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1  Introduction

Meta-analysis is a statistical tool that combines the results of several conceptually 

similar studies or experiments by providing a weighted average of the results of the 

individual studies. This pooled estimate is assumed to be close to the unknown true 

value. Meta-analysis allows answering the following questions: (1) Is the true effect 

signi#cantly different from zero? (2) What are the magnitude and direction of the 

global effect? (3) Are magnitude and direction of the global effect in$uenced by any 

characteristics of individual studies or groups of studies? Additionally, it allows 

identifying knowledge gaps in the research #eld.

Meta-analysis is especially useful when sample sizes of individual studies are 

low or their effect sizes small or non-signi#cant. It increases statistical power and 

tests consistency among individual studies. It also allows the testing of hypotheses 

that may be dif#cult to consider in individual studies (e.g. comparisons across 

biomes).

For meta-analysis to be useful, there needs to be a reasonably large number of 

empirical studies (although there is no minimum), and the collection of studies 

needs to be free of publication bias. All studies need to report quantitative measures 
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of the variables; purely descriptive reports such as case studies cannot be synthe-

tized by meta-analysis.

Meta-analysis has been used to test ecological hypotheses and theories and the 

effect of covariates that are dif#cult to examine within a single primary study, assess 

the impacts of major environmental drivers and the effectiveness of management 

and conservation strategies, inform environmental risk assessment, and identify 

research gaps (Koricheva and Gurevitch 2014). Table 63.1 shows examples of meta- 

analyses in litter decomposition.

Meta-analysis is usually performed in the context of a systematic literature 

review, which includes systematically locating, selecting, and appraising sources 

(preferably peer-reviewed studies) and then synthetizing data from the selected 

sources. Each step is clearly documented to allow reproduction (Table 63.2).

Table 63.1 Examples of meta-analyses in litter decomposition

References System Factor under study

No. of 

studies

No. of 

effect 

sizes Effect size

Global effect 

size (95% CL)

1 Soil Nutrient 

enrichment

24 500 Response ratio 

(R)

0.981

2 Soil Microarthropod 

presence

30 101 Hedges’ g 1.482

3 Streams Litter diversity 11 510 Signed 

deviation from 

additivity

–0.01c

4 Streams Macroconsumer 

presence

17 36 Ln response 

ratio (lnR)

–0.016 (–0.023 

to –0.009)d

5 Streams Nutrient 

enrichment

99 840 Response ratio 

(R)

1.49(1.41 – 

1.58)a

6 Streams Heavy metal 

contamination

38 133 Hedges’ g –0.81 (–1.02 to 

–0.61)b

7 Streams Forest change (4 

types)

24 156 Response ratio 

(R)

0.82 

(0.76 – 0.89)a

8 Streams Acidi#cation 17 67 Response ratio 

(R)

0.37 

(0.30 – 0.46)a

9 Streams Water stress 9 41 Response ratio 

(R)

0.69 

(0.59 – 0.82)a

10 Streams Water temperature 34 148 Hedges’ g 1.20 

(0.96 – 1.43)b

References: (1) Knorr et al. (2005); (2) Kampichler & Bruckner (2009); (3) Lecerf et al. (2011); 

(4) Mancinelli et al. (2013); (5) Ferreira et al. (2015); (6) Ferreira et al. (2016a); (7) Ferreira et al. 

(2016b); (8) Ferreira and Guérold (2017); (9) Sabater et al. (2018); (10) Amani et al. (2019)
a R > 1, stimulation of decomposition; R < 1, inhibition of decomposition
b g > 0, stimulation of decomposition; g < 0, inhibition of decomposition
c Negative values indicate synergistic response of litter decomposition to litter diversity
d lnR < 0, inhibition of decomposition

