semester was elaborated with the definitions of
milestones, since the development proceeded according to the agile method-
ology also described in the previous section.
We also performed a risk analysis to identify and monitor the major risks for
the project, as well as its impact. The risk analysis is present in Annex 9.2.

17

19 26 2 9 16 23 30 7 14 21 28 4 11 18 22

Start of internship *

Environment and objectives

Definition and analysis of business requirements

Study of state of the art and background knowledg

Requirements gathering

Study of technologies

Analysis and draw of architecture

Development of back-end (api)

Development of back-end (campaign manager)

Experimentation

Risk analysis

Write of the interim report

Delivery of interim report *

Work plan for 1º Semester

2015 2016

October November December January

Description of work plan first semester

Below we describe in more detail each task from the work plan, that is present
in previous diagram.

Environment and objectives Environment is the project vision and defi-
nition of the objectives to be completed in the internship with the supervisor.

Definition and analysis of business requirements Elaboration of a
study about the needs of this product in the markets. While this was a
research focused project, the needs of the fault-injection reserach community
had to be understood.

Study of state of the art and background knowledge Study of state
of the art as a way to support the development of this internship. Realization
of a study about the products that exists, methodologies, architectures and
technologies explored and conceptualized by the scientific community.

Requirements gathering Involves the process of requirements gathering,
both functional and non-functional, in a first step by talking with some re-
searchers of the SSE group and then some brainstorming, taking in account
all the information collected. Development of low and high fidelity prototypes
of solutions to obtain feedback from the researchers.

Study of technologies We studied the technologies used in the develop-
ment frameworks (front-end and back-end).

Analysis and design of the software architecture This task was re-
alized at same time as the study of technologies, by experimentation of al-
ternatives, and also later during the development of some components of the
platform. Same minor changes had to be introduced to accommodate later
requirements.

Experimentation As the development of architecture went forward, at
same time tests were being done to prove that f the design of the architecture
was the most correct for the problem.

Risk analysis It was performed to identify and monitor risks that could
negatively affect the project. The intermediate presentation was a strong
driver for this activity.

19

July

8 15 22 29 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 1

Milestone 1 *

Milestone 2 *

Development of back-end (campaign manager)

Development of front-end (basic interface)

Development of front-end (user)

Development of front-end (targets\machines)

Development of front-end (campaigns)

Development of back-end (automatization campaign

Development of back-end (analyzer)

Development of front-end (reports)

Validation

Write of the final report

End of internship *

Work plan for 2º Semester

2016

February March April May June

Milestone 1: Deliver of the prototype full stack application, front-end and back-end, fully operation.

Milestone 2: Deliver of the prototype full autonomous capable doing analyzes of the data recovered from campaigns.

July

8 15 22 29 7 14 21 28 4 11 18 25 2 9 16 23 30 6 13 20 27 1

Milestone 1 * *

Milestone 2 * *

Development of back-end (campaign manager)

Development of front-end (basic interface)

Development of front-end (user)

Development of front-end (targets\machines)

Development of front-end (campaigns)

Development of back-end (automatization campaign

Development of back-end (analyzer)

Development of front-end (reports)

Validation

Write of the final report

End of internship *

Excution work plan of 2º Semester

2016

February March April May June

The major delay that occurred in the project was by lack of experience from the technologies used in the project, taking several tasks related to the front-end
to get major delays. Besides during the project there was a small change in the objectives. Taking some time of the intern to adapt the product to the
feedback that was given.

In the tables above we present the work plan (initial expectation and
actually executed) for the second semester. Since we used an agile approach,
there was no initial ’plan’ to follow, but rather a series of user stories that
the supervisor kept prioritizing and updating as the work evolved.

3.3 Processes of Software Engineering

In this section we present the major processes and tools adopted to perform
the project and develop mature versions in every release. There is also a brief
discussion about the different development environments that the project
used.

3.3.1 Version Control Software

In way to grant a better quality in the process of software development, there
is a process of quality well set in order to guarantee a good management of
the code repository and version control of the software produced.
We used the version control system Git, by the framework Bitbucket 1. This
systems is not centralized, but allows each programmer to keep their version
of the code in their development area (commits). Using Git also allowed us
to speed up the process of development of several components of software in
a nonlinear way (branching/merging), since it allows the creation of several
branches that represents different software features [38].
In the context of this project we used two remote branches one, master, that
has the code tested and other one, development, that has all the features that
are not yet fully implemented and tested. When the developer (the author)
starts implementing a new software feature, he creates a new branch which
contain the implementation of the necessary code for the development of this
feature. A merge of a branch with the master, occurs only after the code
is fully implemented and tested. This process is graphically depicted in the
figure below.

1https://bitbucket.org/

22

https://bitbucket.org/

Figure 3.2: Structure of Git Branches[39]

3.3.2 Deployment Environments

During the development of the project it was necessary to use several de-
ployment environments, in order to have different machines with different
configurations to different purposes. The use of this process allowed us to
have different technologies with different configurations and was also a way
to get different data records for different reasons.
During the realization of this internship we adopted three different deploy-
ment environments:

Development environment

In this environment the author installed and configured the technologies to
develop the software components needed in the context of the internship.
This environment is more simple to allow the development to be more agile.
In this environment are also performed all the unit tests as well as the first
functional tests.

Staging environment

This environment presents the same configurations, but not the same re-
sources of the production environment and has the objective to serve private
tests and demonstrations. In here are done more functional tests and also
usability tests.
Since it has the same configurations of the production environment, this
allows that every feature will be stable when it goes into the production
environment. This environment is updated in each sprint from the branch

23

of staging, with the purpose to showing the Product Owner and/or to the
supervisor the new increment in the platform.

Production environment

This environment receives the version of the product that is publicly avail-
able. The application components and their databases are hosted in a private
cloud (Linode [40]).
The production environment is updated in the beginning of each sprint, with
the version of the application that was developed in the previous sprint, so
that the production version can be first tested in the private area (the staging
environment).

3.4 Conclusion

In this chapter we presented some of the main work methodologies used
during the project, the work plan (planned and executed), and some software
engineering processes that supported the work performed.

In the next chapter we will present the functional and non functional
requirements gathered.

24

Chapter 4

Requirements Analysis

This chapter will describe how how we gathered the functional and non func-
tional requirements for the project. We shall present the vision of the prob-
lem, the actors involved in the system, low and high fidelity prototypes and
the specification of functional and non functional requirements.
To prepare the entire set of requirements, we started by gathering set of busi-
ness requirements in order to obtain several key indicators of the adequacy of
our future solution. First, we made an analysis of existing solutions, in order
to know their key features. We realized that there is no product, commercial
or open source, equivalent or similar to what we intend to develop. After
that, we had several meetings with researchers of the SEE group, researchers
that had already developed injectors, with the intention to see what were the
real needs they want to see answered.
After this process, the requirements collected were discussed between the au-
thor, the product owner and the supervisor. This lead to a list of functional
and non functional requirements to be developed as a the solution for the
problem.

4.1 System Actors

In this section we will list and describe the role of the actors in the solution
developed. Only two core actors were identified: Researcher (uploads a FI)
and third party. A researcher assumes the role of ’third party’ when wants to
run a fault-injection campaign, as there is no conceptual difference between
testing its own injector or use an injector created by someone else.

25

Actor Represents Role
ResearcherPerson that uploads a

fault injector.
Uploads a fault injection driver, to test
it or to make it available to be used by
a third party. This person can validate
research data or test a cloud service.

Third
party

Person that use the
front-end

Use the tools present in the front-end,
use a fault injector to test his system
and see the report.

