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Resumo

A globalização e o progresso tecnológico impulsionaram o aumento exponencial do acesso à in-
ternet nos últimos anos. O comércio eletrónico (eCommerce) seguiu a tendência, constantemente
acompanhado por pagamentos fraudulentos, levando a perdas consideráveis nas receitas destes
comerciantes. A Feedzai é uma empresa especializada emMachine Learning e Big Data que ofer-
ece soluções de prevenção de fraude em pagamentos. Uma destas soluções é um serviço baseado
na Cloud especificamente para comércio eletrónico. Neste trabalho, utilizando dados históricos
de comerciantes já existentes (chamado o domínio Source), são implementados dois algoritmos
de Domain Adaptation, com o objectivo de melhorar a performance na deteção de fraude em
pequenos ou novos comerciantes que não possuem pagamentos suficientes para treinar devida-
mente um modelo de ML. Adicionalmente, e com o mesmo objectivo, é explorado um algoritmo
de deteção de outliers não supervisionado, não sendo necessário assim o recurso a dados históri-
cos (do domínio Source) ou a dados anotados no domínio Target. Após teste com múltiplos e
distintos datasets, conclui-se que ambos os algoritmos de Domain Adaptation não melhoram a
performance na deteção de fraude. Por outro lado, considerando que apenas utiliza dados não
anotados no domínio Target, o algoritmo não supervisionado apresenta uma performance con-
siderável e apresenta-se como uma solução promissora para novos comerciantes no caso de uso
de eCommerce apresentado.





Abstract

Globalization and technological progress led to exponential growth of internet access in the last
decade. eCommerce followed the trend, constantly accompanied by payment fraud, costing mer-
chants a substantial percentage of their revenue. Feedzai is a company specializing in Machine
Learning (ML) and Big Data, providing solutions for fraud prevention in payments. One of
Feedzai’s solutions is a Cloud-based SaaS for eCommerce merchants. In this work, using histor-
ical data from existing merchants (called Source domain), we implement two Domain Adaptation
algorithms with the goal of improving fraud detection for small or new merchants (called Target
domain), who typically have insufficient payment data to properly train a ML model. Further-
more, we explore an Unsupervised Learning outlier detection algorithm, which does not rely on
historical or labeled data, with the same goal. Upon testing on multiple distinct datasets, ob-
tained results demonstrate both Domain Adaptation algorithms fail to improve performance and
actually decrease it. On the other hand, considering it only uses unlabeled data from the Target
domain, the Unsupervised Learning method provides quite good performance and proves to be a
promising solution for new merchants in the presented eCommerce use case.
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Chapter 1

Introduction

1.1 Context
Globalization and technological progress led to the massification of internet access in the last
decade. From 2005 to 2015, internet users tripled to almost half of the world population. Elec-
tronic Commerce (eCommerce) followed this trend, with worldwide sales expected to reach over
$2 trillion in 2017. [1, 2]

One of the greatest challenges eCommerce faces is fraudulent payments. These commonly
originate from stolen credit cards or copied magnetic stripes, which are then sold or used to buy
easily resellable products.

Feedzai is a company that specializes in providing state-of-the-artMachine Learning tools and
Big Data analysis for fraud prevention in payments. In 2014 alone, Feedzai processed 18 billion
transactions with a volume worth of $760 billion. [3] Feedzai’s technology helps companies
from all spectrum of the payment ecosystem, helping large financial institutions such as banks
and processors as well as the merchants doing eCommerce. Of these, the eCommerce merchants
are one of themost affected by fraud, as they are generally liable for it. Additionally, event though
eCommerce is only a small part of the whole commerce, it has the greatest share of fraud. [4]

After fraudulent payment occurs, when the legitimate card owner notices a transaction he
didn’t make, the bank is contacted and a dispute is filled. This triggers a complex and costly
process which usually results in a chargeback in favor of the legitimate card owner, and the
merchant being liable. [5] In the case of in-store physical payments using Europay, MasterCard,
and Visa (EMV) authentication methods, fraud liability is shifted to the cardholder’s bank.

One of the main Feedzai’s products is a Cloud-based Software as a Service (SaaS) offering
for Fraud Prevention in eCommerce use cases - Feedzai Fraud Prevention for eCommerce - aim-
ing to detect fraudulent payments before they occur, saving time and costs mainly for merchants,
but also for all other entities involved in the process. This solution is based on machine learn-
ing models, allowing merchants to obtain a risk score for customer payments, representing the
likelihood of a payment being fraudulent.

Clients of this product include new and small merchants, typically with a reduced or non-
existent fraud prevention team. This means they don’t have a substantial amount of labeled his-
torical data from which to build good machine learning models right from the start.

1.2 Motivation and Scope
The main motivation for this work is the eCommerce merchant use case, as these are the most
vulnerable targets of fraud. Training a robust machine learning model capable of scoring and
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classifying payments for a merchant requires a considerable amount of payments data from that
particular merchant. This leads to two main problems: first, merchants need to provide labeled
data, which may not be readily available or can have prohibitive labeling costs; second, available
data may not be enough to properly train a model. One of the reasons for not having enough data
is merchants starting a new business. These are at even higher risk as they are more exposed to
new fraud patterns.

Since Feedzai Fraud Prevention serves many clients, historical data from existing merchants
could be used together, benefiting new merchants by providing an out-of-the-box global model.
Additionally, as new payment data becomes available, existing models should be re-trained and
gradually shift from a global model (trained with data from many merchants) to a merchant-
specific model, with the goal of continually improving model’s performance. Even when suffi-
cient data for particular merchant is achieved, using data from many other can be beneficial, by
searching for new fraud patterns appearing only in some merchants.

The main setback for a global model comes from the difference between the domains each
merchant belongs to. In particular, merchants can operate in distinct areas (for example, an online
e-book store versus an online shoes store) or even merchants operating in the same business can
have unique characteristics, which might result in different payment data attributes and data dis-
tributions. This fact can cause a global model trained with data from several merchants perform
rather poorly and ultimately useless. Thus, this work will not focus on particular machine learn-
ing algorithms but, instead, will focus on methods for transferring knowledge from one domain
(existing merchants) to a different domain (new merchants) with the goal of improving fraud
detection by using existing labeled transaction data. This concept of applying knowledge from
a Source domain to improve performance on a Target domain is known as Transfer Learning.
Furthermore, an Unsupervised Learning algorithm will also be explored, applying it directly to
new merchant data, since it can provide a solution to the current eCommerce use case as well.

Being able to harness the full potential of heterogeneous data sources from multiple mer-
chants, Feedzai could take advantage of network effects to improve fraud detection performance
for all its clients.

1.3 Goals
This work aims to develop a method capable of dealing with data from merchants of different do-
mains for model training, improving fraud detection for current merchants as well as providing
an out-of-the-box global solution for new clients. The developed method should also be imple-
mented in Feedzai tools.

In particular, the following goals are set:

(a) A well defined method that can learn from existing data from different merchants, allowing
them to mutually benefit each other, as well as applying this knowledge for new merchants
with no available data.

(b) A well defined method to continually improve machine learning models for each particular
merchant. As new data from that merchant becomes available, the global model trained
with data from many merchants should periodically be re-trained, with higher weights for
the data of that specific merchant.

(c) The developed method should also support heterogeneous merchants with distinct source
fields.
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(d) Ideally, the methods mentioned should be developed on a layer above machine learning
algorithms, that is, they should be independent from the machine learning models used.
However, methods that depend on a particular machine learning algorithm can also be
explored.

The developed methods should be tested and validated with real data from the eCommerce
use case. Finally, a prototype of the method that exhibits the best results for the proposed goals
should be implemented and integrated with Feedzai’s Machine Learning tools.

1.4 Structure
This document is structured in the following chapters:

In Chapter 2 the Background Knowledge of the developed work is presented, with Transfer
Learning concepts being introduced and the most common terminology defined. Following, two
Domain Adaptation (DA) algorithms are introduced. Ending the Chapter, we present an Unsu-
pervised Learning outlier detection algorithm that can also be applied for fraud detection in the
current eCommerce use case.

In Chapter 3, we introduce practical methodologies related to this work, namely, two Machine
Learning algorithms: Decision Trees and Random Forests. Closing the chapter, performance
metrics for model evaluation and comparison are defined.

Chapter 4 contains the process used in the developed work and the obtained results. It starts with
a detailed description of the datasets and tools used as well as the complete simulation process.
Following, we present the preliminary experiments and results obtained in the First Semester. The
last section of the chapter presents all final experiments completed during the Second Semester
and discusses the achieved results.

Closing the document, Chapter 5 discusses the main conclusions drawn from this thesis and sug-
gest several ideas for future work.

3



Chapter 2

Background Knowledge

Traditional machine learning methods assume training and testing data originate from the same
domains, thus containing the same feature space and probability distributions. While this notion
is true for many applications, for many other problems data can belong to different domains.

In this scenario, the knowledge acquired from one domain, known as Source domain, could
help the learning task on the other domain, known as Target domain, as long as they have some
similarity.

The same happens in the context of this work: by looking at historical payment data from
existing merchants (the Source domain), we want to improve the learning task of fraud detection
for new merchants (the Target domain), where both domains can differ in feature space, data
distribution, or both.

The process of applying knowledge from a Source domain to improve the learning process
on a Target domain is known as Transfer Learning. In the next section we will discuss several
Transfer Learning techniques as well as traditional Machine Learning methodologies.

2.1 Transfer Learning
Transfer Learning is a Machine Learning field that aims to improve learning tasks for a particular
domain (Target domain) by reusing knowledge acquired from a different domain (Source do-
main). This approach of applying knowledge transfer to machine learning is inspired by human
learning - we regularly use previous knowledge to improve learning processes. For example, the
more similar a new task is to previous learning experiences, the faster we learn it. [6]

Domain definition
A domain consists of a feature space X and a probability distribution P (X) where X =

{x1, ..., xn} ∈ X , xi being the vector of all samples for the ith feature andX a particular instance.
A domain D can be defined as D = {X , P (X)}, consequently, two domains are considered
distinct if they differ in feature space X or probability distributions P (X). [7]

Task definition
Given feature space X , a probability distribution P (X) of a certain domain D and a label

space Y , the goal of a task is to find a predictive function f() that can predict the label of a future
sample. This function is obtained from observing current instances and the corresponding class
label, that is, the pairs (X,Y). In summary, task T aims to find f(), which goal is to determine
the label y = f(x) = P (y|x) of a new instance x. Using formal notation, a task can be defined
as T = {Y , P (Y |X)}. [7]
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Given the definitions above, Transfer Learning can be applied in two scenarios: first, when
Source domain DS and Target domain DT are different, that is, XS ̸= XT or PS(X) ̸= PT (X);
second, when tasks TS and TT are different, that is, when YS ̸= YT or P (YS|XS) ̸= P (YT |XT ).
[7]

When both domains and both tasks are the same, then we have a traditional machine learning
problem, and Transfer Learning no longer applies.

2.1.1 Transfer Learning settings
In this section we will describe each of three settings of Transfer Learning based on the different
scenarios for Source and Target domains and tasks. A summary of the three settings is presented
in Table 2.1.

Inductive Transfer Learning
In this setting, Source and Target tasks are always distinct, that is, TS ̸= TT regardless of

Source and Target domains similarity. This setting requires some labeled data on the Target
domain in order to induce a predictive function fT () to be applied in the Target domain, while
the Source domain can have labeled data or not.