V. Ferreira and F. Bärlocher
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2  Preparation of the Database

2.1  De!nition of the Question

The #rst step in a systematic literature review is to clearly de#ne the question (or 

hypothesis) to address. This will determine the scope of the review and literature 

search (Sect. 2.2), inclusion/exclusion criteria (Sect. 2.3), and the type of informa-

tion to extract (Sect. 2.5). The question should be broad enough to capture a suf#-

cient number of empirical studies (e.g. ‘Does nutrient enrichment affect litter 

decomposition in running waters?’) but not so broad that it will become unmanage-

able (e.g. ‘Does environmental change affect ecosystem functioning?’, which would 

include the effect of any environmental change on any ecosystem function in any 

ecosystem). A useful strategy to de#ne the question is the PICO method, where the 

question clearly identi#es the population (P), the intervention (I), the control (C; can 

be implicit), and the outcome (O). In the question ‘Does nutrient enrichment affect 

litter decomposition in running waters?’, ‘running waters’ is the population, ‘nutri-

ent enrichment’ is the intervention, it is implicit that a non-nutrient enriched condi-

tion is the control, and ‘litter decomposition’ is the outcome.

2.2  Intensive and Extensive Literature Search

The literature search should be intensive and extensive to ideally locate all studies 

that have ever addressed the question of interest. This is generally impossible 

because some studies may not be published (recent studies or studies not submitted 

or rejected due to publication bias); may belong to the ‘grey literature’ (e.g. theses, 

reports, conference abstracts), which is generally dif#cult to locate and retrieve; or 

may be inaccessible for other reasons (e.g. language bias, when published in lan-

guages unknown to the meta-analysist) (Sect. 3.6). Clearly, there needs to be a con-

siderable effort to ensure that the studies located and retrieved are a random sample 

of the studies performed. The literature search protocol will always have an element 

of subjectivity (e.g. time frame, languages, key words, search paths), but needs to be 

transparent and may need to be revised repeatedly to address potential biases 

(Sect. 3.6).

An intensive and extensive literature search may include studies published in the 

mainstream literature and ‘grey literature’, in several languages and over a large 

time frame (but note that methods to determine the outcome of interest may have 

changed over time, which has to be coded). The literature search should be done via 

multiple paths, including personal literature databases, reference lists in relevant 

primary studies and reviews, scienti#c journal indices, and online databases (e.g. 

Google Scholar, Web of Science, Scopus). Different search paths generally retrieve 

different sets of studies and should be used to complement each other. The set of key 

search words should be clearly de#ned to allow the search to be reproduced. It may 

63 A Primer for Meta-Analysis
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be useful to include a search in libraries and conference abstract books when target-

ing ‘grey literature’. The use of mailing lists (e.g. ECOLOG-L) or direct contact 

with researchers known to work on the topic of interest may locate additional stud-

ies. It is essential to keep track of all steps in the literature search, annotating when 

and how each study was located and retrieved.

Most of the studies that seem relevant based on title and abstract can generally be 

retrieved without delay (e.g. by downloading from journal web pages or online data-

bases). An additional effort may be required to retrieve older studies or data from 

‘grey literature’. This may include contacting the author of the study, the library, or 

the author of a recent study where the study of interest has been cited.

2.3  De!nition of Inclusion/Exclusion Criteria

A literature search generally retrieves many studies that are not relevant or useful. 

The studies to be included in the analysis are selected based on clearly de#ned 

inclusion/exclusion criteria. Studies need to report information that will allow esti-

mating effect sizes (and associated variability), which are interpreted as ‘dependent 

variable’ in a meta-analysis (Sect. 3.2). For instance, to address the question ‘Does 

nutrient enrichment affect litter decomposition in running waters?’, we should only 

consider empirical studies that report (1) litter decomposition in at least one nutrient- 

enriched condition and one control (non-enriched) condition, (2) a measure of 

Definition of the question

Intensive and extensive

literature search

Definition of the 

inclusion/exclusion criteria

Critical appraisal of studies

Statistical synthesis

(e.g., meta-analysis)

Data extraction

Discussion and conclusion based

on the most precise studies

Estimation of effect sizes and 

associated variances

Selection of the model

Evaluation of publication bias

Estimation of the global effect 

size and precision

Test of heterogeneity and effect 

of moderators

Sensitivity analysis

Interpretation and presentation 

of results

Systematic review Meta-analysis

Table 63.2 Steps to carry out a meta-analysis in the context of a systematic review

V. Ferreira and F. Bärlocher
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variation of decomposition values (variance, SD, SE, 95% CL), and (3) sample size. 