Table 4.1: Actors present in the solution

4.2 Prototyping

The use of prototyping is a technique useful during the process of require-
ments gathering, because allows the stakeholders1 to clarify what they really
want in a visual form.
The development of this work, in a first iteration using a low-fidelity pro-
totype, allowed us to elaborate a first version of the system with few re-
quirements defined, allowing us to specify an additional set of requirements
desired. In a second interaction, it was possible to create prototypes that
followed the requirements set in the first iteration, allowing this way a ne-
gotiation, with the stakeholders, to define additional requirements for the
system.
In the early stages of development of prototypes, we addressed mostly deci-
sions related to design and usability of the application since it should have a
consistent interface in all the versions.
The prototypes elaborated are described below.

4.2.1 Low Fidelity Prototyping

In this phase we took some decisions related to features and related to the
design of the solution. Below we show some examples of the prototypes de-
signed.
In Figure 4.1 we depict the first version of the functionality stats of cam-
paigns. This intend to demonstrate how the user can set and monitor the
status of the campaigns that have been launched.

1Stakeholders: any person or organization that have interest or is affected by the project
(e.i., client, project manager, analyst, developer.

26

Figure 4.1: Low fidelity prototype of use case ’list campaigns’

In Figure 4.2 we depict the low-fidelity prototype of how the ’report cam-
paign’ use case would be presented.

27

Figure 4.2: Low fidelity prototype of short report campaign

While simple, these first drafts were very effective to clarify the logic
of operations and increase the author’s awareness on how a fault-injection
campaign is performed.

4.2.2 High Fidelity Prototyping

After the conclusion of the low fidelity prototype phase and after it being
presented, discussed and validated with the stakeholders, a set of new re-
quirements better adapted to the solution to be developed was elaborated.
After the requirements were improved, it was possible to create a version of
the system closer to the final version, using high fidelity prototypes. Some
examples are shown below.
In Figure 4.3 and Figure 4.4 two high fidelity prototypes are presented. Both
were validated with the stakeholders and its use case will be described in
following sections along with its underlying functional and non functional

28

requirements.
In Figure 4.3 it can be seen the features and design of the use case ’short
report’. It is possible to see the impact of faults injected, a measure of how
well the server handled the injection campaign.

Figure 4.3: High fidelity prototype of short report campaign

In Figure 4.4 is depicted the features of the use case ’managing campaigns’
in a machine. Here the user can see the status of all the campaign and the
type of injection performed. There are four possible states for campaigns: i.
waiting for start (was schedule and is waiting for the correct time), ii. cam-
paign delayed (the campaign was launched to run but there is already another
running so it must waiting for its finish to start), iii. running campaign (the

29

fault injection campaign is being performed) and iv. concluded. When a
campaign is concluded it is possible to observe either a preliminary report
Figure 4.3, or a detailed report with the moment of every injection with pa-
rameters and the tests that went wrong; This report can be downloaded for
analysis using external data analysis tools.

Figure 4.4: High fidelity prototype of short list campaigns

4.3 Functional Requirements

The specification of functional requirements to be developed was realized
using user stories, which are typical of agile development. A user story is
a short and simple description of an interaction that an actor does in the

30

system [42]. The biggest advantage of using user stories in the specification
of functional requirements relates to the fact that these force us think about
what to develop in the view point of the final user; moreover, they are simple
and fast to write, easy to any client without technical knowledge to under-
stand and easily mapped to acceptance tests to validate the implementation
of each feature.
For the definition of user stories one of the most used formats is textual,
based in three expressions, which answer three questions related with each
feature [43]:

• As a/an <actor in the system >(Who?)

• I want to <action >(What?)

• So that <benefit >(Why?)

The definition of priority in the requirements is very important to decide
the implementation order according to the ’business’ value seen by the client.
We adopted the key words defined in RFC 2119, ”Must”, ”Should”, ”Could”
and ”Optional” to prioritize the features to be developed.
We shall now present a brief synthesis of each requirement. The complete
description of all requirements can be found in Annex 9.3.

ID Resume Priority
DC-01 Add new target system Must
DC-02 Test if target system is accessible Must
DC-03 Setup a campaign to start in the future Must
DC-04 Lunch a campaign to start now Must
DC-05 See a short report of the campaign results Must
DC-06 Download a detailed report of a campaign Must
DC-07 See the status of campaign Must
DC-08 Receive an email notification of the end of

campaign
Optional

DC-09 Upload an injection driver Should

Table 4.2: Functional requirements

31

4.4 Non Functional Requirements

The goal to realize the gathering of non functional requirements is to describe
the qualities the system must have, such as usability or performance. Since
the user stories are not suitable for the elaboration of this type of require-
ments, there was no specific restriction to make them.

Scalability

The system must have the capability to increase his performance, under
an increase payload in application level, without the need of changing the
architecture of the system or loss of service due to the time need to resize
resources.

Robustness

The system must ensure all the information integrity, either in stress sit-
uations or in application failure situations. It is not allowed to loose any
information related to campaign injections that were performed. The system
should have the capacity of recover information that was not processed in
that same day.

Security

All accesses to the application and to the data must only be allowed for
authenticated users. Also we must ensure the anonymization of all data.
Finally, all communication external between the clients and the application
must be encrypted.

Costs

The infrastructure most have the capacity to be able to adapt to the increas-
ing or decreasing needs of the business (pay-as-you-go).

The platform architecture, described in the next chapter, was designed
to support these non-functional requirements.

4.5 Conclusion

After this chapter the reader should know which are the actors of this sys-
tem and the major functional and non functional requirements. In the next

32

chapter we will present the software architecture of the platform.

33

Chapter 5

Architecture Analysis and
Design

In this chapter we recall the initial problem and a brief view of the solution,
detailing the architecture that will support the non.functional requirements.
We present a short small description of each component and of how the the
system works.

5.1 Architecture of the Solution

In this section we present the software architecture, i.e. the software compo-
nents of the project downCloud, how they communicate with each other and
how the client can use this application.
The downCloud platform is divided into three major components: front-end,
web services and campaign controller, as can be seen in the image below.
Figure 5.1.

34

Figure 5.1: Global perspective of the architecture

35

Front-end downCloud The front-end is where the client interacts with
application to manage the machines, the targets for the campaign injections,
manage the campaigns injection and also see the result of them. For the
development of the front-end we chose to use the design pattern Model-
View-Control (MVC), for an easy maintenance and evolution of the tool.

Back-end downCloud The back-end is responsible for launching new
campaigns, at the scheduled times, initialize the database if necessary, and
make connection to it. For the development of the back-end we also adopted
the design pattern Model-View-Control (MVC).

Web Services This module will provide a REST API to be used by
the front-end or directly by other applications to access the functions of
downCloud.

Campaign Controller The Campaign controller the component that makes
the campaigns to be autonomous. It controls the Injector Controller and
Workload operations to ensure autonomous operation, e.g. by checking that
the virtual machine, target of the campaign, is operational. If it detects any
problem in the target it will force a reboot and resumes injection.

Injector Controller This module uses an ’Injection driver’, a kernel
module inside the target system, to inject faults with the parameters that
the user requested.

Workload This is the source of the HTTP requests that are made to the
target system to exercise the system and to assess how the system is dealing
with the fault injection by evaluating the answers to the HTTP requests.
We remind the reader that we have scoped this first version of downCloud to
focus only on web based applications.

Analyzer This component runs during and after the campaign to an-
alyze all data collected during the campaign injection to deliver a synthesis
report to the user about his target system behavior.

36

Injection driver This is the module, resident in the target system, that
actually performs the injection. There is a pool of many possible ’injection
drivers’ provided by researchers, with different capabilities. For the present
thesis we used a ’CPU register bit-flip injector’ to emulate transient hardware
errors.

5.2 Technologies Used

In this section we present the technologies that were used in the project
downCloud and a brief explanation why they were choose over other possible
technologies.

REST

Representation state transfer (REST) is a web standards based architecture
that uses HTTP protocol for data communication. Unlike some more com-
plex protocols, like SOAP, REST allows the system to take care of data and
to be showed in XML, JSON or HTML format, making easier the integration
and communication of information. [24]
Since the development of downCloud is to be full-stack, the client/supervisor
decided that the back-end, should have an API allowing the communication
with other components besides the front-end.