When the Source domain has labeled data available, we have a scenario related to Multi-task
Learning. On the other hand, when the Source domain has no labeled data, the setting is similar
to Self-Taught Learning. In Self-Taught Learning it is assumed that having more data will lead
to better performance, thus the main idea is to acquire large amounts of unlabeled data instances
from similar domains, which is significantly easier than getting labeled data. Using the unlabeled
examples, the method generates new features and represents the labeled data in the new feature
space, then applying classification methods as usual. [8]

Formally, the goal of Inductive Transfer Learning is to improve the predictive function fT ()
in the Target domain, using the knowledge acquired from the Source domain DS and the Source
task TS , where TS ̸= TT . [7]

Transductive Transfer Learning
In Transductive Transfer Learning, Source domain and Target domain are different but the

tasks are the same. Generally, the Source domain has plenty of labeled data while the Target
domain has very little labeled data or none at all.

There are two distinct cases in this setting: first, the feature spaces of the Source and Target
domains are different, that is,XS ̸= XT . In other words, one of the domains can have more, fewer
or different features. Second, the features spaces are the same but the probability distributions
of the data are different. In this case we have a scenario related to Domain Adaptation, Sample
Selection Bias or Co-variate Shift.

In Sample Selection Bias, the common assumption that training examples are sampled from
the same distribution of testing data does not verify, since training data is usually sampled in a
biased way and testing instances are from a more diverse population. Algorithms deal with this
scenario by trying to correct the distribution bias between training and testing. [9, 10] Similar
to this concept, Co-variate shift occurs when data training data, from the Source domain, and
testing data, from the Target domain, differ in probability distribution. Algorithms try to solve
Co-variate shift by approximating Source and Target data distributions, effectively minimizing
domain differences. [11]

It should be mentioned that this setting, where Source and Target domain are different but
the tasks are the same, includes our use case, where we have transactions from multiple origins
(different domains) and the goal is to classify them as fraud or legitimate (same task).
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Formally, the goal of Transductive Transfer Learning is to improve the learning of the predic-
tive function fT () for the Target domain, using the knowledge acquired from the Source domain
DS and the Source task TS , where DS ̸= DT and TS = TT . [7]

Unsupervised Transfer Learning
In Unsupervised Transfer Learning, Source and Target tasks are different but related, and no

labeled data exists both in Source and Target domains. As such, this setting focuses on unsuper-
vised learning tasks such as Clustering and dimensionality reduction.

Settings Related Areas Source Domain
labels

Target Domain
labels Tasks

Inductive
Transfer Learning

Multi-task
Learning Available Available Regression,

Classification
Self-Taught
Learning Unavailable Available Regression,

Classification

Transductive
Transfer Learning

Domain Adaptation,
Selection Bias
Co-variate Shift

Available Unavailable Regression,
Classification

Unsupervised
Transfer Learning Unavailable Unavailable

Clustering,
Dimensionality
Reduction

Table 2.1: Description of Transfer Learning Settings
Taken from [7].

An important aspect of Transfer Learning relates to how to transfer knowledge between do-
mains or tasks. Namely, three important issues arise: what to transfer, how to transfer, when to
transfer.

’What to transfer’ relates to what knowledge should be transferred across domains or tasks.
For example, two domains might share important knowledge that could improve the learning
task. When ’What to transfer’ is determined, a solution to transfer that knowledge must be im-
plemented, and that refers to ’how to transfer’. Finally ’When to transfer’ asks in which occasions
we should really transfer knowledge. This is a pressing question since it is possible that knowl-
edge transfer can have a negative impact in the performance of learning in the Target domain.
This is referred to as negative transfer. [7]

Current approaches to Transfer Learning are based on ’What to transfer’ and consist of the
following four cases:

• Instance-transfer - the basic assumption of this approach is that Source and Target do-
mains are somewhat related and some data from the Source domain can be used to improve
the learning task on the Target domain by re-weighting instances.

• Feature-representation-transfer - this method tries to find a good feature representation
of the Target domain with which knowledge transfer from the Source domain is encoded
in, minimizing differences between both domains.

• Parameter-transfer - the main idea of this approach is to discover common parameters
between Source and Target domains, and transferring knowledge from the Source domain
by encoding it in these shared parameters.
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• Relational-knowledge-transfer - this method assumes data from Source domain and Tar-
get domain share some kind of relationship. Themain goal is tomap these relations between
Source and Target domains, allowing knowledge to be transferred accordingly.

In the next section, a concrete algorithm for Transfer Learning is presented. The algorithm
implements Transductive Transfer Learning, specifically, Domain Adaptation.

2.2 Supervised Domain Adaptation by feature duplication
Hal Daumé III [12] proposed a straightforward algorithm for Domain Adaptation that is easily
implemented by pre-processing datasets. The algorithm, which will be referred to as FEDA,
acronym taken directly from the paper name (Frustratingly Easy Domain Adaptation), consists
of a simple transformation of feature augmentation: for each feature of a given dataset, three
versions of that feature are created - a general version, a Source-specific version and a Target-
specific version. After the transformation, instances from the Source domain will contain only
the general and the Source feature versions while the instances from the Target domain will have
the general and the Target versions. As such, if Φs(x) and Φt(x) are the the feature sets for the
Source and Target domains, respectively, the transformation can be defined as:

Φs(x)→⟨Φs(x),Φs(x), 0⟩ (for Source domain instances)
Φt(x)→⟨Φt(x), 0,Φt(x)⟩ (for Target domain instances)

As a concrete example, considering three features, let’s suppose we have the two following
instances:

Source instance: ⟨as, bs, cs⟩
Target instance: ⟨at, bt, ct⟩

After the transformation they would become:

Source instance: ⟨as, bs, cs, as, bs, cs, 0, 0, 0⟩
Target instance: ⟨at, bt, ct, 0, 0, 0, at, bt, ct⟩

Using formal notation, the algorithm pseudo-code is defined as follows.

Algorithm 1: Domain Adaptation FEDA algorithm
Data: Dataset Φ,m× n, composed ofm instances, each with n features
Result: Dataset ΦDA,m× 3n composed ofm instances, each with 3n features
initialize ΦDA empty;
define 0 as 1× n zero vector;
if Φ from Source domain then

foreach instance Φ[i] in Φ do
newInstance← ⟨Φ[i],Φ[i], 0 ⟩
append newInstance to ΦDA

else
foreach instance Φ[i] in Φ do

newInstance← ⟨Φ[i], 0 ,Φ[i]⟩
append newInstance to ΦDA
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When dealing with categorical attributes, we binarize them using One Hot Encoding before
applying the algorithm. With One Hot Encoding, features with n possible values will be encoded
in n new features with a binary value. As an example, a feature F with possible values a, b and
c will be encoded in three (number of distinct possible values of F ) new features: Fa, Fb and Fc.
One of these features will then have the value 1 and all the others 0, according to the original
value of F . As a concrete example , instances where F = a will have three new features Fa = 1,
Fb = 0 and Fc = 0, and the original feature F is removed.

After the pre-processing algorithm, the generated feature-augmented dataset is used as the
original would for training and testing. By augmenting the feature space, we are essentially
letting the model learn to recognize the different feature patterns introduced by the algorithm and
identifying which domain each instance belongs to. Additionally, since it can be implemented
in a pre-processing stage, this algorithm can be applied independently of the machine learning
model used. On the other hand, this method has poor scalability since the number of additional
features grows linearly to the number of different domains.

2.3 Unsupervised Domain Adaptation
Baochen Sun et al. proposed an unsupervised algorithm for domain adaptation that aims to min-
imize domain shift of Source and Target by aligning data distribution from both domains [13].
This method, called Correlation Alignment (CORAL), computes the covariance matrix of the
Target domain and applies a transformation to the Source domain such that both covariance ma-
trices are identical.

One of themain advantages of this approach is that it doesn’t need labels on the Target domain,
making it ideal for the current eCommerce use case, where typically new merchants have some
unlabeled data. Another benefit is that after processing, no additional data is generated on the
Source dataset, as opposed to the FEDA algorithm, presented in 2.2, resulting in no overhead to
both training and testing.

The algorithm starts by calculating the covariance matrices for Source data Ds, with dimen-
sions m × n, and for Target data Dt with dimensions m′ × n, where m and m′ represents the
respective number of instances and n the number of features. Then, an identity matrix In×n is
added to each covariance matrix, resulting in matrices Cs, n × n, for Source and Ct, n× n for
Target, with the purpose of making each matrix full rank, meaning all rows and columns are
linearly independent and Cs and Ct are invertible. After this step, Source data Ds is multiplied
by the inverse square root of Cs. This process is called whitening, or sphering, and transforms
Ds such that its features are uncorrelated and have variance 1. Finally, the whitened Source data
matrixDs is multiplied by the square root of Ct, an operation the authors call ”re-coloring” with
the Target data covariance (opposed to the whitening transformation).

A formal definition of the algorithm is presented next.
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Algorithm 2: Domain Adaptation CORAL algorithm
Data: Source data Ds,m× n and Target data Dt,m′ × n, composed ofm andm′

instances, respectively, and n features
Result: Transformed Source dataDs

∗,m× n, with similar data distribution toDt,m′ × n

define In×n as a n× n identity matrix
Cs = cov(Ds) + In×n

Ct = cov(Dt) + In×n

Ds = Ds × Cs
− 1

2

Ds
∗ = Ds × Ct

1
2

After the algorithm is applied, model training resumes with the transformed Source data,
making this method easily implementable with different machine learning models. An important
aspect to note is that data must be numerical so the algorithm can be applied. Although the authors
implemented the algorithm inMatlab, we implemented it in Python using Numpy, a free and open
source Python package designed for scientific computing [14].

2.3.1 2D Visualization
To demonstrate how this algorithm operates, two datasets were randomly generated with different
data distributions, acting as Source and Target. Figure 2.1 shows a 2D visualization of how the
algorithm works, specifically how each transformation affects the data.

Figure 2.1: CORAL 2D visualization
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Frame (A) shows the original Source (blue) and Target (red) data, with both sets having dif-
ferent data distribution. On frame (B) we can see the effect of the whitening transformation
decorrelating the data, now resembling a sphere (or a circle, in 2D), hence the alternative name
for this operation, sphering. On Frame (C) the uncorrelated Source data is re-colored with the
Target covariance, seen by the identical distribution shape of both data sets. Finally, on Frame
(D) the mean values of each dimension (each feature) of the transformed Source data is corrected
so it is aligned with the Target’s mean feature values.

2.4 Unsupervised fraud detection with Local Outlier Factor
Domain adaptation algorithms were introduced as possible tools for solving the current eCom-
merce use case, in which the goal is to transfer knowledge from existing data from a Source
domain (current merchants) to a Target domain (new merchants), where limited amount or un-
labeled data exists. Taking into account this scenario, and knowing fraudulent payments are
instances deviating from the typical transaction patterns, outlier detection techniques could also
be used to tackle the problem.

With outlier detection, fraudulent payments could be identified for new merchants with un-
labeled data and without relying on historical data from other merchants. On the other hand, the
new merchant would need a considerable number of transactions so the typical payment behavior
is accurately represented and, consequently, identified outliers are actual fraud instances and not
just isolated legitimate transactions.

