
i

José Manuel Marques Grilo

jgrilo@student.dei.uc.pt

Supervisors:

Jorge Sousa

Luís Matos

Carlos Bento

July, 1st 2016

Online context for voice

communications

Masters in Informatics Engineering

Internship 2015/2016

Final Report

ii

Candidate:

José Manuel Marques Grilo

jgrilo@student.dei.uc.pt, jose.grilo@wit-software.com

DEI Supervisor:

Carlos Bento

bento@dei.uc.pt

WIT SOFTWARE Supervisor:

Jorge Sousa

Jorge.sousa@wit-software.com

Luís Matos

luis.t.matos@wit-software.com

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

Pólo II, Pinhal de Marrocos, 3030-290 Coimbra

Tel: +351239790000 | Fax: +351239701266 | info@dei.uc.pt

WIT Software, S.A.

Centro de Empresas de Taveiro

Estrada de Condeixa, 3045-508 Taveiro, Coimbra

Tel: +351239801030 | Fax: +351239801039 | info@wit-software.com

iii

Acknowledgements
First, I would like to express my gratitude to WIT software for giving me this opportunity and

providing me this great experience over almost a year.

I would like to thank to my supervisors, Jorge Sousa, Carlos Bento and Luís Matos for their
support, patience and time spent helping me the entire internship. Their push was one of the
main reasons for my success.

I also would like to thank to all my friends for the great and some bad moments, especially to
the ones that shared all the difficulties of this year. To all a big thank you.

Finally, I would like to thank to my family for all the support, in particular to the ones that made
this possible, my parents. Thank you for the sacrifices you made, for raising me and my brother
the way you did and for helping me to achieve my goals. I owe everything I am today to you
both, thank you.

iv

Resumo
Em qualquer serviço na internet é importante garantir que o serviço ao cliente é eficaz e pessoal.

Para tal, torna-se indispensável a utilização de ferramentas que permitam que o utilizador tenha

o melhor seguimento por parte do fornecedor de serviços.

Atualmente, já existem serviços de helpdesk e chat. No entanto, estes não são eficazes nem

proporcionam uma experiência agradável ao consumidor uma vez que, sempre que o utilizador

é atendido tem de explicar o contexto da sua questão ao operador.

O principal objetivo deste projeto é a criação de um produto demonstrável com qualidade e

diferenciador de modo a atrair potenciais clientes.

Este produto irá permitir a integração de um widget num sítio web. Este widget dotará o sítio

com capacidades de chat e comunicação por voz e ainda recolha do contexto da comunicação,

que trará um atendimento pessoal e eficaz por parte do operador aos utilizadores.

O presente relatório tem como finalidade apresentar todos os processos e fases envolvidas na

execução do projeto referido anteriormente.

v

Abstract
In any Internet service it is important to make sure that the customer service is effective and

personal. In order to do so, it is necessary that the use of tools allow the customer to have the

best experience and follow up by the service provider.

Nowadays, there are helpdesk and chat services. However, they are neither effective nor give a

pleasant user experience because they are slow and boring to the customer – the customer is

attended by one operator, then redirected to another meanwhile all the context gets lost.

The main purpose of this internship is to create a high quality demonstrable product, which is

different from the competition and that will attract potential customers.

The internship product will allow the integration of a widget for websites. This widget will give

the website the capabilities of chat and voice communication. This will also allow context

collection, which will give a personal, fast and effective response to the customers.

The present report has the purpose to present all the processes and steps related with the

planning and execution of the above referred to product.

Keywords
“WebRTC”, “Context collection”, “Live Support Software”, “Communication”, “Real-time

communication”, “Widget”, “Chat”, “Voice Communication”

vi

Index

1 Introduction .. 13

1.1 Context .. 13

1.2 Motivation ... 13

1.3 Goals .. 14

1.3.1 Internship .. 14

1.3.2 Internship Product ... 14

1.4 Document Structure .. 14

2 State of the Art .. 17

2.1 Live Support Online ... 17

2.2 Competitors ... 18

2.2.1 Direct Competitors .. 18

2.2.2 Indirect Competitors ... 23

2.3 Technologies ... 26

2.3.1 Backend Technologies ... 26

2.3.2 Frontend Technologies .. 27

2.3.3 Database .. 27

2.4 WebRTC ... 28

3 Approach ... 29

3.1 Methodology ... 29

3.2 Planning ... 30

3.2.1 Scope ... 30

3.2.2 User Stories ... 31

3.2.3 Product Backlog ... 32

3.2.4 Sprints .. 32

3.2.5 Definition of Done ... 34

3.3 Risks and mitigation plans ... 34

4 Solution Architecture .. 41

4.1 System Architecture .. 41

4.1.1 System Context ... 42

4.1.2 Containers ... 43

4.1.3 Components .. 44

4.1.4 Classes ... 46

4.2 Data model .. 52

4.2.1 Customers’ Collection ... 52

4.2.2 Operators Collection ... 53

vii

4.2.3 Online List Collection ... 54

4.2.4 Widget Collection .. 54

5 Development ... 55

5.1 Developed Work .. 55

5.1.1 UI specification and implementation .. 55

5.1.2 Operator’s Login and Socket Disconnection ... 59

5.1.3 Customer’s socket connection and disconnection .. 59

5.1.4 Context Collection ... 61

5.1.5 Start and End a conversation .. 62

5.1.6 Chat ... 63

5.1.7 Calls ... 64

5.1.8 Remote Assistant ... 66

5.2 Tests .. 70

5.2.1 Set of Tests .. 70

5.2.2 Results ... 70

5.3 Future Work .. 72

6 Conclusions ... 76

7 References ... 77

Annex A – State of the Art .. 81

Annex B – Approach .. 113

Annex C – Architecture .. 149

Annex D – Development .. 189

file:///C:/Users/WIT_User/Documents/Documento%20de%20Estágio/Relatório%20Final/OCVC_José%20Grilo_Final%20Report%20-%20Full%20DOC.docx%23_Toc455048261
file:///C:/Users/WIT_User/Documents/Documento%20de%20Estágio/Relatório%20Final/OCVC_José%20Grilo_Final%20Report%20-%20Full%20DOC.docx%23_Toc455048294
file:///C:/Users/WIT_User/Documents/Documento%20de%20Estágio/Relatório%20Final/OCVC_José%20Grilo_Final%20Report%20-%20Full%20DOC.docx%23_Toc455048319
file:///C:/Users/WIT_User/Documents/Documento%20de%20Estágio/Relatório%20Final/OCVC_José%20Grilo_Final%20Report%20-%20Full%20DOC.docx%23_Toc455048353

viii

Index of Tables
Table 2.1 Direct Competitors Features ... 22

Table 3.1. Risk occurrence probability .. 35

Table 3.2. Risk associated impact .. 35

Table 3.3. Risk occurrence forecast time .. 35

Table 3.4. Risk 01 - Frameworks updates .. 36

Table 3.5. Risk 02 - Unreachable frameworks' servers ... 36

Table 3.6. Risk 03 - Poorly defined requirements ... 36

Table 3.7. Risk 04 - Requirements' changes .. 37

Table 3.8. Risk 05 - Bad planning... 37

Table 3.9. Risk 06 - Not meeting stakeholders' expectations ... 37

Table 3.10. Risk 07 - Technologies learning curve .. 38

Table 3.11. Risk 08 - Strong market competition .. 38

Table 3.12. Risk exposure .. 38

Table 3.13. Table 3.12's color code ... 39

Table 3.14. Risk prioritization based on exposure and occurrence forecast 39

Table 5.1. Tests results .. 71

ix

Index of Figures
Figure 3.1. Projects complexity .. 29

Figure 3.2. Scrum Process ... 32

Figure 4.1. System context .. 42

Figure 4.2. System containers ... 43

Figure 4.3. Components .. 45

Figure 4.4. Server classes .. 47

Figure 4.5. Angular MVVM model ... 49

Figure 4.6. Web App classes .. 50

Figure 4.7. Customer document reference representation .. 52

Figure 4.8. Operator document reference representation ... 53

Figure 4.9. Online list document reference representation ... 54

Figure 4.10. Widget document reference representation .. 54

Figure 5.1. First design for widget's UI .. 56

Figure 5.2. First design for back office's UI ... 56

Figure 5.3. Final Widget UI .. 57

Figure 5.4. Customer's call window UI .. 57

Figure 5.5. Final back office UI - Entrance screen ... 58

Figure 5.6. Final back office UI - Customer selected ... 58

Figure 5.7. Final back office UI - On call .. 58

Figure 5.8. Customer’s socket connection sequence diagram ... 60

Figure 5.9. Customer's socket disconnection sequence diagram ... 61

Figure 5.10. Context collection sequence diagram ... 62

Figure 5.11. Operator’s message sequence diagram .. 63

Figure 5.12. Customer's message sequence diagram ... 64

Figure 5.13. Browser call sequence diagram .. 65

Figure 5.14. Breakout call sequence diagram ... 66

Figure 5.15. Remote assistant's back office old UI .. 67

Figure 5.16. Remote assistant's back office new UI .. 67

Figure 5.17. App call sequence diagram ... 68

x

Glossary
API An API is a set of software methods used by third parties in

order to use a software as a service.

DoD Refers to a document, which establish the requirements to

meet in order to state a User Story as concluded.

Framework It is a set of methods and functionalities that help the

software development.

Macro Rule or standard that specifies a certain sequence of

characters.

Product Backlog It is a set of all the defined User Stories defined in a

SCRUM project.

Product Owner Responsible for Product Backlog management in a SCRUM

project.

Snippet Small piece of code ready to be copied and pasted to

integrate a widget at the page.

SCRUM It is an agile development framework methodology.

Sprint It is a time established number of weeks (between 1 and 4

weeks) in which the development team should develop a

set of features from the Product Backlog.

Widget Small application with limited functionalities with a

secondary role that only take a portion of the page and

does something useful with the page’s information.

xi

Acronyms

API Application Programming Interface

BO Back Office

CBD Component-Based Development

CPQ Configure, Price and Quote

CPU Central Processing Unit

CRM Customer Relationship Manager

CSS Cascading Style Sheets

DOM Document Object Model

ERP Entity Resource Planning

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ICE Interactive Connectivity Establishment

IDE Integrated Development Environment

IP Internet Protocol

JS JavaScript

MVVM Model-View-View-Model

OCVC Online Context for Voice Communications

OO Oriented-Object

OS Operative system

POC Proof of Concept

RUM Real User Monitoring

SDK Software Development Kit

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

UUID Universal Unique Identifier

VoIP Voice over Internet Protocol

12

13

1 Introduction
The present document reflects the work done at WIT Software, SA during the year-long

internship, part of the Masters' degree in Informatics Engineering in the Department of

Informatics Engineering of the University of Coimbra.

This work was supervised by Jorge Sousa and Luís Matos, engineers at WIT Software, SA and

Carlos Bento, PhD professor at Department of Informatics Engineering of the University of

Coimbra.

This internship took place at WIT Software, a software development company specialized in rich

and unified communications for Mobile Operators and Mobile Internet companies.

This introductory chapter is divided into four sub-sections. The first sub-section presents the

context of this internship in the area of the communication and live support online. The second

sub-section presents the motivation that originated the need for this internship and why it is

important to the company. The goals of the internship are presented in section three. The last

sub-section presents an overview of the entire document and its structure.

1.1 Context
During the past years we have seen a society that is strongly dependent on the internet and the

services it provides. The internet solutions, services and communications reached a new level,

providing new experiences to the end user and new opportunities to service providers.

Nowadays, it is quite easy to develop and launch applications that provide communication

services. This results in saturation of the online communications market. To fight the saturation,

communication providers had to find new features so that their services could stand out on the

market.

Besides offering communication, service providers started using its communication services as

analytics and context collectors to help them find the most relevant customers. This kind of

communications is known as Live support software. These applications are embedded in the

customer’s website and launch a communication window. Initially, the focus was on text but,

more recently, they have expanded to voice and video in order to give the user a better and

more personal communication experience.

With the internet commerce growing, the use of live support software is very tempting because

they provide the website with a communication and tracking tool. Even if the user does not want

to talk to the operator, the operator will always know his moves.

Internet entrepreneurs want an easy and cheap way to get and maintain clients. Live support

software gets the job done, because it helps operators to give a personal assistance while

keeping human cost down.

1.2 Motivation
Introducing a Live support online system in the WIT Software, SA’s set of products would be a

great plus for the company. Due to the main type of clients of the company, the internship

product can be of great interest for them. Live support systems can help improve the

relationships between providers and customers and improve the sales rates.

To sum this up, the motivation of this internship is to enrich the company's set of products with

one potential product. This innovative product allows the company to stand out by offering a

solution with chat and voice communication that allows the context collection.

14

1.3 Goals
For many students, the internship is the first contact with the working world. The supposed goals

of this project can be divided in two major perspectives: internship goals and internship product

goals.

1.3.1 Internship
The main objective in this perspective is to consolidate the knowledge acquired during five years

of Software Engineering at the Department of Informatics Engineering of the University of

Coimbra. This is an opportunity to put into practice the knowledge acquired during the academic

period and thus gain experience in the development of services and software in an

organizational environment with real clients and real implications.

1.3.2 Internship Product
The company is making an investment in the trainees, providing all the resources needed to

develop software with quality. Therefore, in this view, the main goal is to finish the project

successfully.

The company expects a high quality product that can be used as a Proof and Demonstration of

Concept, and be presented to potential clients. At the end of the internship, products aims for

three major goals:

 Collect user context : track pages’ Uniform Resource Locator (URL), browser, operative

system (OS) and location’s information;

 Communicate via chat and voice with WebRTC [1] between a widget planted in a

customer’s website and an operator’s back office;

 Help users navigate in the customer’s website with URL push.

So, to summarize, the aim of the company is to make an investment in the trainees work in order

to receive internship products that can add value to the company.

1.4 Document Structure
This report is organized in five chapters, including this introduction and the following:

 State Of The Art: This section is a key part of this report because it evaluates the viability

of the product through the analysis of existing solutions and identifying the benefits and

the weaknesses that can be explored.

 Approach: This section describes the software development methodology, the planning,

as well as the requirements of the project and the risks associated with these require-

ments.

 Solution Architecture: This section provides an overview of the application architecture.

 Development: This section is intended to explain the most important decisions taken

during the implementation phase and all the tests made to ensure the project quality.

 Conclusion: This section summarizes all the work done during the internship year.

This document is also complemented by a set of appendixes that give a detailed description

about the chapters mentioned above:

 Appendix A – State of The Art: In this document, a detailed description of the current

solutions and technologies is presented.

 Appendix B – Approach: This appendix details the software development methodology

used and the planning of the project.

15

 Appendix C – Solution Architecture: Details the solution architecture, development pat-

terns, data model and communication interfaces used on the project.

 Appendix D – Development: This document describes the development done during the

internship, the difficulties, tests specification and results and the future work planning.

17

2 State of the Art
This chapter intends to expose detailed information about the competitors analyzed and about

the technologies that will be used.

 The document will be divided in three big sections. The first one will give the reader bases about

Live Support Online including its goals and main functionalities.

In section 2.2, market analysis is performed about competitors of the internship software,

whether direct or indirect. This analysis aims to study the market’s saturation level, possibilities

of success, impact level and inherent risks.

Lastly, a technology analysis was performed and is shown at section 2.3. Like section 2.2, this

section aims to study the technologies available and evaluate their advantages and limitations

in order to select the ones to use.

For both market and technologies analyses a brief description of the services/technologies,

relevant features and main limitations were studied. Each section contains all the studied

services or technologies, sorted in alphabetical order.

2.1 Live Support Online
Stated as an evolution from the helpdesk systems, the Live Support Online systems allow to the

customer an immediate personalized service while he keep browsing the website. Unlike

helpdesk systems where the service is not immediate because the customer needs to go to an

assistance store or has to wait for a callback to be made or an email to be replied, in the Live

Support Online this attendance is made through a popup window that allows the customer to

chat or make a Voice over Internet Protocol (VoIP) call by the time the problem arise.

This system has two components:

 A chat window through which the customer communicates.

 A dashboard which allows the operator to talk back to the customers.

The chat window is usually injected through a snippet (e.g.: JavaScript (JS) code) which is pasted

at the website source code and the dashboard can either be native or web developed.

The start of the conversation can be done following two approaches:

 Broadcast: the conversation is initiated by the customer that sends a message to the

server and then it broadcast the message to all the available operators, which then one

of them is selected to answer the call.

 Proactive engagement: in this approach the operator is who starts the conversation with

a selected customer. Once the operator sends a message it will be delivered to the

customer and then he opts to answer or not. The beginning of the conversation is usually

defined by a customer achievement, which was specified by the operator (e.g.: number

of clicks in the website). This approach is especially effective in sales due to its brute

force approach.

More innovator approaches, besides providing an immediate attendance allows a personalized

attendance as well. They use techniques such as Real User Monitoring (RUM), which allow them

to collect data about their customers and customers’ navigation. This approach makes the

service more efficient avoiding the context exchange between customer and operator.

18

2.2 Competitors
The competitors against the internship product will be described in this section. Two groups can

be created:

 Direct competitors: it was stated as a direct competitor the company that presents a

service or application with at least some of the features that the internship product aims

to develop.

 Indirect competitors: it was stated as an indirect competitor the company that presents

a service or application with different features from the ones that the internship product

aims to develop, yet can still offer a service that can compete against the internship

product

To see a full detailed analysis with all the 17 direct competitors analyzed and the competitors’

main features, please refer to Annex A, chapter 3 – Competitors.

2.2.1 Direct Competitors

a) Competitors Analysis

Nowadays, there is a set of companies offering competitor service like the one proposed in the

internship. For a matter of convenience, and since that there are many similarities in the

services, only the most popular companies were selected. The companies were selected based

on the amount of references in the search.

Below there is an analysis of the five most important direct competitors, based on the features

related with tracked data and communication channels offered. Their comparison is done at the

next section.

Vivocha [2]

Vivocha is a self-called startup with

offices in San Francisco, California,

USA, Milan and Cagliari, Italy. It was

founded by Gianluca Ferranti and

Federico Pinna, currently the

company’s CEO and CTO.

Beyond its monitoring features, a large

set of communications combinations

are offered with the possibility of chat, voice, video and callbacks.

Main features:

 Real time monitoring.

 Web dashboard to monitor and assist multiple customers.

 Multiple communication options: chat, voice, video and callbacks.

19

Livezilla [3]

Livezilla GmbH was founded in 2009 and is based at Singen, Germany.

The company offers a set of integrated solutions of customer

support. This set includes a live chat for communication between

customers and operators with the possibility of proactive

engagement by the operators, real time monitoring and a tickets

system to allow offline contact and customers support. Besides that,

operators can communicate with each other, both from their

dashboard and mobile app.

Main features:

 Real time monitoring.

 Helpdesk ant ticket system for offline service.

Negatives:

 The widget needs to be downloaded and installed.

 Do not allow voice calls.

ClickDesk [4]

ClickDesk is a self-funded company based in Silicon Valley. The

company was founded after a search made for a live support

chat with the ability to receive phone calls instantly.

Besides the chat and phone abilities, the company intended to

keep the service cloud-based.

Main features:

 Multiple communication options: chat, voice.

 Multiples Customer Relationship Manager (CRM) and salesforce software integrations

available.

Negatives:

 Do not track customers’ heat map.

 Do not allow URL push to the client.

WhosOn [5] by Parker Software [6]

Parker Software was founded in 2003 and it is a

company based on real-time communication. Its

main product is WhosOn, first launched in 2002 with

the purpose to track and analyse customer’s

journey across a website. In 2007, WhosOn was

developed into a live chat and tracking solution,

used to analyze, engage and chat with customers.

Main features:

 Real time monitoring.

20

 Possibility of screen sharing.

 Possibility of voice calls.

Negatives:

 Do not allow URL push to the client.

Live Guide [7] by Netop [8]

Netop employes 130 people and has subsidiaries in the USA, Great

Britain, China Romania and Switzerland and it is headquartered in

Denmark.

The company believe in a world where people connect with anyone,

anywhere, anytime. For that reason they have three products oriented

to online connection: Live Chat with chat, voice and video call, Secure

Room Control for remote access and Classroom Management with

screen sharing and student supervision.

Main features:

 Real time monitoring.

 Possibility of screen sharing.

 Possibility of voice calls.

Negatives:

 Do not allow URL push to the client.

b) Relevant features

Live support online systems allow communication between a customer and operator in a way

that the customer can clear his doubts and questions immediately. However, with the

technology evolution and the rise of new concepts to satisfy the customers’ demand, new

features need to be added. This will allow for a simpler, faster and more efficient attendance

system that requires less time and effort both from customers and operators.

To make a complete analysis from the competitors a features’ survey was performed. It was

taken in count all the features that not only allow the customer to communicate with an

operator but also the features that allow the operator to collect navigation context among

others. However, many of the analyzed features will be out of the scope of the internship, so a

small set of features was selected that allows a comparison between the competitors and the

internship product.

The set of features created is a set that was considered to be the minimal acceptable set of

features to create a product that allowed costumers to ask for help to operators while operators

could see the navigation context. This minimal acceptable set must have at least communication

features such as chat and VoIP and context collection features in Real Time. Besides that, the

customers’ widget injection and a web back office dashboard for operator are also

requirements.

The selected set was:

 Web dashboard: A web dashboard that allows the operator to communicate with the

customers and see their navigation data.

21

 Proactive engagement: A chat conversation may be started every time a defined rule is

achieved by a customer, for example if the number of page visited is equal to α.

 Prioritize chats: The displayed customers assigned to each operator should be listed in

a First-In-First-Served way.

 Page tracking: The pages visited inside the website must be saved in order to create a

heat map for each customer.

 Referrer tracking: The referrer to the website must be saved for each visit.

 Browser Tracking: The browser version used in every visit must be saved.

 Geolocation Tracking: The operator must see the customer’s geolocation if they are

allowed.

 Real time monitoring: The monitoring of the tracked data must be done in real time

during the customer’s visit.

 Online customers list: An online customers list should be provided to every online

operator.

 Recognize customers: Returning customers must be identified and their previous

information should be loaded to the dashboard.

 Chat: Customers should be able to start a chat conversation with an online operator.

 VoIP without plugins: Customers should be able to start a voice call with an online

operator without the need to install any plugin.

 Operators login/logout: Registered operators should be able to login and log out at the

dashboard.

 URL Push: Operators should be able to push pages to their customers’ browser and force

them to load that page.

 Multiple chat windows: Operators should be able to have multiple conversations at the

same time.

 Chat transfer: Operators should be able to transfer chat conversations between

themselves.

 Proactive engagement rules: Operators should be able to configure a set of rules to

start proactive engagement with their customers.

 Widget injection: The widget should be injected in the websites through a snippet,

without the need of software installation.

c) Comparative analysis

This comparative analysis uses all the 15 direct competitors analyzed instead of the five present

above. Only using the five presented before would lead to wrong conclusions, so all the

competitors were taken into account in order to state where the developed product can be

innovative and stand on the market.

In order to easily compare direct competitors, first a table with their features developed by each

company is presented. After that, a written summary will highlight the main competitors from

the ones analyzed and how the internship product can stand in the market.

The table below compares the services of the companies. The check sign () indicates that the

feature is supported, on the other hand, the cross sign () indicates that the feature is not

supported. Since it is very hard to collect all the data from the companies’ products due to the

inability to test all software, the circle sign () is used every time that no information is

supported or available. For a more complete table, with all the features analyzed, please refer

to Annex A, chapter 6, section 6.1 – Full Competitors Comparative Table.

22

Li
ve

zi
lla

Ta
w

k.
to

V
iv

o
ch

a

P
ro

vi
d

e
Su

p
-

p
o

rt

Zo
p

im

B
o

ld
C

h
at

Li
ve

 H
el

p
 N

o
w

K
ay

ak
o

O
la

rk

Li
ve

C
h

at

C
lic

kD
es

k

C
o

m
m

1
0

0

N
et

o
p

 L
iv

e

G
u

id
e

W
h

o
sO

n

w
eb

si
te

 A
liv

e

Dashboard

Responsive dashboard

Proactive engagement

Prioritize chats

Widget

Page tracking

Referrer tracking

Browser tracking

Geolocation tracking

Real time monitoring

Online customers list

Recognize customers

Customer

Chat

VoIP without plugins

Operator

Operators login/logout

URL push

Multiple chat windows

Chat transfer

Proactive engagement
rules

Owner

Widget injection

Table 2.1 Direct Competitors Features

23

Among the features between them, the final result presented is similar when compared, for

example the proactive engagement allows operators to start a chat conversation without the

customer allow to, through operator’s initiative or the achievement of some kind of metric.

As stated previously, it is difficult to know exactly the features that are presented in each

competitor due to the difficulty to test all services. Some features like the tracking ones are

difficult to know if they are present because some documentation only states that the widget

tracks visited pages among other information.

After evaluating the market we can see a small niche that is not well explored. The niche is the

VoIP calls, which is one of the main features to develop in the internship. This could be a huge

opportunity to explore that can bring value and be a point of differentiation.

2.2.2 Indirect Competitors
In this section will be analyzed the indirect competitors, those who in some way offer a possible

solution to the customers even if that it is not their purpose.

The indirect competitors were divided in two groups: context analysis software and Customer

relationship management software.

a) Context analysis software

In this subsection will be analyzed context analysis software. This software collects a set of data,

useful from the website proprietary point of view, which allows the user to access their websites

stats about visits.

The set of companies that were chosen was based on the number of references presented in

the search.

Google Analytics [9]

In 2005 Google Inc. bought Urchin. This move led to the creation of Google Analytics. Its success

was huge, which made new requests to the service to stay suspended after

the first week. Since that, new requests were attended in a lottery way, until

2006. Since September 2006 the system became available to all users.

Nowadays, Google Analytics is used over 55% of the 10000 more popular

sites and over 49.95% of the 1000000 first sites from the Alexa rank [10].

Adobe Marketing Cloud [11]

Omniture was founded by Josh James and James Pestana, and financed

by venture capitalists. Becoming one of the greatest powers, among the

500 private companies with the biggest growth rate and nominated by

Inc. Magazine [12]. The company was acquired by Adobe Systems in 2009,

and until 2011 operated as a company inside Adobe. In 2012 Adobe

started to remove the name Omniture and its products started to be

integrated on the Adobe Marketing Cloud.

24

Kissmetrics [13]

Founded by Neil Patel and Hiten Shah in 2008, it is based in San

Francisco, California.

The company offers a set of tools to collect data about how the

customers interact with websites, web apps and mobile products.

b) CRM Software

According to Philip Kotler, conquering new clients can cost 5 to 7 times more than maintaining

the existing ones [14]. For that reason companies should have strategies that allow loyalty from

their clients.

 Customer relationship management is a strategy that focus on understanding and anticipating

the client needs. CRM is used to help in this strategy, which allows:

 Client management

 Identify and define client profiles

 Manage communication with client

 Follow orders

 Anticipate the market evolution

 Organize a personalize technical assistance

This section will analyze the four CRM software products with the bigger market share [15].

Salesforce [16]

Salesforce.com is a cloud computing company, based in

San Francisco, California, USA. Founded by Marc Benioff,

Parker Harris, Dave Moellenhoff and Frank Dominguez in

1999. Today it is one of most valuables cloud computing

companies, with an estimated value of 50 billion dollars

[17].

The company splits its products into six areas: sales,

marketing, community, analysis and applications. Its

products are used by over 100000.

Market Share: 18.6%

Growth: 28.2%

25

SAP CRM [18]

SAP SE is a German software company that

makes enterprise software to manage

business operations and customer

relationships. Its CRM software targets

midsize and large organizations in all

industries.

Its solutions includes the modules of sales,

marketing, services, analytics, interaction

center and web channel.

Market share: 12.1%

Growth: 7.2%

Oracle CRM [19]

Oracle started in this market space when they purchased Siebel Systems in 2005, a company

focused on developing software to support CRM. Later, they bought Upshot CRM, which brought

a more robust interface.

The company split its products in six areas: marketing, sales, commerce, social, services and CPQ

(Configure, Price and Quote). Its customers can either subscribe to a single module or a

combination of modules.

Market share: 9.2%

Growth: 2.6%

Microsoft Dynamics CRM [20]

Microsoft Dynamics CRM is part of the Microsft Dynamics

package of CRMs and Entity Resource Planning (ERP).

Launched in 2003, it is a client-server accessable

apllication from both browser and a plugin for Microsoft

Outlook. The current version count with sales, marketing,

services and social modules. It counts about 40,000

customers.

Market share: 6.2%

Growth: 21.7%

c) Summary

After the analysis of the indirect competitors, neither the Relationship management and context

analysis software nor the CRM software are real menaces to the internship product, because its

focus is not the one to track and assist. The first group is focused on data collection to context

26

from the visits done to the website, however they cannot give assistance to the users. The CRM

group, can give some assistance in real-time but its real focus is to collect and manage relation-

ships in order to improve the communication and assistance of the customers.

In spite of not being a big menace, the integration of CRM software in the internship product

should be considered. This integration can be useful to provide a better experience and assis-

tance to the customer. If so, the first CRM software to consider should be Salesforce due to its

market share, and, still show a greater growth than its competitors. Due to their market share,

the other CRM software products are not a priority.

2.3 Technologies
Choices of technologies can influence a project. Choosing an unfamiliar or untested technology

can bring unwanted risks to the project. On the other hand, choosing the right ones can make

the development process easier with much better final results.

In order to choose the right technologies the intern made an analysis for the main components

developed: Online Context for Voice Communications (OCVC) Server and Back Office (BO) Web

App. Besides that, the database selection was also an important decision.

The intern had full liberty to analyze and choose the technologies. After making his analysis the

intern presented his choices to Internship’s Tutor Luís Matos who accepted the proposed

technologies.

This section will be show the technology choices to develop the internship product. First to be

presented is the list of the backend technologies, and second is a subsection of the frontend

technologies.

The third subsection will present the database selected.

Finally a section about WebRTC is presented.

For a full technologies analysis, please refer to Annex A, chapter 4 – Technologies.

2.3.1 Backend Technologies
JavaScript on Node.js [21]

Node.js is a recent cross-platform runtime environment used for server-side applications written

in JavaScript. It provides an event-driven architecture and a non-blocking I/O Application

Programming Interface (API) ideal for real-time web applications. Besides its recent creation, in

2009 by Ryan Dahl and Joyent, it is already in use by some great companies such as LinkedIn,

IBM or Microsoft.

Since the goal of the internship product is to build a web application that allows real-time

communication between clients and operators without demanding Central Processing Unit

(CPU) processing. The internship product will be developed as a multi-tier chat application – two

different web clients (clients and operators) and a web server – where the clients’ application

will communicate between themselves through the server. So, the server will be a lightweight

application that only needs to forward information every time a new request arrives. What is

needed is an event-driven architecture with a fast non-blocking API, which is what Node.js

offers.

Applications that run on Node.js are written in JavaScript, the same language can be used both

on the client side and on server side.

27

The use of Node.js allows the use of several modules from the package modules repository –

npm [22] – such as:

 Socket.io [23]: is cross-platform module that allows real-time bidirectional event based

communication, which is great to establish communications between users (clients and

operators) and server. This is an ideal module for real-time analytics and chat

application. Besides that, it allows communication both via sockets or polling.

 Express [24]: is a Node.js framework that provides a robust set of features for web

applications development, designed to quickly build a single-page, multiple-page or

hybrid web applications.

2.3.2 Frontend Technologies
AngularJS [25]

AngularJS is a JavaScript framework, written in JavaScript that extends Hypertext Markup

Language (HTML) with directives. It enables the creation of dynamic views in web applications,

through a two-way-data-binding, which automatically synchronize both models and views. This

abstraction from the Document Object Model (DOM) leads to better code decoupling (view

separated from model and controller).

AngularJS enables the creation of dynamic applications with several views without too much

complexity.

2.3.3 Database
Database choice is a critical decision to make in every project. Every database has its pros and

cons and they should be taken into account when making this choice.

However, database dependency can be minimized with the right architectural choices. In the

current project server architecture follows a component-based development pattern (see

subsection 4.1.4). This pattern makes it easier to replace the database by only changing the

database connector, which is an abstraction module to communicate with the database.

This does not mean that the database choice was made without any analysis. Below are the

main reasons for the database choices.

a) NoSQL Databases

NoSQL (“non SQL” or “Not only SQL”) provides a storage mechanism modeled as a means other

than well-defined schemas. Their data can be persisted in a collection of key-value pair, graph

model or wide-columns stores which do not have a schema defined. NoSQL databases are

horizontal scalable which means that they scale if more nodes are added.

Since they use a dynamic schema, they are well-suited for problems with unstructured data,

hierarchical data or big data.

b) Analysis

Both SQL and NoSQL databases have its advantages.

In this project a little amount of relationships are needed, since only operators, visitors,

conversations and tracked data entities exist. This kind of relationship would indicate the use of

a SQL database. However, the structure of the entities is uncertain. More tracked fields could

be added, visitors and operators profile could change when more features are added to the

product. That is the most important reason to use a NoSQL database. This free-schema paradigm

allows a fast development, which is critical to this internship. Another good reason to use NoSQL

is the huge need for scalability. Tracked data and conversations will make the database size grow

28

fast, so a database that scale horizontal is better. Besides that, no complex queries are needed,

so NoSQL is suited to this case.

MongoDB [26] was the database selected. It is a NoSQL database that favors a Javascript Object

Notation (JSON)-like documents structure with dynamic schemas. This allows for faster and

easier integration of new data. MongoDB also allows a high insert load, which is great to persist

data in the database. Since the application is always recording data from visitors and chats can

scale quickly, a huge amount of inserts will be done.

Besides its technical advantages, MongoDB and Node.js have a mature connection very tested,

and used, which means that they are two technologies that work very well together.

2.4 WebRTC
WebRTC is an open project that tries to standardize the support for real-time communications

via simple APIs, allowing web applications to send data between devices over Internet Protocol

(IP). Its mission is to offer rich and high-quality applications the power to be developed for de-

vices and allow them all to communicate via a common set of protocols, using JavaScript APIs

and HTML5.

