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Abstract 

In this paper we consider linear bilevel programming problems with multiple objective functions at the 

lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which 

is based on the search of efficient extreme solutions of an associated multiobjective linear problem with 

many objective functions. We also explore a heuristic procedure relying on the same principles. Although 

this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite 

effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A 

computational study is presented to evaluate the performance of the exact method and the heuristic 

procedure, comparing them with an exact and an approximate method proposed by other authors, using 

randomly generated instances. Our approach reveals interesting results in problems with few upper-level 

variables. 

 

Keywords: Multiple objective programming; Linear bilevel optimization; Semivectorial bilevel problem; 

Multiobjective simplex method.   

 

1 Introduction 

Bilevel programming is useful to model optimization problems with a hierarchical relation between 

two decision makers (the leader and the follower), who make decisions sequentially in a non-cooperative 

manner. The two decision makers control different sets of variables aiming to optimize their own objective 

functions. The leader commits to a strategy before the follower, who then optimizes his/her own objective 

function within the options restricted by the leader’s decision. However, the follower’s decision affects the 

leader's objective function value and even his/her feasible options, so the leader must anticipate the reaction 

of the follower. Sequential decision-making processes often appear in the management of decentralized 

organizations and policy making. For instance, in a road network design, the aim of the leader may be the 

minimization of investment and operational costs, but he/she has to incorporate in his/her decision the 

traffic pattern resulting from the travelers’ decisions, who want to minimize travel time, gasoline 

consumption, among other objectives (follower’s problem). Another common problem in the context of 

transportation policy is the toll-setting problem, where the upper level decision maker is an authority that 

wants to set tolls for a network of highways to maximize its revenues, while and the drivers (the lower-
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level decision makers) want to minimize their travel time and cost. Many practical applications in the 

energy sector have also been reported in the literature including, for instance, in electricity retail markets 

involving demand response: bilevel programs allow to capture the sequence of decisions regarding the 

price announcement by the electricity retailer (the leader, who wants to maximize profit) and the 

consumers’ reaction involving changes in the energy use to optimize cost and comfort (Alves and Antunes, 

2018). As these examples illustrate, the players may have multiple objective functions. For the interested 

reader, we refer to (Sinha, Malo and Deb, 2018) and (Alves, Antunes and Costa, 2019) for the description 

and references of different application areas using bilevel multiobjective models.   

Multiple objective functions add further theoretical, methodological and computational complexities 

to the (single-objective) bilevel problem (BP), which is an already difficult problem. The BP is strongly 

NP-hard even when all functions involved are linear (Dempe, 2002). Dealing with multiple objectives at 

the lower level is particularly challenging due to the existence of a set of lower-level efficient (Pareto 

optimal) solutions for each leader’s decision. Bilevel problems with a single objective function at the upper 

level and multiple objective functions at the lower level (BPMOLL) have also been called semivectorial 

bilevel problems.  

In this paper, we address the linear BPMOLL. A general-purpose exact method to solve this type of 

problems is proposed, which is based on the search of efficient extreme solutions of an associated 

multiobjective linear programming (MOLP) problem with many objective functions.  

1.1 Related literature on bilevel problems with multiple objective functions at the lower level 

The BPMOLL was firstly addressed by Bonnel (2006) and Bonnel and Morgan (2006), who provided 

first order necessary conditions to the problem in the former study and a penalty method in the latter one, 

considering weakly-efficient solutions at the lower level. Dempe and Mehlitz (2020) investigated the 

relationship between a (general) BPMOLL and its replacement by a scalar BP obtained by applying the 

weighted-sum scalarization to the multiobjective lower-level problem and interpreting the scalarization 

parameters (i.e., the weights) as new upper-level variables. Still considering weakly-efficient solutions, 

Ankhili and Mansouri (2009), Zheng and Wan (2011), Zheng, Chen and Cao (2014) and Ren and Wang 

(2016) proposed solution approaches based on penalty methods for the all linear BPMOLL, or at least the 

lower level is a MOLP problem.  

Calvete and Galé (2011) also addressed bilevel problems with MOLP lower-level problems. They 

proved that the feasible region of the BPMOLL (the inducible region) is given by the union of faces of the 

polyhedron defined by all constraints. Assuming that the upper-level objective function is quasiconcave, 

they concluded that there is an extreme point of this polyhedron that is the optimal solution to the problem. 

Both an enumerative exact algorithm and a genetic-based algorithm were proposed. The exact method (for 

the linear BPMOLL) is an extension of the k-th best algorithm by Bialas and Karwan (1984) for the single-

objective case. The method searches for extreme points of the constraint polyhedron until a feasible one is 

obtained, i.e., a solution that is efficient to the lower-level problem; since the algorithm computes an 
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ordered sequence of points, the first one that belongs to the inducible region solves the problem. Due to 

the well-known difficulties of exact methods in solving even medium-sized bilevel problems, a genetic 

algorithm was also proposed which explores extreme points by combining bases of the constraint 

polyhedron.  

Lv and Wan (2014) reformulated the linear BPMOLL as a nonlinear bilevel program, where the 

weighted-sum scalarization is used to aggregate the lower-level objective functions and the weights are 

variables comprised in the upper-level variable set. Then, an optimal-value-function approach was 

proposed to deal with the problem. 

All the aforementioned studies adopt the optimistic formulation of the BPMOLL, which assumes that 

the follower accepts any efficient solution of the lower-level problem. Therefore, solving the BPMOLL 

corresponds to optimizing the upper-level objective function over the inducible region, which is composed 

by the solutions that satisfy all the constraints and are efficient to the lower-level problem. The pessimistic 

formulation, which has been mainly discussed in the context of single-objective bilevel problems, assumes 

that the leader is risk-averse and prepares for the worst case. This means assuming that the follower 

chooses the worst solution to the leader among his/her efficient solution set (for each leader’s decision) 

and the aim of the leader is to optimize the upper-level objective function over this set of ‘worst’ solutions. 

The optimal pessimistic solution to the BPMOLL is even more difficult to calculate than the optimistic 

one. Other type of solutions can also give useful information to the leader about the risk he/she takes from 

a particular decision. A discussion on the assumptions and implications of optimistic vs. pessimistic 

approaches in BPMOLL was firstly presented in (Alves, Antunes and Carrasqueira, 2015). An overview 

of different solution concepts and perspectives of development in BPMOLL and BP with multiple 

objective functions at both levels are provided in (Alves, Antunes and Costa, 2019) and (Alves, Antunes 

and Costa, 2021). 

In the present work we consider the optimist formulation of the linear BPMOLL (LBPMOLL). Since 

the proposed approach relies on computing all efficient extreme solutions of an associated MOLP problem, 

a brief literature review of algorithms to generate the whole set of extreme efficient (or nondominated) 

points in general MOLP problems is presented in the next subsection. 

1.2 Vector-maximum algorithms in MOLP 

Although the development of algorithms to calculate all efficient extreme points of MOLP problems 

(vector-maximum algorithms) is longstanding, there are very few efficient software implementations 

reported in the literature. Evans and Steuer (1973) developed a multiobjective simplex method that finds 

the set of all efficient extreme solutions and the set of unbounded efficient edges for MOLP problems, 

which has a computer implementation called ADBASE. According to Schechter and Steuer (2005), 

ADBASE has been the dominant computer code for computing all efficient extreme points since its 

inception (in 1974) with more than 100 citations, and it has undergone several revisions over the years. 

Benson (1998) proposed an algorithm that works in the objective space, which computes all nondominated 
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extreme points of the MOLP problem. It employs an outer approximation technique, so only when the 

algorithm terminates the points in the approximation set are guaranteed to be nondominated. In (Benson, 

1998), the algorithm was tested in random problems with up to 3 objective functions, 20 variables and 15 

constraints. More recently, Rudloff, Ulus and Vanderbei (2017) proposed a parametric simplex algorithm 

than can be seen as a variant of the Evans-Steuer algorithm, but which does not aim to find the set of all 

efficient extreme solutions. In each iteration, only a subset of efficient nonbasic variables is chosen and, 

for each of these entering variables, only a single pivot is picked to determine the leaving variable. The 

proposed algorithm was implemented in Matlab and was compared with Benson’s algorithm, using the 

Matlab code bensolve (Löhne and Weißing, 2017); it was also compared with the Evans-Steuer algorithm, 

for which the authors developed a Matlab implementation to use the same test environment for the three 

algorithms. In the computational experiments using randomly generated problems with 4 objective 

functions, bensolve was more efficient than the other algorithms for the degenerate problems (with 10/30 

to 30/10 variables/constraints), but the Evans-Steuer algorithm was the best one for the non-degenerate 

problems (with 30/50 to 50/30 variables/constraints). 

It should be remarked that methods aiming to generate all efficient extreme points are difficult to 

implement and the computational burden to compute all these solutions may be severe, since the number 

of efficient extreme points increases significantly with the problem size. Developing an effective computer 

implementation of a vector-maximum method is a demanding task, because it requires an implementation 

from scratch involving the design of bookkeeping and backtracking schemes with several theoretical and 

numerical concerns (namely for degenerate bases). These implementations can hardly make use of 

commercial solvers as modules, unless LP subproblems are solved separately.  

1.3 Main contributions 

In this paper, we develop a general-purpose exact method to compute the optimistic optimal solution 

to the LBPMOLL, which explores vertices of the constraint polyhedron that are efficient to the lower-level 

problem. We call this method EEPSM – efficient extreme points search method. This method is based on 

the property that the optimal solution to the LBPMOLL is an efficient solution of an associated single-

level MOLP problem with many objective functions. This property will be stated and proved in this paper. 

The idea of vertex enumeration is shared with the work of Calvete and Galé (2011) but, while their 

algorithm works with infeasible solutions and stops when the first feasible solution is found, our approach 

works with feasible solutions only. Therefore, it can be interrupted at any moment, yielding a solution that 

may be non-optimal but which is surely feasible. Based on this principle, a local search heuristic procedure 

is also developed to deal with problems in which the complete vertex enumeration becomes impracticable. 

The heuristic ensures a local optimum solution, so we call it LOH - local optimum heuristic. The LOH can 

be further parameterized to define the extent of the neighborhood for the local search. 

A computational study is presented to evaluate the performance of the EEPSM and the LOH, comparing 

them with another two algorithms (one exact and one approximate) using randomly generated instances. 
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The comparison will be made with the algorithms of Calvete and Galé (2011), in our opinion the most 

representative and comprehensive approaches for LBPMOLL which have been implemented 

computationally and tested in a large number of instances. The other approaches proposed in the literature 

for LBPMOLL do not report on computational experiments, only providing very small illustrative 

examples, which are not suitable for algorithm assessment. Most of these examples are used by the 

different authors (Ankhili and Mansouri, 2009), (Zheng and Wan, 2011), (Zheng, Chen and Cao, 2014), 

(Lv and Wan, 2014), (Ren and Wang, 2016).  

Our main contribution in this work is a new exact method (EEPSM) for the LBPMOLL, a field with 

very few practical developments. This method is computationally interesting for problems with relatively 

few upper-level variables, since the number of objective functions of the associated single-level MOLP 

problem depends on the number of upper-level variables. This is the main limitation of the method. The 

development of the EEPSM required the development of an effective vector-maximum algorithm for 

MOLP problems. This is a further contribution of this work to the multiobjective optimization area.  

Another contribution is the heuristic procedure LOH based on the EEPSM, which has revealed its 

effectiveness in problems where the global optimum is difficult to guarantee within a reasonable 

computational time. The EEPSM and the LOH are compared with the k-th best algorithm and the genetic 

algorithm proposed by Calvete and Galé (2011), respectively.  