In this work, we apply Local Outlier Factor (LOF), an outlier detection algorithm introduced
in 2000 by Breunig et al. [15]. The core concept of this method is to estimate how isolated an
instance is by comparing densities of each point with the density of their neighborhood. Points
with significant lower densities than neighbor points are considered outliers. To understand how
this algorithm works, the following metrics need to be defined:

• Nk(p) - the set of k points closest to point p;

• k-distance(p) - distance to the kth nearest point of p, for k positive integer. As an example,
considering k = 2, if point p has p1 and p2 as nearest neighbors at distances 3.4 and 2.1,
respectively, the k-distance is 3.4;

• Reachability-distancek(p,o) - the reachability distance of point p from o represents the
euclidean distance between points p and o but, at minimum, the k-distance(o). The formal
definition is:

reachability-distancek(p, o) = max{k-distance(o), d(p, o)}

where d(p, o) is the distance between points p and o;

• Local Reachability Density (LRD) of p - local reachability density of point p is defined
as:

LRD(p) = 1/

∑
q∈Nk(p)

reachability-distancek(p, q)
k
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• Local Outlier Factor (LOF) - represents the final score each point will be awarded. Points
with score values near 1 indicate points belonging to a cluster while score values signifi-
cantly superior than 1 are classified as outliers. The formal definition of LOF is:

LOFk(p) =

∑
q∈Nk(p)

LRD(q)

k
/LRD(p)

The algorithm starts by calculating the k-nearest neighbors for all data points. Then, for each
point p′ and its neighborhood Nk(p

′) the reachability-distance is determined. Finally, using the
reachability-distance, LRD and LOF are calculated. The formal definition of the algorithm is as
follows:

Algorithm 3: Local Outlier Factor algorithm
Data: Parameter k; Dataset D
Result: LOF score for each point

Determine the Nk(p
′) for each p′ ∈ D

Calculate the reachability-distance for each point p′ ∈ D and its neighborhood Nk(p
′)

Calculate the Local Reachability Density for all points p′ ∈ D
Calculate the Local Outlier Score for all points p′ ∈ D

An important aspect about the algorithm is that its performance is heavily dependent on the
pre-selected parameter k. The original paper addresses this issue by studying the impact of the
parameter within datasets with known distributions. To determine the lower bound for k, the
authors use a uniform distribution dataset and select a k value such that there are no outliers, that
is, no LOF values significantly greater than 1. This lowerbound was set at k = 10. For an upper-
bound, k was determined empirically with different datasets and found to be highly dependent of
data distribution itself. In our experiments, we determine the optimal k by parameter sweep on a
training dataset, starting at k = 8 and multiplying by 2 on each iteration.

Advantages of this algorithm include being able to identify outliers taking into account not
only distances but also local neighbors and the density of the cluster these points belong or are
near to. Figure 2.2 illustrates this concept.

Figure 2.2: LOF score illustration based on proximity to sparse or dense clusters.
P1 may not be an outlier due to its proximity to the sparse cluster C1. P2 might be considered

an outlier since C2 is a dense cluster. Adapted from [16].
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Figure 2.2 illustrates how LOF score points when dealing with data clusters with different
densities. Although points P1 and P2 are at the same distance of clusters C1 and C2, respectively,
P1 might not be considered an outlier due to C1 being a sparse cluster. Oppositely, point P2 is
likely to be considered an outlier due to the higher density of cluster C2.

Another important aspect about LOF is that, instead of providing a binary classification (out-
lier/regular), it assigns a score to each point, where scores near 1 represent regular points and
scores with significant high values are considered outliers. The threshold at which a point is con-
sidered an outlier can be quite ambiguous and might depend on data itself. In our experiments,
after applying LOF, scores are normalized between 1 and 1000 indicating lower likelihood of be-
ing an outlier (fraud) and higher likelihood, respectively. This scoring method is identical to the
process of using a model to score transaction instances, which is addressed and further explained
in section 4.2.
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Chapter 3

Methodologies

In this chapter we introduce some algorithms used in Machine Learning, specifically Decision
Trees and Random Forests. Although this work does not focus particularly on Machine Learning
algorithms it is critical to understand how these algorithms operate. Additionally, we chose to
present Decision Trees andRandomForests as they represent themain algorithms used by Feedzai
and have also been proposed in the literature as capable tools for fraud detection. [17, 18]

Closing the chapter, we introduce and define performance metrics for model evaluation and
comparison.

3.1 Decision Trees
A decision tree is a structure composed of nodes, branches and leaves, used for classification
in supervised Machine Learning. Branches connect two nodes together and each node can have
multiple output nodes. Starting at the root node of the tree, data attributes are checked against
a certain condition and routed to another node according to the result of that test. This process
continues, until the current instance reaches the end of the tree, a leaf. Leaves have an associated
class that will label all instances reaching that leaf. [19]

As an example, consider the classic case of a bank deciding if it should hand out a loan to a
client. A possible decision tree for this scenario is presented in Figure 3.1.
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Figure 3.1: Decision Tree example for deciding if a bank client is eligible for a loan.
Internal nodes (rectangles) represent a test on a particular attribute. Leaves (circles) represent

all the possible classes instances will be classified as.

In this example, the first attribute being checked is Criminal Record - if a client has committed
any crime, the loan application is immediately rejected. If there is no criminal record, the income
attribute is checked, with three possible outcomes. First, if the client has no income, the loan is
rejected; second, if the income is high, the loan is accepted. Finally, for an average income, Credit
Rating attribute is analyzed. In the case of a good credit rating (good debt paying reputation) the
loan application is accepted, otherwise it is rejected.

In summary, each internal node represents a test on a particular attribute, each branch repre-
sents a possible value of the attribute being tested and leafs contains the possible classes instances
will be labeled as. An important aspect about decision trees is that nodes closer to the root node
should test the attributes that provide the best discrimination of data in the different classes. A
solution to find these attributes will be presented in the next section, as we describe the ID3
algorithm, an algorithm for building decision trees.

3.1.1 ID3
ID3 is an algorithm for building decision trees based on Information Theory, and was first in-
troduced by J. R. Quinlan in 1986. [20] It relies on the concept of information gain to select the
’best’ attributes for splitting data. Intuitively, if a particular attribute can separate all instances
into different classes, it can be placed in the root node of a decision tree, and no further attributes
need to be tested. This would result in a single node decision tree where all instances could be
correctly identified (at least from the training set) by looking solely at one attribute.

One particular issue with this algorithm is that it is defined only for problems with two classes,
usually referred as positive and negative class. The pseudo-code for ID3 is described next. [21]
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Algorithm 4: ID3
Data:

• Dataset S with positive and negative training instances

• Set A of attributes and the corresponding possible values

• An attribute selection method T

Result: A decision tree.

if All instances in S are from the same class C then
Create node N with label C;
Return N;

if A is empty then
Create node N with the majority class in S ;
Return N;

Select an attribute a from A according to T ;
Divide S into subsets according to the possible values of a;
Call the algorithm recursively;
Build a decision tree with attribute a as root node, and branches for each possible value of
a connected to the corresponding subtree of each S subset;

The most important aspect of the ID3 algorithm is how do we chose the ’best’ attribute. For
this task, the concept of information gain is applied. Information gain translates to how well a
particular attributes divides the corresponding instances into the different classes. To calculate
this parameter, we first need to introduce the concept of entropy.

Given a set S with a positive (P) and a negative (N) class, entropy can be calculated by:

I(S) = −pp log2(pp)− pn log2(pn)

with pp being the probability of a particular instance belonging to the positive class and the same
for pn for the negative class. For example, considering a set S of 17 instances with 6 positive and
11 negative, the entropy for this set would be:

I(S) = I(6, 11) = − 6
17
log2( 6

17
)− (11

17
) log2(1117)

Nowconsidering attributeAwith v possible values, setS will be partitioned into sets {S1, ..., Sv}.
Each set Si contains pi instances of the positive class and ni instances of the negative class. The
entropy for selecting this attribute is:

E(A) =
v∑

i=1

pi + ni

p+ n
I(pi, ni)

Finally, the information gain of a particular attribute is defined as:

Gain(A) = I(p, n)− E(A)

After calculating the information gain for all attributes, we chose the one with the greatest in-
formation gain or, equivalently, the one that minimizes E(A). As a concrete example, ID3 is
applied to simple dataset with only two attributes, shown in Table 3.1.
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Income Credit Rating Class
None Good -
None Bad -
None Bad -

Average Good +
Average Good +
Average Good +
Average Bad -

High Good +
High Bad +
High Bad +

Table 3.1: Example training dataset for creating a decision tree with ID3.
Positive class represents clients that paid back a loan; Negative class represents clients that

failed to pay back a loan.

The first step is to calculate the entropy of the dataset:

I(S) = I(6, 4)

= −(6/10) ∗ log2(6/10)− (4/10) ∗ log2(4/10)
= 0.971

The second step is to calculate the information gain for each attribute:

E(Income) = (3/10)× (−(3/3)× log2(3/3)− (0/3)× log2(0/3))

+(4/10)× (−(3/4)× log2(3/4)− (1/4)× log2(1/4))

+(3/10)× (−(0/3)× log2(0/3)− (3/3)× log2(3/3))

G(Income) = I(6, 4)− E(Income)

= 0.971− 0.325

= 0.646

E(CreditRating) = (5/10)× (−(2/5)× log2(2/5)− (3/5)× log2(3/5))

+(5/10)× (−(4/5)× log2(4/5)− (1/5)× log2(1/5))

G(CreditRating) = I(6, 4)− E(CreditRating)

= 0.971− 0.846

= 0.125

Finally, the attribute with the greatest information gain, Income, should be selected as the
root node, creating a branch for each possible value of this attribute: ’High’, ’Average’ and
’None’. Next, for each of these branches we apply the algorithm recursively until there are no
more attributes or we end up on a leaf with instances all from the same class. For example,
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value ’High’ of attribute Income corresponds only to positive instances, as such, there is no need
to use the Credit Rating attribute to further split the data. The same happens to value ’None’,
but for value ’Average’ we need to select another attribute to correctly classify all instances. In
this example, there is only one more attribute (Credit Rate) and its possible values (Good, Bad)
can separate all instances belonging to ’Average’ Income into different classes. Completing the
algorithm, the decision tree presented in Figure 3.2 is obtained.

Figure 3.2: Decision Tree obtained from applying ID3 algorithm to the dataset from Table 3.1.

Despite being straightforward and easy to implement, ID3 has a few downsides, namely, it
does not guarantee an optimal solution and often falls on local optima since the information gain
method used is a greedy approach. Furthermore, it is vulnerable to overfitting and can only be
applied to categorical attributes. Although discretization of numerical attributes is a possibility,
it is often impractical. Finally, ID3 also suffers from bias since the information gain is biased for
attributes with many possible outcome values.

3.1.2 C4.5
C4.5 was introduced in 1993 by the same author of ID3, J. R. Quinlan. [22] This algorithm
was developed with the goal of overcoming the limitations of ID3, namely the issues regarding
continuous attributes, overfitting and the bias of information gain towards attributes with many
possible values.

Continuous Attributes
For continuous attributes, training instances are first sorted according to the values of those

attributes, then a threshold value Z is chosen such that the possible values for the attribute are
split among two subsets, one with values less or equal to Z and the other with values greater
than Z. For example, considering an attribute with {a1, ..., av} possible values, there are v − 1
possible values for Z. Usually, split value Z is chosen as the mid point of consecutive values:

Z =
ai + ai+1

2

Z is then calculated for all possible v−1 values, resulting in two subsets ofA,D1 andD2, where
D1 <= Z and D2 > Z. The entropy of the attribute, E(A) is then determined as in ID3, but for
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all v − 1 split values of Z. The value of Z that maximizes information gain is finally chosen as
the optimal split value.