Java

Java is a programming language and computing platform first released by
Sun Microsystems in 1995. Java is a very well-design and mature platform
from the beginning without ever ceasing to innovate, have existed so far
without introducing any major backwards-compatibility regressions, works
in many hardware environments and it’s open source. [25]
Since Java is a programming language well mature that is being improved
over the time and since the author has a good working knowledge of it, it
was decided to be the back-end development language adopted.

Hibernate ORM

Hibernate ORM is an object-relation mapping framework for Java. It pro-
vides a framework for mapping an object-oriented domain model to a rela-
tional database. Hibernate provides all the benefits of other object/relational

37

mapping tools, is free and open source, the learning curve is short since Hi-
bernate ORM is totally object orientated and has lot of support from an
active community. [26]
So it was decided to use Hibernate ORM in the project to facilitate the
management of the SQL database.

GlassFish

GlassFish is an open-source application server project stated by Sun Mi-
crosystems, in 2005, for the Java EE. GlassFish have a good administration
and management interface, good support by development tools, lost of infor-
mation and is fast to start up and deploy an application. [27]
It was decided to use GlassFish in the project since is easy to maintain and
reduce the effort of deployment.

AngularJS

AngularJS is a JavaScript framework designed to make front-end develop-
ment as easier as possible. AngularJS is a framework built and maintained
by Google, is a complete solution for rapid front-end development, extends
in HTML and incorporate unit enterprise-level testing. [28] [29]
Since the author did not have any knowledge of any front-end framework and
AngularJS has a big community and also have skilled engineers of Google to
help, AngularJS was the technology choice to the front-end framework of the
project.
As can be seen, our choice of technologies was quite conservative: we inten-
tionally decided do not experiment with more recent (but also more imma-
ture) technologies, as our goal was to focus on the problem using the best
known technologies that ’fit’ well the problem.

5.3 Architectural design strategy

During the design of the architecture described previously in this chapter, the
scalability aspect was a key driver. We took the Design-Implement-Design
(D-I-D) strategy [44] to keep refining the architecture.
The architecture was designed to ensure perfect independence of components,
from application to the physical (server) level, thus allowing different ways
of achieving scalability for each software component and also ensuring the
robustness of the whole system. It must also be pointed out that the architec-
ture designed by the author has also the capacity to be scalable horizontally

38

for all the components, without the need of changing the application, physical
hardware or technologies adopted.

5.4 Conclusion

In this chapter we presented the architecture designed to solve the problem
and how it addresses the major quality attributes required (scalability, avail-
ability).
In next chapter we address the development work involved during the project.

39

Chapter 6

Development work

In this chapter we describe the development work performed during the
project. This concerns more the coding phase (low level design and im-
plementation).

6.1 Injection Campaigns

In order to fulfill the functional requirements related to the creation and
execution of campaigns, it was developed code that manages several asyn-
chronous processes to run and test a target system.
The main goal of this code is to inject faults while the system is being stressed,
services being accessed, and keep the target system working, while at same
time compare the data that is being collected from the target system with
the one that is expected to receive (gold run). This is how we know the
target system resilience to errors.
In this section we show the approach used for the implementation of this
code and how it has been validated.

6.1.1 Problem Definition

The campaign injection must be fully autonomous, from the beginning to the
end, with no need of human or script intervention. Since there is injection
fault occurring, the system can have several types of errors; the worst behav-
ior is an ’hang’, where the system freezes without providing any feedback.
Other behaviors involves the injector driver (resident in the target system)
being blocked by the operating system (if it activates security mechanism of
the OS), or the communication channel, SSH (Secure Shell), suffer a fault
injection and being forced to close. Every possible weird behavior can occur

40

under fault-injection and that is one of the major challenges of designing an
unattended fault-injection tool. Having this in mind we elaborated a sets of
scenarios and recovery mechanisms that our tool had to support.

Objectives

It should be possible to have a campaign running without stopping, thus
needing human intervention to restart. The tool should inject faults in the
target system, restart when needed, exercise it using a given workload and
be able to evaluate the correctness of the responses provided by the target
system to the workload.

Requirements of the algorithm

The algorithm developed should be able to deal with the following scenarios:

• The target system is hung: the target system can have different
reactions to the injections, one of them, the more critic, the system
getting hang providing no answer to any request. When this behavior
is detect, the algorithm should stop the injections and the workload
and restart the target system. Then, when the target system is up
again, continue the campaign;

• The injection driver has been blocked by the kernel: the oper-
ating system kernel has several mechanism that protect processes from
loaded components misbehavior, and when using the injector fault it’s
behavior can trigger one of this safety mechanism. When this happens,
it causes the injector to get block and unable to perform any more
injections;

• Be able to analyze the workload results: during the process of
exercising the target system by using a workload, we need to compare
the replies before the campaign injection starts with those during fault-
injection to detect erroneous behavior of the target system (this implies
that the fault injected had no fatal impact in the target).

6.1.2 Our approach to achieve these goals

After the definition and analysis of each specific scenario, we developed pos-
sible solutions for the resolution of the problems raised.

41

Execution Campaign Injection

We shall now describe how a campaign is executed and how it deals with
problems, such as hang or the injection driver blocked by the operating sys-
tem.
The user sets a campaign in the desired target system, and downCloud will
wait until the scheduled time.
The first thing to be done is to send the source code of the injection driver
(which the user previously selected) to the target system and compile it lo-
cally. This is needed due to the many diverse configurations possible, thus
ensuring portability across different platforms. After the compilation is com-
plete, the system will perform a gold run with the services (workload) the
user provided. The workload had also been previously uploaded to the down-
Cloud platform. The tool will run every service once before any injection to
be performed and save the result for comparision during the campaign, to
analyze if the the answer is the expected or not and, if not, identify what
kind of failure occurred (well formed reply but wrong content, malformed
reply, hang, etc...).
After the gold run is completed, the system will start the campaign injection
in the target system. The campaign controller will first start a new process
with the workload; the workload will choose randomly a service to exercise
the target, executes it and compares the result obtained with the correct
result provided by the gold run. This result can be classified in six distinct
categories: i.no effect, ii. corrupted content, iii. incorrect content, iv. con-
nection reset, v. client side timeout and vi. hang. The characterization of
each one will be presented below.
With the workload running the campaign controller will also start the in-
jection controller; this component is responsible for selecting the injection
parameters among the several parameters that the user has chosen and send
it to the injection driver. This selection is necessary because the parameters
that the user can chose do not need to be specific, but can be several alterna-
tive values (e.g. register R0 or R1 or R15) or a range of values (e.g. register
R0 to R5). The injection controller then waits for the injection driver to
inject a fault in the target system.
After each injection the campaign controller performs some tests (e.g. ping),
runs some linux commands (e.g. opens a ssh connection and performs a
remote directory listing), to check if the target machine is operational and
confirm whether the injection driver was blocked or not by the remote kernel.
If during the tests it detects that the injection driver is blocked it stops the
workload and the injector controller and forces a reboot of the target system
through the hypervisor (remeber we are targeting a cloud platform, i.e. a

42

virtualized environment) . After the reboot is completed the code of the
injection driver is resent and compiled again, after which the workload and
the injector driver are started again and the campaign continues.
If it is detected that the target system got hang, the procedure is the same:
the campaign controller stops the workload and the injection controller, de-
clares the target system as hang and starts the reboot process. After the
reboot is done, the campaign controller will start the workload and the in-
jection controller and continue the fault injection campaign.

After the conclusion of the campaign the system cleans the target system,
removes the injection driver, and reboots the target system to clear any
possible errors that could have remained latent.