The rest of paper is organized as follows. Section 2 states the problem, notation and definitions. Section 

3 is devoted to the new exact method for LBPMOLL presenting: the fundamentals and the steps of the 

EEPSM; a numerical example comparing the search path of EEPSM and the k-th best algorithm; the main 

characteristics (advantages and disadvantages) of these two approaches. Section 4 presents the 

computational experiments, the comparison of the algorithms and discusses the results. Section 5 presents 

the heuristic procedure. Section 6 is devoted to its computational experiment, making comparisons of the 

LOH with: i) the EEPSM; ii) different LOH parameterizations; iii) the genetic algorithm of Calvete and 

Galé (2011). Conclusions are drawn in Section 7. 

2 Linear bilevel problems with multiple objectives at the lower level 

In this work, we focus on the Linear Bilevel Problem with Multiple Objective Functions at the Lower 

Level (LBPMOLL), considering that upper-level constraints only include upper-level variables. Let 

𝑥 ℝ
𝑛1   be the vector of upper-level variables and y ℝ

𝑛2   be the vector of lower-level variables; 𝐹(𝑥, 𝑦) 

is the upper-level objective function and 𝑓1(𝑥, 𝑦),⋯ , 𝑓𝑝(𝑥, 𝑦) are the p objective functions at the lower 

level. Since 𝑥 is a fixed vector whenever 𝑓1(𝑥, 𝑦),⋯ , 𝑓𝑝(𝑥, 𝑦) are optimized, these objective functions can 

be expressed in terms of 𝑦 only. The optimistic formulation is considered, which assumes that the follower 

is indifferent to the efficient solutions to the lower-level problem for a given 𝑥, i.e., the efficient solution 

that most benefits the upper-level objective function is taken. This is why the maximization at the upper 

level is formulated with respect to 𝑥 and 𝑦.  The LBPMOLL can be stated as follows: 
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max
𝑥,𝑦

   𝐹(𝑥, 𝑦) = 𝑐1𝑥 + 𝑑1𝑦 

s.t. 

 𝐴1𝑥 ≤ 𝑏1 

 𝑥 ≥ 0 

 𝑦 ∈ Ψ𝑒𝑓(𝑥) 

(1) 

 

where Ψ𝑒𝑓(𝑥) denotes the set of all efficient solutions to the multiobjective lower-level problem (2) for a 

given 𝑥, which we will denote by MOLL(𝑥): 

max
𝑦
 𝑓1(𝑦) = 𝑑1

2𝑦 

… 

max
𝑦
 𝑓𝑝(𝑦) = 𝑑𝑝

2𝑦 

 

s.t. 

 𝐴2𝑥 + 𝐵2𝑦 ≤ 𝑏2 

 𝑦 ≥ 0 

(2) 

 

In (1) - (2), 𝑐1 ℝ
𝑛1

, 𝑑1 ℝ
𝑛2

, 𝑑𝑗
2 ℝ

𝑛2, 𝑗 = 1,⋯ , 𝑝, 𝐴1 ∈ ℝ
𝑚1×𝑛1

,  𝑏1 ∈ ℝ
𝑚1

, 𝐴2 ∈ ℝ
𝑚2×𝑛1

, 

𝐵2 ∈ ℝ
𝑚2×𝑛2

 , 𝑏2 ∈ ℝ
𝑚2

 . 

Let 𝑆 denote the constraint region of the LBPMOLL and 𝑆(𝑥) is the feasible region of MOLL(𝑥) for 

a given 𝑥:        𝑆 = {(𝑥, 𝑦) ℝ
𝑛1
× ℝ

𝑛2
: 𝐴1𝑥 ≤ 𝑏1, 𝐴1𝑥 + 𝐵2𝑦 ≤ 𝑏2, 𝑥 ≥ 0, 𝑦 ≥ 0} , 

                     𝑆(𝑥) = {𝑦ℝ
𝑛2
: 𝐵2𝑦 ≤ 𝑏2 − 𝐴2𝑥, 𝑦 ≥ 0} . 

It is assumed that 𝑆 is nonempty and compact and, for each decision taken by the leader, the follower 

has some room to respond, i.e. 𝑆(𝑥) ≠ ∅ for each feasible 𝑥, and 𝑆(𝑥) is bounded. 

A solution 𝑦 ∈ 𝑆(𝑥) is efficient (Pareto optimal) to the MOLL(𝑥) if and only if there is no other 𝑦′ ∈

𝑆(𝑥) that dominates 𝑦, i.e., such that  𝑓𝑗(𝑦
′) ≥  𝑓𝑗(𝑦) for all 𝑗 = 1,⋯ , 𝑝 and  𝑓𝑗(𝑦

′) >  𝑓𝑗(𝑦)  for at least 

one 𝑗 = 1,⋯ , 𝑝.  A point 𝑧 ∈ ℝp on the objective function space corresponding to an efficient solution 𝑦,  

𝑧 = ( 𝑓1(𝑦),  𝑓2(𝑦),⋯ ,  𝑓𝑝(𝑦)), is called a nondominated point. 

The set of all efficient solutions to the MOLL(𝑥) is denoted by Ψ𝑒𝑓(𝑥) = {𝑦 ∈

𝑆(𝑥): 𝑦 is efficient to MOLL(𝑥)}. 

The feasible region of the LBPMOLL is called inducible region and is defined as 𝐼𝑅 =

{(𝑥, 𝑦)𝑆: 𝑦 ∈ Ψ𝑒𝑓(𝑥)}.  Solving (1) means finding a solution that maximizes the upper-level objective 

function 𝐹(𝑥, 𝑦)  over 𝐼𝑅. 

Some relevant properties of the LBPMOLL are: 

• The 𝐼𝑅 of the LBPMOLL is, in general, non-convex, as in the single-objective linear BP. 

• Since MOLL(𝑥) is a multiobjective linear problem, Ψ𝑒𝑓(𝑥) is the union of faces of 𝑆(𝑥) and it is 

connected (Ehrgott, 2005). 

• As in the single-objective linear BP with no upper-level constraints involving lower-level 

variables (i.e., with no coupling constraints), the 𝐼𝑅 of (1) is connected. This property is proved 
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in the next section, by showing the equivalence of 𝐼𝑅 with the efficient set of an associated MOLP 

problem. 

• The 𝐼𝑅 consists of the union of faces of the constraint region 𝑆 (Calvete and Galé, 2011); in the 

case of the formulation (1) with no coupling constraints, the 𝐼𝑅 is a set of connected faces because 

𝐼𝑅 is connected. However, these are not necessarily maximal faces, as it will be shown in the 

example below. 

• There is an extreme point (vertex) of 𝑆 that is an optimal solution to the LBPMOLL (Calvete and 

Galé, 2011). 

 

Example 1 

Consider the following illustrative example with one upper-level variable (𝑥) and two lower-level 

variables (𝑦1, 𝑦2): 

𝑚𝑎𝑥  𝐹(𝑥, 𝑦) = 𝑥 + 2𝑦1 − 𝑦2  

s.t.    

2 ≤ 𝑥 ≤ 5  

𝑚𝑎𝑥  𝑓1 (𝑦) = 𝑦1 + 2𝑦2 

𝑚𝑎𝑥  𝑓2(𝑦) = − 𝑦1 + 𝑦2  

s.t. 

  𝑦1 ≤ 6 

  𝑦1 + 𝑦2 ≤ 10 − 𝑥 

  𝑦2 ≤ 𝑥 

  5𝑦1 − 2𝑦2 ≥ 0 

𝑦1, 𝑦2 ≥  0 

 

In order to better illustrate the behavior of the bi-objective problem at the lower level, Figure 1 shows 

the feasible region and the efficient solutions of MOLL(𝑥) for three specific values of 𝑥: 𝑥 =2, 𝑥 =3 and 

𝑥 =4.5. Consider, for instance, the graph for 𝑥 =2: 𝑆(2) = {𝑦1 ≤ 6, 𝑦1 + 𝑦2 ≤ 8, 𝑦2 ≤ 2, 5𝑦1 − 2𝑦2 ≥

0 , 𝑦1, 𝑦2 ≥ 0}; the solution that optimizes individually 𝑓1  is P1, where (𝑦1, 𝑦2)=(6, 2) and the solution 

that optimizes individually 𝑓2  is P2, where (𝑦1, 𝑦2)=(0.8, 2); thus, the set of efficient solutions of 

MOLL(2) is the line segment from P1 to P2, which belongs to the boundary of the constraint 𝑦2 ≤ 𝑥 of 

S. For MOLL(3) a similar situation occurs: the set of efficient solutions is a line segment on the same face 

of 𝑆. For MOLL(4.5), the constraint 𝑦2 ≤ 𝑥 is redundant; P1P2 is the point that optimizes simultaneously 

𝑓1  and 𝑓2 , which is given by the intersection of 𝑦1 + 𝑦2 = 10 − 𝑥  (with  𝑥 = 4.5) and 5𝑦1 − 2𝑦2 = 0. 

Thus, only P1P2 is efficient for MOLL(4.5), where (𝑦1, 𝑦2)=(1.571, 3.929). 

   

Figure 1 - MOLL(𝑥) for =2, 𝑥 =3 and 𝑥 =4.5 of the Example 1. 
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Figure 2 shows the constraint region 𝑆 in the (𝑥, 𝑦1, 𝑦2) space and, in blue (darker) color, 𝐼𝑅. Note that, 

in Figure 1, [P1, P2] for 𝑥 =2 is the line segment [AB] in Figure 2, but P1 and P2 for 𝑥 =3 and for 𝑥 =4.5 

do not correspond to vertices of 𝑆. As can be observed in Figure 2, the 𝐼𝑅 consists of the union of two 

faces of the constraint region 𝑆, but only one is maximal, [ABC], the other being the line segment [CD]. 

The vertices of 𝐼𝑅 have the following coordinates (𝑥, 𝑦1, 𝑦2) and upper-level objective values: 𝐴 =

(2, 6, 2), 𝐹(𝐴)= 12; 𝐵 = (2, 0.8, 2), 𝐹(𝐵)=1.6; 𝐶 = (4.167, 1.667, 4.167), 𝐹(𝐶)=3.333; 𝐷 =

(5, 1.429, 3.571), 𝐹(𝐷)=4.286. Thus, the optimal solution to the bilevel problem is the point A with 

𝐹(𝐴)= 12. 

 
 

Figure 2 – The constraint region 𝑆 (gray color) and the inducible region 𝐼𝑅 (blue color) of Example 1. 

 

3 An exact algorithm based on the search for extreme points of IR 

In this work, we propose an exact method (called EEPSM) to compute the optimal solution(s) to the 

LBPMOLL or, at least, a local optimum in the case of the heuristic procedure that will be presented in 

section 4. Both techniques use an associated MOLP problem with many objective functions, whose 

efficient solutions are feasible solutions to the bilevel problem (i.e., solutions belonging to IR). In the exact 

method, all extreme points (vertices) of the IR are computed, selecting from this set the one that presents 

the maximum 𝐹(𝑥, 𝑦). So, an algorithm for computing all efficient extreme points of a MOLP problem 

(following the general scheme of a vector-maximum algorithm described in (Steuer, 1986)) has been 

developed to apply to this MOLP problem.  

This method will be compared with another exact method, the k-th best algorithm proposed by Calvete 

and Galé (2011), which goes through vertices by decreasing order of 𝐹 until the first feasible vertex is 

found. 