Overfitting
Decision trees can occasionally suffer from overfitting. Overfitting means the algorithm

adapts to training data so well that it becomes useless for classifying future testing data. C4.5
tries to overcome this problem with a method of postprunning (after the decision tree is com-
plete), called ’pessimistic pruning’, by replacing entire branches and the corresponding sub-tree
with a leaf. [23]

Sub-tree replacement starts by estimating classification errors with a validation set separated
from training data. If the combined error for a set of leaves is greater than the parent node, that
sub-tree is pruned.

Bias
ID3 tends to be biased towards attributes with many different values. To illustrate this issue,

consider an attribute a with distinct values for each instance. The entropy for this attribute would
be minimal and information gain would be maximized. As such, this attribute would be selected
for a splitting node with many output branches, one for each possible value of a. Although this
attribute could correctly classify training data, it would be useless for future data.

To overcome this limitation, C4.5 introduces the gain ratio. The gain ratio relies on split in-
formation, which represents the potential information for splitting data into v subsets by choosing
attribute A with v possible values. Split Information and Gain Ratio are defined as:

SplitInfo(A) = −
v∑

i=1

pi + ni

p+ n
× log2(

pi + ni

p+ n
)

GainRatio(A) =
Gain(A)

SplitInfo(A)

Similarly to information gain in ID3, the attribute that maximizes Gain Ratio is chosen as the
splitting node.

3.2 Random Forests
Random Forest algorithm was first introduced by Leo Breiman in 2001 [24] and rely on the con-
cept of bootstrap aggregating (also referred as bagging). Bootstrap aggregating is an ensemble
method which combines multiple individual models into a global model with the goal of improv-
ing the overall classification performance.

Ensemble methods tend to perform better than the individual classifiers they are composed
of, as the global classification is determined by average or majority voting. In this case, for the
ensemble method to provide an incorrect classification, then more than half of the individual
classifiers would need to provide an incorrect result as well. To minimize this, considerable
diversity between the individual models should exist.

Random Forests rely on random instance sampling and attribute selection to guarantee distinct
decision trees.
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The algorithm starts by creating an in-bag set of instances by sampling with replacement from
the training set. Sampling with replacement means the same training instance can be selected
multiple times or, in other words, the in-bag set can be composed of duplicate instances. Usually,
the number of instances of in-bag set is the same as in the training set. The remaining samples of
the training set that are not selected for the in-bag set are referred to as out-of-bag data and are
used for validation or testing. This process is repeated for the total number of desired decision
trees. For example, if a particular Random Forest has k decision trees, an in-bag set is generated
k times, once for each tree.

Finally, for every node of each individual tree, a subset of the total m attributes is randomly
selected and the best splitting attribute is chosen. Examples of splitting criteria to select the
best attribute were discussed for algorithms ID3 and C4.5 before, in sections 3.1.1 and 3.1.2. A
frequent approach to the size of the subset of attributes is to randomly select

√
m attributes.

In summary, the complete process to build a random forest is, for each tree:

1. Create an in-bag set by sampling the training set with replacement. Instances that are not
selected are known as out-of-bag data and is used for testing of the individual tree or the
complete Random Forest;

2. For each node, select the best splitting attribute from a random subset of the total m at-
tributes. The size of the subset is considerably smaller thanm, usually

√
m;

3. Let the tree grow without pruning.

Once the Random Forest is complete, classification is done by taking all of the individual
decision tree outputs, which can beweighted, and selecting themajority or the average, depending
on the context. Weights can be determined by using out-of-bag data to validate and test the
performance of each individual decision tree or the complete forest.

An important aspect about the performance of Random Forests is that it is directly related
to the variability between individual trees. As such, ensuring low correlation between trees is
critical.

3.3 Performance Metrics
After model training and testing, multiple metrics are calculated in order to evaluate the perfor-
mance of the model. During testing, each transaction is awarded a score between 1 (less likely to
be fraud) and 1000 (most likely to be fraud) and, if the score is greater than or equal to a certain
Fraud Threshold, the transaction is classified as fraud (positive class); if the score is less than the
Fraud Threshold, the transaction is classified as not-fraud (negative class).

After classification, by comparing the actual class of each transaction with the model’s clas-
sification the following metrics are calculated: True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN). These metrics are defined as:

• TP - number of transactions classified as fraud that are actually fraud, that is, the number
of transactions correctly classified as fraudulent;

• TN - number of transactions classified as not-fraud that are actually legitimate, that is,
the number of transactions correctly classified as not fraudulent;

• FP - number of transactions classified as fraud that are actually legitimate, that is, the
number of transactions incorrectly classified as fraudulent;
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• FN - number of transactions classified as not-fraud that are actually fraud, that is, the
number of transactions incorrectly classified as legitimate;

These values are then used to calculate various performance metrics for model evaluation
such as Recall, Precision, False-Positive Rate, Area-Under-Curve (AUC) and Partial Area-Under-
Curve (pAUC). Each of these performance metrics is defined next.

3.3.1 Recall
Recall is a performance metric that tells the fraction of relevant instances that are identified, that
is, in the context of fraud detection, the percentage of fraudulent instances identified. The formal
definition of Recall is:

• Recall = TP
TP+FN

Recall, in itself, is not very useful since it cannot accurately evaluate a model. For instance,
let’s consider a model that classifies all instances of a certain dataset as fraud. If so, then all fraud-
ulent transactions are correctly identified. Thus, FN = 0 and, by definition, Recall = 100%.
This result might give the idea that all fraudulent transactions were identified (and rightly so),
however, all legitimate transactions were also flagged as fraudulent, making the model ultimately
useless.

To accurately evaluate a model with Recall, for the reason described above, Precision or
False-Positive Rate also need to be taken into account. These performance metrics are defined
next.

3.3.2 Precision
Precision translates to the fraction of instances that were selected that are actually relevant. In
other words, in the context of fraud detection, the percentage of transactions classified as fraud
that are actually fraudulent. Precision is formally defined as:

• Precision = TP
TP+FP

Similarly to the reasoning that was described for Recall, Precision, by itself, can also be
considered of limited use.

3.3.3 False-Positive Rate
The FPR represents the fraction of instances classified as positive that are actually negative. In
other words, it represents the percentage of transactions classified as fraud that are actually legit-
imate. The formal definition of FPR is:

• FPR = FP
FP+TN

In the context of fraud detection, this metric is extremely important. It should be noted that
each positive (transaction flagged as fraudulent) might require human intervention, so a high
FPR will increase costs to prohibitive levels. As such, while Recall and Precision should be
maximized, keeping a low FPR is of utmost importance.
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3.3.4 Money-Recall
Money-Recall, usually denoted as Recall$, is a money-based metric similar to Recall, but in-
stead of relying directly on the number of TP and FN, it is calculated using the monetary value
associated with the corresponding transactions.

Using the Recall definition, Money-Recall is easily determined by finding the money amount
of each term, that is, themoney associatedwill all TP and FN, commonly denoted as $TP and $FN,
respectively. $TP represents the sum of money of all detected fraudulent transactions and, equiv-
alently, $FN represents the sum of money of all fraudulent transactions that were not detected.
In summary, Money-Recall represents the percentage of money from fraudulent transactions that
is effectively detected, and the formal definition is the following:

• Money-Recall = $TP
$TP+$FN

Money-Recall is very useful in a business perspective since it represents all detected money
involved in fraudulent transactions. Normally this would be the ideal metric to present to potential
clients as it effectively shows how much money the system could possibly save. However, since
the average transaction monetary amount can vary considerably, Money-Recall is not appropriate
to compare models, as few transactions can represent large amounts of money and the opposite
can also happen. As such, a model m can exhibit a higher Money-Recall than model m′ for the
same FPR, but actually have a lower Recall, making it difficult to compare performance.

3.3.5 Area-Under-Curve
To define Area-Under-Curve (AUC) we must first introduce the Receiver Operating Character-
istic (ROC) curve: the ROC curve plots Recall (vertical axis) versus FPR (horizontal axis), and,
in our context, is obtained by calculating said metrics for all possible values of Fraud Threshold
- from 1 to 1000. This operation will generate 1000 pairs of Recall - FPR values that will be
plotted against each other. An example of a ROC curve is displayed in Figure 3.3.

Figure 3.3: ROC curve example.
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AUC is usually a good metric to compare models and is determined by joining point (0,0)
with the classifier’s Recall-FPR points, joining these with point (1,1) and finally by calculating
the area under the obtained curve.

In an ideal scenario, AUCwould be 1, meaning a FPR of 0% and 100%Recall for all threshold
levels. These values would represent a model that could detect all fraudulent transactions while
committing no errors.

3.3.6 Partial Area-Under-Curve
In fraud detection, limiting FPR to a small value is usually a priority in order to reduce costly
human intervention dealing with false alarms. As such, we may want to calculate what is referred
to as Partial Area-Under-Curve (pAUC). pAUC is calculated exactly as AUC except instead of
considering the complete ROC curve, we limit the FPR (horizontal axis) to a certain maximum
value. To illustrate this concept, Figure 3.4 shows the pAUC area for a maximum FPR of 10%,
commonly denoted as pAUC(0.1).

Figure 3.4: ROC curve showing, in grey, pAUC for maximum FPR of 10%.

pAUC is generally a better performance metric than AUC when there is a maximum allowed
FPR. For example, a client might restrict FPR to a certain maximum value p. As such, when
building and evaluating models we should consider the model with the highest pAUC(p), even if
there are other models with greater AUC.

What happens in this scenario is that the Fraud Threshold is set to a certain value to which the
model stays below the maximum allowed FPR p, thus, pAUC(p) is a superior metric than AUC
to compare models, since they will operate at FPR lower than or equal to p.
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Chapter 4

Experimental Results

In this chapter we explore two algorithms for Domain Adaptation, introduced in sections 2.2 and
2.3, and an unsupervised ML algorithm, presented in section 2.4. We evaluate both approaches
by comparing their performance with traditional ML methods on different scenarios.

We start the chapter by describing the datasets used in all experiments, followed by the pre-
liminary results obtained in the first semester. Finally, the experimental results achieved during
the second semester are presented and discussed.

4.1 Datasets
All experiments relied on four datasets from different domains, described next and anonymized
for confidentiality reasons:

• Dataset A - contains eCommerce transactions obtained from financial institutions. This
dataset contains a large number of transactions but with a low number of features.

• Dataset B - contains transactions from a payment service provider serving multiple eCom-
merce merchants. It must be noted that these merchants can operate in different types of
business. This dataset contains only a fraction of the number of transactions of A but a
higher number of features.

• Dataset C - this dataset is from an eCommercemerchant aggregatingmultiple sub-merchants.
These sub-merchants operate all in the same business, that is, all of them sell similar types
of goods.

• Dataset D - similar to A, this dataset contains transactions from a financial entity operating
as a bank.

A complete characterization of all four datasets is presented in Table 4.1.

Dataset Time window
(months) Total Transactions Fraud (%) Number of

Features
A 36.0 5414507 0.53% 44
B 15.0 148228 1.21% 151
C 15.5 1324505 2.02% 151
D 6.0 500300 0.15% 469

Table 4.1: Datasets description.
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4.2 Tools and Simulation
In this section, we describe the main tools and the simulation process used in the developed work.