Since WebRTC allows real-time communication into websites, sending data and media streams

in a peer-to-peer way, it means it can be used for voice and video calls directly from a web

browser without the need of plugins. Because of this, many communication solutions can be

developed, solutions that can be innovative in the communication area.

Some of the main benefits of WebRTC are related to improved productivity and team collabo-

ration using clientless web-based video inside and outside companies, enhanced flexible work

by enabling internet calling and improved relationships with customers with web-based video

and video communication.

We can sum up the benefits of WebRTC in five different scenarios:

 Consumer to Consumer (common users call to people they know)

 Consumer to Business

 Business to Consumer

 Within business organizations

 Business to Business

29

3 Approach
The internship followed a software methodology already adopted by the company, which was

ideal to the kind of project. As in any project, there are risks that may affect its outcome, it is

important to identify them and create a mitigation plans in order to minimize or eliminate the

risks.

This chapter presents the approach followed; the planning process and the risks and mitigation

plans.

3.1 Methodology
This section provides an overview on Scrum, the methodology used during the internship, its

roles, events, artifacts and definition of done.

According to figure, there are four kinds of projects:

 Simple: projects with low complexity, where we know both the set of requirements and

technologies to use.

 Complicated: projects where there is still some degree of certainty about the

requirements and technologies, but with a bit more complexity than the simple projects.

 Complex: projects with a great degree of complexity where there are many possible

requirements that demand a huge amount of study in order to get them defined, and

there are a huge amount of technologies that may be used.

 Anarchy: projects where there is neither a definition of the requirements or the

technologies to be used.

 [27]

Figure 3.1. Projects complexity

The solution to the first two kinds of problems can easily be achieved with waterfall-like

methodologies. The anarchy kind due to all the uncertainties are hardly named projects. The

complex projects, which are the area where the internship problem inserts into, are problems

where a fixed planning will not help due to its degree of uncertainty, but are feasible if an agile

methodology is used.

“Scrum is a framework for developing and sustaining complex products. A framework within

which people can address complex adaptive problems, while productively and creatively

delivering products of the highest possible value” [28]. Scrum provides a flexible and holistic

30

product development strategy with the necessary agility for big projects where a wide set of

requirements and technologies is available.

Although Scrum is a simple methodology to understand, it has several principles that are

fundamental and will explained in the following subtopics.

3.2 Planning
In the internship, supervisor Jorge Sousa has the scrum master role, being responsible to

manage all meetings and solve possible impediments.

Tutor Luís Matos took the product owner role with product backlog management. One of the

responsibilities of the product owner is the definition of the requirements, this task was assigned

to the intern in order to let him learn the processes of scrum.

The scrum team is composed by the intern José Grilo.

The project planning, like in any other methodology, starts with the requirements definition,

however in scrum a requirement has a different name and motivation.

3.2.1 Scope
Defining the project scope is one of the most critical steps in a project. Without knowing what

you are supposed to be delivering at the end to the client and what the boundaries of the project

are, there is a little chance for the project to success.

A poorly defined scope definition will lead to an impossible management during the project

execution.

The main purpose of the scope is to clearly describe the boundaries of the project, according to

the client’s agreement. The elements within the scope and out of the scope must be well defined

in order to clearly understand the area under the project control.

This section will be divided in two areas: The elements within the scope, the project objectives

and its goals and the elements out of the scope.

a) Within the scope

Besides the elements that are included within the scope, this section will expose both internship

and project goals and the project objective.

From the internship view, the goals are to consolidate knowledge about Software Engineering

and gain experience in developing software in a corporate environment where commitment and

team work are essential to produce a high quality piece of software. At a technical level the goal

is to learn and master the use of web frameworks, such as Node.js and develop a stable and high

quality software.

On the other hand, regarding the project, the main goal is to contribute with a proof of concept

that can be used for conferences and exhibitions and a posteriorly development of a product.

To accomplish this, the following features must be fully implemented and tested to guarantee

the existence of zero bugs in the product:

 Injection of a widget: a code snippet must be provided and the client can copy and paste

it in his website providing it functionalities such as chat, VoIP and real user tracking.

 Chat: allows both clients and operators to start a conversation between them.

 VoIP: allows the client to start a voice conversation with an operator without the need

to install any plugins, using the WebRTC capabilities.

31

 Real User tracking: the widget must do a full track of the clients’ path in real time, track-

ing his viewed pages and referrer, browser details and geolocation.

 Customers’ analysis and browser control: allows the operators to see the clients’ infor-

mation and push pages to their browsers.

 Remote Assistant: WIT’s demo of Remote Assistant must be integrated with the devel-

oped product as part of its functionalities. This feature was added on second semester

in order to bring more value to the developed project. This was a calculated risk which

led to small backlog, requirements and architecture changes. However competitors’

analysis was not revisited due to time constraints.

Furthermore, it is required to do a planning job before the implementation, namely the

following tasks:

 Requirements analysis: identify, discuss and prioritize all the requirements.

 Technologies analysis: identify possible technologies to use, discuss the pros and cons

and choose the one to use.

 Architecture definition: define how the features will work internally, understand which

components must be created and how will they communicate with each other within

the application.

 Risk analysis: identify possible risks and problems that may arise and trace a mitigation

plan that overcomes them.

b) Out of the scope

This section will be specify the elements that were analyzed and are interesting to the project,

but will not be implemented in this internship.

 Operators’ profile management: allows the operator to manage his personal infor-

mation such as name or password.

 Customize widget: allows the user to customize his widget appearance (colors, logo, etc)

before the snippet generation.

 VoIP with Flash or plugins: allows the client to perform a VoIP call in browsers where

WebRTC capabilities are not supported.

3.2.2 User Stories
A user story consists in one or more sentences written on small pieces of paper in everyday

language that capture the intentions of the user that the program does as part as its job

functions. It is used in scrum as the requirements definition because it is an easy and

understandable way of handling the requirements without the formal formulation of a

document. User stories follow the terminology below:

As a <role>, I want <goal/desire> so that <benefit>

Typically, the user stories are created and managed by the product owner, however, as already

stated, the scrum team does the task as a learning process.

Usually, user stories are associated with a category, mainly if there are many features to

implement. At the internship seven categories were created:

 Widget: consists in the development of features that allow the tracking of the client’s

information.

 Widget’s owner: corresponds to the requirements of add and remove operators and

widget’s injection.

32

 Client: This category relates to all the functionalities a client can do while browsing in a

page with the product

 Dashboard: consists in the development of the features that allow the operator to

communicate, and retrieve all users’ information from the server

 Operator: This category relates to all the functionalities an operator can do while using

the dashboard

 Server: corresponds to the development of a server-side application that establishes all

the communication with the dashboard, widget and database.

 Documentation: consists in the construction of all the documents related to the state

of the art, requirements, architecture, demos and internship documentation.

3.2.3 Product Backlog
Each of the created user stories corresponds to an entry in the product backlog. Furthermore,

each user story was assigned with a priority and its difficulty was calculated using planning

poker. Planning poker is a gamification technique that consists in using a deck of cards where

each card is assigned with a number from the Fibonacci sequence from 1 to 13 (100 and “?” are

also used). It is assigned the value of “2” to make an easier user story, then, the other stories

are valued based on the cards played by each participant relative to the first story (“?” means

that a value cannot be assigned or more information is needed).

Based on the priorities and difficulties assigned an ordered list was formed. That list was the first

version of the product backlog.

To see the current product backlog please refer to Annex B, chapter 3, section 3 – Product

Backlog.

3.2.4 Sprints
After the project is minimally defined, it is time for the scrum team to work on the product. In

an initial stage of the project was done, larger sprints (four weeks), then the sprints started to

have a two-week duration.

[29]

Figure 3.2. Scrum Process

33

Presented here is a short summary of the sprints.

 Sprint #0

Sprint Planning: 14-10-2015

This was the warm up sprint. It was assigned to the scrum team to do the competitors’

analysis, technologies’ analysis, formulate the user stories and the “Definition of Done”.

 Sprint #1

Sprint Planning: 17-11-2015

In this sprint it was assigned to the scrum team to design the database structure and

install, and setup the database. It was also required to write the requirements document

in order to start the User Interface (UI) design.

 Sprint #2

Sprint Planning: 01-12-2015

This sprint marked the development’s beginning. It was assigned to set the working

environment (install dependencies and Integrated Development Environment (IDE)) and

create the connections between widget/back office and server.

 Sprint #3

Sprint Planning: 16-12-2015

In this sprint it was assigned to the team the operators’ login and logout features and

the UI implementation. The widget should also be loaded with the snippet.

 Sprint #4

Sprint Planning: 04-01-2016

It was assigned to start the context collection features.

 Sprint #5

Sprint Planning: 18-01-2016

This sprint marked the beginning of BO’s development. Features regarding to queues

loading and display and customers engaging were implemented. Midterm report was

also written during this sprint.

 Sprint #6

Sprint Planning: 02-02-2016

In this sprint filters on customers’ queues were implemented. Operator’s engaging

feature was finished in this sprint, showing to the customer that he had been selected.

Returning customers were also identified on this sprint. This last feature marked the

finish of context collection feature set.

 Sprint #7

Sprint Planning: 16-02-2016

This sprint was dedicated to chat functionalities such as messages exchanging and “is

typing” notifications.

 Sprint #8

Sprint Planning: 01-03-2016

In this sprint URL push was implemented alongside offline form request for customers.

 Sprint #9

Sprint Planning: 21-03-2016

This sprint served to implement and integrate Remote Assistant demonstration on OCVC

project.

 Sprint #10

Sprint Planning: 04-04-2016

34

This sprint marked the beginning of VoIP calls implementation. Developed here was all

the needed modules to make VoIP call for browsers.

 Sprint #11

Sprint Planning: 19-04-2016

In this sprint the product backlog was revisited and some flows were changed. Also in

this sprint mail sending features was implemented.

 Sprint #12

Sprint Planning: 03-05-2016

This sprint was used to implement VoIP calls for devices.

 Sprint #13

Sprint Planning: 17-05-2016

This sprint was used to test all the implemented features and bug solving. During this

sprint some UI changes were taught and WIT designer Elizabeth Pereira started to work

on the project again.

 Sprint #14

Sprint Planning: 31-05-2016

This sprint was mainly used to final the report writing.

3.2.5 Definition of Done
In order to have shared understanding of “done” a definition was created, both for user story

creation and development. Besides that a definition of done to the increment was created too.

The creation of a new user story is stated as “done” if:

1. The user story follow the notation “As a <role>, I want <goal/desire> so that <benefit>”;

2. Story sized with thirteen story points or less;

3. Story is divided in tasks and each task has a duration in hours;

4. Story necessity is explained and agreed by all.

A user story development is stated as “done” if:

1. All the tasks related to development are coded;

2. Code commented and meeting company’s development standards;

3. Builds without errors;

4. Acceptance tests are written and passing;

5. Code committed on server;

6. Relevant documentation is produced or updated;

7. Remaining hours for story set to zero and story closed.

An increment is stated as “done” if:

1. All modules developed during the sprint are integrated with the previous release;

2. The increment build as no errors;

3. It is ready for demo;

4. Final version is updated to server;

5. A presentation is prepared to present the increment.

3.3 Risks and mitigation plans
There are always risks in every project. Each risk has a probability to contribute to the failure of

the project. Identify the risks, its sources and create mitigation plans are the best actions to take.

These strategies should be reviewed periodically because the risk probability can grow and new

mitigation plan may be needed.

35

The risk identification is based in factors that can cause project failure and their analysis is based

on the probability of occurrence presented on Table 3.1, the impact on project if the risk occurs

presented on Table 3.2. It is also important to take into account when the possibility of the risk

itself.

Percentage <30% 30% - 50% 50% - 75% > 75%

Probability Low Medium High Very high

Table 3.1. Risk occurrence probability

Impact Description

Low Project success is not compromised

Medium Project success is not compromised, however small adjustments are

required so that risks do not evolve

High Project success can be compromised if no adjustment and additional effort

is done

Very High Project success can be seriously compromised

Table 3.2. Risk associated impact

Occurrence

forecast

Description

Short-term Risks can occur in an initial project phase, during the first development

weeks

Mid-term Risks can occur in an intermediate project phase, during the development

Long-term Risks can occur in a final project phase, after the development

Table 3.3. Risk occurrence forecast time

36

This is an up-to-date living list with the risks identified, their probabilities, impacts, occurrence

forecasts, consequences and mitigation plans.

ID RK_01

Name Frameworks updates

Probability Low

Impact High

Occurrence

forecast

Medium-term

Consequence Deprecated code and/or system failures

Mitigation

plan

Regular code reviews in order to look for deprecated code and bugs

Table 3.4. Risk 01 - Frameworks updates

ID RK_02

Name Unreachable frameworks’ servers

Probability Low

Impact High

Occurrence

forecast

Medium-term

Consequence System failures

Mitigation

plan

Frameworks should be ready to be served from internship server

Table 3.5. Risk 02 - Unreachable frameworks' servers

ID RK_03

Name Poorly defined requirements

Probability Low

Impact Medium

Occurrence

forecast

Short-term

Consequence Delay or failure in the requirements

Mitigation

plan

Requirements documents should be reviewed and approved by scrum

master

Table 3.6. Risk 03 - Poorly defined requirements

37

ID RK_04

Name Requirements’ changes

Probability Medium

Impact Medium

Occurrence

forecast

Medium-term

Consequence Delay or failure in the requirements

Mitigation

plan

Stakeholders should be present regularly at sprint review to approve the

work done so far

Table 3.7. Risk 04 - Requirements' changes

ID RK_05

Name Bad planning

Probability Medium

Impact Very High

Occurrence

forecast

Medium-term

Consequence Delay or failure in the requirements

Mitigation

plan

Standup meetings (daily scrum) should be performed every day in order to

see the current difficulties

Table 3.8. Risk 05 - Bad planning

ID RK_06

Name Not meeting stakeholders’ expectations

Probability Low

Impact Very High

Occurrence

forecast

Long-term

Consequence Delay or failure in the requirements

Mitigation

plan

Stakeholders should be present regularly at sprint review to approve the

work done so far

Table 3.9. Risk 06 - Not meeting stakeholders' expectations

38

ID RK_07

Name Technologies learning curve

Probability Medium

Impact High

Occurrence

forecast

Short-term

Consequence Delay or failure in the requirements

Mitigation

plan

At planning execution time should be allocated by taking into account the

time needed to learn the technologies to use

Table 3.10. Risk 07 - Technologies learning curve

ID RK_08

Name Strong market competition

Probability High

Impact Medium

Occurrence

forecast

Long-term

Consequence Project failure

Mitigation

plan

Constant market analysis in order to know the competitors and how can the

internship product differentiates from them

Table 3.11. Risk 08 - Strong market competition

To prioritize the identified risks and know which are the most urgent to fix was used Pareto’s

Top N strategy [30] based on the occurrence, impact and occurrence forecast of each risk.

The urgency level of each risk was determined with the analysis of Table 3.12.

 Impact

Low Medium High Very High

Probability

Very High

High RK_08

Medium RK_04 RK_07 RK_05

Low RK_03 RK_01, RK_02 RK_06

Table 3.12. Risk exposure

39

Table 3.13. Table 3.12's color code

From the table below it is possible to analyze the risk exposure to each risk. The green risks are

the ones that will not jeopardize the project either because they have a low probability or a low

impact. On the other hand, red risks are the most dangerous and will cause the project failure.

To prioritize the risk list it was taken into account both risk exposure and occurrence forecast to

each risk.

Risk ID Risk Exposure Occurrence forecast

RK_05 High Medium-term

RK_06 Medium Long-term

RK_07 Medium Short-term

RK_08 Medium Long-term

RK_04 Low Medium-term

RK_01 Low Medium-term

RK_02 Low Medium-term

RK_03 Low Short-term

Table 3.14. Risk prioritization based on exposure and occurrence forecast

Lastly, it is important to know which risks are important to mitigate. Those are found based

with their probability and impact. The risks that are important to mitigate are those who have

a high or very high probability and a high or very high impact, which means that only RK_05

needs to mitigate.

Color

Risk Exposure Low Mediu High Very High

41

4 Solution Architecture
The architecture is an essential component of any software project. It defines the structure and

behavior of the components, how they interact between themselves, while helps to hold the

non-functional requirements and defines a guideline to implementation.

The current chapter is divided into two sections. Section one is the system architecture, that the

architecture is designed and justified. Section two is the data model, with the document

references for the documents presented at the database.

4.1 System Architecture
The model used to represent the system architecture was an adaptation of the C4 Model by

Simon Brown [31]. The C4 Model [32] divides the architecture in four levels:

 System Context: The system plus users and system dependencies

 Containers: The overall shape of the architecture and technology choices

 Components: Logical components and their interactions within a container

 Classes: Component or pattern implementation details.

This architecture representation was chosen mainly because it was concluded to be complete

enough to present the system to all involved clearly. Another reason was the limitations given

by the technologies, it would be very hard to create an architecture representation using Unified

Modeling Language (UML) diagrams while using Javascript language mainly.

C4 Model allow the creation of four levels of representation, each level could be used to present

the architecture depending on the interested. Besides that, C4 uses a simple ubiquitous lan-

guage that everyone can understand easily.

The first and second levels show who will use the product and how its components are used to

construct it. These levels are the most abstract and easily give the overall shape and context of

the product. They can be used to present the product to newly arrived stakeholders or potential

interested customers.

Third and fourth levels are more technical and could be used by development team as a devel-

opment guideline to ensure non-functional requirements. Here are presented the components

inside each container, their interactions and the implementation patterns used.

42

4.1.1 System Context
System context is the highest level of abstraction and represents something that delivers value

to somebody. A system is made up of a number of separate containers.

The system context is meant to answer three questions:

 What are we building?

 Who is using it?

 How does it fit into the existing environment?

Figure 4.1. System context

With the previous diagram it is clear the kind of system that will be build and the actors who

will use it.

This kind of view is suited for non-technical audience. It is clear to the ones who see this view
that the system will be used, on a first-level by operators. On a second level, customers will
interact with a website that connect with the system or with an iPad App connected to OCVC
server by Remote Assistant server.

The OCVC system, will serve a widget to customer’s website server. This widget will make the
context collection and connection with the web server. On the other hand, it will serve a web
application as well in order to operators to manage customers.

Regarding to actors there are two groups. One group of actors are the operators, they will
interact with the system via a web application, pushing and pulling information from it that will
enable them to see the customers that are using the websites, their tracked info and
communicate with them. The other group of actors is the customers, which can be broken in
two categories: web customers and iPad Customers. Web customers will not interact directly
with the system. Instead, they will interact with the websites that get the widget from the
system. The widget will track customers’ information and allow them to communicate with

43

operators. iPad customers interact with WIT’s Remote Assistant application which allow them
to call to operators at back office.

OCVC server is deployed in WIT’s Network, alongside WWC Gateway and Remote Assistant

server, which act as project’s dependencies to implement breakout and iPad call respectively.

Widget will be injected in customer’s website.

4.1.2 Containers
If we lower one level in the C4 Model we are looking for:

 What are the high level technology decisions?

 How do containers communicate with one another?

 As developer, where do I need to write code?

A container represents something in which components are executed or where data resides.

This could be anything from a web or application server through to a rich client application or

database. Containers are typically executable that are started as a part of the overall system,

but they don’t have to be separate processes in their own right.

Figure 4.2. System containers

This view is suited for people that are semi-technical. Here they can see technologies choices,

what containers will compose the system and how will they communicate between themselves.

At the technologies choices, the system will hold a Node.js server and a MongoDB.

The communication with the system will be done via HypertText Transfer Protocol Secure

(HTTPS) using self-signed certificates. Inside the system the web server will communicate with

the data store that will run at the port 27017.

After UI is served communications proceed by Long Polling between Widget/Web App and OCVC

server. To communicate between OCVC server and Remote Assistant is used Polling. This

communication method was not changed due to the complexity to change an existent server

44

while there were another priority features to develop. Between Web App and WWC gateway

communication is made by WebSockets.

The web server will hold all the logic. The web server will take the request to widgets and

response with the desired one, and will take requests from operators to access and manage the

back office application. Besides that, the web application will also write and read from the

MongoDB, that will store operators and customers’ information, tracked data and sent

messages.

User Interfaces, customers and operators, will both use HTML, Cascading Style Sheets (CSS) and

JS. However selected frameworks will be different. Will use jQuery on Widget, Socket.io and

Bootstrap. These frameworks were chosen because it was to inject them at Customer’s web

pages without breaking them and would fast development process. On operator’s back office,

Bootstrap, AngularJS and Socket.io as working frameworks were mainly used.

4.1.3 Components
A component can be thought of as a logical grouping of one or more classes. Components are

typically made up of a number of collaborating classes, all sitting behind a higher-level contract.

At components level we need to answer to:

 What components/services is the container made up off?

 Are the technology choices and responsibilities clear?

45

Figure 4.3. Components

46

As presented in Figure 4.3 there are 3 major containers being developed.

First there is a widget that will be injected on customers’ web pages. Widget has 4 big compo-

nents: Starter component, chat component, Context Collector UI constructor. Starter compo-

nent is responsible for loading dependencies such as HTML, CSS and JS modules from server,

Socket.io module and jQuery, Chat component is responsible for maintain communication with

server, Context Collector as it states collects navigation history from the customer and UI con-

structor holds functions to construct UI as it is needed.

The biggest developed container is the OCVC server. OCVC server has 3 main folders: web, bin

and lib. Web folder holds web components both for widget and BO applications, while bin folder

holds installation scripts. Lib is the main component of the server. It has 6 modules, each with

its own responsibility. Core module is started by index.js at root and it is responsible for starting

the remaining modules. It also accepts HTTPS request requesting HTML, CSS and JS files. Chat

module is responsible for serving widget and BO information request. Database connector is an

abstraction layer between OCVC server and database with the purpose to manage communica-

tion between them. Logger is responsible to log all important events. Config holds configuration

files needed to run the application. Finally, Models module hold the object models used in the

application.

Last container is the BO web app. This container has four components: view holding the HTML

files and CSS to create the UI, controller who are responsible to manage UI aspect, modules used

through the application and Services responsible for data and communication management.

4.1.4 Classes
For most of us in an Oriented-Object (OO) world, classes are the smallest building blocks of our
software systems.

This is an optional level with two purposes:

 Detail big components.

 Describe any particular pattern.

Since JS is not an OO language UML will not be used. However there is a need to draw this level
in order to describe in more detail OCVC server (big component with a component-based devel-
opment [33]) and BO web app (particular pattern).

47

OCVC Server

Figure 4.4. Server classes

48

OCVC Server’s Index at root is the file that starts the server, however all logic is under lib folder.

As stated before, lib has six modules: Core, Chat, Database connector, Config, Logger and
Models. Server’s Component-Based Development (CBD) pattern help to keep responsibilities
strict and changes on code easy to maintain, this means that the components are loosely
coupled. This is particularly helpful for module maintenance as long as the communication
standards do not change. The introducing of new features inside each module or new modules
with new responsibilities is also a very easy operation. This architecture pattern was chosen
because it kept the system easy to maintain, easy to improve and due to the communication
type with customers (Event-Driven [34]).

Core module is the starter. Its main file starts all the remaining modules with the configurations
presented at Config folder. It also processes HTTPS requests to serve HTML, CSS and JS files both
to widget and BO.

Chat module is one of the most important server modules. It receives the long polling requests
and serve the answer to both widget and BO. This module has a main file, Index is where
Socket.IO requests arrive and responses leave and where all the functionalities are registered.
Other three files have the implementation. So, a Socket.IO request arrive and is redirected to
the file holding the implementation needed. After a response is produced it is then sent in Index.

Database connector classes can also be divided into two categories: Interface and queries.
Interface class is the Interface API, this class is an abstraction class called by the other
components in order to store, read, update or delete elements from the Data Base. The
remaining files have the queries implementation calls.

Config file holds configuration files, certificates and tests.

Logger is the module responsible for log the important events that occur on server.

Models module holds the JSON structure for the objects used on server for the remaining
modules.

49

Web App

[35]

Figure 4.5. Angular MVVM model

The frontend application uses AngularJS framework Model-View-View-Model (MVVM).

Model (M) component acts as data access layer. Services presented in model are singletons

always in execution.

The view (V) is the application’s UI and includes several partial HTML and CSS files that compose

the frontend.

The controller (VM) is an abstraction of the view exposing properties and commands. The

controllers will register the callbacks that they expect at the service.

View and View-Model have a bidirectional data binder, that allow changes in the model to

propagate to the matching views, and changes made in the views are also propagated to the

model. When the application data changes, so does the UI, and vice-versa.

50

Figure 4.6. Web App classes

51

As described above, BO web app follow a MVVM pattern. This pattern is ensured using Angular

JS framework. Other frameworks such as scroll glue were used in order to help UI management.

The web app is divided is four components: View, Controllers, Services and Modules.

Modules hold all the frameworks needed in the app.

Users interact with the view, composed by several partial HTML and CSS files using Bootstrap

framework.

Controllers manage UI behavior, map users’ actions and maintain states. Controller were divided

in four groups of controller. General controllers manage global aspects of the BO such as window

resizing, login and logout. Customers manage all customers’ tabs and are responsible for man-

aging features such as select a customer, answering or closing a conversation. Context manage

the collected context and comments tabs and are responsible for editing customers’ infor-

mation, adding new comments or open URLs. Chat manage all chat’s UI such as sending new

messages or making calls.

Services are singletons injected in other components of the web app. After a service is injected

in a component it can use service’s exposed functions. Services were divided in OCVC Commu-

nication, Data Model, Remote Assistant, Browser Call and Breakout Call. If any component needs

to communicate with OCVC server it injects OCVC Communication service and the communica-

tion is done by it, to receive information callbacks are registered in the same service that will

notify the components. Data model holds the needed data received from server. The remaining

services are used for call management. Browser call manage call between BO and widget by

WebRTC. Breakout calls manage call between BO and a device. In this case WWC Software De-

velopment Kit (SDK) is used, the SDK allow communication with WWC Gateway. In order to do

so, SDK gives a Communication Interface to call server methods and events registration methods

to receive answers from server. Remote Assistant manage calls between BO and iPad’s Remote

Assistant app and is an encapsulation of the lib developed implementing an Interface that allow

the communication between BO and Remote Assistant Server using OCVC server as proxy.

52

4.2 Data model
Data in MongoDB, and in NoSQL databases in general, has a flexible schema. Unlike SQL data-

bases where a declared tables’ schema is defined before inserting data, in MongoDB no schema

definition is needed. Instead of tables are used collections of documents where each document

as the flexibility of mapping different data between themselves even if the data fields have sub-

stantial variations. In practice, however, the documents inside a collection share a similar struc-

ture.

This section presents the collections used in the internship, and the similar structure definition

of their objects. Note that the presented representation of the documents is a general one. Each

document inside the collections could have more or less fields than the presented. This is not a

schema definition, instead is just a similar structure definition of the documents.

In MongoDB are used two tools to represent relationships between data:

• References: when documents store an ID from one document to another.

• Embedded documents: when a document structure is stored inside a field or array.

References are used when the same document must be stored several times inside a document

or a collection. Instead of store the whole document, an ID to it is stored and data redundancy

is kept at minimum. Embedded documents are used when the document to save does not justify

the creation of a new document (e.g.: date/geographical structures).

Above are the collections created and their reference documents. A description of the collection

and document is written, as well as all decisions are justified.

4.2.1 Customers’ Collection

Figure 4.7. Customer document reference representation

C
u

st
o

m
er

Name

Browser
Name

Version

Geolocation
Longitude

Latitude

Messages[] Message

Content

Timestamp

Was_sentCustomer_UID

Pages Page
URL

Timestamp

Calls[] Call
Timestamp

Duration
Widget_UID

Phone

FirstTime

53

Summary

Customers’ collection hold the documents that reference each customer. Each customer will be

stored in a document.

Figure 4.7 represents the reference document for the customers. Some of the fields will always

exist every time a new document is created at the collection. This fields are Customer_UID and

Pages. The other fields can or cannot be created depending on customer’s actions during his

visit. For instance, if a customer never chat with an operator the Messages[] is not needed.

For the geolocation field it was opted to use embedded documents instead of references, since

every document can have very different geolocation values it was unnecessary to create a col-

lection to hold every geolocation. The same goes to the Messages and Calls fields.

In the cases of the Widget_ID it was used references. It would make no sense to use embedded

objects and increment the data redundancy on the database. The use of the references allow

the documents to share the same Widget document without the need to store it in every Cus-

tomer document.

4.2.2 Operators Collection

Figure 4.8. Operator document reference representation

Summary

This collection stores the operators’ information. Each operator will be stored in one document.

Figure 4.8 represents the reference document to the collection.

Since no composed fields were needed it was not used embedded objects. However, it was

needed a reference to the widget the operator is associated with. The other fields are only used

to store operator’s profile information.

O
p

er
at

o
r

Name

Avatar

Username

Password

Operator_UID

WIdget_UID

54

4.2.3 Online List Collection

Figure 4.9. Online list document reference representation

Summary

Collection of documents that store the list of online users per widget. In the internship, this

collection will only hold one object since the use case of serve multiple websites is out of scope.

However, the document reference is already prepared to store multiple widgets.

In this case it was opted to mix references and embedded documents.

To store the online users it was used embedded objects with a reference to the user. To store

the widget it was used a reference.

4.2.4 Widget Collection

Figure 4.10. Widget document reference representation

Summary

Like the previous case, in spite of being a collection of documents that store the widget docu-

ments, this collection will only hold one document.

This collection stores widget’s information and widget’s owner information.

O
n

lin
e List[] User

UID

Token

Widget_UID

W
id

ge
t

Domain

Snippet

Owner

Widget_UID

55

5 Development
This chapter refers to the development done over the project.

There are always challenges when developing software. This chapter will explain the

implementation process, the evaluation of the solution and at the end of the chapter is

presented in the future work.

5.1 Developed Work
A good quality planning and architecture design help to predict and overcome most of the chal-

lenges that will appear during the development. However, sometimes if the planned process is

not the clear unexpected problems can appear.

During the internship planning most of the problems were predicted and contingency plans were

created in order to minimize its risks, still, some were impossible to predict and there was a need

to create strategies to resolve them.

This section highlights the major features implemented. Here are the functionalities described

and the sequence diagrams. To see all the features in more detail please refer to Annex D,

chapter 2 – Developed Work.

5.1.1 UI specification and implementation
For the UI definition the intern worked with WIT designer Elizabeth Pereira.

The first step was the definition of the requirements and user stories. With that document ready,

the designer drew the mockups, which were evaluated by all the team members (scrum master,

product owner and scrum team) as well as the stakeholder.

The process of defining an appealing UI that would give to the final user a great experience was

progressive and done in several iterations. Elizabeth was in charge of drawing the mockups

taking into account the documents of the internship.

Once a satisfactory result was achieved from all involved in the project, which is presented at

Figure 5.1 and Figure 5.2, the UI implementation began.

The UI was implemented using Bootstrap 3.3.5 framework that helped to make the back office

responsive. For the back office AngularJS framework was used, in order to implement an MVVM

model.

56

Figure 5.1. First design for widget's UI

Figure 5.2. First design for back office's UI

The UI implementation was one of the biggest challenges in the project.

It was very hard to find a UI that was appealing to everyone involved in the project, and that

suited both operators and customers’ purposes in terms of user experience. Another major

factor that influenced the UI implementation was the find of new features to implement. These

57

requirement changes were taken into account during project’s planning; therefore development

was not affected with these changes. However, this led to a major change of the UI.

From the first UI mockups to the last, there were several changes. One of the main changes was

the widget’s communication flow – in order to attract more customers the identification form

was removed and costumers can start a conversation without identify themselves. Messages

displayed suffered several changes on development both on BO and the widget – messages are

now grouped if they were received at the exact same minute. In the BO some paddings were

adjusted between elements to refine the UI. Beside that the contextual information, the column

changed a bit along with the communication buttons used to start and answer calls.

The aspect of the UI is presented on Figure 5.3 to Figure 5.7.

Figure 5.3. Final Widget UI

Figure 5.4. Customer's call window UI

58

Figure 5.5. Final back office UI - Entrance screen

Figure 5.6. Final back office UI - Customer selected

Figure 5.7. Final back office UI - On call

59

5.1.2 Operator’s Login and Socket Disconnection
Not everyone can use the back office to answer customers’ requests. Since that was a major

requirement an authentication window was created. This window pops-up before the user

enters the back office administration window. Here the user fills in his login information and it

is sent to the backend using HTTPS. Once the credentials have been authenticated, the back

office will be displayed and a connection to the backend is created.

It’s as equally important to have a logout action, as it is to have a login action in place, which

allows the operation to close the working session. In this case the connection is broken and the

operator automatically returns to the login page.

5.1.3 Customer’s socket connection and disconnection
These were one of the most challenging features to implement due to its complexity.

To encourage customers to start a conversation it was required that a conversation could start

without a previous login. It was also required to identify the customer that was sending the

requests, in order to keep that track a Universal Unique Identifier (UUID) was given so that it

appended to every request and was used to unequivocally identify a customer, since that UUID

was passed as an HTTPOnly cookie that can only be altered on server.

The implementation challenge came from the requirement that required that a customer would

be able to navigate the site on multiple tabs on the same browser. This brought problems,

especially to differentiate when a customer left the site from when he refreshed or navigated

through the browser. To overcome this challenge, the solution found was to create a timeout

every time the last socket from a client broke, and clean the timeout if the customer reconnects

to the site.

60

Figure 5.8. Customer’s socket connection sequence diagram

Unlike the typical chat system, in the product developed the customers don’t need to input any

personal information to start a chat. This decision was made to reduce the probability of a

customer leaving the site because he was forced to share his name or email.

To use the product the customer only needs to access the site and the widget assists

automatically. If operators are not available an offline window is displayed, otherwise an online

window is shown. After, the socket is created and personal information is sent over. The socket

is then used to send and receive chat messages, call events, and contextual information is

collected.

Finally, the operators are notified that a costumer entered the site.

61

Figure 5.9. Customer's socket disconnection sequence diagram

The socket disconnection event is very similar to the operator’s socket disconnection event.