The k-th best algorithm (Calvete and Galé, 2011) for the LBPMOLL builds on the algorithm developed 

by Bialas and Karwan (1984) for the linear BP by searching the vertices of 𝑆 and assessing whether they 

belong to 𝐼𝑅. This test involves solving a linear programming problem using Benson’s technique (Benson, 

1978) to determine whether a solution (𝑥′, 𝑦′) is efficient to the multiobjective problem MOLL(𝑥′). The 
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algorithm starts by computing an optimal solution to the high-point relaxation problem, which consists of 

optimizing the upper-level objective function over 𝑆. If this solution belongs to the 𝐼𝑅, then it is an optimal 

solution to the LBPMOLL. Otherwise, a set Q of its adjacent basic solutions in 𝑆 is constructed. The 

algorithm proceeds by assessing the solution in Q with the best F-value. If this solution belongs to the 𝐼𝑅, 

then the algorithm stops; else this solution is removed from Q and its adjacent basic solutions in 𝑆 with 

worse F-value are added to Q. This set is progressively examined by selecting the best F-value solution 

until it belongs to 𝐼𝑅. As the algorithm computes a set of non-improving F-value solutions, the first 

solution found belonging to 𝐼𝑅 is the optimal one, since a path between the vertices of 𝑆 exists. This search 

strategy implies that the performance of the algorithm heavily depends on whether the first solution 

computed is close or far from the optimal solution to the LBPMOLL.  

3.1 Fundamentals of the EEPSM 

Consider the following MOLP problem with (𝑝 + 𝑛1 + 1) objective functions, which is associated 

with the feasible region of the LBPMOLL: 

𝑚𝑎𝑥    𝑓𝑗(𝑦) = 𝑑𝑗
2𝑦             𝑗 = 1,⋯ , 𝑝 

𝑚𝑎𝑥    𝑥𝑖                               𝑖 = 1,⋯ , 𝑛1 

𝑚𝑎𝑥    ∑ (−𝑥𝑖
𝑛1
𝑖=1 )                                

s.t. 

 

𝐴1𝑥 ≤ 𝑏1

𝐴2𝑥 + 𝐵2𝑦 ≤ 𝑏2

𝑥, 𝑦 ≥ 0
} (𝑥, 𝑦) ∈ 𝑆 

(3) 

The following proposition is an extension for the LBPMOLL of the Fülop’s theorem (Fülöp, 1993) and 

the theorem presented in (Alves, Dempe and Júdice, 2012), both for the BP with only one objective 

function at the lower level. 

 

Proposition 1: A solution  (𝑥′, 𝑦′) belongs to the 𝐼𝑅 of the LBPMOLL (1) if and only if (𝑥′, 𝑦′) is an 

efficient solution to the MOLP problem (3). 

Proof. 

Let 𝐸 denote the set of all efficient solutions to the MOLP problem (3). 

(a) Let us first prove that (𝑥′, 𝑦′) ∈ 𝐼𝑅 ⇒ (𝑥′, 𝑦′) ∈ 𝐸. 

By definition of 𝐼𝑅, (𝑥′, 𝑦′) ∈ 𝐼𝑅 ⟺ (𝑥′, 𝑦′) ∈ 𝑆  ⋀  𝑦′ ∈ Ψ𝑒𝑓(𝑥
′), which means that 𝑦′ is 

efficient to the lower-level multiobjective problem (2) with 𝑥 = 𝑥′, i.e., MOLL(𝑥′). 

Let us suppose that (𝑥′, 𝑦′) ∉ 𝐸. Therefore, there is another (𝑥", 𝑦") ∈ 𝐸 that dominates (𝑥′, 𝑦′) 

in (3), i.e., the following conditions hold, with at least one strict inequality among the 𝑝 + 𝑛1 + 1 

inequalities: 

{
 
 

 
 

𝑑𝑗
2𝑦" ≥ 𝑑𝑗

2𝑦′ 𝑗 = 1,⋯ , 𝑝        (a. 1)

𝑥"𝑖 ≥ 𝑥′𝑖 𝑖 = 1,⋯ , 𝑛1        (𝑎. 2)

∑(−𝑥"𝑖)

𝑛1

𝑖=1

≥ ∑(−𝑥′𝑖)               

𝑛1

𝑖=1

       (𝑎. 3)
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If conditions (a.2) are satisfied, then 

  ∑ 𝑥"𝑙
𝑛1
𝑙=1,𝑙≠𝑖 ≥ ∑ 𝑥′𝑙   

𝑛1
𝑙=1,𝑙≠𝑖      , 𝑖 = 1,⋯ , 𝑛1      (𝑎. 4) 

(𝑎. 4) together with (𝑎. 3) leads to 

             ∑ (−𝑥"𝑙)
𝑛1
𝑙=1 + ∑ 𝑥"𝑙

𝑛1
𝑙=1,𝑙≠𝑖 ≥ ∑ (−𝑥′𝑙)  + 

𝑛1
𝑙=1 ∑ 𝑥′𝑙   

𝑛1
𝑙=1,𝑙≠𝑖  ,       𝑖 = 1,⋯ , 𝑛1 

⟺   −𝑥"𝑖 + ∑ (𝑥"𝑙 − 𝑥"𝑙)
𝑛1
𝑙=1,𝑙≠𝑖 ≥ −𝑥′𝑖  + ∑ (𝑥′𝑙 − 𝑥

′
𝑙),       𝑖 = 1,⋯ , 𝑛1

𝑛1
𝑙=1,𝑙≠𝑖  

       ⟺ −𝑥"𝑖 ≥ −𝑥
′
𝑖 ,        𝑖 = 1,⋯ , 𝑛1 

      ⟺ 𝑥"𝑖 ≤ 𝑥
′
𝑖 , 𝑖 = 1,⋯ , 𝑛1                  (𝑎. 5)                                                                   

                By (𝑎. 2) and (𝑎. 5),  𝑥"𝑖 = 𝑥
′
𝑖, 𝑖 = 1,⋯ , 𝑛1. 

                Therefore, the strict inequality among (a. 1), (a. 2) and (a. 3) must be in (a. 1), i.e.: 𝑑𝑗
2𝑦" >

𝑑𝑗
2𝑦′ for some 𝑗 ∈ {1,⋯ , 𝑝}. Hence, since 𝑦" ∈ 𝑆(𝑥′) because 𝑥" = 𝑥′, then 𝑦" dominates 𝑦′ in 

MOLL(𝑥′), i.e. 𝑦′ ∉ Ψ𝑒𝑓(𝑥
′), which contradicts the hypothesis that (𝑥′, 𝑦′) ∈ 𝐼𝑅.  Therefore, (𝑥′, 𝑦′) ∈

𝐸. 

(b) Let us now prove that (𝑥′, 𝑦′) ∈ 𝐸 ⇒ (𝑥′, 𝑦′) ∈ 𝐼𝑅. 

Let us suppose that (𝑥′, 𝑦′) ∉ 𝐼𝑅. Since  (𝑥′, 𝑦′) ∈ 𝑆, then (𝑥′, 𝑦′) ∉ 𝐼𝑅 only if 𝑦′ ∉ Ψ𝑒𝑓(𝑥
′), 

i.e., there is another 𝑦" ∈ 𝑆(𝑥′) such that 𝑑𝑗
2𝑦" ≥ 𝑑𝑗

2𝑦′ for all 𝑗 = 1,⋯ , 𝑝 and 𝑑𝑗
2𝑦" > 𝑑𝑗

2𝑦′ for 

at least one 𝑗.  

Hence, (𝑥′, 𝑦") dominates (𝑥′, 𝑦′) in the MOLP problem (3), i.e., (𝑥′, 𝑦′) ∉ 𝐸, which contradicts 

the hypothesis.  Therefore, (𝑥′, 𝑦′) ∈ 𝐼𝑅.        

 

Based on Proposition 1, the following Corollary can be stated for the LBPMOLL. 

Corollary 1 – An optimal solution to the LBPMOLL can always be found in an efficient extreme point of 

(3).  

This corollary is valid because 𝐹(𝑥, 𝑦) is  a linear function, thus an optimistic optimal solution can always 

be found in a vertex of 𝐼𝑅 (Calvete and Galé, 2011), i.e., a vertex of  𝐸. 

 

Before describing the algorithm for the LBPMOLL, let us present some definitions and foundations of 

general MOLP problems (Steuer, 1986), (Ehrgott, 2005), (Antunes, Alves and Clímaco, 2016) that can be 

applied to (3). For the sake of simplicity, let us consider that 𝒙 denotes the vector of all variables of the 

problem and 𝐶𝒙 are the objective functions of the MOLP problem, where 𝐶 is the matrix of the objective 

function coefficients with 𝜚 rows, as many as the number of objective functions (𝜚 = 𝑝 + 𝑛1 + 1 in (3)). 

Like in (3), 𝑆 denotes the feasible region of the MOLP problem. 

Let 𝜆 ∈ ℝ>0
𝜚

. The weighted-sum linear program (LP) associated with 𝜆 is: max {𝜆𝐶𝒙 | 𝒙 ∈ 𝑆}.  

Let ℬ be a basis of 𝑆. 
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Let 𝑊 denote the reduced cost matrix for the MOLP problem associated with ℬ: 𝑊 = Cℵ − Cℬℬ̅
−1ℵ̅, 

where Cℬ and Cℵ are the basic and nonbasic columns of 𝐶, respectively, and ℬ̅, ℵ̅ are the corresponding 

columns of the constraint matrix of 𝑆. 

• ℬ is an efficient basis of the MOLP problem if and only if ℬ is an optimal basis of the weighted-

sum LP for some 𝜆 ∈ ℝ>0
𝜚
. 

• An efficient basis ℬ is always associated with an efficient extreme point of the MOLP problem. 

However, an efficient extreme point may be associated with several efficient bases (in the case 

of degeneracy).  

• Two bases ℬ and ℬ’ are called adjacent if one can be obtained from the other by a single pivot 

step. 

• Let ℬ be an efficient basis. Then, 𝒙𝑖 is an efficient nonbasic variable with respect to (w.r.t.) 

ℬ if there is a 𝜆 ∈ ℝ>0
𝜚

 such that 𝜆𝑊 ≤ 0 and 𝜆𝑊∙𝑖 = 0, where 𝑊∙𝑖 is the column of 𝑊 

corresponding to 𝒙𝑖. 

• Let ℬ be an efficient basis and 𝒙𝑖 be an efficient nonbasic variable. Then, any feasible pivot 

operation from ℬ (including any with negative pivot element whose associated basic variable 

is degenerate) is an efficient pivot operation leading to an adjacent efficient basis ℬ’. 

• Let ℬ be any efficient basis and 𝒙̅ be an efficient extreme point. Then, starting from ℬ, it is 

always possible to reach 𝒙̅  by performing only efficient pivots (Schechter and Steuer, 2005). 

Therefore, if all efficient extreme points of (3) – vertices of 𝐸 – are explored and the one with the best 

𝐹(𝑥, 𝑦) is selected, then the optimal solution to the LBPMOLL is found. If there are more than one optimal 

solution, all of them can be known. The algorithm may start at any efficient basic solution of (3), as there 

is always a path of adjacent efficient bases between any two vertices of 𝐸. 

3.2 The EEPSM algorithm 

The efficient extreme points search method – EEPSM – to compute the optimal solution(s) to the 

LBPMOLL relies on Proposition 1. We have developed a vector-maximum algorithm to compute all 

efficient extreme points of the MOLP problem (3).  