Tools
Training and performance evaluation of the developedmodels were accomplished using Feedzai’s

proprietary data processing, feature engineering and machine learning tools, which include:

• PKernel - a Complex Event Processing (CEP) Engine that uses a stream processing lan-
guage, Pulse Query Language, defined next, to manipulate streams of events. Event pro-
cessing refers to the concept of processing real-time data, meaning that events can arrive
continuously at any point in time, commonly referred to as stream. CEP can be defined as
the processing of these streams with the goal of identifying complex patterns by analyzing
low complexity events. [25]

• Pulse Query Language (PQL) - a stream processing language, with a query syntax similar
to Structured Query Language (SQL), used to define the transformations PKernel applies
to the incoming streams of events. Using PQL, we can configure PKernel to apply feature
engineering and define output features. After processing, data instances can be outputted
in Attribute-Relation File Format (ARFF) format;

• Model builder - with the output ARFF file defined above, Model builder is used for model
training. This tool supports several algorithms, such as Random Forests or Naive Bayes,
among others, and multiple parameters for each model. A diagram for model training is
displayed in Figure 4.1;

Figure 4.1: Model builder process for model training.

• Simulator - this tool simulates, in batchmode, a live production systemwhere local datasets
are treated as a continuous stream of events, which, in this context, are transactions com-
posed of several fields such as timestamp, amount of money transferred, cardholder’s name
and so on.
Before going into detail on how the Simulator works, the concept of profile must first be
introduced - a profile is a set of data from a particular card owner, containing information
regarding all transactions made by that card over a certain time frame. As an example, a
profile can contain data such as the number of transactions made in the last two weeks or
the average value of the last five transactions. Every time a new transaction occurs, the
profile of the respective card number is updated. This profiling step is done by the PKernel
engine.
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The Simulator ties together the tools defined abovewith twomethods of operation: instance-
generation mode and model-testing mode.
In instance-generationmode two input files must be supplied: a dataset in JavaScript Object
Notation (JSON) format and a PQL file. Using the transformations defined in the PQL file,
PKernel manipulates the events in the JSON dataset and outputs an ARFF file.
Model-testing mode implements the instance-generation mode with an additional step: in-
stance scoring and performance metrics. For this step, a trained model (trained previously
with Model builder) must be inputted. After the instance-generation step, the Simulator
uses the input model to classify data from the generated ARFF file by scoring each trans-
action from 1 (less likely to be fraud) to 1000 (most likely to be fraud). Following, for a
given threshold, all the metrics described in section 3.3 are calculated.
Figures 4.2 and 4.3 show a diagram for the simulator process in instance-generation and
model-testing modes, respectively.

Figure 4.2: Simulator process in instance-generation mode.

Figure 4.3: Simulator process in model-testing mode.

In summary, the purpose of the Simulator tool is to test models offline and make sure they
generate the same results when deployed in production.

With PQL, we can easily define new profiles, effectively implementing feature engineering,
by manipulating streams of transactions and transforming them into instances. These instances
are then converted to ARFF data files for model training or directly passed to an already trained
model for transaction scoring and classification with the Simulator tool.
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Simulation
The simulation process starts with raw payments data in a JSON file, whose format can be

found in [26]. The file is then split in two sets: the first 70% transactions as the training set and
the last 30% as the testing set.

Before training a model with Model builder, the training set must first be generated with Sim-
ulator in instance-generation mode, as described before and shown in Figure 4.2. This profiling
stage will apply the transformations defined in a PQL file to calculate and extract from the raw
data the final features that will be used in training and classification, and finally outputting these
instances in ARFF format.

With the generated ARFF file, a machine learning model is trained with Model builder. As
mentioned before, this tool supports various algorithms and multiple parameters for each.

Finally, the testing set, in JSON format, is inputted to Simulator along with the trained model
and the same PQL file used to profile the training set. The Simulator will then score each transac-
tion of the testing set from 1 to 1000 and calculate the performance metrics for each score value,
as described before.

For the implementation of the DA algorithms presented in 2.2 and 2.3, a python script was
developed. Before training or testing, this script is applied to the ARFF file defined before,
executing the respective algorithm transformations and outputting the final ARFF file that will
then be used for model training or testing. Figure 4.4 shows a diagram of this process and at what
step is DA implemented.

Figure 4.4: Overview of the complete simulation process.

In order to explore the LOF algorithm, we chose to use ELKI, an open source data mining
framework focusing on unsupervised methods such as clustering and outlier detection. [27]

In the next section all experiments and the corresponding results are presented.

4.3 Results and Discussion
In this section, we present and compare the results between the baseline experiments and the DA
algorithms implemented, as well as the unsupervised method, LOF, applied with ELKI software.
This section starts with the preliminary experiments completed during the first semester, where
the Frustratingly Easy Domain Adaptation (FEDA) algorithm is applied to datasets A (Source
domain) and B (Target domain). The tests to compare both approaches use multiple combinations
of dataset A and B and were designed in order to simulate the following scenarios: the Target
domain has no labeled data, thus only data from the Source domain can be used for model training;

26



Target domain has some data that can be used in model training. A more detailed definition of
these tests is presented next.

4.3.1 First Semester Preliminary Results

4.3.1.1 Baselines

The first test considered was calculating baselines with the datasets described in 4.1 which will
then serve as reference for the implementation of the DA algorithm presented in 2.2. The first
baseline, called JustB, was determined using only dataset B both for training (first 70% instances)
and testing (last 30% instances). The second baseline, called JustA, used dataset A for training
and dataset B (last 30% instances) for testing. For the third baseline, called A+B, dataset A and
the first 70% instances of B were used for training and the last 30% instances of B for testing. In
summary, the following baselines were calculated:

• JustB - Train (B [first 70% instances])→ Test(B [last 30% instances])

• JustA - Train (A)→ Test(B [last 30% instances])

• A+B - Train (A + B [first 70% instances])→ Test(B [last 30% instances])

The following Table 4.2 show the performance metrics Recall, Precision, FPR, AUC and
pAUC(0.05) obtained for each baseline for maximum FPR below 1%. The algorithm used for
model training was a particular implementation of Random Forests by Feedzai, using the same
parameters for all baselines: in bag percent - 50%; trees - 100; undersampling - 65%.

Baseline Recall Precision AUC pAUC(0.05)
JustB 55.70% 34.13% 94.89% 3.20%
JustA 12,05% 10,28% 85,87% 1.22%
A+B 30,62% 22,27% 93,40% 2.42%

Table 4.2: Evaluation metrics for Baselines JustB, JustA and A+B.

The best performance is shown by Baseline JustB, as expected, since the model was trained
and tested with data from the same domain. Similarly, Baseline A+B shows better performance
than Baseline JustA as it used data from the Target domain for model training, although most of
the training instances were from a different domain. A visual perspective of the performance is
shown in Figure 4.5 displaying the ROC curve of the three Baselines, for FPR below 10%.
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Figure 4.5: ROC curves for the three Baselines.

4.3.1.2 Domain Adaptation implementation

For this task, theDA algorithm described in 2.2was implemented for Baseline JustA andBaseline
A+B. It should be noted that for Baseline JustB the algorithm does not apply since both training
and testing data are from the same domain.

The implementation consisted on pre-processing datasets A and B by feature-augmentation
and then using them for training and testing exactly the same way as for Baseline JustA and Base-
line A+B, as described in 4.3.1.1. One important aspect of the implementation is that categorical
features are encoded with One-Hot Encoding, as explained in section 2.2. Table 4.3 shows the
performance results for Baseline JustA and Baseline A+B with DA and Figure 4.6 displays the
ROC curves for all Baselines, with and without DA, for FPR below 10%.

Baseline Recall Precision FPR AUC pAUC(0.05)
DA(JustA) 7.49% 8.68% 0.72% 73.54% 0.93%
DA(A+B) 46.25% 31.00% 0.94% 94.96% 3.10%

Table 4.3: Evaluation metrics for Baselines JustA and A+B, with Domain Adaptation.
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Figure 4.6: ROC curves for the Baselines, with and without Domain Adaptation.

By analyzing the performance metrics for Baseline JustA, we can see a decrease in perfor-
mance when using FEDA. Intuitively it makes sense, since the model was trained with instances
belonging only to the Source domain and, while classifying instances from the Target domain, the
model has to deal with features that were always zero during training. On the other hand, evalua-
tion metrics for BaselineA+B show a significant increase in performance with the DA algorithm,
especially in pAUC(0.05). This result can be explained by the training dataset containing some
instances from the Target domain and the pattern of testing instances being recognized by the
model. The performance of this model is similar to Baseline JustB, with a minor increase in
AUC: 94.89% in Baseline JustB versus 94.96%; but a slight decrease in pAUC(0.05): 3.20% in
Baseline JustB versus 3.10%.

In order to understand the performance difference between using FEDA or just the Target
data as new data becomes available, a new set of tests were considered:

• B1m - Train(B [last month of first 70% instances])→ Test(B [last 30% instances])

• B3m - Train(B [last 3 months of first 70% instances])→ Test(B [last 30% instances])

• B6m - Train(B [last 6 months of first 70% instances])→ Test(B [last 30% instances])

• AB1m - Train(A + B [last month of first 70% instances]) with DA → Test(B [last 30%
instances])

• AB3m - Train(A + B [last 3 months of first 70% instances]) with DA→ Test(B [last 30%
instances])
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• AB6m - Train(A + B [last 6 months of first 70% instances]) with DA→ Test(B [last 30%
instances])

These tests were designed to answer the question ”How much data from the Target domain
(i.e. the new merchant client) is needed before FEDA with existing historical data is no longer
better than simply using that Target data for training?”. TheAUC and pAUC(0.05) of the previous
tests are shown in Table 4.4.

Test AUC pAUC(0.05)
B1m 91.53% 1.57%
B3m 93.73% 2.89%
B6m 94.29% 3.13%
AB1m 93.14% 2.77%
AB3m 92.90% 2.36%
AB6m 94.54% 2.93%

Table 4.4: Performance metrics for tests using multiple amounts of Target data.

Figure 4.7: pAUC(0.05) for tests from Table 4.4.

The results from testB1m, B3m andB6m are as anticipated, lower but gradually approaching
the performance values of Baseline JustB, which contained approximately 8 months of training
data. Test AB3m is somewhat surprising, as both AUC and pAUC(0.05) are lower than test
AB1m when precisely the opposite was expected. Nevertheless, these results suggest that using
existing data and FEDA for at least one month can lead to better results than using only that month
of merchant data for model training. On the other hand, comparing tests B3m and AB3m, they
hint at the possibility that 3 months of data of a particular merchant is enough to achieve better
performance than resorting to existing data and using FEDA.

4.3.1.3 Discussion

The preliminary results suggest that the implemented DA algorithm has potential to improve
results by using existing historical data for new merchants with small amounts of transactions
data. Specifically, results hint that one month of data of the Target domain is enough to achieve
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a better performance with FEDA. However, as more transactions of the new merchant become
available, there is a point where the merchant achieves enough data to actually provide better
results than resorting to a vast amount of transactions from other merchants and applying DA.

Additional experiments were carried out in the Second Semester to better understand how
FEDA could improve fraud detection. Furthermore, a new DA algorithm was implemented
(CORAL), and an unsupervised outlier detection algorithm (LOF) was applied using existing
frameworks. The corresponding experiments and results are presented in the following section
4.3.2.

4.3.2 Second Semester Results
This section contains the main experiments completed during the Second Semester and the cor-
responding results.

Starting, we repeat and expand the experiments from the First Semester, using dataset A
as Source domain and dataset B as Target domain, and considering different time windows for
dataset B from 1 week to 6 months. Following, a new scenario is simulated with dataset B being
separated into the different sub-merchants it is composed of. Specifically, the merchant with most
fraud is used as Target and all remaining merchants as the Source domain. In both experiments
we apply the FEDA and LOF algorithms. Due to time constraints, the CORAL algorithm was
not applied to these datasets.