The socket disconnection event has two meanings: the customer is refreshing the site or the

customer has left the site. When this event happens it is verified for ongoing calls with the

customer and they are finished and the operator is notified. Since the event is the same for both

page refresh and leaving the page a timeout is set. If the customer creates a new socket before

the timeout fires the same is dismissed. If the timeout is triggered then the socket is removed

from the customer’s sockets list and if the list turns empty then the customer is marked as offline

and the operators are notified.

5.1.4 Context Collection
The context collection feature refers to all the information that can be collected that can help

operators understand the reasons behind the navigation and questions from the customer and

provide a better service.

62

Figure 5.10. Context collection sequence diagram

To collect both OS and browser’s information, the window.navigator.userAgent property from

the browser was used. Every time that the widget starts, it analyses and parses the string

returned by the property, and returns the OS and browser’s information, which are sent to the

server via Socket.io.

To collect the country code it is called http://ipinfo.io [35] API that returns a JSON with several

fields, among them is the country code.

The latitude and longitude values are obtained with the Geolocation API from the HTML5. This

information is then translated on server side, using Google’s Geocode API location.

For the visited URLs, every time a new Socket.io connection is created, its header is parsed. If

the origin matches the server URL, the URL is ignored because it means that the connection is

from an operator. Otherwise, the referrer field is parsed to get the URL where the customer sent

his request.

After it has been parsed and validated on server side, the collected information is then sent to

the operators in real time in order to allow for easy assistance of the customers.

5.1.5 Start and End a conversation
There are two ways to start a conversation. The most common is when a customer makes a

request to be contacted, either by chat, mail or phone and an operator opts for answer and

contact him.

http://ipinfo.io/

63

The second way is when an operator chooses a customer from the online list and starts to talk

to him without any previous request. This proactive contact can be used to get more insight on

the customer’s visit, to show the customer any special promotion or to force sales for instance.

Only operators can state the conversation as “closed”. When a conversation is closed, it is

passed onto the history. Besides that, the customer is removed from the pending queue and is

notified. When a conversation is closed the customer has the option to get the conversation

over email if he wants to.

5.1.6 Chat
After a conversation starts any of the actors can contact the other with instant messaging.

Figure 5.11. Operator’s message sequence diagram

64

Figure 5.12. Customer's message sequence diagram

The chat flow is very similar for both actors. The message is redirected by the server to the other

actor. All messages are sent to all operators. This allows all operators to follow the conversations

in real time even if they are not answering the customer.

The major differences between customer and operator messaging is the way that messages are

processed when received by the widget. A message from an operator received by the widget it

is processed looking for a URL. If it contains an URL and points to the site domain, the customer

is redirected to that location.

5.1.7 Calls
Another way to contact the customer is through a call, either by browser or device.

Browser calls were fully developed by the intern and breakout calls were developed using WWC

gateway.

In the first case, the customer creates a call request that is sent to the operator through the

server. Once the operator accepts, the customer makes the call request, this is sent to the

operator through the server. When the server accepts the request, the client creates an offer

which is then sent to the operator which in turn responds with an answer and the connection is

created. On the other hand, the operator starts a breakout call. The flow is the same as the

browser call, however the WWC gateway makes the data transformation in order to pass the

requests to their receivers.

65

Figure 5.13. Browser call sequence diagram

The sequence presented above describes the browser call sequence. The call is always asked by

the customer and the operators needs to accept it, in order to start the call. After all the signaling

the actors create a peer connection, gets access to media and an exchange session descriptions

– both the customer and operator generate a session description – and Interactive Connectivity

Establishment (ICE) candidates. This exchange is asynchronous.

Once both actors have each other’s stream a new peer to peer connection is established and

the call starts.

66

Figure 5.14. Breakout call sequence diagram

Breakout calls and browser calls have a very similar flow, however WWC gateway serves as the

middle man to manage and translate packages from the browser to the device.

WWC SDK was used to communicate with WWC gateway. This SDK offers a communication API

to make requests and handle responses. After login, WWC SDK registers at WWC using a

previously configured account and an API key. After that, the SDK is ready to make requests for

the calls. These requests act as a browser call request – SDP and ICE candidates are exchanged,

and WWC gateway translates the requests to be interpreted by both the device and browser.

Answers are served as events and WWC SDK offer callback functions to handle those events.

5.1.8 Remote Assistant
Calls received from the remote assistant app were a different issue. Since this demo was already

part of WIT’s portfolio it was not an implementation challenge, but rather an integration

challenge. The architecture was already flexible enough to integrate with remote assistant

server, however some changes needed to be made. Since the communication between

customer and server was done by HTTP, the OCVC server was used as proxy so a new service

67

was implemented inside the Chat module. The remote assistant back office (Figure 5.15) was

also redone to meet Angular and UI standards (Figure 5.16).

Figure 5.15. Remote assistant's back office old UI

Figure 5.16. Remote assistant's back office new UI

68

Figure 5.17. App call sequence diagram

As in breakout calls, there is a server in the middle between browser and device, but in this case

server implements a REST API which is called every second (polling) to check for call updates.

All communication between actors was processed by OCVC server, which served as proxy due

to Remote Assistant HTTP implementation. Requests are posted by the device on Remote

Assistant server. OCVC is polling information every second until a change occurs. At this moment

the offer is read and an answer is produced and posted. As previously stated, the device is also

polling for changes and when it find an answer to its offer a connection is created.

The challenge here was in terms of integration. Besides knowing that there are better

communication forms instead of polling (ex.: websockets or long polling) it was opted to not

change the Remote Assistant server due to the complexity and time constraints.

69

The biggest challenge was to handle the communication between BO and the device. On the

existing remote assistant demo the communication was by HTTP. On OCVC implementation, BO

is served by HTTPS, so HTTP communications are not allowed due to Same Origin Policy. The

solution found was to put OCVC server as a proxy, so the Remote Assistant communication lib

presented on BO was merged to OCVC server.

70

5.2 Tests
Testing the product was an important part of the project. Since an agile methodology was used

testing was a continuous process which means that at the end of each sprint the implemented

features and integration were fully tested by the ones presented at the sprint meeting.

This testing methodology allowed a fast way of tracking and fixing bugs during the development

at the same time that a new increment was produced.

In this section, will be presented the set of tests used to tests the features and the results

obtained.

5.2.1 Set of Tests
Sets of tests were created to test all features to ensure the project’s product quality, reliability
and good experience.

Functional tests served to prove the quality and reliability of the application. These allowed to
find unexpected behaviors or potential crashes on unexpected situations. The requirements
were used to produce the set of tests created. Features were grouped in five sets:
authentication, context collection, back office features, widget features and call window
features. Since most of the features produce a visual response it is important to guarantee that
the developed features produce the expected results.

Functional tests follow WIT’s Test Guidelines. For every test produced a unique name was given
with a description, conditions to test, requisites and steps needed. Each test was classified in
terms of importance in a scale from Low to High – a low important test is a test that verifies a
feature that is not very relevant to the product functionality, a high important test is test that
verifies a feature that is critical to the product functionality.

The sets of tests produced is as an appendix due to its extensiveness. To see the sets produced
please refer to subsection Annex D – Development, 6.1 – Test Sets.

In spite of not having a set of tests to test the usability, there was a constant topic discussion
over the project. As stated on subsection 5.1.1 the UI suffered great changes over the project
result of a continuous improvement to the user experience. Everyone involved in this discussion
actively participated.

The main reason why there were no usability tests was due to the fact that this product is still
under development. Since it will be used as POC and a demonstration product, if any potential
interested appears the UI must be rethought to fulfill the interested needs.

5.2.2 Results
At the end of each sprint the corresponding tests were run in order to validate the feature and
the results were used to fix bugs.

After the features were implemented from the backlog, sets of tests were run. Full test result
are presented at Annex D – Development, 3.2 – Results.

From a total of 82 tests only 2 not passed which led to a 98% of acceptance.

71

Test Set # of tests Passed Failed % Acceptance % Failure
Authentication 4 4 0 100% 0%

Context Collection 7 5 2 71% 29%

BO's Features 41 41 0 100% 0%

Widget's Features 19 19 0 100% 0%

Call Window Features 11 11 0 100% 0%

Total 82 80 2 98% 2%
Table 5.1. Tests results

From the table analysis it is easy to see that the tests that failed both belong to the context
collection group. In the beginning those features weren’t thought to be implemented, and the
UI was not prepared to display those values, however they were tracked and saved because they
seemed relevant for future work on the project.

To analyze WebRTC calls it was used WebRTC Internals [36] from Google Chrome.

In addition to Chrome’s WebRTC Internals, WWC SDK also offers an event to analyze
connectivity status with window.getStats API if available. The returned results are:

 Available bandwidth;

 Input level;

 Packets lost;

 RTT;

 Packets sent;

 Bytes sent.

72

5.3 Future Work
All the proposed scope was implemented and the project was successful.

The developed product will be used for demos and as a proof of concept either for its

technologies, experience and product concept, which means that this POC will be used in the

future and can be modified or evolve to a product if any potential interest appears.

As stated at subsection 3.2.1 some features were left out of the scope, but those features were

not forgotten and can be used to improve the project’s concept.

This section presents the reader some features that were analyzed, but were not implemented

due to time or complexity reasons.

Multiple operators

Change server in order to work with multiple registered operators. Furthermore, a new page

can be created in order to add and remove operators.

Priority queues for customers and operators teams

Different request types can be added to different queues with different priorities. For instance,

clients that requested a call could be all on the same queue, and the same operators team would

answer them all.

Operators team could be divided by request type (chat, call, tablet), page type (products, sales,

...) and others.

Automatic customers' engagement

Currently, operators without any request can engage customers. This approach could be done

automatically using rules to approach the customers.

For instance, if the same user visits the same page a certain number of times an automatic

message could be sent in order to approach him. The set of rules could be customizable by

operator.

Develop promotion feature

The reserved keyword :promo: is used to open a promotion div on the customer's browser. This

feature could be improved by adding a list of promotions on the BO so that the operator could

choose one and send it to the customer.

Collect/show more context

The context collection can be expanded. For instance, the first time the customer visits the

hosting site or the page referrer are collected but not displayed. Besides that, the last

conversation time, last visit, time between visits, visit duration or page visit duration can also be

tracked.

CRM integration

If the hosting site holds a CRM, integration could be possible in order to enrich the customers'

information provided to the operator.

Multiple active chats

The number of active conversations at the same time could be customizable.

Automatically infer customers' relationships

The BO could help the operator to answer the customers' needs. For instance, if the hosting site

is a sell retailer website if the customer search for an amount of the same type of products the

operator could suggest some related.

73

Chat transfer

Chat transfer could be possible in order to transfer the conversation to a more suited operator.

VoIP to all browsers

A huge improvement would be the development of VoIP calls to all browsers instead of the

current solution that only support browsers with WebRTC technology.

Security Issues

Security issues such as data privacy and encryption and the use of cookies to track customers

should be studied before this POC is used as a product.

UI Redefinition

A new UI is being prepared in order to meet the new features proposed and companies UI stand-

ards. This UI is currently being evaluated to decide if it will be rethought or implemented.

Message and comment edition

After sending a message, the same could be passive of edition or deletion.

Operators' metrics

From time to time (each week or month) a report with the operators' metrics could be

generated. The report could contain information such as conversation mean duration, number

of clients answered among others specific to some hosting sites such number of customers

converted into clients or number of sales. This reports would help to improve the operators'

approach and to collect the most active and efficient operators/teams.

Conversation qualification

In order to improve the customers' attendance and operators' quality, at the end of a

conversation the customer could qualify (star rating for instance) the quality of his conversation.

Canned responses to FAQs

To help the operators to respond faster to their clients, a list of canned responses to frequently

asked questions could be available on the BO. The operator would select and send the response

immediately.

Widget Personalization

A page to customize the widget could be added in order to change the widget colors, depending

on the widget owner preferences.

Operators internal chat

Operators could have an internal chat network in order to help themselves to answer their

customers.

Profiles

Both customers and operators could have a profile. On the customer profile all of his information

could be displayed and passive of edition. On the operator profile the operator could be able to

edit his information (password, name, ...) and edit his engagement rules.

Find less intrusive ways to get users' information

The information on the BO could be autocompleted during the conversation. For instance, if the

customer writes his name on the conversation the BO would identify it and set it to the database.

75

76

6 Conclusions
This document reflects the work done over the internship concerning the planning, develop-

ment and testing of the Online Context for Voice Communications project. The developed solu-

tion comprises an Injectable JavaScript Widget, an Angular app for the Back Office and a Node.js

backend.

During first semester was done the major analysis and planning. Competitors were analyzed as

well as the differentiation points between them and the project’s product. The project’s scope

was defined, technologies choices were made and the architecture was planned. Development

was also started on the first semester with the UI implementation and Context Collection.

During second semester the feature set was improved with the addition of new features which

led to new challenges and architecture changes. During this semester development was finished

with the implementation of chat, VoIP calls and the integration of Remote Assistant. The product

was tested during development due to the methodology followed.

From a goal perspective is safe to say that the goals defined were not only achieved but were

surpassed as well. Customers can easily use the injected widget to talk by chat, VoIP calls be-

tween browsers or breakout calls with operators and operators can see the context from each

conversation, which were the primary defined goals for the project. Besides that, Remote Assis-

tant demonstration was integrated to the project which enriched the final result and gave a

major contribution to the product differentiation from competitors.

At the time of writing the report project’s product reached a very stable release ready to be used

for demonstration. In spite of that is still room for improvement both on the developed feature

as by adding the new proposed features as well. The future work analysis was not left out of the

project and was done, so the beginning of new features can start as soon as it is intended to.

From a personal point of view, this internship was, without any doubts, a great contribution in

my education on Software Engineering Area. Every day I had to make my own decisions, face

challenges and learn from my mistakes. In spite of having the help from my tutors, I always had

the chance to express my opinions regarding all the options and that helped me to grow, keep

focused and motivated.

At the end of this internship I am happy to say that with this internship I became a better soft-

ware engineer who understands what the business reality is about. I can consider my perfor-

mance a success because I helped the company by delivering to them a finished product that

can be used to create valor on their portfolio.

77

7 References

[1] "WebRTC," [Online]. Available: https://webrtc.org/. [Accessed 14 November 2015].

[2] Vivocha, "Vivocha," [Online]. Available: http://www.vivocha.com/. [Accessed 05 October

2015].

[3] Livezilla, "Livezilla," [Online]. Available: http://www.livezilla.net/home/en/. [Accessed 05

October 2015].

[4] ClickDesk, "ClickDesk," [Online]. [Accessed 05 October 2015].

[5] ParkerSoftware, "WhosOn," [Online]. Available: http://www.whoson.com/. [Accessed 05

October 2015].

[6] Parker Software, "Parker Software," [Online]. Available: http://www.parkersoftware.com/.

[Accessed 06 October 2015].

[7] Netop, "Live Guide," [Online]. Available: http://www.netop.com/live-guide/what-is-live-

guide.htm. [Accessed 05 October 2015].

[8] Netop, "Netop," [Online]. Available: http://www.netop.com/. [Accessed 06 October 2015].

[9] Google Inc., "Google Analytics," [Online]. Available: https://www.google.com/analytics/.

[Accessed 16 October 2015].

[10] Wikipedia, "Google Analytics," [Online]. Available:

https://en.wikipedia.org/wiki/Google_Analytics. [Accessed 2015 October 2015].

[11] Adobe Systems, "Adobe Marketing Cloud," [Online]. Available:

http://www.adobe.com/marketing-cloud.html. [Accessed 16 October 2015].

[12] Wikipedia, "Omniture," [Online]. Available: https://en.wikipedia.org/wiki/Omniture.

[Accessed 16 October 2015].

[13] Kissmetrics, "Kissmetrics," [Online]. Available: https://kissmetrics.com/. [Accessed 16

October 2015].

[14] Wikipedia, "Customer Relationship Management," [Online]. Available:

https://pt.wikipedia.org/wiki/Customer_relationship_management. [Accessed 16 2015 16].

[15] Forbes, 22 May 2015. [Online]. Available:

http://www.forbes.com/sites/louiscolumbus/2015/05/22/gartner-crm-market-share-

update-47-of-all-crm-systems-are-saas-based-salesforce-accelerates-

lead/#2715e4857a0b515edaed4e6e. [Accessed 22 October 2015].

78

[16] Salesforce, "Salesforce," [Online]. Available: http://www.salesforce.com/eu/?ir=1. [Accessed

22 Ocotber 2015].

[17] Nasdq, "Salesforce.com Inc Stock Quote & Summary Data," [Online]. Available:

http://www.nasdaq.com/symbol/crm. [Accessed 2015 October 2015].

[18] SAP, "SAP CRM," [Online]. Available: http://go.sap.com/solution/customer-

engagement.html. [Accessed 2015 October 2015].

[19] Oracle, "Oracle CRM," [Online]. Available: https://www.oracle.com/applications/customer-

experience/crm/index.html. [Accessed 2015 October 2015].

[20] Microsoft, "Microsoft Dynamics CRM," [Online]. Available: https://www.microsoft.com/pt-

pt/dynamics/default.aspx. [Accessed 22 October 2015].

[21] nodejs.org, "NodeJS," [Online]. Available: https://nodejs.org/en/. [Accessed 28 October

2015].

[22] npm, Inc., "npm," [Online]. Available: https://www.npmjs.com/. [Accessed 2015 October

2015].

[23] socket.io, "Socket.io," [Online]. Available: http://socket.io/. [Accessed 28 October 2015].

[24] Express, "Express," [Online]. Available: http://expressjs.com/. [Accessed 28 October 2015].

[25] Google .Inc, "AngularJS," [Online]. Available: https://angularjs.org/. [Accessed 15 November

2015].

[26] MongoDB, "MongoDB," [Online]. Available: https://www.mongodb.org/. [Accessed 23

October 2015].

[27] Noop, "Simple vs. Complicated vs. Complex vs. Chaotic," 20 August 2008. [Online]. Available:

http://noop.nl/2008/08/simple-vs-complicated-vs-complex-vs-chaotic.html. [Accessed 12

October 2015].

[28] "Scrum Guide," 2014. [Online]. Available: http://www.scrumguides.org/scrum-guide.html.

[Accessed 12 October 2015].

[29] [Online]. Available:

https://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Scrum_process.svg/2000px-

Scrum_process.svg.png. [Accessed 12 October 2015].

[30] J. C. Helm, "Risk Management - Methods ans Tools," 1 January 2006. [Online]. Available:

http://sce.uhcl.edu/helm/BB-TestRiskMan/my_files/module6/topn.htm. [Accessed 14

November 2015].

[31] S. Brown, "Simon Brown," [Online]. Available:

http://www.codingthearchitecture.com/authors/sbrown/. [Accessed 12 November 2015].

79

[32] S. Brown, "C4 model poster," [Online]. Available:

http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html. [Accessed 12

November 2015].

[33] Wikipedia, "Component-Based Software," 7 June 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Component-based_software_engineering. [Accessed 15 June

2016].

[34] Wikipedia, "Event-Driven Architecture," 7 June 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Event-driven_architecture. [Accessed 15 June 2016].

[35] "ipinfo.io," [Online]. Available: https://ipinfo.io/.

[36] Google Inc., "WebRTC internals," [Online]. Available: chrome://webrtc-internals/. [Accessed

03 June 2016].

[37] Wikipedia, "Live support software," [Online]. Available:

https://en.wikipedia.org/wiki/Live_support_software. [Accessed 02 October 2015].

[38] Wikipedia, "Customer Relationship Management," [Online]. Available:

https://en.wikipedia.org/wiki/Customer_relationship_management. [Accessed 2015

October 2015].

[39] Wikipedia, "NodeJS," [Online]. Available: https://en.wikipedia.org/wiki/Node.js. [Accessed

28 October 2015].

[40] Socket.io, "Get Started: Chat application," [Online]. Available: http://socket.io/get-

started/chat/. [Accessed 20 October 2015].

[41] tutorialPoint, "AngularJS - MVC Architecture," [Online]. Available:

http://www.tutorialspoint.com/angularjs/angularjs_mvc_architecture.htm. [Accessed 17

November 2015].

[42] codecademy, "Learn AngularJS," [Online]. Available:

https://www.codecademy.com/learn/learn-angularjs. [Accessed 17 November 2015].

[43] E. Mcnulty, "SQL vs NoSQL - What you need to know," 1 July 2014. [Online]. Available:

http://dataconomy.com/sql-vs-nosql-need-know/. [Accessed 23 October 2015].

[44] C. Buckler, "SQL vs NoSQL: The Differences," 18 September 2015. [Online]. Available:

http://www.sitepoint.com/sql-vs-nosql-differences/. [Accessed 25 October 2015].

[45] "Is WebRTC ready yet?," [Online]. Available: http://iswebrtcreadyyet.com/. [Accessed 27

October 2015].

[46] "Can I use WebRTC?," 12 May 2015. [Online]. Available: http://caniuse.com/#search=webrtc.

[Accessed 27 October 2015].

[47] W3 School, "Browser Statistics," [Online]. Available:

http://www.w3schools.com/browsers/browsers_stats.asp. [Accessed 27 October 2015].

80

[48] S. Dutton, "Getting Started with WebRTC," 23 July 2012. [Online]. Available:

http://www.html5rocks.com/en/tutorials/webrtc/basics/. [Accessed 30 October 2015].

[49] Github, "Socket.io," [Online]. Available: https://github.com/socketio/engine.io. [Accessed 04

December 2015].

[50] Strongloop, "Writing Modular Node.js Projects for Express and Beyond," 2014 October 2014.

[Online]. Available: https://strongloop.com/strongblog/modular-node-js-express/. [Accessed

26 November 2015].

[51] "Securing Node.js and Express with SSL Client-Authentication," 10 June 2012. [Online].

Available: http://www.gettingcirrius.com/2012/06/securing-nodejs-and-express-with-

ssl.html. [Accessed 30 November 2015].

[52] A. Marandon, "How to build a web widget (using jQuery)," 15 June 2010. [Online]. Available:

http://alexmarandon.com/articles/web_widget_jquery/. [Accessed 26 November 2015].

[53] M. Vieira, Project Management, Module 3: Planning & Tracking - Risk Management,

October, 2014.

[54] "IP Info," [Online]. Available: https://ipinfo.io/.

1

José Manuel Marques Grilo

jgrilo@student.dei.uc.pt

Supervisors:

Jorge Sousa

Luís Matos

Carlos Bento

July, 1st 2016

Online context for voice

communications
Annex A – State of the Art

Masters in Informatics Engineering

Internship 2015/2016
Final Report

2

Index
1 Introduction .. 5

2 Live Support Online ... 6

3 Competitors ... 7

3.1 Direct Competitors .. 7

3.1.1 Competitors Analysis ... 7

3.1.2 Relevant features .. 13

3.1.3 Comparative analysis .. 14

3.2 Indirect Competitors ... 16

3.2.1 Relationship management and context analysis... 16

3.2.2 CRM Software .. 17

3.2.3 Summary ... 19

4 Technologies ... 19

4.1 Backend Technologies ... 19

4.1.1 Summary ... 20

4.1.2 Study Case ... 20

4.2 Frontend Technologies .. 21

4.3 Database .. 21

4.3.1 SQL Databases ... 21

4.3.2 NoSQL Databases .. 22

4.3.3 Analysis .. 22

4.4 WebRTC [38] ... 22

4.4.1 What is it?.. 22

4.4.2 Benefits.. 23

4.4.3 WebRTC, Flash and ORTC .. 24

4.4.4 Codecs ... 24

4.4.5 Browsers Support .. 25

5 References ... 27

6 Appendix ... 31

6.1 Full Competitors Comparative Table ... 31

3

Index of Tables

Table 3.1. Direct competitors analysis .. 15

4

Index of Figures

Figure 4.1. WebRTC Architecture ... 23

Figure 4.2. Market share for the main browsers .. 25

Figure 4.3. Browser support for WebRTC ... 25

Figure 4.4. WebRTC support for the main browsers ... 26

5

1 Introduction
This document intends to expose detailed information about the competitors analyzed and

about the technologies that were considered. Decisions made are also justified in this document.

 The document will be divided in three big sections. The first one will give the reader bases about

Live Support Online including its goals and main functionalities.

In the section 3 is performed a market analysis about competitors of the internship software,

whether direct or indirect. This analysis aims to study the market’s saturation level, possibilities

of success, impact level and inherent risks.

Lastly, a technologies analysis was performed and is shown at section 4. Like section 3, this

section aims to study the technologies available and evaluate their advantages and limitations

in order to select the ones to use.

For both market and technologies analyses a brief description of the services/technologies,

relevant features and main limitations was studied. Each section contains all the studied services

or technologies, sorted in alphabetical order.

6

2 Live Support Online
Stated as an evolution from the helpdesk systems, the Live Support Online systems allow to the

customer an immediate personalized service while he keep browsing the website. Unlike

helpdesk systems where the service is not immediate because the customer needs to go to an

assistance store or has to wait for a callback to be made or an email to be replied, in the Live

Support Online this attendance is made through a popup window that allows the customer to

chat or make a Voice over Internet Protocol (VoIP) call by the time the problem arise.

This system has two components:

 A chat window through which the customer communicates.

 A dashboard which allows the operator to talk back to the customers.

The chat window is usually injected through a snippet (e.g.: JavaScript (JS) code) which is pasted

at the website source code and the dashboard can either be native or web developed.

The start of the conversation can be done following two approaches:

 Broadcast: the conversation is initiated by the customer that sends a message to the

server and then it broadcast the message to all the available operators, which then one

of them is selected to answer the call.

 Proactive engagement: in this approach the operator is who starts the conversation with

a selected customer. Once the operator sends a message it will be delivered to the

customer and then he opts to answer or not. The beginning of the conversation is usually

defined by a customer achievement, which was specified by the operator (e.g.: number

of clicks in the website). This approach is especially effective in sales due to its brute

force approach.

More innovator approaches, besides providing an immediate attendance allows a personalized

attendance as well. They use techniques such as Real User Monitoring (RUM), which allow them

to collect data about their customers and customers’ navigation. This approach makes the

service more efficient avoiding the context exchange between customer and operator.

7

3 Competitors
The competitors against the internship product will be described in this section. Two groups can

be created:

 Direct competitors: it was stated as a direct competitor the company that presents a

service or application with at least some of the features that the internship product aims

to develop.

 Indirect competitors: it was stated as an indirect competitor the company that presents

a service or application with different features from the ones that the internship product

aims to develop, yet can still offer a service that can compete against the internship

3.1 Direct Competitors

3.1.1 Competitors Analysis
Nowadays, there is a set of companies offering a competitor service like the one proposed in

the internship. For a matter of convenience, and since that there are many similarities in the

services, only the most popular companies were selected. The companies were selected based

on the amount of references in the search.

Below there is an analysis for each one of the competitors. Their comparison is done at the next

section.

LiveHelpNow [1]

LiveHelpNow was founded in 2003 by

Michael Kansky, current company’s

CTO. The company’s headquarters are

in Willow Grove, Pennsylvania, USA.

It already counts with more than

120000 deployments and it has

customers like Discovery Education,

NBC Sports or Dell among others. With

more than 65% of its personnel focused in the development area the company provides, apart

from its live chat solution, a call and ticket management solution and an information and

knowledge database.

The live chat solution allows real time monitoring over customers’ actions to increase sales.

Beyond that, operators and communications are also monitored in order to know their

efficiency.

Main features:

 Real time monitoring.

 Easily exportable customers list.

 Monitors information from the customers’ social media profiles open in the browser.

 Returning customers identification.

Negatives:

 Do not allow voice calls.

8

LiveChat [2]

With offices in Boston, Massachusetts, USA and

Wroclaw, Poland, the company was founded by

Mariusz Cieply, current CEO, in 2002.

LiveChat provides a live support online through

chat used by 12000 customers.

Main features:

 Real time monitoring.

Negatives:

 Both customer and operator’s applications must be downloaded and installed.

Zopim [3] by Zendesk [4]

Zendesk has Mikkel Svane,

company’s CEO, Morten Primdahl,

CTO, and Alexander Aghassipour

as co-founders. The company was

founded at Copenhagen, Denmark

when they still used a kitchen door

as desk. The company’s purpose is

to bring a little Zen to the chaotic

world of help support, with appellative and simple software.

Since its foundation, the company already have its headquarters at San Francisco, California,

USA. Nowadays is based at Tenderloin, California, USA.

In its set of customers there are some relevant names such as L’Oréal, Foursquare, Xerox and

Vodafone.

Zendesk offers a set of solutions like help center, chat and voice, which can be integrated

between them.

Main Features:

 Real time monitoring.

 Multiples CRM and salesforce software integrations available.

 Allow multiple operators and chat transfer.

Negatives:

 Do not allow voice calls.

 Do not allow URL push to the client.

 The widget needs to be downloaded and installed.

9

Olark [5]

Olark was founded in 2009 at Ann Arbor, Michigan, USA.

Its founders, Bem Congleton, Matt Pizzimenti, Roland

Osborne and Zach Steindler, started the company at Y

Combinator, a seed accelerator, and ended up creating

a successful company. Their purpose is help to solve

customers’ communication problems in an immediate

way and gain information about what they want. The

company is currently based in San Francisco, California,

USA and has employers dispersed in areas like USA, Canada and UK.

Its service allows an easy installation of a customizable widget and a great set of CRM

integrations.

Main features:

 Real time monitoring.

 Multiples CRM and salesforce software integrations available.

 The widget is easily installed, through copy & paste of a snippet.

Negatives:

 Do not allow voice calls.

Vivocha [6]

Vivocha is a self-called startup with

offices in San Francisco, California,

USA, Milan and Cagliari, Italy. It was

founded by Gianluca Ferranti and

Federico Pinna, currently the

company’s CEO and CTO.

Beyond its monitoring features, a

large set of communications

combinations are offered with the possibility of chat, voice, video and callbacks.

Main features:

 Real time monitoring.

 Web dashboard to monitor and assist multiple customers.

 Multiple communication options: chat, voice, video and callbacks.

Livezilla [7]

Livezilla GmbH was founded in 2009 and is based at Singen, Germany.

The company offers a set of integrated solutions of customer

support. This set includes a live chat for communication between

customers and operators with the possibility of proactive

engagement by the operators, real time monitoring and a tickets

system to allow offline contact and customers support. Besides that,

operators can communicate with each other, both from their

dashboard and mobile app.

10

Main features:

 Real time monitoring.

 Helpdesk and ticket system for offline service.

Negatives:

 The widget needs to be downloaded and installed.

 Do not allow voice calls.

BoldChat [8] by LogMeIn [9]

LogMeIn was founded by Michael Simon, current CEO, in 2003 and it is based in Boston,

Massachusetts, USA. Beside its headquarters, the company has offices at the USA, India and

Australia.

The company offers a set of products with four different focus areas: collaboration services, IT

management services, live support and services about the Internet of Things. Some of its

products include the LogMeIn Hamachi for net virtualization and VPN services, and the join.me

software, an online collaboration tool.

Boldachat is the product which gives the users a chat system with clients monitoring and the

ability of proactive engagement from the operators.

Main features:

 Real time monitoring.

 Integration with salesforce software

Negatives

 Do not allow voice calls.

 Do not allow URL push to the client.

 Both customer and operator’s applications must be downloaded and installed.

 Do not allow offline conversations.

Provide Support [10]

Based in New York, USA, Provide Support has the purpose of rise the

companies’ power that use its service with communication software

that help to develop communication relationships between

customers and providers and raise the sales numbers.

Company’s solution offers a customizable chat, easy to integrate, and

capable of monitor clients and offer a personalized attendance.

Main features:

11

 Real time monitoring.

 Easy integration of the widget and web dashboard available

 Online clients list.

Negatives

 Do not allow voice calls.

 Do not recognize returning customers.

Tawk.To [11]

The company was founded in 2010 and is based at Riga, Latvia, however it

assumes a distributed policy where its employees are out of the

headquarters.

Its chat is highly customizable, since its color, position and even language.

In terms of monitoring, it is possible to collect all the tracked pages and

geolocation in real time, which can be seen in the dashboards developed

for Windows, OS X, Android and iOS.

Main features:

 Real time monitoring.

 Multiple operators over multiple departments with the possibility of client routing.

 Conversation history.

 Highly customizable widget.

Negatives:

 Do not allow voice calls.

 Do not allow URL push to the client.

 Both customer and operator’s applications must be downloaded and installed.

 Do not allow offline conversations.

Kayako [12]

Founded in 2001 by the current CEO, Varun Shoor, the company is

based in London, UK. Kayako is one of the greatest Live Support

Online companies, with clients such as Peugeot, Nasa and Avast.

Beyond its real time monitoring capabilities and native applications

for mobile operating systems, Kayako allows voice calls using an

installed service, as well as callbacks from operators.

Main features:

 Real time monitoring.

 Possibility of voice calls.

Negatives

 The dashboard needs to be downloaded and installed.

ClickDesk [13]

12

ClickDesk is a self-funded company based in Silicon Valley. The

company was founded after a search made for a live support

chat with the ability to receive phone calls instantly.

Besides the chat and phone abilities, the company intended to

keep the service cloud-based.

Main features:

 Multiple communication options: chat, voice.

 Multiples CRM and salesforce software integrations available.

Negatives:

 Do not track customers’ heat map.

 Do not allow URL push to the client.

Comm100 [14]

Comm100 has the motto “100%

communication, 100% success”. They believe

that communication is the best way to make

the difference and create great relationships

so, they have a set of solutions communication-oriented: live chat, email marketing,

ticket/email, helpdesk, knowledge base and forum. Some of its customers are Whirlpool, sears

and Stanford University.

Main features:

 Real time monitoring.

 Possibility of screen sharing.

Negatives:

 Do not allow voice calls.

 Do not allow URL push to the client.

WhosOn [15] by Parker Software [16]

Parker Software was founded in 2003 and it is a

company based on real-time communication. Its

main product is WhosOn, first launched in 2002 with

the purpose to track and analyse customer’s

journey across a website. In 2007, WhosOn was

developed into a live chat and tracking solution,

used to analyze, engage and chat with customers.

Main features:

 Real time monitoring.

 Possibility of screen sharing.

 Possibility of voice calls.

Negatives:

13

 Do not allow URL push to the client.