If some of this information is missing, it may be available through a request to the 

author. If a few studies lack information on variation, they can still be included as 

the missing values may be imputed (Koricheva et al. 2013; Ferreira et al. 2015).

Additional inclusion/exclusion criteria may be de#ned. To address the question 

above, possible inclusion/exclusion criteria could be that the primary studies (1) 

report decomposition of natural litter rather than arti#cial substrates and (2) rely on 

allochthonous rather than autochthonous litter (Ferreira et  al. 2015). Inclusion/

exclusion criteria may also refer to research methods used (e.g. studies that use a 

speci#c method) and may need to be revised to address publication bias issues 

(Sect. 3.6).

2.4  Critical Appraisal of Studies

The selected studies need to be critically appraised, especially concerning method-

ological quality and multiple publications. The methodological quality of studies 

can be coded as a moderator (Sect. 3.5) or used to assess its impact on the analysis 

(sensitivity analysis; Sect. 3.7). Special care is needed to detect information that has 

been published multiple times to avoid overweighting these data. The number of 

studies used in the analysis may thus have to be reduced to avoid counting identical 

information more than once.

2.5  Data Extraction

 Basic Data to Estimate Effect Size and Associated Variance

Data in ecological studies can be reported in several formats, which will determine 

the type of effect size (and its variance) that can be estimated (Table 63.3; Borenstein 

et al. 2009). If data are based on a comparison of two groups of continuous vari-

ables, then information on the variable of interest (outcome), measure of variability 

of the outcome (variance, SD, SE, 95% CL), and sample sizes of control and treat-

ment conditions need to be extracted. If data are reported as a comparison of two 

groups in terms of categorical variables, then information on sample size and num-

ber of cases in the event and non-event situation, in the control and treatment condi-

tions, need to be extracted. If data are reported as the relationship between two 

continuous variables, then Pearson’s r and sample size need to be extracted.

63 A Primer for Meta-Analysis
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 Explanatory Information to Assess the Effect of Study/

Environmental Conditions

Several experimental and environmental explanatory variables – termed moderators 

in meta-analysis – may affect the response of the dependent variable and explain 

differences in effect sizes among studies. Meta-analysis allows testing the signi#-

cance and strength of these moderators (‘independent variables’) (Sect. 3.5). Only 

moderators backed up by a hypothesis should be coded. In addition, research proce-

dures likely to affect the response of the variable of interest (e.g. type of study, 

speci#c methodologies) should be coded to be later used in sensitivity analyses 

(Sect. 3.7).

Information on selected moderators (continuous or categorical variables) needs 

to be extracted from the studies and additional sources (e.g. websites for climatic 

information) or by contacting the author. For instance, to address the question ‘Does 

nutrient enrichment affect litter decomposition in running waters?’, categorical 

moderators may include type of study, scale of nutrient enrichment and identity of 

the nutrient used in #eld manipulative studies, type of aquatic decomposers, type 

and identity of litter, and climate. Continuous moderators may include the mean 

dissolved nutrient concentration in the control and the magnitude of the increase in 

nutrient concentrations compared to the control condition (Ferreira et  al. 2015). 

Additionally, the type of report (i.e. published in the mainstream or ‘grey litera-

ture’), the type of data (i.e. reported in the study or imputed/estimated), and meth-

odological speci#cations may be coded (Ferreira et al. 2015).