In order to assure that an optimal solution to the LBPMOLL is obtained, the algorithm must compute 

all efficient extreme points of (3). So, an algorithm intended to compute only a subset, as the parametric 

simplex algorithm of Rudloff, Ulus and Vanderbei (2017), does not suit this purpose. Moreover, searching 

for all nondominated extreme points in the objective space, as Benson’s method (Benson, 1998), may not 

be sufficient to compute an optimal solution to the LBPMOLL. Each extreme point 𝒙 = (𝑥, 𝑦) can be 

mapped by the objective functions of the MOLP problem either into an extreme or a non-extreme 

nondominated point of the image set (Dauer and Liu, 1990). In addition, for a given extreme nondominated 

point there may exist several efficient solutions (in the decision variable space) and, although they are 

indifferent for the follower, they may have different values for the leader’s objective function 𝐹(𝑥, 𝑦). 
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The algorithm we have developed to solve problem (3) is a variant of the Evans-Steuer algorithm, 

which searches for all efficient extreme points of bounded MOLP problems. The general scheme is similar 

to the one described in (Steuer, 1986) for a vector-maximum algorithm. All efficient bases are scanned 

including the degenerate ones. Having the main concern of being computationally efficient, the procedure 

employed to check the efficiency of nonbasic variables does not require solving an LP problem for each 

nonbasic variable. Although the description of the algorithm presented below refers to problem (3), this 

vector-maximum algorithm has a generic application and can be used for any bounded MOLP problem. 

In that case, the algorithm returns the set of all efficient extreme points rather than only the best solutions 

according to 𝐹(𝑥, 𝑦). 

 

EEPSM Algorithm 

Notation:  ℰ   –  set of efficient extreme points of (3); initially ℰ = ∅. 

 ℒℬ – list of efficient bases; initially ℒℬ = ∅. 

 𝑘  –    index of the basis in ℒℬ under analysis. 

 𝑋𝑌∗ – set of incumbent solutions (𝑥∗, 𝑦∗) to the LBPMOLL, optimal at the end of the algorithm. 

 𝐹∗– value of the upper-level objective function in any solution (𝑥∗, 𝑦∗) ∈ 𝑋𝑌∗. 

   

Step 1. Solve a weighted-sum LP of (3) with 𝜆 ∈ ℝ>0
𝜚

 to obtain a first basic efficient solution of (3). 

Let ℬ1 be the basis obtained and (𝑥1, 𝑦1) be the efficient solution of (3) associated with ℬ1. 

Insert (𝑥1, 𝑦1) into ℰ and insert ℬ1 into ℒℬ (by storing an encoding of the indices of the basic 

variables). 

Initialize the set of incumbent solutions: 𝑋𝑌∗  = {(𝑥1, 𝑦1)};  𝐹∗ = 𝐹(𝑥1, 𝑦1). 

𝑘 ← 1    

Step 2. For all nonbasic variable 𝒙𝑖 (which can be either an 𝑥 or 𝑦 variable) w.r.t.  ℬ𝑘, check whether 

𝒙𝑖 is an efficient nonbasic variable. If so, determine all feasible pivots (more than one only if the 

basis is degenerate) and each corresponding basis ℬ (characterized by its basic variables) resulting 

from entering 𝒙𝑖 into the basis. If ℬ ∉ ℒℬ, then ℒℬ ← ℒℬ⋃{ ℬ}. 

Step 3. 𝑘 ← 𝑘 + 1    

If |ℒℬ|  < 𝑘, then all efficient bases have been analyzed – go to Step 4.  

Otherwise, choose the 𝑘th basis in ℒℬ: ℬ𝑘. 

Compute (𝑥𝑘 , 𝑦𝑘) associated with the basis ℬ𝑘. If  (𝑥𝑘, 𝑦𝑘) ∉ ℰ , then ℰ ← ℰ ∪ {(𝑥𝑘 , 𝑦𝑘)}.  

Update the set of incumbent solutions to the LBPMOLL: 

If  𝐹(𝑥𝑘 , 𝑦𝑘) ≥ 𝐹∗ then 

     If  𝐹(𝑥𝑘 , 𝑦𝑘) > 𝐹∗ then 

                  𝑋𝑌∗  = {(𝑥𝑘 , 𝑦𝑘)};  𝐹∗ = 𝐹(𝑥𝑘 , 𝑦𝑘). 

    Else 

              𝑋𝑌∗  = 𝑋𝑌∗ ∪ {(𝑥𝑘, 𝑦𝑘)}.       



   

 

 

14 
 

 

 

Go to Step 2. 

Step 4. Return 𝑋𝑌∗with all the optimal solutions found for the LBPMOLL. 𝐹∗ is the optimal value of the 

upper-level objective function. 

 

In Step 1, any 𝜆 ∈ ℝ>0
𝜚

 can be used. In our implementation, we have considered a central vector with 

equal weights for all the 𝜚 = 𝑝 + 𝑛1 + 1 objective functions, i.e., 𝜆 = (
1

𝜚
,
1

𝜚
, ⋯ ,

1

𝜚
). 

In Step 2, we need a method to check whether a nonbasic variable 𝒙𝑖 is efficient w.r.t. the basis under 

analysis ℬ𝑘 .  There are several tests for this purpose, almost all requiring to solve an LP subproblem for 

each 𝒙𝑖. The Zionts-Wallenius routine (Zionts and Wallenius, 1980) enables to determine the efficiency 

status of all nonbasic variables in one extended run instead of solving one individual subproblem for each 

𝒙𝑖. However, according to our practical experience, this routine has difficulties in determining that status 

for all variables in some problems, particularly problems with many objective functions. Therefore, we 

have considered the following procedure: 

 Let 𝑊 be the reduced cost matrix (with 𝜚 rows) associated with ℬ𝑘. 

(i) If, for a given 𝒙𝑖, all elements of the column 𝑊∙𝑖 are equal to 0, then 𝒙𝑖 is efficient (in this 

case, the nonbasic variable will lead to an efficient solution corresponding to the same 

nondominated point as the current one). 

(ii) Exclude from 𝑊 the columns of 𝒙𝑖 that received the status of efficient in (i) and apply the 

Zionts-Wallenius routine (as described in (Steuer, 1986)), which employs a pivoting 

iterative scheme to classify the variables as efficient or non-efficient from an initial status 

of unknown. If the routine does not change the status of some variable(s) during a 

predefined number of iterations, then we force it to stop. 

(iii) In general, all nonbasic variables are classified in (ii) but, if there is still any nonbasic 𝒙𝑖 

whose status remain unknown, then the Isermann’s test (Isermann, 1977) is applied to 𝒙𝑖 

to determine its efficient/non-efficient status. 

The algorithm only explores different efficient bases. However, the verification whether  (𝑥𝑘 , 𝑦𝑘) ∉ ℰ 

is necessary in Step 3 because (𝑥𝑘 , 𝑦𝑘) may already exist in ℰ if ℬ𝑘 is a degenerate basis, and only 

different efficient solutions are saved in ℰ.  

Step 3 guarantees that all alternative best solutions are retained, so that the algorithm returns, in Step 

4, all alternative extreme optimal solutions to the LBPMOLL. 

The algorithm is guaranteed to finish because the number of bases 𝑆 is finite and, in Step 2, only 

different bases (ℬ) enter into the list of efficient bases for further analysis (If ℬ ∉ ℒℬ, then ℒℬ ←

ℒℬ⋃{ ℬ}).  

 

In the computational implementation of this algorithm, the bounded-variable simplex method was used. 

So, the basis encoding includes not only the indexes of the basic variables but also a record of the nonbasic 
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variables at the upper bound. Also, the Zionts-Wallenius routine in (ii) and the additional test in (iii) to 

check the efficiency status of nonbasic variables were adapted to deal with both variables at the lower 

bound (zero) and at the respective upper bounds. The algorithm was implemented in Delphi® (by 

Embarcadero), using the free solver lpsolve to obtain the first efficient solution in Step 1. It also takes 

advantage of the lpsolve subroutines to obtain the necessary data for determining the feasible pivots and 

the 𝑊 matrix in Step 2, and to jump directly to a given basis in Step 3, calculating the respective solution. 

To have a first evaluation of the vector-maximum algorithm’s performance, we have tested it to 

calculate all efficient extreme solutions in general MOLP problems. The results of these experiments are 

presented in the Appendix, revealing that the number of efficient extreme points grows very fast with the 

number of objective functions. The resolution of (3) is, therefore, challenging. 

All computational times reported throughout this paper refer to a computer Intel Core i7-7700 CPU 3.6 

GHz, 64 GB RAM. 

3.3 Numerical Example 

Let us illustrate the use of the EEPSM in small numerical LBPMOLL example. In order to compare 

the search path with another exact method, we will start by showing the application of the k-th best 

algorithm (Calvete and Galé, 2011) in the same problem. As referred to above, this method searches for 

extreme solutions of 𝑆 by decreasing order of 𝐹(𝑥, 𝑦) and, for each one, determines whether that extreme 

solution is efficient to the lower-level problem; the first efficient solution found is optimal to the bilevel 

problem. The Benson’s test is employed to check the efficiency of a given solution (𝑥′, 𝑦′). Considering 

maximizing objective functions (as stated above in the definition of the LBPMOLL), this test consists of 

maximizing ∑ 𝑧𝑗
𝑝
𝑗=1  subject to {𝑦 ∈ 𝑆(𝑥′): 𝑑𝑗

2𝑦 − 𝑧𝑗 = 𝑑𝑗
2𝑦′, 𝑗 = 1,⋯ , 𝑝; ∀𝑧𝑗 ≥ 0}; if the optimal 

objective value is equal to zero, then the solution is efficient.   

Let us consider the problem of Example 1. This problem has the particularity of having several 

degenerate bases. The set 𝑆 is defined by the following constraints (the slack/surplus of each constraint is 

in brackets): 

  𝑦1 ≤ 6   (𝑠1) 

  𝑥 + 𝑦1 + 𝑦2 ≤ 10 (𝑠2) 

  −𝑥+𝑦2 ≤ 0  (𝑠3) 

  5𝑦1 − 2𝑦2 ≥ 0  (𝑠4) 

  𝑥 ≥ 2   (𝑠5) 

  𝑥 ≤ 5   (𝑠6) 

𝑦1, 𝑦2 ≥  0 

Let 𝒙 denote (𝑥, 𝑦1, 𝑦2), 𝑓 = (𝑓1, 𝑓2) and 𝑛𝑏𝑣 is the set of nonbasic variables for a given basis. 

 

• k-th best algorithm  

①   Optimize 𝐹(𝒙) = 𝑥 + 2𝑦1 − 𝑦2 over 𝑆, which leads to point E (see Figure 3):  

𝒙 = (4, 6, 0), 𝑓 = (6,−6), 𝐹 =16. 
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Check the efficiency of E w.r.t. the lower-level problem MOLL(𝑥 = 4) by solving the 

Benson’s test problem → E is non-efficient. 

Generate all bases adjacent to E and respective solutions (arrows 1 in Figure 3): 

o point G with 𝒙 = (5, 5, 0), 𝑓 = (5,−5),  𝐹 =15 

o point H with 𝒙 = (2, 6, 0), 𝑓 = (6,−6), 𝐹 =14 

o point A (1st basis) with 𝒙 = (2, 6, 2), 𝑓 = (10,−4), 𝐹 =12,   𝑛𝑏𝑣 = {𝑠1, 𝑠2, 𝑠5} 

o point A (2nd basis),  𝑛𝑏𝑣 = {𝑠1, 𝑠2, 𝑠3}  

②   Choose the solution with best 𝐹(𝒙) among {G, H, A} →  point G with 𝐹 =15. 