Live Guide [17] by Netop [18]

Netop employs 130 people and has subsidiaries in the USA, Great

Britain, China Romania and Switzerland and it is headquartered in

Denmark.

The company believe in a world where people can connect with

anyone, anywhere, anytime. For that reason they have three products

oriented to online connection: Live Chat with chat, voice and video call,

Secure Room Control for remote access and Classroom Management

with screen sharing and student supervision.

Main features:

 Real time monitoring.

 Possibility of screen sharing.

 Possibility of voice calls.

Negatives:

 Do not allow URL push to the client.

Website Alive [19]

AliveChat started as an experiment in Austin, Texas, USA. The

concept evolved and now is present in more than 11000 web and

mobile sites over 120 countries. Since 2004 the company has won

some awards with its products.

Main features:

 Real time monitoring.

 Possibility of screen sharing.

Negatives:

 Do not allow voice calls.

3.1.2 Relevant features
Live support online systems allow communication between a customer and operator in a way

that the customer can clear his doubts and questions immediately. However, with the

technology evolution and the rise of new concepts to satisfy the customers’ demand, new

features need to be added. This will allow for a simpler, faster and more efficient attendance

system that requires less time and effort both from customers and operators.

To make a complete analysis from the competitors a features’ survey was performed. It was

taken in count all the features that not only allow the customer to communicate with an

operator but also the features that allow the operator to collect navigation context among

others. However, many of the analyzed features will be out of the scope of the internship, so a

small set of features was selected that allows a comparison between the competitors and the

internship product.

The set of features created is a set that was considered to be the minimal acceptable set of

features to create a product that allowed costumers to ask for help to operators while operators

14

could see the navigation context. This minimal acceptable set must have at least communication

features such as chat and VoIP and context collection features in Real Time. Besides that, the

customers’ widget injection and a web back office dashboard for operator are also

requirements.

The selected set was:

 Web dashboard: A web dashboard that allows the operator to communicate with the

customers and see their navigation data.

 Proactive engagement: A chat conversation may be started every time a defined rule is

achieved by a customer; for example if the number of page visited is equal to α.

 Prioritize chats: The displayed customers assigned to each operator should be listed in

a First-In-First-Served way.

 Page tracking: The pages visited inside the website must be saved in order to create a

heat map for each customer.

 Referrer tracking: The referrer to the website must be saved for each visit.

 Browser Tracking: The browser version used in every visit must be saved.

 Geolocation Tracking: The operator must see the customer’s geolocation if they are

allowed.

 Real time monitoring: The monitoring of the tracked data must be done in real time

during the customer’s visit.

 Online customers list: An online customers list should be provided to every online

operator.

 Recognize customers: Returning customers must be identified and their previous

information should be loaded to the dashboard.

 Chat: Customers should be able to start a chat conversation with an online operator.

 VoIP without plugins: Customers should be able to start a voice call with an online

operator without the need to install any plugins.

 Operators login/logout: Registered operators should be able to login and log out at the

dashboard.

 URL Push: Operators should be able to push pages to their customers’ browser and force

them to load that page.

 Multiple chat windows: Operators should be able to have multiple conversations at the

same time.

 Chat transfer: Operators should be able to transfer chat conversations between

themselves.

 Proactive engagement rules: Operators should be able to configure a set of rules to

start proactive engagement with their customers.

 Widget injection: The widget should be injected in the websites through a snippet,

without the need of software installation.

3.1.3 Comparative analysis
In order to easily compare direct competitors, first a table with their features developed by each

company is presented. After that, a written summary will highlight the main competitors from

the ones analyzed and how the internship product can stand in the market.

The table below compares the services of the companies. The check sign () indicates that the

feature is supported, on the other hand, the cross sign () indicates that the feature is not

supported. Since it is very hard to collect all the data from the companies’ products due to the

inability to test all software, the circle sign () is used every time that no information is

15

supported or available. For a more complete table, with all the features analyzed, please refer

to chapter 6, section 6.1 – Full Competitors Comparative Table.

Li
ve

zi
lla

Ta
w

k.
to

V
iv

o
ch

a

P
ro

vi
d

e
Su

p
-

p
o

rt

Zo
p

im

B
o

ld
C

h
at

Li
ve

 H
el

p
 N

o
w

K
ay

ak
o

O
la

rk

Li
ve

C
h

at

C
lic

kD
es

k

C
o

m
m

1
0

0

N
et

o
p

 L
iv

e

G
u

id
e

W
h

o
sO

n

w
eb

si
te

 A
liv

e

Dashboard

Responsive dashboard

Proactive engagement

Prioritize chats

Widget

Page tracking

Referrer tracking

Browser tracking

Geolocation tracking

Real time monitoring

Online customers list

Recognize customers

Customer

Chat

VoIP without plugins

Operator

Operators login/logout

URL push

Multiple chat windows

Chat transfer

Proactive engagement
rules

Owner

Widget injection

Table 3.1. Direct competitors analysis

16

Among the features between them, the final result presented is similar when compared, for

example the proactive engagement allows operators to start a chat conversation without the

customer allow to, through operator’s initiative or the achievement of some kind of metric.

As stated previously, it is difficult to know exactly the features that are presented in each

competitor due to the difficulty to test all services. Some features like the tracking ones are

difficult to know if they are present because some documentation only states that the widget

tracks visited pages among other information.

After evaluating the market we can see a small niche that is not well explored. The niche is the

VoIP calls, which is one of the main features to develop in the internship. This could be a huge

opportunity to explore that can bring value and be a point of differentiation.

3.2 Indirect Competitors
In this section will be analyzed the indirect competitors, those who in some way offer a possible

solution to the customers even if that it is not their purpose.

The indirect competitors were divided in two groups: relationship management and context

analysis software and Customer relationship management software.

3.2.1 Relationship management and context analysis
In this subsection will be analyzed relationship management and context analysis software. This

software collects a set of data, useful from the website proprietary point of view, which allows

the user to access their websites stats about visits.

The set of companies that were chosen was based on the number of references presented in

the search.

Google Analytics [20]

In 2005 Google Inc. bought Urchin. This move led to the creation of

Google Analytics. Its success was huge, which made new requests to the

service to stay suspended after the first week. Since that, new requests

were attended in a lottery way, until 2006. Since September 2006 the

system became available to all users. Nowadays, Google Analytics is used

over 55% of the 10000 more popular sites and over 49.95% of the

1000000 first sites from the Alexa rank.

Adobe Marketing Cloud [21]

The company was founded by Josh James and James Pestana, and

financed by venture capitalists. Becoming one of the greatest powers,

among the 500 private companies with the biggest growth rate and

nominated by Inc. Magazine [22]. The company was acquired by Adobe

Systems in 2009, and until 2011 operated as a company inside Adobe. In

2012 Adobe started to remove the name Omniture and its products

started to be integrated on the Adobe Marketing Cloud.

Kissmetrics [23]

17

Founded by Neil Patel and Hiten Shah in 2008, it is based in San

Francisco, California.

The company offers a set of tools to collect data about how the

customers interact with websites, web apps and mobile products.

3.2.2 CRM Software
According to Philip Kotler, conquering new clients can cost 5 to 7 times more than maintaining

the existing ones [24]. For that reason companies should have strategies that allow loyalty from

their clients.

 Customer relationship management is a strategy that focus on understanding and anticipating

the client needs. CRM is used to help in this strategy, which allows:

 Client management

 Identify and define clients profile

 Manage communication with client

 Follow orders

 Anticipate the market evolution

 Organize a personalize technical assistance

This section will analyze the four CRM software with the bigger market share [25].

Salesforce [26]

Salesforce.com is a cloud computing company, based in

San Francisco, California, USA. It was founded in 1999 by

Marc Benioff, Parker Harris, Dave Moellenhoff and Frank

Dominguez. Nowadays is one of most valuables cloud

computing companies, evaluated around 50 thousand

million dollars.

The company splits its products over six areas: sales,

marketing, community, analysis and applications. Its

products are used for over 100000.

Market Share: 18.6%

Growth: 28.2%

Main features:

 Offers a fast and personalized service to the customers

 Create and manage personalized marketing campaigns

 Allow the approach of customers and clients independently their places

 Collect and display tracked data in a dashboard

18

SAP CRM [27]

SAP SE is a German software company that

makes enterprise software to manage

business operations and customer

relationships. Its CRM software targets

midsize and large organizations in all

industries.

Its solutions includes the modules of sales,

marketing, services, analytics, interaction

center and web channel.

Market share: 12.1%

Growth: 7.2%

Oracle CRM [28]

Oracle started in this market space when they purchased Siebel Systems in 2005, a company

focused on developing software to support CRM. Later, they bought Upshot CRM, which brought

a more robust interface.

The company split its products in six areas: marketing, sales, commerce, social, services and CPQ

(Configure, Price and Quote). Its customers can either subscribe to a single module or a

combination of modules.

Market share: 9.2%

Growth: 2.6%

Main features:

 Manage individual experiences over a set of channels.

 Allow personalized experiences to its customers.

 Collect data from customers.

 Easy communication between customers and operators.

Microsoft Dynamics CRM [29]

Microsoft Dynamics CRM is part of the Microsft Dynamics

package of CRMs and Entity Resource Planning (ERP).

Launched in 2003, it is a client-server accessable

apllication from both browser and a plugin for Microsoft

Outlook. The current version count with sales, marketing,

services and social modules. It counts about 40,000

customers.

Market share: 6.8%

Growth: 21.7%

19

Main Features:

 Sales analysis

 Account management

 Multichannel assistance

 Personalized assistance and marketing design

3.2.3 Summary
After the analysis of the indirect competitors, neither the Relationship management and context

analysis software nor the CRM software are real menaces to the internship product, because its

focus is not the one to track and assist. The first group is focused on data collection to context

from the visits done to the website, however they cannot give assistance to the users. The CRM

group, can give some assistance in real-time but its real focus is to collect and manage relation-

ships in order to improve the communication and assistance of the customers.

In spite of not being a big menace, the integration of CRM software in the internship product

should be considered. This integration can be useful to provide a better experience and assis-

tance to the customer. If so, the first CRM software to consider should be Salesforce due to its

market share, and, still show a greater growth than its competitors. Due to their market share,

the other CRM software products are not a priority.

4 Technologies
Choices of technologies can influence a project. Choosing an unfamiliar or untested technology

can bring unwanted risks to the project. On the other hand, choosing the right ones can make

the development process easier with much better final results.

In order to choose the right technologies the intern made an analysis for the main components

developed: Online Context for Voice Communications (OCVC) Server and Back Office (BO) Web

App. Besides that, the database selection was also an important decision.

The intern had full liberty to analyze and choose the technologies. After making his analysis the

intern presented his choices to Internship’s Tutor Luís Matos who accepted the proposed

technologies.

This section will be show the technology choices to develop the internship product. First to be

presented is the list of the backend technologies, and second is a subsection of the frontend

technologies.

The third subsection will present the database selected.

Finally a section about WebRTC is presented.

4.1 Backend Technologies
Java [30]

Java is a general-purpose computer programming language that is concurrent, class-based and

specifically designated to have as few implementation dependencies as possible. Developed in

1991 by James Gosling at Sun Microsystems (acquired by Oracle in 2010), it was released in 1995

and nowadays is one of the most popular programming languages in use, particularly for client-

server web applications. Java was projected to be:

 An objected oriented programming language.

 Portable.

20

 A language with an extensive network of resources.

 Secure.

PHP [31]

PHP is a server side scripting language designed for web development. It is one of the most web

languages used for websites and web servers. It was created in 1994 by Rasmus Lerdorf and

originally stood for Personal Home Page, it now stands for Hypertext Preprocessor.

PHP is an imperative, object-oriented language which can mix HTML code with its own and send

the result to the client usually in the form of a web page. Until 2014 it had a de facto standard,

since then there is an ongoing work on creating a formal PHP specification.

JavaScript on Node.js [32]

Node.js is a recent cross-platform runtime environment used for server-side applications written

in JavaScript. It provides an event-driven architecture and a non-blocking I/O Application

Programming Interface (API) ideal for real-time web applications. Besides its recent creation, in

2009 by Ryan Dahl and Joyent, it is already in use by some great companies such as LinkedIn,

IBM or Microsoft.

4.1.1 Summary
Since the goal of the internship product is to build a web application that allows real-time

communication between clients and operators without demanding Central Processing Unit

(CPU) processing. The internship product will be developed as a multi-tier chat application – two

different web clients (clients and operators) and a web server – where the clients’ application

will communicate between themselves through the server. So, the server will be a lightweight

application that only needs to forward information every time a new request arrives. What is

needed is an event-driven architecture with a fast non-blocking API, which is what Node.js

offers.

Applications that run on Node.js are written in JavaScript, the same language can be used both

on the client side and on server side.

The use of Node.js allows the use of several modules from the package modules repository –

npm [33] – such as:

 Socket.io [34]: is cross-platform module that allows real-time bidirectional event based

communication, which is great to establish communications between users (clients and

operators) and server. This is an ideal module for real-time analytics and chat

application. Besides that, it allows communication both via sockets or polling.

 Express [35]: is a Node.js framework that provides a robust set of features for web

applications development, designed to quickly build a single-page, multiple-page or

hybrid web applications.

4.1.2 Study Case
Due to the lack of good documentation, a study needed to be performed in order to prove that

both Node.js and Express allow a one-to-one chat implementation, and that Socket.io allows the

creation of connections other than web sockets.

In the first step a tutorial present at [36] allowed the development of a chat application, with

Express and Socket.io. Since Socket.io framework uses an event driven architecture the code

was easily changed to create an application that would chat with a single operator.

21

In a second step, it was necessary to change the communication from web sockets to long

polling. Socket.io allows this configuration when a new connection is created.

This small proof of concept allowed to validate the technology selected.

4.2 Frontend Technologies
AngularJS [37]

AngularJS is a JavaScript framework, written in JavaScript that extends HTML with directives. It

enables the creation of dynamic views in web applications, through a two-way-data-binding,

which automatically synchronize both models and views. This abstraction from the DOM leads

to better code decoupling (view separated from model and controller).

AngularJS enables the creation of dynamic applications with several views without too much

complexity.

4.3 Database
Database choice is a critical decision to make in every project. Every database has its pros and

cons and they should be taken into account when making this choice.

However, database dependency can be minimized with the right architectural choices. In the

current project server architecture follows a component-based development pattern (see

Annex C – Architecture). This pattern makes it easier to replace the database by only changing

the database connector, which is an abstraction module to communicate with the database.

Both SQL and NoSQL databases were considered. In this section they will both be analyzed and

a choice will be made.

4.3.1 SQL Databases
Structured Query Language is a special programming language designed for managing data held

in relational database management systems (RDBMS). SQL databases are table based, which

means that their data is stored in a predefined set of tables with a predefined number of rows

(schema). Since a predefined schema is needed this kind of databases are best for well-defined

problems where all the data needed is known and it will not change quickly. SQL databases scale

22

vertically, more resources means more scalability. They are best suited for heavy transactional

work and complex queries.

4.3.2 NoSQL Databases
On the other hand, NoSQL (“non SQL” or “Not only SQL”) provides a storage mechanism

modeled as a means other than well-defined schemas. Their data can be persisted in a collection

of key-value pair, graph model or wide-columns stores which do not have a schema defined.

NoSQL databases are horizontal scalable, which means that they scale if more nodes are added.

Since they use a dynamic schema, they are well-suited for problems with unstructured data,

hierarchical data, or big data.

4.3.3 Analysis
Both SQL and NoSQL databases have its advantages.

In this project a little amount of relationships are needed, since only operators, visitors,

conversations and tracked data entities exist. This kind of relationship would indicate the use of

a SQL database. However, the structure of the entities is uncertain. More tracked fields could

be added, visitors and operators profile could change when more features are added to the

product. That is the most important reason to use a NoSQL database. This free-schema paradigm

allows a fast development, which is critical to this internship. Another good reason to use NoSQL

is the huge need for scalability. Tracked data and conversations will make the database size grow

fast, so a database that scale horizontal is better. Besides that, no complex queries are needed,

so NoSQL is suited to this case.

MongoDB [38] was the database selected. It is a NoSQL database that favors a JSON-like

documents structure with dynamic schemas. This allows for faster and easier integration of new

data. MongoDB also allows a high insert load, which is great to persist data in the database.

Since the application is always recording data from visitors and chats can scale quickly, a huge

amount of inserts will be done.

Besides its technical advantages, MongoDB and Node.js have a mature connection very tested,

and used, which means that they are two technologies that work very well together.

4.4 WebRTC [39]

4.4.1 What is it?
WebRTC is an open project that tries to standardize the support for real-time communications

via simple APIs, allowing web applications to send data between devices over IP. Its mission is

to offer rich and high-quality applications the power to be developed for devices and allow them

all to communicate via a common set of protocols, using Javascript APIs and HTML5.

Since WebRTC allows real-time communication into websites, sending data and media streams

in a peer-to-peer way, it means it can be used for voice and video calls directly from a web

browser without the need of plugins. Because of this, many communication solutions can be

developed, solutions that can be innovative in the communication area.

23

Figure 4.1. WebRTC Architecture [40]

WebRTC architecture can be divided in two layers:

 WebRTC C++ API and the capture/render hooks for browser developers

 Web API for Web App developers.

Inside browser implementation there is WebRTC C++ API enables browser developers to

implement WebRTC API proposal. Then there is an abstraction layer for communication

management for call setup and session management. Bellow, are three big modules. Voice and

video engines are responsible for voice and video collection and presentation, they are also

responsible to sending them to Transport module who is responsible for RTP stack management

and STUN/ICE mechanisms to guarantee connectivity across different networks. On the last

layer are the hooks that are overridden by browsers to access the device’s audio and video.

WebRTC API is the part that concerns the internship. It allows the third party web based

application to use WebRTC C++ API on browser.

WebRTC simplifies developers’s work on three points:

 Transport layer;

 Codecs agreement;

 Media Engine.

4.4.2 Benefits
Some of the main benefits of WebRTC are related to improved productivity and team collabora-

tion using clientless web-based video inside and outside companies, enhanced flexible work by

enabling internet calling and improved relationships with customers with web-based video and

video communication.

We can sum up the benefits of WebRTC in five different scenarios:

 Consumer to Consumer (common users call to people they know)

24

 Consumer to Business

 Business to Consumer

 Within business organizations

 Business to Business

4.4.3 WebRTC, Flash and ORTC
Before WebRTC browser’s real-time communication were usually done using plugins such as

Flash Player.

Flash is ubiquitously available for all browsers and acts like a patch on them to allow

communication in real-time. The ubiquity of Flash is its greatest advantage over WebRTC.

However, WebRTC’s abstraction for developers, high quality codecs and built-in browsers API

make WebRTC a much better choice.

WebRTC and ORTC are very similar between themselves. They both work over IP for web and

mobile devices with the intention of improve real-time communications. The main differences

between them is the level of abstraction of the offered API. ORTC claims that WebRTC API is too

much high level and do not offer enough control to developers to work. Besides that, ORTC has

an undefined signaling methodology in contrast with WebRTC’s slightly defined SDP signaling.

4.4.4 Codecs
WebRTC supports a very limited set of codecs. Unfortunately, there is no “legal” way to choose

the desired codec in a certain application. This choice is done by browsers agreement using SDP.

SDP packets can be hacked and played to choose the desired codec, however that is not a good

practice.

Audio Codecs

OPUS

OPUS is the codec used by default for encoding audio stream. With a constant and variable

bitrate, from 6kbit/s to 510kbit and sampling rates from 8 kHz to 48 kHz is the best for high-

quality audio. It implements lossy audio compression.

iSAC

This codec is well suited for voice data and streaming audio, but is not for high quality audio

streams. It has an adaptative and variable bitrate, from 10kbits/s to 52kbits/s and supports 32

kHz sampling rate.

iLBC

It is the codec that is used on bad channels and low bandwidth, with a fixed bitrate of 15.2kbit/s

or 13.33kbit/s and a sampling rate of 8 kHz.

G.711

It is the standard codec for audio companding and is primarily used in telephony, with a sampling

rate of 8 kHz and a bitrate of 64kbit/s.

25

Video Codes

VP8

VP8 implements a high-efficient video compression technology. While only Firefox supports

H.264 natively and VP9 is supported by Chrome and Firefox only, currently VP8 is the only video

codec supported by all browsers.

4.4.5 Browsers Support
In terms of browser support, not all browser support WebRTC, however WebRTC is supported

by the browsers with the biggest market share, Chrome and Firefox.

Figure 4.2. Market share for the main browsers

[41]

[42]

Figure 4.3. Browser support for WebRTC

As we can see on Figure 4.3, only destop/laptop browsers support WebRTC. However, as Figure

4.2 shows, Firefox and Chrome dominate the market. After them, IE is the most used browser,

however its market share is decreasing rapidly over time.

On the other hand, the WebRTC project does not offer the same capabilities to all browsers. As

we see in the image bellow, Firefox is the browser with the most capabilities, followed by

Chrome and Opera.

26

 [43]

Figure 4.4. WebRTC support for the main browsers

In terms of capabilities offered on the three browsers that support WebRTC, is fair to say that
Firefox is the most complete one. However, all of them offer the needed capabilities to
implement voice communication.

27

5 References

[1] LiveHelpNow, “Featured Benefits,” [Online]. Available:

http://www.livehelpnow.net/help-desk-software. [Acedido em 06 October 2015].

[2] LiveChat, Inc., “LiveChat,” [Online]. Available: https://www.livechatinc.com/. [Acedido

em 06 October 2015].

[3] Zendesk, “Zopim,” [Online]. Available: https://www.zopim.com/. [Acedido em 06

Ocotber 2015].

[4] Zendesk, “Zendesk,” [Online]. Available: https://www.zendesk.com/. [Acedido em 06

October 2015].

[5] Olark, “Olark,” [Online]. Available: https://www.olark.com/. [Acedido em 06 October

2015].

[6] Vivocha, “Vivocha,” [Online]. Available: http://www.vivocha.com/. [Acedido em 05

October 2015].

[7] Livezilla, “Livezilla,” [Online]. Available: http://www.livezilla.net/home/en/. [Acedido em

05 October 2015].

[8] LogMeIn, “Boldchat,” [Online]. Available: https://www.boldchat.com/. [Acedido em 06

October 2015].

[9] LogMeIn, “LogMeIn,” [Online]. Available: https://secure.logmein.com/PT/. [Acedido em

06 October 2015].

[10] Provide Support, “Provide Support,” [Online]. Available:

http://www.providesupport.com/. [Acedido em 06 October 2015].

[11] Tawk.to, “Tawk.to,” [Online]. Available: https://www.tawk.to/. [Acedido em 06 October

2015].

[12] Kayako, “Kayako,” [Online]. Available: http://www.kayako.com/. [Acedido em 06

October 2015].

[13] ClickDesk, “ClickDesk,” [Online]. [Acedido em 05 October 2015].

[14] Comm100, “Comm100,” [Online]. Available: http://www.comm100.com/. [Acedido em

06 October 2015].

[15] ParkerSoftware, “WhosOn,” [Online]. Available: http://www.whoson.com/. [Acedido em

05 October 2015].

[16] Parker Software, “Parker Software,” [Online]. Available:

http://www.parkersoftware.com/. [Acedido em 06 October 2015].

[17] Netop, “Live Guide,” [Online]. Available: http://www.netop.com/live-guide/what-is-live-

guide.htm. [Acedido em 05 October 2015].

28

[18] Netop, “Netop,” [Online]. Available: http://www.netop.com/. [Acedido em 06 October

2015].

[19] Website Alive, “Website Alive,” [Online]. Available: https://www.websitealive.com/.

[Acedido em 06 October 2015].

[20] Google Inc., “Google Analytics,” [Online]. Available: https://www.google.com/analytics/.

[Acedido em 16 October 2015].

[21] Adobe Systems, “Adobe Marketing Cloud,” [Online]. Available:

http://www.adobe.com/marketing-cloud.html. [Acedido em 16 October 2015].

[22] Wikipedia, “Omniture,” [Online]. Available: https://en.wikipedia.org/wiki/Omniture.

[Acedido em 16 October 2015].

[23] Kissmetrics, “Kissmetrics,” [Online]. Available: https://kissmetrics.com/. [Acedido em 16

October 2015].

[24] Wikipedia, “Customer Relationship Management,” [Online]. Available:

https://pt.wikipedia.org/wiki/Customer_relationship_management. [Acedido em 16

2015 16].

[25] Forbes, 22 May 2015. [Online]. Available:

http://www.forbes.com/sites/louiscolumbus/2015/05/22/gartner-crm-market-share-

update-47-of-all-crm-systems-are-saas-based-salesforce-accelerates-

lead/#2715e4857a0b515edaed4e6e. [Acedido em 22 October 2015].

[26] Salesforce, “Salesforce,” [Online]. Available: http://www.salesforce.com/eu/?ir=1.

[Acedido em 22 Ocotber 2015].

[27] SAP, “SAP CRM,” [Online]. Available: http://go.sap.com/solution/customer-

engagement.html. [Acedido em 2015 October 2015].

[28] Oracle, “Oracle CRM,” [Online]. Available:

https://www.oracle.com/applications/customer-experience/crm/index.html. [Acedido

em 2015 October 2015].

[29] Microsoft, “Microsoft Dynamics CRM,” [Online]. Available:

https://www.microsoft.com/pt-pt/dynamics/default.aspx. [Acedido em 22 October

2015].

[30] Java, “Java,” [Online]. Available: https://www.java.com/pt_BR/. [Acedido em 2015

October 15].

[31] PHP, “PHP,” [Online]. Available: https://secure.php.net/. [Acedido em 2015 October

2015].

[32] nodejs.org, “NodeJS,” [Online]. Available: https://nodejs.org/en/. [Acedido em 28

October 2015].

[33] npm, Inc., “npm,” [Online]. Available: https://www.npmjs.com/. [Acedido em 2015

October 2015].

29

[34] socket.io, “Socket.io,” [Online]. Available: http://socket.io/. [Acedido em 28 October

2015].

[35] Express, “Express,” [Online]. Available: http://expressjs.com/. [Acedido em 28 October

2015].

[36] Socket.io, “Get Started: Chat application,” [Online]. Available: http://socket.io/get-

started/chat/. [Acedido em 20 October 2015].

[37] Google .Inc, “AngularJS,” [Online]. Available: https://angularjs.org/. [Acedido em 15

November 2015].

[38] MongoDB, “MongoDB,” [Online]. Available: https://www.mongodb.org/. [Acedido em 23

October 2015].

[39] "WebRTC," [Online]. Available: https://webrtc.org/. [Accessed 14 November 2015].

[40] “webrtc Public Diagram for Website,” [Online]. Available:

https://webrtc.org/assets/images/webrtc-public-diagram-for-website.png. [Acedido em

20 June 2016].

[41] W3 School, “Browser Statistics,” [Online]. Available:

http://www.w3schools.com/browsers/browsers_stats.asp. [Acedido em 27 October

2015].

[42] “Can I use WebRTC?,” 12 May 2015. [Online]. Available:

http://caniuse.com/#search=webrtc. [Acedido em 27 October 2015].

[43] “Is WebRTC ready yet?,” [Online]. Available: http://iswebrtcreadyyet.com/. [Acedido em

27 October 2015].

[44] Wikipedia, “Customer Relationship Management,” [Online]. Available:

https://en.wikipedia.org/wiki/Customer_relationship_management. [Acedido em 2015

October 2015].

[45] Wikipedia, “Google Analytics,” [Online]. Available:

https://en.wikipedia.org/wiki/Google_Analytics. [Acedido em 2015 October 2015].

[46] Wikipedia, “Live support software,” [Online]. Available:

https://en.wikipedia.org/wiki/Live_support_software. [Acedido em 02 October 2015].

[47] Wikipedia, “NodeJS,” [Online]. Available: https://en.wikipedia.org/wiki/Node.js. [Acedido

em 28 October 2015].

[48] Nasdq, “Salesforce.com Inc Stock Quote & Summary Data,” [Online]. Available:

http://www.nasdaq.com/symbol/crm. [Acedido em 2015 October 2015].

[49] C. Buckler, “SQL vs NoSQL: The Differences,” 18 September 2015. [Online]. Available:

http://www.sitepoint.com/sql-vs-nosql-differences/. [Acedido em 25 October 2015].

30

[50] S. Dutton, “Getting Started with WebRTC,” 23 July 2012. [Online]. Available:

http://www.html5rocks.com/en/tutorials/webrtc/basics/. [Acedido em 30 October

2015].

[51] E. Mcnulty, “SQL vs NoSQL - What you need to know,” 1 July 2014. [Online]. Available:

http://dataconomy.com/sql-vs-nosql-need-know/. [Acedido em 23 October 2015].

[52] InfoWorld, “PHP vs. Node.js: An epic battle for developer mind share,” [Online].

Available: http://www.infoworld.com/article/2866712/php/php-vs-node-js-an-epic-

battle-for-developer-mind-share.html. [Acedido em 15 November 2015].

[53] InfoWorld, “Java vs. Node.js: An epic battle for developer mind share,” [Online].

Available: http://www.infoworld.com/article/2883328/java/java-vs-nodejs-an-epic-

battle-for-developer-mindshare.html. [Acedido em 15 November 2015].

[54] A. Sergiienko, “WebRTC Example,” 9 August 2015. [Online]. Available:

https://www.webrtcexample.com/blog/?go=all/which-audio-and-video-codecs-can-be-

used-in-a-webrtc-application/. [Acedido em June 2016].

[55] WebRTC.org, “WebRTC FAQ,” [Online]. Available: https://webrtc.org/faq/#what-is-the-

vp8-video-codec. [Acedido em June 2016].

31

6 Appendix

6.1 Full Competitors Comparative Table

Li
ve

zi
lla

Ta
w

k.
to

V
iv

o
ch

a

P
ro

vi
d

e
Su

p
p

o
rt

Zo
p

im

B
o

ld
C

h
at

Li
ve

 H
el

p
 N

o
w

K
ay

ak
o

O
la

rk

Li
ve

C
h

at

C
lic

kD
es

k

C
o

m
m

1
0

0

W
h

o
sO

n

N
et

o
p

 L
iv

e
G

u
id

e

w
eb

si
te

 A
liv

e

Dashboard (RF_DB)

Web Dashboard

Responsive dashboard

Mobile app

Busy state while on voice call

IDLE state detection

Proactive engagement

Prioritize chats

Widget (RF_WI)

Page Tracking

Referrer tracking

Browser tracking

Geolocation tracking

Real time monitoring

Online customers list

Change on operators state
change

CRM integration

Social media integration

Recognize customers

Cliente (RF_CL)

Chat

Chat withou new window

Offlive conversation

32

VoIP withou plugins

VoIP with plugins

Screen sharing

Operador (RF_OP)

Operators login

Operators logout

URL push

Multiple chat windows

Chat transfer

Change operator state

canned responses

Proactive engagement rules

Owner (RF_OW)

Customizable widget

Widget injection

Operators tracking

1

José Manuel Marques Grilo

jgrilo@student.dei.uc.pt

Supervisors:

Jorge Sousa

Luís Matos

Carlos Bento

July, 1st 2016

Online context for voice

communications
Annex B – Approach

Masters in Informatics Engineering

Internship 2015/2016
Final Report

2

Index
1 Introduction .. 5

2 Methodology ... 6

2.1 Scrum Process ... 6

2.1.1 Scrum Roles ... 7

2.1.2 Scrum Events ... 7

2.1.3 Scrum Artifacts .. 7

2.1.4 Definition of Done ... 8

3 Planning ... 8

3.1 Scope ... 8

3.1.1 Within the scope ... 8

3.1.2 Out of the scope .. 9

3.2 User Stories ... 9

3.3 Product Backlog ... 10

3.4 Sprints.. 11

3.5 Definition of Done ... 15

4 Risks and mitigation plans ... 17

5 References ... 22

6 Apendix.. 23

6.1 Requirements .. 23

6.1.1 Functional Requirements .. 23

6.1.2 Non-Functional Requirements .. 34

3

Index of Tables

Table 3.1. Initial product backlog .. 11

Table 4.1. Risk occurrence probability .. 17

Table 4.2. Risk associated impact .. 17

Table 4.3. Risk occurrence forecast time .. 17

Table 4.4. Risk 01 - Fraameworks updates .. 18

Table 4.5. Risk 02 - Unreachable frameworks' servers ... 18

Table 4.6. Risk 03 - Poorly defined requirements ... 18

Table 4.7. Risk 04 - Requirements' changes .. 19

Table 4.8. Risk 05 - Bad planning... 19

Table 4.9. Risk 06 - Not meeting stakeholders' expectations ... 19

Table 4.10. Risk 07 - Technologies learning curve .. 20

Table 4.11. Risk 08 - Strong market competition .. 20

Table 4.12. Risk exposure .. 20

Table 4.13. Table 4.12’scolor code .. 20

Table 4.14. Risk prioritization based on exposure and occurrence forecast 21

4

Index of Figures
Figure 2.1. Projects complexity ... 6

Figure 3.1. Scrum Process ... 12

5

 Introduction
The internship followed a software methodology already adopted by the company, which was

ideal to the kind of project. As in any project, there are risks that may affect its outcome, it is

important to identify them and create mitigation plans in order to minimize or eliminate the

risks.

This chapter presents the approach followed; the planning process and the risks and mitigation

plans.

6

 Methodology
This section provides an overview on Scrum, the methodology used during the internship, its

roles, events, artifacts and definition of done.

2.1 Scrum Process
According to figure, there are four kinds of projects:

 Simple: projects with low complexity, where we know both the set of requirements and

technologies to use.

 Complicated: projects where there is still some degree of certainty about the

requirements and technologies, but with a bit more complexity than the simple projects.

 Complex: projects with a great degree of complexity where there are many possible

requirements that demand a huge amount of study in order to get them defined, and

there are a huge amount of technologies that may be used.

 Anarchy: projects where there is neither a definition of the requirements or the

technologies to be used.

Figure 2.1. Projects complexity

 [1]

The solution to the first two kinds of problems can easily be achieved with waterfall-like

methodologies. The anarchy kind due to all the uncertainties are hardly named projects. The

complex projects, which are the area where the internship problem inserts into, are problems

where a fixed planning will not help due to its degree of uncertainty, but are feasible if an agile

methodology is used.