Comparison of 2 groups 

in terms of continuous 

variables

(e.g. control × treatment)

Comparison of 2 groups 

in terms of categorical 

variables

(2 × 2 contigency table)

Relationship between 2 

continuous variables

Effect size based on

means

Effect size based on

binary data

Effect size based on

correlations

Raw mean difference (D)

Standardized mean 

difference
(Cohens’ d or Hedges’ g)

Response ratio (R)

Risk difference (RD)

Risk ratio (RR)

Odds ratio (OR)

Pearson correlation (r)

Effect sizeType of data Type of effect size

Table 63.3 Types of data in ecology, types of effect size, and examples of common effect sizes

For details on the estimation of each effect size and associated variance, see Borenstein et  al. 

(2009); these are estimated automatically in any software for meta- analysis                    

V. Ferreira and F. Bärlocher
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3  Meta-Analysis

3.1  Software for Performing Meta-Analysis

Once the database is ready (i.e. study information, basic data for the estimation of 

effect sizes and associated variance, and information on moderators, generally one 

case by line; see, e.g. Table S1 in Ferreira et al. 2015), it can be entered into a soft-

ware spreadsheet. Many options are available (Koricheva et al. 2013), including:

OpenMEE, an open-source, user-friendly software designed by ecologists for data 

in ecology and evolution (Wallace et al. 2017). It offers diverse and advanced 

statistical options based on packages developed for R without requiring pro-

gramming skills. The software, as well as the user guide, can be downloaded at 

http://www.cebm.brown.edu/openmee/

Comprehensive Meta-Analysis (CMA), a commercial, user-friendly software devel-

oped by specialists in social sciences and medicine (Borenstein et al. 2017). It 

allows entering data for estimating effect sizes and associated variances in 100 

different formats. A trial version, as well as user guides and a large bibliography 

in meta-analysis, can be downloaded at https://www.meta-analysis.com/

The metafor package for R, an open-source, highly versatile package that requires 

familiarity with R.  Codes for performing a meta-analysis are provided in 

Viechtbauer (2010)

3.2  Effect Size and Precision

The effect size re$ects the magnitude of the effect of a treatment or the strength of 

the relationship between two variables; it is estimated for each (case) study and used 

to estimate the global effect size. It may be necessary to estimate different effect 

sizes for different studies, depending on the format used to report data (Table 63.3). 

However, the various types of effect sizes are interconvertible (Table 63.3) so that 

the analysis is based on a single effect size.

Differences in sample size will affect the precision of the estimated effect size. 

Provided there is no systematic bias, the precision de#nes the interval containing the 

true effect size and indicates how much we can trust the estimated effect size. Effect 

sizes associated with a larger variance are given less weight in the meta-analysis. 

Variance estimates are speci#c to each effect size (Borenstein et al. 2009).

One of the most common effect sizes in ecology is the response ratio R (Koricheva 

and Gurevitch 2014), the ratio of the variable of interest in the treatment condition 

to the variable in the control condition (e.g. R = knutrient-enriched/kcontrol, k = decomposi-

tion rate) (Hedges et al. 1999). Being a ratio, it can only be used if outcomes differ 

from zero. It is very easy to interpret (R = 1 indicates no treatment effect, while 

R > 1 and R < 1 indicate higher and lower values in the treatment than in the control 
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condition, respectively). The analyses are performed with the natural logarithm of R 

(lnR), which is normally distributed even in small samples, but the results can be 

back transformed to R to facilitate interpretation.

3.3  Global Effect Size

If all effect sizes had the same precision, they could be simply averaged to estimate 

the global effect size. However, effect sizes generally differ in their precision; the 

global effect size is therefore estimated by a weighted average of the individual 

effect sizes, with a larger weight given to the more precise effect sizes (i.e. associ-

ated with smaller variances).

There are two models to estimate the global effect size in standard weighed 

meta-analysis:

The !xed-effect model assumes a unique and true (#xed!) effect size shared by all 

studies and that the observed differences among individual effect sizes are due to 

sampling error. In this case, the weight attributed to each individual effect size is 

based on the inverse of the within-study variance (or sampling error). This model 

should be chosen only when the variation among studies is negligible; the goal is 

to estimate the global effect size for the studies considered and not to extrapolate 

beyond the analysed studies. These conditions are rarely met in ecological stud-

ies, and thus, this is not a model commonly used in ecology.