Check the efficiency of G w.r.t. the lower-level problem MOLL(𝑥 = 5)  →  G is non-

efficient. 

Generate all bases adjacent to G and respective solutions with 𝐹(𝒙) ≤ 15  (arrows 2. In 

Figure 3): 

o point J (1st basis) with 𝒙 = (5, 0, 0), 𝑓 = (0, 0), 𝐹 =5,   𝑛𝑏𝑣 = {𝑦1, 𝑦2, 𝑠6} 

o point J (2nd basis),  𝑛𝑏𝑣 = {𝑦2, 𝑠4, 𝑠6}  

o point D with 𝒙 = (5, 1.429, 3.571), 𝑓 = (8.571, 2.143), 𝐹 =4.286 

③   Choose the solution with best 𝐹(𝒙) among {H, A, J, D} → point H with  𝐹 =14. 

Check the efficiency of H w.r.t the lower-level problem MOLL(𝑥 = 2)  →  H is non-efficient. 

Generate all bases adjacent to H and respective solutions with 𝐹(𝒙) ≤ 14 which are different 

from the already known bases (arrows 3. in Figure 3): 

o point I (1st basis) with 𝒙 = (2, 0, 0), 𝑓 = (0, 0), 𝐹 =2,   𝑛𝑏𝑣 = {𝑦1, 𝑦2, 𝑠5}  

o point I (2nd basis),   𝑛𝑏𝑣 = {𝑦2, 𝑠4, 𝑠5}  

o point A (3rd basis),   𝑛𝑏𝑣 = {𝑠1, 𝑠3, 𝑠5}  

④   Choose the solution with best 𝐹(𝒙) among {A, J, D, I}  → point A with  𝐹 =12. 

Check the efficiency of A w.r.t. the lower-level problem MOLL(𝑥 = 2)  → A is efficient.  

Thus, A is an optimal solution to the LBPMOLL. 

 The k-th best algorithm searched for a total of 11 bases. This process is illustrated in Figure 3.  

 
Figure 3 – Search path of the k-th best algorithm for the problem of Example 1. 
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• EEPSM  

The MOLP problem (3) for this example has 𝜚 = 𝑝 + 𝑛1 + 1 = 4  objective functions to be 

optimized over 𝑆. All the efficient extreme solutions to this MOLP problem are computed. 

Although we consider equal weights for all the objective functions to begin the algorithm, the 

starting point is indifferent, as well as the order the algorithm follows to search for efficient 

extreme points, since all efficient extreme points must be visited. 

- Solve a weighted-sum LP of (3) with 𝜆 = (
1

4
,
1

4
,
1

4
,
1

4
), which leads to point C: 𝒙 =

(4.1667, 1.667, 4.1667), 𝐹 =3.333.  The set of efficient extreme points is ℰ ={C} 

- Determine the efficient bases of (3) resulting from entering into the basis each of the efficient 

nonbasic variables w.r.t. the basis of C, say ℬ0→  4 bases are generated, {ℬ1, ℬ2, ℬ3, ℬ4}  (see 

Figure 4). 

- Compute the solution corresponding to ℬ1:  

o point B with 𝒙 = (2, 0.8, 2), 𝑓 = (4.8, 1.2), 𝐹 =1.6 

ℰ ={C, B} 

Determine new efficient bases adjacent to ℬ1 →  1 new basis is generated, ℬ5, which is 

added to the list of bases to be analyzed. 

- Compute the solution corresponding to ℬ2:  

o point D with 𝒙 = (5, 1.429, 3.571),𝑓 = (8.571, 2.143), 𝐹 =4.286 

ℰ ={C, B, D} 

There are no new efficient bases adjacent to ℬ2 

- Compute the solution corresponding to ℬ3:  

o point A (1st basis found) with 𝒙 = (2, 6, 2), 𝑓 = (10,−4), 𝐹 =12,  𝑛𝑏𝑣 = {𝑠1, 𝑠2, 𝑠3} 

ℰ ={C, B, D, A} 

There are no new efficient bases adjacent to ℬ3 

- Compute the solution corresponding to ℬ4:  

o point A (2nd basis) , 𝑛𝑏𝑣 = {𝑠2, 𝑠3, 𝑠5} 

There are no new efficient bases adjacent to ℬ4 

- Compute the solution corresponding to ℬ5:  

o point A (3rd basis),  𝑛𝑏𝑣 = {𝑠1, 𝑠3, 𝑠5} 

There are no new efficient bases adjacent to ℬ5 

- There are no more bases to analyze, so the algorithm finishes with ℰ ={C, B, D, A} the set of all 

feasible extreme points of the LBPMOLL. The optimal solution is the point in ℰ with best F, i.e., 

point A with  𝐹 =12. 

 The EEPSM searched for a total of 6 bases. This process is illustrated in Figure 4.  
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Figure 4 – Search path of the EEPSM for the problem of Example 1. 

3.4 Main characteristics of the methods - similarities and differences 

A first critical assessment of the methods – the EEPSM and the k-th best algorithm – can be made based 

on the main characteristics of these methods: 

• If the LBPMOLL is trivial, then the k-th best algorithm finds its optimal solution in the first iteration. 

A bilevel problem is trivial if its optimal solution is given by solving the so-called high-point relaxation 

problem (i.e., the optimization of the upper-level objective function over the set of all constraints of the 

problem, the upper and the lower-level constraints). Therefore, the k-th best algorithm has advantages 

over the EEPSM if the optimal solution of the LBPMOLL is close to the solution that optimizes 𝐹 in 

𝑆. 

• The k-th best algorithm can be used for problems with upper-level constraints involving lower-level 

variables (i.e., coupling constraints). The EEPSM requires that upper-level constraints include only 

upper-level variables in order to ensure the validity of Proposition 1. 

• An advantage of the EEPSM is that it only searches for feasible solutions of the LBPMOLL.  Therefore, 

if some computational budget is imposed and the method cannot finish within that time limit, the 

optimal solution cannot be assured but the method finishes with a feasible solution of the LBPMOLL; 

this does not happen with the k-th best algorithm, which does not yield a feasible solution until it ends.  

• The main disadvantage of the EEPSM is that it will only be able to deal with bilevel problems with a 

few upper-level variables. The number of objective functions of the MOLP problem (3) depends on the 

number of upper-level variables and the computational burden of computing all efficient extreme 

solutions of (3) highly increases with the number of objective functions (as noted for general MOLP 

problems in Table A.1 of the Appendix). 

• If the LBPMOLL has alternative optimal solutions, the EEPSM finds them all. 

4 Computational results of the exact algorithms 

The EEPSM was implemented in Delphi and the experiment was performed on a PC Intel Core i7-7700 

CPU 3.6 GHz, 64 GB RAM under Windows 10. We also implemented the k-th best algorithm in Delphi 

and tested it using the same computer. 
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The problems were randomly generated using the rules in (Calvete and Galé, 2011) with two objective 

functions at the lower level, and the following numbers n1- n2 - m of upper-level decision variables (n1), 

lower-level decision variables (n2) and constraints (m): 5-10-10, 5-15-15, 5-10-20, 5-20-10, 5-20-20, 5-

30-30, 5-40-40, 5-50-50, 10-20-20, 10-50-50. We consider problems with a few upper-level variables due 

to the nature of the EEPSM. All the constraints are of the type ‘≤’ and placed at the lower level (m =m2); 

thus, the total number of variables of the problem (including slack variables) is n1+ n2 + m. For every 

problem size, a number of instances was generated in order to obtain five non-trivial problems in each 

category (i.e., problems whose optimal solution is given by the relaxed problem were discarded). Only in 

the categories 5-10-10 and 5-10-20 trivial problems were generated: in the first category, 11 problems 

were generated to obtain 5 non-trivial; in the category 5-10-20, only one trivial problem was generated.  A 

total number of 50 problems was considered in this experiment. The data of this test set can be found at 

https://data.mendeley.com/datasets/6prkd8w9sm/1, an open-source online data repository hosted at 

Mendeley Data. 

It should be noticed that we have also considered other instances presented in the literature that have 

been used to test/illustrate other algorithms for LBPMOLL, namely all the problems in (Ankhili and 

Mansouri, 2009), (Zheng and Wan, 2011), (Zheng, Chen and Cao, 2014), (Lv and Wan, 2014) and (Ren 

and Wang, 2016). However, these problems are very small and have been mainly used for illustrative 

purposes, thus not posing real challenges to the algorithms. Most of them are trivial, in which the 

optimization of the upper-level objective function over 𝑆 leads to the optimal solution to LBPMOLL; these 

LP relaxations have at most 15 variables and 16 constraints. Only 3 non-trivial problems were found in 

this set – 1) the first example in (Ankhili and Mansouri, 2009), also presented in the other papers: both 

EEPSM and the k-th best algorithm searched for 5 basic solutions to reach the optimal solution; 2) the 

second example in  (Zheng, Chen and Cao, 2014), also presented as illustrative example in (Calvete and 

Galé, 2011), which has two alternative optimal solutions: both EEPSM and the k-th best algorithm searched 

for 6 basic solutions; the EEPSM yielded the two optimal solutions; 3) the second example in (Lv and 

Wan, 2014):  EEPSM searched for 4 basic solutions and the k-th best algorithm searched for 24 basic 

solutions to reach the optimal solution. 

In the experiment using our test set of 50 problems, we imposed a computational time limit for each 

problem, which is equal in both algorithms. Since the computational effort increases with the size of the 

problem, in particular with n1, the following limits were considered: 300 seconds for problems from 5-10-

10 to 5-20-20, 600 s for problems 5-30-30 to 5-50-50, 900 s for 10-20-20, and 1800 s for 10-50-50. In the 

problems up to 5-20-20, the optimal solution was reached within the 300 s time limit in all cases except in 

one problem by the k-th best algorithm (problem 5-20-20-b in Table 1). The algorithm still does not finish 

even if the time limit is increased to 600 seconds (i.e., the same limit as the one given to the categories of 

higher dimensions).  
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Table 1 shows the computational results for both algorithms. For each problem, the optimal value of F 

is presented if any of the algorithms or both were able to achieve the optimal solution within the pre-

established time limit. For each algorithm, the number of bases explored (#bases) and the computational 

time (in seconds) are presented; if the algorithm has finished, thus yielding the optimal solution, the 

mention ‘Opt’ is shown in the best F column; otherwise, the best value of F for feasible solutions obtained 

during the search is presented. This is only possible for the EEPSM, since the k-th best algorithm does not 

yield any feasible solution to the bilevel problem until the end of the algorithm. In this case, the best upper 

bound for F found by the k-th best algorithm (i.e., the F value in the last solution explored by the method) 

is presented in the UB column. The results of the algorithm with best performance in each problem are 

highlighted in bold.  