“Scrum is a framework for developing and sustaining complex products. A framework within

which people can address complex adaptive problems, while productively and creatively

delivering products of the highest possible value” [1]. Scrum provides a flexible and holistic

product development strategy whit the necessary agility for big projects where a wide set of

requirements and technologies is available.

Although Scrum is a simple methodology to understand, it has several principles that are

fundamental and will explained in the following subtopics.

7

2.1.1 Scrum Roles
On essential component in Scrum is the work in teams. Teams in Scrum have three important

roles:

 The scrum master ensures that the development process is moving forward and the

values of Scrum stand while evaluates the scrum team’s performance. Acts like a

moderator who is responsible for creating a trustful environment to work in, facilitating

team meetings, negotiating with product owner and removing impediments so that the

scrum team can focus on development only.

 Product owner is the person responsible for maximize the value of the product

developed. He manages the stakeholder’s expectations, prioritizing the backlog and

release planning. He acts like and man-in-the-middle, ensuring that the product

developed by the scrum team is the one that the stakeholders are expecting.

 Scrum team is the set of people of different areas (Design, Development and Test) in

charge of develop and deliver a potential releasable increment of the product at the end

of each sprint. They must be self-organized and autonomous, in order to estimate the

size of the requirements and making their own design and implementation decisions.

2.1.2 Scrum Events
Pre-established events are used in Scum in order to create a regular methodology and minimize

the need of not defined meetings. All events are time-boxed with a maximum duration. Except

sprint which has a fixed duration, all other events may end whenever intended to.

 Sprint is the container for all other events and the heart of Scrum. The sprint is used to

develop a potentially releasable increment. It is a time-box with the fixed duration of

one week to one month, and once the duration is fixed it cannot be shortened or

lengthened.

 Sprint planning marks the beginning of each sprint and used to plan all the work that

must be accomplished in the sprint in order to achieve a new increment. This planning

is done in a meeting with no more than eight hours with the collaboration of all roles.

 Daily scrum is a stand-up meeting with fifteen minutes or less between the scum team

members in order to reflect about the work done in the previous day, define a set of

goals to achieve in the next day and see if any impediments could arise.

 Sprint review and sprint retrospective are prior meetings before sprint planning that

occur at the end of each sprint. The sprint review is used by the scrum team and product

owner to review the increment developed, the “done” and “not done” work and to

present a demo to the stakeholders invited by the product owner.

2.1.3 Scrum Artifacts
The scrum artifacts represent work or value to provide opportunities for inspection and

improvement in the methods used.

 Product Backlog is a living artifact that holds an ordered list of user stories that might

be needed in the product as a source of requirements to develop. The product owner is

the only responsible for the product backlog, including its content, availability and

ordering, based on the scrum team analysis. The product backlog is never complete and

it evolves alongside the project.

 The Sprint Backlog is a set of product backlog items selected at the sprint planning for

the sprint. This subset is chosen based on the priority of each user story and in the time

that each story takes to be “done”. It is a forecast of what functionalities must be on the

8

next increment, in other words, represent the work that the scrum team must do in

order to achieve the sprint goal.

 Burndown Chart is a displayed chart showing the remaining work in the sprint. It gives

the sprint progress and must be updated every day. A burndown chart consists in an

ideal burndown line over the sprint time and lines with the remaining tasks and effort

until the end of the sprint that must be update every day.

 Increment is the sum of all sprint backlog items completed and the increments of

previous sprints.

2.1.4 Definition of Done
“Done” is a subjective word to express the end or the accomplishment of something, so a shared

understanding of what “done” means should be defined. This is a very import concept which

allows the scrum team to assess when the work is complete on the product increment. Besides

that, it also helps the team to select which sprint backlog items to choose in the sprint planning.

 Planning
In the internship, supervisor Jorge Sousa has the scrum master role, being responsible to

manage all meetings and solve possible impediments.

Tutor Luís Matos took the product owner role with product backlog management. One of the

responsibilities of the product owner is the definition of the requirements, this task was assigned

to the intern in order to let him learn the processes of scrum.

The scrum team is composed by the intern José Grilo.

The project planning, like in any other methodology, starts with the requirements definition,

however in scrum a requirement has a different name and motivation.

3.1 Scope
Defining the project scope is one of the most critical steps in a project. Without knowing what

you are supposed to be delivering at the end to the client and what the boundaries of the project

are, there is a little chance for the project to success.

A poorly defined scope definition will lead to an impossible management during the project

execution.

The main purpose of the scope is to clearly describe the boundaries of the project, according to

the client’s agreement. The elements within the scope and out of the scope must be well defined

in order to clearly understand the area under the project control.

This section will be divided in two areas: The elements within the scope, the project objectives

and its goals and the elements out of the scope.

3.1.1 Within the scope
Besides the elements that are included within the scope, this section will expose both internship

and project goals and the project objective.

From the internship view, the goals are to consolidate knowledge about Software Engineering

and gain experience in developing software in a corporate environment where commitment and

team work are essential to produce a high quality piece of software. At a technical level the goal

is to learn and master the use of web frameworks, such as Node.js and develop a stable and high

quality software.

9

On the other hand, regarding the project, the main goal is to contribute with a proof of concept

that can be used for conferences and exhibitions and a posteriorly development of a product.

To accomplish this, the following features must be fully implemented and tested to guarantee

the existence of zero bugs in the product:

 Injection of a widget: a code snippet must be provided and the client can copy and paste

it in his website providing it functionalities such as chat, VoIP and real user tracking.

 Chat: allows both clients and operators to start a conversation between them.

 VoIP: allows the client to start a voice conversation with an operator without the need

to install any plugins, using the WebRTC capabilities.

 Real User tracking: the widget must do a full track of the clients’ path in real time, track-

ing his viewed pages and referrer, browser details and geolocation.

 Customers’ analysis and browser control: allows the operators to see the clients’ infor-

mation and push pages to their browsers.

 Remote Assistant: WIT’s demo of Remote Assistant must be integrated with the devel-

oped product as part of its functionalities. This feature was added on second semester

in order to bring more value to the developed project. This was a calculated risk which

led to small backlog, requirements and architecture changes. However competitors’

analysis was not revisited due to time issues.

Furthermore, it is required to do a planning job before the implementation, namely the

following tasks:

 Requirements analysis: identify, discuss and prioritize all the requirements.

 Technologies analysis: identify possible technologies to use, discuss the pros and cons

and choose the one to use.

 Architecture definition: define how the features will work internally, understand which

components must be created and how will they communicate with each other within

the application.

 Risk analysis: identify possible risks and problems that may arise and trace a mitigation

plan that overcomes them.

3.1.2 Out of the scope
This section will be specify the elements that were analyzed and are interesting to the project,

but will not be implemented in this internship.

 Operators’ profile management: allows the operator to manage his personal infor-

mation such as name or password.

 Customize widget: allows the user to customize his widget appearance (colors, logo, etc)

before the snippet generation.

 VoIP with Flash or plugins: allows the client to perform a VoIP call in browsers where

WebRTC capabilities are not supported.

3.2 User Stories
A user story consists in one or more sentences written on small pieces of paper in everyday

language that capture the intentions of the user that the program does as part as its job

functions. It is used in scrum as the requirements definition because it is an easy and

understandable way of handling the requirements without the formal formulation of a

document. User stories follow the terminology bellow:

10

As a <role>, I want <goal/desire> so that <benefit>

Typically, the user stories are created and managed by the product owner, however, as already

stated, the scrum team does the task as a learning process.

Usually, user stories are associated with a category, mainly if there are many features to

implement. At the internship seven categories were created:

 Widget: consists in the development of features that allow the tracking of the client’s

information.

 Widget’s owner: corresponds to the requirements of add and remove operators and

widget’s injection.

 Client: This category relates to all the functionalities a client can do while browsing in a

page with the product

 Dashboard: consists in the development of the features that allow the operator to

communicate, and retrieve all users’ information from the server

 Operator: This category relates to all the functionalities an operator can do while using

the dashboard

 Server: corresponds to the development of a server-side application that establishes all

the communication with the dashboard, widget and database.

 Documentation: consists in the construction of all the documents related to the state

of the art, requirements, architecture, demos and internship documentation.

3.3 Product Backlog
Each of the created user stories corresponds to an entry in the product backlog. Furthermore,

each user story was assigned with a priority and its difficulty was calculated using planning

poker. Planning poker is a gamification technique that consists in using a deck of cards where

each card is assigned with a number from the Fibonacci sequence from 1 to 13 (100 and “?” are

also used). It is assigned the value of “2” to make an easier user story, then, the other stories

are valued based on the cards played by each participant relative to the first story (“?” means

that a value cannot be assigned or more information is needed).

Based on the priorities and difficulties assigned an ordered list was formed. That list was the first

version of the product backlog.

As a <role> , I want <goal/desire> so that <benefit> (opt)

As a site visitor , I want to chat with an operator in order to ask a question

As a site visitor , I want to make a voice call with
an operator

in order to clear my doubts quickly

As a site visitor , I want to answer to a chat
invitation

so that an operator can talk to me

As an operator , I want to push a URL to the client so that it redirects the client's
browser to another page

As an operator , I want to answer a voice call in order to help my client

As an operator , I want to answer a chat call in order to help my client

As an operator , I want to see my clients info
(tracked pages, browser,
geolocation, referrer, previous
conversations)

so that I can give a customized
assistance

As an operator , I want to see the page's visitors
list

11

As an operator , I want to logout from the
dashboard

in order to finish my activities

As an operator , I want to track my clients is real-
time

As an operator , I want to login at the dashboard so that I can start my activities

As an operator , I want to take a note on my
customer

So that other operators can see is
doubts

As a widget's
owner

, I want to copy a snippet in my
pages

so that the widget starts to work

As a widget , I want to open a connection to
my server

so that all info can be delivered

As a widget , I want to track the pages that my
associated client visits

As a widget , I want to track the referrer from
my client

As a widget , I want to track the geolocation
from my client

As a widget , I want to track the browser that
my client is using

As a widget , I want to recognize a repeat client so that all the new tracked info is
associated to him

As a widget , I want to load the chat interface so that a client can start a
conversation with an operator

As a widget , I want to reload a page when URL
push command arrives

so that the client can see the page

As a dashboard , I want to open a connection to
my server

so that all info can be delivered

As a dashboard , I want to start a pro-active chat
with a client

As a dashboard , I want to ask for the clients' info so that it can be shown to the
operator

As a dashboard , I want to filter contacts So that the operator only see a
portion of the contact list

As a server , I want to maintain all the
connections as long they are
needed

so that widgets and dashboard can
send their data

As a server , I want to redirect all chat
messages to their receivers

so that clients and operators can
talk

As a server , I want to change the client's
associated operator

so that another operator can help
the client

As a server , I want to open a connection to a
DB

so that all info can be persisted

As a server , I want to persist all tracked info at
DB

As a server , I want to read info from the DB so that I can send it to the
dashboards

As a server , I want to log all the important
events

so that a registry is maintained

Table 3.1. Initial product backlog

12

3.4 Sprints
After the project is minimally defined, it is time for the scrum team to work on the product. In

an initial stage of the project was done, larger sprints (four weeks), then the sprints started to

have a two week-duration.

Figure 3.1. Scrum Process

 [3]

Presented here is summary of the sprints so far.

 Sprint #0

Sprint Planning: 14-10-2015

This was the warm up sprint. It was assigned to the scrum team to do the competitors’

analysis, technologies’ analysis, formulate the user stories and the “Definition of Done”.

 Sprint #1

Sprint Planning: 17-11-2015

In this sprint it was assigned to the scrum team to design the database structure and

install and setup the database. It was also required to write the requirements document

in order to start the UI design.

Sprint review and retrospective: The intern felt some difficulties to manage the

required tasks during the sprint.

 Sprint #2

Sprint Planning: 01-12-2015

This sprint marked the development’s beginning. It was assigned to set the working

environment (install dependencies and IDE) and create the connections between

widget/back office and server.

Sprint Backlog:

 As a developer, I want to set the working environment.

 As a server, I want to maintain all the connections as long they are needed so

that widgets and dashboard can send their data.

 As a widget, I want to open a connection to my server so that all info can be

delivered.

Sprint review and retrospective: It was supposed to start the UI implementation,

however redlines were not ready.

13

 Sprint #3

Sprint Planning: 16-12-2015

In this sprint it was assigned to the team the operators’ login and logout features and

the UI implementation. The widget should also be loaded with the snippet.

Sprint Backlog:

 As a dashboard, I want to open a connection to my server so that all info can be

delivered.

 As widget's owner, I want to paste a snippet in my pages so that the widget

starts to work.

 As a guest, I want to login at the dashboard so that I can start my activities as

operator.

 As an operator, I want to logout from the dashboard in order to finish my

activities.

Sprint review and retrospective: Due to changes in UX, one feature became obsolete

and was not implemented.

 Sprint #4

Sprint Planning: 04-01-2016

It was assigned to start the context collection features.

Sprint Backlog:

 As a widget, I want to track the pages that my associated client visits.

 As a widget, I want to validate all forms in order to know my user.

 As a widget, I want to track the referrer from my client.

 As a widget, I want to track the browser that my client is using.

 As a widget, I want to track my customer's OS information.

 As an operator, I want to see my customers' tracked URL list.

 Sprint #5

Sprint Planning: 18-01-2016

This sprint marked the beginning of BO’s development. Features regarding to queues

loading and display and customers engaging were implemented. Midterm report was

also written during this sprint.

Sprint Backlog:

 As an operator, I want to see the page's visitors list.

 As an operator, I want to see my customers’ info (tracked pages, browser and

geolocation) so that I can give a customized assistance.

 As an operator, I want to engage a customer, so that he appears in my

'requests accepted' queue.

 As a widget, I want to track the geolocation from my client.

 As an intern, I want to prepare the midterm presentation.

 As an intern, I want to write the midterm report.

 As a developer, I want to re-visit product backlog, in order to update user

stories.

 Sprint #6

Sprint Planning: 02-02-2016

In this sprint filters on customers’ queues were implemented. Operator’s engaging

feature was finished in this sprint, showing to the customer that he had been selected.

Returning customers were also identified on this sprint. This last feature marked the

finish of context collection feature set.

Sprint Backlog:

14

 As an operator, I want to select the customer, whose I want to see information.

 As a widget, I want to get the operator associated photo and name to display

to my customer.

 As a server, I want to persist all tracked info at DB.

 As a widget, I want to track the geolocation from my client with google API.

 As a widget, I want to recognize a repeat client so that all the new tracked info

is associated to him.

 As a dashboard, I want filter my clients (recent, old, chat, voice).

 Sprint #7

Sprint Planning: 16-02-2016

This sprint was dedicated to chat functionalities such as messages exchanging and “is

typing” notifications.

Sprint Backlog:

 As a server, I want to redirect all chat messages to their receivers so that clients

and operators can talk.

 As a site visitor, I want to chat with an operator in order to ask a question.

 As a dashboard, I want to transfer clients who start a conversation from visitors

list to chat list.

 As a widget, I want to notify operators that a customer is typing.

 As an operator, I want to chat with customers.

 As a BO, I want to notify my customers that an operator is typing.

 As a server, I want to read info from the DB so that I can send it to the

dashboards.

 Sprint #8

Sprint Planning: 01-03-2016

In this sprint URL push was implemented alongside offline form request for customers.

Sprint Backlog:

 As a developer, I want to correct all my bugs.

 As an operator, I want to push a URL to the client so that it redirects the client's

browser to another page.

 As a widget, I want to reload a page when URL push command arrives so that

the client can see the page.

 As a BO, I want to display all the history of previous conversations.

 As a customer, I want to send an offline to message in order to be contacted

later.

 As an operator, I want to close my open conversation.

 Sprint #9

Sprint Planning: 21-03-2016

This sprint served to implement and integrate Remote Assistant demonstration on OCVC

project.

Sprint Backlog:

 As a developer, I want to study the remote assistance documentation, in order

to know what is needed to do in the project.

 As an intern I want it fix Sprint #8 bugs.

 As a developer, I want to break Remote Assistant library into two libraries.

 As a developer, I want to add Remote Assistant WebRTC libraries to my web

app.

15

 As an operator I want to answer a Remote Assistant webCall.

 Sprint #10

Sprint Planning: 04-04-2016

This sprint marked the beginning of VoIP calls implementation. Developed here was all

the needed modules to make VoIP call for browsers.

Sprint Backlog:

 As intern I want to fix Sprint #9 bugs.

 As a site visitor, I want to make a browser-to-browser voice call with an

operator in order to clear my doubts quickly.

 As an operator, I want to answer a browser-to-browser voice call in order to

help my client.

 Sprint #11

Sprint Planning: 19-04-2016

In this sprint the product backlog was revisited and some flows were changed. Also in

sprint mail sending features was implemented.

Sprint Backlog:

 As a widget, I want to send my customer's history via mail

 As a customer, I want to ask for a browser-to-device voice call.

 As intern, I want to fix Sprint #10 bugs.

 As a developer, I want to rethink and redo events flow.

 Sprint #12

Sprint Planning: 03-05-2016

This sprint was used to implement VoIP calls for devices.

Sprint Backlog:

 As an operator, I want to answer to a browser-to-device voice call requested

by customers.

 As a server, I want to log all the important events so that a registry is

maintained.

 As intern, I want to fix Sprint #11 bugs.

 As an operator, I want to delete my comments.

 Sprint #13

Sprint Planning: 17-05-2016

This sprint was used to test all the implemented features and bug solving. During this

sprint some UI changes were taught and WIT designer Elizabeth Pereira started to work

on the project again.

 Sprint #14

Sprint Planning: 31-05-2016

This sprint was mainly used to the final report writing.

3.5 Definition of Done
In order to have shared understanding of “done” a definition was created, both for user story

creation and development. Besides that a definition of done to the increment was created too.

The creation of a new user story is stated as “done” if:

5. The user story follow the notation “As a <role>, I want <goal/desire> so that <benefit>”;

6. Story sized with thirteen story points or less;

7. Story is divided in tasks and each task has a duration in hours;

8. Story necessity is explained and agreed by all.

16

A user story development is stated as “done” if:

8. All the tasks related to development are coded;

9. Code commented and meeting company’s development standards;

10. Builds without errors;

11. Acceptance tests are written and passing;

12. Code committed on server;

13. Relevant documentation is produced or updated;

14. Remaining hours for story set to zero and story closed.

An increment is stated as “done” if:

6. All modules developed during the sprint are integrated with the previous release;

7. The increment build as no errors;

8. It is ready for demo;

9. Final version is updated to server;

10. A presentation is prepared to present the increment.

17

 Risks and mitigation plans
There are always risks in every project. Each risk has a probability to contribute to the failure of

the project. Identify the risks, its sources and create mitigation plans are the best actions to take.

These strategies should be reviewed periodically because the risk probability can grow and new

mitigation plan may be needed.

The risk identification is based in factors that can cause project failure and their analysis is based

on the probability of occurrence presented on Table 4.1, the impact on project if the risk occurs

presented on Table 4.2. It is also important to take into account when the possibility of the risk

itself.

Percentage < 30% 30% - 50% 50% - 75% > 75%

Probability Low Medium High Very high

Table 4.1. Risk occurrence probability

Impact Description

Low Project success is not compromised

Medium Project success is not compromised, however small adjustments are
required so that risks do not evolve

High Project success can be compromised if no adjustment and additional effort
is done

Very High Project success can be seriously compromised

Table 4.2. Risk associated impact

Occurrence
forecast

Description

Short-term Risks can occur in an initial project phase, during the first development
weeks

Mid-term Risks can occur in an intermediate project phase, during the development

Long-term Risks can occur in a final project phase, after the development

Table 4.3. Risk occurrence forecast time

18

This is an up-to-date living list with the risks identified, their probabilities, impacts, occurrence

forecasts, consequences and mitigation plans.

ID RK_01

Name Frameworks updates

Probability Low

Impact High

Occurrence
forecast

Medium-term

Consequence Deprecated code and/or system failures

Mitigation
plan

Regular code reviews in order to look for deprecated code and bugs

Table 4.4. Risk 01 - Frameworks updates

ID RK_02

Name Unreachable frameworks’ servers

Probability Low

Impact High

Occurrence
forecast

Medium-term

Consequence System failures

Mitigation
plan

Frameworks should be ready to be served from internship server

Table 4.5. Risk 02 - Unreachable frameworks' servers

ID RK_03

Name Poorly defined requirements

Probability Low

Impact Medium

Occurrence
forecast

Short-term

Consequence Delay or failure in the requirements

Mitigation
plan

Requirements documents should be reviewed and approved by scrum
master

Table 4.6. Risk 03 - Poorly defined requirements

19

ID RK_04

Name Requirements’ changes

Probability Medium

Impact Medium

Occurrence
forecast

Medium-term

Consequence Delay or failure in the requirements

Mitigation
plan

Stakeholders should be present regularly at sprint review to approve the
work done so far

Table 4.7. Risk 04 - Requirements' changes

ID RK_05

Name Bad planning

Probability Medium

Impact Very High

Occurrence
forecast

Medium-term

Consequence Delay or failure in the requirements

Mitigation
plan

Standup meetings (daily scrum) should be performed every day in order to
see the current difficulties

Table 4.8. Risk 05 - Bad planning

ID RK_06

Name Not meeting stakeholders’ expectations

Probability Low

Impact Very High

Occurrence
forecast

Long-term

Consequence Delay or failure in the requirements

Mitigation
plan

Stakeholders should be present regularly at sprint review to approve the
work done so far

Table 4.9. Risk 06 - Not meeting stakeholders' expectations

20

ID RK_07

Name Technologies learning curve

Probability Medium

Impact High

Occurrence
forecast

Short-term

Consequence Delay or failure in the requirements

Mitigation
plan

At planning execution time should be allocated by taking into account the
time needed to learn the technologies to use

Table 4.10. Risk 07 - Technologies learning curve

ID RK_08

Name Strong market competition

Probability High

Impact Medium

Occurrence
forecast

Long-term

Consequence Project failure

Mitigation
plan

Constant market analysis in order to know the competitors and how can the
internship product differentiates from them

Table 4.11. Risk 08 - Strong market competition

To prioritize the identified risks and know which are the most urgent to fix was used Pareto’s

Top N strategy [34] based on the occurrence, impact and occurrence forecast of each risk.

The urgency level of each risk was determined with the analysis of Table 4.12.

Impact

Low Medium High Very High

Probability

Very High

High RK_08

Medium RK_04 RK_07 RK_05

Low RK_03 RK_01, RK_02 RK_06

Table 4.12. Risk exposure

Table 4.13. Table 4.12’scolor code

Color

Risk Exposure Low Medium High Very High

21

From the table below it is possible to analyze the risk exposure to each risk. The green risks are

the ones that will not jeopardize the project either because they have a low probability or a low

impact. On the other hand, red risks are the most dangerous and will cause the project failure.

To prioritize the risk list it was taken into account both risk exposure and occurrence forecast to

each risk.

Risk ID Risk Exposure Occurrence forecast

RK_05 High Medium-term

RK_06 Medium Long-term

RK_07 Medium Short-term

RK_08 Medium Long-term

RK_04 Low Medium-term

RK_01 Low Medium-term

RK_02 Low Medium-term

RK_03 Low Short-term

Table 4.14. Risk prioritization based on exposure and occurrence forecast

Lastly, it is important to know which risks are important to mitigate. Those, are found based

with their probability and impact. The risks that are important to mitigate are those who have

a high or very high probability and a high or very high impact, which means that only RK_05

needs to mitigate.

22

 References

[1] Noop, “Simple vs. Complicated vs. Complex vs. Chaotic,” 20 August 2008. [Online]. Available:

http://noop.nl/2008/08/simple-vs-complicated-vs-complex-vs-chaotic.html. [Acedido em 12

October 2015].

[2] “Scrum Guide,” 2014. [Online]. Available: http://www.scrumguides.org/scrum-guide.html.

[Acedido em 12 October 2015].

[3] [Online]. Available:

https://upload.wikimedia.org/wikipedia/commons/thumb/5/58/Scrum_process.svg/2000px-

Scrum_process.svg.png. [Acedido em 12 October 2015].

[4] J. C. Helm, “Risk Management - Methods ans Tools,” 1 January 2006. [Online]. Available:

http://sce.uhcl.edu/helm/BB-TestRiskMan/my_files/module6/topn.htm. [Acedido em 14

November 2015].

[5] M. Vieira, Project Management, Module 3: Planning & Tracking - Risk Management,

October, 2014.

23

 Apendix

6.1 Requirements
This annex will describe the formal requirements, functional and non-functional, divided to

each actor.

The requirements’ priority will be classified as P1 – Must have, P2 – Should have, P3- Nice to

Have.

6.1.1 Functional Requirements

6.1.1.1 Customer

ID FR_CU_01

Name Expand chat window

Requirement The widget icon will expand to a chat window. The expanded window
should display FR_CU_02 form by default or display FR_CU_04 form if there
are no operators online.

Priority P1

Dependencies None

ID FR_CU_02

Name Pre-chat form

Requirement The user must fill a form with some information before start a chat
conversation with an operator.
The form fields are:

 Name (required)

 Email (optional)

Priority P1

Dependencies FR_CU_01

ID FR_CU_03

Name Chat

Requirement The user must be able to have a chat conversation with an online operator,
through the chat window, after submitting FR_CU_02 form.

Priority P1

Dependencies FR_CU_02

ID FR_CU_04

Name Offline contact

24

Requirement The user must fill a form with some information to send a message/or
receive a phone call on his device when every operators are offline.
The form fields for messaging are:

 Name (required)

 Email (required)

 Message (required)
The form fields for the call are:

 Name (required)

 Phone number (required)

 Message (required)

Priority P2

Dependencies FR_CU_01

ID FR_CU_05

Name Start a voice call

Requirement A new browser window must open if the user click to start a new voice call
with an operator in the chat window.

Priority P1

Dependencies FR_CU_04

ID FR_CU_06

Name Voice call

Requirement The user must be able to have a voice call with the operator through
WebRTC.

Priority P1

Dependencies FR_CU_05

ID FR_CU_07

Name Finish Voice call

Requirement The user must be able to finish the started voice. Only customers can end
the call.

Priority P1

Dependencies FR_CU_06

ID FR_CU_08

Name Mute microphone

25

Requirement The user must be able to mute his microphone during the voice call.

Priority P2

Dependencies FR_CU_06

ID FR_CU_09

Name Change volume level

Requirement The user must be able to lower and rise the volume level.

Priority P2

Dependencies FR_CU_06

6.1.1.2 Operator

ID FR_OP_01

Name User login

Requirement Users must be able to authenticate in the system through a username-
password form. If the authentication is successful the operator state must
be changed to online and he shall be sent to the dashboard page.

Priority P1

Dependencies None

ID FR_OP_02

Name User logout

Requirement User must be able to leave the dashboard and logout his account. This must
change the operator state back to offline and display to him the login’s
page.

Priority P1

Dependencies FR_OP_01

ID FR_OP_03

Name Online customers list

Requirement Operators must be able to see all the online customers. This list must be
sliced in three parts:

1. Customers with conversations started
2. Customers online
3. History

26

Priority P1

Dependencies FR_OP_01

ID FR_OP_04

Name Select user

Requirement The operator must be able to select a user from the customers list. After
selecting a user his information must be displayed at the dashboard. The
information displayed should be:

 Geolocation;

 Referrer;

 Browser information;

 OS information;

 List of tracked pages;

 Chat history (last 20 messages).
If the selected user (list 2.) already started a conversation with other
operator the chat option must be disabled.

Priority P1

Dependencies FR_OP_01; FR_OP_03

ID FR_OP_05

Name Chat

Requirement The operator must be able to have a chat conversation with the selected
user (list 1. and 2.) if he has no conversations started with another
operator.

Priority P1

Dependencies FR_OP_01; FR_OP_04

ID FR_OP_06

Name Take note

Requirement The operator must be able to take notes on the selected customer profile.

Priority P1

Dependencies FR_OP_01; FR_OP_04

ID FR_OP_07

Name Accept browser-to-browser voice call

27

Requirement A new browser window must open if the operator click to accept a new
voice call invitation with a customer. No more than a browser-to-browser
or browser-to-device call is allowed at once.

Priority P1

Dependencies FR_OP_01

ID FR_OP_08

Name Accept a browser-to-device voice call

Requirement A new browser window must open if the operator click to accept a
request to a voice call to the customer’s device. No more than a browser-
to-browser and browser-to-device call is allowed at once.

Priority P3

Dependencies FR_OP_01

ID FR_OP_09

Name Voice call

Requirement The user must be able to have a voice call with the customer through
WebRTC.

Priority P1

Dependencies FR_OP_01; FR_OP_07

ID FR_OP_10

Name Mute microphone

Requirement The user must be able to mute his microphone during the voice call.

Priority P2

Dependencies FR_OP_01; FR_OP_07; FR_OP_08

ID FR_OP_11

Name Change volume level

Requirement The user must be able to lower and rise the volume level.

Priority P2

Dependencies FR_OP_01; FR_OP_07; FR_OP_08

28

ID FR_OP_12

Name URL Push

Requirement The operator must be able to send commands to the selected user. This
commands should reload customer’s page browser with the URL sent.

Priority P1

Dependencies FR_OP_01; FR_OP_05

6.1.1.3 Widget’s Owner

ID FR_WO_01

Name Widget Injection

Requirement The widget must be injected in the website through a snippet without the
need of software installation.

Priority P1

Dependencies None

6.1.1.4 Widget

ID FR_WI_01

Name Graphical collapsed window

Requirement The widget must load a collapsed window. Once clicked, the window should
do FR_CU_01’s actions.

Priority P1

Dependencies FR_WO_01

ID FR_WI_02

Name Establish connection

Requirement Once the graphical window loads a new connection (Comet/Long polling)
must be established with the server. This connection will be used to send
and receive both tracked data and chat messages.

Priority P1

Dependencies FR_WI_01

ID FR_WI_03

Name Recognize customer

Requirement If a cookie was set previously the widget must recognize the customer as a
returning one and send the cookie to the server.

Priority P2

29

Dependencies FR_WI_01

ID FR_WI_04

Name Set cookie

Requirement If no cookie is set the widget must set a new cookie with a unique identifier
generated at the server.

Priority P2

Dependencies FR_WI_01

ID FR_WI_05

Name Get customer’s personal information

Requirement If a returning customer is recognized his information from previous
conversations should be retrieved. If he expands the widget the form must
be already pre-filled with:

 Name

 Email

 Phone’s number
If the user change any field should be assumed that the customer is not a
returning one, and FR_WI_04’s actions should be performed

Priority P3

Dependencies FR_WI_03

ID FR_WI_06

Name Get customer’s chat history

Requirement If a returning customer is recognized his chat history from previous
conversations should be retrieved and displayed at the chat window once a
new conversation starts. Only the last 20 messages should be retrieved.

Priority P3

Dependencies FR_WI_03

ID FR_WI_07

Name Get more customer’s chat history

Requirement Every time the customer scrolls to the top of the conversation 20 more
messages should be retrieved from the server.

Priority P3

30

Dependencies FR_WI_03; FR_WI_06

ID FR_WI_08

Name Page tracking

Requirement The widget should track the list of pages visited by the customer. Every time
the widget loads it must track the page where it is at the moment and send
it to server. Ajax loads should not be considered.

Priority P1

Dependencies FR_WI_01

ID FR_WI_09

Name Referrer tracking

Requirement The widget should track the referrer to the website used by the customer.
In the first time the widget loads it must track the referrer that send the
customer to the website.

Priority P1

Dependencies FR_WI_01

ID FR_WI_10

Name Geolocation tracking

Requirement The widget should track the geolocation of the customer. In the first time
the widget loads it must track geolocation of the user.

Priority P1

Dependencies FR_WI_01

ID FR_WI_11

Name Browser information tracking

Requirement The widget should track the browser that the customer is using. In the first
time the widget loads it must track both browser’s name and version.

Priority P2

Dependencies FR_WI_01

ID FR_WI_12

31

Name OS information tracking

Requirement The widget should track the OS that the customer is using. In the first time
the widget loads it must track OS’s name.

Priority P2

Dependencies FR_WI_01

ID FR_WI_13

Name Send tracked information

Requirement The tracked information from FR_WI_08 to FR_WI_10 should all be tracked
in the first time the widget loads only. After all the information is tracked it
must be sent to the server.

Priority P1

Dependencies FR_WI_01; FR_WI_08; FR_WI_09; FR_WI_10

ID FR_WI_14

Name Real time monitoring

Requirement The tracked information from FR_WI_07 should be tracked every time the
widget loads. Every time a new page is tracked it must be sent to the server.

Priority P1

Dependencies FR_WI_01; FR_WI_07

ID FR_WI_15

Name Close chat connection

Requirement If the user closes the graphical chat window the customer must be set as
offline to the operators (remove him from the online customers list),
however the server connection should stand and the tracking should
continue.

Priority P1

Dependencies FR_WI_01

6.1.1.5 Dashboard

ID FR_DB_01

Name Prioritize customers list

Requirement The customers list should be prioritized by last activity from the user, i.e.,
users with the oldest unread messages should be on the top off the
customers list 1.

32

Others lists (list 1. and 2.) can be left as how they were received.

Priority P2

Dependencies FR_OP_03

ID FR_DB_02

Name Notify operator on message

Requirement The dashboard should notify the operator on a new message arrival. The
number of unread messages should be displayed side by side with the
customer’s name on the customers list as badge, until a maximum of 9
unread messages. After that maximum, the badge should be 9+.

Priority P3

Dependencies None

ID FR_DB_03

Name Notify operator on voice call

Requirement The dashboard should notify the operator on a new voice call arrival. A
phone call badge should appear side by side with the customer’s name on
the customers list and sound notification should play.

Priority P3

Dependencies None

ID FR_DB_04

Name Get more customer’s chat history

Requirement Every time the operator scrolls to the top of the selected customer’s
conversation 20 more messages should be retrieved from the server.

Priority P3

Dependencies FR_OP_04

6.1.1.6 Server

ID FR_SE_01

Name Accept connections

Requirement The server must accept new connections from authenticated widgets and
dashboards.