The random-effects model assumes that the true effect size varies among studies and 

that the analysed studies provide a random sample of the distribution of effect 

sizes, with the global effect size being the mean of that distribution. In this case, 

the weight attributed to each individual effect size is based on the inverse of the 

total variance, which is the sum of the within-study variance (or sampling error) 

and the between-study variance. This model should be used when the effect sizes 

are expected to vary among studies (e.g. due to different experimental condi-

tions, ecosystems, species, etc.); the goal is to generalize the global effect size, 

which is considered to be the mean of the true effect sizes. This is the most com-

mon model in meta-analysis in ecology.

In both models, the global effect size is estimated as the sum of individual effect 

sizes weighted by the inverse of the corresponding variance, corrected by the sum 

of the weights. The variance of the global effect size is estimated as the inverse of 

the sum of the weights and can be converted into 95% CL. Signi#cant effect sizes 

occur when 95% CL do not include 1 for effect sizes based on ratios (e.g. R) or 0 for 

effect sizes based on the natural logarithm of ratios (e.g. lnR), differences, or 

Pearson’s r (Borenstein et al. 2009).

The meta-analysis result is presented in a forest plot, which shows the effect 

sizes of the individual studies considered as well as the global effect size, and their 

associated variability (generally, 95% CL; Fig. 63.1).

V. Ferreira and F. Bärlocher
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3.4  Heterogeneity

In addition to estimating the global effect size, it is useful to identify and quantify 

heterogeneity in effect sizes. This addresses the sources of differences among stud-

ies rather than combining all the effect sizes into a global value.

The heterogeneity, or observed variation among effect sizes, may result from true 

variation in effect sizes (between-study variance) and from sampling error (within- 

study variance). The true variation is of primary interest. The observed variation 

Fig. 63.1 Forest plot (detail of the last 35 effect sizes) of the response of litter decomposition to 

nutrient enrichment of stream water in correlative #eld studies (lnR  =  ln(knutrient-enriched/kcontrol); 

k = decomposition rate; n = 521). Individual effect sizes (squares; the size of the symbols re$ects 

their precision) and associated 95% CL, the global effect size (blue diamond; red line) and associ-

ated 95% CL (width of the diamond), and the percentage of total variation due to true variation 

among effect sizes (I2 = 95.69%) are depicted. A random-effects model was used, with the restricted 

maximum likelihood method to determine between-study variance. The solid line (lnR = 0) indi-

cates no effect of nutrient enrichment, and lnR > 0 and lnR < 0 indicates stimulation or inhibition, 

respectively. Signi#cant effect sizes occur when 95% CL do not include zero. To facilitate interpre-

tation, the result is back transformed into R: lnR = 0.207 (0.147–0.268) → R = 1.23 (1.16–1.32), 

which indicates that litter decomposition rates increase signi#cantly by 23% in nutrient-enriched 

streams (output from OpenMEE, data from Ferreira et al. 2015)

63 A Primer for Meta-Analysis
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among effect sizes is given by the Q-statistic and is estimated as the sum of squared 

differences between individual effect sizes and the global effect size weighted by 

the inverse of the variance associated with the individual effect sizes (Borenstein 

et al. 2009). The Q-statistic has a χ2 distribution (Ho: Q = df, df = n – 1, n = number 

of effect sizes), with signi#cant p-values (Q  >  df) suggesting that the variation 

among effect sizes is not all due to chance. The causes for heterogeneity are then 

explored (Sect. 3.5). Non-signi#cant p-values (Q = df) suggest that the Ho cannot be 

rejected, which suggests that effect sizes are identical (i.e. there is no between-study 

variance) and variation among them is due to change (i.e. sampling error); however, 

a non-signi#cant result may also be due to low statistical power. Thus, it may still 

be useful to test for moderators when no signi#cant variation is observed among 

effect sizes (Sect. 3.5). The percentage of observed variation that is due to real dif-

ferences in effect sizes (i.e. between-study variance) is given by the I2 statistics: 

((Q – df)/Q)) × 100. I2 values vary between 0% and 100%; I2 values ~25% indicate 

low heterogeneity, I2 values ~50% indicate moderate heterogeneity, and I2 values 

~75% indicate high heterogeneity (Fig. 63.1).

