

1

© <2022>. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

This is a pre-copyedited version of an article published in European

Journal of Operational Research. The final version of this article is available
online at: https://doi.org/10.1016/j.ejor.2022.02.047

https://doi.org/10.1016/j.ejor.2022.02.047

2

A new exact method for linear bilevel problems with multiple objective

functions at the lower level

Maria João Alves1,3, Carlos Henggeler Antunes2,3

1 CeBER and Faculty of Economics, University of Coimbra, Portugal

2 Department of Electrical and Computer Engineering, University of Coimbra, Portugal
3 INESC Coimbra, Portugal

mjalves@fe.uc.pt; ch@deec.uc.pt

Abstract

In this paper we consider linear bilevel programming problems with multiple objective functions at the

lower level. We propose a general-purpose exact method to compute the optimistic optimal solution, which

is based on the search of efficient extreme solutions of an associated multiobjective linear problem with

many objective functions. We also explore a heuristic procedure relying on the same principles. Although

this procedure cannot ensure the global optimal solution but just a local optimum, it has shown to be quite

effective in problems where the global optimum is difficult to obtain within a reasonable timeframe. A

computational study is presented to evaluate the performance of the exact method and the heuristic

procedure, comparing them with an exact and an approximate method proposed by other authors, using

randomly generated instances. Our approach reveals interesting results in problems with few upper-level

variables.

Keywords: Multiple objective programming; Linear bilevel optimization; Semivectorial bilevel problem;

Multiobjective simplex method.

1 Introduction

Bilevel programming is useful to model optimization problems with a hierarchical relation between

two decision makers (the leader and the follower), who make decisions sequentially in a non-cooperative

manner. The two decision makers control different sets of variables aiming to optimize their own objective

functions. The leader commits to a strategy before the follower, who then optimizes his/her own objective

function within the options restricted by the leader’s decision. However, the follower’s decision affects the

leader's objective function value and even his/her feasible options, so the leader must anticipate the reaction

of the follower. Sequential decision-making processes often appear in the management of decentralized

organizations and policy making. For instance, in a road network design, the aim of the leader may be the

minimization of investment and operational costs, but he/she has to incorporate in his/her decision the

traffic pattern resulting from the travelers’ decisions, who want to minimize travel time, gasoline

consumption, among other objectives (follower’s problem). Another common problem in the context of

transportation policy is the toll-setting problem, where the upper level decision maker is an authority that

wants to set tolls for a network of highways to maximize its revenues, while and the drivers (the lower-

mailto:mjalves@fe.uc.pt
mailto:ch@deec.uc.pt

3

level decision makers) want to minimize their travel time and cost. Many practical applications in the

energy sector have also been reported in the literature including, for instance, in electricity retail markets

involving demand response: bilevel programs allow to capture the sequence of decisions regarding the

price announcement by the electricity retailer (the leader, who wants to maximize profit) and the

consumers’ reaction involving changes in the energy use to optimize cost and comfort (Alves and Antunes,

2018). As these examples illustrate, the players may have multiple objective functions. For the interested

reader, we refer to (Sinha, Malo and Deb, 2018) and (Alves, Antunes and Costa, 2019) for the description

and references of different application areas using bilevel multiobjective models.

Multiple objective functions add further theoretical, methodological and computational complexities

to the (single-objective) bilevel problem (BP), which is an already difficult problem. The BP is strongly

NP-hard even when all functions involved are linear (Dempe, 2002). Dealing with multiple objectives at

the lower level is particularly challenging due to the existence of a set of lower-level efficient (Pareto

optimal) solutions for each leader’s decision. Bilevel problems with a single objective function at the upper

level and multiple objective functions at the lower level (BPMOLL) have also been called semivectorial

bilevel problems.

In this paper, we address the linear BPMOLL. A general-purpose exact method to solve this type of

problems is proposed, which is based on the search of efficient extreme solutions of an associated

multiobjective linear programming (MOLP) problem with many objective functions.

1.1 Related literature on bilevel problems with multiple objective functions at the lower level

The BPMOLL was firstly addressed by Bonnel (2006) and Bonnel and Morgan (2006), who provided

first order necessary conditions to the problem in the former study and a penalty method in the latter one,

considering weakly-efficient solutions at the lower level. Dempe and Mehlitz (2020) investigated the

relationship between a (general) BPMOLL and its replacement by a scalar BP obtained by applying the

weighted-sum scalarization to the multiobjective lower-level problem and interpreting the scalarization

parameters (i.e., the weights) as new upper-level variables. Still considering weakly-efficient solutions,

Ankhili and Mansouri (2009), Zheng and Wan (2011), Zheng, Chen and Cao (2014) and Ren and Wang

(2016) proposed solution approaches based on penalty methods for the all linear BPMOLL, or at least the

lower level is a MOLP problem.

Calvete and Galé (2011) also addressed bilevel problems with MOLP lower-level problems. They

proved that the feasible region of the BPMOLL (the inducible region) is given by the union of faces of the

polyhedron defined by all constraints. Assuming that the upper-level objective function is quasiconcave,

they concluded that there is an extreme point of this polyhedron that is the optimal solution to the problem.

Both an enumerative exact algorithm and a genetic-based algorithm were proposed. The exact method (for

the linear BPMOLL) is an extension of the k-th best algorithm by Bialas and Karwan (1984) for the single-

objective case. The method searches for extreme points of the constraint polyhedron until a feasible one is

obtained, i.e., a solution that is efficient to the lower-level problem; since the algorithm computes an

4

ordered sequence of points, the first one that belongs to the inducible region solves the problem. Due to

the well-known difficulties of exact methods in solving even medium-sized bilevel problems, a genetic

algorithm was also proposed which explores extreme points by combining bases of the constraint

polyhedron.

Lv and Wan (2014) reformulated the linear BPMOLL as a nonlinear bilevel program, where the

weighted-sum scalarization is used to aggregate the lower-level objective functions and the weights are

variables comprised in the upper-level variable set. Then, an optimal-value-function approach was

proposed to deal with the problem.

All the aforementioned studies adopt the optimistic formulation of the BPMOLL, which assumes that

the follower accepts any efficient solution of the lower-level problem. Therefore, solving the BPMOLL

corresponds to optimizing the upper-level objective function over the inducible region, which is composed

by the solutions that satisfy all the constraints and are efficient to the lower-level problem. The pessimistic

formulation, which has been mainly discussed in the context of single-objective bilevel problems, assumes

that the leader is risk-averse and prepares for the worst case. This means assuming that the follower

chooses the worst solution to the leader among his/her efficient solution set (for each leader’s decision)

and the aim of the leader is to optimize the upper-level objective function over this set of ‘worst’ solutions.

The optimal pessimistic solution to the BPMOLL is even more difficult to calculate than the optimistic

one. Other type of solutions can also give useful information to the leader about the risk he/she takes from

a particular decision. A discussion on the assumptions and implications of optimistic vs. pessimistic

approaches in BPMOLL was firstly presented in (Alves, Antunes and Carrasqueira, 2015). An overview

of different solution concepts and perspectives of development in BPMOLL and BP with multiple

objective functions at both levels are provided in (Alves, Antunes and Costa, 2019) and (Alves, Antunes

and Costa, 2021).

In the present work we consider the optimist formulation of the linear BPMOLL (LBPMOLL). Since

the proposed approach relies on computing all efficient extreme solutions of an associated MOLP problem,

a brief literature review of algorithms to generate the whole set of extreme efficient (or nondominated)

points in general MOLP problems is presented in the next subsection.

1.2 Vector-maximum algorithms in MOLP

Although the development of algorithms to calculate all efficient extreme points of MOLP problems

(vector-maximum algorithms) is longstanding, there are very few efficient software implementations

reported in the literature. Evans and Steuer (1973) developed a multiobjective simplex method that finds

the set of all efficient extreme solutions and the set of unbounded efficient edges for MOLP problems,

which has a computer implementation called ADBASE. According to Schechter and Steuer (2005),

ADBASE has been the dominant computer code for computing all efficient extreme points since its

inception (in 1974) with more than 100 citations, and it has undergone several revisions over the years.

Benson (1998) proposed an algorithm that works in the objective space, which computes all nondominated

5

extreme points of the MOLP problem. It employs an outer approximation technique, so only when the

algorithm terminates the points in the approximation set are guaranteed to be nondominated. In (Benson,

1998), the algorithm was tested in random problems with up to 3 objective functions, 20 variables and 15

constraints. More recently, Rudloff, Ulus and Vanderbei (2017) proposed a parametric simplex algorithm

than can be seen as a variant of the Evans-Steuer algorithm, but which does not aim to find the set of all

efficient extreme solutions. In each iteration, only a subset of efficient nonbasic variables is chosen and,

for each of these entering variables, only a single pivot is picked to determine the leaving variable. The

proposed algorithm was implemented in Matlab and was compared with Benson’s algorithm, using the

Matlab code bensolve (Löhne and Weißing, 2017); it was also compared with the Evans-Steuer algorithm,

for which the authors developed a Matlab implementation to use the same test environment for the three

algorithms. In the computational experiments using randomly generated problems with 4 objective

functions, bensolve was more efficient than the other algorithms for the degenerate problems (with 10/30

to 30/10 variables/constraints), but the Evans-Steuer algorithm was the best one for the non-degenerate

problems (with 30/50 to 50/30 variables/constraints).

It should be remarked that methods aiming to generate all efficient extreme points are difficult to

implement and the computational burden to compute all these solutions may be severe, since the number

of efficient extreme points increases significantly with the problem size. Developing an effective computer

implementation of a vector-maximum method is a demanding task, because it requires an implementation

from scratch involving the design of bookkeeping and backtracking schemes with several theoretical and

numerical concerns (namely for degenerate bases). These implementations can hardly make use of

commercial solvers as modules, unless LP subproblems are solved separately.

1.3 Main contributions

In this paper, we develop a general-purpose exact method to compute the optimistic optimal solution

to the LBPMOLL, which explores vertices of the constraint polyhedron that are efficient to the lower-level

problem. We call this method EEPSM – efficient extreme points search method. This method is based on

the property that the optimal solution to the LBPMOLL is an efficient solution of an associated single-

level MOLP problem with many objective functions. This property will be stated and proved in this paper.

The idea of vertex enumeration is shared with the work of Calvete and Galé (2011) but, while their

algorithm works with infeasible solutions and stops when the first feasible solution is found, our approach

works with feasible solutions only. Therefore, it can be interrupted at any moment, yielding a solution that

may be non-optimal but which is surely feasible. Based on this principle, a local search heuristic procedure

is also developed to deal with problems in which the complete vertex enumeration becomes impracticable.

The heuristic ensures a local optimum solution, so we call it LOH - local optimum heuristic. The LOH can

be further parameterized to define the extent of the neighborhood for the local search.

A computational study is presented to evaluate the performance of the EEPSM and the LOH, comparing

them with another two algorithms (one exact and one approximate) using randomly generated instances.

6

The comparison will be made with the algorithms of Calvete and Galé (2011), in our opinion the most

representative and comprehensive approaches for LBPMOLL which have been implemented

computationally and tested in a large number of instances. The other approaches proposed in the literature

for LBPMOLL do not report on computational experiments, only providing very small illustrative

examples, which are not suitable for algorithm assessment. Most of these examples are used by the

different authors (Ankhili and Mansouri, 2009), (Zheng and Wan, 2011), (Zheng, Chen and Cao, 2014),

(Lv and Wan, 2014), (Ren and Wang, 2016).

Our main contribution in this work is a new exact method (EEPSM) for the LBPMOLL, a field with

very few practical developments. This method is computationally interesting for problems with relatively

few upper-level variables, since the number of objective functions of the associated single-level MOLP

problem depends on the number of upper-level variables. This is the main limitation of the method. The

development of the EEPSM required the development of an effective vector-maximum algorithm for

MOLP problems. This is a further contribution of this work to the multiobjective optimization area.

Another contribution is the heuristic procedure LOH based on the EEPSM, which has revealed its

effectiveness in problems where the global optimum is difficult to guarantee within a reasonable

computational time. The EEPSM and the LOH are compared with the k-th best algorithm and the genetic

algorithm proposed by Calvete and Galé (2011), respectively.