The next experiments use dataset C split into several stores, similar to the previous scenario
for dataset B. Once again, the store with most fraud is used as Target domain and all remaining
as the Source domain. For these experiments, all algorithms (FEDA, CORAL and LOF) were
tested.

Finally, dataset D is explored by separating all Card Present (CP) (Source domain) from Card
Not Present (CNP) (Target domain) transactions and again testing all algorithms. A CP transac-
tion takes place when a card and the card owner are present when making the payment. On the
other hand, a CNP occurs when the payment is completed by providing card information over a
remote channel such as the internet, by phone or over mail. A plausible reason to separate trans-
actions by card presence could be a merchant with physical stores only, thus with high amounts of
CP transactions, wanting to expand business to the eCommerce space. As such, CP transactions
were considered as Source domain, and CNP as Target domain.

In all experiments, unless stated otherwise, ”training” implies using the first 70% of the cor-
responding dataset and ”testing” implies the last 30%. Another crucial point is that experiments
where a stochastic component exists, such as in training models, presented results are averages
of ten runs.

4.3.2.1 Testing FEDA on datasets A and B

For this test we apply the FEDA algorithm to datasets A and B, used as Source and Target do-
mains, respectively. In this scenario, dataset A acts as existing historical data from several mer-
chants and dataset B simulates a new merchant with different amounts of available data, aiming
to expand and confirm the results obtained in the First Semester and reported on section 4.3.1.
Since only up to 6 months of data from B are used for model training, instead of the typical 70/30
split for training/testing, dataset B is split 40/60, leaving 9 months for testing. This decision was
made also to improve the number of fraudulent instances in the testing set, thus increasing the
reliability of the results. Additionally, when training with A, the complete dataset is used, since
it belongs to the Source domain and it is not used for testing. Another important aspect is that
dataset A has a subset of features from B, thus, all experiments use only those common features.
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Tables 4.5, 4.6 and 4.7 show the evaluation metrics for those experiments, for maximum FPR
of 1%. The first column, ’Length of Target (B)’, displays the amount of data from the Target
domain B used in each test, starting at 1 week of data up until to 6 months. The second column
’Train’ indicates which dataset was used for model training: JustBmeans only data from dataset
B was used; DA(A+B) indicates data from A and B, and also applying the DA algorithm FEDA;
finally, A+B is similar to the previous case, where data from A and B is used for training but this
time no DA algorithm is applied. Table 4.8 contains the evaluation results of using just dataset
A for model training. Figures 4.8, 4.9, 4.10 and , 4.11 display a visual representation of the
performance metrics from the previous Tables.

In all experiments data from B, the Target domain, was used for testing.

Length of Target (B) Train Recall$ Recall AUC pAUC(0.05)
1 week

JustB

2.20% 5.75% 87.40% 0.90%
2 weeks 10.23% 21.18% 87.31% 1.65%
3 weeks 29.68% 26.63% 90.91% 2.35%
1 month 40.03% 39.18% 90.84% 2.63%
2 months 23.92% 36.16% 91.36% 2.57%
3 months 36.54% 38.73% 92.26% 2.79%
6 months 42.55% 38.58% 93.23% 2.86%

Table 4.5: Performance metrics for model training and testing with data
from dataset B, for maximum FPR of 1%.

Length of Target (B) Train Recall$ Recall AUC pAUC(0.05)
1 week

DA(A+B)

5.61% 8.02% 88.14% 1.09%
2 weeks 8.67% 13.46% 90.25% 1.85%
3 weeks 16.81% 25.42% 89.62% 1.92%
1 month 6.94% 16.64% 90.74% 1.69%
2 months 23.44% 27.84% 91.92% 2.47%
3 months 45.39% 40.54% 92.83% 2.87%
6 months 52.58% 43.27% 93.58% 2.95%

Table 4.6: Performance metrics for model training with data from
datasets A and B, using FEDA algorithm, and tested with data from B,

for maximum FPR of 1%.

Length of Target (B) Train Recall$ Recall AUC pAUC(0.05)
1 week

A+B

51.75% 19.67% 79.41% 1.37%
2 weeks 37.55% 16.94% 81.43% 1.28%
3 weeks 31.65% 16.49% 85.88% 1.41%
1 month 35.66% 16.79% 86.85% 1.30%
2 months 70.26% 30.26% 88.66% 1.85%
3 months 36.99% 24.05% 90.77% 2.06%
6 months 61.05% 26.78% 92.41% 2.27%

Table 4.7: Performance metrics for model training with data from
datasets A and B, and tested with data from B, for maximum FPR of 1%.
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Train Recall$ Recall AUC pAUC(0.05)
JustA 51.53% 17.40% 85.05% 1.55%

Table 4.8: Performance metrics for model training with data from
dataset A, and tested with data from B, for maximum FPR of 1%.

Figure 4.8: Money-Recall for all Train options, for maximum FPR of 1%.

Figure 4.9: Recall for all Train options, for maximum FPR of 1%.
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Figure 4.10: pAUC(0.05) for all Train options, for maximum FPR of 1%.

Figure 4.11: AUC for all Train options, for maximum FPR of 1%.

Looking at pAUC(0.05), the best option for the first week is using just data fromA for training.
On the second week, using DA with both datasets A and B seems to yield the best results. In the
timeframe between the third week and the second month, the best performance is obtained using
only data from the Target domain B. Finally, between three and six months, using DA provides
the best performance in all metrics except for Money-Recall.

These results are quite inconclusive and do not provide a definite answer. On the hand, an-
alyzing Money-Recall (column Recall$), training with just dataset A (Table 4.8) or with A and
B without DA (Table 4.7) obtains the best performance for all time windows. Although not the
best metric to compare performance, it should always be considered, as it effectively represents
money that could potentially be saved.

An important aspect to notice is that when training with data from A, Money-Recall seems
to be higher when analyzed proportionally to Recall. This is caused by transactions from A
having an average amount higher than transactions from B, which also happens for fraudulent
transactions, essentially making the trained model to learn to look for higher value transactions.

Taking into account metric Money-Recall, applying DA does not seem to provide additional
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benefits rather than just training models on historical data and Target data as it becomes available,
although further experimentation is needed.

4.3.2.2 Testing FEDA on datasets A and B, with feature union

This experiment follows the previous scenario, presented in 4.3.2.1, but instead of using the com-
mon features between both datasets, we use the feature union. What this means is that on dataset
A we introduce zeros for all features that previously only existed on B.

The following Tables 4.9, 4.10 and 4.11 show the evaluation metrics for maximum FPR of
1%. Figures 4.12, 4.13, 4.14 and , 4.15 display a visual representation of the performance metrics
from those Tables.

Length of Target (B) Train Recall$ Recall AUC pAUC(0.05)
1 week

JustB

48.15% 51.13% 94.66% 2.98%
2 weeks 46.50% 50.38% 94.57% 2.95%
3 weeks 61.26% 63.39% 96.01% 3.42%
1 month 61.65% 65.36% 96.18% 3.50%
2 months 69.20% 67.93% 97.10% 3.74%
3 months 74.29% 72.01% 97.73% 3.93%
6 months 67.19% 57.94% 97.82% 3.75%

Table 4.9: Performance metrics for model training and testing with data
from dataset B, with feature union, for maximum FPR of 1%.

Length of Target (B) Train Recall$ Recall AUC pAUC(0.05)
1 week

DA(A+B)

21.89% 17.55% 88.96% 1.65%
2 weeks 32.60% 36.31% 93.84% 2.30%
3 weeks 43.16% 46.44% 95.57% 2.89%
1 month 59.44% 59.46% 95.94% 3.28%
2 months 60.30% 61.42% 96.27% 3.36%
3 months 74.10% 68.23% 97.70% 3.82%
6 months 62.84% 56.13% 97.47% 3.66%

Table 4.10: Performance metrics for model training with data from
datasets A and B, using FEDA algorithm with feature union, and tested

with data from B, for maximum FPR of 1%.

Length of Target (B) Train Recall$ Recall AUC pAUC(0.05)
1 week

A+B

68.88% 20.88% 82.43% 1.81%
2 weeks 68.49% 35.85% 93.72% 2.47%
3 weeks 65.95% 45.84% 94.69% 2.85%
1 month 58.79% 52.34% 94.79% 3.05%
2 months 60.43% 62.63% 95.97% 3.51%
3 months 79.01% 70.20% 97.46% 3.82%
6 months 80.53% 65.96% 97.48% 3.77%

Table 4.11: Performance metrics for model training with data from
datasets A and B, with feature union, and tested with data from B, for

maximum FPR of 1%.
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Figure 4.12: Money-Recall for all Train options, for maximum FPR of 1% and feature union.

Figure 4.13: Recall for all Train options, for maximum FPR of 1% and using feature union.

Figure 4.14: pAUC(0.05) for all Train options, for maximum FPR of 1% and using feature union.
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Figure 4.15: AUC for all Train options, for maximum FPR of 1% and using feature union.

In this scenario, results show DA does not bring additional benefit, since for all time windows
using only data from B (Table 4.9) or data from A and B without DA (Table 4.11) better results
are achieved for all metrics.

4.3.2.3 Splitting dataset B into sub-merchants

After the previous experiments, presented in 4.3.2.1 and 4.3.2.2, it was hypothesized that datasets
A and B are from two very distinct domains, essentially making DA methods to fail. Conse-
quently, this experiment aimed to split dataset B into several sub-merchants in order to generate
closer Source and Target domains.

Since dataset B contains payment data from several different merchants, it was decided to
split them according to the total number of transactions. In this experiment, the merchant with
most transactions, referred to as MMT, is considered as the Target domain and all remaining
merchants, designated as AeMMT, as the Source domain. To achieve this, dataset B is first split
with the common 70/30 percentage for training/testing, and only then, for each set, the merchant
with most transaction is separated from the remaining merchants, ensuring the temporal order
between training and testing.

Table 4.12 shows the obtained results for each test for maximum FPR of 1%, where column
’Train’ indicates what data was used for training (”All” represents all merchants), and the ’Test’
column is omitted since all models are tested on the Target data, MMT. For the test corresponding
to the last row, DA(All), the FEDA algorithm is applied. Since pAUC(0.05) provides a good
representation of the performance of each model, Figure 4.16 show this metric for each test of
Table 4.12.

Train Recall$ Recall Precision AUC pAUC(0.05)
MMT 4.66% 4.94% 1.52% 83.58% 0.36%
AeMMT 49.43% 35.80% 10.03% 91.70% 2.69%
All 26.42% 33.33% 9.75% 90.28% 2.64%
DA(All) 5.62% 7.41% 2.35% 86.96% 1.25%

Table 4.12: Performance metrics for model training with dataset B split
into sub-merchants using MMT as Target and AeMMT as Source.
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Figure 4.16: pAUC(0.05) of tests from Table 4.12

Results are somewhat surprising since the theoretical best-case, training withMMT, yields the
worst performance. Another surprising fact is that using AeMMT for training, which contains no
data from the Target domain, provides the best results for all metrics. Finally, using all merchants
in the train set, the performance is significantly inferior to the previous case, AeMMT. Applying
DA, namely the FEDA algorithm, not only does it offer no performance boost but also massively
deteriorates it. This outcome could be explained by the low amount of fraudulent transactions for
MMT (only 230 of a total 81944 transactions, or 0.28%), which might be too few for training as
well as for testing.