3.5  Test of Moderators

Variation in effect sizes may be due to differences in experimental or environmental 

characteristics, categorized as moderators. We can assess if they are systematically 

associated with variation in effect sizes. Moderators are coded, and their effects are 

assessed in subgroup analysis (categorical moderators) or meta-regression (continu-

ous moderators).

 Subgroup Analysis

In subgroup analysis, effect sizes are grouped by common features (i.e. levels within 

a given moderator), and the global effect size for each subgroup (levels) is estimated 

and tested for heterogeneity. A hierarchical approach to test moderators is often use-

ful; effect sizes are strati#ed, and comparisons of effect sizes among levels of one 

moderator are made within a level of another moderator (e.g. comparison between 

the levels ‘Coarse mesh’ and ‘Fine mesh’ of the moderator ‘Mesh size’ within the 

level ‘Leaves’ of the moderator ‘Litter type’; Table 63.4; Fig. 63.2).

There are multiple models and methods for performing subgroup analysis 

(Borenstein et al. 2009), which cannot be covered here. In ecology, the most com-

monly used approaches are the random-effects model with between-study variance 

pooled for the estimation of the effect size for each subgroup and global effect size 

and the random-effects model with between-study variance estimated for each sub-

group (i.e. not pooled) for the estimation of the effect size for each subgroup and 

global effect size.

V. Ferreira and F. Bärlocher
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Litter type

Wood

Leaves

Fine-mesh

Coarse-mesh Temperate

Cold

Tropical

Mesh size Climate

Cold

Temperate

Coarse-mesh

Temperate

Temperate

Field, 

Correlative 

studies

Fine-mesh

Tropical

490

31

282

208

25

6

34

212

36

30

173

5

25

6

521

Table 63.4 Hierarchical diagram for categorical moderators (Ferreira et al. 2015)

The moderator ‘Litter type’ has two levels (‘Leaves’ and ‘Wood’), the moderator ‘Mesh size’ has 

two levels (‘Coarse mesh’ and ‘Fine mesh’), and the moderator ‘Climate’ has three levels (‘Cold’, 

‘Temperate’, and ‘Tropical’). Values indicate sample size (i.e. number of effect sizes)        

0.8 1.0 1.2 1.4 1.6 1.8

Leaves

Wood

Coarse-mesh

Fine-mesh

Cold

Temperate

Tropical

Response ratio

)125(

(490)

(31)

(282)

(208)

(64)

(385)

(41)

Global

Litter type

Mesh-size

Climate

Fig. 63.2 Subgroup analyses of the response of litter decomposition to nutrient enrichment 

(response ratio R, 95% CL); same data as in Table 63.4 (random-effects model; restricted maxi-

mum likelihood method for between-study variance). Global effect size and effect size as a func-

tion of litter type (two levels), mesh size (two levels; considering only Leaves since non-signi#cant 

R was found for Wood), and climate (three levels; considering only Leaves since non-signi#cant R 

was found for Wood, but considering both mesh sizes since signi#cant R was found for both, with 

no signi#cant difference between them). The dashed line (R = 1) indicates no effect of nutrient 

enrichment on litter decomposition, and R > 1 indicates a stimulation of litter decomposition. The 

effect of nutrient enrichment is signi#cant when 95% CL do not include 1 (black symbols). Within 

each moderator (in bold), levels with overlapping 95% CL do not signi#cantly differ. Values in 

parenthesis indicate sample size (output from OpenMEE, data from Ferreira et al. 2015)
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 Meta-Regression

In meta-regression, effect sizes (weighted by their precision) are regressed against 

continuous moderators to explain observed variation. There are multiple procedures 

for meta-regression (Borenstein et al. 2009). One is based on the random-effects 

model. The meta-regression will produce values for the intercept, the slope, and 

associated statistics. The signi#cance of the slope is assessed by the Z-test given by 

the ratio between the slope and its SE; if several covariates are used simultaneously, 

then the Q-test is used.