The rest of paper is organized as follows. Section 2 states the problem, notation and definitions. Section

3 is devoted to the new exact method for LBPMOLL presenting: the fundamentals and the steps of the

EEPSM; a numerical example comparing the search path of EEPSM and the k-th best algorithm; the main

characteristics (advantages and disadvantages) of these two approaches. Section 4 presents the

computational experiments, the comparison of the algorithms and discusses the results. Section 5 presents

the heuristic procedure. Section 6 is devoted to its computational experiment, making comparisons of the

LOH with: i) the EEPSM; ii) different LOH parameterizations; iii) the genetic algorithm of Calvete and

Galé (2011). Conclusions are drawn in Section 7.

2 Linear bilevel problems with multiple objectives at the lower level

In this work, we focus on the Linear Bilevel Problem with Multiple Objective Functions at the Lower

Level (LBPMOLL), considering that upper-level constraints only include upper-level variables. Let

𝑥 ℝ
𝑛1 be the vector of upper-level variables and y ℝ

𝑛2 be the vector of lower-level variables; 𝐹(𝑥, 𝑦)

is the upper-level objective function and 𝑓1(𝑥, 𝑦),⋯ , 𝑓𝑝(𝑥, 𝑦) are the p objective functions at the lower

level. Since 𝑥 is a fixed vector whenever 𝑓1(𝑥, 𝑦),⋯ , 𝑓𝑝(𝑥, 𝑦) are optimized, these objective functions can

be expressed in terms of 𝑦 only. The optimistic formulation is considered, which assumes that the follower

is indifferent to the efficient solutions to the lower-level problem for a given 𝑥, i.e., the efficient solution

that most benefits the upper-level objective function is taken. This is why the maximization at the upper

level is formulated with respect to 𝑥 and 𝑦. The LBPMOLL can be stated as follows:

7

max
𝑥,𝑦

 𝐹(𝑥, 𝑦) = 𝑐1𝑥 + 𝑑1𝑦

s.t.

 𝐴1𝑥 ≤ 𝑏1

 𝑥 ≥ 0

 𝑦 ∈ Ψ𝑒𝑓(𝑥)

(1)

where Ψ𝑒𝑓(𝑥) denotes the set of all efficient solutions to the multiobjective lower-level problem (2) for a

given 𝑥, which we will denote by MOLL(𝑥):

max
𝑦
 𝑓1(𝑦) = 𝑑1

2𝑦

…

max
𝑦
 𝑓𝑝(𝑦) = 𝑑𝑝

2𝑦

s.t.

 𝐴2𝑥 + 𝐵2𝑦 ≤ 𝑏2

 𝑦 ≥ 0

(2)

In (1) - (2), 𝑐1 ℝ
𝑛1

, 𝑑1 ℝ
𝑛2

, 𝑑𝑗
2 ℝ

𝑛2, 𝑗 = 1,⋯ , 𝑝, 𝐴1 ∈ ℝ
𝑚1×𝑛1

, 𝑏1 ∈ ℝ
𝑚1

, 𝐴2 ∈ ℝ
𝑚2×𝑛1

,

𝐵2 ∈ ℝ
𝑚2×𝑛2

 , 𝑏2 ∈ ℝ
𝑚2

 .

Let 𝑆 denote the constraint region of the LBPMOLL and 𝑆(𝑥) is the feasible region of MOLL(𝑥) for

a given 𝑥: 𝑆 = {(𝑥, 𝑦) ℝ
𝑛1
× ℝ

𝑛2
: 𝐴1𝑥 ≤ 𝑏1, 𝐴1𝑥 + 𝐵2𝑦 ≤ 𝑏2, 𝑥 ≥ 0, 𝑦 ≥ 0} ,

 𝑆(𝑥) = {𝑦ℝ
𝑛2
: 𝐵2𝑦 ≤ 𝑏2 − 𝐴2𝑥, 𝑦 ≥ 0} .

It is assumed that 𝑆 is nonempty and compact and, for each decision taken by the leader, the follower

has some room to respond, i.e. 𝑆(𝑥) ≠ ∅ for each feasible 𝑥, and 𝑆(𝑥) is bounded.

A solution 𝑦 ∈ 𝑆(𝑥) is efficient (Pareto optimal) to the MOLL(𝑥) if and only if there is no other 𝑦′ ∈

𝑆(𝑥) that dominates 𝑦, i.e., such that 𝑓𝑗(𝑦
′) ≥ 𝑓𝑗(𝑦) for all 𝑗 = 1,⋯ , 𝑝 and 𝑓𝑗(𝑦

′) > 𝑓𝑗(𝑦) for at least

one 𝑗 = 1,⋯ , 𝑝. A point 𝑧 ∈ ℝp on the objective function space corresponding to an efficient solution 𝑦,

𝑧 = (𝑓1(𝑦), 𝑓2(𝑦),⋯ , 𝑓𝑝(𝑦)), is called a nondominated point.

The set of all efficient solutions to the MOLL(𝑥) is denoted by Ψ𝑒𝑓(𝑥) = {𝑦 ∈

𝑆(𝑥): 𝑦 is efficient to MOLL(𝑥)}.

The feasible region of the LBPMOLL is called inducible region and is defined as 𝐼𝑅 =

{(𝑥, 𝑦)𝑆: 𝑦 ∈ Ψ𝑒𝑓(𝑥)}. Solving (1) means finding a solution that maximizes the upper-level objective

function 𝐹(𝑥, 𝑦) over 𝐼𝑅.

Some relevant properties of the LBPMOLL are:

• The 𝐼𝑅 of the LBPMOLL is, in general, non-convex, as in the single-objective linear BP.

• Since MOLL(𝑥) is a multiobjective linear problem, Ψ𝑒𝑓(𝑥) is the union of faces of 𝑆(𝑥) and it is

connected (Ehrgott, 2005).

• As in the single-objective linear BP with no upper-level constraints involving lower-level

variables (i.e., with no coupling constraints), the 𝐼𝑅 of (1) is connected. This property is proved

8

in the next section, by showing the equivalence of 𝐼𝑅 with the efficient set of an associated MOLP

problem.

• The 𝐼𝑅 consists of the union of faces of the constraint region 𝑆 (Calvete and Galé, 2011); in the

case of the formulation (1) with no coupling constraints, the 𝐼𝑅 is a set of connected faces because

𝐼𝑅 is connected. However, these are not necessarily maximal faces, as it will be shown in the

example below.

• There is an extreme point (vertex) of 𝑆 that is an optimal solution to the LBPMOLL (Calvete and

Galé, 2011).

Example 1

Consider the following illustrative example with one upper-level variable (𝑥) and two lower-level

variables (𝑦1, 𝑦2):

𝑚𝑎𝑥 𝐹(𝑥, 𝑦) = 𝑥 + 2𝑦1 − 𝑦2

s.t.

2 ≤ 𝑥 ≤ 5

𝑚𝑎𝑥 𝑓1 (𝑦) = 𝑦1 + 2𝑦2

𝑚𝑎𝑥 𝑓2(𝑦) = − 𝑦1 + 𝑦2

s.t.

 𝑦1 ≤ 6

 𝑦1 + 𝑦2 ≤ 10 − 𝑥

 𝑦2 ≤ 𝑥

 5𝑦1 − 2𝑦2 ≥ 0

𝑦1, 𝑦2 ≥ 0

In order to better illustrate the behavior of the bi-objective problem at the lower level, Figure 1 shows

the feasible region and the efficient solutions of MOLL(𝑥) for three specific values of 𝑥: 𝑥 =2, 𝑥 =3 and

𝑥 =4.5. Consider, for instance, the graph for 𝑥 =2: 𝑆(2) = {𝑦1 ≤ 6, 𝑦1 + 𝑦2 ≤ 8, 𝑦2 ≤ 2, 5𝑦1 − 2𝑦2 ≥

0 , 𝑦1, 𝑦2 ≥ 0}; the solution that optimizes individually 𝑓1 is P1, where (𝑦1, 𝑦2)=(6, 2) and the solution

that optimizes individually 𝑓2 is P2, where (𝑦1, 𝑦2)=(0.8, 2); thus, the set of efficient solutions of

MOLL(2) is the line segment from P1 to P2, which belongs to the boundary of the constraint 𝑦2 ≤ 𝑥 of

S. For MOLL(3) a similar situation occurs: the set of efficient solutions is a line segment on the same face

of 𝑆. For MOLL(4.5), the constraint 𝑦2 ≤ 𝑥 is redundant; P1P2 is the point that optimizes simultaneously

𝑓1 and 𝑓2 , which is given by the intersection of 𝑦1 + 𝑦2 = 10 − 𝑥 (with 𝑥 = 4.5) and 5𝑦1 − 2𝑦2 = 0.

Thus, only P1P2 is efficient for MOLL(4.5), where (𝑦1, 𝑦2)=(1.571, 3.929).

Figure 1 - MOLL(𝑥) for =2, 𝑥 =3 and 𝑥 =4.5 of the Example 1.

9

Figure 2 shows the constraint region 𝑆 in the (𝑥, 𝑦1, 𝑦2) space and, in blue (darker) color, 𝐼𝑅. Note that,

in Figure 1, [P1, P2] for 𝑥 =2 is the line segment [AB] in Figure 2, but P1 and P2 for 𝑥 =3 and for 𝑥 =4.5

do not correspond to vertices of 𝑆. As can be observed in Figure 2, the 𝐼𝑅 consists of the union of two

faces of the constraint region 𝑆, but only one is maximal, [ABC], the other being the line segment [CD].

The vertices of 𝐼𝑅 have the following coordinates (𝑥, 𝑦1, 𝑦2) and upper-level objective values: 𝐴 =

(2, 6, 2), 𝐹(𝐴)= 12; 𝐵 = (2, 0.8, 2), 𝐹(𝐵)=1.6; 𝐶 = (4.167, 1.667, 4.167), 𝐹(𝐶)=3.333; 𝐷 =

(5, 1.429, 3.571), 𝐹(𝐷)=4.286. Thus, the optimal solution to the bilevel problem is the point A with

𝐹(𝐴)= 12.

Figure 2 – The constraint region 𝑆 (gray color) and the inducible region 𝐼𝑅 (blue color) of Example 1.

3 An exact algorithm based on the search for extreme points of IR

In this work, we propose an exact method (called EEPSM) to compute the optimal solution(s) to the

LBPMOLL or, at least, a local optimum in the case of the heuristic procedure that will be presented in

section 4. Both techniques use an associated MOLP problem with many objective functions, whose

efficient solutions are feasible solutions to the bilevel problem (i.e., solutions belonging to IR). In the exact

method, all extreme points (vertices) of the IR are computed, selecting from this set the one that presents

the maximum 𝐹(𝑥, 𝑦). So, an algorithm for computing all efficient extreme points of a MOLP problem

(following the general scheme of a vector-maximum algorithm described in (Steuer, 1986)) has been

developed to apply to this MOLP problem.

This method will be compared with another exact method, the k-th best algorithm proposed by Calvete

and Galé (2011), which goes through vertices by decreasing order of 𝐹 until the first feasible vertex is

found.

The k-th best algorithm (Calvete and Galé, 2011) for the LBPMOLL builds on the algorithm developed

by Bialas and Karwan (1984) for the linear BP by searching the vertices of 𝑆 and assessing whether they

belong to 𝐼𝑅. This test involves solving a linear programming problem using Benson’s technique (Benson,

1978) to determine whether a solution (𝑥′, 𝑦′) is efficient to the multiobjective problem MOLL(𝑥′). The

10

algorithm starts by computing an optimal solution to the high-point relaxation problem, which consists of

optimizing the upper-level objective function over 𝑆. If this solution belongs to the 𝐼𝑅, then it is an optimal

solution to the LBPMOLL. Otherwise, a set Q of its adjacent basic solutions in 𝑆 is constructed. The

algorithm proceeds by assessing the solution in Q with the best F-value. If this solution belongs to the 𝐼𝑅,

then the algorithm stops; else this solution is removed from Q and its adjacent basic solutions in 𝑆 with

worse F-value are added to Q. This set is progressively examined by selecting the best F-value solution

until it belongs to 𝐼𝑅. As the algorithm computes a set of non-improving F-value solutions, the first

solution found belonging to 𝐼𝑅 is the optimal one, since a path between the vertices of 𝑆 exists. This search

strategy implies that the performance of the algorithm heavily depends on whether the first solution

computed is close or far from the optimal solution to the LBPMOLL.