For this reason, the experiment was repeated but, this time, using for Target domain the mer-
chant with most fraudulent transactions, referred as MMF (with 1337 fraud transactions in 23713
total, or 5.64% fraud rate), and all other merchants as the Source domain, designated as AeMMF.
As before, the testing set for every scenario is MMF, the Target domain. Table 4.13 contains the
performance results for this experiment and Figure 4.17 shows the pAUC(0.05) for each test.

Train Recall$ Recall Precision AUC pAUC(0.05)
MMF 56.04% 42.04% 48.89% 90.90% 2.53%
AeMMF 29.79% 9.55% 21.74% 85.07% 1.39%
All 54.52% 40.76% 47.76% 90.99% 2.38%
DA(All) 42.72% 35.67% 44.80% 91.52% 2.23%

Table 4.13: Performance metrics for model training with dataset B split
into sub-merchants using MMF as Target and AeMMF as Source.

Figure 4.17: pAUC(0.05) of tests from Table 4.13
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Results for the first two rows are as expected, with the best performance achieved when using
the Target domain for training, MMF, and worst performance when training with a different
domain, AeMMF. When using all merchants (’All’ row), performance approximates the best-
case but, as before, using the FEDA algorithm decreases performance for all metrics except for
AUC metric (’DA(All)’ row).

It is interesting that FEDA provides the best AUC value over all other training options, mean-
ing that overall performance is improved considering all values of FPR up to 100%. However,
since limiting FPR to a low value (usually 1% or 5%) in fraud detection systems is of vital im-
portance, as explained in 3.3.6, that particular result is not significant and, in fact, pAUC(0.05)
for FEDA is actually only the third highest value.

In the next section, a new approach distinct fromDA is studied, as the unsupervised algorithm
presented in 2.4 is applied to dataset B.

4.3.2.4 Applying LOF to dataset B

This section presents a new approach, alternative to DA, that could potentially solve the current
eCommerce use case. Introduced in section 2.4, LOF is an unsupervised learning algorithm for
outlier detection. In this context, fraudulent transactions can be seen as deviations from legitimate
payment patterns, making them detectable by outlier detection algorithms.

Opposite to DA, this approach does not need historical data since it only uses data from the
Target domain. Additionally, Target data can be unlabeled, a huge benefit for small merchants
for which labeling costs can be prohibitive. On the other hand, enough data on the Target domain
should exist in order to create a good representation of the dataset.

LOF was tested on three subsets of dataset B, with all 151 features, each containing the last
100 000, 50 000, 20 000 and 10 000 instances of the complete dataset. The different amount of
transaction was chosen to evaluate how LOF performance would evolve according to the number
of transactions considered.

Before applying LOF, the number of feature dimensions is reduced with Principal Compo-
nent Analysis (PCA), a technique that converts a set of possibly correlated features into a smaller
subset of uncorrelated features, referred to as principal components. The reason to use PCA was
based on empirical observation, namely, the fact that, without PCA, LOF performance was atro-
cious. After trying PCA, results were significantly improved and, on top of that, computational
time required to apply LOF was decreased.

Total
instances

PCA
dimensions

LOF
parameter k Recall$ Recall Precision

100000 100 256 64.46% 52.93% 39.43%
50000 50 128 74.31% 48.73% 26.09%
20000 50 32 29.93% 15.85% 6.16%
10000 25 32 13.23% 9.84% 5.77%

Table 4.14: Performance metrics and optimal parameters for LOF
applied to dataset B, for maximum FPR 1%.
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Recall$ Recall Precision
84.44% 77.20% 41.73%

Table 4.15: Performance metrics for training and testing with dataset B,
using all 151 features and maximum FPR of 1%.

Table 4.14 contains the results for dataset B applying LOF to different amounts of transac-
tions, showing the optimal PCA and k parameters as well as performance metrics Money-Recall,
Recall and Precision for maximum FPR of 1%. Table 4.15 shows the performance results for
training and testing with dataset B using all 151 features, acting as a baseline to compare LOF
results. It should be noted that AUC and pAUC is not shown since LOF generates arbitrary scores
which are then normalized between 1 and 1000, similar to the threshold value described in 3.3.5,
however, even after normalization, given the erratic sequence of LOF scores (low and very high
values) AUC and pAUC might not be an accurate performance metric.

LOF exhibits very good performance when comparing with the baseline shown in Table 4.15
for 100 000 and 50 000 data instances. Although it presents a lower Money-Recall and Recall
it should be noted that LOF does not need labels on the data, but, on the other hand, there is a
significant performance drop when decreasing the number of available instances, which might be
a problem for new merchants with low number of transactions.

In summary, LOF shows great potential when dealing with unlabeled data, however, a con-
siderable number of transactions (over 20 000) is needed to achieve good performance.

4.3.2.5 Splitting dataset C into sub-merchants

As mentioned before, dataset C is composed of multiple merchants operating in the same type of
business, consequently, data from these merchants is considered from closer domains, opposed
to what happens in dataset B. Similarly to experiments reported in section 4.3.2.3, dataset C is
also split between the merchant with most transactions (MMT) which, coincidentally, contains
the most fraud, and all other merchants (AeMMT). As before, MMT is considered as the Target
domain and AeMMT the Source domain, then, each DA algorithm is applied, namely FEDA and
CORAL and, for all tests the training set is, again, MMT, the Target domain.

Table 4.16 shows the performance results for all tests, training models with data from Source,
Target or both (’All’), and applying FEDA and CORAL algorithms, for maximum FPR of 1%.
Since pAUC(0.05) provides a good representation for model performance, Figure 4.18 shows this
metric for tests from Table 4.16.

Train Recall$ Recall Precision AUC pAUC(0.05)
MMT 18.26% 7.41% 11.83% 77.93% 0.76%
AeMMT 23.27% 11.55% 17.38% 77.97% 0.83%
All 27.20% 12.74% 18.67% 79.67% 0.99%
FEDA(All) 25.61% 10.47% 15.92% 79.39% 0.93%
CORAL(AeMMT) 19.49% 11.42% 17.17% 79.29% 0.96%

Table 4.16: Performance metrics for model training with dataset C split
into sub-merchants using MMT as Target and AeMMT as Source, for

maximum FPR of 1%.
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Figure 4.18: pAUC(0.05) of tests from Table 4.16

Even using Target and Source from closer domains than dataset B, results are similar in the
sense that DA algorithms do not improve performance of other alternatives. In this case, the
best option is to train a model with data from all merchants (’All’ row), which exhibits the best
performance for all metrics.

An important observation about CORAL is that, after applying this algorithm, values from
binary or integer features are transformed to float values, which might deteriorate data quality
and have a severe impact on model performance. A possible solution to this issue could be
applying this algorithm only to features containing float values, however, this improvement was
not implemented due to time constraints.

4.3.2.6 Applying LOF to dataset C

As for dataset B, we apply LOF to dataset C using all 151 features and for three different sets
containing the last 100 000, 50 000 and 10 000 instances. Just like before, PCA is also applied in
order to reduce data dimensionality, and several LOF parameter k are tested. Table 4.17 contains
the results of LOF applied to dataset C testing different amounts of data, also showing the optimal
PCA and k parameters as well as metrics Recall, Money-Recall and Precision for maximum FPR
of 1%.

Total
instances

PCA
dimensions

LOF
parameter k Recall$ Recall Precision

100000 75 32 5.37% 4.04% 7.13%
50000 75 64 5.09% 3.70% 7.13%
10000 75 16 4.06% 4.94% 11.82%

Table 4.17: Performance metrics and optimal parameters for LOF
applied to dataset C, for maximum FPR 1%.

Obtained results show poor LOF performance when observing LOF performance for dataset
B, however, comparing with the best result from dataset C from Table 4.16, LOF achieves almost
40% of the best Recall value (4.94% against 12.74%) and over 63% of the best Precision value
(11.82% against 18.67%) with only 10 000 instances but, on the other hand, less than 20% of the
best Money-Recall (5.37% against 27.20%) with 100 000 instances.
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Overall, comparing with the supervised training/testing scenario shown in Table 4.16 LOF
achieves relatively good performance considering it uses only unlabeled data from the Target
domain. Furthermore, the best Recall and Precision values for this algorithm are achieved for a
dataset sample of only 10 000 instances.

4.3.2.7 Splitting dataset D into CP/CNP transactions

Following the same idea applied to datasets B and C, dataset D is split into CP transactions (the
Source domain) and CNP transactions (the Target domain). The reason for this was, given the
data format, it would be impossible to identify groups of merchants and split them like previous
experiments. As such, CP and CNP transactions were considered suitable for Source and Tar-
get domains, respectively, and, as stated before, could simulate the plausible scenario where a
merchant with physical stores decides to expand to the eCommerce space.

Train Recall$ Recall Precision
CNP 41.03% 28.11% 11.46%
CP 35.03% 20.38% 8.61%
All 37.67% 25.85% 10.73%
FEDA(All) 34.85% 25.85% 10.75%
CORAL(CP) 23.92% 18.02% 8.01%

Table 4.18: Performance metrics for model training with dataset D split
into CP and CNP transactions, used as Source and Target domain,

respectively, for maximum FPR of 1%.

Total
instances Recall$ Recall Precision

23 336 29.88% 8.26% 3.14%

Table 4.19: Performance metrics and optimal parameters for LOF
applied to dataset D, CNP transactions only, for maximum FPR 1%.

Table 4.18 contains the performance results for tests using training data fromTarget, Source or
both domains (’All’) and applying FEDA and CORAL algorithms, for maximum FPR of 1%. In
all tests, like previous experiments, models were tested on the Target data, that is, CNP transaction
instances. Table 4.19 presents the results for LOF applied to Target data, containing 23 336 CNP
transaction instances.

As in previous experiments, DA algorithms do not provide increased model performance and
training a model with Target data (CNP) achieves the best results in all metrics, as expected. If
there are no labels on the Target data, then the only available options are training with Source
data (CP), applying CORAL to Source data (CORAL(CP)), or applying LOF. Of those, the best
option is to use only Source data, with no transformation. Furthermore, if no historical Source
data is available, LOF provides considerably good results: event though Recall and Precision are
significantly lower than the best case (CNP row in Table 4.18), LOF manages to achieve 29.88%
Money-recall, almost 3/4 of the best case Money-Recall (41.03%).
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4.3.2.8 Sanity check for FEDA and CORAL algorithms

After observing both DA algorithms did not provide any performance improvement, a new exper-
iment was designed in order to apply a sanity check to both algorithms. The experiment consisted
in using data from dataset C, which is the most uniform in terms of merchant similarity (all mer-
chants belonging to this dataset operate in the same business), and randomly selecting 50% of
the training set transactions as the Target domain and the remaining 50% as the Source domain.
This method ensures data distribution is roughly the same between Target and Source and, by
applying DA to different combinations of data, performance should be stable.

FEDA
Since FEDAalgorithm transforms data such that each instance contain one third of the features

with zeros, when building a Random Forest, all N features are considered for selecting the best
node split, instead of the typical sqrt(N). For each test, the number of transactions was kept
constant in order to fairly compare results using the same amount of data. With the goal of
evaluating how FEDA affects model performance, a total of seven tests were completed, with the
following data configurations:

• Training with 100% transactions from Source, applying no DA, serving as baseline

• Training with 100% transactions from Source, applying FEDA

• Training with 80% transactions from Source and 20% from Target, applying FEDA

• Training with 60% transactions from Source and 40% from Target, applying FEDA

• Training with 40% transactions from Source and 60% from Target, applying FEDA

• Training with 20% transactions from Source and 80% from Target, applying FEDA

• Training with 100% transactions from Target, applying FEDA

Considering data from Source and Target are identical, the expected result was similar perfor-
mance for all tests. Table 4.20 contains the results using Target data for testing. For conciseness,
Source is denoted as S and Target as T.