The model is tested using the Q-statistic (weighted sum of squares; Sect. 3.4). A 

signi#cant Qmodel (i.e. variation explained by the moderator) indicates that the rela-

tionship between effect sizes and the moderator is stronger than expected by chance. 

The goodness of #t test (Qresid) assesses if there is heterogeneity that is not explained 

by the moderators and can be used to estimate the variance of this unexplained het-

erogeneity; a signi#cant Qresid indicates that some between-study variance remains 

unexplained. The proportion of variation in effect sizes that is explained by the 

model (R2) is given by the ratio between true variance explained and total true vari-

ance (Fig. 63.3).

0

-3
-2

-1
0

1
2

3

1 2

Log(DIN+1)

In
R

3 4

Fig. 63.3 Meta-regression to assess the effect of dissolved inorganic nitrogen (DIN) concentration 

in control conditions (Log (x + 1)-transformed) on the response of litter decomposition to nutrient 

enrichment (lnR) (n = 511). The size of the symbols re$ects their precision, with effect sizes with 

larger symbols being more precise and thus given greater weight in the analysis. The response of 

litter decomposition to nutrient enrichment decreases by 0.326 (slope; p < 0.001) for each unit 

increase in DIN concentration in control conditions suggesting that the response for litter decom-

position to nutrient enrichment is stronger in systems with naturally low nutrient concentration. 

The model explains 13% of the variation (output from OpenMEE, data from Ferreira et al. 2015)

V. Ferreira and F. Bärlocher
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3.6  Publication Bias

A meta-analysis allows a precise synthesis of a selected set of studies, but if the 

selected studies do not fairly represent all conducted studies, then the estimated 

global effect size will be biased. Bias may be the result of publication bias, when the 

results of the primary studies affect their probability of being published, the so- 

called #le drawer problem (e.g. non-signi#cant results or results contrary to current 

theory are less likely to be submitted to journals). Bias may also occur as a result of 

dissemination bias, when the presentation of the primary studies affects their prob-

ability of being found (e.g. language bias, English vs. other languages; citation bias, 

highly cited vs. less cited studies; publication site bias, high- vs. low-impact jour-

nals). Both publication bias and dissemination bias are known jointly as publica-

tion bias.

An intensive and extensive literature search (Sect. 2.2) can overcome many of 

these potential biases. However, there is always the need to evaluate if the database 

or subsets of the database (and thus the results of the analyses) are affected by pub-

lication bias. There are several methods to assess the potential impact of publication 

bias in the meta-analysis, which assume that bias is negatively correlated with sam-

ple size in primary studies. These methods include:

Comparing global effect size of published studies vs. ‘grey literature’. In the absence 

of bias, the results should not differ signi#cantly. If they differ (and there are no 

important differences in methodological/environmental characteristics between 

the two groups), this indicates publication bias, which might be corrected by 

including the ‘grey literature’. The database should still be tested using the meth-

ods below.

Relating effect size and precision (meta-regression). Without bias, the relationship 

should be non-signi#cant; if low precision studies have larger effect sizes than 

more precise studies, the analysis should focus on more precise studies.

Fail safe numbers (Nfs; e.g. Rosenthal, Orwin, Rosenberg) estimate the number of 

studies with non-signi#cant results (which may have been missed in the litera-

ture search) that are needed to nullify the global effect size (Rosenthal, Rosenberg) 

or to reduce it to an ecologically non-relevant value (Orwin) (Borenstein et al. 