3.1 Fundamentals of the EEPSM

Consider the following MOLP problem with (𝑝 + 𝑛1 + 1) objective functions, which is associated

with the feasible region of the LBPMOLL:

𝑚𝑎𝑥 𝑓𝑗(𝑦) = 𝑑𝑗
2𝑦 𝑗 = 1,⋯ , 𝑝

𝑚𝑎𝑥 𝑥𝑖 𝑖 = 1,⋯ , 𝑛1

𝑚𝑎𝑥 ∑ (−𝑥𝑖
𝑛1
𝑖=1)

s.t.

𝐴1𝑥 ≤ 𝑏1

𝐴2𝑥 + 𝐵2𝑦 ≤ 𝑏2

𝑥, 𝑦 ≥ 0
} (𝑥, 𝑦) ∈ 𝑆

(3)

The following proposition is an extension for the LBPMOLL of the Fülop’s theorem (Fülöp, 1993) and

the theorem presented in (Alves, Dempe and Júdice, 2012), both for the BP with only one objective

function at the lower level.

Proposition 1: A solution (𝑥′, 𝑦′) belongs to the 𝐼𝑅 of the LBPMOLL (1) if and only if (𝑥′, 𝑦′) is an

efficient solution to the MOLP problem (3).

Proof.

Let 𝐸 denote the set of all efficient solutions to the MOLP problem (3).

(a) Let us first prove that (𝑥′, 𝑦′) ∈ 𝐼𝑅 ⇒ (𝑥′, 𝑦′) ∈ 𝐸.

By definition of 𝐼𝑅, (𝑥′, 𝑦′) ∈ 𝐼𝑅 ⟺ (𝑥′, 𝑦′) ∈ 𝑆 ⋀ 𝑦′ ∈ Ψ𝑒𝑓(𝑥
′), which means that 𝑦′ is

efficient to the lower-level multiobjective problem (2) with 𝑥 = 𝑥′, i.e., MOLL(𝑥′).

Let us suppose that (𝑥′, 𝑦′) ∉ 𝐸. Therefore, there is another (𝑥", 𝑦") ∈ 𝐸 that dominates (𝑥′, 𝑦′)

in (3), i.e., the following conditions hold, with at least one strict inequality among the 𝑝 + 𝑛1 + 1

inequalities:

{

𝑑𝑗
2𝑦" ≥ 𝑑𝑗

2𝑦′ 𝑗 = 1,⋯ , 𝑝 (a. 1)

𝑥"𝑖 ≥ 𝑥′𝑖 𝑖 = 1,⋯ , 𝑛1 (𝑎. 2)

∑(−𝑥"𝑖)

𝑛1

𝑖=1

≥ ∑(−𝑥′𝑖)

𝑛1

𝑖=1

 (𝑎. 3)

11

If conditions (a.2) are satisfied, then

 ∑ 𝑥"𝑙
𝑛1
𝑙=1,𝑙≠𝑖 ≥ ∑ 𝑥′𝑙

𝑛1
𝑙=1,𝑙≠𝑖 , 𝑖 = 1,⋯ , 𝑛1 (𝑎. 4)

(𝑎. 4) together with (𝑎. 3) leads to

 ∑ (−𝑥"𝑙)
𝑛1
𝑙=1 + ∑ 𝑥"𝑙

𝑛1
𝑙=1,𝑙≠𝑖 ≥ ∑ (−𝑥′𝑙) +

𝑛1
𝑙=1 ∑ 𝑥′𝑙

𝑛1
𝑙=1,𝑙≠𝑖 , 𝑖 = 1,⋯ , 𝑛1

⟺ −𝑥"𝑖 + ∑ (𝑥"𝑙 − 𝑥"𝑙)
𝑛1
𝑙=1,𝑙≠𝑖 ≥ −𝑥′𝑖 + ∑ (𝑥′𝑙 − 𝑥

′
𝑙), 𝑖 = 1,⋯ , 𝑛1

𝑛1
𝑙=1,𝑙≠𝑖

 ⟺ −𝑥"𝑖 ≥ −𝑥
′
𝑖 , 𝑖 = 1,⋯ , 𝑛1

 ⟺ 𝑥"𝑖 ≤ 𝑥
′
𝑖 , 𝑖 = 1,⋯ , 𝑛1 (𝑎. 5)

 By (𝑎. 2) and (𝑎. 5), 𝑥"𝑖 = 𝑥
′
𝑖, 𝑖 = 1,⋯ , 𝑛1.

 Therefore, the strict inequality among (a. 1), (a. 2) and (a. 3) must be in (a. 1), i.e.: 𝑑𝑗
2𝑦" >

𝑑𝑗
2𝑦′ for some 𝑗 ∈ {1,⋯ , 𝑝}. Hence, since 𝑦" ∈ 𝑆(𝑥′) because 𝑥" = 𝑥′, then 𝑦" dominates 𝑦′ in

MOLL(𝑥′), i.e. 𝑦′ ∉ Ψ𝑒𝑓(𝑥
′), which contradicts the hypothesis that (𝑥′, 𝑦′) ∈ 𝐼𝑅. Therefore, (𝑥′, 𝑦′) ∈

𝐸.

(b) Let us now prove that (𝑥′, 𝑦′) ∈ 𝐸 ⇒ (𝑥′, 𝑦′) ∈ 𝐼𝑅.

Let us suppose that (𝑥′, 𝑦′) ∉ 𝐼𝑅. Since (𝑥′, 𝑦′) ∈ 𝑆, then (𝑥′, 𝑦′) ∉ 𝐼𝑅 only if 𝑦′ ∉ Ψ𝑒𝑓(𝑥
′),

i.e., there is another 𝑦" ∈ 𝑆(𝑥′) such that 𝑑𝑗
2𝑦" ≥ 𝑑𝑗

2𝑦′ for all 𝑗 = 1,⋯ , 𝑝 and 𝑑𝑗
2𝑦" > 𝑑𝑗

2𝑦′ for

at least one 𝑗.

Hence, (𝑥′, 𝑦") dominates (𝑥′, 𝑦′) in the MOLP problem (3), i.e., (𝑥′, 𝑦′) ∉ 𝐸, which contradicts

the hypothesis. Therefore, (𝑥′, 𝑦′) ∈ 𝐼𝑅. 

Based on Proposition 1, the following Corollary can be stated for the LBPMOLL.

Corollary 1 – An optimal solution to the LBPMOLL can always be found in an efficient extreme point of

(3).

This corollary is valid because 𝐹(𝑥, 𝑦) is a linear function, thus an optimistic optimal solution can always

be found in a vertex of 𝐼𝑅 (Calvete and Galé, 2011), i.e., a vertex of 𝐸.

Before describing the algorithm for the LBPMOLL, let us present some definitions and foundations of

general MOLP problems (Steuer, 1986), (Ehrgott, 2005), (Antunes, Alves and Clímaco, 2016) that can be

applied to (3). For the sake of simplicity, let us consider that 𝒙 denotes the vector of all variables of the

problem and 𝐶𝒙 are the objective functions of the MOLP problem, where 𝐶 is the matrix of the objective

function coefficients with 𝜚 rows, as many as the number of objective functions (𝜚 = 𝑝 + 𝑛1 + 1 in (3)).

Like in (3), 𝑆 denotes the feasible region of the MOLP problem.

Let 𝜆 ∈ ℝ>0
𝜚

. The weighted-sum linear program (LP) associated with 𝜆 is: max {𝜆𝐶𝒙 | 𝒙 ∈ 𝑆}.

Let ℬ be a basis of 𝑆.

12

Let 𝑊 denote the reduced cost matrix for the MOLP problem associated with ℬ: 𝑊 = Cℵ − Cℬℬ̅
−1ℵ̅,

where Cℬ and Cℵ are the basic and nonbasic columns of 𝐶, respectively, and ℬ̅, ℵ̅ are the corresponding

columns of the constraint matrix of 𝑆.

• ℬ is an efficient basis of the MOLP problem if and only if ℬ is an optimal basis of the weighted-

sum LP for some 𝜆 ∈ ℝ>0
𝜚
.

• An efficient basis ℬ is always associated with an efficient extreme point of the MOLP problem.

However, an efficient extreme point may be associated with several efficient bases (in the case

of degeneracy).

• Two bases ℬ and ℬ’ are called adjacent if one can be obtained from the other by a single pivot

step.

• Let ℬ be an efficient basis. Then, 𝒙𝑖 is an efficient nonbasic variable with respect to (w.r.t.)

ℬ if there is a 𝜆 ∈ ℝ>0
𝜚

 such that 𝜆𝑊 ≤ 0 and 𝜆𝑊∙𝑖 = 0, where 𝑊∙𝑖 is the column of 𝑊

corresponding to 𝒙𝑖.

• Let ℬ be an efficient basis and 𝒙𝑖 be an efficient nonbasic variable. Then, any feasible pivot

operation from ℬ (including any with negative pivot element whose associated basic variable

is degenerate) is an efficient pivot operation leading to an adjacent efficient basis ℬ’.

• Let ℬ be any efficient basis and 𝒙̅ be an efficient extreme point. Then, starting from ℬ, it is

always possible to reach 𝒙̅ by performing only efficient pivots (Schechter and Steuer, 2005).

Therefore, if all efficient extreme points of (3) – vertices of 𝐸 – are explored and the one with the best

𝐹(𝑥, 𝑦) is selected, then the optimal solution to the LBPMOLL is found. If there are more than one optimal

solution, all of them can be known. The algorithm may start at any efficient basic solution of (3), as there

is always a path of adjacent efficient bases between any two vertices of 𝐸.

3.2 The EEPSM algorithm

The efficient extreme points search method – EEPSM – to compute the optimal solution(s) to the

LBPMOLL relies on Proposition 1. We have developed a vector-maximum algorithm to compute all

efficient extreme points of the MOLP problem (3).

In order to assure that an optimal solution to the LBPMOLL is obtained, the algorithm must compute

all efficient extreme points of (3). So, an algorithm intended to compute only a subset, as the parametric

simplex algorithm of Rudloff, Ulus and Vanderbei (2017), does not suit this purpose. Moreover, searching

for all nondominated extreme points in the objective space, as Benson’s method (Benson, 1998), may not

be sufficient to compute an optimal solution to the LBPMOLL. Each extreme point 𝒙 = (𝑥, 𝑦) can be

mapped by the objective functions of the MOLP problem either into an extreme or a non-extreme

nondominated point of the image set (Dauer and Liu, 1990). In addition, for a given extreme nondominated

point there may exist several efficient solutions (in the decision variable space) and, although they are

indifferent for the follower, they may have different values for the leader’s objective function 𝐹(𝑥, 𝑦).

13

The algorithm we have developed to solve problem (3) is a variant of the Evans-Steuer algorithm,

which searches for all efficient extreme points of bounded MOLP problems. The general scheme is similar

to the one described in (Steuer, 1986) for a vector-maximum algorithm. All efficient bases are scanned

including the degenerate ones. Having the main concern of being computationally efficient, the procedure

employed to check the efficiency of nonbasic variables does not require solving an LP problem for each

nonbasic variable. Although the description of the algorithm presented below refers to problem (3), this

vector-maximum algorithm has a generic application and can be used for any bounded MOLP problem.

In that case, the algorithm returns the set of all efficient extreme points rather than only the best solutions

according to 𝐹(𝑥, 𝑦).

EEPSM Algorithm

Notation: ℰ – set of efficient extreme points of (3); initially ℰ = ∅.

 ℒℬ – list of efficient bases; initially ℒℬ = ∅.

 𝑘 – index of the basis in ℒℬ under analysis.

 𝑋𝑌∗ – set of incumbent solutions (𝑥∗, 𝑦∗) to the LBPMOLL, optimal at the end of the algorithm.

 𝐹∗– value of the upper-level objective function in any solution (𝑥∗, 𝑦∗) ∈ 𝑋𝑌∗.

Step 1. Solve a weighted-sum LP of (3) with 𝜆 ∈ ℝ>0
𝜚

 to obtain a first basic efficient solution of (3).