 

Table 1 – Results of the EEPSM and the k-th best algorithm 

 EEPSM k-th best algorithm  
Problem  
(n1-n2-m) optimal F #bases time (s) 

best F  
(feasible LB) #bases time (s) best F UB 

5-10-10         

a 616.76 282 0.26 Opt 340 0.36 Opt  

b 1016.69 335 0.33 Opt 29 0.02 Opt  

c 366.19 143 0.12 Opt 269 0.23 Opt  

d 488.91 399 0.39 Opt 389 0.40 Opt  

e 2412.76 644 0.66 Opt 16 0.01 Opt  

5-15-15         

a 1737.74 2666 3.88 Opt 2250 2.07 Opt  

b 2205.02 3304 4.71 Opt 2470 2.28 Opt  

c 1042.43 1901 2.51 Opt 4387 5.29 Opt  

d 2791.62 818 0.93 Opt 126 0.10 Opt  

e 2130.60 528 0.66 Opt 477 0.44 Opt  

5-10-20         

a 664.18 1499 1.83 Opt 11764 19.28 Opt  

b 2440.45 1678 1.82 Opt 67 0.05 Opt  

c 1310.88 1649 1.80 Opt 32 0.03 Opt  

d 818.44 2984 3.80 Opt 3095 3.41 Opt  

e 64.28 1473 1.68 Opt 5313 6.96 Opt  

5-20-10         

a 827.62 212 0.23 Opt 4219 4.42 Opt  

b 1684.84 212 0.24 Opt 6241 8.46 Opt  

c 2692.50 1212 1.74 Opt 1759 1.62 Opt  

d 4140.67 1303 2.04 Opt 1491 1.23 Opt  

e 1577.06 889 1.19 Opt 20713 40.96 Opt  

5-20-20        
 

a 2578.20 9855 22.77 Opt 6271 6.35 Opt  

b 1962.73 5945 11.60 Opt 70073 300 (limit) --- 2123.09 

c 7311.26 2651 3.88 Opt 2149 3.08 Opt  

d 4152.51 3044 4.23 Opt 10191 15.93 Opt  

e 1976.77 1128 1.35 Opt 41425 133.57 Opt  

5-30-30         

a 3525.16 50489 302.36 Opt 98340 600 (limit) --- 4367.30 

b  77845 600 (limit) 3042.64 104416 600 (limit) --- 4053.62 

c 1477.95 11894 28.32 Opt 102238 600 (limit) --- 3186.46 

d 7988.01 14839 40.31 Opt 41153 157.48 Opt  

e  76331 600 (limit) 5580.16 111776 600 (limit) --- 6052.31 

5-40-40         

a  52824 600 (limit) 1718.89 112624 600 (limit) --- 5437.49 

b  57689 600 (limit) 6077.09 114789 600 (limit) --- 6497.47 
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c  79760 600 (limit) 7620.52 116402 600 (limit) --- 8475.72 

d 4841.82 76215 573.79 Opt 109404 600 (limit) --- 6461.62 

e  56270 600 (limit) 5996.256 113935 600 (limit) --- 6982.90 

5-50-50         

a  51939 600 (limit) 3614.24 119051 600 (limit) --- 6318.37 

b  50261 600 (limit) 5949.92 97272 600 (limit) --- 8744.37 

c  51730 600 (limit) 8500.70 112299 600 (limit) --- 11858.44 

d  52779 600 (limit) 2342.99 110513 600 (limit) --- 6400.02 

e  54411 600 (limit) 4397.52 108675 600 (limit) --- 7032.82 

10-20-20         

a 2598.90 58212 900 (limit) 2518.44 97826 541.87 Opt  

b  
55053 900 (limit) 1730.09 126554 900 (limit) --- 2037.00 

c  
82231 900 (limit) 2932.42 126489 900 (limit) --- 2992.37 

d 3692.22 77408 900 (limit) 3692.22 (Opt) 29186 65.45 Opt  

e 2240.98 60715 900 (limit) 1866.31 83629 454.29 Opt  

10-50-50         

a  50964 1800 (limit) 1864.58 205349 1800 (limit) --- 6842.56 

b  55186 1800 (limit) 6780.05 205469 1800 (limit) --- 9957.25 

c  66950 1800 (limit) 7862.87 193021 1800 (limit) --- 9981.91 

d  59528 1800 (limit) 7281.39 206918 1800 (limit) --- 10253.44 

e  58750 1800 (limit) 5354.05 173524 1800 (limit) --- 9001.67 

--- No feasible solution found 

 

The analysis of these results enables to conclude that: 

• Both methods are computationally demanding, so they are not able to solve large problems in a 

reasonable time, as already pointed out by the authors for the k-th best algorithm (Calvete and Galé, 

2011).  

• In the first 4 categories (5-10-10, 5-15-15, 5-10-20, 5-20-10) with smaller problems, both methods 

were able to find the optimal solution to all problems and it is not possible to conclude for the 

superiority of one method in relation to the other. The EEPSM was faster in 9 problems of this sub-

set with 20 problems, and the k-th best algorithm was faster in 11 problems. In terms of the number 

of bases searched, the reverse situation occurred: the EEPSM searched less bases in 11 problems and 

the k-th best algorithm in 9 problems. The EEPSM was more regular in the computational time spent 

in each problem, requiring times between 0.12 and 4.71 seconds, with an average of 1.54 sec., while 

the k-th best algorithm required times between 0.01 and 40.96 seconds, with an average of 4.88 sec. 

• In the category 5-20-20, the k-th best algorithm was not able to find the optimal solution to one 

problem. As the problem size increases, both methods could finish the process within the pre-

established time limit in a few cases only. In problems with higher numbers of lower-level variables 

and constraints, the EEPSM is always better because it returns a feasible solution to the problem while 

the k-th best algorithm does not. When the number of upper-level variables is increased from 5 to 10, 

and considering a small number of constraints and lower-level variables (10-20-20), the k-th best 

algorithm performs better than the EEPSM. This behavior was expected because, as mentioned above, 

the EEPSM is only adequate for problems with few upper-level variables. However, when the other 

dimensions of the problems are increased (10-50-50), the k-th best algorithm also cannot finish, even 

increasing the time limit to 1800 seconds.  



   

 

 

22 
 

 

 

• The main advantage of the EEPSM is that it can be used partially to find an approximation of the 

optimal solution, because it always returns a feasible solution (that is, a solution of 𝐼𝑅) even if halted 

during the process. The k-th best algorithm cannot be stopped before reaching the end, because only 

the final solution is feasible, which is also optimal. From the k-th best algorithm we can obtain an 

upper bound for the optimal value of F. 

 

The fact that the EEPSM can be used in a partial way has been the main motivation for developing a 

heuristic procedure.  

5 A local search heuristic based on the EEPSM  

The local search heuristic is based on the EEPSM and computes at least a local optimal solution – LOH 

(Local Optimum Heuristic).  Given a feasible basic solution of the LBPMOLL, the procedure explores all 

efficient extreme solutions to the problem (3) adjacent to it with higher 𝐹(𝑥, 𝑦). The process is repeated 

to all these solutions, by looking for efficient extreme solutions adjacent to each one with an 𝐹 higher than 

its own. The algorithm finishes when there are no more adjacent solutions that improve F.   

The aim of the heuristic is to reduce the computational effort with respect to the complete EEPSM 

algorithm, generating a solution that is at least a local optimum of the LBPMOLL. 

In order to detect trivial problems, in which the optimal solution is given by optimizing 𝐹(𝑥, 𝑦) in 𝑆, a 

step 0 has been included (both in the heuristic and in the EEPSM) similar to the first step of the k-th best 

algorithm. 

LOH algorithm: 

Step 0 – Solve the high-point relaxation problem of the LBPMOLL:  max 𝐹(𝑥, 𝑦)  s.t.  (𝑥, 𝑦) ∈ 𝑆. 

Check if the solution obtained is efficient to the lower-level problem. If it is efficient, then the algorithm 

finishes because this solution is optimal to the LBPMOLL; otherwise, proceed to Step 1. 

Step 1 – Choose an initial weight vector for the MOLP problem (3): 𝜆 ∈ ℝ>0
𝜚

 

Step 2 – Compute a first basic efficient solution of (3) by solving a weighted-sum with the 𝜆 defined 

in Step 1. 

Step 3 – Determine the nonbasic efficient variables w.r.t. the current basis (as in step 2 of the EEPSM), 

but considering only the variables that lead to solutions with an F value higher than (or equal to) the current 

one. Determine the corresponding bases and keep the different ones in the ℒℬ list. 

Explore all bases in ℒℬ by repeating Step 3 for each one, and adding to ℒℬ the efficient bases adjacent 

to the current one that do not decrease F.  

The solution with best F found during the process is returned. 

 

This heuristic is very sensitive to the starting point, which is determined by the weight vector 𝜆 chosen 

in Step 1. Different initial weight vectors can be defined, e.g. the vector with equal weights, 𝜆 =
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(
1

𝜚
,
1

𝜚
, ⋯ ,

1

𝜚
), and other weight vectors dispersed within the weight space. Thus, several runs of the heuristic 

may be performed with different starting points leading to different results. 

This procedure can be generalized to extend the search by considering in Step 3 not just the adjacent 

extreme points which improve F (or, at least, keep it equal) but also allowing for a certain percentage 𝛿 of 

degradation of F with respect to the extreme point for which all neighbor extreme points are being 

inspected. By enabling worsening the objective function value, the heuristic may potentially explore a 

more diverse, yet controlled, selection of extreme points. The LOH becomes a heuristic parameterized in  

𝛿, i.e., LOH(𝛿). Therefore, LOH(0) is the LOH and LOH(∞) is the EEPSM. 

6 Computational results of the heuristic  

6.1 Comparison of the LOH with the EEPSM 

For this comparison, we have considered the sub-set of problems described above for which at least 

one of the methods (EEPSM or the k-th best algorithm) did not achieve the optimal solution. Therefore, 

the 30 problems in the following categories were used: 5-20-20, 5-30-30, 5-40-40, 5-50-50, 10-20-20, 10-

50-50. 

We have performed N runs of the LOH for each instance, considering a pre-defined set of N weight 

vectors for starting the search. This set has been defined as follows: 𝜚 extreme weight vectors from 𝜆(1) = 

(1,0,0…,0) to 𝜆(𝜚) = (0,0,0,….,1), a vector in which the total weight is distributed by the p=2 lower-level 

objective functions, 𝜆(𝜚+1) = (1/2, 1/2, 0, 0,…,0), and a vector with equal weights, 𝜆(𝜚+2) =

(
1

𝜚
,
1

𝜚
, ⋯ ,

1

𝜚
).  The 0’s in the weight vectors were replaced by a small positive value (=0.0001) in order to 

ensure that the solutions obtained are efficient rather than weakly efficient only. Therefore, 𝑁 = 𝜚 + 2 

runs were performed for each instance, i.e., 10 runs for the problems with 5 upper-level variables (5-20-

20, 5-30-30, 5-40-40, 5-50-50) and 15 runs for the problems with 10 upper-level variables (10-20-20, 10-

50-50). A time limit was imposed to each run such that the sum of the times of all runs do not exceed the 

time limit given to the EEPSM for the same problem. Therefore, the following time limits were considered 

per run: 30 s (=300/10) for problems 5-20-20, 60 s (=600/10) for categories 5-30-30 to 5-50-50, 60 s 

(=900/15) for 10-20-20, and 120 s (=1800/15) for 10-50-50. The time limit of 30 seconds for problems 5-

20-20 was never achieved. 

A summary of the results obtained and a comparison with the results of EEPSM is presented in Table 

2. For the sake of clarity and ease of comparison, we repeat the EEPSM values already shown in Table 1. 

Regarding the heuristic, the following information is shown: the sum of the running times (in seconds) 

spent in the N runs; the value of the F in the best solution obtained; the number of times the best solution 

was yielded over the N runs; an indication of whether the heuristic was able to finish within the time limit 

per run, displaying the number of runs it happened over the N runs (column “Finish?”). For each problem, 

the best F value is highlighted in bold face. The ‘*’ denotes that the optimal value was obtained.  
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Table 2 – Comparison of the LOH with the EEPSM 

  EEPSM LOH 
 

Problem 

(n1-n2-m) optimal F 

time 

(seconds) best F 

 times  

(seconds)  best F 

# best solution 

found / N runs Finish? 