Classification of Injection Outcomes

During our campaigns we classify the target system behavior according to a
client oriented view, i.e. we classify the results as the client perceives them.
These behaviors can be classified in the following categories:

• No Effect: The injection error has no visible effect on the provided
service, both in terms of performance and correctness;

• Incorrect Content: Occurs when the answer sent by the target sys-
tem is syntactically correct HTML, but with an incorrect content, for
example words missing or a wrong hash;

• Corrupted Content: In this case the the answer provided is cor-
rupted data (syntactically incorrect HTTP packet, invalid HTML code
or just pure garbage). For example, a browser would handle a similar
occurrence by displaying an error message;

• Connection Reset: The TCP connection between the server and the
client is reset by the server’s network stack;

• Client Side Timeout: Occurs when the answer from the server ex-
ceeds the time limit predefined (we used five seconds), and issues a
client side timeout;

• Hang: The target system stops producing any output and answering
to any subsequent requests. Eventually all requests made to the target
system will issue a client side timeout.

43

Data Model

In this section we present the data model developed, that supports the cam-
paign injection. The data model was developed in MySQL, a relational
database system.
The full description about the data model can be consulted in Annex 9.4.

Campaigns Represents all the campaigns in general; here is stored all
the general information about the campaign information not related to the
attack, but information related to when to inject (the time), and how to
inject (the process).

Figure 6.1: Data model of Campaigns

44

CampaignsRegister It represents the injection driver that attacks the
cpu registers with a flip bit. It stores all the information related to the
parameters to the CPU registers’ injection.

Figure 6.2: Data model of CampaignsRegister

Implementation

As refereed in the architecture (section 5.1) the campaign injection is im-
plemented in the back-end, in the component ’campaign controller’. The
campaign manager controls when is the correct time to start the campaign
controller that leads to the start of the other processes, injection controller
and workload.

6.1.3 Interface and Features

In this section we present the implemented features that allow the visualiza-
tion the evolution of a campaign and the results of it.

45

In the image 6.3 we show the interface implemented, that shows to the
user the available target systems. From this menu he can test the connection
to the target system (reachable?), add a new campaign, view campaigns
related to the target system and edit the campaign paramenters.

Figure 6.3: Interface developed to visualize all the system target the user
have

The image 6.4 depicts the interface implemented, to show to the user the
campaigns that are set or finished. This screen provides the user with a short
report or a detailed report from the campaigns concluded or download a full
report of it. If a campaign is not running or is being delayed, because other
campaign is running (in the same target) , the user has the possibility to edit
that campaign (i.e. campaigns already started cannot be edited).

46

Figure 6.4: Interface developed to visualize all the campaigns and the evolu-
tion of their execution

In image 6.5 we present the interface implemented, that displays to the
user the synthesis results about a campaign injection. This interface shows,
on the right side, the results in a pie chart; when the user pass the mouse over
the pie chart an hovering legend is displayed. On the left side the numerical
results of the injection as well as the total of stimulus made (http requests),
and the total number of injections performed during the whole campaign.

47

Figure 6.5: Interface developed to visualize the results obtained during the
tests

6.1.4 Features Developed

In the architecture chapter (chapter 5 we referred that the functionalities
concerning the campaign injection running, are implemented in the back-end.

The front-end component uses the framework AngularJS, thus allows the
application logic to be implemented in the client side (JavaScript) and de-
velop the interface and templates styles (HTML, CSS) in a dynamic way.
The features developed allows to support the following operations related to
the functional requirements:

48

• Add a new target system;

• Test if everything is ok with target system (reachability; meaningful
responses)

• Schedule a campaign to start in the future;

• Setup a campaign to start now;

• See a brief report of a finished campaign;

• Download a full report of a finished campaign;

• Check the status of a campaign (scheduled, waiting, active, finished);

6.1.5 Validation

To test if everything was correctly implemented we performed several cam-
paigns, some to attack the Apache web server and others to attack random
processes of the kernel.
The campaigns occurred at same time in different virtual machines in the
same physical machine with the following configuration, table 6.1.

CPU Intel Core i5-6500T Processor 4 physical cores running
up to 3.10 GHz

Cache 6 Mb
RAM 8Gb DDR3
HHD 2 of disk 400Gb

Table 6.1: Hardware Specification of hypervisor

For this experiences we had three virtual machines, each one with one
core of CPU and 1 gigabyte of RAM. The virtual machines were running the
same system image and same workload.
The workload consist in a scenario where multiple external HTTP clients
simulated accesses to several pages in an Apache. This webserver serves
three different web pages, where one of its content, in every page, is the re-
sult from a SHA1 hash, using as input a stream obtained from /dev/zero.
This workload stresses the system’s CPU and its memory. In our campaigns
the stream size was 1024 megabytes. The results of selected campaigns can

49

be seen in Annex 9.5.1.
The results collected in the campaign targeting the kernel are all very sim-
ilar (no erroneous output was generated), because almost always after each
injection done to the system the kernel blocked the injection driver. This
required a target restart almost every time after each injection, in order to
bring the target system back to its initial state.
On the other hand the campaigns targeting the Apache server produced in-
teresting and more varied results and by the law of large numbers, the average
of the results obtained from a large number of trials is expected be close to a
realistic value. It was observed that the results of the campaigns converged
to the same values after each experiment. These values also agree with one
obtained by the researchers in their ’handcrafted’ experiments not using the
platform.

6.2 Conclusion

After this chapter the reader must have a detailed understanding of how the
injection campaigns have been designed to support autonomous operation
even in the presence of hangs and blocking of the injection driver by the
target kernel.
In the next chapter we shall focus on the acceptance and stress tests to
validate the platform.

50

Chapter 7

Validation

In this section we show how we validated the features implemented in the
solution. Beyond unit testing at the component level, we performed accep-
tance tests with the product owner, in each sprint of development and at the
end of each milestone.
We also performed workload tests with the intention of validating the qual-
ity attributes of the system. These tests were focused on validating the
robustness, availability and reliability of the application in extreme condi-
tions (stress) and to identify the components that can create a performance
bottleneck in the system.

7.1 Acceptance Tests

This kind of tests have as main objective the verification of the functional
requirements implemented, and ensure that the solution works the way ex-
pected by the final user. The elaboration of these tests in parallel with the
development allowed the product owner to contribute in a constructive way
to the internship progress and planning of the sprints during the development
process.
The acceptation tests realized can be consulted in Annex 9.5.

7.2 Stress Tests

During the internship we had no opportunity to perform tests in a commercial
cloud environment due to the costs involved; however these tests were realized
in the staging environment (a private cloud) with the same configurations of
the production configurations.
Since the capacities of the machine in the staging environment is not the

51

same of what can be found in commercial cloud environment, we did not
achieve the same values. However, taking in account the numbers obtained
in this private environment, it is legitimate to assume that with the resources
available in a commercial cloud environment we will achieve an even better
performance, since the need of scale depends in the number of the clients
and not on the projected architecture.

7.2.1 Stress Test Scenario

Display results of campaign After authentication in the system, access
one of campaigns in the list of campaigns in one of target system and select
the short report to view and analyze the information available.
We selected this test case as the one that is most computationally demanding
to the system. Injecting faults is very light, as most activity is performed by
the injection driver in the targets. During injection our platform is actually
idle, waiting for results.

Conditions of test

Workload Wait time Running time
100 concurrent users 3 to 4 seconds 30 minutes

Table 7.1: Tests conditions to view and analyze reports

Of 100 concurrent users, about 20% of them, have access the page of short
report of campaign.

7.2.2 Observations and improvements

In a first interaction of this scenario, it was possible to obtain a mean through-
put of thirty reports in one second. Since this number does not meet our
self-imposed minimal requirements, we carried out a tuning of infrastructure.

1. Replication of data base MySQL: with this modification it was pos-
sible to obtain a mean of fifty answers for second. However we realized
the bottleneck was not in the data base, but in the web application.

2. Replication of web stack: we implemented a load balancer and repli-
cated the back-end, which led to an increase of the mean throughput to
one hundred reports in each second. This already met our acceptable
threshold.