Priority P1

33

Dependencies None

ID FR_SE_02

Name Calculate customer’s ID

Requirement A new unique identifier should be calculated and sent to every non-
returning customer.

Priority P1

Dependencies None

ID FR_SE_03

Name Associate customer with operator

Requirement Every customer should be associated with an operator based on operator’s
customers queue size.

Priority P2

Dependencies None

ID FR_SE_04

Name Change associated operator to a customer

Requirement When a chat transfer is requested the server should change the operator
associated with a customer.

Priority P2

Dependencies None

ID FR_SE_05

Name Transfer information

Requirement Every time a new message arrives to the server it should be forwarded to
the respective owner.

Priority P1

Dependencies None

ID FR_SE_06

Name Persist tracked data at the database

34

Requirement Every time new tracked data arrives from the widget it should be persisted
at the database.

Priority P1

Dependencies None

ID FR_SE_07

Name Persist messages

Requirement Every time new messages arrives from both widgets and dashboards they
should be persisted at the database.

Priority P1

Dependencies None

ID FR_SE_08

Name Retrieve tracked data from the database

Requirement Once asked, all information about a customer should be retrieved and sent
to the operator.

Priority P1

Dependencies None

ID FR_SE_09

Name Retrieve messages from the database

Requirement Once asked, the last 20 messages from a customer conversation should be
retrieved and sent to the operator or operator.

Priority P1

Dependencies None

6.1.2 Non-Functional Requirements

6.1.2.1 Customer

ID NFR_OP_01

Name Geolocation obfuscation

Requirement At the geolocation tracking moment, geolocation coordinates should be
obfuscated before send them to the server.

Priority P1

Dependencies None

35

6.1.2.2 Operator

ID NFR_OP_01

Name Credentials encryption

Requirement At the authentication moment, credentials should be encrypted before
send them to the server.

Priority P1

Dependencies None

6.1.2.3 Dashboard

ID NFR_DB_01

Name Responsive web dashboard

Requirement The operators’ dashboard must be responsive in order to adapt the layout
to the viewing environment.

Priority P1

Dependencies None

6.1.2.4 Server

ID NFR_SE_01

Name OS independence

Requirement The server should be OS independent.

Priority P1

Dependencies None

ID NFR_SE_02

Name DB independence

Requirement The server should be DB independent.

Priority P1

Dependencies None

ID NFR_SE_03

Name Data security

Requirement Both 4.2.1 and 4.2.2 must be served via HTTPS.

36

Priority P1

Dependencies None

1

José Manuel Marques Grilo

jgrilo@student.dei.uc.pt

Supervisors:

Jorge Sousa

Luís Matos

Carlos Bento

July, 1st 2016

Online context for voice

communications
Annex C – Architecture

Masters in Informatics Engineering

Internship 2015/2016
Final Report

2

Index

 Introduction .. 5

 System Architecture .. 6

2.1 System Context ... 42

2.2 Containers ... 43

2.3 Components .. 44

2.4 Classes ... 46

 Data model .. 52

3.1 Customers’ Collection ... 52

3.2 Operators Collection ... 53

3.3 Online List Collection ... 54

3.4 Widget Collection .. 54

 Interfaces ... 6

4.1 Communication Interface ... 6

4.1.1 Server Events ... 6

4.1.2 BO Events .. 9

4.1.3 Widget Events ... 11

4.2 WWC Gateway Interface ... 12

4.2.1 Event Interface Registration .. 13

4.2.2 Session Interface Methods .. 13

4.2.3 Session Interface Events .. 14

4.2.4 Call Interface Methods .. 14

4.2.5 Call Management Methods ... 15

4.2.6 Call Interface Events .. 16

4.2.7 Server Response Code Object ... 16

4.2.8 Call Object ... 16

4.3 Database Module Interface ... 17

4.3.1 Query ... 18

4.3.2 Insert ... 18

4.3.3 Remove .. 19

 Referências .. 20

3

Index of Tables

Table 1 sdk.event.bind API .. 13

Table 2 sdk.event.unbind API .. 13

Table 3 sdk.session.register API .. 14

Table 4 sdk.session.terminate API .. 14

Table 5 onSessionStatus Event API ... 14

Table 6 sdk.call.invite API .. 15

Table 7 sdk.call.terminate API ... 15

Table 8 sdk.call.media.isMicMuted API .. 15

Table 9 sdk.call.media.changeLocalAudioState API .. 16

Table 10 onCallEvent Event API for a specific call ... 16

Table 11 Fields available in the ServerResponseCode object ... 16

Table 12 Fields available in the Call object ... 17

Table 13 Possible call states .. 17

4

Index of Figures
Figure 1. System context ... 42

Figure 2. System containers .. 43

Figure 3. Components ... 45

Figure 4. Server classes ... 47

Figure 5. Angular MVVM model .. 49

Figure 6. Web App classes ... 50

Figure 7. Customer document reference representation ... 52

Figure 8. Operator document reference representation .. 53

Figure 9. Online list document reference representation .. 54

Figure 10. Widget document reference representation ... 54

5

 Introduction
The architecture is an essential component of any software project. It defines the structure and

behavior of the components, how they interact between themselves, while helps to hold the

non-functional requirements and defines a guideline to implementation.

The current annex is divided into three chapters:

 System architecture: the architecture is designed and justified;

 Data model: with the document references for the documents presented at the data

storage;

 Interfaces: where the interfaces used for communication between modules is

documented.

6

 System Architecture
The model used to represent the system architecture was an adaptation of the C4 Model by

Simon Brown [1]. The C4 Model [2] divides the architecture in four views:

 System Context: The system plus users and system dependencies

 Containers: The overall shape of the architecture and technology choices

 Components: Logical components and their interactions within a container

 Classes: Component or pattern implementation details.

This architecture representation was chosen mainly because it was concluded to be complete

enough to present the system to all involved clearly. Another reason was the limitations given

by the technologies, it would be very hard to create an architecture representation using UML

diagrams while using Javascript language mainly.

C4 Model allow the creation of four levels of representation, each level could be used to present

the architecture depending on the interested. Besides that, C4 uses a simple ubiquitous lan-

guage that everyone can understand easily.

The first and second levels show who will use the product and how its components are used to

construct it. These levels are the most abstract and easily give the overall shape and context of

the product. They can be used to present the product to newly arrived stakeholders or potential

interested customers.

Third and fourth levels are more technical and could be used by development team as a devel-

opment guideline to ensure non-functional requirements. Here are presented the components

inside each container, their interactions and the implementation patterns used.

7

2.1 System Context
System context is the highest level of abstraction and represents something that delivers value

to somebody. A system is made up of a number of separate containers.

The system context is meant to answer three questions:

 What are we building?

 Who is using it?

 How does it fit into the existing environment?

8

Figure 2. System context

9

With the previous diagram it is clear the kind of system that will be build and the actors who

will use it.

This kind of view is suited for non-technical audience. It is clear to the ones who see this view
that the system, will be used, on a first-level by operators. On a second level, customers will
interact with a website that connect with the system or with an iPad App connected to OCVC
server by Remote Assistant server.

The OCVC system, will serve a widget to customer’s website server. This widget will make the
context collection and connection with the web server. On the other hand, it will serve a web
application as well in order to operators to manage customers.

Regarding to actors there are two groups. One group of actors are the operators, they will
interact with the system via a web application, pushing and pulling information from it that will
enable them to see the customers that are using the websites, their tracked info and
communicate with them. The other group of actors is the customers, which can be broken in
two categories: web customers and iPad Customers. Web customers will not interact directly
with the system. Instead, they will interact with the websites that get the widget from the
system. The widget will track customers’ information and allow them to communicate with
operators. iPad customers interact with WIT’s Remote Assistant application which allow them
to call to operators at back office.

OCVC server is deployed in WIT’s Network, alongside WWC Gateway and Remote Assistant

server, which act as project’s dependencies to implement breakout and iPad call respectively.

Widget will be injected in customer’s website.

10

2.2 Containers
If we lower one level in the C4 Model we are looking for:

 What are the high level technology decisions?

 How do containers communicate with one another?

 As developer, where do I need to write code?

A container represents something in which components are executed or where data resides.

This could be anything from a web or application server through to a rich client application or

database. Containers are typically executables that are started as a part of the overall system,

but they don’t have to be separate processes in their own right.

11

Figure 3. System containers

12

This view is suited for people that are semi-technical. Here they can see technologies choices,

what containers will compose the system and how will they communicate between themselves.

At the technologies choices, the system will hold a Node.js server and a MongoDB.

The communication with the system will be done via HTTPS using self-signed certificates. Inside

the system the web server will communicate with the data store that will run at the port 27017.

After UI is served communications proceed by Long Polling between Widget/Web App and OCVC

server. To communicate between OCVC server and Remote Assistant is used Polling. This

communication method was not changed due to the complexity to change an existent server

while there were another priority features to develop. Between Web App and WWC gateway

communication is made by WebSockets.

The web server will hold all the logic. The web server will take the request to widgets and

response with the desired one, and will take requests from operators to access and manage the

back office application. Besides that, the web application will also write and read from the

MongoDB, that will store operators and customers’ information, tracked data and sent

messages.

User Interfaces, customers and operators, will both use HTML, Cascading Style Sheets (CSS) and

JS. However selected frameworks will be different. Will use jQuery on Widget, Socket.io and

Bootstrap. These frameworks were chosen because it was to inject them at Customer’s web

pages without breaking them and would fast development process. On operator’s back office,

Bootstrap, AngularJS and Socket.io as working frameworks were mainly used.

13

2.3 Components
A component can be thought of as a logical grouping of one or more classes. Components are

typically made up of a number of collaborating classes, all sitting behind a higher-level contract.

At components level we need to answer to:

 What components/services is the container made up off?

 Are the technology choices and responsibilities clear?

14

Figure 4. Components

15

As presented in Figure 3. there are 3 major containers being developed.

First there is a widget that will be injected on customers’ web pages. Widget has 4 big compo-

nents: Starter component, chat component, Context Collector UI constructor. Starter compo-

nent is responsible for loading dependencies such as HTML, CSS and JS modules from server,

Socket.io module and jQuery, Chat component is responsible for maintain communication with

server, Context Collector as it states collects navigation history from the customer and UI con-

structor holds functions to construct UI as it is needed.

The biggest developed container is the OCVC server. OCVC server has 3 main folders: web, bin

and lib. Web folder holds web components both for widget and BO applications, while bin folder

holds installation scripts. Lib is the main component of the server. It has 6 modules, each with

its own responsibility. Core module is started by index.js at root and it is responsible for starting

the remaining modules. It also accepts HTTPS request requesting HTML, CSS and JS files. Chat

module is responsible for serving widget and BO information request. Database connector is an

abstraction layer between OCVC server and database with the purpose to manage communica-

tion between them. Logger is responsible to log all important events. Config holds configuration

files needed to run the application. Finally, Models module hold the object models used in hte

application.

Last container is the BO web app. This container has four components: view holding the HTML

files and CSS to create the UI, controller who are responsible to manage UI aspect, modules used

through the application and Services responsible for data and communication management.

16

2.4 Classes
For most of us in an OO world, classes are the smallest building blocks of our software systems.

This is an optional level with two purposes:

 Detail big components.

 Describe any particular pattern.

Since JS is not an OO language UML will not be used. However there is a need to draw this level
in order to describe in more detail OCVC server (big component with a component-based devel-
opment [3]) and BO web app (particular pattern).

17

OCVC Server

Figure 5. Server classes

18

OCVC Server’s Index at root is the file that starts the server, however all logic is under lib folder.

As stated before, lib has six modules: Core, Chat, Database connector, Config, Logger and
Models. Server’s CBD help to keep responsibilities strict and changes on code easy to maintain,
this means that the components are loosely coupled. This is particularly helpful for module
maintenance as long as the communication standards do not change. The introducing of new
features inside each module or new modules with new responsibilities is also a very easy
operation. This architecture pattern was chosen because it kept the system easy to maintain,
easy to improve and due to the communication type with customers (Event-Driven [4]).

Core module is the starter. Its main file starts all the remaining modules with the configurations
presented at Config folder. It also processes HTTPS requests to serve HTML, CSS and JS files both
to widget and BO.

Chat module is one of the most important server modules. It receives the long polling requests
and serve the answer to both widget and BO. This module has a main file, Index is where
Socket.IO requests arrive and responses leave and where all the functionalities are registered.
Other three files have the implementation. So, a Socket.IO request arrive and is redirected to
the file holding the implementation needed. After a response is produced it is then sent in Index.

Database connector classes can also be divided into two categories: Interface and queries.
Interface class is the Interface API, this class is an abstraction class called by the other
components in order to store, read, update or delete elements from the Data Base. The
remaining files have the queries implementation calls.

Config file holds configuration files, certificates and tests.

Logger is the module responsible for log the important events that occur on server.

Models module holds the JSON structure for the objects used on server for the remaining
modules.

19

Web App

Figure 6. Angular MVVM model

The frontend application uses AngularJS framework MVVM.

Model (M) component acts as data access layer. Services presented in model are singletons

always in execution.

The view (V) is the application’s UI and includes several partial HTML and CSS files that compose

the frontend.

The controller (VM) is an abstraction of the view exposing properties and commands. The

controllers will register the callbacks that they expect at the service.

View and ViewModel have a bidirectional data binder, that allow changes in the model to

propagate to the matching views, and changes made in the views are also propagated to the

model. When the application data changes, so does the UI, and vice-versa.

20

Figure 7. Web App classes

1

As described above, BO web app follow a MVVM pattern. This pattern is ensured using Angular

JS framework. Other frameworks such as scroll glue were used in order to help UI management.

The web app is divided is four components: View, Controllers, Services and Modules.

Modules hold all the frameworks needed in the app.

Users interact with the view, composed by several partial HTML and CSS files using Bootstrap

framework.

Controllers manage UI behavior, map users’ actions and maintain states. Controller were divided

in four groups of controller. General controllers manage global aspects of the BO such as window

resizing, login and logout. Customers manage all customers’ tabs and are responsible for man-

aging features such as select a customer, answering or closing a conversation. Context manage

the collected context and comments tabs and are responsible for editing customers’ infor-

mation, adding new comments or open URLs. Chat manage all chat’s UI such as sending new

messages or making calls.

Services are singletons injected in other components of the web app. After a service is injected

in a component it can use service’s exposed functions. Services were divided in OCVC Commu-

nication, Data Model, Remote Assistant, Browser Call and Breakout Call. If any component needs

to communicate with OCVC server it injects OCVC Communication service and the communica-

tion is done by it, to receive information callbacks are registered in the same service that will

notify the components. Data model holds the needed data received from server. The remaining

services are used for call management. Browser call manage call between BO and widget by

WebRCT. Breakout calls manage call between BO and a device. In this case WWC SDK is used,

the SDK allow communication with WWC Gateway. In order to do so, SDK gives a Communica-

tion Interface to call server methods and events registration methods to receive answers from

server. Remote Assistant manage calls between BO and iPad’s Remote Assistant app and is an

encapsulation of the lib developed implementing an Interface that allow the communication

between BO and Remote Assistant Server using OCVC server as proxy.

2

 Data model
Data in MongoDB, and in NoSQL databases in general, has a flexible schema. Unlike SQL data-

bases where a declared tables’ schema is defined before inserting data, in MongoDB no schema

definition is needed. Instead of tables are used collections of documents where each document

as the flexibility of mapping different data between themselves even if the data fields have sub-

stantial variations. In practice, however, the documents inside a collection share a similar struc-

ture.

This section presents the collections used in the internship, and the similar structure definition

of their objects. Note that the presented representation of the documents is a general one. Each

document inside the collections could have more or less fields than the presented. This is not a

schema definition, instead is just a similar structure definition of the documents.

In MongoDB are used two tools to represent relationships between data:

• References: when documents store an ID from one document to another.

• Embedded documents: when a document structure is stored inside a field or array.

References are used when the same document must be stored several times inside a document

or a collection. Instead of store the whole document, an ID to it is stored and data redundancy

is kept at minimum. Embedded documents are used when the document to save does not justify

the creation of a new document (e.g.: date/geographical structures).

Above are the collections created and their reference documents. A description of the collection

and document is written, as well as all decisions are justified.

3.1 Customers’ Collection

Figure 8. Customer document reference representation

C
u

st
o

m
er

Name

Browser
Name

Version

Geolocation
Longitude

Latitude

Messages[] Message

Content

Timestamp

Was_sentCustomer_UID

Pages Page
URL

Timestamp

Calls[] Call
Timestamp

Duration
Widget_UID

Phone

FirstTime

3

Summary

Customers’ collection hold the documents that reference each customer. Each customer will be

stored in a document.

Figure 7. represents the reference document for the customers. Some of the fields will always

exist every time a new document is created at the collection. This fields are Customer_UID and

Pages. The other fields can or cannot be created depending on customer’s actions during his

visit. For instance, if a customer never chat with an operator the Messages[] is not needed.

For the geolocation field it was opted to use embedded documents instead of references, since

every document can have very different geolocation values it was unnecessary to create a col-

lection to hold every geolocation. The same goes to the Messages and Calls fields.

In the cases of the Widget_ID it was used references. It would make no sense to use embedded

objects and increment the data redundancy on the database. The use of the references allow

the documents to share the same Widget document without the need to store it in every Cus-

tomer document.

Fields description

Name: The name the user inputs before start to talk with the operator.

Browser: Tuple of name and version to refer the browser used by the customer.

Geolocation: Tuple of latitude and longitude referring the customer location.

Messages[]: An array of message objects with content and timestamp when the message was

sent. Was_sent marks if the message was sent from the customer or received.

Customer_UID: Customer unique ID calculated by the server.

Pages[]: Array of page objects tracked by the customer. Each page contains an URL and a

timestamp.

Calls[]:Array of call objects did by the customer. Each call contains a duration and a timestamp.

Widget_UID: Reference to the Widget document that the customer is using.

3.2 Operators Collection

Figure 9. Operator document reference representation

O
p

er
at

o
r

Name

Avatar

Username

Password

Operator_UID

WIdget_UID

4

Summary

This collection stores the operators’ information. Each operator will be stored in one docu-

ment. Figure 8. represents the reference document to the collection.

Since no composed fields were needed it was not used embedded objects. However, it was

needed a reference to the widget the operator is associated with. The other fields are only

used to store operator’s profile information.

Fields description

Name: Operator’s name.

Avatar: Can be a reference to an avatar collection or a path to the avatar itself.

Username: Operator’s name used to authenticate in the system.

Password: Hash of the password used to authenticate in the system.

Operator_UID: Operator unique ID calculated by the server.

Widget_UID: Reference to the Widget document that the customer is using.

3.3 Online List Collection

Figure 10. Online list document reference representation

Summary

Collection of documents that store the list of online users per widget. In the internship, this

collection will only hold one object since the use case of serve multiple websites is out of

scope. However, the document reference is already prepared to store multiple widgets.

In this case it was opted to mix references and embedded documents.

To store the online users it was used embedded objects with a reference to the user. To store

the widget it was used a reference.

 Fields description

List[]: Array of user objects which contain a reference to the UID. Token is the session token

assigned to the corresponding user.

O
n

lin
e List[] User

UID

Token

Widget_UID

5

3.4 Widget Collection

Figure 11. Widget document reference representation

Summary

Like the previous case, in spite of being a collection of documents that store the widget docu-

ments, this collection will only hold one document.

This collection stores widget’s information and widget’s owner information.

Fields description

Domain: Domain where the widget will run.

Snippet: Path to JavaScript snippet or the actual snippet itself.

Owner: Owner’s personal information. Yet to define.

Widget_UID: Widget unique ID calculated by the server.

W
id

ge
t

Domain

Snippet

Owner

Widget_UID

6

 Interfaces
In this chapter are presented the interfaces used on the system.

Firstly will be presented the communication Interface used between OCVC server, BO and

widget. After that will be presented the WWC Interface used in breakout calls. Lastly will be

presented the Interface used by database module.

4.1 Communication Interface
Communication Interface will be divided in 3 subsections: Server Events, BO Events and

Widget Events. Those sections will describe the events emitted by each container. The

description have the receiver of the event, the object emitted and an explanation.

4.1.1 Server Events
user:StartChat

 Emitted to: All operators.
 Emitted Object: Custom object ({UID: String, timestamp: Date Object}).
 Explanation: Tell the operators that the customer with the UID (user ID) requested a

chat. The timestamp indicates the moment of the request.
user:updateType

 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String, type: String, timestamp: Date}).
 Explanation: Notify the operators that the conversation type of the customer UID has

changed to type.
user:OS

 Emitted to: Operators.
 Emitted Object: Custom Object ({info: String, UID: String}).
 Explanation: Notify the operators to update the customer UID's operative system field

with info.
user:newReferrer

 Emitted to: operators.
 Emitted Object: Custom Object ({UID: String, url: String}).
 Explanation: Notify the operators to add a new URL to the customer UID's URL list.

user:Mail
 Emitted to: Operators.
 Emitted Object: Custom Object ({mail: String, UID: String}).
 Explanation: Notify the operators to update the customer UID's mail field with mail.

user:browser
 Emitted to: Operators.
 Emitted Object: Custom Object ({info: String, UID: String}).
 Explanation: Notify the operators to update the customer UID's browser field

with info.
user:town

 Emitted to: Operators.
 Emitted Object: Custom Object ({info: String, UID: String}).
 Explanation: Notify the operators to update the customer UID's town field with info.

user:country
 Emitted to: Operators.
 Emitted Object: Custom Object ({info: String, UID: String}).
 Explanation: Notify the operators to update the customer UID's country field with info.

user:Message
 Emitted to: Operators.
 Emitted Object: Custom Object ({payload: String, UID: String}).

7

 Explanation: Send message payload from customer UID to all operators.
user:newCall

 Emitted to: Operators.
 Emitted Object: String.
 Explanation: Notify the operators that the customer requested a browser call.

user:endCall
 Emitted to: Operators.
 Emitted Object: String.
 Explanation: Notify the operators that the customer ended the browser call.

user:closeConversation
 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String, timestamp: Date}).
 Explanation: Notify operators that the conversation from customer UID has been

closed.
user:out

 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String}).
 Explanation: Notify the operators that customer UID has left the site.

syncTime
 Emitted to: Operator/Customer.
 Emitted Object: Custom Object ({y: Date, x: Date, a: Date}).
 Explanation: Send to new user the terms to use in NTP calculus.

user:new
 Emitted to: Operators.
 Emitted Object: Custom Object (Customer).
 Explanation: Send to the operators the information of customer that entered the site.

yourInfo
 Emitted to: Customer.
 Emitted Object: Custom Object (operator: Object, customer: Object).
 Explanation: Send to customer his personal information and the information of the op-

erator that was assigned to him.
startTrack

 Emitted to: Customer.
 Emitted Object: None.
 Explanation: Notifies the widget that it can start to track context information.

user:online
 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String, timestamp: Date}).
 Explanation: Notify the operators that customer UID is now online.

user:newURL
 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String, url: String}).
 Explanation: Tell the operators to add url to the customer UID's URL list.

operator:Info
 Emitted to: Operator.
 Emitted Object: Custom Object ({name: String, ID: String, photo: String, WWCname:

String, WWCpass: String}).
 Explanation: Send to the operator his personal information.

users:online
 Emitted to: Operator.
 Emitted Object: Custom Object array.
 Explanation: Send to operator the list of online customers.

8

users:history
 Emitted to: Operator.
 Emitted Object: Custom Object array.
 Explanation: Send to operator the list of customers on history.

operatorLoged
 Emitted to: Operators/Customers.
 Emitted Object: None.
 Explanation: Notify everyone that a operator logged in at the BO.

user:isTyping
 Emitted to: Operators.
 Emitted Object: String.
 Explanation: Notify operators that a customer is typing.

user:stopedTyping
 Emitted to: Operators.
 Emitted Object: String.
 Explanation: Notify operators that a customer stopped typing.

operator:isTyping
 Emitted to: Customer.
 Emitted Object: None.
 Explanation: Notify customer that his operator is typing.

operator:stopedTyping
 Emitted to: Customer.
 Emitted Object: None.
 Explanation: Notify customer that his operator stopped typing.

IceCandidate
 Emitted to: Operators/Customer.
 Emitted Object: String.
 Explanation: Send ICE candidate from operator to customer and vice-versa.

offerSDP
 Emitted to: Operators.
 Emitted Object: String.
 Explanation: Send session description offer from customer to operators.

answerSDP
 Emitted to: Customer.
 Emitted Object: String.
 Explanation: Send session description answer from operator to customer.

operator:callEnded
 Emitted to: Customer
 Emitted Object: None
 Explanation: Notify the customer that the browser call has been closed.

operator:Message
 Emitted to: Customer.
 Emitted Object: Custom Object ({payload: String, UID: String}).
 Explanation: Send message payload from operator UID to customer.

widget:Message
 Emitted to: Customer.
 Emitted Object: Custom Object ({payload: String, UID: String}).
 Explanation: Send message payload from customer UID to customer.

noOperatorsOn
 Emitted to: Customers.
 Emitted Object: None.
 Explanation: Notify customers that none operator is online.

9

user:loggedOut
 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String}).
 Explanation: Notify operators that customer UID is offline.

user:comment
 Emitted to: Operators.
 Emitted Object: Custom Object ({payload: String, UID: String}).
 Explanation: Send comment payload to append to customer UID to all operators.

user:selected
 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String, operator: ID, time: Date}).
 Explanation: Notify the operators that the operator operator is answering the cus-

tomer UID.
operatorAssigned

 Emitted to: Customer.
 Emitted Object: String.
 Explanation: Notify the customer that he will be answered by the passed operator.

closeConversation
 Emitted to: Customer.
 Emitted Object: None.
 Explanation: Notify the customer that his conversation has been closed.

user:Called
 Emitted to: Operators.
 Emitted Object: Custom Object ({UID: String, operator: String, request: Integer, time:

Date}).
 Explanation: Unused.

operator:callAccepted
 Emitted to: Customer.
 Emitted Object: None.
 Explanation: Notify the customer that his browser call has been accepted.

tablet:New
 Emitted to: Operators
 Emitted Object: Custom Object (Customer)
 Explanation: Notify the operators that a new tablet customer arrived to the site.

tablet:newCall
 Emitted to: Operators
 Emitted Object: Custom Object (Call)
 Explanation: Tell to the operators to add a new call to the previous tablet customer.

turnOffStreams
 Emitted to: Operators
 Emitted Object: None
 Explanation: Notify the operators to close all media streams if the operator were in a

tablet conversation
tablet:pickupTabletCall

 Emitted to: Operators.
 Emitted Object: Custom Object (config: Object, currentSdpOffer: String, UID: String).
 Explanation:

4.1.2 BO Events
operator:Call

 Emitted to: Server.

10

 Emitted Object: Custom Object ({UID: String, n: Integer}).
 Explanation: Sent from operator to answer call n from user with the ID UID.

operator:isTyping
 Emitted to: Server.
 Emitted Object: String.
 Explanation: Sent from operator to notify the customer that the operator is typing.

operator:stopedTyping
 Emitted to: Server.
 Emitted Object: String.
 Explanation: Sent from operator to notify the customer that the operator stopped typ-

ing.
operator:userSelected

 Emitted to: Server.
 Emitted Object: String.
 Explanation: Sent from operator to select a customer to talk with.

operator:Message
 Emitted to: Server.
 Emitted Object: Custom Object ({payload: String, from: String, timestamp: Date, UID:

String}).
 Explanation: Sent message payload to customer with ID UID.

operator:Mail
 Emitted to: Server.
 Emitted Object: Custom Object ({payload: String, from: String, timestamp: Date, UID:

String}).
 Explanation: Sent message payload, via mail, to customer with ID UID.

operator:callAccepted
 Emitted to: Server.
 Emitted Object: String.
 Explanation: Accept browser call from a customer.

operator:callEnded
 Emitted to: Server.
 Emitted Object: String.
 Explanation: End an active browser call with a customer.

operator:setUserName
 Emitted to: Server.
 Emitted Object: Custom Object ({name: String, UID: String}).
 Explanation: Set the UID customer's name to name.

operator:setUserPhone
 Emitted to: Server.
 Emitted Object: Custom Object ({phone: String, UID: String}).
 Explanation: Set the UID customer's phone number to phone.

operator:setUserMail
 Emitted to: Server.
 Emitted Object: Custom Object ({mail: String, UID: String}).
 Explanation: Set the UID customer's mail to mail.

operator:comment
 Emitted to: Server.
 Emitted Object: Custom Object ({payload: String, fromID: String, from: String,

timestamp: Date, UID: String}).
 Explanation: Add note payload to customer with ID UID.

operator:hangupTabletCall
 Emitted to: Server.

11

 Emitted Object: String.
 Explanation: End an active tablet call with a customer.

operator:closeConversation
 Emitted to: Server.
 Emitted Object: String.
 Explanation: End an active conversation with a customer.

operator:pickupTabletCall
 Emitted to: Server.
 Emitted Object: String.
 Explanation: Answer a call from a customer.

operator:breakoutStatus
 Emitted to: Server.
 Emitted Object: Custom Object ({ status: String, UID: String}).
 Explanation: Set the customer's breakout status to status.

syncTime
 Emitted to: Server.
 Emitted Object: Date.
 Explanation: Emit time value to perform the NTP calculus.

operator:answerTabletCall
 Emitted to: Server
 Emitted Object: Custom Object ({currentSdpOffer: String, UID: String})
 Explanation: Send the session description offer to the customer UID in order to answer

his call request from tablet.
answerSDP

 Emitted to: Server
 Emitted Object: Custom Object ({ UID: String, sdp: String })
 Explanation: Send the session description offer to the customer UID in order to answer

his call request from browser.
operator:candidate

 Emitted to: Server
 Emitted Object: String
 Explanation: Send ICE candidates in order to start a call between browsers.

4.1.3 Widget Events
widget:offlineRequest

 Emitted to: Server.
 Emitted Object: Custom Object ({name: String, mail: String, phone: String, payload:

String, type: Integer})
 Explanation: Send a request to be contacted later via the specified (type) communica-

tion channel.
widget:sendMeMyConveration

 Emitted to: Server.
 Emitted Object: None.
 Explanation: Asks to server to send him the previous conversations available.

widget:requestForCall
 Emitted to: Server.
 Emitted Object: None.
 Explanation: Make a request to be contacted by browser call.

widget:Message
 Emitted to: Server.
 Emitted Object:Custom Object ({payload: String, timestamp: Date}).

12

 Explanation: Send message payload to the operators.
widget:stopedTyping

 Emitted to: Server.
 Emitted Object: None.
 Explanation: Notify the operators that the customer stopped typing.

widget:isTyping
 Emitted to: Server.
 Emitted Object: None.
 Explanation: Notify the operators that the customer started typing.

widget:Mail
 Emitted to: Server.
 Emitted Object: String
 Explanation: Set customer's mail contact.

syncTime
 Emitted to: Server.
 Emitted Object: Date.
 Explanation: Emit time value to perform the NTP calculus.

widget:coords
 Emitted to: Server.
 Emitted Object: String array.
 Explanation: Set customer's coordinates.

widget:browser
 Emitted to: Server.
 Emitted Object: String array.
 Explanation: Set customer's browser information.

widget:referrer
 Emitted to: Server.
 Emitted Object: String
 Explanation: Set customer's page referrer when customer arrives to the page.

widget:OS
 Emitted to: Server.
 Emitted Object: String.
 Explanation: Set customer's operative system information.

widget:country
 Emitted to: Server.
 Emitted Object: String
 Explanation: Set customer's country information.

widget:candidate
 Emitted to: Server
 Emitted Object: String
 Explanation: Send ICE candidates in order to start a browser call.

offerSDP
 Emitted to: Server
 Emitted Object: String
 Explanation: Send session description offer in order to start a browser call.

4.2 WWC Gateway Interface
This subsection describes the methods used and events registered to communicate with WWC

Gateway. These descriptions were transcribed from WIT’s WIT WebRTC Gateway JavaScript

SDK Guide [5].

13

4.2.1 Event Interface Registration

Method sdk.event.bind

Description Binds new functions to be called when an event is fired

Parameters

Name Type Description

name String Name of the Event to listen to

listener Object
Function or Array of Functions to be called

when the event is fired

Usage sdk.event.bind(name, listener)

Returns Nothing

Table 15 sdk.event.bind API

Method sdk.event.unbind

Description
Unbinds functions allocated to a certain event (given that the

function as a function name)

Parameters

Name Type Description

name String
Name of the Event to remove listeners

from

listener Object
Function or Array of Functions to be

unbound

Usage sdk.event.unbind(name, listener)

Returns Nothing

Table 16 sdk.event.unbind API

4.2.2 Session Interface Methods

Method sdk.session.register

Description Attempts to Register the User through WIT’s WebRTC Gateway

Parameters

Name Type Description

username String User’s URI

password String User’s Password

Usage sdk.session.register(username, password)

Returns Promise

On Promise

resolved
"onSessionStatus:connected”

"onSessionConnect:error" Failed to register

14

On Promise

rejected
"onSessionStatus:disconnected"

Session was terminated or

connection was closed

Table 17 sdk.session.register API

Method sdk.session.terminate

Description Attempts to terminate the user session in the Gateway

Parameters None

Usage sdk.session.terminate()

Returns Nothing

Table 18 sdk.session.terminate API

4.2.3 Session Interface Events

Event onSessionStatus

Condition The state of the user session changed

Callback Parameters Object with parameters

Parameters
Name Type Description

status String The session status

Possible Values

“connected” Successfully connected to the WWG

“disconnected” Connection to the WWG was lost

“terminated” Session was Terminated

Table 19 onSessionStatus Event API

4.2.4 Call Interface Methods

Method sdk.call.invite

Description Triggers a Call Invite Request to a given user

inviteParams Object

parameters

Name Type Description

to Identity

Mandatory parameter to

identify the destination

of the call

mediaType String
Mandatory parameter

(VOICE/VIDEO)

localStream Media Stream

Optional; MediaStream

object to be used in this

particular call. If not

present, the default one

will be requested.