Let ℬ1 be the basis obtained and (𝑥1, 𝑦1) be the efficient solution of (3) associated with ℬ1.

Insert (𝑥1, 𝑦1) into ℰ and insert ℬ1 into ℒℬ (by storing an encoding of the indices of the basic

variables).

Initialize the set of incumbent solutions: 𝑋𝑌∗ = {(𝑥1, 𝑦1)}; 𝐹∗ = 𝐹(𝑥1, 𝑦1).

𝑘 ← 1

Step 2. For all nonbasic variable 𝒙𝑖 (which can be either an 𝑥 or 𝑦 variable) w.r.t. ℬ𝑘, check whether

𝒙𝑖 is an efficient nonbasic variable. If so, determine all feasible pivots (more than one only if the

basis is degenerate) and each corresponding basis ℬ (characterized by its basic variables) resulting

from entering 𝒙𝑖 into the basis. If ℬ ∉ ℒℬ, then ℒℬ ← ℒℬ⋃{ ℬ}.

Step 3. 𝑘 ← 𝑘 + 1

If |ℒℬ| < 𝑘, then all efficient bases have been analyzed – go to Step 4.

Otherwise, choose the 𝑘th basis in ℒℬ: ℬ𝑘.

Compute (𝑥𝑘 , 𝑦𝑘) associated with the basis ℬ𝑘. If (𝑥𝑘, 𝑦𝑘) ∉ ℰ , then ℰ ← ℰ ∪ {(𝑥𝑘 , 𝑦𝑘)}.

Update the set of incumbent solutions to the LBPMOLL:

If 𝐹(𝑥𝑘 , 𝑦𝑘) ≥ 𝐹∗ then

 If 𝐹(𝑥𝑘 , 𝑦𝑘) > 𝐹∗ then

 𝑋𝑌∗ = {(𝑥𝑘 , 𝑦𝑘)}; 𝐹∗ = 𝐹(𝑥𝑘 , 𝑦𝑘).

 Else

 𝑋𝑌∗ = 𝑋𝑌∗ ∪ {(𝑥𝑘, 𝑦𝑘)}.

14

Go to Step 2.

Step 4. Return 𝑋𝑌∗with all the optimal solutions found for the LBPMOLL. 𝐹∗ is the optimal value of the

upper-level objective function.

In Step 1, any 𝜆 ∈ ℝ>0
𝜚

 can be used. In our implementation, we have considered a central vector with

equal weights for all the 𝜚 = 𝑝 + 𝑛1 + 1 objective functions, i.e., 𝜆 = (
1

𝜚
,
1

𝜚
, ⋯ ,

1

𝜚
).

In Step 2, we need a method to check whether a nonbasic variable 𝒙𝑖 is efficient w.r.t. the basis under

analysis ℬ𝑘 . There are several tests for this purpose, almost all requiring to solve an LP subproblem for

each 𝒙𝑖. The Zionts-Wallenius routine (Zionts and Wallenius, 1980) enables to determine the efficiency

status of all nonbasic variables in one extended run instead of solving one individual subproblem for each

𝒙𝑖. However, according to our practical experience, this routine has difficulties in determining that status

for all variables in some problems, particularly problems with many objective functions. Therefore, we

have considered the following procedure:

 Let 𝑊 be the reduced cost matrix (with 𝜚 rows) associated with ℬ𝑘.

(i) If, for a given 𝒙𝑖, all elements of the column 𝑊∙𝑖 are equal to 0, then 𝒙𝑖 is efficient (in this

case, the nonbasic variable will lead to an efficient solution corresponding to the same

nondominated point as the current one).

(ii) Exclude from 𝑊 the columns of 𝒙𝑖 that received the status of efficient in (i) and apply the

Zionts-Wallenius routine (as described in (Steuer, 1986)), which employs a pivoting

iterative scheme to classify the variables as efficient or non-efficient from an initial status

of unknown. If the routine does not change the status of some variable(s) during a

predefined number of iterations, then we force it to stop.

(iii) In general, all nonbasic variables are classified in (ii) but, if there is still any nonbasic 𝒙𝑖

whose status remain unknown, then the Isermann’s test (Isermann, 1977) is applied to 𝒙𝑖

to determine its efficient/non-efficient status.

The algorithm only explores different efficient bases. However, the verification whether (𝑥𝑘 , 𝑦𝑘) ∉ ℰ

is necessary in Step 3 because (𝑥𝑘 , 𝑦𝑘) may already exist in ℰ if ℬ𝑘 is a degenerate basis, and only

different efficient solutions are saved in ℰ.

Step 3 guarantees that all alternative best solutions are retained, so that the algorithm returns, in Step

4, all alternative extreme optimal solutions to the LBPMOLL.

The algorithm is guaranteed to finish because the number of bases 𝑆 is finite and, in Step 2, only

different bases (ℬ) enter into the list of efficient bases for further analysis (If ℬ ∉ ℒℬ, then ℒℬ ←

ℒℬ⋃{ ℬ}).

In the computational implementation of this algorithm, the bounded-variable simplex method was used.

So, the basis encoding includes not only the indexes of the basic variables but also a record of the nonbasic

15

variables at the upper bound. Also, the Zionts-Wallenius routine in (ii) and the additional test in (iii) to

check the efficiency status of nonbasic variables were adapted to deal with both variables at the lower

bound (zero) and at the respective upper bounds. The algorithm was implemented in Delphi® (by

Embarcadero), using the free solver lpsolve to obtain the first efficient solution in Step 1. It also takes

advantage of the lpsolve subroutines to obtain the necessary data for determining the feasible pivots and

the 𝑊 matrix in Step 2, and to jump directly to a given basis in Step 3, calculating the respective solution.

To have a first evaluation of the vector-maximum algorithm’s performance, we have tested it to

calculate all efficient extreme solutions in general MOLP problems. The results of these experiments are

presented in the Appendix, revealing that the number of efficient extreme points grows very fast with the

number of objective functions. The resolution of (3) is, therefore, challenging.

All computational times reported throughout this paper refer to a computer Intel Core i7-7700 CPU 3.6

GHz, 64 GB RAM.

3.3 Numerical Example

Let us illustrate the use of the EEPSM in small numerical LBPMOLL example. In order to compare

the search path with another exact method, we will start by showing the application of the k-th best

algorithm (Calvete and Galé, 2011) in the same problem. As referred to above, this method searches for

extreme solutions of 𝑆 by decreasing order of 𝐹(𝑥, 𝑦) and, for each one, determines whether that extreme

solution is efficient to the lower-level problem; the first efficient solution found is optimal to the bilevel

problem. The Benson’s test is employed to check the efficiency of a given solution (𝑥′, 𝑦′). Considering

maximizing objective functions (as stated above in the definition of the LBPMOLL), this test consists of

maximizing ∑ 𝑧𝑗
𝑝
𝑗=1 subject to {𝑦 ∈ 𝑆(𝑥′): 𝑑𝑗

2𝑦 − 𝑧𝑗 = 𝑑𝑗
2𝑦′, 𝑗 = 1,⋯ , 𝑝; ∀𝑧𝑗 ≥ 0}; if the optimal

objective value is equal to zero, then the solution is efficient.

Let us consider the problem of Example 1. This problem has the particularity of having several

degenerate bases. The set 𝑆 is defined by the following constraints (the slack/surplus of each constraint is

in brackets):

 𝑦1 ≤ 6 (𝑠1)

 𝑥 + 𝑦1 + 𝑦2 ≤ 10 (𝑠2)

 −𝑥+𝑦2 ≤ 0 (𝑠3)

 5𝑦1 − 2𝑦2 ≥ 0 (𝑠4)

 𝑥 ≥ 2 (𝑠5)

 𝑥 ≤ 5 (𝑠6)

𝑦1, 𝑦2 ≥ 0

Let 𝒙 denote (𝑥, 𝑦1, 𝑦2), 𝑓 = (𝑓1, 𝑓2) and 𝑛𝑏𝑣 is the set of nonbasic variables for a given basis.

• k-th best algorithm

① Optimize 𝐹(𝒙) = 𝑥 + 2𝑦1 − 𝑦2 over 𝑆, which leads to point E (see Figure 3):

𝒙 = (4, 6, 0), 𝑓 = (6,−6), 𝐹 =16.

16

Check the efficiency of E w.r.t. the lower-level problem MOLL(𝑥 = 4) by solving the

Benson’s test problem → E is non-efficient.

Generate all bases adjacent to E and respective solutions (arrows 1 in Figure 3):

o point G with 𝒙 = (5, 5, 0), 𝑓 = (5,−5), 𝐹 =15

o point H with 𝒙 = (2, 6, 0), 𝑓 = (6,−6), 𝐹 =14

o point A (1st basis) with 𝒙 = (2, 6, 2), 𝑓 = (10,−4), 𝐹 =12, 𝑛𝑏𝑣 = {𝑠1, 𝑠2, 𝑠5}

o point A (2nd basis), 𝑛𝑏𝑣 = {𝑠1, 𝑠2, 𝑠3}

② Choose the solution with best 𝐹(𝒙) among {G, H, A} → point G with 𝐹 =15.

Check the efficiency of G w.r.t. the lower-level problem MOLL(𝑥 = 5) → G is non-

efficient.

Generate all bases adjacent to G and respective solutions with 𝐹(𝒙) ≤ 15 (arrows 2. In

Figure 3):

o point J (1st basis) with 𝒙 = (5, 0, 0), 𝑓 = (0, 0), 𝐹 =5, 𝑛𝑏𝑣 = {𝑦1, 𝑦2, 𝑠6}

o point J (2nd basis), 𝑛𝑏𝑣 = {𝑦2, 𝑠4, 𝑠6}

o point D with 𝒙 = (5, 1.429, 3.571), 𝑓 = (8.571, 2.143), 𝐹 =4.286

③ Choose the solution with best 𝐹(𝒙) among {H, A, J, D} → point H with 𝐹 =14.

Check the efficiency of H w.r.t the lower-level problem MOLL(𝑥 = 2) → H is non-efficient.

Generate all bases adjacent to H and respective solutions with 𝐹(𝒙) ≤ 14 which are different

from the already known bases (arrows 3. in Figure 3):

o point I (1st basis) with 𝒙 = (2, 0, 0), 𝑓 = (0, 0), 𝐹 =2, 𝑛𝑏𝑣 = {𝑦1, 𝑦2, 𝑠5}

o point I (2nd basis), 𝑛𝑏𝑣 = {𝑦2, 𝑠4, 𝑠5}

o point A (3rd basis), 𝑛𝑏𝑣 = {𝑠1, 𝑠3, 𝑠5}

④ Choose the solution with best 𝐹(𝒙) among {A, J, D, I} → point A with 𝐹 =12.

Check the efficiency of A w.r.t. the lower-level problem MOLL(𝑥 = 2) → A is efficient.

Thus, A is an optimal solution to the LBPMOLL.

 The k-th best algorithm searched for a total of 11 bases. This process is illustrated in Figure 3.

Figure 3 – Search path of the k-th best algorithm for the problem of Example 1.

17

• EEPSM

The MOLP problem (3) for this example has 𝜚 = 𝑝 + 𝑛1 + 1 = 4 objective functions to be

optimized over 𝑆. All the efficient extreme solutions to this MOLP problem are computed.

Although we consider equal weights for all the objective functions to begin the algorithm, the

starting point is indifferent, as well as the order the algorithm follows to search for efficient

extreme points, since all efficient extreme points must be visited.

- Solve a weighted-sum LP of (3) with 𝜆 = (
1

4
,
1

4
,
1

4
,
1

4
), which leads to point C: 𝒙 =

(4.1667, 1.667, 4.1667), 𝐹 =3.333. The set of efficient extreme points is ℰ ={C}

- Determine the efficient bases of (3) resulting from entering into the basis each of the efficient

nonbasic variables w.r.t. the basis of C, say ℬ0→ 4 bases are generated, {ℬ1, ℬ2, ℬ3, ℬ4} (see

Figure 4).