52

7.3 Conclusion

In this chapter we described how we validated the platform, both in func-
tional and qualitative terms, namely on what performance (response time)
is concerned. We also presented the solution to circumvent the performance
bottleneck identified.
In the next chapter we conclude this thesis with a brief reflection on the
overall work performed.

53

Chapter 8

Conclusion and future work

In this last chapter we present the main obstacles found, the experience
acquired and the future evolution of the project.

8.1 Competences achieved

The features developed during this internship, for the project downCloud in-
volving the support to run campaigns and analyze of the data collected, are
now stable and ready to be used in production. The first bet testers outside
the SSE group have already started to use the tool.

The integration of the author in this project was, without doubt, a big
contribution to his education as a professional in software engineering, since
the intern needed an adaptation to the project, the processes and the method-
ologies used along the development. This adaptation process occur in the best
way possible, since the author had an easy contact with the product owner
and the supervisor. This increased our capabilities to deal with real world
projects, as we had already some previous work experience.
Besides the competences acquired connected to software engineering, method-
ologies of agile development, gathering requirements and management of
tasks, this internship allowed the intern to acquire technical knowledge re-
lated to front-end development, relational data bases, architecture principles
of scalability and frameworks like AngularJS and Hibernate.
In brief, the experience and knowledge gathered during the internship will al-
low the intern to be a professional with better capacities and better prepared
to the job market.

54

8.2 Main difficulties overcome

At the beginning of this internship there were some periods of indefinition,
regarding the internship and the requirements of the project, which took
some weeks to become more concrete.
Since the intern did not have any experience in use agile methodology in
development projects, there was some initial difficulties to adapt to this pro-
cess, having overcome this difficult as the project progressed.
Other difficulty felt was the lack of knowledge and experience using the frame-
work AngularJS, it took some weeks to the intern could use the framework
without (many) problem.
Another difficult felt during the project was the process of software testing
and quality. This is an area the intern did not have almost any knowledge or
experience. It was not possible, due to logistics and planning issues, to real-
ize a better stress test plan, in order to define a better sizing of the resources
for the infrastructure in a cloud server.

8.3 Future Work

In the beginning of the internship the requirements for the project were not
very clearly defined and the development took place with this problem. Thus
we started using an agile approach with the intention of creating a minimal
viable product in every interaction, without the need to go back to revise
and upgrade the whole code. However, at the middle of the second semester,
during a meeting with the client/supervisor, there was a small change in
the requirements that had a big impact in the project. This change lead
to a significant increment in the complexity of the solution. Now the core
requirements are fixed in the way the client wants the final product. However,
after all the experience gained along the project, the author would consider,
in downCloud 2.0 version, a refactoring of all the code from scratch, even
knowing that in hindsight, we could have always made better. Moreover,
the next versions of downCloud should include support for different targets
(the current version targets only web services) as well as non cloud-based
platforms, such as embedded devices, i.e. target the full internet-of-things
stack.

55

Chapter 9

Annex

9.1 Annex A - Artifacts of agile methodology

In this section like said in section 3.1 were will be showed the artifacts related
to the agile methodology, produced during the internship. In here it will be
presented the backlogs of which sprint and its burndown chart.

Sprint 1

Task State Story Points

Prototype of web injector Done 12

Table 9.1: Sprint 1

56

Figure 9.1: Sprint 1 Burndown

Sprint 2

Task State Story Points

Database and hibernate configuration Done 5
Creation web services for User Done 3

Creation web services for Machines Done 5
Creation web services for Campaign Done 5

Creation mechanism for launch Campaigns Done 3
Creation mechanism for cleaning Tokens Done 5

Table 9.2: Sprint 2

57

Figure 9.2: Sprint 2 Burndown

Sprint 3

Task State Story Points

Learning AngularJS Done 15
Start development of front-end Done 10
Basic login and register of User Done 10

Table 9.3: Sprint 3

58

Figure 9.3: Sprint 3 Burndown

Sprint 4

Task State Story Points

Creation front-end for Machines Not done 10
Creation front-end for Campaigns Not done 10

Table 9.4: Sprint 4

59

Figure 9.4: Sprint 4 Burndown

Sprint 5

Task State Story Points

Creation front-end for Machines Done 3
Creation front-end for Campaigns Done 3

Test of firsts campaigns Done 3
Correction of critical bug in back-end Done 3

Table 9.5: Sprint 5

60

Figure 9.5: Sprint 5 Burndown

Sprint 6

Task State Story Points

Correction of bugs in front-end Done 5
Adaptation of front-end with feed back of client Done 5

Add new options parameters for Campaigns Done 15
Construction of Analyzer Done 15

Table 9.6: Sprint 6

61

Figure 9.6: Sprint 6 Burndown

Sprint 7

Task State Story Points

Correction of bugs in back-end Done 5
Change layout of front-end by client feedback Done 5

Table 9.7: Sprint 7

62

Figure 9.7: Sprint 7 Burndown

Sprint 8

Task State Story Points

Automation of injection and test mechanism Done 20

Table 9.8: Sprint 8

63

Figure 9.8: Sprint 8 Burndown

Sprint 9

Task State Story Points

Prepare and deploy the staging area Not done 15
Correction of injector (driver dead) Not done 15

Table 9.9: Sprint 9

64

Figure 9.9: Sprint 9 Burndown

Sprint 10

Task State Story Points

Prepare and deploy the staging area Done 5
Correction of injector (driver dead) Done 5

Run tests to test staging area Done 3

Table 9.10: Sprint 10

65

Figure 9.10: Sprint 10 Burndown

Sprint 11

Task State Story Points

Correction of hibernate and mysql erro Done 5
Change mechanism of restart target Done 5
Changes in front-end and back-end Done 5

Table 9.11: Sprint 11

66

Figure 9.11: Sprint 11 Burndown

Sprint 12

Task State Story Points

Run several campaigns and analysis of the results Done 10

Table 9.12: Sprint 12

67

Figure 9.12: Sprint 12 Burndown

68

9.2 Annex B - Risk Analysis

Every project of Software Engineering there is a possibility of something bad
happen. This unforeseen events might result in failure to meet the goals of
the project. To prevent this there was make an analyze to detect in time this
unforeseen events.
Following it will be identified the risks that could occur during the project,
and if they occur or not, as well the impact, probability of happen and
strategies to decrease the risk.

Risk 01 Type Resource Impact Critical Probability High
Description During the time of the internship the acquisition of a cloud
server for realization of real stress tests could not happen, which will not
allow the realization of stress tests in real deployment area.
Decrease risk strategy Creation of a staging area and execute the stress
tests in there, in order to perform some tests and assume that in cloud server
the results will be better.
Occurrence This event occur during the internship and it was used the
decrease risk strategy as way to realize the stress tests and have a minimal
perception of the system.

Table 9.13: Risk 01

Risk 02 Type Project Impact Critical Probability High
DescriptionWith the abstract vision and a non stable requirements related
to the project, it can take to a redefinition of the requirements for the project.
Decrease risk strategy During the meetings of the project see if there is
any changing related to the project, in order to adapt to the new require-
ments.
Occurrence This event occur and was used the decrease risk strategy in
order to minimize the impact of this risk.

Table 9.14: Risk 02

69

Risk 03 Type Resource Impact High Probability High
Description During the internship do not be release a beta version, to be
use by a real user for gathering real data and feedback about the product.
Decrease risk strategy During several reunions with the product owner
let him use the product, to obtain feedback from someone outside of the
development team.
Occurrence This event occur, but during the internship every time there
was a reunion with the client we let him use the product getting feedback
from someone outside of the team.

Table 9.15: Risk 03

Risk 04 Type Project Impact Critical Probability High
Description During the internship the need to learn a new language, Angu-
larJS, could take more time than expected, which will delay the development
of the front-end.
Decrease risk strategy Before starting the development of the front-end
try to learn from online tutorials and use sample code in front-end.
Occurrence This event occur during the internship and was used the de-
crease risk strategy during the development of the front-end to try not delay
the project.