15

audioConstraints

navigator.getUse

rMedia

constraints

Optional; If localStream

is not present, the

JavaScript SDK will

request the local

MediaStream. If these

constraints are available

they will be used when

requesting the stream.

videoConstraints

navigator.getUse

rMedia

constraints

Usage sdk.call.invite(inviteParams)

Returns Promise

On Promise resolved {call: Call}. Refer to 4.2.8

On Promise rejected Error Description

Table 20 sdk.call.invite API

Method sdk.call.terminate

Description
Terminate a call. This method can be used to cancel an ongoing

INVITE or to terminate an ongoing call.

Parameters

Name Type Description

id String

Mandatory parameter to identify the call to

be terminated (from the Call object). Refer

to 4.2.8

Usage sdk.call.terminate(id)

Returns Promise

On Promise resolved Nothing

On Promise rejected Error Description

Table 21 sdk.call.terminate API

4.2.5 Call Management Methods

Method sdk.call.media.isMicMuted

Description Checks if the local audio stream is enabled

Parameters
Name Type Description

id String Call ID (from the Call object). Refer to 4.2.8

Usage sdk.call.media.isMicMuted(id)

Returns
True if the local audio stream associated to the active call is

disabled (enabled = false).

Table 22 sdk.call.media.isMicMuted API

16

Method sdk.call.media.changeLocalAudioState

Description Changes the enabled state of the local audio stream

Parameters

Name Type Description

id String Call ID (from the Call object). Refer to

4.2.8

state

(optional)

Boolean Enabled state. If not present current

state is reversed.

Usage sdk.call.media.changeLocalAudioState(id, state)

Returns The new state of the local audio stream (enabled = true / false).

Table 23 sdk.call.media.changeLocalAudioState API

4.2.6 Call Interface Events

Event onCallEvent_<callid>

Condition Event called when the state of a Call with the id <callid> changes

Callback

Parameters
Object with parameters

Object

Parameters

Name Type Description

call Call Refer to 4.2.8

status String Refer to 4.2.8

args ServerResponse Optional. Refer to point 4.2.7

Table 24 onCallEvent Event API for a specific call

4.2.7 Server Response Code Object

Parameter Type Description

value Number SIP response code

description String Error Code Description

Table 25 Fields available in the ServerResponseCode object

4.2.8 Call Object

Parameter Type Description

id String Call ID shared between the Web Application and the SDK

type String Call Type (“VOICE”, “VIDEO”)

direction String Call Direction (“INCOMING”, “OUTGOING”)

from Identity Identity representing the caller

to Identity Identity representing the callee

17

isVideoShare Boolean Identifies if this call is a video share or not

state String Call State (See table below for possible values)

localStream MediaStream Local Media Stream

remoteStream MediaStream Remote Media Stream

Table 26 Fields available in the Call object

The Call object can have various states. The possible Call States are the following:

Parameter Description Final State?

"terminated" Call was Terminated YES

"failed" Call failed YES

"rejected" Call was Rejected by the other peer YES

"busy" Call was Reject due to the other peer

being Busy
YES

"established" Call was successfully Established NO

"accepted" Call was accepted and is being

established
NO

"ringing" Call is in Ringing State and awaiting to be

accepted or rejected
NO

"progress" Call is in Progress State (183 – Session

Progress)
NO

"invite" Call is in Invite State, no ringing response

received yet
NO

"local_hold" Call is in hold state has result to a toggle

request from local client
NO

"remote_hold" Call is in hold state has result to a toggle

request from a remote client
NO

"both_points_hold" Call is on hold state from both call end

points
NO

Table 27 Possible call states

4.3 Database Module Interface
Database interface expose three functions: query, insert and remove. Each receive three
parameters: option, information and a callback function. Below is presented a description of the
function for the option passed to it.

Query function queries elements from the database, remove removes them and insert inserts
them if they do not exist, if they do updates their value.

18

4.3.1 Query
Login

 Data: Custom Object (username: String, password: String).

 Explanation: Returns 0 if credentials are right, less than 0 if not.
Customer

 Data: Custom Object (UID: String).

 Explanation: Returns (customer, 1) if customer exist, ([], 0) if not.
Operator

 Data: Custom Object (UID).

 Explanation: Return operator if exists.
isTokenExpired

 Data: Custom Object (token: String).

 Explanation: Return true if token token is valid, false if not.
pendingCustomers

 Data: None.

 Explanation: Return the list of customers with pending requests.
History

 Data: None.

 Explanation: Return the list of customers in history.

4.3.2 Insert
newCustomer

 Data: Custom Object (UID: String, urlList: Object Array, time: Date).

 Explanation: Insert new customer in Database and returns it.
Login

 Data: Custom Object (UID: String, token: String).

 Explanation: Set operator UID as online.
URL

 Data: Custom Object (UID: String, urlList: Object Array).

 Explanation: Append urlList to customer UID, returning customer object.
Browser

 Data: Custom Object (UID: String, browser: String).

 Explanation: Persist browser information in database. If information already exist
update it.

OS

 Data: Custom Object (UID: String, OS: String).

 Explanation: Persist OS information in database. If information already exist update it.
Country

 Data: Custom Object (UID: String, country: String).

 Explanation: Persist country information in database. If information already exist
update it.

Town

 Data: Custom Object (UID: String, town: String).

 Explanation: Persist town information in database. If information already exist update
it.

Name

 Data: Custom Object (UID: String, name: String).

 Explanation: Persist name information in database. If information already exist update
it.

Mail

19

 Data: Custom Object (UID: String, mail: String).

 Explanation: Persist mail information in database. If information already exist update
it.

Phone

 Data: Custom Object (UID: String, phone: String).

 Explanation: Persist phone information in database. If information already exist
update it.

Info

 Data: Custom Object (UID: String, mail: String, name: String, phone: String).

 Explanation: Unused.
Message

 Data: Custom Object (UID: String, message: String).

 Explanation: Push message into message’s at database.
Comment

 Data: Custom Object (UID: String, comment: String).

 Explanation: Push comment into comment’s at database.
Pending

 Data: Custom Object (UID: String, isPending: boolean).

 Explanation: Change isPending value.
Type

 Data: Custom Object (UID: String, type: String).

 Explanation: Change type value.
Time

 Data: Custom Object (UID: String, time: Date).

 Explanation: Update time value.

4.3.3 Remove
Logout

 Data: Custom Object (UID: String).

 Explanation: Set operator with UID offline.
Comment

 Data: Custom Object (UID: String, payload: String).

 Explanation: Remove comment payload from customer UID.

20

 Referências

[1] S. Brown, “Simon Brown,” [Online]. Available:

http://www.codingthearchitecture.com/authors/sbrown/. [Acedido em 12 November

2015].

[2] S. Brown, “C4 model poster,” [Online]. Available:

http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html. [Acedido em

12 November 2015].

[3] Wikipedia, “Component-Based Software,” 7 June 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Component-based_software_engineering. [Acedido em 15

June 2016].

[4] Wikipedia, “Event-Driven Architecture,” 7 June 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Event-driven_architecture. [Acedido em 15 June 2016].

[5] L. Matos, A. Silva, J. Martins e L. Fernandes, em WIT WebRTC Gateway Javascript SDK

Guide, 2016, p. June.

1

José Manuel Marques Grilo

jgrilo@student.dei.uc.pt

Supervisors:

Jorge Sousa

Luís Matos

Carlos Bento

July, 1st 2016

Online context for voice

communications
Annex D – Development

Masters in Informatics Engineering

Internship 2015/2016
Final Report

2

Index

 Introduction .. 5

 Developed Work .. 6

2.1 UI specification and implementation .. 6

2.2 Operator’s Login and Socket Disconnection ... 11

2.3 Customer’s socket connection and disconnection.. 14

2.4 Context Collection ... 18

2.5 Start and End a conversation .. 19

2.6 Chat ... 23

2.7 Calls ... 25

2.8 Remote Assistant... 29

2.9 Other features ... 33

 Tests .. 35

3.1 Set of Tests .. 35

3.2 Results ... 35

 Future Work .. 39

 References ... 41

 Appendix ... 42

6.1 Test sets ... 42

6.1.1 Test Suite: Authentication ... 42

6.1.2 Test Suite: Context Collection ... 43

6.1.3 Test Suite: Back office’s features .. 47

6.1.4 Test Suite: Widget’s features .. 69

6.1.5 Test Suite: Call window’s features .. 78

3

Index of Tables

Table 3.1. Tests results .. 38

Table 3.2. Tests interpretation .. 38

4

Index of Figures
Figure 2.1. First design for widget's UI 7

Figure 2.2. First design for back office's UI 8

Figure 2.3. Final Widget UI 9

Figure 2.4. Customer's call window UI 9

Figure 2.5. Final back office UI - Entrance screen 10

Figure 2.6. Final back office UI - Customer selected 10

Figure 2.7. Final back office UI - On call 10

Figure 2.8. Back office's login page 11

Figure 2.9. Back office's entrance screen 11

Figure 2.10. Back office's logout use case 12

Figure 2.11. Login sequence diagram 13

Figure 2.12. Operator's socket disconnection sequence diagram 14

Figure 2.13. Collapsed widget UI 15

Figure 2.14. Expanded widget UI 15

Figure 2.15. Customer’s socket connection sequence diagram 16

Figure 2.16. Customer's socket disconnection sequence diagram 17

Figure 2.17. Context collection sequence diagram 18

Figure 2.18. Back office with context collected from a user 19

Figure 2.19. Customer's request 19

Figure 2.20. Back office customer answering 20

Figure 2.21. Customer request sequence diagram 20

Figure 2.22. Customer answering sequence diagram 21

Figure 2.23. Proactive engagement sequence diagram 21

Figure 2.24. End conversation sequence diagram 22

Figure 2.25. Back office conversation ending 22

Figure 2.26. Back office history list 23

Figure 2.27. Customer on conversation with an operator 23

Figure 2.28. Operator on conversation with a customer 24

Figure 2.29. Operator’s message sequence diagram 24

Figure 2.30. Customer's message sequence diagram 25

Figure 2.31. Operator on call with a customer 26

Figure 2.32. Customer on call with an operator 26

Figure 2.33. Operator ready to start a call to customer's device. 26

Figure 2.34. Customer receiving call from operator 27

Figure 2.35. Browser call sequence diagram 28

Figure 2.36. Breakout call sequence diagram 29

Figure 2.37. Remote assistant's back office old UI 30

Figure 2.38. Remote assistant's back office new UI 30

Figure 2.39. Remote assistant app on call with operator 31

Figure 2.40. App call sequence diagram 32

Figure 2.41. Add comment sequence diagram 33

Figure 2.42. Remove comment sequence diagram 33

Figure 2.43. Operator removing a comment 34

5

 Introduction
This annex was written in order to give the reader a more detailed view of the development

process, the challenges that were overcome, tests implementation and project’s future work.

This annex is divided into 3 major sections:

 Developed work: this section provides an overview of the work developed over the past

year, and challenges that were overcome in this section are presented the features im-

plemented and their implementation challenges.

 Tests: here is provided the test methodology and sets of tests used to validate the prod-

uct.

 Future work: this section provides a list of features that can be implemented in order to

enrich the product.

6

 Developed Work
A good quality planning and architecture design help to predict and overcome most of the chal-

lenges that will appear during the development. However, sometimes if planned process is not

the clear unexpected problems can appear.

During the internship planning most of the problems were predicted and contingency plans were

created in order to minimize its risks, still, some were impossible to predict and there was a need

to create strategies to resolve them.

This section are presented the major features implemented. Here the functionalities are de-

scribed and the sequence diagrams are presented along with some screenshots.

2.1 UI specification and implementation
For the UI definition the intern worked with WIT designer Elizabeth Pereira.

The first step was the definition of the requirements and user stories. With that document ready,

the designer drew the mockups, which were evaluated by all the team members (scrum master,

product owner and scrum team) as well as the stakeholder.

The process of defining an appealing UI that would give to the final user a great experience was

progressive and done in several iterations. Elizabeth was in charge of drawing the mockups

taking into account the documents of the internship.

Once a satisfactory result was achieved from all involved in the project, which is presented at

Figure 2.1 and Figure 2.2, the UI implementation began.

The UI was implemented using Bootstrap 3.3.5 framework that helped to make the back office

responsive. For the back office AngularJS framework was used, in order to implement an MVVM

model.

7

Figure 2.1. First design for widget's UI

8

Figure 2.2. First design for back office's UI

The UI implementation was one of the biggest challenges in the project.

It was very hard to find a UI that was appealing to everyone involved in the project, and that

suited both operators and customers’ purposes in terms of user experience. Another major

factor that influenced the UI implementation was the find of new features to implement. These

requirement changes were taken into account during project’s planning; therefore development

was not affected with these changes. However, this led to a major change of the UI.

From the first UI mockups to the last, there were several changes. One of the main changes was

the widget’s communication flow – in order to attract more customers the identification form

was removed and costumers can start a conversation without identify themselves. Messages

displayed suffered several changes on development both on BO and the widget – messages are

now grouped if they were received at the exact same minute. In the BO some paddings were

adjusted between elements to refine the UI. Beside that the contextual information, the column

changed a bit along with the communication buttons used to start and answer calls.

The aspect of the UI is presented on Figure 2.3 to Figure 2.7.

9

Figure 2.3. Final Widget UI

Figure 2.4. Customer's call window UI

10

Figure 2.5. Final back office UI - Entrance screen

Figure 2.6. Final back office UI - Customer selected

Figure 2.7. Final back office UI - On call

11

2.2 Operator’s Login and Socket Disconnection
Not everyone can use the back office to answer customers’ requests. Since that was a major

requirement an authentication window was created. This window pops-up before the user

enters the back office administration window. Here in Figure 2.8, the user fills in his login

information and it is sent to the backend using HTTPS. Once the credentials have been

authenticated, the back office will be displayed, as shown in Figure 2.9, and a connection to the

backend is created.

Figure 2.8. Back office's login page

Figure 2.9. Back office's entrance screen

12

It’s as equally important to have a logout action, as it is to have a login action in place, which

allows the operation to close the working session. In this case the connection is broken and the

operator automatically returns to the login page (Figure 2.10).

Figure 2.10. Back office's logout use case

13

Figure 2.11. Login sequence diagram

The previous diagram illustrates the login flow.

The operator enters his credential at the login menu (Figure 2.8). When he clicks to send the

request to the server, the application validates the fields and sends the information to the

server, which will be validated to see if user exists and is valid. If the user is not valid an error is

displayed, or the server will verify if the user is already logged in and generate a session token.

This token will be used in future requests to authenticate the operator in the server and validate

if the session is still valid.

After the user enters the administration page a new socket with the server is established. The

operator’s personal information and customers list is sent over. The socket will be used to

exchange messages between operator and server bi-directionally in real time.

The last point is to notify the customers that an operator has entered the back office.

14

Figure 2.12. Operator's socket disconnection sequence diagram

The socket disconnection event has two meanings: the operator is refreshing the back office or

the operator has left the back office. When this event occurs, ongoing calls are verified with the

operator and they are finished and the customer is notified. Since the events are the same for

both the refresh and leaving of the page, a timeout session is set. If the operator creates a new

socket before the timeout fires, they equally are dismissed. If the timeout is triggered then the

operator is seen as being offline and customers are notified that the operator has left.

If the operator uses the logout feature he sends a request, and the server removes the operator

from the online data store and destroy his session token. Additionally, the socket disconnection

event is triggered and the previous actions are performed.

2.3 Customer’s socket connection and disconnection
These were one of the most challenging features to implement due to its complexity.

To encourage customers to start a conversation it was required that a conversation could start

without a previous login, Figure 2.14. It was also required to identify the customer that was

sending the requests, in order to keep that track a Universal Unique Identifier (UUID) was given

so that it appended to every request and was used to unequivocally identify a customer, since

that UUID was passed as an HTTPOnly cookie that can only be altered on server.

The implementation challenge came from the requirement that required that a customer would

be able to navigate the site on multiple tabs on the same browser. This brought problems,

especially to differentiate when a customer left the site from when he refreshed or navigated

through the browser. To overcome this challenge, the solution found was to create a timeout

every time the last socket from a client broke, and clean the timeout if the customer reconnects

to the site.

15

Figure 2.13. Collapsed widget UI

Figure 2.14. Expanded widget UI

16

Figure 2.15. Customer’s socket connection sequence diagram

Unlike the typical chat system, in the product developed the customers don’t need to input any

personal information to start a chat. This decision was made to reduce the probability of a

customer leaving the site because he was forced to share his name or email.

To use the product the customer only needs to access the site and the widget assists

automatically. If operators are not available an offline window is displayed, otherwise an online

window is shown. After, the socket is created and personal information is sent over. The socket

is then used to send and receive chat messages, call events, and contextual information is

collected.

Finally, the operators are notified that a costumer entered the site.

17

Figure 2.16. Customer's socket disconnection sequence diagram

Unlike the typical chat system, in the product developed the customers don’t need to input any

personal information to start a chat. This decision was made to reduce the probability of a

customer leaving the site because he was forced to share his name or email.

To use the product the customer only needs to access the site and the widget assists

automatically. If operators are not available an offline window is displayed, otherwise an online

window is shown. After, the socket is created and personal information is sent over. The socket

is then used to send and receive chat messages, call events, and contextual information is

collected.

Finally, the operators are notified that a costumer entered the site.

18

2.4 Context Collection
The context collection feature refers to all the information that can be collected that can help

operators understand the reasons behind the navigation and questions from the customer and

provide better service.

Figure 2.17. Context collection sequence diagram

To collect both OS and browser’s information, the window.navigator.userAgent property from

the browser was used. Every time that the widget starts, it analyses and parses the string

returned by the property, and returns the OS and browser’s information, which are sent to the

server via Socket.io.

To collect the country code it is called http://ipinfo.io [1] API that returns a JSON with several

fields, among them is the country code.

The latitude and longitude values are obtained with the Geolocation API from the HTML5. This

information is then translated on server side, using Google’s Geocode API location.

For the visited URLs, every time a new Socket.io connection is created, its header is parsed. If

the origin matches the server URL, the URL is ignored because it means that the connection is

from an operator. Otherwise, the referrer field is parsed to get the URL where the customer sent

his request.

After it has been parsed and validated on server side, the collected information is then sent to

the operators, Figure 2.18, in real time in order to allow for easy assistance of the customers.

http://ipinfo.io/

19

Figure 2.18. Back office with context collected from a user. On the right column, on top, is presented customer’s
personal information – name, email, location – and some information about the customer’s device. At bottom is
shows the navigation history by day from the customer’s.

2.5 Start and End a conversation
There are two ways to start a conversation. The most common is when a customer makes a

request to be contacted, either by chat, email or phone (Figure 2.19) and an operator opts to

answer and contact him (Figure 2.20).

Figure 2.19. Customer's request. On the left, when there’s no operators available the user can fill the form and select
the way he prefers to be contacted. On the right side, to request a conversation the customer only needs to send a
new message.

20

Figure 2.20. Back office customer answering. To answer a customer that made a request the operator selects him on
the left column and click on the “Answer” button.

The second way is when an operator chooses a customer from the online list and starts to talk

to him without any previous request. This proactive contact can be used to get more insight on

the customer’s visit, to show the customer any special promotion or to force sales for instance.

Figure 2.21. Customer request sequence diagram

There are two use cases to make a request to be contacted. Either there are operators ready

and available to answer the customer or there are no available operators. In the first case, the

customers can request to be contacted via chat just by sending a new message without the need

to fill any forms. In the scenario where no operators are available to answer, then the customers

need to fill out a small form where they can choose how to be contacted, either by email or

phone.

21

Figure 2.22. Customer answering sequence diagram

After receiving the request from a customer, the operator can choose whom to answer first. The

selected customer will be moved from pending to answer currently and the customer will be

notified about the operator that is answering him. After selecting a costumer to answer a new

conversation can start.

Figure 2.23. Proactive engagement sequence diagram

As previously stated, operators can start a conversation as well. In that case, they can send a

message to an online customer that has not done a request yet and the customer is selected to

be answered as if the operator have selected him to be answered (previous use case).

22

Figure 2.24. End conversation sequence diagram

Only operators can state the conversation as “closed” (Figure 2.25). When a conversation is

closed, it is passed onto the history (Figure 2.26). Besides that, the customer is removed from

the pending queue and is notified. When a conversation is closed the customer has the option

to get the conversation over email if he wants to.

Figure 2.25. Back office conversation ending. To close a conversation with a customer operators select him on the
left column and clicks on “Close” button.

23

Figure 2.26. Back office history list

2.6 Chat
After a conversation starts any of the actors can contact the other with instant messaging

(figures 27 and 28).

Figure 2.27. Customer on conversation with an operator

24

Figure 2.28. Operator on conversation with a customer

Figure 2.29. Operator’s message sequence diagram

25

Figure 2.30. Customer's message sequence diagram

The chat flow is very similar for both actors. The message is redirected by the server to the other

actor. All messages are sent to all operators. This allows all operators to follow the conversations

in real time even if they are not answering the customer.

The major differences between customer and operator messaging is the way that messages are

processed when received by the widget. A message from an operator received by the widget it

is processed looking for a URL. If it contains an URL and points to the site domain, the customer

is redirected to that location.

2.7 Calls
Another way to contact the customer is through a call, either by browser or device.

Browser calls were fully developed by the intern and breakout calls were developed using WWC

gateway.

In the first case, the customer creates a call request that is sent to the operator through the

server. Once the operator accepts, the customer makes the call request, this is sent to the

operator through the server. When the server accepts the request, the client creates an offer

which is then sent to the operator which in turn responds with an answer and the connection is

created (Figure 2.31 and Figure 2.32). On the other hand, the operator starts a breakout call.

The flow is the same as the browser call, however the WWC gateway makes the data

transformation in order to pass the requests to their receivers (Figure 2.33 and Figure 2.34).

26

Figure 2.31. Operator on call with a customer

Figure 2.32. Customer on call with an operator

Figure 2.33. Operator ready to start a call to customer's device.

27

Figure 2.34. Customer receiving call from operator

28

Figure 2.35. Browser call sequence diagram

The sequence presented above describes the browser call sequence. The call is always asked by

the customer and the operators needs to accept it, in order to start the call. After all the signaling

the actors create a peer connection, gets access to media and an exchange session descriptions

– both the customer and operator generate a session description – and Interactive Connectivity

Establishment (ICE) candidates. This exchange is asynchronous.

Once both actors have each other’s stream a new peer to peer connection is established and

the call starts.

29

Figure 2.36. Breakout call sequence diagram

Breakout calls and browser calls have a very similar flow, however WWC gateway serves as the

middle man to manage and translate packages from the browser to the device.

WWC SDK was used to communicate with WWC gateway. This SDK offers a communication API

to make requests and handle responses. After login, WWC SDK registers at WWC using a

previously configured account and an API key. After that, the SDK is ready to make requests for

the calls. These requests act as a browser call request – SDP and ICE candidates are exchanged,

and WWC gateway translates the requests to be interpreted by both the device and browser.

Answers are served as events and WWC SDK offer callback functions to handle those events.

2.8 Remote Assistant
Calls received from the remote assistant app were a different issue. Since this demo was already

part of WIT’s portfolio it was not an implementation challenge, but rather an integration

challenge. The architecture was already flexible enough to integrate with remote assistant

server, however some changes needed to be made. Since the communication between

customer and server was done by HTTP, the OCVC server was used as proxy so a new service

30

was implemented inside the Chat module. The remote assistant back office (Figure 2.37) was

also redone to meet Angular and UI standards (Figure 2.38).

Figure 2.37. Remote assistant's back office old UI

Figure 2.38. Remote assistant's back office new UI

31

Figure 2.39. Remote assistant app on call with operator

32

Figure 2.40. App call sequence diagram

As in breakout calls, there is a server in the middle between browser and device, but in this case

server implements a REST API which is called every second (polling) to check for call updates.

All communication between actors was processed by OCVC server, which served as proxy due

to Remote Assistant HTTP implementation. Requests are posted by the device on Remote

Assistant server. OCVC is polling information every second until a change occurs. At this moment

the offer is read and an answer is produced and posted. As previously stated, the device is also

polling for changes and when it find an answer to its offer a connection is created.

The challenge here was in terms of integration. Besides knowing that there are better

communication forms instead of polling (ex.: websockets or long polling) it was opted to not

change the Remote Assistant server due to the complexity and time constraints.

33

The biggest challenge was to handle the communication between BO and the device. On the

existing remote assistant demo the communication was by HTTP. On OCVC implementation, BO

is served by HTTPS, so HTTP communications are not allowed due to Same Origin Policy. The

solution found was to put OCVC server as a proxy, so the Remote Assistant communication lib

presented on BO was merged to OCVC server.

2.9 Other features
Besides the previous features, some minor features were added to the project in order to

complement it and help the operators keep track of the customers.

Figure 2.41. Add comment sequence diagram

Figure 2.42. Remove comment sequence diagram

To add a new comment, its content is sent to the server, then it continues and notifies the

operators that a comment was added to a customer. The same applies to remove a comment,

where the server removes in from the database and notifies the operators about the action.

34

Figure 2.43. Operator removing a comment. On the right column, if operator hovers on comment a “Delete” button
appears which allow him to delete the comment. On the same column, at the bottom new comments can be added.

35

 Tests
Testing the product was an important part of the project. Since an agile methodology was used,

testing was a continuous process which means that at the end of each sprint the implemented

features and integration were fully tested by the ones presented at the sprint meeting.

This testing methodology allowed for a faster way of tracking and fixing bugs during the

development, while at the same time that a new increment was created.

Presented in this section, is a set of tests used to test the features and the results obtained.

3.1 Set of Tests
Sets of tests were created to test all features to ensure the project’s product quality, reliability
and good experience.

Functional tests served to prove the quality and reliability of the application. These allowed to
find unexpected behaviors or potential crashes on unexpected situations. The requirements
were used to produce the set of tests created. Features were grouped in five sets:
authentication, context collection, back office features, widget features and call window
features. Since most of the features produce a visual response it is important to guarantee that
the developed features produce the expected results.

Functional tests follow WIT’s Test Guidelines. For every test produced a unique name was given
with a description, conditions to test, requisites and steps needed. Each test was classified in
terms of importance in a scale from Low to High – a low important test is a test that verifies a
feature that is not very relevant to the product functionality, a high important test is test that
verifies a feature that is critical to the product functionality.

The sets of tests produced are as an appendix due to its extensiveness. To see the sets produced
please refer to subsection 6.1 – Test Sets.

In spite of not having a set of tests to test the usability, there was a constant topic discussion
over the project. As stated on subsection 2.1 the UI suffered great changes over the project
result of a continuous improvement to the user experience. Everyone involved in this discussion
actively participated.

The main reason why there were no usability tests was due to the fact that this product is still
under development. Since it will be used as POC and a demonstration product, if any potential
interested appears the UI must be rethought to fulfill the interested needs.

3.2 Results
At the end of each sprint the corresponding tests were run in order to validate the feature and
the results were used to fix bugs.

After the features were implemented from the backlog, sets of tests were run.

The results were:

Test Result

Authentication Set

Test Case ASTC-OCVC-0100: Login – Registered operator

Test Case ASTC-OCVC-0200: Login – Unregistered operator

36

Test Case ASTC-OCVC-0300: Login – Auto Login

Test Case ASTC-OCVC-0400: Logout

Context collection set

Test Case CSTC-OCVC-0100: Context collection – URL

Test Case CSTC-OCVC-0200: Context collection – Browser

Test Case CSTC-OCVC-0300: Context collection – Operative
System

Test Case CSTC-OCVC-0400: Context collection – Geolocation

Test Case CSTC-OCVC-0500: Context collection – Page refer-
rer

Test Case CSTC-OCVC-0600: Context collection – First visit
timestamp

Test Case CSTC-OCVC-0700: Returning customer

Back office set

Test Case BSTC-OCVC-0100: Update customer timer

Test Case BSTC-OCVC-0200: Selecting customer – Accepted
request

Test Case BSTC-OCVC-0300: Selecting customer – Waiting
customer

Test Case BSTC-OCVC-0400: Selecting customer – Online cus-
tomer

Test Case BSTC-OCVC-0500: Selecting customer – History cus-
tomer

Test Case BSTC-OCVC-0600: Filter customers list

Test Case BSTC-OCVC-0700: Edit customer’s information –
Correct value

Test Case BSTC-OCVC-0800: Edit customer’s name field –
Wrong value

Test Case BSTC-OCVC-0900: Edit customer’s e-mail field –
Wrong value

Test Case BSTC-OCVC-1000: Edit customer’s phone number
field – Wrong value

Test Case BSTC-OCVC-1100: Accept request

Test Case BSTC-OCVC-1200: Close request – Online customer

Test Case BSTC-OCVC-1300: Close request – Offline customer

Test Case BSTC-OCVC-1400: Proactive engagement

Test Case BSTC-OCVC-1500: Switch message delivery mode

Test Case BSTC-OCVC-1600: Send new Message – Instant
Message

Test Case BSTC-OCVC-1700: Send new Message – E-mail

Test Case BSTC-OCVC-1800: Send Messages to offline custom-
ers

Test Case BSTC-OCVC-1900: Send Messages – Send URLs

Test Case BSTC-OCVC-2000: Escape characters

Test Case BSTC-OCVC-2100: Group messages

Test Case BSTC-OCVC-2200: Open URL from customer’s navi-
gation history

Test Case BSTC-OCVC-2300: Add comments

Test Case BSTC-OCVC-2400: Remove comments

37

Test Case BSTC-OCVC-2500: Answer call request – Browser
request

Test Case BSTC-OCVC-2600: Answer call request – Customer’s
app request

Test Case BSTC-OCVC-2700: Call customer

Test Case BSTC-OCVC-2800: Reject call

Test Case BSTC-OCVC-2900: End call

Test Case BSTC-OCVC-3000: Collapse call area

Test Case BSTC-OCVC-3100: Expand call area

Test Case BSTC-OCVC-3200: Mute stream – Audio

Test Case BSTC-OCVC-3300: Mute stream – Video

Test Case BSTC-OCVC-3400: Unmute stream – Audio

Test Case BSTC-OCVC-3500: Unmute stream – Video

Test Case BSTC-OCVC-3600: Select stroke size

Test Case BSTC-OCVC-3700: Select stroke color

Test Case BSTC-OCVC-3800: Draw on mobile device

Test Case BSTC-OCVC-3900: Clear drawings

Test Case BSTC-OCVC-4000: Blur screen

Test Case BSTC-OCVC-4100: Clear screen

Widget set

Test Case WSTC-OCVC-0100: Access widget – Operator is
online

Test Case WSTC-OCVC-0200: Access widget – Operator is not
online

Test Case WSTC-OCVC-0300: Change widget state – Operator
is not online and logs in after

Test Case WSTC-OCVC-0400: Change widget state – Operator
online and logs out after

Test Case WSTC-OCVC-0500: Request help – Operator is
online – Message

Test Case WSTC-OCVC-0600: Call button – Show it

Test Case WSTC-OCVC-0700: Call button – Do not show it

Test Case WSTC-OCVC-0800: Request help – Operator is
online – Call

Test Case WSTC-OCVC-0900: Request help – Operator is not
online – Select contact type

Test Case WSTC-OCVC-1000: Request help – Operator is not
online – Form filled correctly

Test Case WSTC-OCVC-1100: Request help – Operator is not
online – Form filled correctly

Test Case WSTC-OCVC-1200: Request help – Operator is not
online – Phone number filling

Test Case WSTC-OCVC-1300: Request help – Operator is not
online – Phone number incorrect filling

Test Case WSTC-OCVC-1400: Send Message

Test Case WSTC-OCVC-1500: Escape characters

Test Case WSTC-OCVC-1600: Open URLs – URL pointing out-
side the site

38

Test Case WSTC-OCVC-1700: Open URLs – URL pointing inside
the site

Test Case WSTC-OCVC-1800: URL push

Test Case WSTC-OCVC-1900: Group messages

Call window set

Test Case CSTC-OCVC-0100: Open call window

Test Case CSTC-OCVC-0200: Open chat column

Test Case CSTC-OCVC-0300: Close chat column

Test Case CSTC-OCVC-0400: Send Message

Test Case WSTC-OCVC-0500: Escape characters

Test Case WSTC-OCVC-0600: Open URLs – URL pointing out-
side the site

Test Case WSTC-OCVC-0700: Group messages

Test Case WSTC-OCVC-0800: Call operator

Test Case WSTC-OCVC-0900: End call

Test Case WSTC-OCVC-1000: Mute audio stream

Test Case WSTC-OCVC-1100: Unmute audio stream

Table 3.1. Tests results

From a total of 82 tests only 2 not passed which led to a 98% of acceptance.

Test Set # of tests Passed Failed % Acceptance % Failure
Authentication 4 4 0 100% 0%

Context Collection 7 5 2 71% 29%

BO's Features 41 41 0 100% 0%

Widget's Features 19 19 0 100% 0%

Call Window Features 11 11 0 100% 0%

Total 82 80 2 98% 2%
Table 3.2. Tests interpretation

From the table analysis it is easy to see that the tests that failed both belong to the context
collection group. In Table 3.1 we see that the tests were related with the referrer and first time
collection. In the beginning those features weren’t thought to be implemented, and the UI was
not prepared to display those values, however they were tracked and saved because they
seemed relevant for future work on the project.

To analyze WebRTC calls, WebRTC Internals [2] from Google Chrome was used.

In addition to Chrome’s WebRTC Internals, WWC SDK also offers an event to analyze
connectivity status with window.getStats API if available. The returned results are:

 Available bandwidth;

 Input level;

 Packets lost;

 RTT;

 Packets sent;

 Bytes sent.

39

 Future Work
All the proposed scope was implemented and the project was successful.

The developed product will be used for demos and as a proof of concept either for its

technologies, experience and product concept, which means that this POC will be used in the

future and can be modified or evolve to a product if any potential interest appears.

Some features were left out of the scope, but those features were not forgotten and can be used

to improve the project’s concept.

This section presents the reader some features that were analyzed, but were not implemented

due to time or complexity reasons.

Multiple operators

Change server in order to work with multiple registered operators. Furthermore, a new page

can be created in order to add and remove operators.

Priority queues for customers and operators teams

Different request types can be added to different queues with different priorities. For instance,

clients that requested a call could be all on the same queue, and the same operators team would

answer them all.