- Compute the solution corresponding to ℬ1:

o point B with 𝒙 = (2, 0.8, 2), 𝑓 = (4.8, 1.2), 𝐹 =1.6

ℰ ={C, B}

Determine new efficient bases adjacent to ℬ1 → 1 new basis is generated, ℬ5, which is

added to the list of bases to be analyzed.

- Compute the solution corresponding to ℬ2:

o point D with 𝒙 = (5, 1.429, 3.571),𝑓 = (8.571, 2.143), 𝐹 =4.286

ℰ ={C, B, D}

There are no new efficient bases adjacent to ℬ2

- Compute the solution corresponding to ℬ3:

o point A (1st basis found) with 𝒙 = (2, 6, 2), 𝑓 = (10,−4), 𝐹 =12, 𝑛𝑏𝑣 = {𝑠1, 𝑠2, 𝑠3}

ℰ ={C, B, D, A}

There are no new efficient bases adjacent to ℬ3

- Compute the solution corresponding to ℬ4:

o point A (2nd basis) , 𝑛𝑏𝑣 = {𝑠2, 𝑠3, 𝑠5}

There are no new efficient bases adjacent to ℬ4

- Compute the solution corresponding to ℬ5:

o point A (3rd basis), 𝑛𝑏𝑣 = {𝑠1, 𝑠3, 𝑠5}

There are no new efficient bases adjacent to ℬ5

- There are no more bases to analyze, so the algorithm finishes with ℰ ={C, B, D, A} the set of all

feasible extreme points of the LBPMOLL. The optimal solution is the point in ℰ with best F, i.e.,

point A with 𝐹 =12.

 The EEPSM searched for a total of 6 bases. This process is illustrated in Figure 4.

18

Figure 4 – Search path of the EEPSM for the problem of Example 1.

3.4 Main characteristics of the methods - similarities and differences

A first critical assessment of the methods – the EEPSM and the k-th best algorithm – can be made based

on the main characteristics of these methods:

• If the LBPMOLL is trivial, then the k-th best algorithm finds its optimal solution in the first iteration.

A bilevel problem is trivial if its optimal solution is given by solving the so-called high-point relaxation

problem (i.e., the optimization of the upper-level objective function over the set of all constraints of the

problem, the upper and the lower-level constraints). Therefore, the k-th best algorithm has advantages

over the EEPSM if the optimal solution of the LBPMOLL is close to the solution that optimizes 𝐹 in

𝑆.

• The k-th best algorithm can be used for problems with upper-level constraints involving lower-level

variables (i.e., coupling constraints). The EEPSM requires that upper-level constraints include only

upper-level variables in order to ensure the validity of Proposition 1.

• An advantage of the EEPSM is that it only searches for feasible solutions of the LBPMOLL. Therefore,

if some computational budget is imposed and the method cannot finish within that time limit, the

optimal solution cannot be assured but the method finishes with a feasible solution of the LBPMOLL;

this does not happen with the k-th best algorithm, which does not yield a feasible solution until it ends.

• The main disadvantage of the EEPSM is that it will only be able to deal with bilevel problems with a

few upper-level variables. The number of objective functions of the MOLP problem (3) depends on the

number of upper-level variables and the computational burden of computing all efficient extreme

solutions of (3) highly increases with the number of objective functions (as noted for general MOLP

problems in Table A.1 of the Appendix).

• If the LBPMOLL has alternative optimal solutions, the EEPSM finds them all.

4 Computational results of the exact algorithms

The EEPSM was implemented in Delphi and the experiment was performed on a PC Intel Core i7-7700

CPU 3.6 GHz, 64 GB RAM under Windows 10. We also implemented the k-th best algorithm in Delphi

and tested it using the same computer.

ℬ1

ℬ0

ℬ2

ℬ4

ℬ5

ℬ3

19

The problems were randomly generated using the rules in (Calvete and Galé, 2011) with two objective

functions at the lower level, and the following numbers n1- n2 - m of upper-level decision variables (n1),

lower-level decision variables (n2) and constraints (m): 5-10-10, 5-15-15, 5-10-20, 5-20-10, 5-20-20, 5-

30-30, 5-40-40, 5-50-50, 10-20-20, 10-50-50. We consider problems with a few upper-level variables due

to the nature of the EEPSM. All the constraints are of the type ‘≤’ and placed at the lower level (m =m2);

thus, the total number of variables of the problem (including slack variables) is n1+ n2 + m. For every

problem size, a number of instances was generated in order to obtain five non-trivial problems in each

category (i.e., problems whose optimal solution is given by the relaxed problem were discarded). Only in

the categories 5-10-10 and 5-10-20 trivial problems were generated: in the first category, 11 problems

were generated to obtain 5 non-trivial; in the category 5-10-20, only one trivial problem was generated. A

total number of 50 problems was considered in this experiment. The data of this test set can be found at

https://data.mendeley.com/datasets/6prkd8w9sm/1, an open-source online data repository hosted at

Mendeley Data.

It should be noticed that we have also considered other instances presented in the literature that have

been used to test/illustrate other algorithms for LBPMOLL, namely all the problems in (Ankhili and

Mansouri, 2009), (Zheng and Wan, 2011), (Zheng, Chen and Cao, 2014), (Lv and Wan, 2014) and (Ren

and Wang, 2016). However, these problems are very small and have been mainly used for illustrative

purposes, thus not posing real challenges to the algorithms. Most of them are trivial, in which the

optimization of the upper-level objective function over 𝑆 leads to the optimal solution to LBPMOLL; these

LP relaxations have at most 15 variables and 16 constraints. Only 3 non-trivial problems were found in

this set – 1) the first example in (Ankhili and Mansouri, 2009), also presented in the other papers: both

EEPSM and the k-th best algorithm searched for 5 basic solutions to reach the optimal solution; 2) the

second example in (Zheng, Chen and Cao, 2014), also presented as illustrative example in (Calvete and

Galé, 2011), which has two alternative optimal solutions: both EEPSM and the k-th best algorithm searched

for 6 basic solutions; the EEPSM yielded the two optimal solutions; 3) the second example in (Lv and

Wan, 2014): EEPSM searched for 4 basic solutions and the k-th best algorithm searched for 24 basic

solutions to reach the optimal solution.

In the experiment using our test set of 50 problems, we imposed a computational time limit for each

problem, which is equal in both algorithms. Since the computational effort increases with the size of the

problem, in particular with n1, the following limits were considered: 300 seconds for problems from 5-10-

10 to 5-20-20, 600 s for problems 5-30-30 to 5-50-50, 900 s for 10-20-20, and 1800 s for 10-50-50. In the

problems up to 5-20-20, the optimal solution was reached within the 300 s time limit in all cases except in

one problem by the k-th best algorithm (problem 5-20-20-b in Table 1). The algorithm still does not finish

even if the time limit is increased to 600 seconds (i.e., the same limit as the one given to the categories of

higher dimensions).

20

Table 1 shows the computational results for both algorithms. For each problem, the optimal value of F

is presented if any of the algorithms or both were able to achieve the optimal solution within the pre-

established time limit. For each algorithm, the number of bases explored (#bases) and the computational

time (in seconds) are presented; if the algorithm has finished, thus yielding the optimal solution, the

mention ‘Opt’ is shown in the best F column; otherwise, the best value of F for feasible solutions obtained

during the search is presented. This is only possible for the EEPSM, since the k-th best algorithm does not

yield any feasible solution to the bilevel problem until the end of the algorithm. In this case, the best upper

bound for F found by the k-th best algorithm (i.e., the F value in the last solution explored by the method)

is presented in the UB column. The results of the algorithm with best performance in each problem are

highlighted in bold.

Table 1 – Results of the EEPSM and the k-th best algorithm

 EEPSM k-th best algorithm
Problem
(n1-n2-m) optimal F #bases time (s)

best F
(feasible LB) #bases time (s) best F UB

5-10-10

a 616.76 282 0.26 Opt 340 0.36 Opt

b 1016.69 335 0.33 Opt 29 0.02 Opt

c 366.19 143 0.12 Opt 269 0.23 Opt

d 488.91 399 0.39 Opt 389 0.40 Opt

e 2412.76 644 0.66 Opt 16 0.01 Opt

5-15-15

a 1737.74 2666 3.88 Opt 2250 2.07 Opt

b 2205.02 3304 4.71 Opt 2470 2.28 Opt

c 1042.43 1901 2.51 Opt 4387 5.29 Opt

d 2791.62 818 0.93 Opt 126 0.10 Opt

e 2130.60 528 0.66 Opt 477 0.44 Opt

5-10-20

a 664.18 1499 1.83 Opt 11764 19.28 Opt

b 2440.45 1678 1.82 Opt 67 0.05 Opt

c 1310.88 1649 1.80 Opt 32 0.03 Opt

d 818.44 2984 3.80 Opt 3095 3.41 Opt

e 64.28 1473 1.68 Opt 5313 6.96 Opt

5-20-10

a 827.62 212 0.23 Opt 4219 4.42 Opt

b 1684.84 212 0.24 Opt 6241 8.46 Opt

c 2692.50 1212 1.74 Opt 1759 1.62 Opt

d 4140.67 1303 2.04 Opt 1491 1.23 Opt

e 1577.06 889 1.19 Opt 20713 40.96 Opt

5-20-20

a 2578.20 9855 22.77 Opt 6271 6.35 Opt

b 1962.73 5945 11.60 Opt 70073 300 (limit) --- 2123.09

c 7311.26 2651 3.88 Opt 2149 3.08 Opt

d 4152.51 3044 4.23 Opt 10191 15.93 Opt

e 1976.77 1128 1.35 Opt 41425 133.57 Opt

5-30-30

a 3525.16 50489 302.36 Opt 98340 600 (limit) --- 4367.30

b 77845 600 (limit) 3042.64 104416 600 (limit) --- 4053.62

c 1477.95 11894 28.32 Opt 102238 600 (limit) --- 3186.46

d 7988.01 14839 40.31 Opt 41153 157.48 Opt

e 76331 600 (limit) 5580.16 111776 600 (limit) --- 6052.31

5-40-40

a 52824 600 (limit) 1718.89 112624 600 (limit) --- 5437.49

b 57689 600 (limit) 6077.09 114789 600 (limit) --- 6497.47

21

c 79760 600 (limit) 7620.52 116402 600 (limit) --- 8475.72

d 4841.82 76215 573.79 Opt 109404 600 (limit) --- 6461.62

e 56270 600 (limit) 5996.256 113935 600 (limit) --- 6982.90

5-50-50

a 51939 600 (limit) 3614.24 119051 600 (limit) --- 6318.37

b 50261 600 (limit) 5949.92 97272 600 (limit) --- 8744.37

c 51730 600 (limit) 8500.70 112299 600 (limit) --- 11858.44

d 52779 600 (limit) 2342.99 110513 600 (limit) --- 6400.02

e 54411 600 (limit) 4397.52 108675 600 (limit) --- 7032.82

10-20-20

a 2598.90 58212 900 (limit) 2518.44 97826 541.87 Opt

b
55053 900 (limit) 1730.09 126554 900 (limit) --- 2037.00

c
82231 900 (limit) 2932.42 126489 900 (limit) --- 2992.37

d 3692.22 77408 900 (limit) 3692.22 (Opt) 29186 65.45 Opt

e 2240.98 60715 900 (limit) 1866.31 83629 454.29 Opt

10-50-50

a 50964 1800 (limit) 1864.58 205349 1800 (limit) --- 6842.56

b 55186 1800 (limit) 6780.05 205469 1800 (limit) --- 9957.25

c 66950 1800 (limit) 7862.87 193021 1800 (limit) --- 9981.91

d 59528 1800 (limit) 7281.39 206918 1800 (limit) --- 10253.44

e 58750 1800 (limit) 5354.05 173524 1800 (limit) --- 9001.67

--- No feasible solution found

The analysis of these results enables to conclude that:

• Both methods are computationally demanding, so they are not able to solve large problems in a

reasonable time, as already pointed out by the authors for the k-th best algorithm (Calvete and Galé,

2011).