Table 9.16: Risk 04

70

9.3 Annex C - Requirements Analyses

For the prioritization of requirements was used the key words, defined in
RFC 2119, ”Must”, ”Should”, ”Could” and ”Optional”.

9.3.1 D.1 - Functional Requirements

• As a/an <actor in the system >(Who?)

• I want to <action >(What?)

• So that <benefit >(Why?)

ID DC-01 Priority Must
As a/an web user
I want to add a new target system
So that could make an injection campaign to that system to test it

Table 9.17: User story DC-01

ID DC-02 Priority Must
As a/an web user
I want to test if the connection to the target system is ok
So that proceed to test if the parameters given about the target system were
the corrects

Table 9.18: User story DC-02

ID DC-03 Priority Must
As a/an web user
I want to set a injection campaign to a given date in the future
So that the campaign will start to execute at the correct time to test the
server

Table 9.19: User story DC-03

71

ID DC-04 Priority Must
As a/an web user
I want to launch a campaign in this moment
So that the campaign start to execute right now to test the server

Table 9.20: User story DC-04

ID DC-05 Priority Must
As a/an web user
I want to see a short report how the campaign went
So that I could analyze the resilience of my server during the campaign

Table 9.21: User story DC-05

ID DC-06 Priority Must
As a/an web user
I want to download a full report of a campaign
So that to be able to analyze the report to see why and when the problems
occur

Table 9.22: User story DC-06

ID DC-07 Priority Must
As a/an web user
I want to know the status of the campaign
So that to know if the campaign is running, at each injection, if is delayed
or concluded

Table 9.23: User story DC-07

72

ID DC-08 Priority Optional
As a/an web user
I want to receive an email with a notification when a campaign concluded
So that be able to proceed with the analyses of the results

Table 9.24: User story DC-08

ID DC-09 Priority Should
As a/an researcher
I want to be able to upload my injector
So that people can use it to validate my results or to test their server

Table 9.25: User story DC-09

73

74

9.4 Annex D - Data Model

Figure 9.13: Data model diagram

75

Entity Description
Clients Represents a user of the application.
Tokens Represents the control of accesses that a user have by

the web application or by an external application that
contacts the REST API.

Machines Represents the target systems that a user have.
Campaigns Represents the campaigns in general, with general

data.
CampaignsRegister Represents a specific campaign, in this case campaign

to register of cpu, with the desired parameters.
GoldRuns Represents the first run of each service in a workload

to compare during tests.
InfoCampaigns Represents detail information about the campaign,

when everything happen and what happen.
ResultCampaigns Represents a short report of the results of each cam-

paign.

Table 9.26: Description data base entities

Following it will be describe the entities of the project.

Field Data type Index Description
IdClient Integer Single Field Identifier of the client in

the system.
Email String No Email of the client to be

notified.
IsDeleted Boolean No Identify if the user is

deleted or not.
Password String No Password of access to lo-

gin.
UUIDClient String Single Field Identifier to be used out-

side of the system.
Username String No Username of access to lo-

gin.

Table 9.27: Description table Clients

76

Field Data type Index Description
IdToken Integer Single Field Identifier of the token in

the system.
NormalTokenString Single Field String to validate the ac-

cess of a user in the system.
RecoverTokenString Single Field String to re validate the

normal token.
TimeRelease Date No Date when the token was

created or re validate.
IdClient IdClientInteger Single Field Id of the client that have

this token.

Table 9.28: Description table Tokens

77

Field Data type Index Description
IdMachine Integer Single Field Identifier of the machine in

the system.
HypervisorIP String No Ip to the hypervisor of tar-

get system.
HypervisorPasswordString No Password to access the hy-

pervisor using ssh.
HypervisorPortInteger No Port of access to use ssh.
HypervisorUsernameString No Username to access the hy-

pervisor using ssh.
Name String No Name to be showed when

list the target systems.
UUIDMachineString Single Field Identifier to be used out-

side of the system.
VMIP String No Ip to target system.
VMName String No Name of the target sys-

tem in the virtual machine
manager.

VMPassword String No Password to access the tar-
get system using ssh.

VMPort Integer No Port of access to use ssh.
VMUsernameString No Username to access the

target system using ssh.
IdClient Integer Single Field Id of the client that have

this machine.

Table 9.29: Description table Machines

78

Field Data type Index Description
IdCampaign Integer Single Field Identifier of the campaign

in the system.
AlreadyDone Boolean No Flag that identify if cam-

paign is concluded.
AlreadyLaunchBoolean No Flag that identify if cam-

paign is running.
CSVWebServicesString No Name of the file with the

services to realize tests.
DealyedCampBoolean No Flag that identify if cam-

paign is delayed.
Name String No Name to be show during

the list of the campaigns.
RunTimes Integer No Number of injections the

campaign will have.
StartTime Date Single Field Date with the time the

campaign will start.
TotalInjectionInteger No Total of injections already

made.
UUIDCampaignString Single Field Identifier to be used out-

side of the system.
IdMachine Integer Single Field Id of machine that is asso-

ciated with this campaign.

Table 9.30: Description table Campaigns

79

Field Data type Index Description
IdGoldRun Integer Single Field Identifier of the gold run in

the system.
Answer LongText No Answer received by the

target system.
Params String No Parameters to be used in

the request to target sys-
tem.

URL String No URL to access the service
of the target system.

IdCampaign Integer Single Field Id of the campaign that is
associated with this gold
run.

Table 9.31: Description table GoldRuns

Field Data type Index Description
IdCampaignRegisterInteger Single Field Identifier of the campaign

register in the system.
BitPosition String No Parameter to be used in

the injection related to bit
position.

FaultLoad String No Name of the file with fault
workload to be replicated.

NameProcess String No Name of the process to be
attack during injection.

PIDs String No PIDs of process to attack.
RegisterType String No Parameter to be used in

the injection related to reg-
ister type.

Script String No Script to run to get the
processes to inject faults.

IdCampaign IdCampaignInterget Single Field Id of the campaign that is
associated with this cam-
paign register.

Table 9.32: Description table CamapignsRegister

80

Field Data type Index Description
IdResultCampaignInteger Single Field Identifier of the result cam-

paign in the system.
ClientSideTimeoutInteger No Number of times that oc-

cur a client side timeout
event during campaign.

ConnectionResetInteger No Number of times that oc-
cur a connection reset
event during campaign.

CorruptedContentInteger No Number of times that oc-
cur a corrupted content
event during campaign.

Hang Integer No Number of times that oc-
cur a hang event during
campaign.

IncorrectContentInteger No Number of times that oc-
cur a incorrect content
event during campaign.

No effect Integer No Number of times that oc-
cur a no effect event during
campaign.

IdCampaign IdCampaignInterget Single Field Id of the campaign that is
associated with this cam-
paign register.

Table 9.33: Description table ResultsCampaigns

81

Field Data type Index Description
IdInfoCampaignInteger Single Field Identifier of the info cam-

paign in the system.
ParamsInjectionRunString No Parameters used during a

injection.
ParamsTestRunString No Parameters used during a

test.
StartTime Date No Time the test or injection

started.
IdCampaign Interget Single Field Id of the campaign that

is associated with this info
campaign.