Operators team could be divided by request type (chat, call, tablet), page type (products, sales,

...) and others.

Automatic customers' engagement

Currently, operators without any request can engage customers. This approach could be done

automatically using rules to approach the customers.

For instance, if the same user visits the same page a certain number of times an automatic

message could be sent in order to approach him. The set of rules could be customizable by

operator.

Develop promotion feature

The reserved keyword :promo: is used to open a promotion div on the customer's browser. This

feature could be improved by adding a list of promotions on the BO so that the operator could

choose one and send it to the customer.

Collect/show more context

The context collection can be expanded. For instance, the first time the customer visits the

hosting site or the page referrer are collected but not displayed. Besides that, the last

conversation time, last visit, time between visits, visit duration or page visit duration can also be

tracked.

CRM integration

If the hosting site holds a CRM, integration could be possible in order to enrich the customers'

information provided to the operator.

Multiple active chats

The number of active conversations at the same time could be customizable.

Automatically infer customers' relationships

The BO could help the operator to answer the customers' needs. For instance, if the hosting site

is a sell retailer website if the customer search for an amount of the same type of products the

operator could suggest some related.

40

Chat transfer

Chat transfer could be possible in order to transfer the conversation to a more suited operator.

VoIP to all browsers

A huge improvement would be the development of VoIP calls to all browsers instead of the

current solution that only support browsers with WebRTC technology.

Security Issues

Security issues such as data privacy and encryption and the use of cookies to track customers

should be studied before this POC is used as a product.

UI Redefinition

A new UI is being prepared in order to meet the new features proposed and companies UI stand-

ards. This UI is currently being evaluated to decide if it will be rethought or implemented.

Message and comment edition

After sending a message, the same could be passive of edition or deletion.

Operators' metrics

From time to time (each week or month) a report with the operators' metrics could be

generated. The report could contain information such as conversation mean duration, number

of clients answered among others specific to some hosting sites such number of customers

converted into clients or number of sales. This reports would help to improve the operators'

approach and to collect the most active and efficient operators/teams.

Conversation qualification

In order to improve the customers' attendance and operators' quality, at the end of a

conversation the customer could qualify (star rating for instance) the quality of his conversation.

Canned responses to FAQs

To help the operators to respond faster to their clients, a list of canned responses to frequently

asked questions could be available on the BO. The operator would select and send the response

immediately.

Widget Personalization

A page to customize the widget could be added in order to change the widget colors, depending

on the widget owner preferences.

Operators internal chat

Operators could have an internal chat network in order to help themselves to answer their

customers.

Profiles

Both customers and operators could have a profile. On the customer profile all of his information

could be displayed and passive of edition. On the operator profile the operator could be able to

edit his information (password, name, ...) and edit his engagement rules.

Find less intrusive ways to get users' information

The information on the BO could be autocompleted during the conversation. For instance, if

the customer writes his name on the conversation the BO would identify it and set it to the da-

tabase.

41

 References

[1] "ipinfo.io," [Online]. Available: https://ipinfo.io/.

[2] Google Inc., "WebRTC internals," [Online]. Available: chrome://webrtc-internals/.

[Accessed 03 June 2016].

[3] "Web Sequence Diagrams," [Online]. Available:

https://www.websequencediagrams.com/. [Accessed 24 May 2016].

[4] "WebRTC internals," [Online]. Available: chrome://webrtc-internals/. [Accessed 1 June

2016].

[5] Wikipedia, "Jitter," 2016 April 2016. [Online]. Available:

https://en.wikipedia.org/wiki/Jitter. [Accessed 1 June 2016].

42

 Appendix

6.1 Test sets

6.1.1 Test Suite: Authentication

Test Case ASTC-OCVC-0100: Login – Registered operator

Author: jgrilo

Summary:
The purpose of this test case is to verify that the login of a registered operator is successful.

Preconditions:
1. Internet connection.

#: Step actions: Expected Results:

1 Go to the back office Login/Dashboard Page. Login page is
displayed correctly.

2 Type the username and password of a registered
account.

Fields are filled
successfully.

3 Press “Enter” or click on “Sign In”. User is logged
successfully.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: Registered operator at Database

Keywords: None

Test Case ASTC-OCVC-0200: Login – Unregistered operator

Author: jgrilo

Summary:
The purpose of this test case is to verify that the login of a registered operator is unsuccessful.

Preconditions:
1. Internet connection.

#: Step actions: Expected Results:

1 Go to the back office Login/Dashboard Page. Login page is
displayed correctly.

2 Type the username and password of an
unregistered account.

Fields are filled
successfully.

3 Press “Enter” or click on “Sign In”. A message error is
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: None

Keywords: None

Test Case ASTC-OCVC-0300: Login – Auto Login

Author: jgrilo

43

Summary:
The purpose of this test case is to verify that the login of a registered operator is automatic if
the operator have logged on the browser previously.

Preconditions:
1. Execute a previous login without logout.
2. Internet connection.

#: Step actions: Expected Results:

1 Go to the back office Login/Dashboard Page. User is logged
successfully.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: Registered operator at Database

Keywords: None

Test Case ASTC-OCVC-0400: Logout

Author: jgrilo

Summary:
The purpose of this test case is to verify that the logout of a logged operator is successful.

Preconditions:
1. Internet connection.

#: Step actions: Expected Results:

1 Open operator management dropdown. Operator
management
dropdown opens
successfully.

2 Click on “Logout” button. User successfully
logout.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

6.1.2 Test Suite: Context Collection

Test Case CSTC-OCVC-0100: Context collection – URL

Author: jgrilo

Summary:
The purpose of this test case is to ensure that the navigation history is collected on the widget
and displayed at the BO

Preconditions:
None.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly.

44

Collected URL is
displayed correctly at
BO.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: None

Keywords: None

Test Case CSTC-OCVC-0200: Context collection – Browser

Author: jgrilo

Summary:
The purpose of this test case is to ensure that browser information is collected on the widget
and displayed at the BO

Preconditions:
None.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly.
Collected browser
information is
displayed correctly at
BO.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: None

Keywords: None

Test Case CSTC-OCVC-0300: Context collection – Operative System

Author: jgrilo

Summary:
The purpose of this test case is to ensure that OS information is collected on the widget and
displayed at the BO

Preconditions:
None.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly.
Collected OS
information is
displayed correctly at
BO.

Execution type: Manual

Estimated exec.

45

duration (min):

Importance: Medium

Requirements: None

Keywords: None

Test Case CSTC-OCVC-0400: Context collection – Geolocation

Author: jgrilo

Summary:
The purpose of this test case is to ensure that geolocation information is collected on the
widget and displayed at the BO

Preconditions:
1. Customer must allow access to geolocation.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly.
Collected
geolocation
information is
displayed correctly at
BO.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: None

Keywords: None

Test Case CSTC-OCVC-0500: Context collection – Page referrer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that page referrer URL is collected on the widget
and displayed at the BO

Preconditions:
1. First page visited during customer’s navigation.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly.
Collected referrer
information is
displayed correctly at
BO.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: None

46

Keywords: None

Test Case CSTC-OCVC-0600: Context collection – First visit timestamp

Author: jgrilo

Summary:
The purpose of this test case is to ensure that hte first visit timestamp information is collected
on the widget and displayed at the BO

Preconditions:
1. Customer never used widget before.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly.
Collected
information is
displayed correctly at
BO.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: None

Keywords: None

Test Case CSTC-OCVC-0700: Returning customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that a returning customer is identified successfully.

Preconditions:
1. Customer already used site before.

#: Step actions: Expected Results:

1 Access widget. Widget displays
correctly with
previous
conversations.
BO displays customer
with previous
information
collected.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: None

Keywords: None

47

6.1.3 Test Suite: Back office’s features

Test Case BSTC-OCVC-0100: Update customer timer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers’ timers successfully update in real
time.

Preconditions:
1. At least one customer is on BO.

#: Step actions: Expected Results:

1 Select a tab with customers. “Requests” tab is
displayed correctly.

2 Wait for at least one minute. Customers’ timers
are updated
correctly.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-0200: Selecting customer – Accepted request

Author: jgrilo

Summary:
The purpose of this test case is to ensure that a customer is selected successfully.

Preconditions:
1. Operator already accepted a customer.

#: Step actions: Expected Results:

1 Select “Requests” tab. “Requests” tab is
displayed correctly.

2 Select customer on “Request Accepted” BO is populated with
customer’s
information.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-0300: Selecting customer – Waiting customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that a customer is selected successfully.

Preconditions:
1. At least one customer requested help.

#: Step actions: Expected Results:

48

1 Select “Requests” tab. “Requests” tab is
displayed correctly.

2 Select customer on “Requests Pending” BO is populated with
customer’s
information.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-0400: Selecting customer – Online customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that a customer is selected successfully.

Preconditions:
1. At least one customer is online and have not requested help.

#: Step actions: Expected Results:

1 Select “Online” tab. “Online” tab is
displayed correctly.

2 Select customer on the list BO is populated with
customer’s
information.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-0500: Selecting customer – History customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that a customer is selected successfully.

Preconditions:
1. At least one customer is on history.

#: Step actions: Expected Results:

1 Select “History” tab. “History” tab is
displayed correctly.

2 Select customer on the list BO is populated with
customer’s
information.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

49

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-0600: Filter customers list

Author: jgrilo

Summary:
The purpose of this test case is to ensure that only customers that met the filter specification
are displayed.

Preconditions:
1. At least one customer is on the list.

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select filter, or set of filters. Filters UI is displayed
correctly.
Customer that don’t
met filters
specification are
hidden.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: ASTC-OCVC-100 or ASTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-0700: Edit customer’s information – Correct value

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to edit some of the customer’s
information fields. The possible fields are:

 Name;

 E-mail;

 Phone number.

Preconditions:
1. At least one customer is in one list.

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Click field to edit to select it. Field UI reacts to
selection.

4 Entry new value. Input field displays
new characters.

50

5 Leave field to save value. New value is saved
and correctly
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400 or BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-0800: Edit customer’s name field – Wrong value

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is not possible to edit customer’s name field
with invalid values.

Preconditions:
1. At least one customer is in one list.

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Click name field to edit to select it. Field UI reacts to
selection.

4 Entry new (invalid) value. Input field displays
new characters.

5 Leave field to save value. New value is
discarded and old
value is displayed.
Invalid names
include:

 Empty name;

 Blank name;

 Visitor #.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400 or BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-0900: Edit customer’s e-mail field – Wrong value

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is not possible to edit customer’s e-mail field
with invalid values.

51

Preconditions:
1. At least one customer is in one list.

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Click e-mail field to edit to select it. Field UI reacts to
selection.

4 Entry new (invalid) value. Input field displays
new characters.

5 Leave field to save value. New value is
discarded and old
value is displayed.
Invalid names
include:

 Empty e-
mail;

 Blank e-mail;

 Wrong for-
mat e-mail.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400 or BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-1000: Edit customer’s phone number field – Wrong value

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is not possible to edit customer’s phone number
field with invalid values.

Preconditions:
1. At least one customer is in one list.

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Click phone number field to edit to select it. Field UI reacts to
selection.

4 Entry new (invalid) value. Input field displays
new characters if
valid. Valid character
are:

 Numbers;

52

 ‘+’ at the be-
ginning of
the string.

5 Leave field to save value. New value is
discarded and old
value is displayed.
Invalid names
include:

 Empty
phone num-
ber;

 Blank phone
number;

 Wrong for-
mat phone
number.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400 or BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-1100: Accept request

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to accept a customer’s request in
order to help him.

Preconditions:
1. At least one customer requested help.
2. Operator is not answering any customer yet.

#: Step actions: Expected Results:

1 Select a tab “Requests” Tab is displayed
correctly.

2 Select a customer from “Requests Pending”. BO is populated with
customer’s
information.

3 Click on “Answer” button. Customer is moved
from “Requests
Pending” to
“Request Accepted”.
Customer’s widget
displays operator’s
information

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

53

Requirements: BSTC-OCVC-300

Keywords: None

Test Case BSTC-OCVC-1200: Close request – Online customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to close an open request.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab “Requests” Tab is displayed
correctly.

2 Select a customer from “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Close” button. Customer is moved
from “Request
Accepted” to
“Online”.
Conversation is
archived on
“History”.
Customer’s widget
removes operator’s
information.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-1300: Close request – Offline customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to close an open request.

Preconditions:
None.

#: Step actions: Expected Results:

1 Select a tab “Requests” Tab is displayed
correctly.

2 Select a customer from “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Close” button. Customer is removed
from “Request
Accepted”.

54

Conversation is
archived on
“History”.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-1400: Proactive engagement

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to talk with a customer without him
have made a request.

Preconditions:
1. Operator is not answering a customer yet.
2. At least one costumer is online and do not have made a request.

#: Step actions: Expected Results:

1 Select a tab “Online” Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Select chat’s input box. UI is displayed
correctly.

4 Input a message Message is displayed
on the input box
correctly.

5 Press “Enter” Message is sent in
the default delivery
type (IM) and
displayed at BO.
Message is received
by customer and
displayed.
Customer is moved
from “Online” to
“Request Accepted”.
Customer’s widget
displays operator’s
information.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-400

Keywords: None

55

Test Case BSTC-OCVC-1500: Switch message delivery mode

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to change message delivery mode
between e-mail and instant message.

Preconditions:
1. Operator is wants to send a message to a valid customer (a customer is already on

conversation or a customer on “Online” tab is available)

#: Step actions: Expected Results:

1 Select a tab with valid customer. Tab is displayed
correctly.

2 Select the customer. BO is populated with
customer’s
information.

3 Click on message delivery switching buttons Buttons UI is
displayed correctly.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400 or BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-1600: Send new Message – Instant Message

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to talk with customers by chat.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with valid customer. Tab is displayed
correctly.

2 Select the customer. BO is populated with
customer’s
information.

3 Click on IM delivery button. Buttons UI is
displayed correctly.

4 Select chat’s input box. UI is displayed
correctly.

5 Input a message Message is displayed
on the input box
correctly.

6 Press “Enter” Message is sent as an
IM and displayed at
BO.

56

Message is received
by customer and
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-1700: Send new Message – E-mail

Author: jgrilo

Summary:
The purpose of this test case is to ensure that is possible to talk with customers by e-mail.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with valid customer. Tab is displayed
correctly.

2 Select the customer. BO is populated with
customer’s
information.

3 Click on e-mail delivery button. Buttons UI is
displayed correctly.

4 Select chat’s input box. UI is displayed
correctly.

5 Input a message Message is displayed
on the input box
correctly.

6 Click on “Send” button Message is sent in as
an e-mail and
displayed at BO.
Message is received
by customer and
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-1800: Send Messages to offline customers

Author: jgrilo

Summary:
The purpose of this test case is to ensure that the only possible way to talk with offline
customers by chat is sending e-mail.

57

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with valid customer. Tab is displayed
correctly.

2 Select the customer. BO is populated with
customer’s
information.
Message delivery
type is set as E-mail
and cannot be
changed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-1100

Keywords: None

Test Case BSTC-OCVC-1900: Send Messages – Send URLs

Author: jgrilo

Summary:
The purpose of this test case is to ensure that sent URLs display as an image collected from
meta-tag (if available), and clickable URL.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with valid customer. Tab is displayed
correctly.

2 Select the customer. BO is populated with
customer’s
information.

3 Click on IM delivery button. Buttons UI is
displayed correctly.

4 Select chat’s input box. UI is displayed
correctly.

5 Input URL as message. Message is displayed
on the input box
correctly.

6 Press “Enter”. Message is sent as an
IM and displayed at
BO.
Message is received
by customer and
displayed.
URL is displayed
correctly.

Execution type: Manual

Estimated exec.

58

duration (min):

Importance: Medium

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-2000: Escape characters

Author: jgrilo

Summary:
The purpose of this test case is to ensure that mal intended users cannot inject HTML or
scripts.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Select an input field UI is displayed
correctly

4 Try to inject a script/HTML Message is displayed
on input field

5 Press “Enter” Characters on
message are
escaped.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400, BSTC-OCVC-500, BSTC-
OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-2100: Group messages

Author: jgrilo

Summary:
The purpose of this test case is to verify that messages sent by the same user on the same
minute are grouped.

Preconditions:
1. Customer has some messages on list.

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

59

3 Click on IM delivery button. Buttons UI is
displayed correctly.

4 Select chat’s input box. UI is displayed
correctly.

5 Input a message Message is displayed
on the input box
correctly.

6 Press “Enter” Message is sent as an
IM and displayed at
BO.
Message is received
by customer and
displayed.

7 Repeat 5 and 6 several times Messages on the
same minute append
payload to previous.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-2200: Open URL from customer’s navigation history

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can open customer’s collected URLs.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Hover with mouse on customer’s collected URLs. URL is translated to
left and “Open”
button is displayed.

4 Click on “Open” button. New tab opens on
browser with
selected URL.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400, BSTC-OCVC-500

Keywords: None

60

Test Case BSTC-OCVC-2300: Add comments

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can append comments to customers

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Select “Comments” tab. Tab is displayed
correctly.

4 Select comment’s input box. UI is displayed
correctly.

5 Input comment Comment is
displayed at input
box.

6 Press “Enter” or click on “Add” button Comment is
appended to tab.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400, BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-2400: Remove comments

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can append comments to customers.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a tab with customers. Tab is displayed
correctly.

2 Select a customer. BO is populated with
customer’s
information.

3 Select “Comments” tab. Tab is displayed
correctly.

4 Hover with mouse on customer’s comments. “Delete” button is
displayed.

5 Click on “Delete” button. Selected comment is
removed from
customer’s list.

Execution type: Manual

Estimated exec.

61

duration (min):

Importance: Low

Requirements: BSTC-OCVC-200, BSTC-OCVC-300, BSTC-OCVC-400, BSTC-OCVC-500

Keywords: None

Test Case BSTC-OCVC-2500: Answer call request – Browser request

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can talk with customer by call.

Preconditions:
1. Customer requested a voice call from the widget.
2. Give access to microphone.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Accept Call” button BO’s UI updates:
Call management
buttons are
displayed;
Call timer starts;
Call area expands.
Remote stream
starts.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-2600: Answer call request – Customer’s app request

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can talk with customer by call.

Preconditions:
1. Operator is not answering a customer.
2. Customer made a call request from the mobile app.
3. Allow access to camera and microphone.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Requests Pending”. BO is populated with
customer’s
information.

62

3 Click on “Answer” button BO’s UI updates:
Call management
buttons are
displayed;
Draw buttons are
displayed;
Blur button is
displayed;
Mobile image is
displayed.
Remote stream
starts.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-1100

Keywords: None

Test Case BSTC-OCVC-2700: Call customer

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can talk with customer by call.

Preconditions:
1. Customer has a phone number associated.
2. Allow access to microphone.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Make Call” button BO’s UI updates:
Call management
buttons are
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-2800: Reject call

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can end a call.

63

Preconditions:
1. Customer request voice call from widget.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “End Call” button BO’s UI updates:
Call management
buttons are
removed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-1100 or BSTC-OCVC-1400

Keywords: None

Test Case BSTC-OCVC-2900: End call

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can end a call with a customer.

Preconditions:

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “End call” button or “Close Conversation”
button.

BO’s UI updates:
Call management
buttons are
removed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-2500, BSTC-OCVC-2600 or BSTC-OCVC-2700

Keywords: None

Test Case BSTC-OCVC-3000: Collapse call area

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator switch call area mode.

Preconditions:

64

1. Call area is expanded.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Expand/Collapse area” button BO’s UI updates:
Button UI updates;
Call area collapses.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-2500 or BSTC-OCVC-2700

Keywords: None

Test Case BSTC-OCVC-3100: Expand call area

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator switch call area mode.

Preconditions:
1. Call area is collapsed.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Expand/Collapse area” button BO’s UI updates:
Button UI updates;
Call area Expand.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: BSTC-OCVC-2500 or BSTC-OCVC-2700

Keywords: None

Test Case BSTC-OCVC-3200: Mute stream – Audio

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can mute his audio stream.

Preconditions:
1. Audio stream is unmuted.

#: Step actions: Expected Results:

65

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Mute/Unmute audio” button Button UI updates.
Customer stops
receiving audio.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2500 , BSTC-OCVC-2600 or BSTC-OCVC-2700

Keywords: None

Test Case BSTC-OCVC-3300: Mute stream – Video

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can mute his video stream.

Preconditions:
1. Video stream is unmuted.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Mute/Unmute video” button Button UI updates.
Customer stops
receiving video.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-3400: Unmute stream – Audio

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can unmute his audio stream.

Preconditions:
1. Audio stream is muted.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

66

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Mute/Unmute audio” button Button UI updates.
Customer starts
receiving audio.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2500 , BSTC-OCVC-2600 or BSTC-OCVC-2700

Keywords: None

Test Case BSTC-OCVC-3500: Unmute stream – Video

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can unmute his video stream.

Preconditions:
1. Video stream is muted.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Mute/Unmute video” button Button UI updates.
Customer starts
receiving video.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-3600: Select stroke size

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator select the stroke size to draw with
successfully.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

67

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Stroke size changing” button Button UI updates.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-3700: Select stroke color

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator select which color to draw with
successfully.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Color changing” button Button UI updates.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-3800: Draw on mobile device

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator send drawings to mobile device
successfully.

Preconditions:
None

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on BO’s screen and drag. Stroke is displayed
on BO’s mobile

68

screen and on mobile
app.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-3900: Clear drawings

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can clear the drawings sent to mobile
device successfully.

Preconditions:
1. Operator is logged.
2. Operator is on call (mobile) with a customer.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Clean” button. Drawings are
removed from BO’s
mobile screen and
mobile app.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-4000: Blur screen

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can blur the image received from the
mobile device.

Preconditions:
1. Image is clear.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

69

3 Click on “Blur/Clear” button. Image received from
mobile device
become blurred.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

Test Case BSTC-OCVC-4100: Clear screen

Author: jgrilo

Summary:
The purpose of this test case is to ensure that operator can blur the image received from the
mobile device.

Preconditions:
1. Image is blurred.

#: Step actions: Expected Results:

1 Select a “Requests” tab Tab is displayed
correctly.

2 Select customer on “Request Accepted”. BO is populated with
customer’s
information.

3 Click on “Blur/Clear” button. Image received from
mobile device
become blurred.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: BSTC-OCVC-2600

Keywords: None

6.1.4 Test Suite: Widget’s features

Test Case WSTC-OCVC-0100: Access widget – Operator is online

Author: jgrilo

Summary:
The purpose of this test case is to ensure that the widget is injected correctly.

Preconditions:
2. At least one operator is online.
3. Internet connection.
4. Widget must be injected in site.

#: Step actions: Expected Results:

1 Visit an URL where the snippet is injected. Widget’s UI is
displayed correctly
(chat).

70

At BO customer is
displayed as online.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: None

Keywords: None

Test Case WSTC-OCVC-0200: Access widget – Operator is not online

Author: jgrilo

Summary:
The purpose of this test case is to ensure that the widget is injected correctly.

Preconditions:
1. Operators are not online on back office.
2. Internet connection.

3. Widget must be injected in site.

#: Step actions: Expected Results:

1 Visit an URL where the snippet is injected. Widget’s UI is
displayed correctly
(request form).

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: None

Keywords: None

Test Case WSTC-OCVC-0300: Change widget state – Operator is not online and logs in after

Author: jgrilo

Summary:
The purpose of this test case is to ensure that the widget state changes when operator change
his state.

Preconditions:
1. Operator logs in sometime after accessing widget.

#: Step actions: Expected Results:

1 Visit an URL where the snippet is injected. Widget’s UI is
displayed correctly
(request form).

2 Operator logs in. Widget display as
WSTC-OCVC-0100

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0200

71

Keywords: None

Test Case WSTC-OCVC-0400: Change widget state – Operator online and logs out after

Author: jgrilo

Summary:
The purpose of this test case is to ensure that the widget state changes when operator change
his state.

Preconditions:
1. Operator logs out sometime after accessing widget.

#: Step actions: Expected Results:

1 Visit an URL where the snippet is injected. Widget’s UI is
displayed correctly
(request form).

2 Operator login. Widget display as
WSTC-OCVC-0200

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-0500: Request help – Operator is online – Message

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer can ask for help by chat to operators
correctly.

Preconditions:
1. At least one operator is online.

#: Step actions: Expected Results:

1 Select message input box Widget’s UI is
displayed correctly.

2 Input message Message is displayed
at input box.

3 Press “Enter” Message is sent as an
IM and displayed at
BO.
Message is received
by customer and
displayed.
At BO customer is
moved from “Online”
to “Requests
Pending”.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

72

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-0600: Call button – Show it

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can only call from browsers that
support WebRTC.

Preconditions:
1. At least one operator is online.
2. Browser supports WebRTC.

#: Step actions: Expected Results:

1 Access widget. “Call” button is
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-0700: Call button – Do not show it

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can only call from browsers that
support WebRTC.

Preconditions:
1. At least one operator is online.
2. Browser does not supports WebRTC.

#: Step actions: Expected Results:

1 Access widget. “Call” button is not
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-0800: Request help – Operator is online – Call

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer can ask for help by chat to operators
correctly.

Preconditions:

73

None

#: Step actions: Expected Results:

1 Click on “Call” button. Call window opens.
At BO customer is
moved from “Online”
to “Requests
Pending”.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0600

Keywords: None

Test Case WSTC-OCVC-0900: Request help – Operator is not online – Select contact type

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer can ask for help to operators correctly.

Preconditions:
None

#: Step actions: Expected Results:

1 Click on “Contact me by” dropdown Widget’s UI is
displayed correctly.

2 Select one contact method Input method is
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0200

Keywords: None

Test Case WSTC-OCVC-1000: Request help – Operator is not online – Form filled correctly

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer can ask for help to operators correctly.

Preconditions:
None

#: Step actions: Expected Results:

1 Fill request form correctly. Widget’s UI is
displayed correctly.

3 Press “Enter” or “Send Button”. Widget’s UI display
correctly.
At BO customer is
moved from “Online”
to “Requests
Pending”.

74

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0400

Keywords: None

Test Case WSTC-OCVC-1100: Request help – Operator is not online – Form filled correctly

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer cannot ask for help to operators if
form is not filled correctly.

Preconditions:
None

#: Step actions: Expected Results:

1 Fill request form incorrectly. Widget’s UI is
displayed correctly.

3 Press “Enter” or “Send Button”. Widget’s UI display
correctly and present
which fields are
incorrect.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: WSTC-OCVC-0400

Keywords: None

Test Case WSTC-OCVC-1200: Request help – Operator is not online – Phone number filling

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer cannot input an invalid phone
number.

Preconditions:
None

#: Step actions: Expected Results:

1 Select to be contacted by phone Widget’s UI is
displayed correctly.

2 Select phone input. Input UI displays
correctly.

3 Fill form with valid phone number. Value is displayed at
input.
Valid characters are:
Number;
‘+’ at the end of
string.

Execution type: Manual

75

Estimated exec.
duration (min):

Importance: Medium

Requirements: WSTC-OCVC-0400

Keywords: None

Test Case WSTC-OCVC-1300: Request help – Operator is not online – Phone number
incorrect filling

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer cannot input an invalid phone
number.

Preconditions:
None

#: Step actions: Expected Results:

1 Select to be contacted by phone Widget’s UI is
displayed correctly.

2 Select phone input. Input UI displays
correctly.

3 Fill form with invalid phone number. Invalid characters are
rejected.
Valid characters are:
Number;
‘+’ at the end of
string.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: WSTC-OCVC-0400

Keywords: None

Test Case WSTC-OCVC-1400: Send Message

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer can send messages to the operators.

Preconditions:
None.

#: Step actions: Expected Results:

1 Select message input box Widget’s UI is
displayed correctly.

2 Input message Message is displayed
at input box.

3 Press “Enter” Message is sent as an
IM and displayed at
BO.

76

Message is received
by customer and
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-1500: Escape characters

Author: jgrilo

Summary:
The purpose of this test case is to ensure that mal intended users cannot inject HTML or
scripts.

Preconditions:
None

#: Step actions: Expected Results:

3 Select an input field UI is displayed
correctly

4 Try to inject a script/HTML Message is displayed
on input field

5 Press “Enter” Characters on
message are
escaped.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0100 or WSTC-OCVC-0200

Keywords: None

Test Case WSTC-OCVC-1600: Open URLs – URL pointing outside the site

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can open received URLs.

Preconditions:
1. Customer have received an URL

#: Step actions: Expected Results:

1 Click on received URL New tab opens with
URL.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: WSTC-OCVC-0100

77

Keywords: None

Test Case WSTC-OCVC-1700: Open URLs – URL pointing inside the site

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can open previously received URLs.

Preconditions:
1. Customer have received an URL

#: Step actions: Expected Results:

1 Click on received URL Page reload to the
URL.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-1800: URL push

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers is redirected to URL automatically
when receive it if it points inside the site.

Preconditions:
1. Customer receive an URL that points inside the site.

#: Step actions: Expected Results:

1 Wait 5 seconds after receiving URL Page reload to the
URL.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: WSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-1900: Group messages

Author: jgrilo

Summary:
The purpose of this test case is to verify that messages sent by the same user on the same
minute are grouped.

Preconditions:
1. Customer has some messages on list.

#: Step actions: Expected Results:

1 Select chat’s input box. UI is displayed
correctly.

78

2 Input a message. Message is displayed
on the input box
correctly.

3 Press “Enter”. Message is sent and
displayed at widget.
Message is received
by operator and
displayed.

4 Repeat 2 and 3 several times. Messages on the
same minute append
payload to previous.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: WSTC-OCVC-0100

Keywords: None

6.1.5 Test Suite: Call window’s features
Test Case CSTC-OCVC-0100: Open call window

Author: jgrilo

Summary:
The purpose of this test case is to ensure that call window opens correctly.

Preconditions:
None

#: Step actions: Expected Results:

1 Access call window Window UI is
displayed correctly

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: WSTC-OCVC-0800

Keywords: None

Test Case CSTC-OCVC-0200: Open chat column

Author: jgrilo

Summary:
The purpose of this test case is to ensure that call window animations work correctly.

Preconditions:
Chat column is collapsed.

#: Step actions: Expected Results:

1 Click on “Expand/Collapse chat” Button UI displays.
Chat column opens
with previous
conversations.

Execution type: Manual

79

Estimated exec.
duration (min):

Importance: Medium

Requirements: CSTC-OCVC-0100

Keywords: None

Test Case CSTC-OCVC-0300: Close chat column

Author: jgrilo

Summary:
The purpose of this test case is to ensure that call window animations work correctly.

Preconditions:
Chat column is expanded.

#: Step actions: Expected Results:

1 Click on “Expand/Collapse chat” Button UI displays.
Chat column closes.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: CSTC-OCVC-0100

Keywords: None

Test Case CSTC-OCVC-0400: Send Message

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customer can send messages to the operators.

Preconditions:
None.

#: Step actions: Expected Results:

1 Select message input box Widget’s UI is
displayed correctly.

2 Input message Message is displayed
at input box.

3 Press “Enter” Message is sent as an
IM and displayed to
customer.
Message is received
by operator and
displayed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: CSTC-OCVC-0200

Keywords: None

80

Test Case WSTC-OCVC-0500: Escape characters

Author: jgrilo

Summary:
The purpose of this test case is to ensure that mal intended users cannot inject HTML or
scripts.

Preconditions:
None

#: Step actions: Expected Results:

3 Select an input field UI is displayed
correctly

4 Try to inject a script/HTML Message is displayed
on input field

5 Press “Enter” Characters on
message are
escaped.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: CSTC-OCVC-0400

Keywords: None

Test Case WSTC-OCVC-0600: Open URLs – URL pointing outside the site

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can open received URLs.

Preconditions:
1. Customer have received an URL

#: Step actions: Expected Results:

1 Click on received URL New tab opens with
URL.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: CSTC-OCVC-0200

Keywords: None

Test Case WSTC-OCVC-0700: Group messages

Author: jgrilo

Summary:
The purpose of this test case is to verify that messages sent by the same user on the same
minute are grouped.

Preconditions:
1. Customer has some messages on list.

#: Step actions: Expected Results:

81

1 Select chat’s input box. UI is displayed
correctly.

2 Input a message. Message is displayed
on the input box
correctly.

3 Press “Enter”. Message is sent and
displayed at widget.
Message is received
by operator and
displayed.

4 Repeat 2 and 3 several times. Messages on the
same minute append
payload to previous.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Low

Requirements: CSTC-OCVC-0400

Keywords: None

Test Case WSTC-OCVC-0800: Call operator

Author: jgrilo

Summary:
The purpose of this test case is to verify that customer can talk with operator by call.

Preconditions:
1. Customer is being answered by operator.
2. Browser supports WebRTC.

#: Step actions: Expected Results:

1 Click on “Call” button Call management
buttons display.
Operator is notified.

Execution type: Manual

Estimated exec.
duration (min):

Importance: High

Requirements: CSTC-OCVC-0100

Keywords: None

Test Case WSTC-OCVC-0900: End call

Author: jgrilo

Summary:
The purpose of this test case is to verify that customer can end a call.

Preconditions:
1. Operator answered the call request

#: Step actions: Expected Results:

82

1 Click on “End” button Call management
buttons are
removed.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: CSTC-OCVC-0800

Keywords: None

Test Case WSTC-OCVC-1000: Mute audio stream

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can mute and unmute his audio
stream correctly.

Preconditions:
1. Operator answered the call request.
2. Audio stream is unmuted.

#: Step actions: Expected Results:

1 Click on “Mute/Unmute” button. Button UI is updated.
Audio stream stops.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: CSTC-OCVC-0800

Keywords: None

Test Case WSTC-OCVC-1100: Unmute audio stream

Author: jgrilo

Summary:
The purpose of this test case is to ensure that customers can mute and unmute his audio
stream correctly.

Preconditions:
1. Operator answered the call request.
2. Audio stream is muted.

#: Step actions: Expected Results:

1 Click on “Mute/Unmute” button. Button UI is updated.
Audio stream starts.

Execution type: Manual

Estimated exec.
duration (min):

Importance: Medium

Requirements: CSTC-OCVC-0800

Keywords: None

83