5-20-20    N = 10 runs; time limit = 30 s/run 

a 2578.20 22.77 2578.20 * 90.00 2578.20 * 10/10 10/10 

b 1962.73 11.60 1962.73 * 2.70 1962.73 * 6/10 10/10 

c 7311.26 3.88 7311.26 * 9.42 7311.26 * 7/10 10/10 

d 4152.51 4.23 4152.51 * 3.70 4152.51 * 9/10 10/10 

e 1976.77 1.35 1976.77 * 2.81 1976.77 * 10/10 10/10 

5-30-30    N = 10 runs; time limit = 60 s/run 

a 3525.16 302.36 3525.16 * 312.15 3525.16 * 7/10 8/10 

b  600 (limit) 3042.64 380.42 3042.64 6/10 6/10 

c 1477.95 28.32 1477.95 * 44.14 1477.95 * 9/10 10/10 

d 7988.01 40.31 7988.01 * 53.25 7988.01 * 8/10 10/10 

e  600 (limit)  5580.16 134.42 5580.16 7/10 8/10 

5-40-40    N = 10 runs; time limit = 60 s/run 

a  
600 (limit)  1718.89 361.32 2149.08 2/10 4/10 

b  
600 (limit)  6077.09 446.75 6180.45 6/10 3/10 

c  
600 (limit)  7620.52 230.51 7865.92 3/10 7/10 

d 4841.82 600 (limit)  4841.82 * 161.03 4841.82 * 8/10 8/10 

e  
600 (limit)  5996.26 135.86 5996.26 7/10 8/10 

5-50-50    N = 10 runs; time limit = 60 s/run 

a  600 (limit) 3614.24 232.41 3614.24 7/10 7/10 

b  600 (limit) 5949.92 487.95 7747.93 1/10 2/10 

c  600 (limit) 8500.70 347.19 9043.38 4/10 5/10 

d  600 (limit) 2342.99 252.14 3364.72 2/10 7/10 

e  600 (limit) 4397.52 600 (limit) 5294.50 1/10 0/10 

10-20-20    N = 15 runs; time limit = 60 s/run 

a 2598.90 900 (limit) 2518.44 707.81 2598.90 * 7/15 4/15 

b  
900 (limit) 1730.09 603.67 1954.59 5/15 6/15 

c  
900 (limit) 2932.42 267.97 2932.42 14/15 13/15 

d 3692.22 900 (limit) 3692.22 * 282.54 3692.22 * 14/15 11/15 

e 2240.98 900 (limit) 1866.31 692.88 2240.98 * 2/15 4/15 

10-50-50    N = 15 runs; time limit = 120 s/run 

a  1800 (limit) 1864.58 1800 (limit) 5376.78 1/15 0/15 

b  1800 (limit) 6780.05 1800 (limit) 8675.49 1/15 0/15 

c  1800 (limit) 7862.87 1800 (limit) 8841.17 1/15 0/15 

d  1800 (limit) 7281.39 1800 (limit) 8308.79 1/15 0/15 

e  1800 (limit) 5354.05 1800 (limit) 6169.35 1/15 0/15 

* Optimal solution 

 

The following conclusions can be drawn from this experiment: 

• In all problems for which the optimal solution was reached by the EEPSM, the LOH also reached the 

optimal solution in at least half of the runs. 

• The use of the heuristic may not be justified in the smallest problems of this experiment (5-20-20) 

because, although it always reaches the optimal solution, the total time (sum of the times of the 10 

runs) is, in general, higher that running the EEPSM until the end; in addition, the EEPSM has the 

advantage of ensuring the optimality of the solution. 

• In the problems for which we have no guarantee that the optimal solution is known (a total of 18 over 

30 problems), the LOH improved the solution obtained by the EEPSM execution in 13 problems and 
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attained the same solution as the EEPSM’s in 5 problems; this means that the outcome of N runs of 

the LOH was never worse than the one of the EEPSM, being substantially better in several problems. 

• This comparison experiment was calibrated in terms of the maximum computational time given to 

each run of the LOH so that the limit of the sum of the times of all runs (‘ times’) was equal to the 

maximum time given to the EEPSM. However, the LOH may not use its time budget in some runs 

because it may finish before. Only in the last category of problems (10-50-50) the total times are equal 

in the two algorithms; but, even consuming, in general, less time than the EEPSM, the LOH presented 

better results. 

Thus, the LOH seems interesting for problems in which the number of efficient bases is significantly 

high, yielding better solutions than the EEPSM for a similar or smaller computational effort.  

6.2 Comparison of the heuristic with different parameterizations 

We now compare the results of the LOH with the generalized LOH for the tolerance values of 𝛿 =10% 

and 𝛿=20%. For a given extreme point with 𝐹 = 𝐹’, that tolerance means that all adjacent extreme points 

with 𝐹 ≥ (1 −  𝛿/100)𝐹’ are accepted. This comparative study was made considering the 3 most 

challenging categories of problems. The results are displayed in Table 3. 

Table 3 shows, for each problem, the best and the average of F obtained in N runs. We omit the 

computational times because the times for LOH were presented in Table 2, and LOH(10%) and LOH(20%) 

always reached the time limit, even in the problems in which LOH did not; this happens because the scope 

of the search is extended when 𝛿 increases. Thus, the total times consumed by LOH(10%) and LOH(20%) 

were: 600 s, 900 s and 1800 s, respectively in problems 5-50-50, 10-20-20 and 10-50-50. In these 3 

categories of problems, the results of the LOH are in general better, and never worse, than the ones obtained 

with LOH(10%) and LOH(20%) regarding the best and the average values of F. The results worsened with 

the increase of the tolerance 𝛿. The highest value in each row of Table 3 is highlighted in bold. 

 

Table 3 – Comparison of the heuristic with different tolerance values 

 
LOH LOH(10%) LOH(20%) 

Problem 
(n1-n2-m) best F Average F best F Average F best F Average F 

5-50-50  

a 3614.24 3333.50 3614.24 2812.97 3614.24 2607.69 

b 7747.93 4963.64 5820.97 4331.12 5657.50 4204.01 

c 9043.38 7787.95 8100.62 6786.54 8325.65 6622.04 

d 3364.72 1621.21 3364.72 1684.39 3364.72 1318.20 

e 5294.50 4341.25 4991.92 3779.78 4991.92 3682.07 

10-20-20  

a 2598.90 * 2340.48 2598.90 * 2169.92 2598.90 * 2136.64 

b 1954.59 1888.43 1954.59 1848.34 1954.59 1811.76 

c 2932.42 2898.39 2932.42 2874.16 2932.42 2810.06 

d 3692.22 * 3691.40 3692.22 * 3654.40 3692.22 * 3516.28 

e 2240.98 * 1856.43 2240.98 * 1836.69 2240.98 * 1778.86 

10-50-50  

a 5376.78 1771.63 5368.86 1458.94 5368.86 1273.96 

b 8675.49 6860.93 7827.14 5701.45 7827.14 5557.92 
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c 8841.17 6108.54 8657.40 5259.99 8657.40 5083.00 

d 8308.79 5219.50 7487.16 4354.24 7289.48 4038.28 

e 6169.35 4246.14 5709.24 3931.18 5709.24 3843.87 

 

Due to the increased capability of LOH(10%) and LOH(20%) to promote exploration, thus enabling to 

escape from local optima, they could perform better than LOH; however, the time limit is clearly an issue 

due to the number of bases to be inspected.  

We further studied the evolution of the value of F when the time limit is extended. This experiment 

was carried out for problems 5-50-50, with a time limit of 3600 s for the N=10 runs, i.e., 360 s for each 

run corresponding to a different vector of weights to compute the initial solution. The Average F value 

improves in all LOH versions, with the improvement rate (360 s vs. 60 s runtime) in LOH(20%) higher 

than in LOH(10%) which, in turn, is higher than in LOH. For illustration purposes, the evolution of the 

values of Best F and Average F are displayed in Fig. 5 for problems b, c, d and e (problem a is similar to 

d in the behavior of the Best F and it is similar to problems b and c in the behavior of the Average F). The 

Best F value improves in LOH(10%) and LOH(20%) for the problems b-c-e, and it improves in LOH just 

in problem e. In problems a and d the Best F coincides for all parameterizations and it does not change 

even increasing the time limit.  

Therefore, it can be expected that for higher time limits, which may depend on the application, the Best 

F computed by LOH(𝛿 > 0) can approach, or even exceed, the results obtained for LOH. 

 

  

  

Figure 5 – Behavior of the Best F and the Average F for LOH, LOH(10%) and LOH(20%) with runtime 360 s. 
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6.3 Comparison of the LOH with a genetic algorithm 

In order to cope with the complexity to obtain the optimal solution to the LBPMOLL and the poor 

performance of the exact algorithms, even in medium-sized problems, Calvete and Galé (2011) proposed 

a genetic algorithm (GA). This approach is specially tailored for the characteristics of the problem by using 

specific solution encoding (vertex solutions represented by a string of integers, the components of which 

are the indices of the basic variables) as well as crossover and mutation operators. The GA proceeds by 

making a population of basic feasible solutions to evolve using genetic operators. From two parent 

solutions, the (one point) crossover operator generates two extreme points which are basic feasible 

solutions of 𝑆.  The mutation operator leads to an adjacent vertex of a given solution. As in the k-th best 

algorithm, the Benson’s technique is used to check whether (𝑥′, 𝑦′) ∈ 𝑆 is a point of 𝐼𝑅. The fitness is 

defined lexicographically, first privileging the solutions of 𝐼𝑅 and then ranking the solutions according to 

the F-value. A kind of elitist strategy is used, keeping the best solutions (among parents and offspring) in 

the population. 

The LOH was compared with this GA considering the same instances as in the experiment reported in 

Table 2. The main purpose is the comparison of our heuristic with another non-exact method which, 

according to Calvete and Galé (2011), «provided estimable results in terms of both quality of the solution 

an time invested». For a fair comparison, we have also implemented the GA in Delphi and tested both 

algorithms using the same computer.  

The main common and distinct features of these two non-exact approaches are: both algorithms search 

for vertices only; while the heuristic proposed herein moves from one vertex to another vertex of 𝐼𝑅, 

basically carrying out a local search of feasible vertices strongly dependent on the initial solution, the GA 

explores vertices of the entire search space 𝑆, i.e., feasible and infeasible solutions of the LBPMOLL. On 

one hand, the GA does a broader search, potentially being able to reach better solutions; on the other hand, 

it may spend a considerable amount of time searching for infeasible solutions. 

For each problem, N independent runs of the GA were performed, the same number of runs performed 

with the heuristic (10 or 15, depending on the problem category – see Table 2). The LOH is deterministic 

(the different runs result from choosing a different weight vector for its beginning), while the GA is 

stochastic. To allow for replication of results and a better comparison of different GA parameterizations, 

the same random seeds were used in runs with the same index for all problems (e.g., the random seed in 

run 1 of the GA for problem a is the same as in run 1 for problem b).  

The following GA parameter values for the GA were considered: crossover probability (pc)=0.5 and 

mutation probability (pm)=0.9, since the best results in (Calvete and Galé, 2011) were obtained with these 

values. For the population size (Pop), considering the values proposed in the original paper, which are 

Pop = 𝑛 or 2𝑛, with 𝑛 = 𝑛1 + 𝑛2 +𝑚, we have adopted Pop = 𝑛 in problems with 𝑛1 = 5 and Pop = 2𝑛 

in problems with 𝑛1 = 10 (i.e., categories 10-20-20 and 10-50-50). No limit is imposed on the number of 
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iterations, since this is defined by the computational time given to each run, which is equal to the maximum 

time assigned to the LOH.    