Table 9.34: Description table InfoCampaigns

82

9.5 Annex E - Tests and Validation

9.5.1 Validation Campaigns

Total Injections 10000
Total Stimu-
lus 51177

Total Stimu-
lus 48310

Total Stimu-
lus 38724

No Effect 46143 (90.16%) 44216 (91.53%) 35370 (91.34%)
Incorrect Content 4549 (8.89%) 3587 (7.42%) 2884 (7.45%)
Corrupted Content 56 (0.11%) 41 (0.08%) 38 (0.10%)
Connection Reset 7 (0.01%) 12 (0.02%) 6 (0.02%)
Client Side Timeout 376 (0.73%) 399 (0.83%) 383 (0.99%)
Hang 46 (0.09%) 55 (0.11%) 43 (0.11%)

Table 9.35: Evaluation campaigns to Apache

Total Injections 1000
Total Stimu-
lus 23354

Total Stimu-
lus 23855

Total Stimu-
lus 23855

No Effect 23353
(100.00%)

23850 (99.98%) 23850 (99.98%)

Incorrect Content 0 (0.00%) 0 (0.00%) 0 (0.00%)
Corrupted Content 0 (0.00%) 0 (0.00%) 0 (0.00%)
Connection Reset 0 (0.00%) 0 (0.00%) 0 (0.00%)
Client Side Timeout 0 (0.00%) 5 (0.02%) 5 (0.02%)
Hang 1 (0.00%) 0 (0.00%) 0 (0.00%)

Table 9.36: Evaluation campaigns to Kernel

83

9.5.2 Acceptance Tests of Features

Requirement Description of test Validation
DC-01 Add new target system 3

DC-02 Test if target system is ok 3

DC-03 Set a campaign to start in a future 3

DC-04 Lunch a campaign to start now 3

DC-05 See a short report how the campaign
results

3

DC-06 Download a detailed report of cam-
paign

3

DC-07 See the status of campaign 3

DC-08 Receive an email informing the end of
campaign

71

DC-09 Be able to upload an injector 72

Table 9.37: Acceptation tests of features

1Requirement of low priority during the internship.
2Requirement not implemented due to change in planning.

84

Bibliography

[1] Frederico Cerveira, Raul Barbosa and Henrique Madeira Benchmarking
de Infraestruturas de Virtualização para a Cloud, 6 of July 2015

[2] Elastic Compute Cloud (EC2) Cloud Server & Hosting – AWS. 2016.
Elastic Compute Cloud (EC2) Cloud Server & Hosting – AWS. [ON-
LINE] Available at: https://aws.amazon.com/ec2/. [Accessed 20 Jan-
uary 2016].

[3] Microsoft Azure: Plataforma de Informática em Nuvem e Serviços.
2016. Microsoft Azure: Plataforma de Informática em Nuvem e Serviços.
[ONLINE] Available at: https://azure.microsoft.com/pt-pt/. [Ac-
cessed 20 January 2016].

[4] Frederico Cerveira, Raul Barbosa, Henrique Madeira and Filipe Araujo,
Recovery for Virtualized Environments, in 11th European Dependable
Computing Conference, 2015.

[5] Chaos Monkey · Netflix/SimianArmy Wiki · GitHub. 2015. Chaos
Monkey · Netflix/SimianArmy Wiki · GitHub. [ONLINE] Available
at: https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey.
[Accessed 14 November 2015].

[6] Business Intelligence - Overview — Oracle. 2016. Business
Intelligence - Overview — Oracle. [ONLINE] Available at:
https://www.oracle.com/solutions/business-analytics/

business-intelligence/index.html. [Accessed 20 January 2016].

[7] Pentaho — Data Integration, Business Analytics and Big Data Lead-
ers. 2016. Pentaho — Data Integration, Business Analytics and Big
Data Leaders. [ONLINE] Available at: http://www.pentaho.com/.
[Accessed 20 January 2016].

[8] Petter Mell and Timothy Grance, The Nist Definition of Cloud Com-
puting, in NIST Special Publication 800-145, September 2011

85

https://aws.amazon.com/ec2/
https://azure.microsoft.com/pt-pt/
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey
https://www.oracle.com/solutions/business-analytics/business-intelligence/index.html
https://www.oracle.com/solutions/business-analytics/business-intelligence/index.html
http://www.pentaho.com/

[9] Marco Vieira, Henrique Madeira, Kai Sachs and Samuel Kounev, Re-
silience Benchmarking in Resilience Assessment and Evaluation of Com-
puting Systems, 2012, pp. 284-301

[10] Google Apps for Work – Email, ferramentas de colaboração e muito
mais . 2016. Google Apps for Work – Email, ferramentas de colaboração
e muito mais . [ONLINE] Available at: https://apps.google.com/

intx/pt-PT/. [Accessed 20 January 2016].

[11] Dropbox. 2016. Dropbox. [ONLINE] Available at: https://www.

dropbox.com/. [Accessed 20 January 2016].

[12] Microsoft Office — Ferramentas de Produtividade para Casa e Es-
critório. 2016. Microsoft Office — Ferramentas de Produtividade para
Casa e Escritório. [ONLINE] Available at: https://products.office.
com/pt-pt/home. [Accessed 20 January 2016].

[13] Heroku — Cloud Application Platform. 2016. Heroku — Cloud Appli-
cation Platform. [ONLINE] Available at: https://www.heroku.com/.
[Accessed 20 January 2016].

[14] OpenShift by Red Hat. 2016. OpenShift by Red Hat. [ONLINE] Avail-
able at: https://www.openshift.com/. [Accessed 20 January 2016].

[15] Compute Engine - IaaS — Google Cloud Platform. 2016. Compute
Engine - IaaS — Google Cloud Platform. [ONLINE] Available at:
https://cloud.google.com/compute/. [Accessed 20 January 2016].

[16] Rackspace: Managed Dedicated & Cloud Computing Services. 2016.
Rackspace: Managed Dedicated & Cloud Computing Services. [ON-
LINE] Available at: urlhttps://www.rackspace.com/pt. [Accessed 20
January 2016].

[17] Integration of Cloud Services like Office 365 in the enterprise network
- FirstAttribute AG . 2016. Integration of Cloud Services like Office
365 in the enterprise network - FirstAttribute AG . [ONLINE] Avail-
able at: http://www.firstattribute.com/en/news/integration-

of-cloud-services-like-office-365/. [Accessed 20 January 2016].

[18] Jim Gray, Benchmark handbook: for database and transaction processing
systems Morgan Kaufmann Publishers Inc., 1992.

[19] Karl Huppler, The art of building a good benchmark, in First TPC Tech-
nology Conference (TPCTC 2009), Lecture Notes in Computer Science,
2009

86

https://apps.google.com/intx/pt-PT/
https://apps.google.com/intx/pt-PT/
https://www.dropbox.com/
https://www.dropbox.com/
https://products.office.com/pt-pt/home
https://products.office.com/pt-pt/home
https://www.heroku.com/
https://www.openshift.com/
https://cloud.google.com/compute/
http://www.firstattribute.com/en/news/integration-of-cloud-services-like-office-365/
http://www.firstattribute.com/en/news/integration-of-cloud-services-like-office-365/

[20] TPC-Homepage V5. 2016. TPC-Homepage V5. [ONLINE] Available at:
http://www.tpc.org/. [Accessed 20 January 2016].

[21] SPEC - Standard Performance Evaluation Corporation. 2016. SPEC -
Standard Performance Evaluation Corporation. [ONLINE] Available at:
https://www.spec.org/. [Accessed 20 January 2016].

[22] Raul Barbosa, Johan Karlsson, Henrique Madeira and Marco Vieira,
Fault Injection in Resilience Assessment and Evaluation of Computing
Systems, 2012, pp. 263-281

[23] Algirdas Avizienis et al. “Basic concepts and taxonomy of dependable
and secure computing”. In: Dependable and Secure Computing, IEEE
Transactions on 1.1 (2004), pp. 11–33.

[24] RESTful Web Services Introduction. 2016. RESTful Web Services Intro-
duction. [ONLINE] Available at: http://www.tutorialspoint.com/

restful/restful_introduction.htm [Accessed 14 January 2016].

[25] Java & JVM Conquer the World — zeroturnaround.com . 2016.
Java & JVM Conquer the World — zeroturnaround.com . [ON-
LINE] Available at: http://zeroturnaround.com/rebellabs/java-

jvm-conquer-the-world/. [Accessed 14 January 2016].