• In the first 4 categories (5-10-10, 5-15-15, 5-10-20, 5-20-10) with smaller problems, both methods

were able to find the optimal solution to all problems and it is not possible to conclude for the

superiority of one method in relation to the other. The EEPSM was faster in 9 problems of this sub-

set with 20 problems, and the k-th best algorithm was faster in 11 problems. In terms of the number

of bases searched, the reverse situation occurred: the EEPSM searched less bases in 11 problems and

the k-th best algorithm in 9 problems. The EEPSM was more regular in the computational time spent

in each problem, requiring times between 0.12 and 4.71 seconds, with an average of 1.54 sec., while

the k-th best algorithm required times between 0.01 and 40.96 seconds, with an average of 4.88 sec.

• In the category 5-20-20, the k-th best algorithm was not able to find the optimal solution to one

problem. As the problem size increases, both methods could finish the process within the pre-

established time limit in a few cases only. In problems with higher numbers of lower-level variables

and constraints, the EEPSM is always better because it returns a feasible solution to the problem while

the k-th best algorithm does not. When the number of upper-level variables is increased from 5 to 10,

and considering a small number of constraints and lower-level variables (10-20-20), the k-th best

algorithm performs better than the EEPSM. This behavior was expected because, as mentioned above,

the EEPSM is only adequate for problems with few upper-level variables. However, when the other

dimensions of the problems are increased (10-50-50), the k-th best algorithm also cannot finish, even

increasing the time limit to 1800 seconds.

22

• The main advantage of the EEPSM is that it can be used partially to find an approximation of the

optimal solution, because it always returns a feasible solution (that is, a solution of 𝐼𝑅) even if halted

during the process. The k-th best algorithm cannot be stopped before reaching the end, because only

the final solution is feasible, which is also optimal. From the k-th best algorithm we can obtain an

upper bound for the optimal value of F.

The fact that the EEPSM can be used in a partial way has been the main motivation for developing a

heuristic procedure.

5 A local search heuristic based on the EEPSM

The local search heuristic is based on the EEPSM and computes at least a local optimal solution – LOH

(Local Optimum Heuristic). Given a feasible basic solution of the LBPMOLL, the procedure explores all

efficient extreme solutions to the problem (3) adjacent to it with higher 𝐹(𝑥, 𝑦). The process is repeated

to all these solutions, by looking for efficient extreme solutions adjacent to each one with an 𝐹 higher than

its own. The algorithm finishes when there are no more adjacent solutions that improve F.

The aim of the heuristic is to reduce the computational effort with respect to the complete EEPSM

algorithm, generating a solution that is at least a local optimum of the LBPMOLL.

In order to detect trivial problems, in which the optimal solution is given by optimizing 𝐹(𝑥, 𝑦) in 𝑆, a

step 0 has been included (both in the heuristic and in the EEPSM) similar to the first step of the k-th best

algorithm.

LOH algorithm:

Step 0 – Solve the high-point relaxation problem of the LBPMOLL: max 𝐹(𝑥, 𝑦) s.t. (𝑥, 𝑦) ∈ 𝑆.

Check if the solution obtained is efficient to the lower-level problem. If it is efficient, then the algorithm

finishes because this solution is optimal to the LBPMOLL; otherwise, proceed to Step 1.

Step 1 – Choose an initial weight vector for the MOLP problem (3): 𝜆 ∈ ℝ>0
𝜚

Step 2 – Compute a first basic efficient solution of (3) by solving a weighted-sum with the 𝜆 defined

in Step 1.

Step 3 – Determine the nonbasic efficient variables w.r.t. the current basis (as in step 2 of the EEPSM),

but considering only the variables that lead to solutions with an F value higher than (or equal to) the current

one. Determine the corresponding bases and keep the different ones in the ℒℬ list.

Explore all bases in ℒℬ by repeating Step 3 for each one, and adding to ℒℬ the efficient bases adjacent

to the current one that do not decrease F.

The solution with best F found during the process is returned.

This heuristic is very sensitive to the starting point, which is determined by the weight vector 𝜆 chosen

in Step 1. Different initial weight vectors can be defined, e.g. the vector with equal weights, 𝜆 =

23

(
1

𝜚
,
1

𝜚
, ⋯ ,

1

𝜚
), and other weight vectors dispersed within the weight space. Thus, several runs of the heuristic

may be performed with different starting points leading to different results.

This procedure can be generalized to extend the search by considering in Step 3 not just the adjacent

extreme points which improve F (or, at least, keep it equal) but also allowing for a certain percentage 𝛿 of

degradation of F with respect to the extreme point for which all neighbor extreme points are being

inspected. By enabling worsening the objective function value, the heuristic may potentially explore a

more diverse, yet controlled, selection of extreme points. The LOH becomes a heuristic parameterized in

𝛿, i.e., LOH(𝛿). Therefore, LOH(0) is the LOH and LOH(∞) is the EEPSM.

6 Computational results of the heuristic

6.1 Comparison of the LOH with the EEPSM

For this comparison, we have considered the sub-set of problems described above for which at least

one of the methods (EEPSM or the k-th best algorithm) did not achieve the optimal solution. Therefore,

the 30 problems in the following categories were used: 5-20-20, 5-30-30, 5-40-40, 5-50-50, 10-20-20, 10-

50-50.

We have performed N runs of the LOH for each instance, considering a pre-defined set of N weight

vectors for starting the search. This set has been defined as follows: 𝜚 extreme weight vectors from 𝜆(1) =

(1,0,0…,0) to 𝜆(𝜚) = (0,0,0,….,1), a vector in which the total weight is distributed by the p=2 lower-level

objective functions, 𝜆(𝜚+1) = (1/2, 1/2, 0, 0,…,0), and a vector with equal weights, 𝜆(𝜚+2) =

(
1

𝜚
,
1

𝜚
, ⋯ ,

1

𝜚
). The 0’s in the weight vectors were replaced by a small positive value (=0.0001) in order to

ensure that the solutions obtained are efficient rather than weakly efficient only. Therefore, 𝑁 = 𝜚 + 2

runs were performed for each instance, i.e., 10 runs for the problems with 5 upper-level variables (5-20-

20, 5-30-30, 5-40-40, 5-50-50) and 15 runs for the problems with 10 upper-level variables (10-20-20, 10-

50-50). A time limit was imposed to each run such that the sum of the times of all runs do not exceed the

time limit given to the EEPSM for the same problem. Therefore, the following time limits were considered

per run: 30 s (=300/10) for problems 5-20-20, 60 s (=600/10) for categories 5-30-30 to 5-50-50, 60 s

(=900/15) for 10-20-20, and 120 s (=1800/15) for 10-50-50. The time limit of 30 seconds for problems 5-

20-20 was never achieved.

A summary of the results obtained and a comparison with the results of EEPSM is presented in Table

2. For the sake of clarity and ease of comparison, we repeat the EEPSM values already shown in Table 1.

Regarding the heuristic, the following information is shown: the sum of the running times (in seconds)

spent in the N runs; the value of the F in the best solution obtained; the number of times the best solution

was yielded over the N runs; an indication of whether the heuristic was able to finish within the time limit

per run, displaying the number of runs it happened over the N runs (column “Finish?”). For each problem,

the best F value is highlighted in bold face. The ‘*’ denotes that the optimal value was obtained.

24

Table 2 – Comparison of the LOH with the EEPSM

 EEPSM LOH

Problem

(n1-n2-m) optimal F

time

(seconds) best F

 times

(seconds) best F

best solution

found / N runs Finish?

5-20-20 N = 10 runs; time limit = 30 s/run

a 2578.20 22.77 2578.20 * 90.00 2578.20 * 10/10 10/10

b 1962.73 11.60 1962.73 * 2.70 1962.73 * 6/10 10/10

c 7311.26 3.88 7311.26 * 9.42 7311.26 * 7/10 10/10

d 4152.51 4.23 4152.51 * 3.70 4152.51 * 9/10 10/10

e 1976.77 1.35 1976.77 * 2.81 1976.77 * 10/10 10/10

5-30-30 N = 10 runs; time limit = 60 s/run

a 3525.16 302.36 3525.16 * 312.15 3525.16 * 7/10 8/10

b 600 (limit) 3042.64 380.42 3042.64 6/10 6/10

c 1477.95 28.32 1477.95 * 44.14 1477.95 * 9/10 10/10

d 7988.01 40.31 7988.01 * 53.25 7988.01 * 8/10 10/10

e 600 (limit) 5580.16 134.42 5580.16 7/10 8/10

5-40-40 N = 10 runs; time limit = 60 s/run

a
600 (limit) 1718.89 361.32 2149.08 2/10 4/10

b
600 (limit) 6077.09 446.75 6180.45 6/10 3/10

c
600 (limit) 7620.52 230.51 7865.92 3/10 7/10

d 4841.82 600 (limit) 4841.82 * 161.03 4841.82 * 8/10 8/10

e
600 (limit) 5996.26 135.86 5996.26 7/10 8/10

5-50-50 N = 10 runs; time limit = 60 s/run

a 600 (limit) 3614.24 232.41 3614.24 7/10 7/10

b 600 (limit) 5949.92 487.95 7747.93 1/10 2/10

c 600 (limit) 8500.70 347.19 9043.38 4/10 5/10

d 600 (limit) 2342.99 252.14 3364.72 2/10 7/10

e 600 (limit) 4397.52 600 (limit) 5294.50 1/10 0/10

10-20-20 N = 15 runs; time limit = 60 s/run

a 2598.90 900 (limit) 2518.44 707.81 2598.90 * 7/15 4/15

b
900 (limit) 1730.09 603.67 1954.59 5/15 6/15

c
900 (limit) 2932.42 267.97 2932.42 14/15 13/15

d 3692.22 900 (limit) 3692.22 * 282.54 3692.22 * 14/15 11/15

e 2240.98 900 (limit) 1866.31 692.88 2240.98 * 2/15 4/15

10-50-50 N = 15 runs; time limit = 120 s/run

a 1800 (limit) 1864.58 1800 (limit) 5376.78 1/15 0/15

b 1800 (limit) 6780.05 1800 (limit) 8675.49 1/15 0/15

c 1800 (limit) 7862.87 1800 (limit) 8841.17 1/15 0/15

d 1800 (limit) 7281.39 1800 (limit) 8308.79 1/15 0/15

e 1800 (limit) 5354.05 1800 (limit) 6169.35 1/15 0/15

* Optimal solution

The following conclusions can be drawn from this experiment:

• In all problems for which the optimal solution was reached by the EEPSM, the LOH also reached the

optimal solution in at least half of the runs.

• The use of the heuristic may not be justified in the smallest problems of this experiment (5-20-20)

because, although it always reaches the optimal solution, the total time (sum of the times of the 10

runs) is, in general, higher that running the EEPSM until the end; in addition, the EEPSM has the

advantage of ensuring the optimality of the solution.

• In the problems for which we have no guarantee that the optimal solution is known (a total of 18 over

30 problems), the LOH improved the solution obtained by the EEPSM execution in 13 problems and

25

attained the same solution as the EEPSM’s in 5 problems; this means that the outcome of N runs of

the LOH was never worse than the one of the EEPSM, being substantially better in several problems.

• This comparison experiment was calibrated in terms of the maximum computational time given to

each run of the LOH so that the limit of the sum of the times of all runs (‘ times’) was equal to the

maximum time given to the EEPSM. However, the LOH may not use its time budget in some runs

because it may finish before. Only in the last category of problems (10-50-50) the total times are equal

in the two algorithms; but, even consuming, in general, less time than the EEPSM, the LOH presented

better results.

Thus, the LOH seems interesting for problems in which the number of efficient bases is significantly

high, yielding better solutions than the EEPSM for a similar or smaller computational effort.

6.2 Comparison of the heuristic with different parameterizations

We now compare the results of the LOH with the generalized LOH for the tolerance values of 𝛿 =10%

and 𝛿=20%. For a given extreme point with 𝐹 = 𝐹’, that tolerance means that all adjacent extreme points

with 𝐹 ≥ (1 − 𝛿/100)𝐹’ are accepted. This comparative study was made considering the 3 most

challenging categories of problems. The results are displayed in Table 3.