Although the time limit given to the LOH and the GA is the same, the LOH does not always use the 

whole time. The LOH may spend different times in the same problem depending on the initial solution 

(i.e., the weight vector used for each run), whereas the GA always uses the entire computational budget. 

Table 4 makes a comparison between the LOH and the GA for the problems reported in Table 2. For 

each problem, it is shown the best F (maximum F), the minimum F, and the median F obtained by each 

algorithm in N runs. F=- means that the GA finished with no feasible solution. The existence of some 

F=- justifies why we have adopted the median as a centrality measure for the F value, instead of the 

average. Table 4 also presents: the average number of bases explored (in both algorithms), the average 

number of iterations of the GA and the average time of one run (in seconds) for the LOH. The time given 

to each GA run is fully used, so the average GA time per run is equal to the time limit with a possible very 

small increase needed to complete the generation. The highest F-value known for each problem is 

highlighted in bold. If this value is obtained in more than 50% of the runs (so that the median F is equal to 

the highest F-value) or in all runs (the minimum F is equal to the highest F-value), then it appears in bold 

also in the columns of Min F and Median F. 

 

Table 4 – Summary of the results comparing the heuristic with the GA  
  LOH GA 

 

Problem  

(n1-n2-m) Best F Min F 

 

Median F 

Avg 

bases 

explored 

Avg 

time Best F Min F 

 

Median F 

Avg 

bases 

explored 

Avg 

time 

 

Avg iter 

1
0
 r

u
n

s 

5-20-20 time limit = 30 s/run 
   Pop=45, time = 30 s/run 

a 2578.20 * 2578.20 2578.20 3633 9.0 2578.20 * -  2578.20 15273 30.0 362 

b 1962.73 * 1232.77 1962.73 175 0.3 1962.73 * -  190.04 15533 30.0 373 

c 7311.26 * 5995.22 7311.26 625 0.9 7311.26 * -  7311.26 15485 30.1 373 

d 4152.51 * 4050.41 4152.51 264 0.4 4152.51 * 4050.41 4152.51 15432 30.0 365 

e 1976.77 * 1976.77 1976.77 213 0.3 1976.77 * 1976.77 1976.77 16112 30.0 388 

5-30-30 time limit = 60 s/run       Pop=65, time = 60 s/run 

a 3525.16 * 607.21 3525.15 8437 31.2 3525.16 -  1622.70 25485 60.0 420 

b 3042.64 984.93 3042.64 9193 38.0 -378.62 -  -  25633 60.1 431 

c 1477.95 * 1013.06 1477.95 2133 4.4 1477.95 * -  -  25627 60.1 430 

d 7988.01 * 1762.80 7988.01 2193 5.3 7988.01 * -  -  24858 60.1 416 

e 5580.16 3764.80 5580.16 3973 13.4 -  -  -  25194 60.1 423 

5-40-40 time limit = 60 s/run    Pop=85, time = 60 s/run 

a 2149.08 1125.29 1579.16 6554 36.1 -  -  -  20045 60.1 254 

b 6180.45 5738.78 6180.45 9991 44.7 -  -  -  20867 60.1 265 

c 7865.92 6559.27 7591.49 5992 23.1 7620.52 -  -  21333 60.1 263 

d 4841.82 * 3841.04 4841.82 4442 16.1 4841.82 -  -  20284 60.1 255 

e 5996.26 3798.83 5996.26 3134 13.6 -  -  -  19993 60.1 254 

5-50-50 time limit = 60 s/run      Pop=105, time = 60 s/run 

a 3614.24 2307.36 3614.24 4495 23.2 -  -  -  19859 60.2 200 

b 7747.93 2279.36 5489.83 8211 48.8 -  -  -  18660 60.2 189 

c 9043.38 5340.29 8986.55 5547 34.7 -  -  -  15248 60.2 153 

d 3364.72 -4142.64 2547.55 3838 25.2 -4060.71 -  -  15799 60.2 158 

e 5294.50 1882.91 4289.60 9423 60.0 -  -  -  15893 60.1 159 
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1
5
 r

u
n

s 

10-20-20 time limit = 60 s/run      Pop=100, time = 60 s/run  
a 2598.90 * 1562.75 2586.67 8229 47.2 2598.90 * 2586.67 2598.90 31511 60.1 335 

b 1954.59 1735.96 1898.71 7798 40.2 1954.59 1848.10 1954.59 31579 60.1 334 

c 2932.42 2421.99 2932.42 4811 17.9 2932.42 -  2932.42 30934 60.1 332 

d 3692.22 * 3679.95 3692.22 4828 18.8 3692.22 * 3692.22 3692.22 31504 60.1 339 

e 2240.98 * 751.76 1863.94 8209 46.2 2240.98 1899.88 2240.98 31211 60.1 331 

10-50-50 time limit = 120 s/run       Pop=220, time = 120 s/run  
a 5376.78 -3818.03 1864.58 7662 120.0 5390.37 -  -  33334 120.4 155 

b 8675.49 2179.95 7659.48 7588 120.0 9604.63 -  9186.27 33662 120.3 147 

c 8841.17 -2821.93 6896.19 10012 120.0 8843.39 -  -7448.36 33332 120.3 150 

d 8308.79 -1203.25 4873.94 10295 120.0 8308.79 -  -  32937 120.3 148 

e 6169.35 -1986.48 4916.09 9173 112.4 5814.81 -  -  33614 120.4 153 

 

Analysis of the results: 

• The LOH is clearly better than the GA on the 20 problems with 𝑛1 = 5 (categories from 5-20-20 to 

5-50-50) considering similar computational times. The Best 𝐹 obtained with the heuristic is always 

higher or equal to the Best 𝐹 of the GA, being strictly better in 11 problems. Likewise, the Min 𝐹 and 

Median 𝐹 are higher or equal to the corresponding values of the GA in all problems; the Min 𝐹 is 

strictly better in 18 problems and the Median 𝐹 is strictly better in 16 problems (in the other problems, 

the values are equal). 

• In the 10 problems with 𝑛1 = 10 (categories 10-20-20 and 10-50-50), the superiority of one algorithm 

over the other cannot be concluded for all the problems. In these categories, the Best 𝐹 values obtained 

by the two algorithms were equal in 6 problems, the LOH was better in 1 problem and worse in 3 

problems than GA. The Median 𝐹 values were equal in 2 problems, the LOH was better in 4 problems 

and worse in 4. Regarding the worst solution (Min 𝐹), the LOH was inferior to the GA in 4 out of the 

5 problems in the category 10-20-20, being superior to the GA in all the 5 problems 10-50-50 for 

which there were always some GA runs returning an infeasible solution. In category 10-50-50, the 

GA finished with infeasible solutions in 3 (minimum) to 11 (maximum) runs over the 𝑁=15 runs 

performed for each problem a - e. The three problems in which the GA finished without finding any 

feasible solution for at least 8 runs (i.e., problems a, d, e) are those where the Median 𝐹 is − .  

 

These results reinforce our conviction that the proposed algorithmic approach is suitable for problems 

with a reduced number of variables in the upper level. However, this limitation is not so strict in the other 

dimensions of the problem (number of lower-level variables and constraints), showing that the LOH is 

competitive and provides interesting results in medium-sized problems. 

7 Conclusions 

In this paper, we proposed an exact method to solve the optimistic formulation of the linear bilevel 

programming problem with multiple objective functions at the lower level (semivectorial bilevel 

problems). This method is based on a proposition stating that an optimistic optimal solution to the problem 

is an efficient extreme point of an associated MOLP problem with as many objective functions as the 
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number of lower-level objective functions plus the number of upper-level decision variables plus 1. Since 

the number of objective functions of this associated problem increases with the number of upper-level 

decision variables, and the number of efficient extreme points of a MOLP problem grows very quickly 

with the increase of the number of objective functions, this method is mainly adequate to bilevel problems 

with a small number of upper-level decision variables. This number is the dimension with the major impact 

on the computational effort required by the method.  

In order to obtain better quality solutions for problems where the exact method does not reach the 

optimal solution within a reasonable computational time, we have also developed a local search heuristic 

based on the same proposition. Despite being deterministic, the heuristic can lead to distinct final solutions 

if different starting points are considered. Thus, we can perform several quick runs of the heuristic starting 

at different points, which altogether can yield a very good solution to the problem in a short computational 

time. The heuristic showed to be quite effective in problems where the global optimum is difficult to 

achieve and it surpassed the exact method in these problems by computing better solutions in a similar 

time. Furthermore, the heuristic can be parameterized to extend the search to a larger neighborhood, 

including not just the adjacent extreme points that improve the leader’s objective function with respect to 

the current solution, but also allowing for a certain degradation of its value. 

The exact method EEPSM and the heuristic LOH were compared with another exact method and a 

genetic algorithm, which are state-of-the-art algorithms for the problem addressed in this paper. The 

algorithms we propose have shown good quality results, outperforming the other algorithms under 

comparison in the problems with few upper-level decision variables. The main advantage of the strategy 

employed by our algorithms (the exact and the heuristic one) is that they can be interrupted at any moment 

always yielding a feasible solution to the bilevel problem. This does not occur in an exact algorithm based 

on the k-th best search (which only reaches the inducible region when the optimum is found) or in a 

metaheuristic based on the search of extreme points of the entire constraint region. This advantage is 

particularly relevant in larger problems for which the algorithms that work with feasible and infeasible 

solutions often finish with an infeasible solution. 

In addition to the exact method and the heuristic to semivectorial bilevel problems, another contribution 

of this work is the development and implementation of an effective vector maximum algorithm 

(multiobjective simplex method) that allows the computation of all efficient extreme points of general 

MOLP problems. This algorithm has been extensively experimented, not only within the scope of the 

approaches proposed herein, but also in general MOLP problems with fewer objective functions (3 to 6) 

but larger numbers of constraints and decisions variables. These experiments led to several enhancements 

that strengthened the algorithm to be numerically robust. We strongly believe that this contribution can 

also be very useful for practitioners and researchers in the field of multiobjective optimization. 
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Appendix 

The algorithm to compute all efficient extreme points of a MOLP problem was applied to 20 instances 

with 100 variables, 50 constraints and 3 to 6 objective functions used in (Alves and Costa, 2009), which 

are available at the internet (http://www4.fe.uc.pt/mjalves). Since these instances were randomly generated 

with no particular structure, they are not degenerate. Thus, the number of efficient extreme points is equal 

to the number of bases explored. Table A.1 summarizes the results obtained, illustrating the performance 

of the algorithm. This table presents the minimum, maximum and average number of efficient extreme 

solutions (min |ℰ|, max |ℰ|, avg |ℰ|) in each group of five instances with the same number of objective 

functions. The corresponding computational times (in seconds) are also shown.  

 

Table A.1- Experiments of the vector-maximum algorithm in general MOLP problems 

No. of 

instances 

No. of 

objectives 

No. of 

variables 

No. of 

constraints 
min |ℰ| max |ℰ| avg |ℰ| Min 

time 

Max 

time 

Avg 

time 

5 3 100 50 326 444 393.4 0.44 0.59 0.53 

5 4 100 50 1 929 5 513 3 387.6 3.05 9.88 5.97 

5 5 100 50 6 736 25 264 14 457.4 23.03 103.95 58.90 

5 6 100 50 34 734 75 624 53 606.8 282.03 814.44 601.30 

 