[26] Why i choose Hibernate for my project?. 2016. Why i choose Hibernate
for my project?. [ONLINE] Available at: http://www.mkyong.com/

hibernate/why-i-choose-hibernate-for-my-project/. [Accessed
14 January 2016].

[27] The Great Java Application Server Debate with Tomcat, JBoss,
GlassFish, Jetty and Liberty Profile — zeroturnaround.com . 2016. The
Great Java Application Server Debate with Tomcat, JBoss, GlassFish,
Jetty and Liberty Profile — zeroturnaround.com . [ONLINE] Avail-
able at: http://zeroturnaround.com/rebellabs/the-great-java-

application-server-debate-with-tomcat-jboss-glassfish-

jetty-and-liberty-profile/. [Accessed 15 January 2016].

[28] Journey Through The JavaScript MVC Jungle – Smashing Maga-
zine. 2016. Journey Through The JavaScript MVC Jungle – Smashing
Magazine. [ONLINE] Available at: https://www.smashingmagazine.

com/2012/07/journey-through-the-javascript-mvc-jungle/. [Ac-
cessed 15 January 2016].

87

http://www.tpc.org/
https://www.spec.org/
http://www.tutorialspoint.com/restful/restful_introduction.htm
http://www.tutorialspoint.com/restful/restful_introduction.htm
http://zeroturnaround.com/rebellabs/java-jvm-conquer-the-world/
http://zeroturnaround.com/rebellabs/java-jvm-conquer-the-world/
http://www.mkyong.com/hibernate/why-i-choose-hibernate-for-my-project/
http://www.mkyong.com/hibernate/why-i-choose-hibernate-for-my-project/
http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-with-tomcat-jboss-glassfish-jetty-and-liberty-profile/
http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-with-tomcat-jboss-glassfish-jetty-and-liberty-profile/
http://zeroturnaround.com/rebellabs/the-great-java-application-server-debate-with-tomcat-jboss-glassfish-jetty-and-liberty-profile/
https://www.smashingmagazine.com/2012/07/journey-through-the-javascript-mvc-jungle/
https://www.smashingmagazine.com/2012/07/journey-through-the-javascript-mvc-jungle/

[29] 10 Reasons Why You Should Use AngularJS. 2016. 10 Reasons Why
You Should Use AngularJS. [ONLINE] Available at: http://www.

sitepoint.com/10-reasons-use-angularjs/. [Accessed 15 January
2016].

[30] Wikipedia. 2016. Computer performance - Wikipedia, the free ency-
clopedia. [ONLINE] Available at: https://en.wikipedia.org/wiki/

Computer_performance. [Accessed 25 May 2016].

[31] Wikipedia. 2016. Dependability - Wikipedia, the free encyclope-
dia. [ONLINE] Available at: https://en.wikipedia.org/wiki/

Dependability. [Accessed 25 May 2016].

[32] Wikipedia. 2016. Computer security - Wikipedia, the free encyclopedia.
[ONLINE] Available at: https://en.wikipedia.org/wiki/Computer_
security. [Accessed 25 May 2016].

[33] Wikipedia. 2016. Resilience (network) - Wikipedia, the free ency-
clopedia. [ONLINE] Available at: https://en.wikipedia.org/wiki/

Resilience_(network). [Accessed 25 May 2016].

[34] Wikipedia. 2016. High availability - Wikipedia, the free encyclope-
dia. [ONLINE] Available at: https://en.wikipedia.org/wiki/High_
availability. [Accessed 25 May 2016].

[35] Roger S. Pressman. Software Engineering - A Practitioner’s Approach

[36] Wikipedia. 2016. Scrum (software development) - Wikipedia, the free
encyclopedia. [ONLINE] Available at: https://en.wikipedia.org/

wiki/Scrum_(software_development). [Accessed 26 May 2016].

[37] Cohn, M. 2016. Planning poker: An agile estimating and planning tech-
nique. [ONLINE] Available at: http://www.mountaingoatsoftware.

com/agile/planning-poker [Accessed: 27 May 2016].

[38] Git - Basic Branching and Merging. 2016. Git - Basic Branching
and Merging. [ONLINE] Available at: https://git-scm.com/book/

en/v2/Git-Branching-Basic-Branching-and-Merging. [Accessed 28
May 2016].

[39] Atlassian. 2016. Git Workflows and Tutorials — Atlassian. [ONLINE]
Available at: https://www.atlassian.com/pt/git/workflows#

!workflow-gitflow. [Accessed 28 May 2016].

88

http://www.sitepoint.com/10-reasons-use-angularjs/
http://www.sitepoint.com/10-reasons-use-angularjs/
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Dependability
https://en.wikipedia.org/wiki/Dependability
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Computer_security
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/Resilience_(network)
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/High_availability
https://en.wikipedia.org/wiki/Scrum_(software_development)
https://en.wikipedia.org/wiki/Scrum_(software_development)
http://www.mountaingoatsoftware.com/agile/planning-poker
http://www.mountaingoatsoftware.com/agile/planning-poker
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://www.atlassian.com/pt/git/workflows#!workflow-gitflow
https://www.atlassian.com/pt/git/workflows#!workflow-gitflow

[40] SSD Cloud Hosting & Linux Servers - Linode. 2016. SSD Cloud Host-
ing & Linux Servers - Linode. [ONLINE] Available at: https://www.

linode.com/. [Accessed 28 May 2016].

[41] Amazon Web Services, Inc.. 2016. Amazon Simple Storage Service (S3) -
Cloud Storage. [ONLINE] Available at: https://aws.amazon.com/s3/.
[Accessed 28 May 2016].

[42] Mike Cohn. 2016. User Stories and User Story Examples by Mike
Cohn. [ONLINE] Available at: http://www.mountaingoatsoftware.

com/agile/user-stories. [Accessed 03 June 2016].

[43] Mike Cohn. 2016. User Story Template Advantages. [ONLINE] Available
at: http://www.mountaingoatsoftware.com/blog/advantages-of-

the-as-a-user-i-want-user-story-template. [Accessed 03 June
2016].

[44] Martin L. Abbott and Michael T. Fisher. Scalability Rules - 50 Principles
for Scaling Web Sites.

89

https://www.linode.com/
https://www.linode.com/
https://aws.amazon.com/s3/
http://www.mountaingoatsoftware.com/agile/user-stories
http://www.mountaingoatsoftware.com/agile/user-stories
http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template

	Introduction
	Motivation
	Cloud-as-a-target
	Objectives
	Document structure

	Background concepts
	Cloud computing
	Service models
	Deployment models

	Benchmarking
	Fault injection
	Fault types

	System properties
	Conclusion

	Work Methodologies
	Software processes and lifecycle
	Agile Development

	Work Plan
	Processes of Software Engineering
	Version Control Software
	Deployment Environments

	Conclusion

	Requirements Analysis
	System Actors
	Prototyping
	Low Fidelity Prototyping
	High Fidelity Prototyping

	Functional Requirements
	Non Functional Requirements
	Conclusion

	Architecture Analysis and Design
	Architecture of the Solution
	Technologies Used
	Architectural design strategy
	Conclusion

	Development work
	Injection Campaigns
	Problem Definition
	Our approach to achieve these goals
	Interface and Features
	Features Developed
	Validation

	Conclusion

	Validation
	Acceptance Tests
	Stress Tests
	Stress Test Scenario
	Observations and improvements

	Conclusion

	Conclusion and future work
	Competences achieved
	Main difficulties overcome
	Future Work

	Annex
	Annex A - Artifacts of agile methodology
	Annex B - Risk Analysis
	Annex C - Requirements Analyses
	D.1 - Functional Requirements

	Annex D - Data Model
	Annex E - Tests and Validation
	Validation Campaigns
	Acceptance Tests of Features