Table 3 shows, for each problem, the best and the average of F obtained in N runs. We omit the

computational times because the times for LOH were presented in Table 2, and LOH(10%) and LOH(20%)

always reached the time limit, even in the problems in which LOH did not; this happens because the scope

of the search is extended when 𝛿 increases. Thus, the total times consumed by LOH(10%) and LOH(20%)

were: 600 s, 900 s and 1800 s, respectively in problems 5-50-50, 10-20-20 and 10-50-50. In these 3

categories of problems, the results of the LOH are in general better, and never worse, than the ones obtained

with LOH(10%) and LOH(20%) regarding the best and the average values of F. The results worsened with

the increase of the tolerance 𝛿. The highest value in each row of Table 3 is highlighted in bold.

Table 3 – Comparison of the heuristic with different tolerance values

LOH LOH(10%) LOH(20%)

Problem
(n1-n2-m) best F Average F best F Average F best F Average F

5-50-50

a 3614.24 3333.50 3614.24 2812.97 3614.24 2607.69

b 7747.93 4963.64 5820.97 4331.12 5657.50 4204.01

c 9043.38 7787.95 8100.62 6786.54 8325.65 6622.04

d 3364.72 1621.21 3364.72 1684.39 3364.72 1318.20

e 5294.50 4341.25 4991.92 3779.78 4991.92 3682.07

10-20-20

a 2598.90 * 2340.48 2598.90 * 2169.92 2598.90 * 2136.64

b 1954.59 1888.43 1954.59 1848.34 1954.59 1811.76

c 2932.42 2898.39 2932.42 2874.16 2932.42 2810.06

d 3692.22 * 3691.40 3692.22 * 3654.40 3692.22 * 3516.28

e 2240.98 * 1856.43 2240.98 * 1836.69 2240.98 * 1778.86

10-50-50

a 5376.78 1771.63 5368.86 1458.94 5368.86 1273.96

b 8675.49 6860.93 7827.14 5701.45 7827.14 5557.92

26

c 8841.17 6108.54 8657.40 5259.99 8657.40 5083.00

d 8308.79 5219.50 7487.16 4354.24 7289.48 4038.28

e 6169.35 4246.14 5709.24 3931.18 5709.24 3843.87

Due to the increased capability of LOH(10%) and LOH(20%) to promote exploration, thus enabling to

escape from local optima, they could perform better than LOH; however, the time limit is clearly an issue

due to the number of bases to be inspected.

We further studied the evolution of the value of F when the time limit is extended. This experiment

was carried out for problems 5-50-50, with a time limit of 3600 s for the N=10 runs, i.e., 360 s for each

run corresponding to a different vector of weights to compute the initial solution. The Average F value

improves in all LOH versions, with the improvement rate (360 s vs. 60 s runtime) in LOH(20%) higher

than in LOH(10%) which, in turn, is higher than in LOH. For illustration purposes, the evolution of the

values of Best F and Average F are displayed in Fig. 5 for problems b, c, d and e (problem a is similar to

d in the behavior of the Best F and it is similar to problems b and c in the behavior of the Average F). The

Best F value improves in LOH(10%) and LOH(20%) for the problems b-c-e, and it improves in LOH just

in problem e. In problems a and d the Best F coincides for all parameterizations and it does not change

even increasing the time limit.

Therefore, it can be expected that for higher time limits, which may depend on the application, the Best

F computed by LOH(𝛿 > 0) can approach, or even exceed, the results obtained for LOH.

Figure 5 – Behavior of the Best F and the Average F for LOH, LOH(10%) and LOH(20%) with runtime 360 s.

27

6.3 Comparison of the LOH with a genetic algorithm

In order to cope with the complexity to obtain the optimal solution to the LBPMOLL and the poor

performance of the exact algorithms, even in medium-sized problems, Calvete and Galé (2011) proposed

a genetic algorithm (GA). This approach is specially tailored for the characteristics of the problem by using

specific solution encoding (vertex solutions represented by a string of integers, the components of which

are the indices of the basic variables) as well as crossover and mutation operators. The GA proceeds by

making a population of basic feasible solutions to evolve using genetic operators. From two parent

solutions, the (one point) crossover operator generates two extreme points which are basic feasible

solutions of 𝑆. The mutation operator leads to an adjacent vertex of a given solution. As in the k-th best

algorithm, the Benson’s technique is used to check whether (𝑥′, 𝑦′) ∈ 𝑆 is a point of 𝐼𝑅. The fitness is

defined lexicographically, first privileging the solutions of 𝐼𝑅 and then ranking the solutions according to

the F-value. A kind of elitist strategy is used, keeping the best solutions (among parents and offspring) in

the population.

The LOH was compared with this GA considering the same instances as in the experiment reported in

Table 2. The main purpose is the comparison of our heuristic with another non-exact method which,

according to Calvete and Galé (2011), «provided estimable results in terms of both quality of the solution

an time invested». For a fair comparison, we have also implemented the GA in Delphi and tested both

algorithms using the same computer.

The main common and distinct features of these two non-exact approaches are: both algorithms search

for vertices only; while the heuristic proposed herein moves from one vertex to another vertex of 𝐼𝑅,

basically carrying out a local search of feasible vertices strongly dependent on the initial solution, the GA

explores vertices of the entire search space 𝑆, i.e., feasible and infeasible solutions of the LBPMOLL. On

one hand, the GA does a broader search, potentially being able to reach better solutions; on the other hand,

it may spend a considerable amount of time searching for infeasible solutions.

For each problem, N independent runs of the GA were performed, the same number of runs performed

with the heuristic (10 or 15, depending on the problem category – see Table 2). The LOH is deterministic

(the different runs result from choosing a different weight vector for its beginning), while the GA is

stochastic. To allow for replication of results and a better comparison of different GA parameterizations,

the same random seeds were used in runs with the same index for all problems (e.g., the random seed in

run 1 of the GA for problem a is the same as in run 1 for problem b).

The following GA parameter values for the GA were considered: crossover probability (pc)=0.5 and

mutation probability (pm)=0.9, since the best results in (Calvete and Galé, 2011) were obtained with these

values. For the population size (Pop), considering the values proposed in the original paper, which are

Pop = 𝑛 or 2𝑛, with 𝑛 = 𝑛1 + 𝑛2 +𝑚, we have adopted Pop = 𝑛 in problems with 𝑛1 = 5 and Pop = 2𝑛

in problems with 𝑛1 = 10 (i.e., categories 10-20-20 and 10-50-50). No limit is imposed on the number of

28

iterations, since this is defined by the computational time given to each run, which is equal to the maximum

time assigned to the LOH.

Although the time limit given to the LOH and the GA is the same, the LOH does not always use the

whole time. The LOH may spend different times in the same problem depending on the initial solution

(i.e., the weight vector used for each run), whereas the GA always uses the entire computational budget.

Table 4 makes a comparison between the LOH and the GA for the problems reported in Table 2. For

each problem, it is shown the best F (maximum F), the minimum F, and the median F obtained by each

algorithm in N runs. F=- means that the GA finished with no feasible solution. The existence of some

F=- justifies why we have adopted the median as a centrality measure for the F value, instead of the

average. Table 4 also presents: the average number of bases explored (in both algorithms), the average

number of iterations of the GA and the average time of one run (in seconds) for the LOH. The time given

to each GA run is fully used, so the average GA time per run is equal to the time limit with a possible very

small increase needed to complete the generation. The highest F-value known for each problem is

highlighted in bold. If this value is obtained in more than 50% of the runs (so that the median F is equal to

the highest F-value) or in all runs (the minimum F is equal to the highest F-value), then it appears in bold

also in the columns of Min F and Median F.

Table 4 – Summary of the results comparing the heuristic with the GA
 LOH GA

Problem

(n1-n2-m) Best F Min F

Median F

Avg

bases

explored

Avg

time Best F Min F

Median F

Avg

bases

explored

Avg

time

Avg iter

1
0
 r

u
n

s

5-20-20 time limit = 30 s/run
 Pop=45, time = 30 s/run

a 2578.20 * 2578.20 2578.20 3633 9.0 2578.20 * -  2578.20 15273 30.0 362

b 1962.73 * 1232.77 1962.73 175 0.3 1962.73 * -  190.04 15533 30.0 373

c 7311.26 * 5995.22 7311.26 625 0.9 7311.26 * -  7311.26 15485 30.1 373

d 4152.51 * 4050.41 4152.51 264 0.4 4152.51 * 4050.41 4152.51 15432 30.0 365

e 1976.77 * 1976.77 1976.77 213 0.3 1976.77 * 1976.77 1976.77 16112 30.0 388

5-30-30 time limit = 60 s/run Pop=65, time = 60 s/run

a 3525.16 * 607.21 3525.15 8437 31.2 3525.16 -  1622.70 25485 60.0 420

b 3042.64 984.93 3042.64 9193 38.0 -378.62 -  -  25633 60.1 431

c 1477.95 * 1013.06 1477.95 2133 4.4 1477.95 * -  -  25627 60.1 430

d 7988.01 * 1762.80 7988.01 2193 5.3 7988.01 * -  -  24858 60.1 416

e 5580.16 3764.80 5580.16 3973 13.4 -  -  -  25194 60.1 423

5-40-40 time limit = 60 s/run Pop=85, time = 60 s/run

a 2149.08 1125.29 1579.16 6554 36.1 -  -  -  20045 60.1 254

b 6180.45 5738.78 6180.45 9991 44.7 -  -  -  20867 60.1 265

c 7865.92 6559.27 7591.49 5992 23.1 7620.52 -  -  21333 60.1 263

d 4841.82 * 3841.04 4841.82 4442 16.1 4841.82 -  -  20284 60.1 255

e 5996.26 3798.83 5996.26 3134 13.6 -  -  -  19993 60.1 254

5-50-50 time limit = 60 s/run Pop=105, time = 60 s/run

a 3614.24 2307.36 3614.24 4495 23.2 -  -  -  19859 60.2 200

b 7747.93 2279.36 5489.83 8211 48.8 -  -  -  18660 60.2 189

c 9043.38 5340.29 8986.55 5547 34.7 -  -  -  15248 60.2 153

d 3364.72 -4142.64 2547.55 3838 25.2 -4060.71 -  -  15799 60.2 158

e 5294.50 1882.91 4289.60 9423 60.0 -  -  -  15893 60.1 159

29

1
5
 r

u
n

s

10-20-20 time limit = 60 s/run Pop=100, time = 60 s/run
a 2598.90 * 1562.75 2586.67 8229 47.2 2598.90 * 2586.67 2598.90 31511 60.1 335

b 1954.59 1735.96 1898.71 7798 40.2 1954.59 1848.10 1954.59 31579 60.1 334

c 2932.42 2421.99 2932.42 4811 17.9 2932.42 -  2932.42 30934 60.1 332

d 3692.22 * 3679.95 3692.22 4828 18.8 3692.22 * 3692.22 3692.22 31504 60.1 339

e 2240.98 * 751.76 1863.94 8209 46.2 2240.98 1899.88 2240.98 31211 60.1 331

10-50-50 time limit = 120 s/run Pop=220, time = 120 s/run
a 5376.78 -3818.03 1864.58 7662 120.0 5390.37 -  -  33334 120.4 155

b 8675.49 2179.95 7659.48 7588 120.0 9604.63 -  9186.27 33662 120.3 147

c 8841.17 -2821.93 6896.19 10012 120.0 8843.39 -  -7448.36 33332 120.3 150

d 8308.79 -1203.25 4873.94 10295 120.0 8308.79 -  -  32937 120.3 148

e 6169.35 -1986.48 4916.09 9173 112.4 5814.81 -  -  33614 120.4 153

Analysis of the results:

• The LOH is clearly better than the GA on the 20 problems with 𝑛1 = 5 (categories from 5-20-20 to

5-50-50) considering similar computational times. The Best 𝐹 obtained with the heuristic is always

higher or equal to the Best 𝐹 of the GA, being strictly better in 11 problems. Likewise, the Min 𝐹 and

Median 𝐹 are higher or equal to the corresponding values of the GA in all problems; the Min 𝐹 is

strictly better in 18 problems and the Median 𝐹 is strictly better in 16 problems (in the other problems,

the values are equal).