2009). It does not consider missing studies that may report results in the opposite 

direction. If Nfs > 5 × n + 10 (n = number of effect sizes), the global effect size 

is robust to publication bias; if the Nfs are lower, the literature search and/or 

inclusion/exclusion criteria may need to be revised.

The funnel plot is a scatter plot of effect sizes vs. precision or sample sizes that, in 

the absence of bias, is symmetrical around the global effect size with a wider 

distribution of effect sizes for less precise studies. This gives the plot a funnel 

shape. It is less ef#cient when the number of effect sizes is low and it does not 

consider that asymmetry may have other causes (e.g. differences in experimental 

approaches among studies).
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Duval and Tweedie’s trim and !ll method, which imputes the ‘missing’ effect sizes 

to the funnel plot and estimates a new global effect size (Borenstein et al. 2009). 

The comparison of the original global effect size and the new estimate allows 

assessing the degree to which the original global effect size is affected by publi-

cation bias. If publication bias has a strong effect on the results, the literature 

search and/or inclusion/exclusion criteria may need to be revised.

3.7  Sensitivity Analyses

Several decisions may affect the outcome of a meta-analysis. Sensitivity analyses 

allow assessing if and to what extent these decisions affect the results, i.e. they 

assess the robustness of the results. Technically, sensitivity analyses imply repeating 

some analyses using different criteria and performing subgroup analyses or meta- 

regressions on different data sets or using ‘decision’ moderators (Ferreira et  al. 

2015). Sensitivity analyses may include assessing the effect of:

Considering multiple effect sizes per study. This is typical of ecological studies but 

violates the assumption of independence of effect sizes. Thus, it is necessary to 

show that violating this assumption does not strongly affect the results. To that 

end, a single effect size per study is computed (using study as moderator in a 

subgroup analysis), and a new global effect size is estimated and compared with 

the global effect size estimated from all effect sizes.

Study quality by comparing effect sizes in different classes of study quality (sub-

group analysis) or assessing the relationship between effect size and study qual-

ity (meta-regression).

Including ‘grey literature’, which may be considered of substandard quality since it 

did not go through peer review, by comparing effect sizes from published studies 

vs. ‘grey literature’ (subgroup analysis).

Including effect sizes with imputed or recalculated data, which may be less accurate 

than reported data, by comparing effect sizes from reported data vs. effect sizes 

from imputed or recalculated data (subgroup analysis).

Including particular studies (e.g. studies that contribute with an exceptionally large 

number of effect sizes, studies with unusual characteristics), by comparing 

results with and without these studies.

4  Quality in Meta-Analysis

The number of systematic reviews using meta-analysis is increasing in ecology, but 

not all reports are of high quality (Koricheva and Gurevitch 2014). Although meta- 

analysis is generally performed in the context of a (systematic) review, its proce-

dures and reporting should follow closely those of a primary study. A traditional 
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literature review generally makes no attempt to locate all studies, does not describe 

why some studies are included and others excluded, and has limited capability to 

deal with a large number of studies with variable outcomes. This gives it a high 

degree of subjectivity and low degree of reproducibility.

In a systematic literature review, the reviewer needs to keep record of all steps 

and decisions and report these with suf#cient detail to allow reproduction of the 

results (as in a primary study!). A systematic literature review needs to start with 

preparing detailed protocols (as in a primary study!) for literature search, inclusion/

exclusion criteria, study appraisal, and coding (these protocols can be revised dur-

ing the process, with all changes being annotated). The Collaboration for 

Environmental Evidence website (http://www.environmentalevidence.org/) lists 

examples of protocols for systematic literature reviews.

The number of studies located and retained at each step of the literature search, 

application of inclusion/exclusion criteria, and study appraisal can be presented in a 

PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses; 

Liberati et al. 2009) $ow diagram, which can be generated online (PRISMA $ow 

diagram generator: http://prisma.thetacollaborative.ca/).

In order to carry out and report a high-quality meta-analysis, the quality criteria 

compiled by Koricheva and Gurevitch (2014) should be checked.
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