Train DA
algorithm Recall$ Recall Precision AUC pAUC(0.05)

100% S - 16.37% 11.28% 18.41% 79.94% 0.95%
100% S FEDA 15.00% 9.87% 17.15% 78.42% 0.85%
80% S + 20% T FEDA 15.60% 10.11% 16.81% 79.19% 0.87%
60% S + 40% T FEDA 15.22% 9.95% 16.60% 79.22% 0.87%
40% S + 60% T FEDA 15.08% 9.82% 16.42% 79.61% 0.87%
20% S + 80% T FEDA 14.61% 10.75% 17.67% 79.49% 0.92%
100% T FEDA 16.20% 12.12% 19.51% 80.36% 1.02%

Table 4.20: Performance metrics for FEDA sanity check for dataset C,
testing with Target data, for maximum FPR of 1%.

S represents Source data and T represents Target data.
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Although we expected similar performance for all tests, results show otherwise, with FEDA
exhibiting a performance drop when comparing with the baseline (first row). Looking closer at
the obtained metrics for FEDA algorithm, despite Money-Recall, Recall and Precision values
oscillating slightly, we observe a steady increase in AUC and pAUC as the percentage of Target
data increases as well. The explanation for this is that testing data is treated as from the Target
domain and applied the corresponding transformation, described in 2.2. As such, when a higher
percentage of Source data exists, there is a greater probability of a Source-specific feature being
selected as the best split when building the Random Forest model. What happens next is, during
testing, that particular feature will contain no information since all testing instances are from the
Target domain.

Before running these tests we did not anticipate this problem and incorrectly hypothesized that
performance should be stable. However, for the last row (100%), the issue does not occur since
all training data is from Target, and performance metrics are somewhat similar to the baseline
(first row), although, surprisingly, slightly higher except for Money-Recall.

CORAL
For CORAL algorithm, the previous problem does not apply since no additional features are

introduced. As explained in 2.3, CORAL observes Target data and tries to transform Source such
that data distribution from both domains are as close as possible. Like before, multiple tests were
designed in order to evaluate how CORAL would affect data with the same distribution. The
tests considered were as follows:

• Training with Source data, applying no DA

• Training with Source data, transformed using CORAL and 25% of Target data

• Training with Source data, transformed using CORAL and 50% of Target data

• Training with Source data, transformed using CORAL and 75% of Target data

• Training with Source data, transformed using CORAL and 100% of Target data

Train DA algorithm Recall$ Recall Precision AUC pAUC(0.05)
S - 19.10% 12.82% 20.46% 80.42% 1.06%
S CORAL (25% T) 12.97% 10.97% 19.54% 76.21% 0.82%
S CORAL (50% T) 12.80% 10.69% 18.17% 76.71% 0.79%
S CORAL (75% T) 11.09% 9.43% 16.37% 75.47% 0.81%
S CORAL (100% T) 11.52% 9.87% 17.17% 74.78% 0.80%

Table 4.21: Performance metrics for CORAL sanity check for dataset
C, for maximum FPR of 1%.

S represents Source data and T represents Target data.

Table 4.21 shows the performance for CORAL for the described tests. Although results were
expected to be similar, applying the algorithm causes a significant performance drop in all metrics,
just like in all previous experiments. As mentioned before, CORAL transforms data such that
binary values become float values, which can have a severe impact in model performance. On
top of that, most of the datasets used in this work are composed by binary values, aggravating
this problem. As suggested in 4.3.2.5, a possible solution would be filtering all binary features
from Source and Target and applying the algorithm to all remaining features, finally joining the
binary features again. This improvement was not tested and, consequently, left for future work.
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Chapter 5

Conclusion

In this Chapter, a summary overview of the tasks completed during this work and the main con-
clusion drawn from it are presented. Closing the Chapter, we discuss possible steps for future
work.

5.1 Summary
This work focuses on the fraud detection for the eCommerce use case, where losses due to fraud-
ulent payments is steadily increasing every year. Although fraud affects the whole spectrum of
commerce and financial institutions, eCommerce merchants are the most penalized, since fraud is
most prevalent in this space and legitimate card owner reimbursement is the merchant’s respon-
sibility. Typical approaches to fraud detection include Machine Learning models trained with
transactions data that learn common fraud patterns. For some eCommerce merchants this might
pose a problem if they contain few data to properly train a model.

This use case is the main motivation of this work, which aims to solve the problem by using
payment data from other merchants (other domains). In particular, we implement two Domain
Adaptation algorithms that harness the information contents of existing merchants data with the
goal of improving fraud detection for new merchants. Additionally, an Unsupervised Learning
outlier detection method was tested, in order to explore the possibility of fraud detection in unla-
beled data.

Although the initial plan was to explore the FEDA algorithm and implement it in Feedzai’s
Machine Learning Tools, experiments during the Second Semester revealed the algorithm did
not improve performance. As such, a new DA algorithm, CORAL, was also tested, revealing
no performance boost as well. Finally, an Unsupervised Learning algorithm, LOF, was applied
to the same datasets, exhibiting good performance considering it uses no Source data or Target
labels. A summary of all datasets and algorithms tested is shown in Table 5.1.
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Dataset Algorithm
Source (S) Target (T) FEDA CORAL LOF S only T only S+T
A B X - X X X X
B(AeMMT) B(MMT) X - - X X X
B(AeMMF) B(MMF) X - - X X X
C(AeMMT) C(MMT) X X X X X X
D(CP) D(CNP) X X X X X X

Table 5.1: Multiple datasets and all tested algorithms.
S represents Source data and T represents Target data.

In all tests FEDA and CORAL cause performance to drop moderately, and the best option to
maximize performance is to train with historical Source data, Target data, both, or apply LOF,
subject to Source and Target data availability.

In order to explore the multiple scenarios regarding Source and Target data availability and
assess the best decision to make in order to optimize fraud detection for new merchants (Target)
with few data, we summarize some of the main conclusions of this work in Table 5.2, assuming
a small amount of Target data is always available.

Source data
available

Target data
labeled Best option

Yes Yes Train model with Source and Target data
Yes No Train model with Source data only OR apply LOF
No Yes Train model with Target data only OR apply LOF
No No Apply LOF

Table 5.2: Summary of the best options to maximize performance for new merchants.
This conclusion assumes there is always some amount of Target data available.

If historical data is available (Source domain) and Target data is labeled, optimal performance
should be obtained by training a model with all (Source and Target) data. If Target data is unla-
beled there are two option: either train a model with existing Source data or apply LOF to Target
data. The amount of Target data here is crucial to decide which method to follow, although dif-
ficult to quantify a specific value. Another important factor is the different number of Target
features: if Target data has a significantly higher number of features than Source data, applying
LOF should yield better performance since Target instances contain much more information than
Source instances.

If Source data is not available and Target data is labeled, a model should be trained with
Target data or LOF applied, considering the previous conditions regarding amount and number
of features of Target data. Finally, if no Source data and no Target labels are available, the only
option is to apply LOF.

The main contributions of this works are the study of two Domain Adaptation algorithms ap-
plied to fraud detection in the eCommerce use case, with results showing these algorithms are
not effective in this scenario when considering two Source and Target domains. Furthermore, we
explore how an Unsupervised Learning outlier detection method performs when applied to pay-
ment data, effectively proving that fraudulent payments can be detected as outliers from common
payment patterns.
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5.2 Future Work
Although numerous scenarios with multiple datasets were extensively explored, we only con-
sidered two domains in all experiments, when, in reality, datasets were composed of many sub-
merchants and, consequently, multiple domains. This scenario with numerous merchants should
be explored with FEDA algorithm, which supports data from multiple domains. If successful,
the algorithm should be optimized for scalability since the number of features when using FEDA
increases linearly with the number of domains, making it impractical in a real scenario with pos-
sibly hundreds or even thousands of merchants. One possible optimization could be assigning a
number to each domain and encoding that number in binary features while keeping only the gen-
eral version (see 2.2) features. Using this method, it would be possible to consider 1024 distinct
domains with only 10 additional features.

LOF proved to be a good solution for the presented use case, however, it was only tested in
batch mode. As it stands, it needs to be implemented in Feedzai’s Machine Learning Tools to be
able to work in a production environment. Furthermore, performance issues need to be addressed
since the algorithm has a quadratic time complexity, which might pose a problem considering the
typical low latency requirements of transaction classification.
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Appendix A

Work Planning

A.1 First Semester
Activities during the First Semester took place in Coimbra, at the Informatics Engineering De-
partment and at Feedzai’s office in Instituto Pedro Nunes. Since Feedzai’s advisors were located
in Lisbon, weekly onlinemeetings where held in order to discuss the student’s progress and define
new goals. Developed work followed an exploratory research process with the goal of determin-
ing if Domain Adaptation could provide improved results in the presented context. The following
tasks were planned:

• Learn about payments and fraud - this task provided valuable context for this work,
particularly how payments are processed, the involved entities and fees as well as how
does fraud occur and how merchants are affected by it.

• Participation in Feedzai’s Machine Learning Hackaton - this activity was organized by
Feedzai and consisted of a brief introduction to Machine Learning, followed by an imple-
mentation and application of a particular algorithm to a real dataset.

• Read Feedzai’s documentation - this task consisted of understanding the overall Machine
Learning methodology used at Feedzai, technical definitions and performance metrics used
to compare results.

• Learn Feedzai’s Data Science tools - learn how Feedzai’s Data Science tools work. Tools
include the Model builder, Simulator and PQL, described in section 4.2.

• Define and calculate baseline results - this task aimed to determine the results reported
in section 4.3.1.1.

• Implementation and testing of FEDA algorithm - for this task the DA algorithm pre-
sented in section 2.2 was implemented and the corresponding results obtained.

A detailed schedule plan of the tasks completed for the 1st semester is shown in Figure A.1.
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Figure A.1: Planning for the 1st Semester.

A.2 Second Semester
Work during the Second semester took place in Feedzai’s office in Lisbon. Initial planning for
the Second Semester aimed to validate the FEDA algorithm, extending it to a multi-merchant
scenario with multiple source domains and one or more target domains, and finally implementing
it with Feedzai’sMachine Learning tools. After concluding the algorithm did not actually provide
performance improvements, two newmethods (CORAL and LOF) were explored and extensively
tested with multiple datasets.

During this period, the student was integrated with Feedzai’s Research Group, where daily
meetings were held in order to review the previous day progress and the current day work plan.
Furthermore, weekly presentations took place at the end of the week, aiming to present and dis-
cuss obtained results and planning work for the following week. A summary of the main tasks
completed throughout the semester is described next:

• Validation and tuning of implemented FEDA algorithm - this task aimed to validate
the current FEDA implementation with new datasets and other variations such as different
features between source and target domains, and splitting datasets into sub merchants.

• Implement CORAL algorithm - after FEDA was implemented and observed it did not
provide improved results, CORAL algorithmwas explored and applied tomultiple datasets.

• Explore an Unsupervised Learning algorithm - since both DA algorithms failed to per-
form, LOF was applied to all datasets, using the ELKI framework, as mentioned before.

• Final Report - although the final report was written continuously throughout the second
semester, one month was allocated for its conclusion.

A detailed chart of the scheduled tasks is shown in Figure A.2.

Figure A.2: Planning for the 2nd Semester.
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