• In the 10 problems with 𝑛1 = 10 (categories 10-20-20 and 10-50-50), the superiority of one algorithm

over the other cannot be concluded for all the problems. In these categories, the Best 𝐹 values obtained

by the two algorithms were equal in 6 problems, the LOH was better in 1 problem and worse in 3

problems than GA. The Median 𝐹 values were equal in 2 problems, the LOH was better in 4 problems

and worse in 4. Regarding the worst solution (Min 𝐹), the LOH was inferior to the GA in 4 out of the

5 problems in the category 10-20-20, being superior to the GA in all the 5 problems 10-50-50 for

which there were always some GA runs returning an infeasible solution. In category 10-50-50, the

GA finished with infeasible solutions in 3 (minimum) to 11 (maximum) runs over the 𝑁=15 runs

performed for each problem a - e. The three problems in which the GA finished without finding any

feasible solution for at least 8 runs (i.e., problems a, d, e) are those where the Median 𝐹 is − .

These results reinforce our conviction that the proposed algorithmic approach is suitable for problems

with a reduced number of variables in the upper level. However, this limitation is not so strict in the other

dimensions of the problem (number of lower-level variables and constraints), showing that the LOH is

competitive and provides interesting results in medium-sized problems.

7 Conclusions

In this paper, we proposed an exact method to solve the optimistic formulation of the linear bilevel

programming problem with multiple objective functions at the lower level (semivectorial bilevel

problems). This method is based on a proposition stating that an optimistic optimal solution to the problem

is an efficient extreme point of an associated MOLP problem with as many objective functions as the

30

number of lower-level objective functions plus the number of upper-level decision variables plus 1. Since

the number of objective functions of this associated problem increases with the number of upper-level

decision variables, and the number of efficient extreme points of a MOLP problem grows very quickly

with the increase of the number of objective functions, this method is mainly adequate to bilevel problems

with a small number of upper-level decision variables. This number is the dimension with the major impact

on the computational effort required by the method.

In order to obtain better quality solutions for problems where the exact method does not reach the

optimal solution within a reasonable computational time, we have also developed a local search heuristic

based on the same proposition. Despite being deterministic, the heuristic can lead to distinct final solutions

if different starting points are considered. Thus, we can perform several quick runs of the heuristic starting

at different points, which altogether can yield a very good solution to the problem in a short computational

time. The heuristic showed to be quite effective in problems where the global optimum is difficult to

achieve and it surpassed the exact method in these problems by computing better solutions in a similar

time. Furthermore, the heuristic can be parameterized to extend the search to a larger neighborhood,

including not just the adjacent extreme points that improve the leader’s objective function with respect to

the current solution, but also allowing for a certain degradation of its value.

The exact method EEPSM and the heuristic LOH were compared with another exact method and a

genetic algorithm, which are state-of-the-art algorithms for the problem addressed in this paper. The

algorithms we propose have shown good quality results, outperforming the other algorithms under

comparison in the problems with few upper-level decision variables. The main advantage of the strategy

employed by our algorithms (the exact and the heuristic one) is that they can be interrupted at any moment

always yielding a feasible solution to the bilevel problem. This does not occur in an exact algorithm based

on the k-th best search (which only reaches the inducible region when the optimum is found) or in a

metaheuristic based on the search of extreme points of the entire constraint region. This advantage is

particularly relevant in larger problems for which the algorithms that work with feasible and infeasible

solutions often finish with an infeasible solution.

In addition to the exact method and the heuristic to semivectorial bilevel problems, another contribution

of this work is the development and implementation of an effective vector maximum algorithm

(multiobjective simplex method) that allows the computation of all efficient extreme points of general

MOLP problems. This algorithm has been extensively experimented, not only within the scope of the

approaches proposed herein, but also in general MOLP problems with fewer objective functions (3 to 6)

but larger numbers of constraints and decisions variables. These experiments led to several enhancements

that strengthened the algorithm to be numerically robust. We strongly believe that this contribution can

also be very useful for practitioners and researchers in the field of multiobjective optimization.

31

Acknowledgment. This work has been funded by national funds through FCT – Fundação para a Ciência e a

Tecnologia, I.P., Projects UIDB/05037/2020, UIBD/00308/2020, MAnAGER (POCI-01-0145-FEDER-028040) and

RTCARE (POCI-01-0145-FEDER-028030).

8 References

Alves, M. J. and Antunes, C. H. (2018) ‘A semivectorial bilevel programming approach to optimize electricity

dynamic time-of-use retail pricing’, Computers and Operations Research, 92, pp. 130–144. doi:

10.1016/j.cor.2017.12.014.

Alves, M. J., Antunes, C. H. and Carrasqueira, P. (2015) ‘A PSO Approach to Semivectorial Bilevel Programming:

Pessimistic, Optimistic and Deceiving Solutions’, in Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2015), pp. 599–606. doi: 10.1145/2739480.2754644.

Alves, M. J., Antunes, C. H. and Costa, J. P. (2019) ‘Multiobjective Bilevel Programming: Concepts and Perspectives

of Development’, in Doumpos, M. et al. (eds) New Perspectives in Multiple Criteria Decision Making: Innovative

Applications and Case Studies. Cham: Springer International Publishing, pp. 267–293. doi: 10.1007/978-3-030-

11482-4_10.

Alves, M. J., Antunes, C. H. and Costa, J. P. (2021) ‘New concepts and an algorithm for multiobjective bilevel

programming: optimistic, pessimistic and moderate solutions’, Operational Research, 21(4), pp. 2593–2626. doi:

10.1007/s12351-019-00534-9.

Alves, M. J. and Costa, J. P. (2009) ‘An exact method for computing the nadir values in multiple objective linear

programming’, European Journal of Operational Research. Elsevier, 198(2), pp. 637–646. doi:

10.1016/j.ejor.2008.10.003.

Alves, M. J., Dempe, S. and Júdice, J. J. (2012) ‘Computing the Pareto frontier of a bi-objective bi-level linear

problem using a multiobjective mixed-integer programming algorithm’, Optimization. Taylor & Francis, 61(3), pp.

335–358.

Ankhili, Z. and Mansouri, A. (2009) ‘An exact penalty on bilevel programs with linear vector optimization lower

level’, European Journal of Operational Research, 197(1), pp. 36–41. doi: 10.1016/j.ejor.2008.06.026.

Antunes, C. H., Alves, M. J. and Clímaco, J. (2016) Multiobjective Linear and Integer Programming. Springer

International Publishing. doi: 10.1007/978-3-319-28746-1.

Benson, H. P. (1978) ‘Existence of efficient solutions for vector maximization problems’, Journal of Optimization

Theory and Applications, 26(4), pp. 569–580. doi: 10.1007/BF00933152.

Benson, H. P. (1998) ‘An Outer Approximation Algorithm for Generating All Efficient Extreme Points in the

Outcome Set of a Multiple Objective Linear Programming Problem’, Journal of Global Optimization, 13(1), pp. 1–

24. doi: 10.1023/A:1008215702611.

Bialas, W. F. and Karwan, M. H. (1984) ‘Two-level linear programming’, Management Science, 30(8), pp. 1004–

1020.

Bonnel, H. (2006) ‘Optimality conditions for the semivectorial bilevel optimization problem’, Pacific Journal of

Optimization, 2(3), pp. 447–468.

Bonnel, H. and Morgan, J. (2006) ‘Semivectorial bilevel optimization problem: penalty approach’, Journal of

Optimization Theory and Applications, 131(3), pp. 365–382. doi: 10.1007/s10957-006-9150-4.

Calvete, H. and Galé, C. (2011) ‘On linear bilevel problems with multiple objectives at the lower level’, Omega,

39(1), pp. 33–40. doi: 10.1016/j.omega.2010.02.002.

Dauer, J. P. and Liu, Y.-H. (1990) ‘Solving multiple objective linear programs in objective space’, European Journal

of Operational Research, 46(3), pp. 350–357. doi: 10.1016/0377-2217(90)90010-9.

Dempe, S. (2002) Foundations of bilevel programming. Springer US. doi: 10.1007/b101970.

Dempe, S. and Mehlitz, P. (2020) ‘Semivectorial bilevel programming versus scalar bilevel programming’,

Optimization. Taylor & Francis, 69(4), pp. 657–679. doi: 10.1080/02331934.2019.1625900.

Ehrgott, M. (2005) Multicriteria Optimization. 2nd edn. Springer-Verlag Berlin Heidelberg. doi: 10.1007/3-540-

27659-9.

Evans, J. P. and Steuer, R. E. (1973) ‘A revised simplex method for linear multiple objective programs’,

32

Mathematical Programming, 5(1), pp. 54–72. doi: 10.1007/BF01580111.

Fülöp, J. (1993) On the equivalence between a linear bilevel programming problem and linear optimization over the

efficient set. Working paper no. WPO 93-1, Laboratory of Operations Research and Decision Systems, Computer and

Automation Institute, Hungarian Academy of Sciences.

Isermann, H. (1977) ‘The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program’,

Operational Research Quarterly. Palgrave Macmillan Journals, 28(3), pp. 711–725.

Löhne, A. and Weißing, B. (2017) ‘The vector linear program solver Bensolve – notes on theoretical background’,

European Journal of Operational Research, 260(3), pp. 807–813. doi: https://doi.org/10.1016/j.ejor.2016.02.039.

Lv, Y. and Wan, Z. (2014) ‘A solution method for the optimistic linear semivectorial bilevel optimization problem’,

Journal of Inequalities and Applications, 2014(1), p. 164. doi: 10.1186/1029-242X-2014-164.

Ren, A. and Wang, Y. (2016) ‘A novel penalty function method for semivectorial bilevel programming problem’,

Applied Mathematical Modelling, 40(1), pp. 135–149. doi: 10.1016/j.apm.2015.04.041.

Rudloff, B., Ulus, F. and Vanderbei, R. (2017) ‘A parametric simplex algorithm for linear vector optimization

problems’, Mathematical Programming, 163(1), pp. 213–242. doi: 10.1007/s10107-016-1061-z.

Schechter, M. and Steuer, R. (2005) ‘A correction to the connectedness of the Evans-Steuer algorithm of multiple

objective linear programming’, Foundations of Computing and Decision Sciences, pp. 351–359.

Sinha, A., Malo, P. and Deb, K. (2018) ‘A Review on Bilevel Optimization: From Classical to Evolutionary

Approaches and Applications’, IEEE Transactions on Evolutionary Computation, 22(2), pp. 276–295. doi:

10.1109/TEVC.2017.2712906.

Steuer, R. E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application. Wiley (Series in

Probability and Statistics).

Zheng, Y., Chen, J. and Cao, X. (2014) ‘A Global Solution Method for Semivectorial Bilevel Programming Problem’,

Filomat, 28(8), pp. 1619–1627. doi: DOI 10.2298/FIL1408619Z.

Zheng, Y. and Wan, Z. (2011) ‘A solution method for semivectorial bilevel programming problem via penalty

method’, Journal of Applied Mathematics and Computing, 37(1–2), pp. 207–219. doi: 10.1007/s12190-010-0430-7.

Zionts, S. and Wallenius, J. (1980) ‘Identifying Efficient Vectors: Some Theory and Computational Results’,

Operations Research, 28(3-part-ii), pp. 785–793. doi: 10.1287/opre.28.3.785.

Appendix

The algorithm to compute all efficient extreme points of a MOLP problem was applied to 20 instances

with 100 variables, 50 constraints and 3 to 6 objective functions used in (Alves and Costa, 2009), which

are available at the internet (http://www4.fe.uc.pt/mjalves). Since these instances were randomly generated

with no particular structure, they are not degenerate. Thus, the number of efficient extreme points is equal

to the number of bases explored. Table A.1 summarizes the results obtained, illustrating the performance

of the algorithm. This table presents the minimum, maximum and average number of efficient extreme

solutions (min |ℰ|, max |ℰ|, avg |ℰ|) in each group of five instances with the same number of objective

functions. The corresponding computational times (in seconds) are also shown.

Table A.1- Experiments of the vector-maximum algorithm in general MOLP problems

No. of

instances

No. of

objectives

No. of

variables

No. of

constraints
min |ℰ| max |ℰ| avg |ℰ| Min

time

Max

time

Avg

time

5 3 100 50 326 444 393.4 0.44 0.59 0.53

5 4 100 50 1 929 5 513 3 387.6 3.05 9.88 5.97

5 5 100 50 6 736 25 264 14 457.4 23.03 103.95 58.90

5 6 100 50 34 734 75 624 53 606.8 282.03 814.44 601.30

